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Myeloid-derived Suppressor Cells in Cancer Patients:
A Clinical Perspective

Alberto J. Montero,* Claudia Marcela Diaz-Montero,* Christos E. Kyriakopoulos,*
Vincenzo Bronte,w and Susanna Mandruzzatoz

Summary: Myeloid-derived suppressor cells (MDSCs) represent a
heterogenous collection of immature myeloid cells endowed with
suppressive function on the immune response. Their presence has
been extensively investigated in preclinical models, especially in the
context of cancer. One of the major obstacles in their accurate
identification has been the definition of an unambiguous pheno-
type, shared between mice and humans, and clearly correlating
with their suppressive function. In this paper, we review the liter-
ature concerning the phenotype in mouse and in humans, showing
that at least 2 subsets of MDSCs are present under different sit-
uations. We also address the role of MDSCs in tumor progression,
evaluate the prognostic significance of MDSC in cancer patients,
and their possible role as marker of clinical outcome and response
to therapy. Finally, we examine the strategies designed to modulate
MDSCs in cancer patients, which might represent an innovative
approach to enhance the effectiveness of immune-based therapies.

Key Words: myeloid-derived suppressor cells, suppressionAQ3

(J Immunother 2011;00:000–000)

Immune evasion was recently included in the list of hall-
marks of cancer,1 a sort of recognition of the last 2 decade

efforts in understanding the immune responseAQ4 to tumor
antigens. This research activity translated into new thera-
pies and a proliferation of clinical trials targeting the im-
mune system. One of the greatest challenges in exploiting
the immune system clinically, is the presence of multiple
control pathways, some redundant and distinct others, with
intricate feedback loops. Long before regulatory T cells
(Treg) were recognized, one of the earliest machineries of
immune evasion in cancer was the presence of tumor-in-
filtrating macrophages as powerful negative regulators of
intratumoral immunity.2 However, immunosuppression is
not limited to the tumor microenvironment, and circulating
myeloid cells able to create dysfunctional immune re-
sponses have been repeatedly described. From the initial
observation in the 90s, increasing evidence accumulated on
a population of CD11b+/Gr-1+ myeloid cells expanding in
tumor-bearing mice. Most recently, to account for their
functional ability to suppress T cells, these cells were named
myeloid-derived suppressor cells (MDSCs).3

There is a large body of literature showing that
MDSCs expand in a wide array of transplantable and au-
tochthonous tumor models, suppress NK and T cells
through direct cell contact, cytokines, and byproducts of
metabolic pathways, can control expansion and activation
of Tregs, and support neoangiogenesis and metastatic
spread (extensively reviewed elsewhere4–7). MDSC accu-
mulation is likely an early event in tumor progression, due
presumably to the recruitment of cells from the bone
marrow through secretion of tumor-derived factors and
preclinical data have clearly indicated their progressive
accumulation in blood, spleen, marrow, and tumor site. As
previously discussed, MDSC levels appear to correlate
proportionally with tumor burden, and thus directly con-
tribute to tumor progression. The study of MDSCs in
cancer patients, however, has lagged behind in part due to
lack of cognate marker Gr-1 (Ly6G/C) in humans. This in
turn has led to great heterogeneity in phenotypical defi-
nition of MDSCs, with the utilization of rather different cell
surface markers. The primary aims of this article are to
systematically review the published clinical literature on
MDSCs in cancer patients, and discuss gaps in our
knowledge and how/why these should be answered.

MOUSE MDSC PHENOTYPE
MDSCs have been extensively investigated in mouse

models and it is now widely accepted that these cells com-
prise a heterogeneous immature population with at least 2
main subsets resembling either polymorphonuclear (PMN)
or monocytic cells, which have been termed granulocytic
and monocytic MDSCs, respectively. This distinction can
be highlighted already with the sole use of the markers
CD11b and Gr-1. In fact, thanks to the different expression
intensity of the Gr-1 marker, at least 2 cellular fractions can
be recognized, a Gr-1high subset mainly composed of im-
mature and mature granulocytes, and a Gr-1int cell subset
encompassing monocytes and other immature myeloid cells
(ImCs).8 These 2 MDSC subsets can be found in different
proportions in vivo under different experimental con-
ditions, including mice with cancer, sepsis, traumatic le-
sions, autoimmune disease and chronic infections.4–7 It has
been advanced that MDSC composition depends on tumor-
derived soluble factors released from the cancer micro-
environment, which can vary according to tumor histology
and anatomical localization. Given the immaturity and the
plasticity of MDSCs, it is not surprising that a different
milieu can drive partial maturation of these cells toward
different myeloid lineages.

