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Control strategies for dissipative preparation of target quantum states, both pure and mixed, and
subspaces are obtained by switching between a set of available semigroup generators. We show that
the class of problems of interest can be recast, from a control–theoretic perspective, into a switched-
stabilization problem for linear dynamics. This is attained by a suitable affine transformation of the
coherence-vector representation. In particular, we propose and compare stabilizing time-based and
state-based switching rules for entangled state preparation, showing that the latter not only ensure
faster convergence with respect to non-switching methods, but can designed so that they retain
robustness with respect to initialization, as long as the target is a pure state or a subspace.

I. INTRODUCTION

State preparation tasks are fundamental building
blocks in control of experimental physical systems and
quantum information protocols for quantum technolo-
gies. Quantum error correction implies preparation of
a “code” of states [11, 28, 33, 35]; measurement-based
quantum computing starts from a multi-partite system
prepared in an entangled state [27]; state preparation is
a benchmark for open quantum system simulations [6];
even a complete quantum computation algorithm, if im-
plemented via engineered dissipation [41], can be seen
as a state-stabilization problem. If the initial state is
unknown or the initial state is not unitarily equivalent
to the target, dissipative dynamics or measurements and
feedback control must be involved in any effective prepa-
ration protocol. Existing techniques for designing such
dissipative effects include feedback stabilization [4, 5, 46],
either measurement-based [7, 24, 33, 40, 42] or coherent
[23, 37, 43], open-loop techniques based on Hamiltonian
control [31], and environment engineering via both open
and closed loop techniques [10, 32, 34, 36, 38];

In this paper, we develop a new set of techniques,
based on alternating continuous-time dynamics following
an open-loop switching law. We shall consider piece-wise
constant dynamical generators in Gorini-Kossakowskii-
Sudarshan/Lindblad form. These are a particular case of
generators of (two-parameter) semigroups of completely-
positve, trace preserving maps.

The idea of approximating continuous dynamics via
fast switching of generators is at the basis of geomet-
ric methods for nonlinear control, and it has been suc-
cessfully employed to explore controllability properties of
quantum semigroup evolutions in [2, 3, 8, 12].

However, our perspective is different, as the key prob-
lems we want to address concern finding a switching law
that asymptotically prepares a target state (or subspace),
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irrespective of the initial state, as well as studying which
is the best performing strategy among the effective ones.
Robustness with respect to the initial state is sought af-
ter in typical experimental and information-processing
tasks, as those recalled above.

Switched (and, more generally, hybrid) system stabil-
ity is well studied in classical control theory [20, 29] and it
is in general difficult to assess. In particular, even switch-
ing between asymptotically stable linear evolutions could
lead to unstable global behavior [20]. When quantum
(one- or two-parameter) semigroup dynamics are studied
as linear systems on operator spaces, two specific features
become apparent: (i) no unstable behavior can emerge,
since they are contractions with respect to the trace dis-
tance between operators [1]; (ii) in order to preserve the
trace of the state, they always have a zero eigenvalue, and
hence admit multiple equilibria on operator space. Sta-
bility and convergence to fixed points in Schrödinger’s
picture is thus better studied in the so-called coherence-
vector representation, which leads to an affine form of
the generators. While the classical results for linear sys-
tems cannot be directly applied, we show that, condition-
ally to the existence of a common fixed point, a common
change of representation can be constructed so that mul-
tiple affine differential equations can be transformed into
linear ones. By exploiting this transformation, we are
then able to derive sufficient conditions for the existence
of effective, deterministic switching laws that stabilize
the target. These conditions build on existing control-
theoretic methods, and rely on the existence of a convex
combination of the available generators that is stabiliz-
ing.

We propose two open-loop design approaches. The
first one is called time-based switching, and cycles
through a set of generators approximating the stabilizing
convex combination. The other approach is called state-
based switching, and requires an estimate of the initial
state to compute the most convenient generator to im-
plement. This can be done either in real time or off-line
via simulation, as in model-based feedback design [13].
State-based switching are shown to ensure faster conver-
gence to the target. These methods address stabilization
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for both pure and mixed states in the same way, and they
are easily extended to subspace stabilization.

In principle, since the second group of design methods
requires the initial state to decide which generator to em-
ploy, it is in general not robust with respect to initializa-
tion. Nonetheless, we show that robustness with respect
to initialization is retained if the target is a pure state or
subspace, and the initial estimate is full rank. While in
this case we have no guarantees on a faster convergence,
numerical simulations comparing the performance of the
methods indicate that the advantage persists.

The paper is structured as follows: We introduce and
formalize our problem in Section II, after reviewing ba-
sic definitions and properties of quantum Markov semi-
groups. Section III illustrates our method to jointly
transform the affine dynamics into linear ones, so that
classical control methods of time-based switching can be
applied. The state-based methods are described in Sec-
tion IV, and relevant applications to entanglement gener-
ation in multi-qubit systems are presented in Section V.
A discussion of the results and potential developments
concludes our paper.

II. SWITCHING QUANTUM MARKOV
DYNAMICS

A. Preliminaries: Quantum dynamical semigroups
and their stability properties

We here recall the notation and some basic facts re-
garding the dynamics of open quantum systems inter-
acting with a Markovian, yet possibly time-dependent,
environment. Let HS and HE denote the Hilbert spaces
associated to the system of interest S and the environ-
ment E , with dim(HS) = N < ∞. The joint Hilbert
space HSE is formally described by the tensor product
HS ⊗ HE . Let B(H) denote the set of linear opera-
tors on a Hilbert space H. A state for a quantum sys-
tem is associated to a density operator, that is, a trace
one, positive-semidefinite operator ρ ∈ D(H) = {ρ ∈
B(H)|ρ = ρ† ≥ 0, trace(ρ) = 1}. We will say that the
support of ρ is Hρ if range(ρ) = Hρ. The evolution of
a density operator ρ on HSE is unitary, as the relative
joint system plus environment is closed. Let us assume
as usual that ρ(t0) = ρS(t0) ⊗ ρE(t0), then at each time
t ≥ t0 the reduced dynamics on the finite-dimensional
system of interest (obtained by averaging over the en-
vironment degrees of freedom by means of partial trace
[25]), is given by a Completely-Positive, Trace-Preserving
(CPTP) linear map Et,t0 .

Such kind of evolution is, in general, non-Markovian
and cannot thus be described by simple dynamical equa-
tions. Nevertheless, in various cases of interest (see e.g.
[1, 5, 46]), Markovian models can be reasonably used for
describing a quantum system. A dynamical system for
which Et2,t0 = Et2,t1 ◦ Et1,t0 , for any intermediate time
t1, with both the factor maps being CPTP, is said to

be a two-parameter semigroup [1, 48]. It can be proved
[1, 14, 22] that the generator of the dynamics Lt(ρ) can
be put in symmetrized (Lindblad) form:

d

dt
ρ(t) = Lt(ρ) (1)

= −i[H, ρ(t)] +
∑
k

Lk(t)ρ(t)L†k(t)− 1

2
{Lk(t)†Lk(t), ρ(t)},

where Lk(t) ∈ B(H) are called noise operators and the
(effective) Hamiltonian H is Hermitian. In general at
most n2 − 1 operators are needed for such identifying a
generator. If the maps Et,t0 actually depend only on the
difference t− t0, the generator (1) is time invariant, and
the one-parameter semigroup is simply called a Quantum
Dynamical Semigroup (QDS) [1].

