
Multimedia Tools and Applications
https://doi.org/10.1007/s11042-024-18755-2

Robust and efficient airplane cockpit video coding leveraging
temporal redundancy

Iulia Mitrica1 · Attilio Fiandrotti1,2 · Christophe Ruellan3 ·Marco Cagnazzo1,4

Received: 22 August 2023 / Revised: 25 January 2024 / Accepted: 24 February 2024
© The Author(s) 2024

Abstract
Airplane cockpit screens consist of virtual instrumentswhere characters, numbers, and graph-
ics are overlaid on a black or natural background. Recording the cockpit screen allows one
to log vital plane data, as aircraft manufacturers do not offer direct access to raw data. How-
ever, traditional video codecs struggle at preserving character readability at the required low
bit-rates. We showed in a previous work that large rate-distortion gains can be achieved if the
characters are encoded as text rather than as pixels. We now leverage temporal redundancy to
both achieve robust character recognition and improve encoding efficiency. A convolutional
neural network is trained for character classification over synthetic samples augmented with
occlusions to gain robustness against overlapping graphics. Further robustness to background
occlusions is brought by a probabilistic framework that error-corrects the output of the con-
volutional neural network. Next, we propose a predictive text coding technique specifically
tailored for text in cockpit videos that achieves competitive performance over commodity
lossless methods. Experiments with real cockpit video footage show large rate-distortion
gains for the proposed method with respect to three different video compression standards.
Notably, the H.264/AVC codec retrofitted with our method outperforms H.265/HEVC-SCC
and is competitivewith themuchmore complexH.266/VVCwhile preserving text and graph-
ics. The entire pipeline described in this work has been implemented at Safran Electronics as
an embedded avionics system drawing just 2W of power thanks to a combination of software
and FPGA implementation.

B Attilio Fiandrotti
attilio.fiandrotti@telecom-paris.fr

Iulia Mitrica
iulia.mitrica@gmail.com

Christophe Ruellan
christophe.ruellan@safrangroup.com

Marco Cagnazzo
marco.cagnazzo@unipd.it

1 LTCI, Télécom Paris, Palaiseau 91120, France

2 Universitá di Torino, Torino 10124, Italy

3 Safran Electronics, Paris 91940, France

4 Universitá di Padova, Padova 35122, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-024-18755-2&domain=pdf
http://orcid.org/0000-0002-9991-6822


Multimedia Tools and Applications

Keywords Airplane cockpit · Video coding · Semantic coding · ConvNets

1 Introduction

In modern airplanes cockpits, gauges, and dials gave way to computer screens where Text
(plane coordinates, altitude, aircraft speed, etc.) andGraphical Objects (virtual horizon, head-
ing, route waypoints, etc.) are rendered (over a video streams) as in Fig. 1. Fleet operators
commonly record the cockpit screens to log cockpit screens since aircraft manufacturers
usually prevent the operators from accessing the plane raw data due to security concerns.
Cockpit videos are commonly recorded onboard and records are periodically downloaded
when the plane undergoes maintenance and later on visually inspected in the case of mal-
functions, accidents, etc. Clearly, such recordings are only as useful as long as the TGOs
and text (characters, digits) in particular remain readable, i.e. if high-frequency components
corresponding to sharp color transitions at the boundaries between text and background are
preserved, whereas the background can be sacrificed to some extent. Preserving high fre-
quencies in video requires in principle low-to-mild quantization, i.e. high encoding rates, or
specialized video coding tools, i.e. high encoding complexity. However, the available stor-
age for video onboard is usually limited and the constraints on power consumption (and heat
dissipation) in typical avionic gears are typically tight. The tension between the requirements
for encoding the video at low bitrates preserving text readability on one side, and constraints
on complexity on the other side, call for ad-hoc video coding schemes beyond off-the-shelf
video coding standards.

In our previous work [16] we introduced the idea of semantic encoding of cockpit screens.
First, on-screen text and graphical objects are detected and encoded by their labels (character
or digit value, shape) and attributes (positions, color, etc.). Then, the corresponding pixels are
inpainted, yielding a residual cockpit screen images with few high frequencies. The residual
video can then be encoded at a low bitrate by any off-the-shelf codec and stored together
with the encoded text. The decoding process consists simply in recovering the residual video
and overlaying the decoded characters and objects. In our previous work, we considered a
simple all-Intra approach, i.e., text and residual video are independently encoded frame by
frame. Yet, we achieved large rate-distortion (RD) gains with respect to the state-of-the-art
SCC (Screen Content Coding) extension H.265/HEVC standard while preserving character
readability. Next, in [15], we showed that if the residual video is encoded exploiting temporal
prediction, anH.264/AVC [26] encoder retrofittedwith our scheme becomes competitivewith
H.265/SCC, enabling lower encoder complexity. However, our experiments also showed two
directions for further improving our scheme performance: i) character recognition accuracy
needs improvements when on-screen characters are temporarily occluded by moving objects
on the screen like the virtual horizon; ii) in some cases the rate of text approaches or even
exceeds the rate of the residual video. This especially happens when high QPs are used or
when the video has a flat (black) background, like in Fig. 1(b).

In this article, we vastly improve over our previous work [16] with a higher character
recognition accuracy and more efficient compression technique.
First, we achieve robustness to character occlusions via a twofold strategy. To start with,
we train the convolutional network in charge of character recognition over synthetic text
samples augmented with noise in the form of occlusions with lines and other shapes that
typically appear in cockpit videos. Next, we state character recognition as a maximum a
posteriori (MAP) classification problem given the past video, so to take into account temporal

123



Multimedia Tools and Applications

Fig. 1 Examples of airplane cockpit videos. On the left, text is overlaid on natural background. On the right,
text is displayed against a black background and some characters are partially occluded by the virtual horizon
line

redundancy. We show that, under some mild hypotheses, the optimal yet costly video-based
estimator is equivalent to a much simpler image-based estimator. TheMAP approach slashes
the character recognition error rate up to 18 times for simple sequences and at least 1.5
times for difficult sequences with multiple occlusions and rapid character flickering. The
improved character recognition even in the case of occlusion is of paramount importance
towards enabling flawless reconstruction of the encoded video and hence enhancing aviation
operations and safety, as we discuss later on.
Second, we reduce the text encoding rate by devising an inter-frame character coding scheme
tailored to the characteristics of text in cockpit screens. Leveraging the temporal correlation
among adjacent frames reduces the bitrate required to encode characters to a point where it
becomes negligible with respect to the residual video rate, even at high QPs. Our experiments
show that the overall encoding rate for our inter-frame text coding paired with H.264/AVC
for the residual video is competitive with H.265/HEVC-SCC and in some cases even with
the recent H.266/VVC codec, yet at a fraction of the encoder complexity for a wide range of
content type, resolutions and screen aspect ratios.

The rest of this article is organized as follows. After reviewing the necessary background
in Section 2, we introduce the proposed methods in Section 3. The experimental conditions,
the results, and the related discussion are illustrated in Section 4. Section 4.5 discusses the
hardware implementation of the proposed pipeline. Finally, Section 5 draws conclusions and
proposes some future developments.

2 Background

In this section, we describe the relevant background to screen content coding (SCC), from
early approaches to standardized solutions and semantic approaches.

2.1 Compound video coding

Compound video contents refers to the case where computer-generated text, graphics or other
objects are rendered over a natural background. Compressing such videos has been recog-
nized as a special case of video compression demanding ad hoc tools since the 90s [4, 5,
21]. However, only in the 2010s screen content coding tools have been deeply investigated
and included in standard video codecs [13]. The large majority of papers dealing with screen
content coding or compound image and videos share a common approach: the blocks of the
current image are encoded with a suitable compression tool, which is decided by explic-
itly or implicitly classifying the block as “natural content” or “screen content”. Most of the

123



Multimedia Tools and Applications

earlier techniques relied on explicit block classification, while in recent standards, such as
HEVC/SCC and VVC, the coding tool selection is decided through a rate-distortion opti-
mization procedure, and SCC methods are selected if they are the best performing on the
current block.