MONOCYTIC MDSCs IN MURINE MODELS
In a mouse model of colon carcinoma engineered to

produce high levels of granulocyte macrophage-colony
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stimulating factor (GM-CSF), the 2 main subsets of
MDSCs were induced and could be sorted on the basis of
the expression of the alpha chain of the IL-4 receptor (IL-
4Ra). Cells positive for this marker homogenously dis-
played a predominant monocytic morphology endowed
with suppressive activity, while IL-4Ra–negative cells had
the appearance of granulocytes at different stages of dif-
ferentiation but lacked a strong suppressive activity.9 Al-
though IL-4Ra was later found to be upregulated in
granulocytic MDSCs in other tumor models as well, the
idea that monocytic compartment might contain the cells
with main immunoregulatory activity was substantiated by
other observations. By using anti–Gr-1 mAb it is possible
to distinguish at least 3 subsets with different Gr-1 in-
tensity: Gr-1high, Gr-1int, and Gr-1low cells, endowed with
different suppressive abilities.8 In fact, in 3 different
transplantable tumor models the Gr-1int subset, mainly
comprising monocytes and myeloid precursors, showed a
constant suppressive activity, whereas Gr-1high, mainly
comprising granulocytes, exerted an only limited sup-
pressive activity, which was tumor dependent.8 Moreover,
adoptively transferred MDSCs possessed dissimilar tol-
erogenic ability, with Gr-1high cells increasing rather than
decreasing the immune response, whereas only the transfer
of Gr-1int subset produced a statistically significant toler-
ance in vivo. It is interesting to note that knocking down
GM-CSF in a mammary carcinoma model demonstrated
that this cytokine was cardinal in driving Gr-1int/low sup-
pressive MDSCs, whereas GM-CSF preferentially induced
Gr-1high cells with poor immunosuppressive activity.8 GM-
CSF administered exogenously was shown to influence
myelopoiesis as it acted on GM progenitors in the bone
marrow inducing local expansion of CD11b+/Gr-1low cells8

suggesting that it can also influence the expansion of pro-
myelocytes, as later shown for human MDSCs.10

These results were mirrored in an inflammatory set-
ting. MDSCs with suppressive potential could be expanded
in vivo by the injection of lipopolysaccharide plus inter-
feron-g (IFN-g).11 As previously reported, the PMN-like
fraction expressing a Gr-1high phenotype lacked suppressive
activity, but the CD11bintGr-1high cells with ring-shaped
nuclei and the CD11bintGr-1lowSSClow monocytes were
endowed with immunosuppressive activity.11

In agreement with these results, myeloid suppressive
cells were identified on the basis of the markers CD115
(M-CSF receptor) and F4/80, in addition to Gr-1, and cells
from bone marrow of tumor-bearing mice were sorted on
the basis of these markers. Results from an in vitro sup-
pression assay indicated that Gr-1+F4/80+ and Gr-
1+CD115+ monocytic MDSCs had a strong suppressive
activity, whereas Gr-1+F4/80� or Gr-1+CD115� cells did
not.12 Moreover, this study provided evidence that Gr-
1+CD115+ MDSCs can induce the development of Treg
in vitro and in tumor-bearing mice, which was dependent
on IFN-g and IL-10.12

GRANULOCYTIC MDSCs IN MURINE MODELS
To study the phenotype of MDSCs induced by different

tumor models, 10 transplantable tumor models were inves-
tigated in 3 different strains of mice. A significant increase in
the proportion of Gr-1+CD11b+ MDSCs in the spleens was
documented in all tumor models. In this work, granulocytic
MDSCs were defined as Ly6G+Ly6Clow cells and monocytic
MDSCs as Ly6G�Ly6Chigh cells. Granulocytic MDSCs

were consistently increased in all tumor models, whereas the
frequency of monocytic MSDCs was significantly increased
in only 3 models, although their overall suppressive activity
among CD11b+Gr-1+ cells was comparable.13 Recently the
same group studied the relationship between granulocytic
MDSCs and normal PMN cells, demonstrating that, al-
though they share the morphology, they differ in terms of
markers and functional properties and that granulocytic
MDSCs are less mature cells than PMN and might represent
a pathological activated precursors of PMNs whose tran-
sition has been halted.14

The presence of monocytic and granulocytic MDSCs
was also investigated in 2 T-cell lymphoma models in which
CD11b+Gr-1+ MDSCs purified from the spleen consisted
of 2 main fractions characterized by a differential Ly6G
expression. Ly6G+ cells showed a PMN profile and a high
side scatter characteristic (SSC) profile, corresponding to
granulocytic MDSCs, whereas Ly6G� cells were mono-
nuclear cells with a lower SSC, corresponding to monocytic
MDSCs. Both subsets were able to suppress antigen-specific
T-cell responses, but through distinct mechanisms, with
granulocytic MDSC requiring IFN-g acting through a
STAT-1–independent pathway.15 These data suggest that,
even though the immunosuppressive power is lower on a
cell per cell basis, granulocytic MDSCs might be still im-
munosuppressive in vivo because of their superior numbers
over monocytic MDSCs.