Let us now recall some basic notions related to invari-
ance and stability of QDSs. A set of density operators S
is invariant if ∀ρ(t0) ∈ S,

ρ(t) = Et,t0(ρ(t0)) ∈ S, ∀t ≥ t0,

or simply Et,t0(S) ⊆ S, ∀t ≥ t0. Recall that the trace
distance (or quantum total-variation distance) between
two density operators ρ and τ is:

D(ρ, σ) =
1

2
tr[|ρ− τ |], (2)

where the operator |A| =
√
A†A denotes the positive

square root of A†A. By defining the distance of a state
from a set as

D(ρ,S) := inf
τ∈S

D(ρ, τ),

we say that a set S is (simply) stable if it is invariant
and ∀ε > 0 there exists δ > 0 such that D(ρ(t0),S) ≤ δ
implies ∀t ≥ t0:

D(Et,t0(ρ),S) ≤ ε.

A set S is Globally Asymptotically Stable (GAS) if it is
simply stable and ∀ρ(t0) we have

lim
t→+∞

D(Et,t0(ρ),S) = 0.

Notice that having a GAS state is equivalent to say
that the QDS is mixing in the mathematical physics or
Markov chains theory. We prefer the dynamical sys-
tem/control theory jargon since it allows to indicate
asymptotic properties of both single states and sets.

It is worth recalling two fundamental results regarding
stability of QDSs: if a QDS admits a unique fixed point,
then that state is GAS. In the mathematical physics lit-
erature, this is typically rephrased as “primitivity implies
mixing” [47]. Furthermore, it is well-known [25, 26] that
any quantum channel is a contraction in trace norm, that
is

D(Et,t0(τ), Et,t0(ρ)) ≤ D(τ, ρ), ∀t > t0. (3)

This entails that any invariant set is automatically simply
stable. Hence, our focus will be on asymptotic stability.
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B. Switching dynamics and stabilization task

In order to implement dissipative control, we assume
that we are able to “manipulate” or engineer the en-
vironment of the system of interest in order to enact
one among a set of dynamical generators, and switch
between these. More precisely, we consider evolutions
driven by equations of the type (1) where the operators
are piece-wise constant, i.e. they are allowed to change
only in a countable and unbounded sequence of switch-
ing times, say t1, t2, t3 . . .. Call L(tj) the (constant) QDS
generator of the form (1) active on the switching inter-
val [tj , tj+1]. Consider a generic time t and let tk be the
largest switching time such that t ≥ tk. Since for each
time-homogeneous generator the evolution map can be
computed through the exponential of the generator, the
global dynamics can then be written as:

Et,t0 = Et,tk ◦ Etk,tk−1
◦ . . . ◦ Et1,t0 , (4)

= eL(tk)(t−tk)eL(tk−1)(tk−tk−1) . . . eL(t0)(t1−t0).

We are now ready to state our state stabilization prob-
lem:

Problem 1 Given a target set S ⊂ D(H), and a finite
set of Lindblad dynamics {Lj}Mj=1 such that eLjtS ⊆ S
for all j and all t ≥ 0, we want to find a piecewise-
constant switching law j(t),

j : [0,+∞)→ {1, 2, . . . ,M},

that admits a countable set of switching times 0, t1, t2, ..,
i.e. discontinuity points, so that S is made GAS by se-
lecting the corresponding L(tk) = Lj(tk) on [tk, tk+1).

That is, for any initial state τ ,

lim
t→∞

D(Et,t0(τ),S) = 0,

with Et,t0 = eLj(tk)(t−tk))eLk−1(tk−tk−1)) . . . eLj(t0)(t1−t0).
Particular cases of interest are associated to S being

a single state ρ̄, or S being the set of states that have
support only on a given subspace H′ ⊂ HS . Of course,
the main problem will be determining when such a prob-
lem admits a viable solution, depending on the available
generators.

Consider the case in which the target consists in a sin-
gle state ρ̄. A trivial case is when there is a generator
for which the target ρ̄ is the unique invariant state. By
the results we recalled before, the target is made GAS by
simply selecting that generator for the whole evolution.
An analogous argument holds for subspaces [33]. The
interesting and more challenging case is when all genera-
tors have the target ρ̄ as a fixed point, but each generator
also has other fixed points. Clearly, if there were more
than one common fixed point to all generators, stabiliza-
tion could not be achieved. A sufficient condition for
asymptotic stabilizability is provided in the next Section
(Assumption 1).

III. JOINT LINEAR REPRESENTATION AND
TIME-BASED SWITCHING

A. Coherence-vector representation

In order to better adapt classical switching systems
techniques to the quantum framework, it is useful to
employ their vectorized form. We can univoquely asso-
ciate a N2-dimensional vector vρ to a N×N -dimensional
density operator ρ by choosing a basis of N × N ma-
trices. We choose the so-called coherence vector repre-
sentation: we consider the opportunely scaled identity
matrix F0 = 1

N IN and the set of N2 − 1 extended Gell-
Mann matrices {Fj} as an orthogonal basis of the Hilbert
space of Hermitian matrices [1]. The components of vρ
can be computed as the (Hilbert-Schmidt) inner product
vρ,j = trace(ρFj). Thus, the first component of vρ is the
same for each N-dimensional density operator ρ as the
trace is constant:

v0 =
1

N
Tr(ρIN ) = 1. (5)

The dynamics are associated to the vectorized generator,
that is a N2 ×N2 real matrix whose elements are

{L̂}jk = Tr(L(Fj)F
†
k ), j, k = 0, 1, . . . N2 − 1. (6)

This is sometimes called the “super-operator” form of
the generator. Considering that the trace of a density
operator is a constant of motion, the linearized form of
(1) reads:

v̇ρ = L̂vρ =

 0 0 . . . 0

b A


 1

vr

 (7)

If we consider only the evolution of the coherence vector
vr, we obtain an affine representation of the dynamics:

v̇r = Avr + b. (8)

B. The reference case: Unital generators

Let us suppose, for now, that all the generators Lj are
unital, i.e. they all share the ρ = 1

N I as a fixed state.
In this case, all the affine components bj of (8) are null
and the coherence vector dynamics are therefore linear.
They can be represented as:

v̇r = Ajvr. (9)

Switching linear systems in the classical case have been
widely studied and a wide spectrum of results are avail-
able.

Recall that a square matrix A is said to be Hurwitz (or
stable, or asymptotically stable) if its eigenvalues have all
strictly negative real part [17], and marginally stable if
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they have non-positive real parts, and some real part
is zero with corresponding multiplicity one. It is then
easy to show that an autonomous, time invariant linear
system ẋ = Ax admits x = 0 as a GAS state if and only if
A is Hurwitz. We introduce next a typical assumption on
the switching linear systems associated to matrices {Aj}
that ensures stabilizability, and that will also represent
the cornerstone of most of our results.