Wang et al. [25], considered time redundancy for text, but the latter is still compressedwith
a pixel-based approach. When a block is recognized as text, it is compressed in the spatial
domain and can be directly copied from the same position in the previous frame (skip). The
pixels are quantized to several major colors and the indices of these major colors are entropy-
coded to achieve a high-efficiency compression. In [9], the authors propose block-based
compression techniques using block classification into text and natural ones, being used to
adjust the quality over the coding rate. In [6], a lossless video scheme based on progressive
B-spline curve fitting over time is proposed, showing reduced entropy for both natural and
synthetic sequences.

2.1.1 Screen content coding in standards

More recently, the JVET of the ISO/ITU recognized the importance of screen coding an
amendment to the H.265/HEVC video coding standard [27]. The Screen Content Coding
(SCC) extension [28] defines ad-hoc tools for screen coding such as Intra Block Copy which
acts like a motion compensation within current frame, and as Palette Mode, which sig-
nals the pixel values directly, exploiting the reduced number of colors typical of computer
screens. Adaptive color transform, and adaptive motion vector resolution are also introduced.
The above-described new encoding tools result in different RD characteristics than standard
HEVC, so ad-hoc RD models [7] and ad-hoc rate control algorithms have been proposed
[24].

The new H.266/VVC standard [2] retains the SCC tools in all the profiles. For exam-
ple, the intra-prediction tool [29] has acquired novel modes, as well the standard now
supports coding block partitioning. Unfortunately, improved encoding efficiency comes at
the cost of increased complexity over HEVC, which in turn is already more complex than
H.264/AVC [8]. While such extra complexity may be tolerable in some cases, in our cockpit
video coding context it is just not acceptable due to strict bounds on power consumption and
heat dissipation that are enforced for typical plane avionics. Such considerations on com-
plexity are among the main drivers of the semantic approach to cockpit video compression
that we rely upon in this work.

2.1.2 Semantic video compression

Semantic compression is based on the idea that the compression method should take into
account the intended meaning of the most important feature in an image (in our case, the
text), rather than straightforwardly optimize a rate-distortion trade-off. The first step consists
in detecting the text in the (compressed) video. For example, [23] tackles the preliminary
problem of detecting text in videos, which is made complex by compression artifacts and low
resolution. The authors propose a hybrid method based on morphological filtering and 2-D
discrete wavelet transforms. Also, the work in [18] deals with detecting text in H.264/AVC
compressed video, this time using the integer discrete cosine transform (DCT) coefficients of
intra-frames. Increasing the complexity of the proposed methods, other articles put forward
deep learning methods to detect objects in images or videos. Unfortunately, in our avion-
ics context, complexity plays a key role, ruling out existing approaches and promoting the

123



Multimedia Tools and Applications

development of an ad-hoc text-and-object detection pipeline, which we implemented with a
hybrid software-hardware approach as described in the last section of this work.

3 Proposed architecture and contributions

In this Section, we describe the main functional blocks of the proposed semantic codec
architecture, while we refer the reader to our previous work [16] for further details.

3.1 Semantic codec architecture

The encoder (left part of the Fig. 2) works as follows. First, TGOs are detected and recog-
nized exploiting the fact that must appear in predefined locations to allow the pilot to spot
them with ease. Character recognition is addressed via a LeNet5-based ConvNet that in our
previous experiments did strike a favorable tradeoff between character recognition accuracy
and complexity. Namely, in [16] we investigated a fully connected architecture known as
LeNet300 and the convolutional LeNet5. LeNet300 is a simple fully connected network
composed of two hidden layers with 300 and 100 units (neurons) respectively with sigmoid
activation functions and one output layer. Our expeirmnt found that LeNet5 showed better
accuracy than LeNet300 for a smaller number of parameters and bearable computational
complexity. Second, TGOs are encoded in the semantic domain with the lossless methods
described below rather than in the pixel domain. Third, the Navier-Stokes algorithm inpaints
the TGOs yielding a smooth computer screen without high frequencies: the goal of inpaint-
ing is only removing high frequencies, as the inpainted TGOs will be rendered over by the
decoder as described below. Fourth, residual images are encoded with an off-the-shelf video
encoder such as H.264/AVC as its low complexity allowed us to implement it in FPGA over
a tight power budget. For each frame, the encoder produces a smooth residual image without
TGOs and a side stream encoding the TGOs in their semantic domain.

The decoder architecture (right part of the Fig. 2) is as follows. First, residual images are
decoded producing a smooth background without text or graphics. Second, the side stream
is decoded and TGOs are synthesized in the pixel domain and superimposed in the original
position over the residual image. The result is an image where TGOs are not affected by
compression artifacts as in traditional video codecs.

With respect to our previous research, this work introduces i) robust training of the
ConvNet in charge of character recognition via synthetically augmented samples, ii) error

Fig. 2 Architecture of our proposed scheme for cockpit video compression. On the left, the encoder yields
a residual video without TGOs and a side stream with the TGOs encoded according to their semantics. At
the receiver side, the decoder superimposes newly synthesized TGOs over the residual video, recovering the
original frame

123



Multimedia Tools and Applications

correction based on a posteriori probabilities iii) full temporal predictive encoding of TGOs
to slash the character coding rate iv) temporal predictive encoding of the residual video.

3.2 Robust character recognition

As shown in Fig. 1(b), characters in cockpit screens may be occluded by graphical objects
in the foreground and background clutter. While the LeNet5 convolutional neural network
(ConvNet) [12] performed very well when characters are not occluded, its performance
degrades with occlusions. Our approach towards robust character recognition rests on two
complementary legs that are described in the following.

3.2.1 Training on synthetic occluded samples

In our previous endeavors, we trained the LeNet5 from thousands of samples extracted
from airplane cockpit videos. Unfortunately, few of these samples included occlusions from
foreground objects, which made the network somewhat fragile to occlusions. We also exper-
imented training our LeNet5 on publicly available datasets of occluded characters: however,
the experiments showed poor performance that we attributed mainly to the lack of datasets
with the peculiar type of occlusions found in cockpit screens. Because of the relative lack of
occluded samples, we devised an approach to generate synthetic samples with occlusions.
Our LeNet5 implementation takes in input samples sized 22×28 due to complexity and per-
formance considerations, however, the described approach applies to any sample size. First,
we randomly draw one character or symbol among those that shall be recognized. The char-
acter is then rendered within a 10x13 frame with an alpha channel over 256 levels of pixel
intensity with color, font face, and size depending on the specific situation. Next, the frame is
superimposed over a 22×28 empty canvas at a randomly drawn position, to enable robustness
against loose character detection. Third and last, we draw random graphics over the canvas
to gain the network robustness to occlusions. In the example, a line is drawn at a random
angle and random position with probability pocc = 0.5. This method enables generating a
large dataset with controlled occlusions. In our experiments, we generate a dataset of 5000
samples that are divided into 80% training and 20% validation. In the experimental section,
we show the benefits in terms of robustness of a LeNet5 trained with the above approach.