The presence of G-MDSC and M-MDSC was also
documented in the tumor microenvironment. In 2 different
tumor models the presence of tumor-infiltrating CD11b+

myelomonocytoid cells was characterized and more than
90% of these cells were Gr-1lowF4/80+IL-4Ra+ monocytes
with suppressive activity.16 It is interesting to note that
suppression of CD8+ T-cell–mediated antitumor response
was shown to be dependent by the presence of Gr-1high

MDSC recruited at the tumor site by the generation of C5a
complement fraction and regulating MDSC ability.17

Moreover, presented data suggested that C5a was involved
in the processes of MDSC migration and accumulation to
peripheral lymphoid organs.

MDSCs AS INDICATORS OF TUMOR
PROGRESSION IN MICE

Although considered a hallmark of tumor develop-
ment, only a limited number of studies have addressed ki-
netically the correlation between MDSCs and tumor
burden. In a transgenic mouse model in which the rat
protooncogene c-erb-B2 is under the control of the mouse
mammary tumor promoter and mice spontaneously devel-
op metastatic mammary carcinoma, the development of
these tumors was accompanied by the gradual expansion of
MDSCs. Of note, the number of MDSCs in the spleen was
directly associated with G-CSF transcript levels, while
within the tumor it was directly correlated with splenic
GM-CSF transcript levels, tumor volume, and tumor cell
numbers.18 In a similar oncogene-driven tumor, but in the
BALB strain (BALB-neuT), a linear correlation between
tumor progression and the numbers of immature Gr-
1+CD11b+CD131+ cells endowed with suppressive activ-
ity was also established. Moreover, expansion of myeloid
immunosuppressive cells in the peripheral blood and in the
spleen of tumor-bearing BALB-neuT mice directly corre-
lated with tumor multiplicity, thus highlighting the role of
MDSCs in tumor progression.19
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CLINICAL DATA OF MDSCs IN SOLID
TUMOR PATIENTS

Since the initial identification of MDSCs, several
subsequent publications reported increased circulating lev-
els of MDSCs in patients with a variety of human solid
tumors (Table 1). One of the greatest challenges however,
has been the lack of consensus over the definition and
phenotype of MDSCs, and considerable heterogeneity in
how they are defined clinically.

To the best of our knowledge, the first account of a
population of cells of myeloid origin with T-cell suppressive
properties was described in patients (n=18) with cancers
of the head and neck, mostly squamous cell carcinoma
(HNSCC).20 A significant direct correlation (r2=0.65) was
observed between the amount of secreted GM-CSF in tu-
mor fragments and the levels of intratumoral CD34+

myeloid cells. It is interesting to note that in the 4 tumors
from patients with a diagnosis other than HNSCC, neither
GM-CSF production nor CD34+ cells were foundAQ7 . More-

over, depletion of CD34+ cells was associated with a re-
versal of T-cell suppression, evidenced by increased IL-2
production from intratumoral lymphocytes. Subsequent
studies21,48 analyzed peripheral blood samples from pa-
tients with HNSCC, non–small-cell lung cancer, and breast
cancer of unknown clinical stages (n=44), identifying a
population of circulating cells that was termed immature
myeloid cells (ImC) within the dendritic cell (DC) fraction.
A more comprehensive phenotyping of these ImCs revealed
that approximately two thirds of the cells were IMCs at
early stages of differentiation described as lineage negative
(Lin–), defined here as CD3, CD14, CD19, and CD57.
Further phenotyping characterized them as CD33+ and
CD11b+. When ImCs were cocultured with T cells, they
were able to directly suppress T cells through a fully re-
versible process.