Assumption 1 There exists a convex combination Ac of
matrices Aj which is Hurwitz, that is

∃ α1, . . . , αm s.t

m∑
j=1

αjAj = Ac,

m∑
j=1

αj = 1. (10)

and Ac is Hurwitz.

It is proved [29, 44, 45] that if the A′js are the genera-
tors of linear dynamics, this assumption gives a sufficient
condition for the existence of stabilizing switching rules.
Let mod (t, ε) be the remainder of the division of t by
ε, namely we have t = q× ε+ mod (t, ε) where q is the
integer part of t/ε.

Proposition 1 Suppose that Assumption 1 holds for
some {αj}. Then v = 0 can be made GAS for the
corresponding switching system (9) for sufficiently short
switching times. In particular, there exists ε > 0 such
that the switching law

σ(t) =


1 if mod (t, ε) ∈ [0, α1ε)

2 if mod (t, ε) ∈ [α1ε, α1ε+ α2ε)
...

m if mod (t, ε) ∈ [(
∑m−1
j=1 αj)ε, ε),

(11)

makes ρ GAS.

The results holds for any controlled switching linear
system that satisfies Assumption 1. The proof is included
for completeness in Appendix A.

If Assumption 1 holds, the stabilization of the com-
pletely mixed state can be easily obtained by properly
switching between unital generators. However, the order
of application is irrelevant, as in the first order approx-
imation the effective generator is the weighted sum of
single ones. The key point is that, on a cycle long ε, each
Aj must act for a time interval ∆tj = αjε, where αj is
the coefficient of Aj in the Hurwitz convex combination.

The general problem of stabilizing other states, dif-
ferent from the purely mixed one, requires the use of
non-unital generators. Nevertheless, we will prove that
this problem can be solved by formally recasting it into
the special case of unital generators. In particular we
will need to find a change of basis such to make all the
generators of the reduced dynamics (8) linear.

C. Joint linear representation for fixed-point
stabilization

Given a set of marginally stable Lindblad generators
that all share the same fixed state ρ̄, we would like to find
a switching law that makes such state asymptotically sta-
ble. As the target state can be different from the purely
mixed one, we must suppose to deal with non-unital gen-
erators Lj , whose dynamics is univocally associated to

super-operators L̂j and thus to an affine reduced repre-
sentation

v̇r = Ajvr + bj ,

where bj 6= 0. In this case we cannot directly use the
known results for linear switching systems. Neverthe-
less, the following proposition allows us to overcome this
problem.

Proposition 2 If all the generators L̂j share the same
steady state v̄ = [1 v̄r]

T , then there exists an invertible
matrix

T =

 1 0 . . . 0

TQ TR

 , (12)

that removes the affine component bj in (8), that is, that

makes all the generator matrices L̂dj block diagonal:

L̂dj = T

 0 0 . . . 0

bj Aj

T−1 =


0 0 . . . 0
0
... Ãj
0

 . (13)

Furthermore, there exists such T that satisfies:

T v̄ =

 1

0

 . (14)

Proof. Let us consider the corresponding block struc-
ture of an invertible matrix:

T =

 TS TP

TQ TR

 , (15)

where TS ∈ R, TP ∈ R1×(N2−1), TQ ∈ R(N2−1)×1, TR ∈
R(N2−1)×(N2−1).

From (13) we have

T L̂j = L̂djT.

Developing the left-hand side of last equation we get TS TP

TQ TR


 0 0 . . . 0

bj Aj

 =

 TP bj TPAj

TRbj TRAj

 ,
(16)
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while for the right-hand side we obtain:
0 0 . . . 0
0
... Ãj
0


 TS TP

TQ TR

 =


0 0 . . . 0

ÃjTQ ÃjTR

 .
(17)

In order for (16) and (17) to be equal irrespective of
bj , Aj , it must be:

TP = 0. (18)

Choosing for simplicity TS = 1 and using (18), we get:

T =

 1 0 . . . 0

TQ TR

 , (19)

which is a change of basis matrix if TR is invertible. By
exploiting the lower-block-triangular form of T−1, and
thus of its inverse, it is straightforward to show that

L̂dj = T L̂jT
−1 =


0 0

TR(bj −AjT−1
R TQ) TRAjT

−1
R

 .
We need to show that a TQ and an invertible TR exist,

such that TR(bj −AjT−1
R TQ) = 0 independently of j. In

order to do this, recall that v̄r is a common invariant
state, so that Aj v̄r + bj = 0 for all j. If we choose an
invertible TR and define TQ = −TRv̄r, we have

bj −AjT−1
R TQ = bj −AjT−1

R (−TRv̄r) = bj +Aj v̄r = 0.

�

This change of basis allows us to transform all the affine
dynamics in linear ones. It is worth remarking that, while
T acts linearly on the vectors vρ, it acts as an affine
transformation on their coherence vectors vr. In fact,
defining ṽr as the transformed “coherence” part of v, we
get vr = 1√

N
TQ + TRṽr, and hence:

ṽr = T−1
R vr −

1√
N
T−1
R TQ = T−1

R vr +
1√
N
v̄r. (20)

All the transformed generators Ãj behave exactly as
unital generators. It is therefore possible to apply the
results we derived in the last section and the existence
of a Hurwitz convex combination of all the {Aj} is again
a sufficient condition for the existence of a stabilizing
switching law. By applying the time-based one described
in (11) of Proposition 1, we can make the shared, general
fixed state ρ̄ asymptotically stable. The final results is
summarized in the following:

Theorem 1 Suppose to dispose of a set of generators Lj
that share a common steady state ρ. Then there always
exists an affine transformation that makes all their coher-
ence vector representations simultaneously linear. That
is, by (20), we get:

˙̃vr = Ãj ṽr.

If Assumption 1 holds for the transformed generators Ãj,
then a switching law as in (11) makes v̄ asymptotically
stable, for sufficiently short switching intervals.

D. Joint linear representation for subspace
stabilization

In the previous section we found a class of transfor-
mations that allow to recast the switching stabilization
problem for general dynamical generators in the easier
unital case, where we can use the linear system approach.
Another case of interest in which it is possible to recast
the problem as a reduced linear system stabilization is
the asymptotic preparation of subspaces. In the nota-
tion we used in Problem 1, we here consider the target set
S ⊆ D(H) to be a set of density operators that have sup-
port on a certain subspace HS of H. This class of prob-
lems is of key interest for initialization of error correcting
and noiseless quantum codes [18, 19, 21, 33, 49], cooling
to degenerate ground subspaces [36, 37], and multipar-
tite state preparation using quasi-local resources [36, 38].
Choosing an opportune basis that respects an orthogonal
partition H = HS⊕HR, any operator can be represented
as block matrix:

X =

[
XS XP

XQ XR

]
∈ D(H). (21)

In order to preserve invariance of S, as assumed in our
Problem, any available generator Lj must satisfy [33]:

Lj
([

ρS 0
0 0

])
=

[
LS,j(ρS) 0

0 0

]
, (22)

for some reduced generator LS,j and any density
(sub)matrix ρS on HS .

