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Abstract. The problem of finding sparse solutions to underdetermined systems of linear equa-
tions arises in several applications (e.g., signal and image processing, compressive sensing, statistical
inference). A standard tool for dealing with sparse recovery is the ¢i-regularized least squares ap-
proach that has been recently attracting the attention of many researchers. In this paper, we describe
an active set estimate (i.e., an estimate of the indices of the zero variables in the optimal solution)
for the considered problem that tries to quickly identify as many active variables as possible at a
given point, while guaranteeing that some approximate optimality conditions are satisfied. A rele-
vant feature of the estimate is that it gives a significant reduction of the objective function when
setting to zero all those variables estimated to be active. This enables us to easily embed it into a
given globally converging algorithmic framework. In particular, we include our estimate into a block
coordinate descent algorithm for ¢;-regularized least squares, analyze the convergence properties of
this new active set method, and prove that its basic version converges with a linear rate. Finally, we
report some numerical results showing the effectiveness of the approach.
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1. Introduction. The problem of finding sparse solutions to large underdeter-
mined linear systems of equations has received a lot of attention in the last decades.
This is due to the fact that several real-world applications can be formulated as linear
inverse problems A standard approach is the so called £5-f1 unconstrained optimiza-
tion problem

1 2
(1.1) min ol Az = b||" + 7]zl
where A € R™*" b e R™ = € R" (m < n), and 7 € RT. We denote by || - | the
standard ¢, norm and by || - [|; the ¢; norm defined as ||z|1 = Y., |z

Several classes of algorithms have been proposed for the solution of problem (1.1).
Among the others, we would like to recall iterative shrinkage/thresholding (IST) meth-
ods (see, e.g., [3,4, 7,9, 27]), augmented Lagrangian approaches (see, e.g., [2]), second-
order methods (see, e.g., [5, 15]), sequential deterministic (see, e.g., [25, 26, 32]) and
stochastic (see, e.g., [14, 22] and references therein) block coordinate approaches,
parallel deterministic (see, e.g., [13] and references therein) and stochastic (see, e.g.,
[8, 23] and references therein) block coordinate approaches, and active set strategies
(see, e.g., [16, 28, 29]).

The main feature of this class of problems is the fact that the optimal solution
is usually very sparse (i.e., it has many zero components). Then, quickly building
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and/or correctly identifying the active set (i.e., the subset of zero components in an
optimal solution) for problem (1.1) is becoming a crucial task in the context of big
data optimization, since it can guarantee relevant savings in terms of CPU time. As a
very straightforward example, we can consider a huge scale problem having a solution
with just a few nonzero components. In this case, both the fast construction and
the correct identification of the active set can considerably reduce the complexity of
the problem, thus also giving us the chance to use more sophisticated optimization
methods than the ones usually adopted. Various attempts have been made in order
to use active set techniques in the context of ¢;-regularized problems.

In [28, 29], Wen et al. proposed a two-stage algorithm, FPC-AS, where an es-
timate of the active variables set is driven by using a first-order iterative shrinkage
method.

In [30], a block coordinate relaxation approach with proximal linearized subprob-
lems yields convergence to critical points, while identification of the optimal manifold
(under a nondegeneracy condition) allows acceleration techniques to be applied on a
reduced space.

In [18], the authors solve an ¢;-regularized log determinant program related to
the problem of sparse inverse covariance matrix estimation combining a second-order
approach with a technique to correctly identify the active set.

An efficient version of the two-block nonlinear constrained Gauss—Seidel algorithm
that at each iteration fixes some variables to zero according to a simple active set rule
has been proposed in [21] for solving ¢;-regularized least squares.

In a recent paper [5], Byrd et al. described an interesting family of second-
order methods for #/;-regularized convex problems. Those methods combined a semi-
smooth Newton approach with a mechanism to identify the active manifold in the
given problem.

In the case one wants to solve very large problems, block coordinate descent al-
gorithms (both sequential and parallel) represent a very good alternative and, some-
times, the best possible answer [26]. An interesting coordinate descent algorithm
combining a Newton step with a line search technique was described by Yuan et al. in
[31]. In this context, the authors also proposed a shrinking technique (i.e., a heuristic
strategy that tries to fix to zero a subset of variables according to a certain rule),
which can be seen as a way to identify the active variables. In [26], some ideas on how
to speed up their block coordinate descent algorithm by including an active set iden-
tification strategy are described, but no theoretical analysis is given for the resulting
approach.

What we want to highlight here is that all the approaches listed above, except the
one described in [5], estimate the final active set by using the current active set and
perform subspace minimization on the remaining variables. In [5], the authors define
an estimate that performs multiple changes in the active manifold by also including
variables that are nonzero at a given point and satisfy some specific condition. Since
this active set mechanism, due to the aggressive changes in the index set, can cause
cycling, including the estimate into a globally converging algorithmic framework is
not always straightforward.

In this work, we adapt the active set estimate proposed in [12] for constrained
optimization problems to the ¢1-regularized least squares case. Our estimate, similarly
to the one proposed in [5], does not focus only on the zero variables of a given point.
Instead it tries to quickly identify as many active variables as possible (including the
nonzero variables of the point), while guaranteeing that some approximate optimality
conditions are satisfied.
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The main feature of the proposed active set strategy is that a significant reduction
of the objective function is obtained when setting to zero all those variables estimated
active. This global property, which is strongly related to the fact that the components
estimated active satisfy an approximate optimality condition, makes it easy to use the
estimate in a given globally converging algorithmic framework.

Furthermore, inspired by the papers [26, 31, 32], we describe a new block coor-
dinate descent algorithm that embeds the considered active set estimate. At each
iteration, the method first sets to zero the active variables, then uses a decomposition
strategy for updating a bunch of the nonactive ones. On the one hand, decomposing
the nonactive variables enables us to handle huge scale problems that other active set
approaches cannot solve in reasonable time. On the other hand, since the subproblems
analyzed at every iteration explicitly take into account the ¢;-norm, the proposed al-
gorithmic framework does not require a sign identification strategy (for the nonactive
variables), which is typically needed when using other active set methods from the
literature.

The paper is organized as follows. In section 3, we introduce our active set
strategy. In section 4, we describe the active set coordinate descent algorithm, and
prove its convergence. We further analyze the convergence rate of the algorithm. In
section 5, we report some numerical results showing the effectiveness of the approach.
Finally, we draw some conclusions in section 6.