3.2.2 Exploiting temporal redundancy

In this section, we show how we propose to take advantage from temporal redundancy
of characters and graphical objects in cockpit screens. We start from the observation that,
considering a specific character (e.g., the first digit of the spatial coordinates) its “value” at
time t is statistically dependent from its value at time t − 1. As for the notation, we refer to
the value of a character in frame t with Yt . It is possible to introduce mathematical models
of the dependence between the values of the same character in consecutive frames though
the conditional probability PYt−1|Yt (yt−1|yt ). The models used in this work are detailed in
Section 3.2.3, and notwithstanding their simplicity, their impact on recognition performance
is considerable, as shown in the experimental section. However, we underline that our goal
is not to look for the best models. If a better model than the one used here would be made
available, we would immediately be able to plug it into our proposed method, because, as
shown later on, we only need an estimate of P (yt−1|yt ) (we drop the subscript for simplicity
of notation).

123



Multimedia Tools and Applications

Now we show how we leverage these statistical dependencies to improve recognition
accuracywith negligible complexity increase. Before starting themathematical development,
we must mention that our proposed method is similar in spirit to some works in the literature
such as [14, 19], which propose to improve the output of a classifier (the classes a posteriori
probabilities) given some updated a priori probabilities of the data.

We consider a given character in the cockpit screen. To fix ideas, it could be the first digit
of the latitude (see bottom-right part of Fig. 1(a)). Let Xt be the random vector representing
the pixel patch of the character in the current frame t . The “value” of the character is just its
class label, and it is represented with Yt . In the current example, the realization of Yt is “4”.
Thus, the baseline classifier is the one that computes the probability of a class label given the
pixel patch: in our system, it is a ConvNet providing the conditional probabilities P(yt |xt ),
and inferring from them the MAP estimator ȳt of the character value:

ȳt = argmax
yt

P(yt |xt ). (1)

The baseline classifier in (1) does not take into account the temporal dependence among the
instances of the same character, and it is the one we used in our previous works [15, 16].

Now we show our proposed method. We start from the idea of using the MAP estimator
that also considers the past value yt−1 :

ŷn = argmax
yt

P(yt |xt , yt−1). (2)

This new estimator is more convenient than the one in (1) because it takes into account the
temporal dependence through the character label in the previous image, yt−1. On the other
hand, it requires in principle a new and more complicated ConvNet, and it could not take any
advantage of an existing baseline classifier. One of the main contributions of the following is
that, under a very reasonable hypothesis, we show how to compute ŷt without retraining the
baseline classifier that provides P(yt |xt ): we only need to inject in the classification process
the conditional probabilities PYt |Yt−1(yt |yt−1).

Our hypothesis is a form of conditional independence: we assume that, given the value
Yt of the character at time t , the patch Xt is independent from the previous value Yt−1. In
other words, Yt−1, Yt and Xt form a Markov chain in the order (sometimes this is expressed
as Yt−1 → Yt → Xt ). We are assuming that the past value Yt−1 only influences the current
patch through Yt , but once given the latter, the former has no statistical influence on Xt . In
our example about the latitude digit, our assumption means that, once we know the value of
the current character (ie., “4”), the distribution of the current pixel patch is independent of the
value of the character in the previous frame.With this hypothesis, we develop the conditional
probability in (2) as follows:

P(yt |xt , yt−1) = P(xt |yt , yt−1)
P(yt , yt−1)

P(xt , yt−1)

= P(xt |yt ) P(yt , yt−1)

P(xt , yt−1)
(3)

= P(xt |yt ) P(yt |yt−1)P(yt−1)

P(xt , yt−1)

= P(xt |yt )
P(xt |yt−1)

P(yt |yt−1) (4)

123



Multimedia Tools and Applications

where in (3) we used the conditional independence hypothesis. Now, using the Bayes’ rule,
(4) becomes:

P(yt |xt , yt−1) = P(yt |xt )
P(yt−1|xt )

P(yt−1)

P(yt )
P(yt |yt−1)

= P(yt |xt )P(yt−1|yt )
P(yt−1|xt )

(5)

The MAP estimator can then be written as

ŷt = argmax
yt

P(yt |xt )P(yt−1|yt ) (6)

where the denominator of (5) is neglected because it does not depend on yt . This result
provides a way to account for temporal dependence in the character classifier: the MAP
classifier estimating the current value given the pixel patch Xt and the previous label can be
computed just by weighting the class probabilities P(yt |xt ) given by the baseline classifier
by the conditional probabilities given by the model, and then picking the maximum of the
weighted probabilities.

As for practical aspects of the proposed method, we also observe that, in order to compute
P(yt−1|yt ) we are supposed to use the true value yt−1 of the character at time t − 1. In
practice, we do not have access to this information, but only to the previous estimate. We
then propose to use ŷt−1 in place of yt−1 for computing the weights. Therefore, our estimator
is iteratively computed as:

ŷt = argmax
yt

P(yt |xt )P(ŷt−1|yt ), (7)

rather than with (6). The use of an iterative algorithm to estimate the character labels has of
course some inconvenience. First, the estimator in (7) is equivalent to the one in (6) if and
only if the previous label was correctly estimated (ie., ŷt = yt . Second, an incorrect label
can trigger error propagation. Third, we need an initialization value for the characters of the
first frame.

Notwithstanding these problems, it is not difficult to imagine some solution to these
problems.As observed in [16], the baseline classifier ȳt = argmaxyt P(yt |xt ) has recognition
rates close to 100% when the characters are not occluded. Thus we use ȳ0 to initialize the
recognition: ŷ0 = ȳ0.

In order to limit error propagation, one could periodically check if p(ȳt |xt ) is larger than
a suitable threshold. In this case, one can safely assume that there is no occlusion and thus
use ỹt = ȳt . This would stop any possible error propagation because the estimated label is
not affected by past estimations.

In all our experiments we used ŷ0 = ȳ0 to initialize the character recognition process
and we observed that error propagation is extremely rare. As a consequence, the proposed
method largely improves character recognition even in the case where we do not resort to
specific protection against error propagation. The search for an optimized strategy against
recognition error propagation is left for future works.

3.2.3 Models for character conditional probabilities

As discussed above, in order to take into account temporal dependence in character recogni-
tion, we need a model for the conditional probability of the current character value given its
value in the previous instant. In principle, this probability distribution varies from cockpit to
cockpit, however, our experiments show that some simple model works reasonably well in

123



Multimedia Tools and Applications

practical situations. We use two different parametric models to address the cases where yt is
a letter or a digit.

In the case of a letter, our model is

P(yt−1|yt ) =
{

p if yt = yt−1
1−p
M−1 otherwise

(8)

that is, we assume that there is a certain probability p a letter does not change between
consecutive frames. If the letter changes, our model assumes that it can switch with uniform
probability to any of the remaining M − 1 characters. This model has only one parameter p,
that can be reliably estimated by observing how frequently a letter changes in some training
data. This model could be improved, e.g., by updating on-line the letter switch frequency
based on observed data. However, our experiments already show very good performance
with the simple model in (8).
In the case of a digit, we use the following parametric model:

P(yt−1|yt ) =

⎧

⎪

⎨

⎪

⎩

p if yt = yt−1

q if yt = (yt−1 ± 1) mod 10
1−p−2q

7 otherwise

(9)

where our parameters are the probability p that the digit does not change and the probability
q to switch to the next or previous digit. If neither case happens, we assume a uniform
probability to switch to any of the remaining M−3 = 7 digits. As in the previous case,
we estimate p and q off-line from some training data and, even though it is not difficult to
design some on-line method that would adapt the estimations of p and q to the observed data,
our simple model of (9) already has very good performance, as shown in the experimental
Section.

3.3 Efficient character coding using temporal redundancy

We propose a method to encode characters in a frame exploiting their specific temporal
redundancy with respect to the characters displayed in the previous frame(s). We start with
an example: Fig. 3 shows the frame to be encoded at time t (right) and the reference frame t−1
used for prediction (left). Let each character be represented with a tuple of size NT composed
by the position (horizontal and vertical coordinate) and the value (i.e., the recognized letter
or digit): in this case NT = 3, but more character features (font, size, color) could be added
if needed.