In order to use linear switching techniques for mak-
ing HS attractive, it is convenient to employ a vec-
torized form that explicitely separates the components
related to the elements of an operator basis of B(H)
that have support on HS , and the rest. By writing
B(H) = B(HS)⊕B(HS)⊥ and considering a basis that
respects such orthogonal subdivision, we obtain a block-
vector representation for ρ:

v =

 1
vS
v⊥S

 , (23)

where the upper two blocks are associated to the invari-
ant states. The super-operator form of the generators
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must respect the invariance property (22), namely the

L̂j , must have the following block-form:

L̂j =

 0 0 0
bSj LSj LXj
0 0 L⊥j

 j = 1, . . . ,m. (24)

This simultaneous upper-triangular block representation
of the generators will play the same role of the trans-
formation T in Proposition 2, allowing us to use the
same sufficient condition that we used in the unital state-
preparation case.

Our aim is to find a switching law for which v⊥S tends
to zero for t→ +∞, for any initial state. While the dy-
namics of v⊥S influences that of vS , the converse is not
true: thanks to the triangular structure of (24), the evo-
lution of v⊥S is determined only by the L⊥j of the currently
selected evolution. Thus, if we assume that there exists
a convex combination of {L⊥j } that satisfies Assumption
1, namely

∃ α1 . . . αm s.t

m∑
j=1

αjL
⊥
j = L⊥c ,

m∑
j=1

αj = 1, (25)

and L⊥c is Hurwitz, then a time-based switching law can
be derived in the same way as for single states stabiliza-
tion.

Proposition 3 Let’s suppose to dispose of a set of m
generators with a common invariant subspace and that
equation (25) holds. Then there exists a small enough ε >
0 such that the switching law (11) renders the common
invariant set S = {ρ ∈ D(H)|supp(ρ) ⊆ HS} GAS.

E. Switching stabilization with Hermitian
generators

In all the previous cases we need to find a Hurwitz
convex combination of given matrices in order to derive
a stabilizing switching law. Unfortunately, this task has
been proved to be a NP-hard problem [9] in general, for
which practical, scalable algorithms are unlikely to be
found. However, the subclass of dynamics of interest
here is easier to be studied, since they are all stable.

There is, however, a class of problems for which it is not
a necessary to find a Hurwitz convex combination of the
generators. If all the generators L̂j are unital, have her-
mitian symmetry and share only one steady state, then
it is sufficient to employ each generator infinite times,
for example by periodically repeating a sequence that in-
volves all the generators. If such matrices are marginally
stable, as we suppose, there exists a change of basis that
shows that the euclidean norm of the coherence vector
can never increase, and switching between them leads to
the shared steady state. This fact is proven in the fol-
lowing proposition.

Proposition 4 Consider a set of unital symmetric gen-
erators with linear representation L̂j, which share only
one steady state v̄. Then there exists a switching law
that makes v̄ GAS.

Proof. According to the hypotheses, we are dealing with
generators which have all the following form:

L̂j =


0 0 . . . 0
0
... Aj
0

 , Aj = (Aj)
†, j = 1, . . . ,m.

As the shared steady state is unique, it must be the com-
pletely mixed state, whose coherent part is

v̄r =
[
0 . . . 0

]T
.

Being symmetric, each matrix Aj is orthogonally diago-
nalizable with a unitary matrix Uj :

Adj = UTj AjUj ,

where Uj is an orthogonal matrix. Moreover, being
marginally stable, Adj has real negative or null eigenvalues
on its diagonal. Consider the positive-definite Lyapunov
function

V (vr) =
1

2
vTr vr.

The latter is invariant for unitary change of basis, so it
can also be expressed as

V (vr) =
1

2
(vTr U

T
j )(Ujvr) =

1

2
ṽTr ṽr = V (ṽr),

where we now denote by ṽr(t) = Ujvr(t), with j iden-
tifying the active generator driving the evolution. The
derivative of the Lyapunov function along the systems’s
trajectory is

V̇ (ṽr) = ṽTr
∂ṽr
∂t

= ṽTr Aj ṽr ≤ 0,

as Aj is negative semidefinite. If ṽr belongs to the
eigenspace relative to an eigenvalue equal to zero, then it
is left unchanged. However, if e.g. all the generators are
periodically employed, as in (A1) with any convex com-
bination with non-zero coefficients, for any vr 6= 0 there
exists at least one generator Aĵ for which

V̇ (ṽr) = ṽTr
∂ṽr
∂t

= (ṽr)
TAj ṽr < 0,

for each ṽr. Indeed, if this was not the case, there would
be a nonzero state for which

∂ṽr
∂t

= Aj ṽr = 0, j = 1, 2, . . . ,m.

That is impossible as the origin is supposed to be the only
shared steady state. Thus the norm of the reduced vector
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ṽr keeps decreasing and the density operator ρ̄ = 1
N IN is

asymptotically stable for the switching dynamics made
by the Lindblad generators Lj that correspond to L̂j . �

It is worth noting that, as for Proposition 1, the result
holds for general switching of symmetric linear systems.
It is the symmetry of the generators that ensures real
spectrum and thus monotone convergence to the origin.
The assumption of symmetric generators entails however
“more” robustness than in the previous case, where As-
sumption 1 was invoked: in fact, there is no need to
consider short switching time intervals. This also implies
that, for example, one could randomize the activation of
the generators, instead of cycling periodically. As long
as all generators appear for a total unbounded subset of
times, convergence is guaranteed.

Of course, the same result applies when all the gener-
ators Ãj are symmetric after having been transformed in
a jointly-linear form. In this case any switching law that
employs all the generators enough times leads to the sta-
bilization of the only shared steady state, which can, in
general, be different from the purely mixed one. Hence,
we can state this corollary of the previous proposition.

Corollary 1 Consider a set of generators with linear
representation L̂j, which share only one steady state v̄.
If there exists a jointly-linear, coherence-vector represen-

tation in which Ãj = Ã†j for all j, then there exists a
switching law that makes v̄ GAS.

IV. STATE-BASED SWITCHING

A. Preliminaries

So far we have illustrated switching techniques for sta-
bilizing quantum states that do not require any knowl-
edge of the state of system, either the initial or the cur-
rent ones. Hence, they are intrinsically robust with re-
spect to initialization. Nevertheless, such switching laws
do not allow for a straightforward optimization of the
convergence rate to the target. This is quite clear if we
consider any convex combination of two matrices describ-
ing linear systems:

Ac = α1A1 + α2A2, α1 + α2 = 1.

If the switched system is stabilizable, there exists, in gen-
eral, a range of values for α1 (and then for α2) that makes
Ac Hurwitz. One could in principle try to compute the
spectral abscissa, i.e. the real part of the “slowest” eigen-
value and use that as a worst-case estimate of the asymp-
totic speed of convergence. However, the dependence of
the spectrum on the αi coefficients is in general hard
to establish, and it is becoming increasingly clear that
the spectral properties of evolution, also in the quantum
case, may not be the only interesting performance index
[16, 30].