2. Notation and preliminary results. Throughout the paper we denote by
f(@), q(x), g(x), and H the original function in problem (1.1), the quadratic term of
the objective function in problem (1.1), the n gradient vector, and the n x n Hessian

1
matrix of §|\Ax — b||?, respectively. Explicitly

q(z) = %IIA:E —b|%, glz)=AT(Az—b), H=ATA

Given a matrix @ € R™*" we further denote by A4, (Q) and Ay (Q) the maximum
and the minimum eigenvalue of the matrix @, respectively. Furthermore, with I we
indicate the set of indices I = {1,...,n}, and with Q1,1; we indicate the submatrix
of @ whose rows and columns indices are in I; € I. We also report the optimality
conditions for problem (1.1):

PROPOSITION 2.1. z* € R"™ is an optimal solution of problem (1.1) if and only if

xr >0, gi(z*)+7=0,
(2.1) 2y <0, gi(z*)—7=0,
xf =0, —7<gi(z*) <

Furthermore, we define a continuous function ®;(z) that measures the violation of the
optimality conditions in x; (and is connected to the Gauss—Southwell-r rule proposed
in [26]), that is

(2.2) o;(z) = —mid { gi(i}j T Y (2+ - } |

where mid{a, b, ¢} indicates the median of a, b, c.
Finally, we recall the concept of strict complementarity.

DEFINITION 2.2. Strict complementarity holds if, for any x7 =0, we have

(2.3) —7 < gi(z™) < T.
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3. Active set estimate. All the algorithms that adopt active set strategies need
to estimate a particular subset of components of the optimal solution 2*. In nonlinear
constrained minimization problems, for example, using an active set strategy usually
means correctly identifying the set of active constraints at the solution. In our context,
we deal with problem (1.1) and the active set is considered as the subset of zero
components of x*.

DEFINITION 3.1. Let a* € R™ be an optimal solution for problem (1.1). We define
the active set as follows:

(3.1) A(@*)={iel:az} =0}.
We further define as a nonactive set the complementary set of A(x*),
(3.2) N(@*) =TI\ A@*)={ie{l,....,n} 1z} #0}.

In order to get an estimate of the active set we rewrite problem (1.1) as a box con-
strained programming problem and we use similar ideas to those proposed in [10].
Problem (1.1) can be equivalently rewritten as follows:

min 3 [[A(u —v) = b + 7307, (us +vi),
(3.3) u>0
v >0,

where u,v € R™. Indeed, we can transform a solution z* € R™ of problem (1.1) into
a solution (u*,v*) € R™ x R™ of (3.3) by using the following transformation:

u* = max(0, z*), v* = max(0, —z*).

Equivalently, we can transform a solution (u*,v*) € R™ x R™ of (3.3) into a solution
2* € R™ of problem (1.1) by using the following transformation:

¥ =u* —v*.

The Lagrangian function associated with (3.3) is
1 n
L(u,v, A, p) = §||A(u —v) = b|* + TZ(Ui +vi) — AMNu—pTo,
i=1

with A, € R™ vectors of Lagrangian multipliers. Let (u*,v*, A\*, u*) be an optimal
solution of problem (3.3). Then, from necessary optimality conditions, we have

AL =giwt —v*) + 7 = gi(a) + 7,
(3.4)
pi =1 —gi(u* —v*) =71 — gi(z¥).

From (3.4), we can introduce the following two multiplier functions,
Ai(u,v) = gi(u—v) +7,

(3.5)
pi(u,v) =7 — gi(u —v).
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By means of the multiplier functions, we can recall the nonactive set estimate N (u,v)
and active set estimate A(u,v) proposed in the field of constrained smooth optimiza-
tion (see [12] and references therein):

(3.6) N(u,v) = {i:u; > eXi(u,v)}U{i:v; > ep(u,v)},

(3.7) A(u,v) = T\ N(u,v),

where € is a positive scalar.
We draw inspiration from (3.6) and (3.7) to propose the new estimates of active
and nonactive set for problem (1.1). Indeed, by using the relations

u = max(0, x) and v = max(0, —x),

we can give the following definitions.

DEFINITION 3.2. Let x € R™. We define the following sets as an estimate of the
nonactive and active variables sets:

(3.8) N(z)={i: max(0,z;) > e (7 + gi(x))} U{i : max(0, —z;) > e (7 — g;(x))},

(3.9 A(z) = I\ N(z).

In the next subsections, we first discuss local and global properties of our estimate,
then we compare it with other active set estimates.

3.1. Local properties of the active set estimate. Now, we describe some
local properties (in the sense that those properties only hold in a neighborhood of a
given point) of our active set estimate. In particular, the following theoretical result
states that when the point is sufficiently close to an optimal solution the related active
set estimate is a subset of the active set calculated in the optimal point (and it includes
the optimal active variables that satisfy strict complementarity). Furthermore, when
strict complementarity holds the active set estimate is actually equal to the optimal
active set.

THEOREM 3.3. Let z* € R™ be an optimal solution of problem (1.1). Then, there
exists a meighborhood of x* such that, for each x in this neighborhood, we have

(3.10) AT (2*) C A(z) C A(2*)

with A* (z*) = A(z*)N{i: —7 < g;(z*) < 7}. Furthermore, if strict complementarity
(2.2) holds in x*, then there exists a neighborhood of x* such that, for each x in this
neighborhood, we have

(3.11) A(z) = A(x*).

Proof. The proof follows from Theorem 2.1 in [12]. O

3.2. A global property of the active set estimate. Here, we analyze a global
property of the active set estimate. In particular, we show that, for a suitably chosen
value of the parameter € appearing in Definition 3.2, by starting from a point z € R”
and fixing to zero all variables whose indices belong to the active set estimate A(z),
it is possible to obtain a significant decrease of the objective function. This prop-
erty, which strongly depends on the specific structure of the problem under analysis,
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represents a new interesting theoretical result, since it enables us to easily embed
the active set estimate into any globally converging algorithmic framework (in the
next section, we will show how to include it into a specific block coordinate descent
method). Furthermore, the global property cannot be deduced from the theoretical
results already reported in [12].

Assumption 1. Parameter € appearing in Definition 3.2 satisfies the following con-
dition:
1

12 _ .
(3.12) O<€</\maz(ATA)

PROPOSITION 3.4. Let Assumption 1 hold. Given a point z € R™ and the related
sets A(z) and N (z), let y be the point defined as

Ya) =0, YN(z) = ZN(2)-
Then,
1 2
_ < |y — .
Fly) = f(2) < =5 lly = 2|
Proof. For the proof, see Appendix A. 0

3.3. Comparison with other active set strategies. Our active set estimate
is somehow related to those proposed, respectively, by Byrd et al. in [5] and by Yuan
et al. in [31]. Tt is also connected in some way to the IST Algorithm (ISTA), see, e.g.,
[3, 9]. Indeed, an ISTA step can be seen as a simple way to set to zero the variables
in the context of ¢1-regularized least squares problems.

Here, we would like to point out the similarities and the differences between those
strategies and the one we propose in the present paper.

First of all, we notice that, at a generic iteration k of a given algorithm, if z* is
the related iterate and ¢ € [ is an index estimated active by our estimate, that is,

i€ A(z®) = {i : max(0,2F) < e (74 gi(®))} N {i : max(0, —z¥) < e (1 — gi(z¥))},

it is equivalent to write

(3.13) zy € [e(gi(a®) —7),e(gi(2*) +7)] and -7 <gi(a*) <7,

which means that z¥ is sufficiently small and satisfies the optimality condition associ-
ated with a zero component (see (2.1)). As we will see, the estimate, due to the way it
is defined, tends to be more conservative than other active set strategies (i.e., it might
set to zero slightly smaller sets of variables). On the other hand, the global property
analyzed in the previous section (i.e., decrease of the objective function when setting
to zero the active variables) seems to indicate that the estimate truly contains indices
related to variables that will be active in the optimal solution. As we will see later on,
this important property does not hold when considering the other active set strategies
analyzed here.

