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The practice of citation is foundational for the propaga-
tion of knowledge along with scientific development
and it is one of the core aspects on which scholarship
and scientific publishing rely. Within the broad context
of data citation, we focus on the automatic construction
of citations problem for hierarchically structured data.
We present the “learning to cite” framework, which
enables the automatic construction of human- and
machine-readable citations with different levels of
coarseness. The main goal is to reduce the human inter-
vention on data to a minimum and to provide a citation
system general enough to work on heterogeneous and
complex XML data sets. We describe how this frame-
work can be realized by a system for creating citations
to single nodes within an XML data set and, as a use
case, show how it can be applied in the context of digital
archives. We conduct an extensive evaluation of the pro-
posed citation system by analyzing its effectiveness
from the correctness and completeness viewpoints,
showing that it represents a suitable solution that can
be easily employed in real-world environments and that
reduces human intervention on data to a minimum.

Introduction

“If I have seen further, it is by standing on the shoulders
of giants.” This famous maxim attributed to Sir Isaac New-

ton evokes the importance of building on prior results by

referring and citing related works in the quest for scientific

advancement. As a matter of fact, the practice of citation is

foundational for the propagation of knowledge along with

scientific development and it is one of the core aspects on

which scholarship and scientific publishing rely (Cronin,

1984). In the traditional context of printed books and jour-

nals, citation procedures have improved and adapted over

recent centuries (Borgman, 2015), and they are now well

understood and established; they have also been successfully

resettled to work with digital publications and online jour-

nals, which resemble traditional journals, although they

adopt different formats and supports.

Nonetheless, traditional citation procedures cannot be

straightforwardly applied to data citation, which calls for

new methodologies and solutions (Buneman, Cohen-

Boulakia, Davidson, Frew, & Tannen, 2014). Data citation

is of upmost importance for giving credit to data curators

and for connecting scholarly publications to data with the

purpose of sustaining and validating scientific claims and

results (Ball & Duke, 2012). In particular, data citation has a

fundamental role in the call for better transparency and

reproducibility in science (Baggerly, 2010), which has been

embraced by several fields such as Astronomy (Kurtz,

2012), Information Retrieval (Arguello, Crane, Diaz, Lin, &

Trotman, in press), Database Systems (Freire, Bonnet, &

Shasha, 2012), Biomedical research (AMS, 2015), and Pub-

lic Health Research (Carr & Littler, 2015), to name just a

few.

Data citation has been predominantly analyzed from the

scholar publishing and the infrastructural viewpoint. The

former has been investigating policies and meanings of data

sharing and citation as a support for reproducibility and vali-

dation in science (Borgman, 2012a); the necessity to connect

(cite) scientific publications with the data used for support-

ing the reported results (Callaghan et al., 2012; Lawrence,

Jones, Matthews, Pepler, & Callaghan, 2011), as in the case

of enhanced publications (Bardi & Manghi, 2015; Vernooy-

Gerritsen, 2009); the role of data journals (Candela, Castelli,

Manghi, & Tani, 2015); and how to give credit to data crea-

tors and curators (Borgman, 2012b). From the infrastructural

viewpoint, research has been focusing on the information

and publishing infrastructures required to handle dynamic

data changing through time (Auer et al., 2012; Pr€oll &

Rauber, 2013), to use persistent identifiers for the identifica-

tion and access to data (Simons, 2012), and to realize data

repositories to store, preserve, and provide access to data

(Burton et al., 2015).

Within the infrastructural viewpoint, data citation has

started to be considered specifically from the computational

perspective (Buneman, Davidson, & Frew, 2016), further

strengthening the necessity to design tools and systems able

to automatically construct both machine- and human-
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readable data citations (i.e., references or citation snippets),

to cite data at different levels of coarseness, to cite evolving

data sets, and to group and structure sets of citations.

In this work, by focusing on XML structured data sets,

we tackle the automatic construction of citations problem,

which is composed of two key challenges: (a) modeling the

referent of a citation and (b) the automatic generation of

citations.

The first challenge requires us to define a general frame-

work for specifying what a citation-to-data should look like

and what the elements that compose a citation are. In a tradi-

tional setting, citations are structured around well-accepted

concepts; for example, the elements composing a citation to

a journal article may be title, authors, pages, year; data cita-

tions by contrast do not fit this framework—the elements

structuring a citation may vary from data set to data set and

may need to be decided on-the-fly by considering the spe-

cific characteristics of the data set being cited. This chal-

lenge also comprises the need to cite data at different levels

of coarseness, that is, to produce deep citations (Buneman,

2006). For instance, if we consider an XML file, then every

attribute or data element at any level (the root, an internal

node, or a leaf) of the XML hierarchy is a viable citable

unit.1 When XML is considered, all relevant information

required to construct a citation may be directly available in

the citable unit or, more likely, it can be distributed in

coarser data elements related to the citable unit.

The second challenge, that is, the automatic generation of

citations, requires defining a methodology to automatically

produce data citations because we cannot assume that the

people citing the data understand the complexity of the data

set, know how data should be cited in a specific context, and

select relevant information to form a complete and correct

citation.

To the best of our knowledge, only one solution for

addressing the problem of the automatic construction of cita-

tions has been defined (Buneman 2006; Buneman &

Silvello, 2010), and it is based on a rule-based system to

build citations for XML files. This approach exploits the

hierarchical nature of XML files to cite data at different lev-

els of coarseness, create human- and machine-readable cita-

tions, and associate description metadata with the cited data.

This approach is computationally efficient and effective for

XML, but has some limitations when it comes to being

adopted by practitioners: (a) citation rules have to be embed-

ded in the XML files and thus a not-negligible amount of

work is required to prepare the data in order to make it cita-

ble; (b) the definition of the rules requires both knowledge

of the data domain and XML technology; (c) heterogeneity

of the XML files (e.g., differences in the use of tags, tag

nesting, and/or the intended tag semantics) directly reflects

on the rules that need to be customized to adapt to it, thus

general rules may not apply for all the XML files in a given

collection.

We propose the “learning to cite” framework, which ena-

bles the automatic construction of human- and machine-

readable citations to XML data with different level of

coarseness, with the final goal of reducing human interven-

tion on data to a minimum and to providing a citation system

general enough to work on different data collections. The

basic idea is to learn a citation model directly from a given

data collection by using a sample set of human-readable

citations for training purposes and then exploit such a model

to build citations on-the-fly for any citable unit within that

collection; we remove the need to set up rules or to prepare

the data in order to make it citable. Basically, with the learn-

ing to cite framework we are proposing a citation mecha-

nism based on a machine-learning approach where

knowledge, that is, what and how to cite, is learned from

data, rather than on a knowledge engineering approach

where “knowledge is programmed by human experts [into

systems]” (Domingos, 2015) and customized from case to

case, when necessary. Learning how to cite data from the

data itself allows us to define citation methods that adapt to

the diversified citation practices and better fit to a context

where “citation methods tend to be learned by example

rather than taught” (Borgman, 2015).

We instantiate the learning to cite framework by means

of a citation system for XML data; this system exploits the

hierarchical nature of XML data and the logic behind the

XML rule-based system discussed above to automatically

learn how to cite any element in an XML file in a given

collection.

We conduct an extensive evaluation of this citation sys-

tem by employing the Library of Congress (LoC) collection

of archival finding aids2 encoded in XML (i.e., Encoded

Archival Description [EAD] files) as the test-bed. This col-

lection is well suited for evaluation purposes because it is

made up of thousands of XML files with different numbers

of nodes, breadths, and depths, makes a heterogeneous use

of XML elements and attributes, and describes archives with

different purposes and containing heterogeneous material.

Within this use case the “data” we are considering are in the

form of archival descriptions encoded in XML, that is, EAD

files. So in this context an archival collection of EAD files is

a data collection where each single XML element within a

file is seen as a datum that may require an individual cita-

tion. The archival files are suitable for testing the proposed

framework because of their heterogeneity even within the

same collection; this heterogeneity is useful to verify the

flexibility of the framework because we can test its ability to

adapt to structural variations from file to file.