The next major clinical study of MDSCs in human
cancer patients described the presence of a granulocytic
population of cells capable of suppressing T cells, in
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TABLE 1. Phenotype of MDSCs in Human MalignanciesAQ5

Phenotype Cancer Type References

CD34+ HNSCC Pak et al20

Lin–/HLA-DR–* Breast carcinoma Almand et al21

HNSCC
NSCLC

CD15+ granulocytes Breast carcinoma Schmielau and Finn22

Colon carcinoma
Pancreatic cancer

CD11b+/CD14–/CD15+ Renal cell carcinoma Zea et al23

CD14+/Arginase+ HNSCC Serafini et al24

MM
CD14+/HLA-DR–/low Melanoma Fillipazzi et al25

CD11b+/CD33+ NSCLC Srivastava et al26

Lin–/low/HLA-DR–/CD33+/CD11b+w Multiple solid tumors Solito and colleagues10,27,28

(Breast cancer, esophageal, gastric,
colorectal and other solid malignancies)

Lin–/HLA-DR–/CD33+w Melanoma Daud et al29

CD11b+/CD14–/CD33+/CD15+ NSCLC Wang and colleagues30,31

CD14+/IL-4Ra+ Colon cancer Mandruzzato et al32

Melanoma
CD14+/HLA-DR–/low/B7-H+ Melanoma Wilcox et al33

CD11b+/CD14–/CD33+ HNSCC Corzo et al34

CD11b+/CD13+/CD34+/CD14–/CD45+ Hodgkin lymphoma Parrinello et al35

CD14+/HLA-DR–/low Melanoma Poschke et al36

DC-Sign+/CD80+/CD83+

CD11b+/CD13+/CD14–/CD34+/CD45+ MM Parrinello et al37

MGUS
Lin–/HLA-DR–/CD33+z MDS Wei et al38

CD11b+/CD16low/CD62Llow/CD66b+/VEGFR1+ Renal cell carcinoma Rodriguez et al39

CD14+/CD15+/CD33+/HLA-DR– Bladder cancer Shepard et al40

CD14+/HLA-DR–/low MM Brimnes et al41

NHL Lin et al42

HCC Hoechst et al,43,44

SSChigh/CD66b+/CD125–/CD33+/HLA-DR– Bladder cancer Brandau et al45

HNSCC
NSCLC

CD34+/CD45+/CD116+/CD13+/CD14– NHL Pitini et al46

CD11b+/CD15high/CD33low Bladder cancer Eruslanov et al47

*�CD3, �CD14, �CD19, and �CD57.
w�CD3, �CD14, �CD19, and �CD56.
zLin not defined in the paper.
y�CD3, �CD14, �CD16, �CD19, �CD20, and �CD56AQ6 .
HCC indicates hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; MDS, myelodysplastic syndrome; MGUS, monoclonal

gammopathy of undetermined significance; MM, multiple myeloma; NHL, non-Hodgkin lymphoma; NSCLC, non–small-cell lung cancer.
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apparent contrast to the previously cited studies, which
defined a more immature myeloid population.23 In this
study, peripheral blood levels of granulocytic cells in pa-
tients with metastatic RCC without previous treatment
(n=123) were compared with normal controls (n=33),
and a statistically significant (P=0.037) increase in the
subset of cells with immunosuppressive properties was
found. This PMN population of cells was described as
CD11b+/CD14–/CD15+. Further phenotyping determined
that this population was negative for the expression of
CD11a, CD80, CD83, CD86, and HLA-DR, and had in-
creased arginase activity. Arginase, which metabolizes L-
arginine to L-ornithine, plays an important role in T-cell
suppression through depletion of arginine, which is requi-
site for T-cell proliferation and cytokine production.49 This
study was also unique in that it was the largest clinical study
at that point (n=123) with a homogenous population of
cancer patients, that is patients with metastatic RCC. In a
subsequent study of patients with RCC (n=27), increased
levels of granulocytic MDSCs with a similar phenotype,
that is CD11b+/CD15+/CD14– were also detected.39 These
granulocytic MDSCs also had measurable vascular endo-
thelial growth factor receptor (VEGFR1) expression, but
low CD62L and CD16 expression. VEGF has been found
to correlate with high numbers of immature DCs in patients
with cancer,50 and it was therefore hypothesized that
blockade of VEGFR1 with bevacizumab would decrease
the number of MDSCs in the peripheral blood. However,
even though VEGFR1 overexpression in MDSCs was
confirmed, the addition of bevacizumab to IL-2 did not
reduce neither their numbers nor the level of arginase 1 in
the peripheral blood of the patients.

The role of arginase as a mechanism of T-cell sup-
pression may beAQ8 tumor dependent, as evidenced by the
work by Filipazzi et al51 in patients with metastatic mela-
noma (n=16) who were treated with a GM-CSF–based
antitumor vaccine and interferon alpha. In this study, the
circulating MDSCs population was described as CD14+/
HLA-DRlow/–. These cells were shown to have suppressive
activity on T cells, mediated through a transforming growth
factor b (TGF-b)–dependent mechanism and not arginase.