In the block active set algorithm for quadratic ¢;-regularized problems proposed
in [5], the active set estimate, at a generic iteration k, can be rewritten in the following
way:

Aba = {i s aF =0 gia¥) € (—r )} Ui ab <0

gi(z") = =1} U{i : 2f > 0; gi(a*) = 7}
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Let 2¥ € R" and i € {1,...,n} be an index estimated active by our estimate, from
(3.13), we get g;(z*) € [-7,7].

Then, in the case z¥ = 0, i € A%yrd implies i € A(z*). In fact, let i € A%yrd. If
ok = 0 we have g;(2¥) € (—7,7) so that i € A(z"). It is easy to see that the other
way around is not true.

Other differences between the two estimates come out when considering indices 4
such that z¥ #£ 0. Let i € .A%yrd and, in particular, i € {i : 2¥ < 0; g;(2%) = —7}. If
|z¥| > €27, then we get

max(0, —zk) = —a¥ > €27 = e (7 — g;(2")),
so that i ¢ A(z"). Using the same reasoning we can see that, in the case i € A, .,
and, in particular, i € {i : 2% > 0; g;(z¥) = 7}, it can happen
mazx(0,2F) = 2 > €21 = e (7 + gi(2")),

so that i ¢ A(z¥).
In [31], the active set estimate is defined as follows,

(3.14) A = {i 2 =05 gi(a¥) € (=7 + MM 7 — M)

where M*~! is a positive scalar that measures the violation of the optimality condi-
tions. It is easy to see that our active set contains the one proposed in [31]. Further-
more, we have that variables contained in our estimate are not necessarily contained
in the estimate (3.14). In particular, a big difference between our estimate and the
one proposed in [31] is that we can also include variables that are nonzero at the
current iterate.

As a final comparison, we would like to point out the differences between the ISTA
strategy and our estimate. Consider the generic iteration of ISTA with the same e
used in our active set strategy:

(3.15) gt = arg min {q(mk) +g(z*) T (x — 2%) + el|lz — 2F)% + T||£L'||1}

From the optimality conditions of the inner problem in (3.15), we have that the zero
variables at 2¥t1 belong to the following set

(3.16) Afsra={i (=7 +gi(a")) < af < e(7+ gi(a")}-

We can easily see that A(z*) C A’fST 4- The opposite is not always true, apart from

the variables xf = 0. As a matter of fact, let us consider xf > 0and i € A’fSTA.

Then, we have that
< e(rtgi(@) = i€ {is max(0,aF) < e(r + gi(@M)},
v 2 e(-7+gi(a") = —af <e(r—gi(ah)).
In order to have i € A(z¥) it should be
(T — g;) > max{0, —2F} = 0;

that is a tighter requirement with respect to the one within A¥¢. .. Similar reasoning
applies also to variables z¥ < 0 with i € Afg;,. We would also like to note that the
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ISTA step might generate unnecessary projections of variables to zero, thus being not
always effective as a tool for identifying the active set.

In this final remark, we show that, when using the active set strategies analyzed
above, a sufficient decrease of the objective function cannot be guaranteed by setting
to zero the variables in the active set (i.e., Proposition 3.4 does not hold). This fact
makes it hard, in some cases, to include those active set strategies into a globally
convergent algorithmic framework.

Remark 3.5. Proposition 3.4 does not hold for the active set strategies described
above. This can be easily seen in the following case.

Let us assume that, at some iteration k, there exists only one index 7 € .AkByrd
with 2F > 0, Hy > 0, and g;(2*) = 7. Let z = 2* and y be the point defined as

y; = x¥ for all i # i, and y; = 0. Then,

1
Fy) = @) + (g:(=") = 1) (s = 27) + 5 (s — 27)* Has.
Since Hy; > 0 and g;(2*) = 7, we have f(y) — f(2¥) > 0, so that by setting to zero
the active variable we get an increase of the objective function value.
The same reasoning applies also to the ISTA step, assuming that at some iteration
k, there exists only one index 7 such that

e(—1 + gz(xk)) < mf <e€(T+ gg(xk))

and g;(z%) = 7.

Finally, it is easy to notice that, at each iteration k, the active set estimate A%
defined in [31] only keeps fixed to zero, at iteration k, some of the variables that are
already zero in 2, thus not changing the objective function value.

4. A fast active set block coordinate descent algorithm. In this section,
we describe our fast active set block coordinate descent algorithm (FAST-BCDA) and
analyze its theoretical properties. The main idea behind the algorithm is that of
exploiting as much as possible the good properties of our active set estimate, more
specifically:

- the ability to identify, for k sufficiently large, the “strong” active variables
(namely, those variables satisfying the strict complementarity, see
Theorem 3.3);

- the ability to obtain, at each iteration, a sufficient decrease of the objective
function, by fixing to zero those variables belonging to the active set estimate
(see Proposition 3.4 of the previous section).

As we have seen in the previous section, the estimate, due to the way it is defined,
tends to be more conservative than other active set strategies (i.e., it might set to
zero a slightly smaller set of variables at each iteration). Anyway, since for each block
we exactly solve an ¢1-regularized subproblem, we can eventually force to zero some
other variables in the nonactive set. Another important consequence of including the
¢1-norm in the subproblems is that we do not need any sign identification strategy for
the nonactive variables.

At each iteration k, the algorithm defines two sets N* = N (2*), A¥ = A(2") and
executes two steps:

(1) it sets to zero all of the active variables;

(2) it minimizes only over a subset of the nonactive variables, i.e., those which

violate the optimality conditions the most.
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More specifically, we consider the measure related to the violation of the optimality
conditions reported in (2.2). We then sort in decreasing order the indices of nonactive
variables (i.e., the set of indices N'*) with respect to this measure and define the subset
NE , C N* containing the first s sorted indices. The set A%, is then partitioned into
g subsets Iy, ..., I; of cardinality r, such that s = gr. Then the algorithm performs
q subiterations. At the jth subiteration the algorithm considers the set I; C N*
and solves to optimality the subproblem we get from (1.1), by fixing all the variables
but the ones whose indices belong to I;. Below we report the scheme of the proposed

algorithm (see Algorithm 1).

Algorithm 1. FAST-BCDA.

Choose z" € R", Set k = 0.
For £k=0,1... -
Compute A*, N* NE
Set y?“],f =0 and y?\"/z = xifk;
For j=1,...,q B
Compute y};k, with I; C N% . solution of problem

S T W N =

: i—1,k 1.k
min g, (y" ") T (w — 7,

1 j—1,k j—1,k
wER" )+7(w_y}j )THIjIj(w_y‘;j )+TH’LU||1

2
7 Set yf’k:yg_l’k iti e Ij;
8 End For

9 Set zFtl = yok,

10 End For

The convergence of FAST-BCDA is based on two important results. The first one
is Proposition 3.4, which guarantees a sufficient decrease of the objective function
by setting to zero the variables in the active set. The second one is reported in the
proposition below. It shows that, despite the presence of the nonsmooth term, by
exactly minimizing problem (1.1) with respect to a subset J of the variables (keeping
all the other variables fixed), it is possible to get a sufficient decrease of the objective
function in the case Apin(Hyy) > 0.