It is worth mentioning that a citation system based on the

learning to cite framework produces citations that are not

formally exact, but as close as possible to what is considered

a “correct citation”; these can be seen as “best match cita-

tions” as opposed to the “exact match citations” produced

by a knowledge system such as the rule-based one. To eval-

uate best match citations produced by the citation system,
1In this work, any element in a data set that can be cited is consid-

ered a citable unit. 2http://findingaids.loc.gov/
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we compare them against a ground-truth made up of man-

ually constructed citations and we define evaluation meas-

ures to assess the correctness and the completeness of the

automatically generated citations.

The rest of the paper is organized as follows: The Back-

ground section reports on the related work on data citation

and some basics concepts about the XML model as well as

XML processing and accessing; the Digital Archives: A Use

Case section presents the use-case we employ in this work;

the Learning to Cite Framework section gives an intuitive

view of the framework that is then described in detail in the

Training Phase and Validation Phase subsections; the Imple-

mentation of the Framework subsection details how the sys-

tem has been implemented from the technological

viewpoint; the Evaluation section reports on the XML col-

lection employed, how the ground-truth has been created,

and the experimental results; and finally, the Conclusions

and Future Work section draws some final remarks and dis-

cusses future work.

Background

Note on Terminology

In this work, we adopt the terminology defined in

(CODATA-ICSTI, 2013) where the term citation is used to

refer to the full reference information regarding an object; in

traditional print, citations are usually composed of an in-text

citation pointer and a full bibliographic reference, which in

the digital realm are both referred to with the term citation.

The elements composing a citation are often referred as

citation metadata; these metadata could be collected either

from the actual data being cited as we do in this work or

from some external sources. The actual data being cited can

be identified by an organization of elements superimposed

over the data or by a query identifying the data.

We consider two types of citation: machine-readable cita-

tion and human-readable citation. The former type refers to

a citation which is machine actionable (e.g., it can be used

to retrieve and access an element of the citation in the cited

data set) and automatically interpretable such as a set of

XPaths (W3C, 2007) if we are citing an XML file; the latter

refers to a text-based citation readable by a human that can

be seen as the digital counterpart of a traditional print refer-

ence. We assume that from a machine-readable citation it is

always possible to create a human-readable citation; for

instance, if we consider a machine-readable citation com-

posed of a sequence of XPaths, its human-readable equiva-

lent will be composed of the text elements identified by

each single XPath.

Principles and Methods for Data Citation

Data citation is a complex problem that can be tackled

from many perspectives and involves different areas of

information and computer science. Several international ini-

tiatives have focused on the definition of the core principles

for data citation, which can also be seen as a set of condi-

tions that any data citation solution should meet. The work

on these principles has been carried out by several groups

(Brase et al., 2014). The most relevant initiatives include the

International Council for Science: Committee on Data for

Science and Technology,3 which in 2013 published a major

report (CODATA-ICSTI, 2013) on data citation principles,

and FORCE11 (the Future of Research Communications

and e-Scholarship),4 which in 2014 published a list of princi-

ples as the synthesis of the work of a number of working

groups (that also included some CODATA representatives;

FORCE11, 2014). These principles can be classified into

two main groups: The former states the importance of data

citation in scholarly and research activities and the latter

defines the main guidelines a data citation methodology

should respect. The former group includes three important

principles: the importance of data as it is a first-class product

of research and it must be cited and citable as other research

objects; the need to give credit and attribution to data crea-

tors and curators as it is granted to authors of traditional pub-

lications; and the importance of connecting a scientific

claim with a citation to the data on which such a claim is

based. The latter set of principles states that a citation must

guarantee four criteria: the identification and access to the

cited data, in particular the citation should be machine-

actionable and provide access also to the metadata or docu-

mentation that are required both by humans and machines to

use the data; the persistence of data identifiers as well as

related metadata; the completeness of the reference, meaning

that a data citation should contain all the necessary informa-

tion to interpret and understand the data even beyond the

lifespan of the data they describe; and the interoperability of

citations that should be usable both by humans and machines

coming from different communities with different practices.

These principles highlight the importance of providing

access to the cited data as well as of defining a complete and

persistent reference that can be understood by both humans

and machines (Starr et al., 2015). In particular, references

should be self-contained and sufficient to sustain a claim

based on the cited data as well as to understand the data

given that they may outlive the data itself.

Several studies (Klump, Huber, & Diepenbroek, 2016;

Simons, 2012) focus on the use of persistent identifiers such

as Digital Object Identifiers (DOI), Persistent Uniform

Resource Locator (PURL), and the Archival Resource Key

(ARK). The main goal of these works is to target the identi-

fication problem of cited data by providing a unique and per-

sistent means to identify and retrieve the cited data. The use

of persistent identifiers provides us with a pointer to the data

to be cited and is an important component of any data cita-

tion solution. On the other hand, it addresses just one facet

of the problem, leaving several others open, such as how to

handle citations with variable granularity, a.k.a. deep cita-
tions (Buneman, 2006) where we may need to cite a whole

data set, subset of data, or a single datum; in this case,

3http://www.codata.org/task-groups/data-citation-standards-and-practices
4http://www.force11.org/
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providing a persistent identifier for each datum in a data set

may be unfeasible. For this reason, the use of persistent

identifiers, their study and evaluation is mainly related to the

publishing of research data (Klump et al., 2016; Mooney &

Newton, 2012) in order to provide a handle for subsequent

citation purposes rather than a data citation solution itself.

The learning to cite framework makes use of persistent

identifiers to retrieve the data set to be cited, that is, an

XML file in this particular instantiation of the framework,

and then exploit different means to retrieve the specific cited

datum within the data set; on the other hand, the whole auto-

matic methodology defined for generating both machine-

and human-readable citations is agnostic to the use of persis-

tent identifiers.

Data Citation Systems

Many of the existing approaches to data citation allow us

to reference data sets as a single unit having textual data

serving as metadata source. As pointed out by Pr€oll and

Rauber (2013), most data citations “can often not be gener-

ated automatically and they are often not machine inter-

pretable”; furthermore, most data citation approaches do not

provide ways to cite data sets with variable granularity.

The problem of how to cite a data set at different levels

of coarseness has been tackled by Pr€oll and Rauber (2013),

who proposed an approach relying on persistent and time-

stamped queries to cite relational databases and imple-

mented to work also with Comma-Separated Values (CSV)

files (Pr€oll & Rauber, 2015b), by Silvello (2015), who pro-

posed a methodology based on named meta-graphs to cite

RDF sub-graphs, and by Buneman and Silvello (2010), who

proposed a rule-based citation system for XML. The work

by Pr€oll and Rauber is focused on defining a scalable system

to cite data with variable granularity by handling their

dynamicity, and they do not target the problem of producing

human-readable and machine-actionable citations by consid-

ering the completeness requirement. Silvello’s solution for

RDF graphs targets the variable granularity problem and

proposes an approach to create human-readable and

machine-actionable data citations even though the actual

elements composing a citation are not automatically

selected.

In Buneman (2006) and Buneman and Silvello (2010), a

citation system to create machine-actionable citations to

XML data is described; this system creates citations by

using only the information present in the data. Given an

XML file, this rule-based system requires identifying the

nodes corresponding to citable units and tagging them with

a rule that is then used to generate a citation; the form of the

rule is C P where C provides a concrete syntax of a

human or machine-readable citation and P is an XPath aug-

mented with decorated variables. The purpose of P is to

bind the decorated variables in order to use them in C. Once

the given XML file has been prepared to be cited (i.e., the

rules are in place), the citation of a citable unit within this

file is generated by a conjunction of the rules (i.e., XPaths)

retrieved from the node corresponding to the citable unit up

to the root of the XML file. Basically, the system gathers all

the rules in the path from the citable unit to the root and

each rule contains a specification of the elements to be com-

prised in the citation that has to be generated. This system

allows the automatic generation of both human- and

machine-readable citations and these citations are exact

because they contain all and only the required information

which were specified by the expert who defined the rules.

The main drawback of this approach is that the rules

have to be defined by hand and they require the active

involvement of an expert(s) (data creators and data curators)

of the data set who also need to know XML syntax. A set of

rules has to be defined and/or customized (potentially) for

several XML files within a collection, thus requiring a high

amount of resources that may impair the employment of

such system in a real-world environment. The learning to

cite framework we propose builds on this approach by

exploiting its model and its efficient implementation, but

overcomes its main drawback by easing the creation of rules

by lowering the barriers (resource- and knowledge-wise) to

adopt and use such a citation system in a real-world

application.