Fig. 3 Toy example of temporally consecutive cockpit screen frames: frame at time t is predicted from frame
at time t − 1

123



Multimedia Tools and Applications

Now, let us assume that NC characters are detected in a frame and are represented in raster
scan order into a NC × NT table, as shown in Table 1 (the number of recognized characters
can be different from one image to the other). In cockpit screens a strong correlation between
the content of adjacent frames exists. For example, a (string of) character(s) often retains both
position and value across multiple frames (red text in Fig. 3). In other cases, a character may
change value and retain position, as the text in green (data coming from instruments, such
as altitude, coordinates, etc., which for ease of reading appear always in the same position);
Otherwise, text may change the position and hold value (black string), for example when
it is associated to some object tracked by the on-board sensors. Finally, text may suddenly
pop-up in a position where no text was found previously (purple). Therefore, we define a
set of flags corresponding to these cases and that are used to encode the current table given
some reference. We use two indexes (IRef and ICur) that run through the tables, trying
to find the most effective predictor for the current character in the reference table. Without
loss of generality, we assume that characters in both tables are stored in raster scan order. We
refer to the number of tuples (each representing a character) in the two tables as NCC for the
current table and NCR for the reference table.

The proposed algorithm (see Fig. 4) is initialized with ICur=1 and IRef=1. Then, step
one of our algorithm consist in retrieving the tuples referred by ICur and IRef, unless
ICur > NCC (in this case the algorithm terminates), or IRef > NCR (in this case the
reference tuple is a special, “void” one, but the algorithm does not stop). Step 2 consists in
comparing the two tuples, respectively referred to as CC and RC (for current and reference
character). The following cases are possible:

1. The two tuples have the same value and position

Table 1 Reference table, current table and corresponding encoding primitives for the example in Fig. 3

Index Reference table Current table Encoding primitive
Value Position Value Position

1 H 30, 20 H 30, 20 EncodeF("U")

2 E 30, 28 E 30, 28 EncodeF("U")

3 L 30, 36 L 30, 36 EncodeF("U")

4 L 30, 44 L 30, 44 EncodeF("U")

5 O 30, 52 O 30, 52 EncodeF("U")

6 1 30, 100 4 30, 100 EncodeF("C") EncodeV("4")

7 2 30,108 5 30, 108 EncodeF("C") EncodeV("5")

8 3 30, 116 6 30, 116 EncodeF("C") EncodeV("6")

9 W 40, 20 W 40, 40 EncodeF("M") EncodeD("(0,20)")

10 O 40, 28 O 40, 48 EncodeF("M") EncodeD("(0,20)")

11 R 40, 36 R 40, 56 EncodeF("M") EncodeD("(0,20)")

12 L 40, 44 L 40, 64 EncodeF("M") EncodeD("(0,20)")

13 D 40, 52 D 40, 72 EncodeF("M") EncodeD("(0,20)")

14 Y 60, 100 N 60, 48 EncodeF("N") EncodeT("(N,60,48)")

15 E 60, 108 O 60, 56 EncodeF("N") EncodeT("(O,60,56)")

16 S 60, 116 Y 60, 100 EncodeF("R") EncodeR("14") EncodeF("U")

17 E 60, 108 EncodeF("U")

18 S 60, 116 EncodeF("U") EncodeF("END")

123



Multimedia Tools and Applications

Fig. 4 Iterative algorithm to encode a current table of characters given a reference table using a set of flags.
The figure illustrates in dark green the procedures with the primitives, in light green the assignations and in
diamond the conditions. An example of this algorithm is detailed in Table 1 with respect to the Fig. 3

2. CC and RC have the same position and not the same value
3. CC and RC have the same value and not the same position, but their distance is within a

given threshold
4. All the other cases, including void reference

In thefirst case (2.1),we just encode aflag “U” (forunchanged),with a suitable flagdictionary.
The decoder will just copy the tuple RC to the current table at index ICur.

In the second case (2.2), we encode a flag “C” (for changed) and the new value of the
character. The decoder will copy the tuple position from the reference table at index IRef
to the current table at index ICur, and will read from the bitstream the value to use.

In the third case (2.3), we encode a flag “M” (for moving) and the displacement between
the two tuples, using a suitable coding method that is described later on. The decoder will
copy the tuple value from the reference table at index IRef to the current table at index
ICur, and will adjust the position using the displacement read from the bitstream.

Finally, in all these three cases, both ICur and IRef are increased by 1, and the algorithm
goes back to step 1.

123



Multimedia Tools and Applications

For the fourth case, we must discriminate between two sub-cases: (2.4.1) the tuple in the
current table corresponds to an unchanged, changed or moved tuple in the reference, but not
at the index IRef; or, (2.4.2) the tuple in the current table is a new character appearing at
time t . In order to synchronize tables, we use the synchTab procedure, which runs through
the reference table using a temporary index ITmp, and for each tuple pointed by it, we check
if it is an unchanged, changed, or moving tuple. If one of those three cases happens, it means
that the two indexes must be realigned, so we set IRef=ITmp, encode a flag “R” and the
new value of IRef, and go back to step 1. Finally, if no matching tuple is found in the
reference table, ITmp=0 is returned and the character is considered as a new one: we encode
a flag “N” and all the information of the tuple (value and position).

For our example, we show in Table 1 the primitives used in to encode the current character
table. Each primitive must produce the bit-stream representing a symbol from a given input
alphabet. EncodeF() must encode a flag among U, C, D, N, R, and END. In our implemen-
tation, we used a simple variable-length code for the flags (C as 100, D as 101, N as 110, R
as 1110, END as 1111), albeit more sophisticated methods such as context-based, adaptive
arithmetic encoders could be used. EncodeV() must encode a character value, i.e., a letter
or a digit: we use a fixed-length code, but here as well more sophisticated tools could be
considered. EncodeT()must encode a whole tuple: again, we consider simple fixed-length
code, since this primitive is supposed to be used very rarely. Finally, as far as EncodeD()
is concerned, its argument can be seen as a motion vector. Thus any motion vector coding
method can be used here, from a simple fixed-length code to Exp-Golomb codes or to more
sophisticated arithmetic codes. However, we observe that in cockpit screen videos, most if
not all the moving characters of an image share the same motion. Therefore, we conceive a
more effective dictionary-based method. We start with a void dictionary. As soon as a vector
must be encoded, we look in the dictionary if the vector is already present. If yes, we encode
the index of the vector in the dictionary with the Exp-Golomb code; if not, we append the
vector to the dictionary and encode as an index the updated size of the dictionary. After that
all the characters in the table have been encoded, we also have to write into the stream the
motion dictionary, where each motion vector is represented with a fixed-length code.

The decoder simply decodes the flags and updates the table accordingly. The decoder
keeps the indexes ICur and IRef in the same way as the encoder, and it has to read the
motion vector table from the encoded stream.

In the following, the character encoding algorithm described in this section is referred to
as the predictive character encoding method.

4 Experiments

In this section we validate the proposed method over a comprehensive set of experiments.
We first describe the experimental setup, then we evaluate in the order character recognition
accuracy and character compression efficiency and eventually we provide video compression
results over multiple configurations.