PROPOSITION 4.1. Given a point z € R" and a set J C I, let w* € RIY| be the
solution of problem (1.1), where all variables but the ones whose indices belong to J
are fived to zp\ y. Let y € R™ be defined as

ys = w", Yng = ZnJ-
Then we have
1
(11) F) = 1) £ =5 Amin(Hao)lly = 2]
Proof. For the proof, see Appendix B. ]

Now, we introduce an assumption that will enable us to prove global convergence
of our algorithm.
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Assumption 2. The matrix A € R™*™ satisfies the following condition

(4.2) min Anin((ATA) ;7)) >0 >0,

where J is any subset of {1,...,n} such that |J| = r, with r the cardinality of the
blocks used in FAST-BCDA.

Remark 4.2. We notice that even though there are some similarities between con-
dition (4.2) and the well-known restricted isometry property (RIP) condition with
fixed order r (see, e.g., [6] for further details), condition (4.2) is weaker than the RIP
condition.

Finally, we are ready to state the main result concerning the global convergence
of FAST-BCDA.

THEOREM 4.3. Let Assumptions 1 and 2 hold. Let {z*} be the sequence produced
by Algorithm FAST-BCDA. B

Then, either an integer k > 0 exists such that z* is an optimal solution for
problem (1.1), or the sequence {x*} is infinite and every limit point x* of the sequence
is an optimal point for problem (1.1).

Proof. For the proof, see Appendix B. ]

Now, we discuss Assumptions 1 and 2 that are needed to guarantee convergence
of FAST-BCDA.

4.1. Comments on the assumptions. Assumption 1 requires the evaluation of
Amaz (AT A), which is not always easily computable for large scale problems. Hence,
we describe an updating rule for the parameter €, that enables us to avoid any “a
priori” assumption on e.

In practice, at each iteration k we need to find the smallest h € N such that the
value € = "¢ and the corresponding sets A*, N'* give a point

0,k 0,k
Yy =0 and yy; = xﬁ/k
satisfying

(4.3) F™F) < f@®) = ylly™* 2|2

with v > 0. Then, we can introduce a variation of FAST-BCDA, namely, FAST-BCDA-¢,
that includes the updating rule for the parameter e in its scheme, and prove its
convergence.

THEOREM 4.4. Let Assumption 2 hold. Let {x*} be the sequence produced by
Algorithm FAST-BCDA-e. )

Then, either an integer k > 0 exists such that z* is an optimal solution for
problem (1.1), or the sequence {x*} is infinite and every limit point x* of the sequence
is an optimal point for problem (1.1).

Proof. The proof follows by repeating the same arguments of the proof of Theorem
4.3 by replacing the relation (B.10) with (4.3). |

Assumption 2, which we need to satisfy in order to guarantee convergence of both
FAST-BCDA and FAST-BCDA-¢, is often met in practice if we consider blocks of 1 or 2
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variables (i.e., 7 equal to 1 or 2). Indeed, when solving blocks of 1 variable, we need
to guarantee that any column Aj; of matrix A is such that

J4 P > 0> 0.

This is often the case when dealing with overcomplete dictionaries for signal/image
reconstruction (as the columns of matrix A are usually normalized; see, e.g., [1]).
When using 2-dimensional blocks, we want no parallel columns in matrix A. This is
a quite common requirement in the context of overcomplete dictionaries (as it corre-
sponds to asking that mutual coherence is lower than 1; see, e.g., [1]). Furthermore,
the solution of 1-dimensional block subproblems can be determined in closed form by
means of the well-known scalar soft-threshold function (see, e.g., [3, 27]). Similarly,
we can express in closed form the solution of 2-dimensional block subproblems.

Summarizing, thanks to the possibility of using an updating rule for ¢, and due
to the fact that we only use blocks of dimensions 1 or 2 in our algorithm, we have
that Assumptions 1 and 2 are quite reasonable in practice.

4.2. Convergence rate analysis. Here, we report a result related to the con-
vergence rate of FAST-BCDA with 1-dimensional blocks (namely, FAST-1CDA). In par-
ticular, we show that it converges at a linear rate. In order to prove the result, we
make an assumption that is common when analyzing the convergence rate of both
algorithms for ¢;-regularized problems (see, e.g., [17]) and algorithms for general
problems (see, e.g., [20]).

Assumption 3. Let {z*} be the sequence generated by FAST-1CDA. We have that

(4.4) lim zF = z*,

k—o0

where z* is an optimal point of problem (1.1).

Now, we state the theoretical result related to the linear convergence.

THEOREM 4.5. Let Assumptions 1, 2, and 3 hold. Let {x*} be the sequence gen-
erated by FAST-1CDA.

Then {f(x*)} converges at least Q-linearly to f*, where f* = f(z*) . Further-
more, {x*} converges at least R-linearly to x*.

Proof. For the proof, see Appendix C.

5. Numerical results. In this section, we report the numerical experiments
related to FAST-BCDA. We implemented our method in MATLAB, and considered
four different versions of it in the experiments:

e FAST-1CDA and FAST-2CDA, basic versions of FAST-BCDA where blocks of di-
mension 1 and 2 are, respectively, considered;

e FAST-1CDA-E and FAST-2CDA-E, “enhanced” versions of FAST-BCDA where
again blocks of dimension 1 and 2 are, respectively, considered (see subsec-
tion 5.1 for further details).

We first analyzed the performance of these four versions of our algorithm. Then, we
compared the best one with other algorithms for ¢;-regularized least squares prob-
lems. Namely, we compared FAST-2CDA-E with ISTA [3, 9], FISTA [3], PSSgb [24],
SpaRSA [27], and FPC_AS [28].

All the tests were performed on an Intel Xeon(R) CPU E5-1650 v2 3.50 GHz
using MATLAB R2011b.
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We considered two different testing problems of the form (1.1), commonly used
for software benchmarking (see, e.g., [28, 15]). In particular, we generated artificial
signals of dimension n = 214,215 216 217 with a number of observations m = n/4 and
we set the number of nonzeros T' = round(pm) with p = {0.01,0.03,0.05,0.07,0.1}.
The two test problems (P1 and P2) differ in the way matrix A is generated:

P1: Considering A as the Gaussian matrix whose elements are generated inde-

pendently and identically distributed from the normal distribution N (0, 1),
the matrix A was generated by scaling the columns of A.
P2: Considering A as the matrix generated by using the MATLAB command

A = sprand(m, n, density),

with density = 0.5, the matrix A was generated by scaling the columns of A.
We would like to note that the Hessian matrices A" A related to instances of problem
P1 have most of the mass on the diagonal. Then, those instances are in general easier
to solve than the ones of problem P2.