XML and XPath

The eXtensible Markup Language (XML) is widely used

to mark-up documents with a meaningful semantics and it is

the de facto standard for data exchange on the web. An

XML document is seen as a tree structure of nodes of three

main types: elements, attributes, and text nodes. Element

nodes have a name (label) and may carry text; they are inter-

nal nodes and thus may have child nodes. Attributes have a

name and carry text, whereas text nodes carry text, but do

not have a name; both are external nodes. Elements are asso-

ciated with an index determined by the order of the subele-

ments in the documents; as an example, if the element e has

three children, say ea; eb; ec, ea has index 1, eb has index 2,

and ec has index 3. Attributes are not associated with an

integer index and they can be identified because their names

are unique within an element.

In Figure 1 we can see a sample XML file taken from the

LoC finding aids collection5 and its tree representation. We

can see that the XML document is composed of seven ele-

ment nodes, one attribute, and three text elements. The ele-

ment nodes are all internal and the attributes as well as the

text nodes are external and do not have subnodes. The XML

structure allows for uniquely identifying a given element as

the sequence of node labels (with indexes) from the root of

the tree (Buneman, Davidson, Fan, Hara, & Tan, 2002); we

call these sequences node paths; note that an attribute can

appear only at the end of a node path.

XPath is a language for addressing parts of an XML

document; it provides basic facilities for manipulation of

several data types (e.g., strings, numbers, and Booleans) and

5http://findingaids.loc.gov/
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adopts a path notation for navigating through the hierarchi-

cal structure of an XML document (W3C, 2007).

XPath exploits the tree structure of XML documents and

its primary construct is the expression which is evaluated by

an “XPath engine” to yield an object that can be a node-set,

a Boolean, a number, or a string. One of the main kinds of

expressions is the so-called location path, which selects a

set of nodes relative to a given node (i.e., context node); the

output of evaluating such an expression is the node-set con-

taining the nodes selected by the location path.

Each part of an XPath expression (i.e., location step) can

be composed of three parts: (a) an axis, which specifies the

tree relationship between the nodes selected by the location

step and the context node; (b) a node test, which specifies

the node type and expanded-name of the nodes selected by

the location step; and (c) zero or more predicates that can

further refine the set of nodes selected by the location step.

In this work we specify a node path as an XPath and,

thus, without loss of generality, we assume that every node

in an XML tree can be uniquely identified by an XPath.

From the data citation viewpoint, we can say that every

node (element, attribute, and text) in an XML document is

citable and that there is a unique XPath for each citable node

within a given XML document. For instance, the following

XPath uniquely identifies the text element with content

Joanne Rasi in the XML reported in Figure 1(a):/ead/
filedesc/titlesmtm/author

Digital Archives: A Use Case

Archives are composed by “unique records of corpo-

rate bodies and the papers of individuals and families”

(Pitti & Duff, 2001). The original order, that is, the princi-

ple of provenance, of the documents within an archive is

preserved because the context and the order in which the

documents are held are as valuable as their content

(Duranti, 1998).

Archival documents are strongly interlinked and their

relationships have to be retained to preserve their informa-

tive content and provide understandable and useful informa-

tion over time. Therefore, archives explicitly model and

preserve the provenance of their records by means of a hier-

archical method, which maintains the context in which they

have been created and their relationships. According to the

International Standard for Archival Description (General)

(ISAD(G)) (ISAD, 1999), archival description (i.e., the find-

ing aids) proceeds from general to specific as a consequence

of the provenance principle and has to show, for every unit

of description, its relationships and links with other units

and to the general fonds, taking the form of a tree as shown

in Figure 2 on the left.

The digital encoding of ISAD(G) is the Encoded

Archival Description (EAD) (Pitti, 1999), shown in Figure 2

on the right, which is an XML description of a whole

archive, reflects the archival structure, holds relations

between entities, and retains context. We can say that the

EAD files closely resemble the description of the archival

material and provide a means to represent the internal logic

of organization of information in an archive.

EAD is composed of three high-level components:

<eadheader>, <frontmatter>, and <archdesc>.

The <eadheader> contains metadata about the archive

descriptions and includes information about them such as

title, author, and date of creation. The <frontmatter>
supplies publishing information and is an optional element,

while the <archdesc> contains the archival description

itself and constitutes the core of EAD. The <archdesc>
may include many high-level subelements, most of which

are repeatable. The most important element is the <did>
or descriptive identification, which describes the collection

as a whole. Finally, the <archdesc> contains an element

that facilitates a detailed analysis of the components of a

fonds, the <dsc> or description subordinate components.

The <dsc> contains a repeatable recursive element, called

<c> or component. Components not only are nested under

the <archdesc> element, they are also usually nested

inside one another. Components usually are indicated with

<cN> tag (N 2 01; 02; . . . ; 12f g).

FIG. 1. (a) A sample XML file (encoded archival description [EAD] format) inspired by the Library of Congress finding aids collection. (b) The

tree representation of the XML file where each node reports the type (E 5 elements, A 5 attributes, and T 5 text), the name or label and the content,

if any. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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EAD fully enables the expression of multiple description

levels central to most archival descriptions and reflects hier-

archy levels present in the resources being described, and

because of its flexible structure and broad applicability it has

been embraced by many repositories (Kiesling, 2001).

On the other hand, EAD allows for several degrees of

freedom in tagging practice, which may turn out to be prob-

lematic in the automatic processing of EAD files, because it

is difficult to know in advance how an institution will use

the hierarchical elements. Indeed, Wisser and Dean (2013)

conducted a thorough study on many EAD repositories and

found substantial variability in element and attribute usage

both within and across repositories, with variability more

prevalent within the <dsc> section of the finding aid that

contains the actual descriptions of the archival objects.

Francisco-Revilla, Trace, Li, and Buchanan (2014) con-

ducted a similar study, determining that in half of the studied

EAD files the variability in the use of tags and “localized

modifications of EAD” had the potential to generate

machine handling problems of the files.

The EAD files represent a good test-bed for the citation

framework we propose because (a) they are deep files not

easy to navigate and understand for the users that may need

to reconstruct the context of a node to create a suitable and

complete citation; (b) there is a wide variability in the use of

tags that makes it difficult to reuse citation rules across files

in a collection and even more across collections; (c) every

node (data node or attribute) in an EAD file is a potential cit-

able unit, thus for every EAD file thousands of citations can

be generated.

As an example, let us consider the EAD file from the

LoC describing the collection of “Huntington Cairns papers,

1780-1984”6 and let us suppose we need to create a citation

for the node corresponding to the file containing the

“Correspondence, 1951-1956.” This EAD file is composed

of more than 8,000 nodes, thus in Figure 3 we show a sim-

plified version of it, where we report only the nodes related

to the citation and the data information we use to generate it.

A complete and correct human-readable citation for

“Correspondence, 1951-1956” can be the following:

Correspondence, 1951-1956, “The Elements
of Legal Theory” (unpublished). Book, box
135; By Cairns, box 129. Part II: Writings
(1905-1984), box 129-152. Huntington Cairns
Papers, Manuscript Division, Library of Con-
gress. http://hdl.loc.gov/loc.mss/eadmss.
ms001024

We can see that the element “Correspondence, 1951-

1956” is cited within its context; indeed, the citation con-

tains information from the upper levels of the archival tree

up to the archival fonds “Huntington Cairns Papers”; the

citation contains the information required to understand the

meaning of the cited element as well as to find in the archive

the physical object it describes. Furthermore, the citation

FIG. 2. A sample archival tree and its EAD representation. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.

com.]

6http://hdl.loc.gov/loc.mss/eadmss.ms001024
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also comprises administrative information taken from the

<eadheader> section of the EAD file such as the unique

identifier of the file and the publisher; the citation may also

contain the author of the finding aids or similar data if they

are available and considered useful for the citation. The

actual data composing a citation to an EAD file could be

decided ad hoc by the archive responsible or by following

standard guidelines such as those provided by Purdue Uni-

versity7 to which we refer to in this work; however, the

learning to cite framework and the citation system we pro-

pose are independent of the choice of the elements compos-

ing the citations.

In Figure 4 on the left we show the textual tokens com-

prising the human-readable citation and on the right the cor-

responding XPath retrieving the required token from the

EAD file containing the element to be cited.