4.1 Experimental setup

We experiment over the 10 cockpit video sequences in Fig. 5 (only 8 are shown). Seq. 1 and
2 have been captured with cameras installed outside the airplane in the visible and infrared
spectrum, respectively. Seq. 3 and 4 have been generated superimposing text to MPEG test

123



Multimedia Tools and Applications

Fig. 5 The ten airplane cockpit screens video sequences used in our experiments (sequences 9 and 10 are
identical to 8 yet with more occlusions). See Table 2 for the relative characteristics)

sequences Cactus and Park. These two sequences have a highly cluttered background and
are meant to stress the encoder rather than representing the actual case of cockpit video. We
refer to these four natural-background sequences as “Cockpit HD”. Sequences 5, 6 and 7 are

123



Multimedia Tools and Applications

actual cockpit screens, with complex, computer-generated text and graphics overlaid on black
background (“Cockpit SD”). Finally sequences 8, 9 and 10 emulate the new glass cockpit
control, which mixes natural video (BQTerrace from the MPEG test set) with computer
generated complex graphics for head-up displays (“Cockpit HUD”). Sequences 9 and 10 are
identical to 8, however they present more and more complex occlusions over the characters.
The TGOs in the synthetic sequences 3, 4, 8-10, have been generated as follows. Characters
can randomly appear in any position of the video. At each new frame, characters can change
with a given probability reflecting the character temporal evolution in real footage. Concern-
ing the graphic objects, we generate lines and circles for sequences 8-10. In the left part of the
screen, a circle that slowly translates upward. In the right part we have: a slightly changing
line which occludes some characters (seq. 8); a faster moving line which occlude characters
(seq. 9); or two lines which move and occlude characters (seq. 10). Table 2 summarizes the
characteristics of our test sequences.

4.2 Characters recognition accuracy

In this section we evaluate the results of our robust character recognition algorithm on
sequences 7-10. Sequences 1-6 are not shown because characters are not occluded and the
ConvNet recognizes all characters without a flaw.

The first row of Table 3 is relative to the baseline casewhere the ConvNet is trainedwithout
occlusions and class scores are not weighted according to the conditional probabilities. In
other words, this is the methods used in our previous works [16] and [15]. The average
character recognition error rate is 3.15 %, topping nearly 5% for sequence 10, where 2
moving lines occlude on screen characters.

The second row of the table refers to the case where the ConvNet is trained over occluded
samples as in Section 3.2, however the class scores are not weighted according to the con-
ditional probabilities as in as in (6). Training the network over occluded samples reduces
the average rate of errors to 2.42 %, however most heavily occluded characters may still be
misrecognized.

The third row of the table is for our proposed scheme where the ConvNet is trained with
occlusions and class scores are weighted according to conditional probabilities, i.e. when
temporal redundancy is taken into account. On sequence 7, the error rate drops by almost 20
times (17.9x) from 2.34 % to 0.13 %. In sequences 8 and 9, where only one line may occlude

Table 2 Characteristics of the cockpit video test sequences used in our semantic encoding experiments

# Seq. Resolution Class Source

1 Fig. 5(a) 1920x1080 Cockpit HD Actual footage

2 Fig. 5(b) 1920x1080 Cockpit HD Actual footage

3 Fig. 5(c) 1920x1080 Cockpit HD Synthetic

4 Fig. 5(d) 1920x1080 Cockpit HD Synthetic

5 Fig. 5(e) 720x576 Cockpit SD Actual footage

6 Fig. 5(f) 720x576 Cockpit SD Actual footage

7 Fig. 5(g) 720x576 Cockpit SD Actual footage

8 Fig. 5(h) 1440x576 Cockpit HUD Synthetic, weak occlusions

9 Fig. 5(h) 1440x576 Cockpit HUD Synthetic, mild occlusions

10 Fig. 5(h) 1440x576 Cockpit HUD Synthetic, strong occlusions

123



Multimedia Tools and Applications

Table 3 Character recognition error rate for sequences with occlusions (baseline is [16])

Seq. 7 Seq. 8 Seq. 9 Seq. 10

Baseline 2.34 % 3.08 % 2.31 % 4.87 %

Train with occlusions only 1.73 % 2.31 % 1.67 % 3.97 %

Proposed 0.13 % 1.03 % 0.77 % 3.21 %

Error-rate variation w.r.t. baseline −94.4 % −66.6 % −66.7 % −34.1 %

characters, errors are 3 times less frequent, and in sequence 10, where two lines may occlude
characters, one third of the errors is corrected. Most of the residual errors occur when a static
line occlude a character (thus, the network is never able to properly see it); another potential
source of error is when the occlusion happens at the same time as a character change. Finally,
we remark that our robust character method entails only a negligible complexity increase
(weighting of the probabilities).

To gain some insight about the error correction capability of the proposed method, we
show an example in Fig. 6. In the top of this figure, we show a small block of pixels (patch)
taken from sequence 9, at time t going from 0 to 10. The patch xt shows the digit “6” at time
0 to 5, but at t=4 the digit is occluded by a moving line.

Then, in Fig. 6(b), we show the temporal evolution of the estimation of P(yt |xt ), ie., the
probability of each class label yt given the pixel patch xt , which is provided by the baseline
ConvNet. Each column of Fig. 6(b) corresponds to a time instant and the probability of each
label is color mapped as shown in the right part of the figure. The estimated label yt produced
by the ConvNet is the argmaxyt of this distribution.We observe that, at time t=4 the ConvNet
is induced to error by the occlusion, since P(Y4=8|x4) > P(Y4=6|x4). This is also shown
in Fig. 6(c), where we plot P(y4|x4).

In opposition, when the weights are used, the estimated class is correct even at t=4: this
is because the weight P(Y3=6|Y4=6) is sufficiently larger than P(Y3=6|Y4=8), and thus
the weighted distribution (shown in the bottom part of Fig. 6(b) and with an orange line in
Fig. 6(c) for t=4) has a peak for y4=6. Moreover, the weighs do not prevent our classifier to
find the correct label at time t=6, when the digit changes from 6 to 5.

4.3 Character coding efficiency with temporal redundancy

We now evaluate the efficiency of the predictive character encoding method proposed in
Section 3.3. We consider as input to the algorithm the characters recognized in our ten
test sequences and we encode value and position of all characters. Four lossless techniques
have been considered for comparison: Huffman [10], Burrows-Wheeler transform (BWT,
also block-sorting compression [3]), PPM (Dmitry Shkarin’s prediction by partial matching
method [22]), LZMA algorithm (Lempel-Ziv-Markov chain algorithm [17]). We also com-
pare our proposed method with the baseline method we previously described in [16], where
no temporal redundancy is taken into account. Table 4 shows the encoding rate in bits per
character (i.e., the average number of bits needed to encode a tuple in the character table).
If we encoded characters using a simple constant-length code, for HD sequences that would
require 29 bits per character: the horizontal and vertical coordinates need each 11 bits, 6 for
the label and one for the color. For HD sequences (1-4), our scheme requires around 30%
less rate than the baseline; for HD and SD sequences, the bit-rate saving is as high as 80%.

123



Multimedia Tools and Applications

Fig. 6 In this example, the digit “6” being occluded by a line at time t = 4 and before transitioning to digit
“5” at time t = 6

123



Multimedia Tools and Applications

Table 4 Characters coding rates for different characters coding modes

Seq. Huffman BWT PPM LZMA Baseline Prop. Prop @24fps

1 27.64 25.33 27.08 18.94 10.24 5.80 23.66 kbps

2 27.67 25.40 27.15 18.98 10.35 6.02 24.56 kbps

3 27.88 26.69 27.24 19.05 10.37 8.12 33.13 kbps

4 27.90 26.71 27.42 19.23 10.48 8.34 34.03 kbps

5 8.55 12.39 16.09 7.08 12.35 0.73 1.23 kbps

6 8.57 12.41 16.11 7.10 12.47 0.82 1.38 kbps

7 9.61 14.31 16.23 8.71 12.24 1.74 2.92 kbps

8 9.65 10.3 9.32 9.25 11.73 1.80 3.02 kbps

9 9.72 10.41 9.04 8.73 11.56 2.01 3.38 kbps

10 10.62 10.97 9.83 9.28 11.64 2.78 4.67 kbps

Av. 16.79 17.49 18.63 12.64 11.34 3.82 13.2 kbps

Measurement unit is the number of bits per character (the baseline is [16])