One possible explanation for the significant hetero-
geneity of MDSCs in the literature in terms of overall levels,
mechanisms of suppression, and phenotype is that MDSCs
may not be universally present in human cancers due to
differences in tumor-derived factors. To begin to address
this issue, a subsequent study prospectively evaluated
MDSCs in patients (n=123) with newly diagnosed solid
tumors, clinical stages I to IV.27 Approximately 50% of
patients in this study had breast cancer, 30% had gastro-
intestinal cancers, and the remainder 20% comprised pa-
tients with melanoma, sarcoma, prostate cancer, or other
cancers. Enumeration of MDSCs was performed on freshly
collected whole blood and MDSCs were defined by FACS
as Lin1–/low/HLA-DR–/CD33+/CD11b+. In this study,
Lin1 was defined by as CD3, CD14, CD16, CD19, CD20,
and CD56. Overall circulating MDSCs levels were found to
be significantly higher in cancer patients relative to a
smaller cohort of matched healthy controls (P<0.0001).
Moreover, MDSCs were present to varying degrees in all
solid tumor patients, and overall levels were found to be
directly proportional to clinical cancer stage. Patients with
advanced stage IV disease were found to have significantly
higher levels (P<0.0001) than patients with early-stage
disease. Furthermore, MDSC levels in patients with widely

metastatic disease were higher than in patients with more
limited metastatic involvement. This same study also pro-
vided evidence for the induction of MDSCs as a result of
cyclophosphamide treatment; a phenomenon widely de-
scribed in preclinical models. Cyclophosphamide-induced
MDSCs were also found to have T-cell suppressive capa-
bilities. Looking for a similar phenotype, another study
found that circulating levels, of Lin1–/low/HLA-DR–/
CD33+/CD11b+MDSCs, were aberrantly elevated in 131
cancer patients (46 pancreatic, 60 esophageal, and 25 gas-
tric) relative to healthy controls.28 Numbers of MDSCs
correlated with levels of Tregs, and increased circulating
MDSC levels were an independent adverse prognostic fac-
tor for overall survival.

Differences in CD14 expression exemplify the chal-
lenges thus far in studying MDSCs in cancer patients. Al-
though the Lin1–/low/HLA-DR–/CD33+/CD11b+ MDSC
phenotype has been shown by 2 independent groups to
correlate well with cancer clinical stage and prognosis,
CD14 is part of the Lin1 cocktail and therefore this MDSC
population is expected to have no or very low expression of
this myeloid marker. Likewise, the granulocytic MDSC
population described in renal cancer patients was also
CD14–.23 However, in at least 7 different clinical studies
(Table 1), MDSCs have been described as cells expressing
the CD14 marker. In a large study of patients with hep-
atocellular carcinoma (n=111),43 increased levels of cir-
culating CD14+/HLA-DR–/low MDSCs were described.
This subpopulation had also increased arginase activity,
and was capable of T-cell suppression. In another study, a
population of MDSCs defined as CD14+/IL-4Ra+ was
also detected in colon cancer (n=15) and melanoma
(n=14) patients.32 MDSCs with ether granulocytic or
mononuclear features were expanded in the PMN and
mononuclear fraction, respectively, and both cell subsets
overexpressed the receptor for IL-4Ra but the presence of
this marker correlated with an immunosuppressive pheno-
type only for the mononuclear cells.32

Another study also described a population of CD14+

and HLA-DR–/low circulating MDSCs in melanoma pa-
tients (n=34).36 Subsequent phenotyping suggested that
this population of MDSCs was more differentiated, as cells
also expressed CD80, CD83, and DC-sign (CD209). It was
also demonstrated that only the subpopulation of CD14+

and HLA-DR–/low myeloid cells that expressed IL-4Ra was
suppressive. Moreover, S100A9, a calcium-binding protein
that is overexpressed in MDSCs in murine models, was not
found to be uregulated.52