Once the matrix A was generated, the true signal z* was built as a vector with
T randomly placed +1 spikes, with zero in the other components. Finally, for all
problems, the vector of observations b was chosen as b = Az* 4+ 7, where 7 is a
Gaussian white noise vector, with variance 1073. We set 7 = 0.1||ATb|« as in [2, 27].
We produced ten different random instances for each problem, for a total of 400
instances. The comparison of the overall computational effort is carried out by using
the performance profiles proposed by Dolan and Moré in [11], plotting graphs in a
logarithmic scale.

For the value of s (number of nonactive variables to be used in /\_ford) we set s =
round(0.8T) for FAST-1CDA and s = round(0.65T) for FAST-2CDA (these s values are
the ones that guarantee the best performances among the ones we tried). Concerning
the choice of the € parameter used in the active set estimate, the easiest choice is that
of setting € to a fixed value. We tested several values and obtained the best results
with € = 107* and € = 107> for FAST-1CDA and FAST-2CDA, respectively. We further
tested an implementation of both FAST-1CDA-¢ and FAST-2CDA-¢. Since there were
no significant improvements in the performance, we decided to keep the € value fixed.

We would also like to spend a few words about the criterion for choosing the
variables in A/ frd. In some cases, we found it to be more efficient using the following
measure:

|gi (%) + 7] if zF >0,
(5.1) |gi(z%) — 7] if ¥ <0,
max{0, —(g;(z*) + 7), gi(z*¥) — 7} if 2F =0

in place of the one reported in (2.2), which we considered for proving the theoretical
results. The main feature of this new measure is that it only takes into account
first-order information (while (2.2) considers also proximity of the component value
to zero). Anyway, replacing (2.2) with the new measure is not a big deal, since
convergence can still be proved using (5.1). Furthermore, the linear rate can be easily
obtained assuming that strict complementarity holds. Intuitively, considering only
first-order information in the choice of the variables should make more sense in our
context, since proximity to zero is already taken into account when using the estimate
to select the active variables.

5.1. Enhanced version of FAST-BCDA. By running our codes, we noticed that
the cardinality of the set related to the nonactive variables decreases quickly as the
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(a) Preliminary experience. (b) Comparison with other solvers.

F1c. 1. Performance profiles on all instances (CPU time).

iterations go by. In general, very few iterations are needed to obtain the real nonactive
set. By this evidence, and keeping in mind the theoretical result reported in section
3, we decided to develop an “enhanced” version of our algorithms, taking inspiration
from the second stage of the FPC-AS algorithm [28]. Once a “good” estimate N'* of
N (z*) was obtained, we solved the following smooth optimization subproblem

min 3|l Az — b||? + Tsign(zan) Tz
st. x; =0, ie A"

In practice, we considered an estimate N'* “good” if both there are no changes in the
cardinality of the set with respect to the last two iterations, and |[N*| is lower than
or equal to a certain threshold ¢ (we fixed £ = 0.05n in our experiments).

5.2. Preliminary experiments. In order to pick the best version among the
four we developed, we preliminarily compared the performance of FAST-1CDA (FAST1),
FAST-2CDA (FAST2)7 FAST-1CDA-E (FASTI-E)7 and FAST-2CDA-E (FAST2—E). In
Figure 1(a), we report the performance profiles with respect to the CPU time.

As we can see, even if the four version of FAST-BCDA have similar behavior,
FAST-2CDA-E is the one that gives the overall best performance. We then choose
FAST-2CDA-E as the algorithm to be compared with the other state-of-the art algo-
rithms for ¢;-regularized problems.

5.3. Comparison with other algorithms. In this section, we report the
numerical experience related to the comparison of FAST-2CDA-E with ISTA [3, 9],
FISTA [3], PSSgb [24], SpaRSA [27], and FPC_AS [28].

In our tests, we first ran FAST-2CDA to obtain a target objective function value,
then ran the other algorithms until each of them reached the given target (see, e.g.,
[27]). Any run exceeding the limit of 1000 iterations is considered failure. De-
fault values were used for all parameters in SpaRSA [27] and FPC_AS [28]. For
PSSgb [24] we considered the two-metric projection method and we set the pa-
rameter options.quadraticInit to 1, since this setting can achieve better per-
formance for problems where backtracking steps are required on each iteration (see
http://www.cs.ubc.ca/~schmidtm/Software/thesis.html). In all codes, we considered
the null vector as the starting point and all matrices were stored explicitly. In Fig-
ure 1(b), we report the plot of the performance profiles related to the CPU time for
all instances. From these profiles it is clear that FAST-2CDA-E outperforms all the
other algorithms and that SpaRSA and PSSgb are the two best competitors. We
then further compare, in Figure 2, FAST-2CDA-E, SpaRSA, and PSSgb reporting the
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box plots related to the distribution of the CPU time. On each box, the central mark
is the median, the edges of the box are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points not considered outliers, and outliers are plot-
ted individually. In particular, Figure 2 shows the plots related to the distribution of

All instances P1 instances P2 instances

N 250| . -

20 ' 250

L
i

1500 1500

T gl
e Sl & = & O

FAST2-E PSSgb SpaRSA FAST2-E PSSgb SpaRSA FAST2-E PSSgb SpaRSA

CPU time (sec

CPU time (sec
CPU time (sec)

g

F1a. 2. Boz plots (CPU time).

the CPU time for all instances, for P1 instances, and for P2 instances, respectively.
For what concerns P1 instances, SpaRSA and PSSgb show similar behavior, while
observing the plot related to P2 instances SpaRSA shows a better performance. For
both classes, FAST-2CDA-E shows the lowest median. As a further comparison among
FAST-2CDA-E, SpaRSA, and PSSgh, we report in Figures 3 and 4, the plots of the
relative error versus the CPU time for the P1 and the P2 instances, respectively. In
each plot, the curves are averaged over the ten runs for fixed p and n. Observing
these plots, we notice that FAST-2CDA-E is able to reach better solutions with lower
CPU time.

5.4. Real examples. In this subsection, we test the efficiency of our algorithm
on realistic image reconstruction problems. We considered six images: a SheppLogan
phantom available through the MATLAB Image Processing Toolbox and five widely
used images downloaded from http://dsp.rice.edu/cscamera (the letter R, the man-
drill, the dice, the ball, the mug). Each image has 128 x 128 pixels. We followed the
procedure described in [28] to generate the instances (i.e., matrix A and vector b).
What we want to highlight here is that the optimal solutions are unknown. Hence the
reconstructed images can only be compared by visual inspection. Also in this case,
we first ran FAST-2CDA to obtain a target objective function value, then ran the other
algorithms until each of them reached the given target. The CPU time needed for
reconstructing the images is reported in Table 1. In Figure 5, we report the images
of the dice and of the mandrill reconstructed by FAST-2CDA-E, PSSgb, and SpaRSA.
In Table 1, we can easily see that FAST-BCDA was faster in all problems.