4.4 Video coding experiments

Finally, we compare the video compression efficiency of our scheme with state-of-the-art
references. In our scheme, TGOs are encoded separately from the inpainted residual video,
so the residual video coincides with the characterless screen background. We selected the
H.264/AVC (JM 19.0) codec for residual video coding because, to the present date, is the
only that can be implemented in FPGA within our given 2W power budget as detailed in
Section 4.5 (Prop-AVC in the following). For the sole purpose of comparison, we consider
an hypothetical implementation of our scheme where the residual video is encoded using
the H.265/HEVC codec (HM-16.14). Unfortunately, this Prop-HEVC scheme does not fit
our power budget at the moment, so it should not be considered as a practical alternative to
Prop-AVC.
Next, we consider two reference schemes where TGOs are not removed form the screen and
each frame is encoded as an image. The first reference is the the H.265/HEVC codec (HM-
16.14 with Screen Content Coding extension SCM-8.3) (HEVC-SCC in the following). The
second reference is the H.266/VVC codec (VTM13.2), which natively inherits HEVC-SCC
screen content coding tools from (VVC in the following). Their complexity is out of our power
budget, plus at the moment no complete hardware implementation of the SCC/VVC screen
content coding tools exists, so they shall be considered only as references to benchmark
Prop-AVC.
All experiments consider values for QP in the range from 20 to 45 with steps of 5, plus on
the very low bit-rate range QP from 45 to 51 with steps of 1. The results are reported in terms
of rate-PSNR curves and of Bjontegaard metric [1].

Our video coding experiments are organized below into two sets. In Prop-Intra, each
residual frame is independently encoded as in our previous research [16], as a reference
to benchmark our method. In Prop-Inter temporal prediction is enabled and these results
represent the scheme proposed in this work.

As a remark, we would like to stress that these objective quality experiments are mainly
meant to evaluate the encoding efficiency of our method. In a practical application of our
method, the actual quality of the residual video would be of limited interest as long as the
characters remain readable.

123



Multimedia Tools and Applications

Sample videos are available for visual inspection1: due to the large size of the YUV
files (about 25 MB each), we have uploaded the first frame of sequence 9 because it includes
both natural and black background. Namely, we report both for the Inter schemes VVC, SCC,
Prop-HEVCand Prop-AVC. For each coding schemes, we report all theQPswe experimented
with from 20 to 50, resolution is 1440x576 px and format is YUV 4:2:0;bit depth is 10 bpp
only for VVC, 8 bit otherwise.

4.4.1 Experiments with intra-frame prediction

Figure 7 shows the rate-distortion curves for sequences 1-8 (results for sequences 9 and 10
are similar to 8 and omitted for the sake of conciseness). Prop-AVC consistently outperforms
HEVC-SCC at low bitrates in HD and SD sequences (sequences 1-7). VVC does outperforms
Prop-AVC, however the performance gap is thin despiteVVChigher complexity. Prop-HEVC
outperforms both Prop-AVC and VVC for all sequences and at almost any bitrates but the
lowest QPs, where VVC still achieves better results. For sequences 5-7 (black background),
our scheme shows a sudden rate drop above QP 40 since inpainting the text leaves to the
encoder an almost black screen to compress, which is encoded with a few large PUs. Prop-
AVC achieves performance closer or better to VVC yet at a fraction of the complexity, which
is a major edge in our application scenario.

Table 5 reports Bjontegaard Delta PSNR (BD-PSNR) and Delta rate (BD-Rate) of the
proposed method against HEVC-SCC. We consider two quality ranges: medium-to-high
(QP=[40, 35, 30, 25]) and low-to-medium (QP=[50, 45, 40, 35]). Gains are high in par-
ticular at low rates: up to −90 % in BD-Rate for SD sequences with black background.
Note that for sequences (5-7) BD-PSNR cannot be computed because we have not enough
coding rate superposition. Somewhat smaller gains are observed for HD and HUD sequences
because a larger share of the rate is used to encode the background.
Similar results are shown in Table 6, where we give the BD-PSNR and the BD-Rate of Prop-
HEVC with respect to VVC at very low bit-rate. Prop-AVC remains competitive despite
being much simpler: up to −60 % rate drop in the most favorable case.

4.4.2 Experiments with inter-frame prediction

We repeat the previous experiments enabling inter-frame prediction for both text and residual
video encoding. Towards keeping the encoder complexity limited, we use an LD-P config-
uration with an Intra period of 4 frames. The encoder is allowed to keep just one frame in
the decoded picture buffer (DPB) due to memory constraints of the hardware implementa-
tion described in the following. Our experiment showed that increasing the DPB size does
not significantly improve the efficiency despite increased complexity. Figure 8 shows the
corresponding rate-distortion curves. We recall that only Prop-AVC can be implemented in
hardware, while the other schemes are meant for reference only. Overall, the trends resemble
those of the previous case, except that now HEVC-SCC outperforms Prop-AVC also in a
couple of HD sequences due to HEVC improved temporal prediction. However, Prop-HEVC
still outperforms in a consistent way both HEVC-SCC and VVC as in the All-Intra experi-
ments. This also can be seen from Bjontegaard metrics shown in Table 7 with respect to the
HEVC-SCC reference. The gains are similar to the All-Intra case, yet now we achieve even
larger gains for HUD sequences. One reason could be that the improved text compression

1 https://drive.google.com/drive/folders/1X98bbDYd0hYp3DNrc2179Qxi3VAjcI_1

123

https://drive.google.com/drive/folders/1X98bbDYd0hYp3DNrc2179Qxi3VAjcI_1


Multimedia Tools and Applications

Fig. 7 PSNR vs. video bitrate for Prop-Intra coding configuration. Prop-HEVC and Prop-AVC have consistent
gains wrt HEVC-SCC and VVC

123



Multimedia Tools and Applications

Table 5 Bjontegaard gains for
Prop-HEVC with respect to
HEVC-SCC, both in All-Intra
configurations

Quality range Medium-to-high Low-to-medium

Sequence BD-PSNR BD-Rate BD-PSNR BD-Rate

Seq. 1 1.30 dB −46.5 % 6.48 dB −69.88 %

Seq. 2 1.06 dB −30.28 % 3.82 dB −57.33 %

Seq. 3 0.67 dB −15.13 % 1.56 dB −31.45 %

Seq. 4 0.60 dB −13.79 % 1.23 dB −32.99 %

Seq. 5 1.37 dB −67.17 % − −79.25%

Seq. 6 1.45 dB −68.2 % − −91.04%

Seq. 7 1.81 dB −50.94 % − −79.45%

Seq. 8 0.63 dB −6.2 % 0.86 dB −17.06 %

Seq. 9 0.50 dB −7.99 % 0.88 dB −17.39 %

Seq. 10 0.38 dB −6.20 % 0.79 dB −15.73 %

has more impact in the Inter than in the Intra case, where the share of rate allocated to the
text is smaller.

Looking at the comparison with VVC at very low bit-rate (Table 8), even in an Inter
configuration, the proposed, HEVC-based scheme outperforms VVC.

We observe that while in [15] the semantic encoder suffers from the relatively high coding
cost of intra-character encoding when the residual is inter-coded, our predictive character
coding technique brings again large gains. Finally, Fig. 9 we shows the same picture crop
for the four methods. Both Prop-AVC and Prop-HEVC maintain text readability at a coding
rate much smaller than HEVC-SCC and VVC. Moreover, the two latter introduce characters
artefacts that hinder the character readability. Conversely, with Prop-AVc and Prop-HEVC,
the characters are perfectly readable.