Eruslanov et al47 examined the presence of 2 distinct
populations of MDSCs in bladder cancer patients (n=32)
with superficial noninvasive and invasive disease. In this
study, both peripheral blood and fresh tumor samples were
collected and analyzed by flow cytometry. Two different
populations of myeloid cells were isolated from the pe-
ripheral blood: (i) CD11b+/CD15high/CD33low with coex-
pression of the neutrophil markers CD114 and CD117; and
(ii) CD11b+/CD15low/CD33high with coexpression of the
monocyte-macrophage markers CD14, CD115, CD116,
and CCR2. When patient peripheral blood samples were
compared with samples from healthy volunteers, only the
CD11b+/CD15high/CD33low cells were found to be present
in higher levels in bladder cancer patients, whereas the
CD11b+/CD15low/CD33high cells were also found to be
present in significant amounts in healthy volunteers as well.
Both populations were found to secrete substantial
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amounts of cytokines, but only the CD11b+/CD15high/
CD33low population was noted to have immunosuppressive
activity. In the tumor specimens, 2 distinct MDSC pop-
ulations were found to infiltrate the tumors: 60% to 70% of
those cells were described as CD11b+/HLA-DR+ with the
remainder 30% to 40% described as CD11b+ and CD15+.
The clinical significance of those cells though was not fully
explored.

Based on a synthesis of the clinical data about MDSCs
in cancer patients, which is also reflected in the preclinical
literature, it appears that MDSCs mainly consist of: (i) a
monocytic population characterized by the presence of
CD14 and absence of CD15, which could also comprise a
cell subset expressing CD15 at low levels, possibly repre-
senting a more immature stage of monocyte development,
likely less differentiated than monocytic CD15� MDSCs;
(ii) a more differentiated granulocytic population having
the opposite pattern of expression, that is CD15+

and CD14.

MDSCs IN HEMATOLOGIC MALIGNANCIES
MDSCs in solid tumor patients have been studied

extensively, whereas their presence in patients with hema-
tologic malignancies is less well established. In patients with
multiple myeloma (MM), MDSCs have been described as
CD14+/arginase+24 and CD14+/HLA-DRlow/–.41 It is in-
teresting to note that in a separate study of patients with
monoclonal gammopathy of undetermined significance
(MGUS) and MM, whereas the number of circulating
MDSCs in MGUS patients was similar to that measured in
normal controls, overall MDSC levels were highest in MM
patients.37 MDSCs have also been described in both
Hodgkin and non-Hodgkin lymphomas (NHL). The phe-
notype in Hodgkin lymphoma patients (n=14) was de-
scribed as CD11b+/CD13+/CD34+/CD14–/CD45+ and
overall MDSC levels correlated with cancer clinical stage,
with the highest levels detected in patients with more ad-
vanced disease.35 In NHL patients (n=40), MDSCs iso-
lated from the peripheral blood were described as CD14+/
HLA-DRlow/–/CD120blow. The highest percentages of
MDSCs were found in patients with advanced clinical stage
(P=0.002), more aggressive NHL histology (P=0.01),
and faster rates of disease progression (P=0.01).42 In
follicular lymphoma also, a CD14+ population of MDSCs
have been described that were also positive for CD13,
CD34, CD45, and CD116.46

The presence of MDSCs was confirmed in the bone
marrow of 12 patients with low risk myelodysplastic syn-
drome.38 The authors of this study compared the number of
MDSCs in the bone marrow of 12 patients with low risk
myelodysplastic syndrome, and 8 healthy individuals,
showing increased numbers of MDSCs only in the first
group. The same study also showed elevated levels of the
cytokines (TGFb, VEGF, IL-10), which may play a role in
the immune-suppressive effects of MDSCs and in the ma-
turation of stem cells in the bone marrow microenvironment.

PROGNOSTIC SIGNIFICANCE OF MDSCs IN
CANCER PATIENTS: A WORK IN PROGRESS
Despite the fact that immune evasion is an emerging

hallmark of cancer,1 there is a clear paucity of biomarkers
related to either innate or adaptive immunity and asso-
ciated with prognosis and clinical outcome. In the setting of
breast cancer, the most established and validated prog-

nostic markers are all tumor related, for example HER-2/
neu gene amplification, hormone receptor status, tumor
histologic grade, etc.53–57 However, more recent compre-
hensive microarray analyses underscored the importance of
tumor host interactions with immune gene signatures hav-
ing prognostic relevance in localized breast cancer and
other solid tumors.58 Another example is the presence of
tumor-infiltrating lymphocytes, which have been shown to
be of prognostic relevance in different solid tumors.59,60

MDSCs are clearly an important mechanism of immune
evasion by tumors, but thus far there is an overall paucity
of studies that have explored in detail the overall prognostic
or predictive significance of MDSCs in cancer patients.
Even if we put aside the problems on how to best define
MDSCs, very few studies addressed the clinical im-
plications of circulating MDSCs.