We hereby present a way to circumvent these difficul-
ties that let us design a switching strategy with steepest
descent, or at least a guaranteed minimal decrease of a
quadratic function (for quantum systems, a variation of
the Hilbert-Schmidt distance). In order to do that, we
need to have an estimation of the initial state of the sys-
tem. We can then exploit this additional information
in order to find control laws that optimize convergence
rates.

The method follows closely the ideas presented in [29]
for general linear systems, that we revisit in the following.
As we did before, we introduce the strategy for a generic
set of switching and marginally stable linear dynamics
ẋ = Ajx. Again, we need to suppose that Assumption 1
holds, namely that there exists a Hurwtiz convex com-
bination Ac =

∑
j αjAj of the linear generators of the

vectorized dynamics.
First, we associate to the asymptotically stable system

generated by Ac a positive-definite Lyapunov function,

V (x) = xTPx, (26)

where P is the only positive solution of the Lyapunov
equation, ATc P + PAc = −I. According to standard lin-
ear Lyapunov theory (see e.g. [17]), this ensures that V
decreases along the trajectories generated by ẋ = Acx
with rate of −‖x‖2. The function itself can be used as
a pseudo-distance with respect to the target, and its de-
crease is a good estimate for the convergence rate.

Next, take this P and, for each marginally stable Aj ,
compute the symmetric, but not strictly negative, matri-
ces Qj = ATj P + PAj . Notice that this allows to easily
determine the derivative of V along the trajectory driven
by Aj , since:

d

dt
V (x) = xT (ATj P + PAj)x = xTQjx.

Then the following Lemma holds:

Lemma 1 For each state x 6= 0 there exists a subsystem
j for which

x(t)TQjx(t) ≤ −x(t)Tx(t).

Proof. As Ac is a Hurwitz matrix, according to the
definition (26) of P ,

x(t)T (ATc P + PAc)x(t)

= x(t)T
(
(
∑
j

αjA
T
j )P + P (

∑
j

αjAj)
)
x(t)

= α1x(t)TQ1x(t) + . . .+ αmx(t)TQmx(t)

= −x(t)Tx(t) < 0.

As the sum is negative, then there must exist at least
one addend which is strictly negative too. Consider the
j corresponding to the smallest one. Since a convex com-
bination of the rates x(t)TQkx(t) is equal to −x(t)Tx(t),
then the minimum rate must be equal or smaller than
the convex combination, and lemma is proved. �
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This Lemma ensures that a generator Aj that makes
the Lyapunov function (26) strictly decrease always ex-
ists, and it provides also indications on which system
allows a fastest decrease of the Lyapunov function.

B. Steepest-descent switching
with fixed switching interval

As suggested by the Lemma of the previous section, a
switching law that attains the fastest possible decrease
rate of the Lyapunov function that is associated to the
stabilizing convex combination Ac can be simply ob-
tained by selecting, at each time, the generator that en-
sures the steepest descent. Namely, the current value of
the switching signal j(t) is chosen as follows:

j(t) = arg min
k∈P
{xTt Qkxt}.

If two or more generators correspond to the same de-
crease rate, we can pick either one.

In order to (locally) maximize the convergence rate,
the switching signal should switch as soon as any gener-
ator allows a faster decrease of the Lyapunov function –
that is, one should compute the steepest-descent evolu-
tion at all times.

This approach has two issues: the first one is that it
may not be possible to implement such switching law
– it requires to either to be able to determine the full
(continuous-time) switching law off-line, or be able to
have some mapping of the state space in areas where a
generator is optimal, and perform the switching when
the current state, obtained by integration of the imple-
mented dynamics, reaches a border between the areas.
The second issue is that we do not know how to guaran-
tee that a finite number of switches occurs in any finite
time interval. Similarly, we do not know how to guar-
antee convergence if the switching time is bounded for
below. In cases where the computational task of deter-
mining the optimal switching law is not viable, or we
want to prevent an infinite number of switches from oc-
curring in a finite interval, suboptimal solutions can be
devised.

The simplest way to bypass the problems described
above is to impose a minimal switching time ∆T > 0,
and compute the steepest-descent generator at the be-
ginning of each interval. On the one hand, this of course
prevents infinite switching in any finite-length interval.
On the other hand, by Lemma 1 along with the continu-
ity of the evolution and its derivatives (apart from the
switching instants), we know that there exists a small
enough ∆T > 0 such that the Lyapunov derivative re-
mains strictly negative for all times. This implies con-
vergence of the steepest-descent method for some mini-
mal switching interval. However, in some cases the latter
may be to small or hard to compute. Another suboptimal
strategy is described in the following section.

C. Sub-optimal switching
with minimal guaranteed descent

A suboptimal solution with a guaranteed rate of con-
vergence can be devised as follows [29]. Let us define a set
of arbitrary real numbers rj ∈ (0, 1], each of which is as-
sociated to a generator Aj . These are tuning parameters
for the algorithm and can be taken smaller than one in
order to avoid chattering and overly fast switching laws,
at the price of slower convergence. They correspond to
the minimal accepted descent rates for V . If all rj are
taken to be one, the convergence is at least as fast as the
one associated to the non-switching dynamics Ac.

The algorithm is initialized as the steepest descent one:
at the first instant t0 a j is selected such that:

(t0) = arg min
j∈P
{xTt0Q1xt0 , . . . , x

T
t0Qmxt0}.

The next switching instant is then chosen to be

t1 = inf{t > t0 : xT (t)Qj(t0)x(t) > −rj(t0)x
T (t)x(t)},

and the following active subsystem is that associated to

j(t1) = arg min
j∈P
{x(t1)TQ1x(t1), . . . , x(t1)TQmx(t1)}.

By Lemma 1, we are guaranteed that such a generator
ensures that the Lyapunov function strictly decreases,
and does so faster than it would using the stabilizing
convex combination. The sequences of switching times
and active systems can be thus recursively defined:

tk+1 = inf{t > tk : xT (t)Qj(tk)x(t) > −rj(tk)x
T (t)x(t)},

(27)
and

j(tk+1) = arg min
p∈P
{x(tk+1)TQ1x(tk+1), . . . (28)

. . . , x(tk+1)TQmx(tk+1)}.

Notice that in order to compute the switching law, we
need the current state (either by off-line calculations, or
real-time simulation – in the spirit of model-based feed-
back [13]). In this case, we only solve a minimum problem
when the descent becomes slower than the active thresh-
old rj .

Given such a switching law, we need to check whether
the switching system is well-posed, that is, if the set of
jump times is finite for any finite interval.

Theorem 2 Under the above switching law, the switch-
ing system is well-posed and asymptotically stable.

The proof, that follows known results for classical sys-
tems [29], is provided in Appendix B for completeness.