4.4.3 Bit-rate distribution analysis

As an insight on the reported gains, we report the distribution of the coding rate between
residual video and TGOs. We consider sequences 1 and 5 respectively as representative of
the cases where TGOs are overlaid on a natural background or a black screen. For each QP in
{20, 30, 40, 50}, we report the total coding rate and the percentage thereof devoted to TGO

Table 6 Bjontegaard gains for
Prop-HEVC with respect to
VVC, both in All-Intra
configurations

Sequence BD-PSNR BD-rate

Seq. 1 5.93 dB −61.78 %

Seq. 2 3.07 dB −46.60 %

Seq. 3 0.81 dB −32.28 %

Seq. 4 1.36 dB −37.79 %

Seq. 5 9.87 dB −56.33 %

Seq. 6 9.94 dB −57.43 %

Seq. 7 6.81 dB −20.56 %

Seq. 8 0.53 dB −15.94 %

Seq. 9 0.49 dB −14.26 %

Seq. 10 0.56 dB −15.80 %

The QP range is [48, 49, 50, 51]

123



Multimedia Tools and Applications

Fig. 8 PSNR vs. residual video bitrate for Prop-Inter coding configuration. The proposed semantic coding
scheme outperforms even recent off-the-shelf standardized codecs

123



Multimedia Tools and Applications

Table 7 Bjontegaard gains for
Prop-HEVC with respect to
HEVC-SCC, both in LD-P
configurations

Quality range Medium-to-High Low-to-Medium

Sequence BD-PSNR BD-Rate BD-PSNR BD-Rate

Seq. 1 0.77 dB −39.47 % 4.03 dB −53.74 %

Seq. 2 0.52 dB −21.75 % 2.04 dB −43.52 %

Seq. 3 2.0 dB −43.9 % 4.27 dB −62.98 %

Seq. 4 1.58 dB −36.23 % 3.07 dB −61.28 %

Seq. 5 − −83.56 % − −68.02%

Seq. 6 − −85.64 % − −78.68%

Seq. 7 − −56.33 % − −73.60%

Seq. 8 0.74 dB −25.28 % 1.66 dB −38.28 %

Seq. 9 0.75 dB −24.94 % 1.81 dB −40.49 %

Seq. 10 0.76 dB −25.28 % 1.85 dB −41.03 %

Table 8 Bjontegaard gains for
Prop-HEVC with respect to
VVC, both in LD-P
configurations

Sequence BD-PSNR BD-rate

Seq. 1 3.89 dB −53.85 %

Seq. 2 2.05 dB −43.06 %

Seq. 3 1.45 dB −46.12 %

Seq. 4 1.89 dB −51.06 %

Seq. 5 5.82 dB −52.37 %

Seq. 6 5.08 dB −43.19 %

Seq. 7 1.12 dB −41.55 %

Seq. 8 1.13 dB −30.88 %

Seq. 9 1.22 dB −30.48 %

Seq. 10 1.46 dB −31.86 %

The QP range is [48, 49, 50, 51]

Fig. 9 Reconstruction artefacts at QP=50 for Prop-Inter. Top-left HEVC-SCC (Rate=0.47Mbps, PSNR=25.86
dB). Top-right VVC (Rate=0.41 Mbps, PSNR=25.90 dB). Bottom-left Prop-HEVC (Rate=0.16 Mbps,
PSNR=27.07 dB). Bottom-right Prop-AVC (Rate=0.26 Mbps, PSNR=26.10 dB)

123



Multimedia Tools and Applications

Table 9 Total rate and share of TGOs coding rate for Prop-Intra, i.e. inter-frame prediction is disabled (baseline
is [16])

Seq.1 (natural background) Seq. 5 (black background)
QP Total rate TGOs rate TGOs rate Total rate TGOs rate TGOs rate

Proposed Proposed Baseline Proposed Proposed Baseline

50 306 kbps 7 % 13 % 28 kbps 4 % 43 %

40 370 kbps 6 % 11 % 51 kbps 2 % 30 %

30 455 kbps 5 % 9 % 74 kbps 1.7 % 22 %

20 1287 kbps 2 % 3 % 119 kbps 1 % 15 %

coding. Moreover, we report the character coding rate for a setup equivalent to our previous
work [16], i.e. when character and picture inter-frame coding are both disabled.
Table 9 shows the case where the residual video is encoded without temporal prediction
(Prop-Intra). At the low bit-rates relevant for our work, the character rate grows up to a
significant share if temporal correlation among TGOs is not exploited. This is especially true
if the residual is just black background as in Seq. 5 and so the overall coding rate is low.
With the method presented in our previous work, up to 43 % of the bit budget is allocated
to the TGOs. In Seq. 1 the residual is more complex and so the residual rate increases, yet
the text needs up to 13 % of the total rate. When the predictive text coding method is used
(“Proposed”) this share drops to more reasonable values.
The relevance of TGOs temporal prediction is evenmore evident inTable 10when the residual
video is inter-coded (Prop-Inter). The residual is better compressed and as a consequence,
the text takes a larger share of the total bitrate, up to 80 % for Seq. 5 and 37 % for Seq. 1
if TGOs are not predicted. When TGOs are predicted, the TGOs rate share falls to about
20 %.

4.5 Hardware implementation

The pipeline described in this work has been implemented on the VS1410 Airborne Mission
Data Recorder [20] platform illustrated in Fig. 10. Our pipeline is completely implemented
into this system as an hybrid solutionwhere aMIPS-based System onChip (SoC) implements
in software all the stages but character recognition and residual video compression. ConvNet-
based character recognition and AVC-based background encoding are in fact offloaded to an
Intel Aria V FPGA - 5AGXB1 [11] with 300k gates for performance and efficiency reasons.
The ConvNet has a recognition rate of 4320 characters per second, which proved more than

Table 10 Total rate and share ofTGOs coding rate for Prop-Inter, i.e. inter-frameprediction is enabled (baseline
is [15])

Seq.1 (natural background) Seq. 5 (black background)
QP Total rate TGOs rate TGOs rate Total rate TGOs rate TGOs rate

TGOs Proposed Baseline Proposed Proposed Baseline

50 94 kbps 25 % 37 % 6 kbps 21 % 80 %

40 193 kbps 12 % 20 % 8.5 kbps 15 % 74 %

30 324 kbps 7 % 12 % 10 kbps 12 % 69 %

20 801 kbps 3 % 5 % 16 kbps 8 % 58 %

123



Multimedia Tools and Applications

Fig. 10 The VS1410 On-board mission recorder implementing the pipeline described in this work over a total
of 2W of power

enough for practical use cases. The background video is H.264/AVC encoded in real-time
using an H.264/AVC soft core over the same FPGA. Character recognition and AVC video
coding exhaust almost completely the gates available on the FPGA. The pipeline includes 16
MB or RAM,hence the DPB is limited to 1 frame. The pipeline power consumption is below
the 2W budget we were assigned, where 0.8 W are for the SoC, about 0.5 W for the FPGA
and the rest for other ancillary devices such as I/O, etc.

5 Conclusions

In this work we exploit the temporal redundancy in airplane cockpit videos for lossless
recording text and graphics at very low bitrates. First, we proposed an ad-hoc method for
character encoding that leverages the temporal correlation, to the point where we enable
nearly real-time streaming of key plane data with less than 3 kbps according to the video
sequence. Then, we boost the performance of a ConvNet-based character detector leveraging
the probability of a character appearing in a frame conditioned to the co-located character
in the previous frame. The relatively low-complexity H.264/AVC codec retrofitted with our
scheme becomes competitive with H.266/VVC for the goals of this work, despite the encoder
much lower complexity that makes it a better candidate for integration in avionic electronics.
The entire pipeline described in this article as been implemented in FPGA as a ruggedized
on-board cockpit video recorder that can serve a number of purposes from pilot training to
rescue mission.