We can see that the machine-readable citation is com-

posed of a conjunction of XPaths uniquely identifying text

elements and attributes in the XML file that contains the

chosen citable unit; by resolving the XPaths we can straight-

forwardly generate the corresponding human-readable refer-

ence. As a consequence, a human-readable reference

contains as many data elements as the number of XPaths in

the corresponding machine-readable reference. All the infor-

mation required to generate the citation is gathered from the

element to be cited and the surrounding elements (i.e., sib-

lings, ancestors, and descendants). We can see that to create

a complete citation we need to visit all the nodes of the tree

from the citable unit up to the root, which in this case

requires us to climb 10 levels. The additional difficulty for a

user who may need to manually build this citation is to filter

out all the nonrelevant information these nodes and relative

nodes contain.

Learning to Cite Framework

Overview

The goal of the learning to cite framework is to address

the problem of the automatic generation of citations for

XML data without requiring any effort from the curators

and without any modification to the data that has to be cited.

FIG. 3. An extract of an EAD file where all and only the nodes required to cite the “Correspondence, 1951-1956” data element are reported. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

7http://guides.lib.purdue.edu/c.php?g5352889&p52378064
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This framework is realized by a system that, given a collec-

tion of XML files: (a) takes as input a number of sample

human-readable citations created from the XML collection;

(b) learns a model from these citations; and (c) uses this

model to create both human- and machine-readable citations

for whatever citable unit within the considered XML

collection.

Therefore, the main idea on which the learning to cite

framework relies is that we can generate a model from a

training set data and then use this model to automatically

produce references of potentially unknown elements. The

six main conceptual blocks realizing this framework are

shown in Figure 5.

Training data plays a key role in this context and it is the

first block constituting the framework; it is composed of a set

of pairs where each pair contains an XML file and a human-

readable citation associated with it. The citation is composed

of a group of textual tokens, which are the basis for the

learner (block 2) to build the model. Each textual token is

sought in the associated XML file by employing a retrieval

algorithm and the location paths identifying the retrieved ele-

ments (there may be none, one, or many retrieved elements

for each token) are used to build the citation model (block 3).

This process is repeated for each textual token comprising

each citation present in the training set.

Once the whole training set has been processed, we obtain

a citation model, which is an XML tree made up of the union

of the location paths identifying the retrieved elements. This

tree is used by the citation system (block 4) to generate the

citations of the test data (block 5). The test data are com-

posed of a set of pairs, where each pair contains an XML file

and the XPath identifying a citable unit in the file. The cita-

tion system parses the given test XPath and produces a set of

progressively shorter paths, one for each location step of the

test XPath: for each path, the citation system uses the citation

model to predict which elements of the test XML file have to

be used to generate the final citation. The output reference

(block 6) contains a machine- and a human-readable citation;

the machine-readable citation is composed of a conjunction

of the XPaths identifying the elements in the test XML

selected by the citation system and the human-readable cita-

tion is composed of the textual tokens retrieved by the

XPaths of the machine-readable citation.

Overall, the presented learning to cite framework follows

two main phases: the training phase, where the citation

model is learned, and the validation phase, where the param-

eters of the model are optimized.

Training Phase

In Figure 6 we can see the main components of the

learner that takes the training data as input and produces the

citation model as output. The training data are composed of

a set of human-readable citations H5 H1; H2; . . . ; Hmf g
and a set of XML trees T5 t1; t2; . . . ; tnf g; each citation

Hi 2 H is associated to one and only one tree tj 2 T and

each tree has at least one associated citation.

The “Citation Parser” parses each citation in Hi 2 H by

obtaining a set of textual tokens hk 2 Hi such that

Hi5 h1; h2; . . .f g. Given a textual token, say, hk 2 Hi, and

the corresponding tree, say, tj 2 T, the learner seeks hk in tj

and returns the XPath pk identifying the token in the tree.

The retrieval of a textual token in an XML tree is performed

by using one of the following matching modes implementing

different retrieval algorithms:

1. Exact match mode: retrieves those elements con-

taining all and only the words in the given token;

2. Shallow match mode: retrieves those elements con-

taining all but not only the words in the given

token;

3. Mixed match mode: uses the exact match mode

first and if no result is returned it uses the shallow

mode.

All these three matching modes may return none, one, or

many elements and the learning system assigns a score to

every retrieved element indicating its similarity with the

FIG. 4. The correspondence between the elements of a human-readable and a machine-readable citation. Each XPath is used to retrieve the required

textual token in the XML file containing the element to be cited.
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sought textual token; all the elements returned by the exact

match algorithm score 1, whereas the elements returned by the

shallow algorithm score in the range [0, 1]. Thus, at the end of

the retrieval process, for each textual token we end up with a

ranked list of elements ordered by similarity score where only

those elements whose score is above a given threshold are

considered to be relevant. The threshold value and the retrieval

mode are set by the learner in the validation phase.

If the path pk is already present in the citation tree, the

score of the element identified by the path is updated by

summing the old score with the new one and a new attribute

called frequency is added to the element.

As an example, let us consider the simple XML reported

in Figure 3. In this case, if we are looking for the “129” tex-

tual element and we are using the exact match mode, then a

single element would be returned, i.e., the one identified by

the XPath /ead/archdesc/dsc/c01/c02/did/con-
tainer (i.e., “129”); whereas, by employing the shallow

match mode both the elements identified by/ ead/arch-
desc/dsc/c01/did/container (i.e., “129–152”

which only partially matches the sought textual token) and /

ead/archdesc/dsc/c01/c02/did/container
(i.e., “129”) would be returned. In this case the mixed match

mode would return the same element returned by the exact

match mode. In the shallow mode case, two elements are

returned and in this case they would be both considered rele-

vant and used to populate the XML tree.

Indeed, the frequency attribute indicates how many times

an element has been considered relevant within the training set,

whereas the score attribute quantifies its relevance; note that

the score attribute is normalized to be within the [0,1] range.

In Figure 7 we can see an extract of the citation tree cre-

ated from the human-readable reference shown in Figure 4

above by using a mixed match mode. We can see that all but

not only the XPaths reported in Figure 4 are present in the

citation tree. For instance, the citation model contains the

path identifying the element container within the c01
element, which is also present in the machine-readable cita-

tion reported in Figure 4. On the other hand, the element

extptr within the publisher element is present in the

citation model even though it is not part of the citation; this

shows that the citation model comprehends more elements

and paths than those exactly matching the elements compos-

ing the citation used for building the model.

Given that this citation model is created from just one

citation, the score values are all close to 1 as well as the fre-

quencies; it is clear that one citation is not enough to build a

solid citation model and in the Experiment Section we ana-

lyze this aspect in order to define the minimum number of

citations required to build an effective model.

The citation system, the main components of which are

shown in Figure 8, takes the citation model and the test data as

inputs. The test data are a pair hpt; tti where pt is the XPath of

the citable unit within the XML tree tt; as an example,

FIG. 5. The building blocks of the “learning to cite” framework.
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referring to the use case presented above, tt could be the XML

tree shown in Figure 3 and pt could be the XPath /ead/
archdesc/dsc/c01[10]/did/unittitle which

identifies the “Part II: Writings” element (enclosed in a box in

Figure 3) in the test tree.

The first step taken by the citation system is to parse the

test path into progressively shorter paths by considering only

the labels, while ignoring the indexes of the path; each one

of these parsed paths may identify an XML element contain-

ing relevant data to build the citation. Referring to our exam-

ple, the “XPath Parser” outputs six XPaths:

(1) /ead/archdesc/dsc/c01/did/unittitle;

(2) /ead/archdesc/dsc/c01/did; (3) /ead/arch-
desc/dsc/c01; (4) /ead/archdesc/dsc; (5) /ead/
archdesc; and, (6) /ead.

Each path is matched with the citation model by the

“Pathfinder” component and if there is an exact match, mean-

ing that the test path is present as it is in the citation model,

the XPath of matched element along with the XPaths of its

descendants with score and frequency bigger than zero are

inserted in a candidate citation set; the citation system builds

a candidate set for each processed XPath. In our example the

XPath (1) will produce a candidate set containing two

XPaths: itself and the XPath to the unitdate element;

whereas the XPath (6) will produce a candidate set containing

13 XPaths, i.e., all the elements in the citation model shown

in Figure 7 with frequency and score greater than zero. In this

example, all the tested XPaths have an exact match in the

citation model given that this sample model has been built

from a single citation of an element in the same tree as the

tested one; however, in a real setting an exact match is not

always found, so let us think about all those elements that are

seen for the first time in the test phase and thus cannot be

present in the citation model built in the training phase.