D. Robustness with respect to initialization

In principle, one needs to know the initial state of the
quantum system of interest in order to apply state-based
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switching techniques. An accurate estimation of such
state appears to be, in general, necessary for the success-
ful stabilization of the target state.
Example: Let’s suppose, for example, that the target
state is

ρ̄ =

1 0 0
0 0 0
0 0 0

 ,
and that we dispose of two Lindblad generators, respec-
tively associated to the following noise operators:

L1 =

0 1 0
0 0 0
0 0 0

 L2 =

0 0 0
0 0 1
0 0 0

 .
It is easy to see that they satisfy Assunption 1: any non-
extremal convex combination is in fact stabilizing – this
can be verified easily with the methods of [31, 33]. If the
estimated initial state is

ρ̂0 =

0 0 0
0 1 0
0 0 0

 ,
then the state-based algorithms will try to use only the
first generator to reach the target faster – in fact the sec-
ond generator would leave the estimated state invariant.
But if the actual state is instead

ρ0 =

0 0 0
0 0 0
0 0 1

 ,
then the first generator alone does not stabilize the tar-
get, as ρ0 is an invariant state for it. �

This example proves that if the switching rule is de-
signed for the wrong initial state, then the algorithm may
fail to provide a stabilizing law. However, we next present
a result that allows us to design state-based strategies
that are robust with respect to variations of the actual
initial state, as long as the estimated one is a full rank
state.

Proposition 5 If a family of TPCP maps {Et}+∞t=0 is
such that

lim
t→+∞

Et(ρ̂0) = ρ̄, (29)

then for any ρ0 such that supp(ρ0) ⊆ supp(ρ̂0) we have
that

lim
t→+∞

Tr(Π̄Et(ρ0)) = 1, (30)

where Π̄ is the orthogonal projector on supp(ρ̄).

Proof. As Et is linear and the limit (29) exists, then for
any scalar λ we have

lim
t→+∞

Et(λρ̂0) = λ ρ̄. (31)

Since supp(ρ0) ⊆ supp(ρ̂0) by hypothesis, for any such
density operator ρ0, there exists a λ > 0 such that,

ρ0 ≤ λρ̂0. (32)

In particular, one can always take λ to be the inverse
of the smallest eigenvalue of ρ̂0. Since the evolution is
positivity preserving, it preserves matrix ordering and
we can then conclude that

lim
t→+∞

Et(ρ0) ≤ λρ̄. (33)

Using (33) and the fact that the evolution is trace-
preserving we have:

lim
t→+∞

Tr(Π̄Et(ρ0)) = lim
t→+∞

Tr(Et(ρ0)) = 1.

�

Assume now ρ̄ to be a pure state. Then Π̄ = ρ̄ is a one-
dimensional projector, and the only density operator for
which λρ̄ is an upper bound is ρ̄ itself. Furthermore,
the condition supp(ρ0) ⊆ supp(ρ̂0) is satisfied if ρ̂0 is
assumed to be full rank. We thus have the following:

Corollary 2 If a family of TPCP maps {Et}+∞t=0 is such
that

lim
t→+∞

Et(ρ̂0) = ρ̄, (34)

for a full-rank initial state ρ̂0 and a pure target state ρ̄,
then ρ̄ is GAS, i.e. it is asymptotically reached indepen-
dently of the actual initial state ρ0.

It is worth noting that the same results still holds if we
relax CP to simple positivity, or if we consider discrete-
time evolutions [10].

These stability results immediately imply that if a
state-based switching law is designed for a full-rank ini-
tial state ρ̂0 in order to prepare a pure target state ρ̄,
then the corresponding evolution makes ρ̄ GAS, i.e. it is
asymptotically reached independently of the initial state
ρ0. Analogous reasoning can be obviously applied to sub-
space preparation.

In designing the control law we can always consider
the completely mixed initial state, as one would do in
the absence of initial information, or, if we have a good
estimate ρ̂0 which is not full rank, we can consider a
perturbed version ρ̃0 = (1−ε)ρ̂0 +εI/d, with ε arbitrarily
small, in order to ensure robustness.

We could expect that choosing a state-based switching
rule, without exploiting the information on the initial
state, would lead to a stabilizing law characterized by a
convergence rate comparable with a time-based switch-
ing rule, for which the initial state is a priori supposed
to be unknown. Nevertheless, in the numerical examples
that follow, we have that it still converges to the target
with better performances than those obtained by imple-
menting a time-based switching law.
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V. EXAMPLES

In the following we compare the performances of dif-
ferent Markov evolutions that prepare an entangled pure
state of interest, in terms of both a natural Lyapunov
pseudo-distance and the Euclidean distance in coherence-
vector representation (equivalent to the Hilbert-Schmidt
norm). The evolutions we compare for both examples are
four:

1. A time-independent semigroup generator, associ-
ated to the stabilizing convex combination of As-
sumption 1, for which the target ρ is known to be
the unique equilibrium (denoted in the figures as
no-switch);

2. A cyclic, time-based switched evolution, such that
a convex combination of the alternating generators
is equivalent to time-independent generator above
(i.e. they satisfy Assumption 1). For both ex-
amples, a convex combination with uniform coeffi-
cients is sufficient, and used. A minimal switching
time ∆T is chosen, so that the evolution is stabiliz-
ing. The Lyapunov function (26) associated to the
stabilizing convex combination will be called the
natural Lyapunov function;

3. A state-based switching evolution, where the gener-
ator is chosen at ∆T intervals in order to guarantee
the fastest decrease of the natural Lyapunov func-
tion, as described in Section IV B, depending on
a full-rank estimate of the initial state. The same
evolution is also applied to a different initial state,
in order to verify the robustness of the approach,
and the potential deterioration in performances;

4. A state-based switching evolution, where the gen-
erator is chosen as described in Section IV C de-
pending on a full-rank estimate of the initial state.
The same evolution is also applied to a different
initial state, in order to illustrate the robustness
of the approach, and the potential deterioration in
performances;

Choosing a pure target allows us to compare the per-
formance of state-based switching strategies with correct
initializations and faulty ones, since the results of Sec-
tion IV D guarantee convergence. Using a distance that
is not tailored to the problem (the Euclidean one) help us
to illustrate how the convergence in Lyapunov distance
does not hides undesired behaviors. For all simulations,
we use an integration step (the time unit for the X axis of
the plots) of t = 0.02, and a minimal switching interval
∆T = 3 t.

A. Bell states

We first consider a two-qubit system defined onHAB =
HA ⊗HB ∼ span{|0〉, |1〉}⊗2. Our aim is to prepare the

maximally entangled Bell state,

ρ̄AB =
1

2
(|00〉+ |11〉)(〈00|+ 〈11|), (35)

by switching between Lindblad dynamics and to compare
time-based and state-based switching rules convergence
rates. Denote as usual the Pauli matrices as:

σx =

[
0 1
1 0

]
, σy =

[
0 i
−i 0

]
, σz =

[
1 0
0 −1

]
, (36)

with the scaled identity σ0 = 1√
2
I.