Thus far, only 3 studies have shown that overall levels
of a monocytic population of MDSCs (Lin1–/low/HLA-
DR–/CD33+/CD11b+) in the peripheral blood correlate
with clinical stage.10,27,28 The previously discussed study by
Lin et al42 also demonstrated that overall MDSC levels in
NHL patients correlated with clinical cancer stage and
aggressiveness of disease, however with a different pheno-
type (CD14+/HLA-DR–/low). Moreover, 2 of these stud-
ies10,28 have independently shown that in patients with
advanced breast cancer and gastrointestinal malignancies,
higher MDSC levels were associated with shorter survival
times. In the study by Solito et al,10 patients with stage IV
breast cancer (n=25) with circulating MDSC levels
>3.17% (median) at baseline, had significantly shorter
median OS times, than patients with circulating MDSCs
less than the median at 5.5 [95% confidence intervals (CI),
0.5-11.3] and 19.32 months (95% CI, 8.7-infinity), re-
spectively (P<0.048). Similarly, in the study by Gabitass
et al,28 levels of circulating MDSCs >2.0% were found to
be an independent prognostic factor in patients with pan-
creatic, esophageal, and gastric cancers in a multivariate
analysis. Patients with elevated MDSCs (>2%) were found
to have an inferior OS, with a median OS of only 4.6
months (95% CI, 2.2-6.0), and 12-month survival rate of
10.4% to a median OS of 9.3 months (95% CI, 6.3-12.1)
and 12-month survival of 39% (P<0.001), respectively, in
cancer patients with MDSCs <2%.

Although these studies were retrospective in nature
and involved relatively small number of patients, they
provide important initial data using similar MDSC phe-
notypes, that is Lin1–/low/HLA-DR–/CD33+/CD11b+, on
the clinical relevance of MDSCs by correlating levels with
overall survival and chemotherapy response. It is presently
unknown whether blood MDSC levels are an independent
prognostic factor in different cancers; future appropriately
powered prospective studies will have to define this issue.

MDSCs AS PREDICTIVE MARKER FOR CANCER
IMMUNOTHERAPY

To date, there is only 1 study that has explored
whether MDSC levels are predictive of response to im-
munotherapy in cancer patients.61 In this study, percen-
tages of circulating MDSCs (Lin–HLA-DR–CD33+) and
mature DCs were evaluated in patients with advanced
kidney cancer or melanoma (n=36) who received high-
dose IL-2. A high DC-to-MDSC ratio and low numbers of
circulating MDSCs were able to discriminate the responder
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subset within the cohort of patients treated with high-
dose IL-2.

MDSCs AS A THERAPEUTIC TARGET IN CANCER
PATIENTS

Finding novel ways to pharmacologically modulate or
differentiate MDSCs represents a promising strategy in
oncology, particularly if combined with immune-based
therapies. Drugs tested in humans that may modulate
MDSCs can be divided into 3 different categories: (i) agents
that decrease MDSCs through promotion of MDSC dif-
ferentiation; (ii) agents that alter the suppressive function
of MDSCs, without altering their numbers; (iii) non-
differentiating agents that decrease MDSC levels.

Two different agents (Table 2) have thus far been
shown to promote the differentiation of MDSCs in humans:
25-hydroxyvitamin D3 and all-trans-retinoic acid (ATRA).
The effect of escalating doses of 25-hydroxyvitamin D3

on circulating levels of CD34+ MDSCs in patients with
locally advanced or metastatic HNSCC (n=18) was ex-
amined.62 25-hydroxyvitamin D3 therapy, especially at the
highest doses examined, was found to be associated with
decreased numbers of CD34+ MDSCs, and increased the
number of HLA-DR+ cells. Moreover, IL-12 and IFN-g
plasma levels were increased with vitamin D3, and improved
T-cell proliferation was also observed. However, this study
was not designed to evaluate whether these changes corre-
lated with improved clinical outcomes, and there was no
clear clinical or antitumor response for the patients that re-
ceived the drug. The modulatory effect of ATRA on
MDSCs, was explored in a small cohort of patients (n=18)
with metastatic RCC.63 In this study, different phenotypes of
myeloid cells were examined, however MDSCs were ulti-
mately defined as Lin–/HLA-DR–/CD33+. ATRA was giv-
en in escalating doses of 50, 100, and 150mg/m2/d divided in
3 daily doses for 7 days, followed by subcutaneous IL-2.
ATRA therapy was found to be associated with: decreased
numbers of circulating MDSCs; improved myeloid/lym-
phoid DC ratios; and improved antigen-specific T-cell re-
sponses as measured by stimulation with tetanus toxoid. Of
interest, the effect of ATRA was observed only in patients
with high serum levels of ATRA (>150 vs. <135ng/mL).
Finally, in a separate study, ATRA therapy was shown to
have the ability to reverse the immunosuppressive effect of
MDSCs in patients with stages III to IV RCC, and improve

T-cell function by direct differentiation of MDSCs into an-
tigen-presenting cell precursors.67 These findings were con-
firmed in vivo; however, whether these differences translated
into improved clinical outcomes was not explored.