In these cases, a best match between the XPath being proc-

essed and the citation model is sought by the Pathfinder. Given

an XPath, say, XPath (1) in the example, the Pathfinder seeks

the element identified by the deepest location step (unitti-
tle in the example); if there is a match, then the Pathfinder

seeks the longest location path within XPath (1) with a match

in the citation model; if there is more than one match, then

only the longest path is kept. Once a best match is found, then

a candidate citation set is created for each XPath parsed from

the test path as described for the exact match case.

At the end of this process, the candidate citation sets

become the inputs of the “Path Filter” component, which

selects the most promising paths from each set that will be
the constituent of the final citation. Each path in a candidate
set comes with a frequency, a score, and a relative depth
(relDepth) which indicates the distance from the element
identified by the candidate path and the element identified
by the test path; for instance, the distance between the ele-
ments identified by the XPath (6) (unittitle) and the
candidate path /ead/archdesc/dsc/c01[10]/did/
unittitle/unitdate is one.

Frequency, score, and relative depth are used by the Path

Filter to rank the candidate paths and select the ones that
will be the constituents of the citation; the rationale is that
the paths with higher score, higher frequency, and lower rel-
ative depth are the most relevant. The Path Filter employs
four ranking functions:

• Frequency Score Depth Normalization (FSDN):
score � frequency

relDepth
• Score Depth Normalization (SDN):

score
relDepth

• Frequency Depth Normalization (FDN):
frequency
relDepth

• Frequency Score (FS): score � frequency

The FSDN rank function takes into account both the fre-

quency and the score of an element and it ranks at higher

positions the elements with a high score, that is, elements

that have been exactly matched are preferred to those only

partially matched, and high frequency, that is, elements

encountered many times in the training set. These values are

normalized by the relative depth, penalizing the elements at

lower levels in the tree; the rationale behind this choice is

that higher elements usually contain data that are more likely

to convey useful and general information than the elements

at lower levels. SDN and FDN follow the same rationale,
but the former one considers only the score, whereas the lat-
ter considers only the frequency. With SDN we prefer an
exact match found just a few times over a shallow match
found many times; with FDN this preference is reversed.
Lastly, FS does not normalize the score and frequency value
by using the relative depth and thus it does not discriminate
between matching elements at different depths.

The Path Finder orders the paths in each one of the candi-
date sets created by the Pathfinder by employing one of
these ranking functions and selects only those paths with a
value above a given score threshold. Note that for selection
purposes the ranking values are further normalized in the
[0,1] interval.

FIG. 6. The blocks composing the Learner component of the learning

to cite framework.
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The ranking function and the score threshold value may be

defined a priori if we assume some knowledge about the test

data or, more likely, may be estimated by the system in the

validation phase, which optimizes these parameters according

to an optimization measure of choice. Last, the Citation

Builder component gathers the selected paths and builds the

machine-readable citation as a conjunction of the selected

XPaths and the human-readable citation by retrieving the tex-

tual tokens from the test tree by using these XPaths.

Validation Phase

The validation phase is required when the method of

building the citation tree (exact match mode, shallow match

mode, mixed match mode), the ranking function selecting

the candidate paths (FSDN, SDN, SDN, FS), and the thresh-

old values are not fixed a priori, but are set to maximize an

optimization measure of choice.

To this end, we define three measures to evaluate the per-

formance of the citation system from an effectiveness view-

point: precision, recall and fscore. These measures assess

the quality of a citation generated by the citation system by

comparing it with an ideal one that represents the perfect

citation for a given element; the ideal citation is also called

the ground-truth citation.

Let MCk5 p1; p2; . . . ; pnf g be a machine-readable cita-

tion generated by the citation system for the element ek

where p1; p2; . . . ; pnf g are the paths composing the cita-

tion; and let GTCk5 p01; p
0
2; . . . ; p0m

� �
be the ground-truth

machine-readable citation for the same element ek, where

jMCkj5n and jGTCkj5m.

Then, Precision5
jMC \GTCj
jMCj , Recall5 jMC \GTCj

jGTCj and

fscore52 � precision �recall
precision1recall .

Precision is the ratio between the number of correct

paths that are present in the citation generated by the

FIG. 7. A part of the XML tree obtained by processing the human-readable reference reported in the use case section and by using a mixed match

mode. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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system and the total number of paths in the citation; thus

it evaluates the correctness of the automatically generated

citation. Precision is in the range [0,1] and can also be

indicated as a percentage; for instance, if we achieve

100% precision, it means that all the paths in the system

generated citation are present in the ground-truth citation

and thus are correct.

Recall is the ratio between the number of correct paths in

the system generated citation and the total number of correct

paths; thus, it evaluates the completeness of the generated

citation. Like precision, recall is in the [0,1] interval and can

be expressed as a percentage. A 100% recall indicates that

all (but not necessarily only) the correct paths are present in

the system-generated citation. fscore is a synthesis measure

that balances between precision and recall and weights both

the correctness and completeness of a citation; fscore is in

the [0,1] interval and can be expressed as a percentage as

well. If we achieve a 100% fscore it means that the system-

generated citation has both 100% precision and 100% recall,

and thus it contains all and only the correct paths specified

by the ground-truth citation.

The learning to cite framework adopts a k-fold validation

strategy where the training data are randomly partitioned

into k equal-sized subsets. Of the k subsets, a single subset is

retained as the validation data for testing the model, and the

remaining k 2 1 subsets are used as training data. The cross-

validation process is then repeated k times, with each of the

k subsets used once as the validation data. The k results from

the folds are then averaged to produce a single estimation

according to a chosen evaluation measure.

Implementation of the Framework

The presented learning to cite framework was implemented

in a working system for citing XML data. Basically, this sys-

tem realizes block 2 (Learner) and block 5 (Citation System)

of the conceptual design shown in Figure 5. All the compo-

nents were implemented in Java 8.0 and the code is open

source and publicly available, as are all the libraries used for

implementing the specific functionalities of the system.

In particular, we adopted the open-source Java-based XML

DBMS BaseX 8.3.18 for realizing the “Pathfinder” (Figure 6)

and the “XML Retrieval System” (Figure 7) components.

BaseX is a state-of-the-art Java-based native XML database,

which offers both in-memory and secondary-memory storage.

BaseX uses compact memory structures and performs com-

pression based on dynamic recognition of data types that, for

instance, allows it to determine if a text node is a string or an

integer to enable compact storage of the element. Moreover,

BaseX provides effective full-text search capabilities that are

exploited to perform exact and best-match retrieval.

We chose to implement the system in Java to make it

portable and platform-independent; moreover, we employed

Apache Maven9 to simplify the build process and to provide

a uniform build system.

The code of the system along with its documentation are

publicly available at: http://www.dei.unipd.it/~silvello/data

citation.

Experimental Evaluation

The experimental evaluation we conducted has the aim

to:

1. investigate the effect of parameter (matching mode,

ranking function, and score threshold) tuning and

the choice of the optimization measure on system

effectiveness;

FIG. 8. The blocks composing the citation system of the learning to cite framework and the output reference composed of the human- and the

machine-readable reference.

8http://basex.org/
9http://maven.apache.org/
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2. evaluate the citation system from the correctness

and completeness points of view;

3. analyze how the training set size and composition

impact system effectiveness.

Experimental Collection

We created an experimental collection by building a train-

ing and validation set composed of XML tree and human-

readable citation pairs and a test set composed of XML tree

and machine-readable pairs. Both for the training and valida-

tion set and the test set we manually created the ground-truth

machine-readable citations used to assess the quality of the

citations automatically generated by the system.

We built the experimental collection by using the Library

of Congress digital finding aids collection encoded in the

EAD format, which is publicly available at http://findin-

gaids.loc.gov/.

The full EAD collection is composed of 2,083 files with

a maximum file size of 15 MB and average file size of 200

kB; the whole collection contains about 11 million citable

units, where on average each file contains 5,368 citable units

and the biggest one contains 384,957 citable units. On aver-

age the EAD files have depth 10 with maximum depth 18

and minimum 7.