6. Conclusions. In this paper, we devised an active set block coordinate de-
scent method (FAST-BCDA) for solving ¢;-regularized least squares problems. The way
the active set estimate is calculated guarantees a sufficient decrease in the objective
function at every iteration when setting to zero the variables estimated active. Fur-
thermore, since the subproblems related to the blocks explicitly take into account the
£1-norm, the proposed algorithmic framework does not require a sign identification
strategy for the nonactive variables.

Global convergence of the method is established. A linear convergence result is
also proved. Numerical results are presented to verify the practical efficiency of the
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method, and they indicate that FAST-BCDA compares favorably with other state-of-
the-art techniques.

We further would like to note that the proposed active set strategy is independent
from the specific algorithm we have designed and can be easily included into other
algorithms for ¢;-regularized least squares, both sequential and parallel, to improve
their performance. We finally highlight that the algorithmic scheme we described can
be easily modified in order to work in a parallel fashion. Future work will be devoted
to adapt the presented approach to handle convex ¢;-regularized problems.

Appendix A. Main theoretical result related to the active set estimate.
Here, we prove the main theoretical result related to the active set estimate.

Proof of Proposition 3.4. We first define the sets NV = AN (z) and A=A(z). By
taking into account the definitions of the sets A and A/ and the points y and z, we

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/20/16 to 147.162.22.189. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

796

relative error relative error relative error relative error

relative error

have

(A1) f(y) = aly) +7>_ sign(ys) v = aly) +7 > sign(y) yi + 7 sign(zi) y:

=1

from which

fy)

where e € R4l is the unit vector, and S 4 is the diagonal matrix defined as
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= f(2) + (9a(2) +7Sae)  (y — 2)a + 5 (y — 2)4Haa(y — 2) 4,

iEN

1
2

S = Diag(sign(z))

with the function sign(-) intended componentwise.
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Fic. 5. Real examples experiment: (a) original image, (b) FAST-2CDA-E reconstruction, (c)
PSSgb reconstruction, (d) SpaRSA reconstruction.

Since H = AT A we have that the following inequality holds:

]
F) < 1)+ (04(2) + 7540) T — 2+ 2mes Ay o e

Recalling (3.12) we obtain

(A2 S) < )+ (0a(2) 4 7540) (- 2)at ooy~ 2Dl
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TABLE 1
Real examples experiment—CPU time.

Fastl | Fast2 | Fastl-E | Fast2-E | ISTA | FISTA | PSSgb | SpaRSA | FPC_AS
2.18 2.46 2.54 2.02 34.65 9.26 5.01 5.08 10.46
1.65 1.67 1.51 1.95 73.01 16.31 7.7 14.48 12.87
1.86 1.97 1.91 1.65 78.05 18.41 7.90 15.56 14.69
3.52 2.05 2.13 2.32 63.13 12.69 6.51 7.53 9.77
2.29 2.12 1.79 2.16 51.12 13.79 6.36 11.13 9.33
4.12 4.21 4.16 2.41 56.66 12.09 6.69 7.12 9.72

Then, we can write

F0) < G+ (942 + 780+ = 2)a) (7= 2a— ol — Dl

In order to prove the proposition, we need to show that

1 T
(A.3) (94(2) +Sac+ <(y=2)a) (y=2)a<0.
Inequality (A.3) follows from the fact that Vi € A,
. 1 T
(A4) (9:(2) + msign(z) + =l = ) (i = 2) < 0.

We distinguish two cases:
(a) If z; > 0, we have that sign(z;) = 1 and, since y; =0, (y; — 2;) < 0.
Then, from the fact that i € A, we have

Yi :07
2 < €(gi(z) + 1),
(zi —yi) < €e(gi(2) +7),

1
E(Zz‘ —yi) < gi(z) + 1,

so that

and (A.4) is satisfied.
(b) If z; < 0, we have that sign(z;) = —1 and, since y; =0, (y; — z;) > 0.
Then, by reasoning as in case (a), from the fact that i € A, we can write

Yi :07
—2i < (1 —gi(2)),
(yi — 2zi) < e(1—9i(2)),

1
(i) <7 ()
from which we have
1
gi(z) =7+ p (yi —2i) <0.

Again, we have that (A.4) is satisfied.
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Appendix B. Theoretical results related to the convergence analysis.
First, we prove the result that guarantees a sufficent decrease when minimizing with
respect to a given block.

Proof of Proposition 4.1. Let us consider the subproblem obtained by fixing all
variables in I but the ones whose indices belong to J to zp\ ;. Let w* € RV be a
solution of this subproblem.

We consider the set J = {ji,...,jjs} as the union of two sets
J=JgUJp,
where
Jg = Jg+ U Jg-, Jp = Jp+ UJp-

and
Jp+ ={ji € J : sign(w]) >0}, Jp- ={ji € J : sign(w]) <0},
Jg+ ={ji € J 1w} = 0; sign(z;,) > 0}, Jg- ={ji € J : wf = 0; sign(zj,) < 0}.
Let f: Rl - R with w € Rl be the following function,
f(w) = q(2)+ TZ]EI\J sign(zj) zj + g1(2) T (w — 25) + %(w —z5) T Hyy(w— zy)
T T ey Sign(z) wi + 7300 g sign(wy) w;.
Then, w* can be equivalently seen as the solution of the following problem
min  f(w)
(B.1) st. w; >0 forj, € Jp+ UJg+,
w; <0 for j; € Jp- UJg-.

By introducing the diagonal matrix S = Diag(s) € RVIXI/I| where s € {—1,0,1}”I
is the vector defined as

sign(wy) if j; € Jp,
S; =

sign(z;,) it j; € Jg,
problem (B.1) can be written in a more compact form as

min  f(w)
(B.2)

s.t.  Sw>0.
From the KKT condition for problem (B.2) at w* we have
(B.3) 97(z2) + Hyyj(w* —z5) + 78 — SA =0,

where A € RVl is the vector of multipliers with respect to the constraints Sw > 0.
We now analyze (B.3) for each index i € J. We distinguish two cases:
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- ji € Jp. In this case we have that s; = sign(w}) and A\; = 0. Then, from
(B.3) we have

(B4) 93 (Z) + Hjiji (w: - Zji) +7s; =0.

- ji € Jg. In this case we have that s; = sign(z;,) and \; > 0.
Therefore,

Gjs (Z) + Hjiji (’LU;F - Zji) +78 >0 if s; = sign(Zj,i) >0,

gji<z) + Hjiji (w: - zji) +78, <0 ifs; = Sig’n(Zji) <0.

The previous inequalities and the fact that w} = 0 for all j; € Jg imply that, whatever
is the sign of z;, we have

(B.5) (95 (2) + Hygo (i = 2) + 753 (w = 2,) < 0.

Taking into account (B.4) and (B.5), we have that
-
(B.6) (gJ(Z) + Hyy(w" —z5) + TS) (w* —25) <0.