Sildenafil is an example of a drug that has been shown
to favorably modulate suppressive properties of MDSCs in
humans.24 Sildenafil is a phosphodiesterase-5 inhibitor that
is used in the treatment of erectile dysfunction and
pulmonary hypertension. Sildenafil has been shown to
downregulate arginase 1 and nitric oxide synthase 2 in
murine tumor models. The effect of Sildenafil in human
PBMCs from patients with MM and HNSCC was observed
only in vitro. Presently it is unknown whether a similar
effect can be observed clinically in cancer patients in vivo.

Several drugs have been shown to decrease the overall
number of MDSCs in humans and animal models. Suniti-
nib is a pan receptor tyrosine kinase inhibitor that is widely
used in the treatment of RCC and other malignancies. The
effects of sunitinib on circulating MDSCs in patients with
metastatic RCC (n=23) has been studied.64 Sunitinib
therapy was found to be associated with a decrease in the
number of circulating MDSCs, whereas at the same time
was associated with improved T-cell function, evidenced by
increased IFN-g production. These changes, though, did
not correlate with radiographic responses or improved
progression-free or overall survival.

Even though there is extensive literature on the effect
of chemotherapy on MDSCs in animals, only 2 studies have
shown any direct effect in humans so far. The first study33

examined the effect of taxane-based chemotherapy on cir-
culating MDSCs [CD14+/HLA-DR–] in stages I to IV
melanoma patients (n=77). In this study, MDSC levels
were found to correlate with clinical cancer stage, and
overall levels were found to decrease after taxane-based
chemotherapy. The second study66 included patients with
pancreatic cancer (n=16) treated with gemcitabine-based
chemotherapy and patients with esophagogastric cancer
(n=23) treated with 5-FU–based chemotherapy. When
posttreatment levels of MDSCs were compared with the
pretreatment levels, there was a statistically significant de-
crease in percentages with chemotherapy (P<0.0001);
however, the decreases in MDSC number was apparently
independent of response to treatment, and was also ob-
served in patients with progressive disease.

PROBLEMS AND PERSPECTIVES
The literature provides substantial evidence that

MDSCs are present in patients with solid and hematologic
malignancies. However, one of the major obstacles in the
clinical study of MDSCs in cancer patients is the diversity
of the cell populations analyzed. Despite this heterogeneity,
from a clinical perspective, the most extensive clinical data
demonstrating an inverse correlation between MDSC levels
and prognosis and cancer clinical stage has involved an
early and immature myeloid population (Lin1–/low HLA-
DR– CD33+ CD11b+). Early data showing that patients
with high circulating MDSCs were less likely to respond to
immunotherapy with high-dose IL-2 also suggest that this
may be a useful predictive marker for immune-based cancer
therapy. Although these initial studies are interesting, and
suggest that MDSCs could be a potential marker correlat-
ing clinical outcome and response to therapy, they need
larger prospective trials to be validated.
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TABLE 2. Drugs Known to Modulate MDSCs in Humans

Agent Cancer References

25-hydroxyvitamin D3 HNSCC Lathers et al62

ATRA Renal cell carcinoma Mirza et al63

Sildenafil Multiple myeloma
HNSCC

Serafini et al24

Sunitinib Renal cell carcinoma Ko and
colleagues64,65

Transitional cell
bladder cancer

Shepard et al40

Taxane Melanoma Wilcox et al33

Gemcitabine
Fluropyrimidine

Pancreatic, esophageal
cancer

Gabitass et al66

ATRA indicates all-trans-retinoic acid; HNSCC, head and neck
squamous cell carcinoma; MDSCs, myeloid-derived suppressor cells.
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Another important aspect related to MDSC expansion
is the comprehension of the essential factors produced by
human tumors that control both recruitment of MDSCs
from the bone marrow to the tumor site and MDSC acti-
vation, which remain largely unexplored. Finally, as MDSC
are an attractive target, especially for a combined therapy
of cancer, it is undeniable that a greater understanding of
the biology of these cells will help to accelerate clinical
development of strategies aimed at modulating MDSCs
function to enhance the effectiveness of immune-based
therapies.
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