To build the training and validation set, we randomly

selected 25 EAD files and for each of these files we ran-

domly extracted four citable units; we obtained a set of 100

XPaths identifying an equal number of different citable

units. For each citable unit (i.e., XML element), we man-

ually created a human-readable citation to be used to train

the citation system and a machine-readable citation to build

the ground-truth to be used for validation purposes. We did

not impose any constraints on the training and validation

sets as, for example, on the granularity of the selected citable

units.

The test set was built by following a similar procedure:

From the whole EAD collection minus the 25 files selected

for the training and validation set, we randomly selected 50

EAD files and for each one a single citable unit was selected

at random. Then we manually created a ground-truth

machine-readable citation for each one of these randomly

sampled citable units. Both the training set and the test set

contains citable units with granularity ranging from depth 4

to depth 11 and thus the level of coarseness of the citations

in the training set and those in the test set are comparable. In

general, the training set should contain citations at a differ-

ent level of granularity to provide a good coverage of the

citations that have to be produced in the test phase.

We created the ground-truth citations by following the

guidelines provided by the archives of Purdue University,

which follows the Modern Language Association (MLA)10

citation style. For reproducibility purposes, the training and

validation set, the test set and the ground-truth files as well

as the code developed to conduct the experiments are openly

available at http://www.dei.unipd.it/~silvello/datacitation.

Results

First of all, on the full training and validation set we

tested how the citation system behaves with different param-

eter tunings. In Table 1 we report the best configurations of

parameters based on precision, recall and fscore calculated

on the complete training set. We employed a five-fold cross-

validation by using four folds for training and one fold for

validation; each measure is calculated as the average over

the five times the validation process was repeated. The opti-

mization measure used for validating the citation model is

the same used for evaluating it.

We can see that the best results for precision are achieved

when the citation model is built by employing the exact

match mode. The exact match mode creates a narrower cita-

tion model where the correctness of the citation is the first

priority. On the other hand, when completeness is the prior-

ity we need to optimize using the recall measure; in this case

we see that the shallow match mode is a very good option.

The shallow mode creates bigger citation models than the

exact match one, thus fostering the completeness of the gen-

erated citations over their correctness. As we can see by

adopting an exact match mode, we obtain the highest preci-

sion values along with good recall performance as witnessed

by the high fscore values; by contrast, with the shallow

mode the values of recall are good, but precision and conse-

quently also fscore are quite low, showing that the generated

citations are complete but also include noisy elements

(i.e., useless or wrong paths). The mixed match mode is an

interesting compromise, but it still tends to favor recall over

precision, showing that the shallow mode somehow over-

shadows the exact match mode when both the modes are

used.

The best results for all three measures are obtained when

the ranking function adopts some form of relative depth nor-

malization (i.e., FSDN, FDN, and SDN) given that the FS

function never achieves the best performance. FDN and

FSDN foster precision, whereas SDN fosters recall.

Last, low score thresholds work better with recall because

they enable the inclusion of a higher number of paths in the

citation fostering completeness at the price of a lower cor-

rectness; whereas, as expected, higher thresholds foster cor-

rectness over completeness and thus we obtain higher

precision values than with lower score thresholds.

The results reported in Table 1 are useful for understand-

ing how the different optimization parameters impact the

performance of the citation system, but they are not indica-

tive of how the system actually behaves in a real environ-

ment with real data.

To this end, in Figure 9 we report the performance of the

citation system evaluated with the three measures over the 50

test data samples. We conducted this test by varying the size

of the training set from 100 training data samples (i.e., the

whole set) to five data samples. The smaller training sets are10https://www.mla.org/
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obtained by randomly sampling the whole training set with

repetitions; with this procedure, we can obtain as many dif-

ferent training sets as we need for the training sets with size

smaller than 100. We performed 10 random samplings for

each training set size, thus we repeated each test 10 times

and then reported the average values.

In Figure 9 we see the boxplots showing the distribution

of average measures over the 50 test data samples; in this

way, we can see how the system performance vary from test

sample to test sample. The optimization measure used for

the validation phase, in this case, is always fscore and we

used the same five-fold cross-validation strategy.

We can see that by optimizing with fscore, we get very

good performance for precision, which is on average above

90% for all the training sets bigger than 20 samples and

fscore which is, on average, higher than 80% for training

sets bigger than 10 samples. Both precision and recall have

some low outliers, with performance around 60%, whereas

fscore is consistently above 70% when the training set size

is bigger than 10 samples; this shows an inversely propor-

tional relationship between precision and recall, such that

when a citation has a low recall usually it is compensated by

a high precision or vice versa.

It is interesting to note that the training set size has a

small impact on the performance of the system when it is

bigger than 10 samples. This is quite important for the cita-

tion system, given that one of its main goals is to produce

citations requiring a low effort to data creators and curators;

therefore, given that in this context building the training set

is the only effort required of them, the smaller the required

training set size the better.

In Figure 10 we report the performance averaged on the

50 test samples, for all the evaluation measures with the cita-

tion system optimized with fscore. Also in this case, we

repeated the test by randomly sampling the full training set

and creating 10 alternative training sets for each considered

size; the bars report the standard error showing the variabili-

ty of performance among training set samples.

As expected, the average performance are the same as

those discussed for Figure 9, but the standard error shows us

that the variability of performance decreases as the training

set size increases; this is consistent across the different

TABLE 1. The best configurations of parameters based on three validation measures (precision, recall, and fscore) calculated on the complete train-

ing set. Each measure value is calculated as the average over the five validation folds; we report the standard deviation (std dev) for each measure.

Tree Type Ranking Function Score Threshold Avg Precision Std dev Precision Avg Recall Std dev Recall Avg Fscore Std dev Fscore

exact FDN 0.1 0.3789 0.06 0.8975 0.04 0.5231 0.04

exact FDN 0.5 0.7356 0.01 0.7448 0.03 0.7316 0.01

exact FDN 1.0 0.7908 0.04 0.4552 0.05 0.5702 0.04

exact FS 0.1 0.3813 0.07 0.8962 0.03 0.5196 0.04

exact FS 0.5 0.6042 0.01 0.6919 0.03 0.6372 0.01

exact FS 1.0 0.7211 0.02 0.2949 0.05 0.4087 0.03

exact FSDN 0.1 0.3769 0.06 0.8975 0.04 0.5208 0.04

exact FSDN 0.5 0.7293 0.01 0.7440 0.03 0.7278 0.01

exact FSDN 1.0 0.7908 0.04 0.4542 0.08 0.5694 0.05

exact SDN 0.1 0.1845 0.04 0.9052 0.04 0.3014 0.04

exact SDN 0.5 0.2607 0.00 0.7684 0.04 0.3857 0.01

exact SDN 1.0 0.3564 0.01 0.3411 0.04 0.3411 0.02

mixed FDN 0.1 0.3186 0.05 0.8942 0.04 0.4631 0.04

mixed FDN 0.5 0.5957 0.02 0.7111 0.05 0.6403 0.03

mixed FDN 1.0 0.6115 0.04 0.3636 0.04 0.4477 0.03

mixed FS 0.1 0.3339 0.08 0.8901 0.05 0.4734 0.06

mixed FS 0.5 0.6127 0.03 0.6473 0.04 0.6220 0.03

mixed FS 1.0 0.7028 0.04 0.2990 0.10 0.4095 0.06

mixed FSDN 0.1 0.3276 0.05 0.8942 0.04 0.4718 0.04

mixed FSDN 0.5 0.6514 0.02 0.7252 0.05 0.6789 0.03

mixed FSDN 1.0 0.7746 0.03 0.4472 0.05 0.5581 0.04

mixed SDN 0.1 0.1469 0.05 0.9045 0.04 0.2493 0.05

mixed SDN 0.5 0.2690 0.01 0.7676 0.05 0.3948 0.01

mixed SDN 1.0 0.4234 0.01 0.3643 0.05 0.3822 0.02

shallow FDN 0.1 0.1630 0.04 0.8679 0.04 0.2719 0.04

shallow FDN 0.5 0.3645 0.02 0.2670 0.04 0.2973 0.03

shallow FDN 1.0 0.4393 0.04 0.1817 0.03 0.2484 0.03

shallow FS 0.1 0.1451 0.07 0.8647 0.04 0.2455 0.05

shallow FS 0.5 0.2080 0.02 0.4693 0.04 0.2814 0.03

shallow FS 1.0 0.4437 0.05 0.1731 0.06 0.2432 0.05

shallow FSDN 0.1 0.1496 0.06 0.8673 0.04 0.2527 0.04

shallow FSDN 0.5 0.4537 0.02 0.5782 0.04 0.4993 0.03

shallow FSDN 1.0 0.4393 0.05 0.1817 0.04 0.2484 0.03

shallow SDN 0.1 0.1057 0.08 0.8796 0.04 0.1866 0.04

shallow SDN 0.5 0.1686 0.01 0.6982 0.05 0.2687 0.01

shallow SDN 1.0 0.5177 0.01 0.3267 0.06 0.3957 0.02
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evaluation measures. Having stable performance with differ-

ent samples of a training set with fixed size is important

because we need a citation system whose performance do

not depend on the specific citations used for creating the

citation model and for optimizing its parameters. As we can

see in Figure 10, the standard error for training sets with size

bigger than 20 are quite small, whereas with size 5, 10, and

20 the error is greater, meaning that with very small training

set sizes the specific composition of the training set has a

direct impact on the performance of the citation system.