Funding Open access funding provided by Università degli Studi di Torino within the CRUI-CARE Agree-
ment. This work was partially supported by the European Union under the Italian National Recovery
and Resilience Plan (NRRP) of NextGenerationEU, partnership on “Telecommunications of the Future”
(PE00000001 - program “RESTART”).

Data availability statement The datasets and video sequences generated during and/or analysed dur-
ing the current study are available online at the following address https://drive.google.com/drive/folders/
1X98bbDYd0hYp3DNrc2179Qxi3VAjcI_1.

123

https://drive.google.com/drive/folders/1X98bbDYd0hYp3DNrc2179Qxi3VAjcI_1
https://drive.google.com/drive/folders/1X98bbDYd0hYp3DNrc2179Qxi3VAjcI_1


Multimedia Tools and Applications

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bjontegaard G (2001) Calculation of average PSNR differences between RD-curves. In: VCEGMeeting,
Austin, USA

2. Bross B, Wang YK, Ye Y et al (2021) Overview of the versatile video coding (VVC) standard and its
applications. IEEE Trans Circuits Syst Video Technol

3. Burrows M, Wheeler D (1994) A block-sorting lossless data compression algorithm. In: Digital SRC
research report, Citeseer

4. Cagnazzo M, Parrilli S, Poggi G et al (2007) Costs and advantages of object-based image coding with
shape-adaptive wavelet transform. EURASIP J Image Video Process 2007 78323:13. https://doi.org/10.
1155/2007/78323

5. De Queiroz RL, Fan Z, Tran TD (2000) Optimizing block-thresholding segmentation for multilayer
compression of compound images. IEEE Trans Image Process 9(9):1461–1471

6. EbadiM, Ebrahimi A (2021) Video data compression by progressive iterative approximation. Int J Interact
Multimed Artif Intell

7. Esmaeeli H, Rezaei M (2022) A content-based intra rate-distortion model for HEVC-SCC. Multimed
Tools Appl 81(12):16515–16536

8. García-Lucas D, Cebrián-Márquez G, Cuenca P (2020) Rate-distortion/complexity analysis of HEVC,
VVC and AV1 video codecs. Multimed Tools Appl 79:29621–29638

9. Han B, Wu D, Zhang H (2010) Block-based method for real-time compound video compression. In:
Mobile multimedia/image processing, security, and applications 2010, international society for optics
and photonics, p 77080S

10. HuffmanDA (1952)Amethod for the construction ofminimum-redundancy codes. Proc IRE 40(9):1098–
1101

11. Intel (2022) Arria v 5agxb1 fpga. https://ark.intel.com/content/www/us/en/ark/products/210398/arria-
v-5agxb1-fpga.html

12. LeCun Y, Bottou L, Bengio Y et al (1998) Gradient-based learning applied to document recognition. Proc
IEEE 86(11):2278–2324

13. Liu S, Xu X, Lei S et al (2015) Overview of HEVC extensions on screen content coding. APSIPA Trans
Signal Inform Process 4:e10. https://doi.org/10.1017/ATSIP.2015.11

14. McLachlan GJ, Krishnan T (2007) The EM algorithm and extensions, vol 382. John Wiley & Sons
15. Mitrica I, Fiandrotti A, Cagnazzo M et al (2019a) Cockpit video coding with temporal prediction. In:

2019 8th European workshop on visual information processing (EUVIP), pp 28–33. https://doi.org/10.
1109/EUVIP47703.2019.8946234

16. Mitrica I, Mercier E, Ruellan C et al (2019) Very low bitrate semantic compression of airplane cockpit
screen content. IEEE Trans Multimed 21(9):2157–2170. https://doi.org/10.1109/TMM.2019.2900168

17. Pavlov I (2021) 7z format. https://www.7-zip.org/7z.html
18. Qian X, Wang H, Hou X (2014) Video text detection and localization in intra-frames of h. 264/avc

compressed video. Multimed Tools Appl 70:1487–1502
19. Saerens M, Latinne P, Decaestecker C (2002) Adjusting the outputs of a classifier to new a priori proba-

bilities: a simple procedure. Neural Comput 14:21–41. https://doi.org/10.1162/089976602753284446
20. Safran (2022) VS1410, VS1510-rugged and compact enertec mission video & data recorders/servers.

https://www.safran-group.com/products-services/vs1410-vs1510-rugged-and-compact-enertectm-
mission-video-data-recordersservers-harsh-environments

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2007/78323
https://doi.org/10.1155/2007/78323
https://ark.intel.com/content/www/us/en/ark/products/210398/arria-v-5agxb1-fpga.html
https://ark.intel.com/content/www/us/en/ark/products/210398/arria-v-5agxb1-fpga.html
https://doi.org/10.1017/ATSIP.2015.11
https://doi.org/10.1109/EUVIP47703.2019.8946234
https://doi.org/10.1109/EUVIP47703.2019.8946234
https://doi.org/10.1109/TMM.2019.2900168
https://www.7-zip.org/7z.html
https://doi.org/10.1162/089976602753284446
https://www.safran-group.com/products-services/vs1410-vs1510-rugged-and-compact-enertectm-mission-video-data-recordersservers-harsh-environments
https://www.safran-group.com/products-services/vs1410-vs1510-rugged-and-compact-enertectm-mission-video-data-recordersservers-harsh-environments


Multimedia Tools and Applications

21. Said A, Drukarev A (1999) Simplified segmentation for compound image compression. Paper presented
at the IEEE internat conf on image processing, pp 229–233

22. Shkarin D (2002) Ppm: one step to practicality. In: Proceedings of the data compression conference, pp
202–211. https://doi.org/10.1109/DCC.2002.999958

23. Sravani M, Maheswararao A, Murthy MK (2021) Robust detection of video text using an efficient hybrid
method via key frame extraction and text localization. Multimed Tools Appl 80(6):9671–9686

24. Tang T, Li L (2019) A low delay rate control method for screen content coding. Multimed Tools Appl
78:28231–28256

25. Wang S, Fu J, Lu Y et al (2012) Content-aware layered compound video compression. In: 2012 IEEE
international symposium on circuits and systems (ISCAS), IEEE, pp 145–148

26. Wiegand T, Sullivan GJ, Bjontegaard G et al (2003) Overview of the h. 264/AVC video coding standard.
IEEE Trans Circ Syst Vid Tech 13(7):560–576

27. Wien M (2015) High efficiency video coding. Coding Tools Specif 24
28. Xu J, Joshi R, Cohen RA (2015) Overview of the emerging HEVC screen content coding extension. IEEE

Trans Circ Syst Vid Tech 26(1):50–62
29. Zouidi N, Kessentini A, Hamidouche W et al (2023) Complexity assessment of the intra prediction in

versatile video coding. Multimed Tools Appl 1–20

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1109/DCC.2002.999958

	Robust and efficient airplane cockpit video coding leveraging temporal redundancy
	Abstract
	1 Introduction
	2 Background
	2.1 Compound video coding
	2.1.1 Screen content coding in standards
	2.1.2 Semantic video compression


	3 Proposed architecture and contributions
	3.1 Semantic codec architecture
	3.2 Robust character recognition
	3.2.1 Training on synthetic occluded samples
	3.2.2 Exploiting temporal redundancy
	3.2.3 Models for character conditional probabilities

	3.3 Efficient character coding using temporal redundancy

	4 Experiments
	4.1 Experimental setup
	4.2 Characters recognition accuracy
	4.3 Character coding efficiency with temporal redundancy
	4.4 Video coding experiments
	4.4.1 Experiments with intra-frame prediction
	4.4.2 Experiments with inter-frame prediction
	4.4.3 Bit-rate distribution analysis

	4.5 Hardware implementation

	5 Conclusions
	References