Now, consider the difference between f(w*) and f(z;). We have that

Fw) = Fz) = 90 (" = 2) 4 3w = 2)T Hysw* — 7))

+7Y 0 sign(z,)(w) —z,) + 1> sign(w])(w] — z,),
Ji€JE ji€Jp
which can be rewritten as

Flw™) —f(zg)= (g,,(z)+H,,J(w*—zJ) T TS)T(w* ) - %(w*—z!])THJJ(w* —2)).

Recalling (B.6) and the fact that y; = w* we have

(B.7)  fw*) = f(zs) < —%(w* —2z5) Hys(w* —z;) < _%)\min(HJJ)”y —z||*.

Since
aly) = a(2) + 95() (= =) + 5y~ ) Hasly ~ =)o,

by the definition of f we have that

(B.8) Fy) = aly) + 7 sign(y)y; = aly) +7 Y sign(z;) z +
=1 JEINT
+ 7Y sign(z) w4 Y sign(w])wi = f(w")
Ji€JR Ji€Jp
and
(B9) flzn)=a(z)+7 Y sign(z)z, +1 Y sign(w))z;, < q(2) + 7]zl = f(2).
Ji€IN\Jp Ji€Jp
Now (B.7), (B.8), and (B.9) prove the proposition. O
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Then, we prove the main convergence result related to FAST-BCDA.

Proof of Theorem 4.3. We first prove that FAST-BCDA is well defined (in the sense
that x**! # 2% iff the point z* is not an optimum). Let 2* not be optimum, then by
contradiction we assume that 2**! = z*. Thus we have that either A'(z*) = ), or for
all i € A(x*), z¥ = 0. This, in turns, implies that ¥ = 0 and, by taking into account
the definition of A(z*), we have that #* is optimal, thus getting a contradiction. The
proof of the other implication easily follows from Propositions 3.4 and 4.1.

Let {y™*}, with h = 0,...,¢ be the sequence of points produced by Algorithm
FAST-BCDA. By setting y = y** and z = 2* in Proposition 3.4, we have

(B.10) PP < ) — ol — M2

By setting y = y"*1* and z = y™*, for h =0,...,q — 1 in Proposition 4.1, we have

(B.11) TRy < fyhF) -

g

ht1l,k kK2
5 (VA

ly
By using (B.10) and (B.11), we can write

(B.12) FEP) < F) < < PR < FE),

from which we have
fe 0 ={zeR": f(z) < f(z")}.

From the coercivity of the objective function of problem (1.1) we have that the level
set £ is compact. Hence, the sequence {2*} has at least a limit point and

(B.13) lim (f(z") — f(z¥)) = 0.

k—o00

Now, let 2* be any limit point of the sequence {z*} and {2*}; be the subsequence
such that

(B.14) lim  zF =a2*.

k—oo,ke K
Let us assume, by contradiction, that z* is not an optimal point of problem (1.1). By
taking into account that inequality || 22:1 ai]| <1 2221 lla;]|? holds for the squared
norm of sums of [ vectors a;, and by recalling (B.10), (B.11), and (B.12), we have

(B.15) P < PP < ) — ol — o,
(B.16) F@) < fM) < fh) = Syt - b

with h=1,...,q.
Now, (B.13), (B.14), (B.15), and (B.16) imply

B.1 li ok — g*
(B.17) kﬁog,rlieKy o
for h=0,...,q.
For every index j € A", we can define the point §7* as follows:
ik |0 ifi=gj,
(B.18) Yio = { ¥ otherwise.
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Recalling the definition of points §/** and y%*, we have

[ a2 = (P —ab)2 = (1 —ab)? < - YD (@) = e
i€AF i#j)
From the last inequality and (B.17) we obtain

B.19 li Gk = o>
(B.19) hoohex ) T T

for all j € AF.

To conclude the proof, we consider the function ®;(x), defined in (2.2), that
measures the violation of the optimality conditions for a variable x;.

Since, by contradiction, we assume that x* is not an optimal point there must
exists an index ¢ such that

(B.20) |;(2%)] > 0.

Taking into account that the number of possible different choices of A¥ and N f
is finite, we can find a subset K C K C {1,2,3,...} such that AF = A and NF =N
for all k € K. We can have two different cases: either i € A or 2 € N for k sufficiently
large.

Suppose first that 7 € A for k sufficiently large. Then, by Definition 3.1, we have
forall k € K

max{0, 25} < e(gs(z") +7) and max{0, —zF} < e(r — gs(z")).
For all k € K, let §** be the point defined as in (B.18). By construction we have that

(B.21) ik =o.

Now we consider three different subcases:
(i) zF > 0. In this case, (B.18) and (B.21) imply
(B.22) (5% — k) <o.
Recalling (3.12) in Assumption 1, there exists p > 0 such that

1
Hy+p

€<

Furthermore, since 7 € fl, we can write
l‘? S € (gi(wk) + T)a
. ik
oy — gt < e(gi(a®) + 1),

i 1
k _ =ik k
B ;< (™) + 7).
i, p(9< ) )

Then we have

(H + p)(zf — Zxk) < gi(2®) + 7,

which can be rewritten as

gi(2™) + Hu (0" — 2F) + 7 > p(aF — 52%) > 0,
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that is
(B.23) g (") +7>0.
On the other hand, since
0 < max{0,~a!} < e(r - gs(a")
we have that g;(z¥) — 7 < 0 and, as Hy; > 0 and (B.22) holds, we get

(B.24) G(7%) — 7 = gi(a®) + Hu(§iF —2F) = <0.

By (B.21), (B.23), and (B.24), we have that
|:(5")] = 0.

Furthermore, by (B.19) and the continuity of ®, we can write
|®;(x*)| = 0.

Thus we get a contradiction with (B.20).
(ii) #¥ < 0. It is a verbatim repetition of the previous case.
(iii) zF = 0. Since 7 € A we have

gl(xk) +7>0 and — (gg(xk) —7) >0,

which imply that
|®; ()| = 0.

By the continuity of ®(-) and the fact that

lim 2f = 2%,

k—oo,keK

we get a contradiction with (B.20).

Suppose now that i EAN for k sufficiently large. We can choose a further subse-
quence {z*} o with K C K such that

@, (2%)| = max |®;(zF)| V ke K.
1EN

Hence,

(B.25) o) > [B:(a*)| ¥k € K,
which, by continuity of ®(-), implies

(B.26) [2(a*)] > [:(2")].

Furthermore, the instructions of Algorithm FAST-BCDA guarantee that, for all k € K,
a set of indices I, exists such that

ZE Ihk QNOIZ’d'
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For all k € K, Algorithm FAST-BCDA produces a vector y™** by minimizing pro-
blem (1.1) with respect to all the variables whose indices belong to Ip,. Therefore,
the point y"** satisfies

|@s(y" )] = 0.