To further investigate whether the achieved performance

are influenced by the specific composition of the training set,

we conducted a one-way analysis of variance (ANOVA) sta-

tistical test. We created 10 training test sets for each tested

size (from 5 to 90 with step 5) by randomly sampling with

repetitions the full training set and we run the system on

the test data for each training set by adopting five-fold cross-

validation. In this case, we repeated this test by varying the

optimization measure while keeping the evaluation measure

fixed. For each system configuration and for each optimiza-

tion measure we obtained 10 different performance values for

each test sample (500 values for each system configuration)

and we performed the one-way ANOVA statistical test on

these data. The one-way ANOVA tests if a null hypothesis is

rejected or not; when the p value is less than 5.01, then the

null hypothesis is rejected with 99% probability, otherwise it

cannot be rejected. In this test the null hypothesis is that sys-

tem performance are the same as the training set composition

varies, that is, they do not depend on the composition of the

training set; if the p value returned by the ANOVA test is

high (usually >.01or >.05) it means that the null hypothesis

cannot be rejected and thus we can consider the performance

of the system independent of the specific composition of the

training set. Table 2 reports the one-way ANOVA p values

for the different optimization measures as the training set

sizes vary. We can see that by using fscore as the optimiza-

tion measure we need a training set composed of at least 30

human-readable citations to obtain a citation model independ-

ent of the specific composition of the training set. The same

value is achieved by using recall as the optimization measure,

whereas precision requires a training set with at least size 70.

In Figure 11 we report the plots of the Tukey HSD test

(Tukey, 1949) where the same experiment configuration

adopted for the ANOVA test is here used by maintaining the

optimization measure fixed (fscore) and evaluating the per-

formance by using precision, recall, and fscore. Tukey HSD

plots show the performance of the citation system grouped

by training set size where the groups colored in blue do not

statistically differ from one another.

We can see that by using fscore as the evaluation mea-

sure there is no significant difference between the perform-

ance obtained with training set sizes ranging from 100 to 30;

the only significant differences are achieved with training

set size 5, 10, and 20. This result further confirms what we

have seen in Table 2 for the one-way ANOVA test. The

very same result is achieved by using precision as the evalu-

ation measure, and by using recall we have an even stronger

result, since the performance achieved with the full training

set are significantly different only from those obtained with

training set size 10. From this evaluation we can conclude

that the learning to cite framework implemented for the

XML data achieved good performance overall, with fscore

above 80%, precision above 90%, and recall above 80% on

average. We have seen that fscore is the most robust optimi-

zation measure and that with a training set containing as

much as 30 human-readable citations we build a citation

model solid enough to create citations for a collection of

more than 2,000 XML files.

Error Types

As discussed above, the learning to cite framework does

not provide formally correct citation and by setting the

FIG. 9. Distribution of the measures for 50 test citations optimized with fscore as the training set varies. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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optimization parameters of the framework it is possible to

drive the citations produced towards a higher precision or a

higher recall. In the former case, the produced citation may

contain fewer selected elements, possibly leaving some rele-

vant elements out, whereas in the latter case the citation may

contain many elements, some of which could be not relevant

to the citation.

The errors that could be present in the automatically pro-

duced citations can be classified into four main types.

The first type of error is the repetition of an element. This

error is more likely to happen if the framework uses a shal-

low match mode to build the citation tree since it maximizes

the number of matches than the exact approach. Moreover,

by using recall as the optimization measure the number of

repetitions can increase since the higher recall values are

obtained with shallow and mixed approaches, as shown in

Table 1. Repetitions may make citations cumbersome even

though they do not compromise their correctness and useful-

ness. Detecting a repetition is not a hard task and this error

can be manually corrected; indeed, once the citation has

been produced, also a not-expert user can detect and delete

repetitions from a citation in order to make it more readable.

It is also possible to think about a (semi-)automatic method

to detect and delete repetitions from the produced citations.

The second type of error is the absence of one or more

elements from the citation. This error is more likely to hap-

pen when an exact match mode is adopted for building the

citation tree and it is connected to the use of precision as the

optimization measure. This error has a bigger impact than

repetitions since it is hard to automatically detect and correct

the absence of an element; this error is hard to address also

manually, given that both expert and not-expert users may

not realize that an element is missing from the produced

citation.

The third type of error is the presence of a wrong element

in the citation. This error requires a semantic analysis of the

citation to be detected and it could be hard to solve even

manually. The fourth type of error is the presence of a

FIG. 10. Measures averaged over 10 training sets randomly sampled as the size varies. The bars report the standard error. The optimization measure

is fscore. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE 2. ANOVA one-way p values for different training set size as the optimization measure is varied; fscore is used as test measure.

Training set

size

Optimization

measure p value

Training

set size

Optimization

measure p value

Training

set size

Optimization

measure p value

5 fscore 6.58e-87** 5 precision 4.24e-94** 5 recall 4.76e-93**

10 fscore 0.0051** 10 precision 2.43e-77** 10 recall 0.1000*

20 fscore 0.0158* 20 precision 8.61e-61** 20 recall 1.17e-33**

30 fscore 0.9881 30 precision 6.06e-53** 30 recall 0.1691

40 fscore 0.9895 40 precision 4.64e-23** 40 recall 0.7012

50 fscore 0.9228 50 precision 3.60e-23** 50 recall 1.0000

60 fscore 0.9689 60 precision 1.02e-37** 60 recall 1.0000

70 fscore 1.0000 70 precision 1.0000 70 recall 1.0000

80 fscore 0.9964 80 precision 1.0000 80 recall 0.9988

90 fscore 0.9570 90 precision 1.0000 90 recall 0.9972

*Denotes p values of less than 5%.

**Denotes p values of less than 1%.
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collateral element which is not part of the formally correct

citation even though it is not wrong per se.

As an example, let us consider the formally correct cita-

tion reported in the Digital Archives: A Use Case section

and shown in Figure 4, which is composed of 15 distinct ele-

ments. A possible citation produced by the learning to cite

framework optimized with recall is the following one where

wrong elements are in bold:

Correspondence, 1951-1956, “The Elements
of Legal Theory” (unpublished). Book, box
135; By Cairns, box 129. Part II: Writings,
1905-1984, box 1780-1984. Huntington Cairns
Papers 1780-1984. MSS14746. http://hdl.loc.
gov/loc.mss/eadmss.ms001024; Huntington Cairns

Papers, A Finding Aid to the Collection in the Library of

Congress

In this case, there is a repetition, a wrong element, and

the presence of collateral elements. As we can see, the ele-

ment “Huntington Cairns Papers” is repeated twice and its

second occurrence can be deleted. The element “1780-

1984” is wrong because after the element box there should

be the element “129-152”; this means that a date has been

inserted in the citation in place of the box number. We can

see that this error can be detected with a semantic analysis

of the citation since the correspondence is correctly placed

in “box 135” and “By Cairns” data are placed in box 129, so

the expert user would see that it is not possible that the “Part

II: Writings” documents are in “box 1780-1984.” The ele-

ment “MSS14746,” which is an internal identifier, is a col-

lateral element since its presence is not an error per se, but it

simply provides additional (not strictly required) informa-

tion. Two elements are missing: “Manuscript division” and

“Library of Congress”; the first one cannot be derived from

any other information in the citation, whereas the second

one is substituted by the valid collateral element “A Finding

Aid to the Collection in the Library of Congress.” The eval-

uation we conducted does not distinguish between error

types, thus also the last collateral element which is not,

strictly speaking, an error, is considered such and contributes

negatively to precision and fscore.