The first generator we consider is associated to the
Hamiltonian H = σy⊗σ0+σ0⊗σy. The second generator
is determined by the Lindblad operator L = σz ⊗ σ0 −
i(σy ⊗ σx). The target state ρ̄AB is a fixed state for
both the generators and it can be proved that applying
them simultaneously, with any nonzero weight, makes
ρ̄AB asymptotically stable [34].

Let us denote L̂1 and L̂2 the superoperator form of the
Lindblad generators derived by H and L respectively,
according to the coherence-vector representation, as in
II B. After applying the change of basis that makes the
generators of the reduced dynamics linear, it is easy to
numerically check that Ac = 1

2A1 + 1
2A2 is actually a

Hurwitz convex combination. This combination satisfies
Assumption 1 and allows us to derive time-based and
state-based switching rules that prepare the target state
as described in the introduction to this section.

In Figure 1 and 2 we compare the convergence features
in terms of the natural Lyapunov function, and in terms
of the coherence-vector euclidean distance to the target,
respectively. The actual initial state is ρ = |0〉〈0|⊗|0〉〈0|,
while the estimated initial state is chosen to be the com-
pletely mixed one. The estimated state is used to com-
pute the state-based switching strategies, whose esti-
mated behavior is depicted with dashed lines. All the
solid lines represent the evolution of the distances calcu-
lated for the actual states. We set the parameters for the
suboptimal state-based switching to be r1 = r2 = 1.

In Fig.1 we find, as expected, that the time-based
switching is the slowest to converge, and at close inspec-
tion it even exhibits local increase in the Lyapunov func-
tion. In fact, time-based switching is an approximation
of the no-switching strategy, and during some switching
steps the state may also tend to get farther from the tar-
get – it is only after a full cycle that we are guaranteed,
for sufficiently fast switching, that we the distance to the
target has decreased. In our simulations, the bad perfor-
mance is caused by the fairly large cycle time, making the
cyclic switching a rough approximation of the reference
convex combination. In this particular case, the effect is
likely strengthened by the presence of a purely Hamilto-
nian generator among the switching ones, which does not
induce dissipative, and hence contractive, effects.

The convex-combination, Hurwitz generator displays a
smooth converging behavior, with the distance from the
target state with the state-based rule is monotonically
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FIG. 1: (Color online) Evolution the Lyapunov function with
different switching rules in the two-qubit case.
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FIG. 2: (Color online) Evolution the Euclidean distance with
different switching rules in the two-qubit case.

decreasing. The state-based strategies show, for both
the estimated and the actual state behavior, faster con-
vergence. The evolution of the actual state converges to
the target state but it is not monotone, as it is clear by
looking at the peaks around 50 time units. Nonetheless,
it remains much more effective than the evolution asso-
ciated to convex combination of Assumption 1, where no
switching is performed and all generators are activated at
each time scaled by the corresponding weights, for both
state-based strategies. The “steepest descent” approach
is, as expected, overall slightly faster than the suboptimal
one with guaranteed minimal descent.

The qualitative evaluation of the plots of Fig.2 leads
to the same conclusions, confirming the advantage of the
state-based strategies, even in presence of a wrong initial-
ization of the algorithm. In fact, the initial convergence

appears to be faster for the actual state.

B. GHZ states

We here present an example of preparation of a three-
qubit GHZ state,

ρ̄GHZ =
1

2
(|000〉+ |111〉)(〈000|+ 〈111|), (37)

with the switching techniques we introduced above. The
stabilizing, non switching generator we consider is one
that has been proposed in [38], and can be implemented
via an Hamiltonian

H = σ(1)
x − σ(2)

x ⊗ σ(3)
x ,

where σ
(i)
x = I ⊗ · · · ⊗ σx ⊗ · · · ⊗ I, and σx acts on the

i-th qubit, along with two noise operators,

L1 = (|00〉〈01|+ |11〉〈10|)⊗ I,

L2 = I ⊗ (|00〉〈01|+ i|11〉〈10|).

The simultaneous action of the three components, with
arbitrary positive weights, leads to the asymptotic stabi-
lization of ρ̄GHZ . A stabilizing time-based switching rule
can be therefore easily obtained with a fast periodical
switching between them. We then consider switching be-
tween L0,1,2, corresponding to the superoperator action
of H,L1, L2, respectively.

The actual initial state is ρ = |0〉〈0| ⊗ |0〉〈0| ⊗ |0〉〈0|,
while the estimated initial state is chosen to be the com-
pletely mixed one. The estimated state is used to com-
pute the state-based switching strategies, whose esti-
mated behavior is depicted with dashed lines. All the
solid lines represent the evolution of the distances calcu-
lated for the actual states. We set the parameters for the
suboptimal state-based switching to be r1 = r2 = r3 = 1.

In Fig.3 we find, as expected, that the time-based
switching is the slowest to converge in terms of the Lya-
punov function, and close inspection reveals that the cy-
cling indices some local fluctuations. This is because
of the fairly large cycle time, making the time-based
switching a rough approximation of the reference con-
vex combination. The effect may also be partially due
to the presence of a purely Hamiltonian generator that
does not induce dissipative contraction effects. The non-
switching generator associated to the stabilizing convex
combination displays a smooth, monotonically decreas-
ing behavior, as expected. The state-based strategies
show, for both the estimated and the actual state be-
havior, the fastest overall convergence. The evolution
of the actual state converges to the target state but the
Lyapunov pseudo-distance does not start decreasing im-
mediately, a clear sign that the optimal generator for
the completely mixed state is not effective for the actual



12

0 200 400 600 800 1000 1200 1400 1600 1800 20000

10

20

30

40

50

60

70

80

90

Time (units of integration step)

Ly
ap

un
ov

 p
se

ud
oï

di
st

an
ce

 

 

Timeïbased
Stateïbased subïopt.,estimated state
Stateïbased subïopt.,actual state
Stateïbased steepest desc.,estimated state
Stateïbased steepest desc.,actual state
No switch

FIG. 3: (Color online) Evolution the Lyapunov function with
different switching rules for the three-qubit case.
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FIG. 4: (Color online) Evolution the Euclidean distance with
different switching rules for the three-qubit case.

initial state. Nonetheless, after another generator is se-
lected, state-based strategies become more effective than
the evolution associated to the convex combination of As-
sumption 1, without switching. The “steepest descent”
approach is overall slightly faster than the suboptimal
one with guaranteed minimal descent.

A careful scrutiny of the plots of Fig.4, for the undis-
torted euclidean distance in coherence vector space, es-
sentially leads to the same conclusions, confirming the
advantage of the state-based strategies, even in presence
of an incorrect initialization of the algorithm.

VI. DISCUSSION AND PERSPECTIVE

In this paper we have presented two approaches for de-
signing switching quantum Markov evolutions that make
a desired state GAS. For algorithms obtained by using
either time-based or state-based designs, the underlying
assumption is the existence of a convex combination of
the switchable generators that would make the target
GAS. The first approach we propose constructs time-
based, cyclic switching laws: its advantages are the sim-
plicity, and the intrinsic robustness with respect to the
initial state. No initial state estimate, optimization or on-
line computation is needed. However, being essentially a
way to approximate the stabilizing convex combination,
the method is quite sensitive to the minimum allowed
switching time. Numerical simulations, as exemplified
by those presented in this paper, show that this strategy
is in general the worst performer of the group.