Furthermore, by (B.17), the continuity of ®(-), and taking into account (B.26), we
can write
0= |®:(z")] = [@i(z")],
which contradicts (B.20). O
Appendix C. Theoretical results related to the convergence rate anal-
ysis. Here, following the ideas in [19], we prove that the convergence rate of

FAST-BCDA with 1-dimensional blocks (namely, FAST-1CDA) is linear. First, we try to
better analyze the indices in the set A (z) by introducing the following two sets:

(C1) NT@)={ieN(@): gi(z) <0} and N~ (z) = {i € N(x) : gi(x) > 0}.
We further introduce the sets
(C2) EF(@*)={i:af >0, gi(z*) = —7}and € (z*) = {i: 2} <0, gi(a*) =7},
which satisfy the following equality:
E@)=ET (@) UE (") =N(@)U{i:af =0, |gi(a*)| =7}

We further notice that
(C.3) I=AM (@) UET(a*) U & (2%).

We can finally prove a result that will be used in the convergence analysis.

THEOREM C.1. Let * € R™ be a solution of problem (1.1). Then, there exists a
neighborhood of x* such that, for each x in this neighborhood, we have

(C.4) Nt (x) C ET (%),
(C.5) N7 (z) CE (z¥).
Proof. Let us assume there exists a sequence {€*}, e¥ — 0, a related sequence of

neighborhoods {B(z*,¢*)}, and a sequence of points {z*} such that z¥ € B(a*, ")
for all k, satisfying

NT(zF) g £F(a¥).
Then, since the number of indices is finite, there exist subsegences {¢*}x and
{B(x*,€")} k such that an index 7 can be found, satisfying the following:

Pe NT(2b), i¢ET(x¥).
From Theorem 3.3, for k sufficiently large,
N(zF) C EF(@*)uE ().
Therefore, we have that
i€ & (x¥) and g;i(z*) =T O

By continuity of the gradient, g;(2*) > 0 for k sufficiently large. On the other hand,
since i € Nt (2%), we have g;(z¥) < 0. This gives a contradiction, and proves (C.4).
A similar reasoning can be used for proving (C.5).
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Finally, we report another theoretical result that is used in the convergence rate
analysis.

PROPOSITION C.2. Let Assumption 3 hold. Then, there exists a k such that
(a) zF =0, i€ Af(x¥),
(b) —sign(gi(a*)) ¥ >0, i€ &),

for all k > k.

Proof. (a) Recalling (3.10), for k sufficently large, we have
At (z*) C Ak
Therefore, by taking into account the steps of the FAST-1CDA algorithm, we have
(C.6) el =0, ie AT(a").
Furthermore, by continuity of g and (4.4), we obtain
(C.7) T4+ gi(x**1) >0 and 7 — g;(2**t!) >0,

and we can write
ie AFFL

Hence, (C.6) and (C.7) still hold for z¥*2, and so on.
(b) Let us consider an index ¢ € £(z*). By contradiction, we assume that there
exists a subsequence K = {ki, ks, ...} such that

(C.8) — sign(gi(z*)) ¥ <0

for all k € K. Without any loss of generality, we can consider another subsequence
K = {ky, ks, ...} related to K, such that i € N'* and
-7, 0}

L. E;
gi(a®) - Hyal?
Hii

(C.9) x}’ = —sign (91‘(50%]') - Hml"fj) max{

for all k; € K and_l_cj e K.
If i € E(z*) \N(2*), when j is sufficiently large, we have by continuity of g, (4.4),
and (C.9)

—sign(gi(a*)) =}’ > 0,

which contradicts (C.8).
If i € M(x*), when j is sufficiently large, we have by continuity of g, (3.8), and
(4.4)

—sign(gi(a*)) z}” >0,

and again we get a contradiction with (C.8). d
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Now, we prove that the algorithm converges at a linear rate.

Proof of Theorem 4.5. First of all, for ease of notation we set At = At (z*), and
& = E(x*). Without any loss of generality, we can assume |[N¥ | =1 for all k. We
then notice that the objective function f(z) can be rewritten as follows:

fl@)=q(x)+71 Z sign(x;)x; + TZ sign(z;)x;.

ic A+ €€
We further introduce the function

F(z) = ga) = 3 sign(gi(a*))a.

ic€
By taking into account Proposition C.2, we have, for k sufficiently large,
(C.10) f(z*) = F(2*) and f(2*) = F(z*).

Furthermore, when k is sufficiently large, by the definition of AT and &£, and recalling
again Proposition C.2, we can write

(C.11) :vljﬁ = 2%,

(C.12) ViF(z*)=0 Viek&.

Then, by considering (C.3), (C.11), and (C.12), it follows

F(z*) - F(a*) = VF(@*) T (a* - 2*) + %(xk — o) TV2F(a*)(a* - o)

1 N N N Amaz(V2EF (2* N
L@ eV F ) - o) < Al e

and, taking into account (C.10), we can write
(C.13) fah) = f@@*) < plla® —2*|?

with p > 0. Then, recalling Theorem 3.3 and (C.1), for k sufficiently large the problem
we actually solve is

~ 1
min F(z) = i‘le — b))% = 7 sign(ga(z®) Tz,
T Ak = O7

—sign(gi(x¥)) x; >0 i€ NF.

(C.14)

Now, let y*F be the point obtained at step 4 of Algorithm 1 (i.e., after fixing to
the active variables zero) and y%* the component that most violates condition (2.2)
in the nonactive set. We notice that finding the most violating variable according
to condition (2.2) is equivalent, when considering problem (C.14), to getting the
component that most violates the following condition

|z — [z — ViF(2)]4];
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see [19] for further details. Thus, we can write

1

VINF]

Iy = [y*F = VRGOS < 0 = 0 = VPR

= [yd* — OF — VL F(y"F)]s — 2

+ [2h T = Vo F (M4

< 2ydF — 2E Y 4 [V F(OF) — Vo F(2F)

<2)y*F — 2FHY| 4 [ VE(yOF) — VE(F )|
(C.15) < M|Jy™*F — 2" = M|2® — P |,

where []; is the projection on the set of inequalities in problem (C.14), and
M =max{2, L} with L the Lipschitz constant of VF. By using Propositions 3.4
and 4.1, we can also write

(C.16) F@®) = fatrh) = ot — a2

with § > 0. By taking into account inequality (C.15) and the definition of 3%*, we
can write, for k sufficiently large,

lz* = 2® )2 = fla® — 22 + ly™" = 2R

1 -
C.17 > xk — |2 R 0,k _ 1,0,k _ VF 0,k 2
(C.17) > | 124 NG ly ly (")) 4]

Now, considering Theorem 2.1 in [19] we have, for k sufficiently large,
olly™* = [y = VE@ )]l = [y** =¥ = lla* — 2| an

with o > 0. Therefore, by taking into account inequality (C.17), we can write
(C.18) 2"+ = P2 > fla® = 22 + A lla® = 2R > Flla* — 2|
with 4 > 0. By combining inequalities (C.13), (C.16), and (C.18), we can write
(C.19) fa®) = f@*) < er (f(2") = faF))
with ¢; > 1. After rearranging the terms in (C.19), we obtain

F@*h) = f(z*) < eo (f(=") = f(2)

with ¢g = (1 - %) < 1. Then, {f(2*)} converges at least linearly to f*.

Finally, by using (C.16) and Lemma 3.1 in [19] we get that the sequence {z*}
converges at least linearly to z*. O
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