Let us see how the citation to the same element consid-

ered above could look like by optimizing the framework

with precision:

Correspondence, 1951-1956, Book, By
Cairns, 1905-1984. Part II: Writings, 1905-
1984. Huntington Cairns Papers, http://hdl.
loc.gov/loc.mss/eadmss.ms001024

In this case, we can see that all the information present in

the citation is formally correct, there are no repetitions,

wrong, and collateral elements. On the other hand, there are

several missing elements, which are box numbers, the title

of the book “The Elements of Legal Theory (unpublished),”

and the elements identifying the preserver of the archive,

which is the Library of Congress.

The first citation is more complete and can be manually

fixed quite easily by expert and not-expert users, whereas

the second one is more difficult to complete by hand even

though it provides most of the fundamental information

required and does not convey any wrong message.

Conclusions and Future Work

The practice of data citation is unanimously considered

fundamental to scientific progress, but as of now it is not

commonly adopted and encouraged in all scientific fields.

The research community has been taking action to ease the

process of citing data and to make it a core aspect of scholar-

ship and scientific publishing. As a consequence, in recent

FIG. 11. Tukey HSD test plots for different test measures (fscore, precision, and recall) as the training set size varies by using fscore as the optimi-

zation measure. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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years data citation received a great deal of attention, which

has led to the definition of the basic principles for data cita-

tion, to the creation of data journals and data citation

indexes, to the idea of “actionable papers” linking scientific

claims to the data sustaining them, and to the development

of infrastructures to manage and access scientific publica-

tions along with the related data.

Nevertheless, in order to make data citation an everyday

practice and to overcome the cultural and technical barriers

still impairing its wide adoption, there is the pressing need

to develop effective and easy-to-use citation tools. This

requires studying data citation from a computational per-

spective, as recently suggested by Buneman et al. (2016).

It is important to consider that data citation is a com-

pound and complex problem and it is accepted that a “one

size fits all” system to address this problem does not exist.

Indeed, flat data, relational databases, XML and RDF data

sets are intrinsically different one from the other, present

heterogeneous structures and functions and, as a conse-

quence, require specific solutions for addressing data cita-

tion problems.

In this work we stem from this consideration by focusing

on how to generate citations to single nodes within a hier-

archical data set serialized as XML. To this end, we defined

the so-called learning to cite framework that enables the

automatic construction of human- and machine-readable

citations to hierarchical data with variable granularity, with

the final goal of reducing the human intervention on data to

a minimum and to provide a citation system general enough

to work on different hierarchical data collections.

The learning to cite framework represents a change of

paradigm for the automatic creation of data citations because

it shifts the focus from an approach where the citation pro-

cess is decided and modeled a priori by human experts to

one where this process is not taught but learned by example

and can dynamically adapt to new data and contexts.

We described a concrete implementation of the learning

to cite framework by developing an open-source citation

system for XML data sets, which learns how to cite directly

from the data and can be used in different settings and with

different data sets.

We conducted a thorough evaluation of the developed

citation system by employing a use case drawn from the dig-

ital archives domain, where there is the need to cite large,

deep, and heterogeneous XML files, that is, finding aids

encoded in the EAD format. To make our evaluation repro-

ducible, we created an ad hoc shared test collection based on

the EAD files of the Library of Congress collection; the

experimental collection includes a training set composed of

100 human-readable citations to XML citable units and a

test set composed of 50 citable units. Both for the training

set and the test set, we created a ground-truth composed of

150 manually crafted machine-readable citations to be used

for validation purposes and to assess the quality of automati-

cally generated citations. This experimental collection is

made openly available to enable further experiments on the

automatic creation of citations by the research community at

large and represents the first concrete effort to provide a

common and shared point of comparison for data citation

methods and systems. Furthermore, we defined from scratch

three evaluation measures to assess the correctness and com-

pleteness of automatically generated data citations: preci-

sion, recall, and fscore.

The experiments we carried out investigated three main

aspects: (a) the effect of parameters tuning and the choice of

the optimization measure on the citation model, and conse-

quently on system effectiveness; (b) the correctness and

completeness of the citations generated by the system; and

(c) the impact of the training set size and composition on

system performance.

We concluded that the parameters tuning has a consider-

able impact on system performance, given that the choice of

one matching mode and one ranking function over others

fosters correctness over completeness or vice versa, and that

fscore is a good choice for an optimization measure because

it enables the system to achieve better performance by using

smaller training sets than by using precision and recall as

optimization measures. The citation system proved to be

effective and on average achieves precision values above

90% and recall and fscore values consistently above 80% by

using a minimum of 30 human-readable citations as the

training set. We have seen that there are no significant per-

formance differences by using training sets greater than 30

citations and that the specific composition of the training set

does not have a significant impact on system effectiveness.

This means that the only effort required of data creators and

curators to employ our citation system in a real environment

is to produce a few dozen human-readable citations as train-

ing and validation set from a randomly selected subset of cit-

able units. It should be noticed that, even though the

precision and recall are quite high, the citations produced by

the proposed system are not perfect and formally correct, so

we may take into account some manual work to refine the

citations by removing redundant or evidently wrong ele-

ments or by adding missing elements.

There are some extensions to the framework that can be

planned as future works. One extension concerns the pro-

duction of citations with different structures and styles.

Indeed, the training set determines the structure of the pro-

duced citations; so, if we need to produce citations with two

different structures (or styles) we need to train two different

citation models by using two different training sets. In some

cases, a viable alternative would be to set up a set of rules to

manipulate the produced citations in order to add or remove

a predefined set of elements. Another possibility is to define

a set of rules to format the produced citations. Indeed, every

element returned by the learning to cite framework is related

to a specific XML element, so we can define a formatting

rule related to this element. For instance, in the context of

EAD, in one set of rules we may decide that the “unittitle”

element has to be printed in italic; in an alternative set of

rules we may impose that the “unittitle” element has not to

be inserted in the citation because it may be considered as

superfluous for some reason. In any case, these rules are
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related to the citation policies that are defined for the collec-

tion of files at hand and, if required, they have to be set by

the collection owner/responsible.

As further future work, we plan to extend the developed

citation system in order to pass from the current single datum

citation, i.e., single XML node citation, approach to a multi-

ple data citation one, where the same citation can refer to

multiple elements or element aggregations or where we need

to create citations for hundreds of independent citable units.

We also aim to tackle the problem of citation identity by

defining an efficient method to establish when two citations

cite the same data and can be considered to be the same.

From the evaluation viewpoint, we should note that the

collection we employed contains heterogeneous files created

by different people in different dates and with different pur-

poses, so the presented system has been already tested by

considering heterogeneous hierarchies. It is also true that all

the files come from the Library of Congress collection and so

they may be more consistent one with the other than a bunch

of files taken from, say, 10 radically different organizations.

In this last case, the training set has to comprehend a suffi-

cient number of examples from each different considered col-

lection. The citation model has been defined to be flexible

enough to accommodate for these variations, but the required

size of the training and validation sets in this case may need

to be larger than the one determined for the Library of Con-

gress collection. As future work, we want to test the system

on the UK Archival Hub,11 which puts together files coming

from many different archives intrinsically different one from

the other. On the one hand, we want to apply the model

learned on the Library of Congress data to the UK Archival

Hub. This last aspect is commonly called transfer learning
from a data set to another; the idea is to understand whether

is it possible, and to what extent, to define a method to gener-

ate citations for a collection of files by using the citation

model created by employing a training set obtained from a

different collection. Such a method would have a sizeable

impact because it will further lower the barriers and the effort

required to create data citations; indeed, we could train a cita-

tion system by using a well-suited available training set and

then use such system in a context where there is no training

set or the resources to create one.

Lastly, we will study how to implement the learning to cite

framework for data models and formats other than XML, such

as relational databases or RDF data sets. With these data mod-

els the logic behind the presented citation system has to be

re-thought because it does not work as for data that are flat,

that is, where there is no hierarchical structure to reveal the

organization or the hierarchy is modeled as part of the data.
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