State-based strategies, while they entail some com-
putational overhead, guarantee to outperform the non-
switching evolution when the initial state is accurately
known, and numerical simulations show that they retain
this advantage even with a generic initialization (e.g. the
completely mixed state we used). Robustness with re-
spect to the initial state can be guaranteed if the target
is a pure state (or a subspace) by arbitrarily small pertur-
bation of the initial estimate. The state-based strategies
thus offer a valid alternative to time-invariant methods
for dissipative preparation of states, especially when im-
plementation of complex dynamics in an experimental
setting is challenging, and further motivates their study.

The structure of the algorithm suggests that bet-
ter results, in terms of robustness, may be attained
by combining optimal state-based switching with state-
estimation methods. The latter could in principle be
implemented via continuous measurements and filtering
equations, when these guarantee asymptotic convergence
of the estimated state to the actual one [15, 32, 39]. It
is known that, for pure states and subspaces with time-
independent stochastic dynamics, convergence in expec-
tation implies convergence in probability [32]. An exten-
sion of these results would help proving the effectiveness
of the filtering-based switching. This combination would
lead to a control strategy that closely resembles a classi-
cal one, where state-based switching is typically decided
via evaluation of the current state through a feedback
loop.

Other potential developments of these results may in-
clude a comparison with the performance of optimal con-
trol methods for state preparation and integration with
scalable strategies for the dissipative preparation of en-
tangled states on large networks [36, 38].
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Appendix A: Proof of Proposition 1

Proof. Consider a periodic switching with period ε.
During each period, each system Aj acts for a time in-
terval proportional to its coefficient αj (the order is not
important, as we shall see). The transition matrix over a
period can be expressed as the exponential of an effective
generator Ā:

exp(Āε) = exp(αmAmε) . . . exp(α1A1ε).

We can then separate the contribution of the average
generator Ac with respect to the part depending on ε as
Ā := Ac + Υcε and Υc is bounded and contains all the
higher-order terms of a Taylor expansion of Ā around
ε = 0. The eigenvalues of a matrix continuously depend
on its entries. As Υc is bounded, if ε → 0, then the
eigenvalues of Ã approach those of Ac and assuming that
Ac is Hurwitz, there exists a ε > 0 for which Ã is Hurwitz
too. Fixed such an ε, a periodic switching path can be
defined e.g. as follows:

σ(t) =


1 if mod (t, ε) ∈ [0, α1ε)

2 if mod (t, ε) ∈ [α1ε, α1ε+ α2ε)
...

m if mod (t, ε) ∈ [(
∑m−1
j=1 αj)ε, ε)

(A1)

Setting s1 ≤ s2, let us define

φ(s2, s1) := eAp(s2−tp)eαp−1Ap−1ε . . . eAk−1(tk−s1),

the transition matrix from the state at instant s1 ∈
(tk−1, tk) to that at instant s2 ∈ (tp, tp+1) according
to a given switching law. For any non-negative integers
l1 ≤ l2 the evoution covers a finite number of cycles, so
that

φ(l2ε, l1ε) = eĀ(l2−l1)ε.

As Ā is Hurwitz, there exist positive numbers κ and λ
such that

||φ(l2ε, l1ε)|| ≤ κe−λ(l2−l1)ε.

For any s1 ≤ s2, let l1 and l2 satisfy

l1ε ≤ s1 < (l1 + 1)ε, (l2 − 1)ε < s2 ≤ l2ε.

Then we have:

||φ(s2, s1)|| ≤ ||φ(l1ε, s1)|| · ||φ(l2ε, l1ε)|| · ||φ(s2, l2ε)||
≤ κe−λ(l2ε−l1ε)||φ(0, s1 − l1ε)|| · ||φ(0, l2ε− s2)||.

Finally, by denoting:

κ1 = max
0≤t≤ε

||φ(0, t)||,

which is always attainable because φ(0, t) is continuous
in t, we get

||φ(s2, s1)|| ≤ κ2
1κe
−λ(l2−l1)ε ≤ κ2

1κe
−λ(s2−s1).

The transition matrix is exponentially convergent and
the switching system is then stabilized. �

Appendix B: Proof of Theorem 2

Proof. We want to show now that such a switching law
is acceptable, that is actually tk+1 > tk. Let θ be any
real number greater than 1. We first consider the case:

||x(t)|| ≤ θ||xk+1|| ∀t ∈ [tk, tk+1]. (B1)

and define

g(t) = x(t)T (Qj + I)x(t) t ∈ [tk, tk+1],

where j = σ(tk+). On the one hand, thanks to Lemma 1
we know that

x(tk)TQjx(tk) ≤ −x(tk)Tx(tk),

and hence we are guaranteed that

g(tk) ≤ 0. (B2)

On the other hand, from (27),we have

g(tk+1) ≥ (1− rj)xTk+1xk+1. (B3)

Deriving the latter we get

dg

dt
= x(t)T (ATj (Qj + I) + (Qj + I)Aj)x(t).

By denoting

ηj := ||ATj (Qj + I) + (Qj + I)Aj ||,

and using (B1), we have

|dg
dt
| ≤ θ2ηjx

T
k+1xk+1 ∀t ∈ [tk, tk + 1]. (B4)

According to (B2) and (B3)

g(tk+1)− g(tk)

tk+1 − tk
≥

(1− rj)xTk+1xk+1

tk+1 − tk
.

Remembering then (B4),

(1− rj)xTk+1xk+1

tk+1 − tk
≤ θ2ηjx

T
k+1xk+1,
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and, consequently,

tk+1 − tk ≥
(1− rj)
θ2ηj

.

This shows that the switching instants are have mini-
mal distance between them, and there cannot be infinite
switching times in any finite time interval.

We are then left with the other case, when (B1) does
not hold, and thus:

∃t∗ ∈ [tk, tk+1) : ||x(t∗)|| > θ||xk+1||.

As the system dynamics in this time interval is described
by Aj , then

x(t∗) = exp(Ap(t
∗ − tk+1))xk+1.

From the latter, and remembering that

|| exp(Aj(t
∗ − tk+1))|| ≤ exp(||Aj ||(tk+1 − t∗)),

it follows that a minimal spacing is also guaranteed:

tk+1 − tk ≥ tk+1 − t∗ >
ln(θ)

||Aj ||
.

Finally, gathering both the cases, we can say that

tk+1 − tk ≥ sup
θ>1

min
j∈P

(
1− rj
θ2ηj

,
ln(θ)

||Aj ||

)
,

and that the switching signal is valid as the difference is
always positive.

Choosing then V (x) = xTPx as Lyapunov function we
get

dV

dt
= xT (t)Qσ(t)x(t) ≤ rσ(t)x

T (t)x(t) ≤ −rxT (t)x(t),

where

r := min{r1, . . . , rm},

and the theorem is proved. �
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