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ABSTRACT 

The in situ identification of fuel-cell material parameters is crucial both for guiding the research for advanced functionalized materials and for 

fitting multiphysics models, which can be used in fuel cell performance evaluation and optimization. However, this identification still remains 

challenging when dealing with direct measurements. This paper presents a method for achieving this aim by stochastic optimization. Such 

techniques have been applied to the analysis of fuel cells for ten years, but typically to specific problems and by means of semi-empirical models, 

with an increased number of articles published in the last years. We present an original formulation that makes use of an accurate zero-

dimensional multi-physical model of a polymer electrolyte membrane fuel cell and of two cooperating stochastic algorithms, particle swarm 

optimization and differential evolution, to extract multiple material parameters (exchange current density, mass transfer coefficient, diffusivity, 

conductivity, activation barriers …) from the experimental data of polarization curves (i.e. in situ measurements) under some controlled 

temperature, gas back pressure and humidification. The method is suitable for application in other fields where fitting of multiphysics nonlinear 

models is involved. 
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1. Introduction 

1.1. Fuel Cell perspectives 

As electricity sources which do not undergo the Carnot cycle limitations, Fuel Cells (FCs) are appealing for a number of 

applications within the future energy framework. Solid Oxide FCs (SOFCs) and Molten Carbonate FCs (MCFCs), working at high 

temperatures (around 600°C), promise to be competitive in the stationary middle-to-micro combined heat and power production 

(CHP). Proton Exchange Membrane fuel cells (PEMFCs) constitute the more promising technology for mobility, with early 

applications in niche sectors (e.g. forklifts, golf carts, submarines). As regards road mobility, PEMFC-powered urban bus fleets, 

capable of longer ranges than batteries, have been tested and introduced in big cities (e.g. London, Hamburg, Barcelona, 

Stockholm, Oslo, Porto, Stuttgart, Amsterdam, Luxemburg, Madrid, Aberdeen, Reykjavík, and Perth). In these years, the electric 

car market is expanding, but battery-powered models still lack competitiveness as regards range, recharge time, lifetime, and cost. 

PEMFC-powered cars, capable of longer ranges and faster refueling, are now entering mass production. The Hyundai ix35 (FC 

version of the Tucson SUV), commercialized since 2013, is the first of them and has been followed in 2014–5 by the Toyota Mirai 

FCV, whose two 122-liter 70-MPa hydrogen tanks provide a 650 km range. Honda and Mercedes-Benz are going to sell their 

models FCX Clarity II (35-MPa tanks for 390-km range) and F-Cell (70-MPa tanks for 678-km range) within 2016 and 2017, 

respectively. As regards devices working at lower power levels, the sensational spread of portable electronics has been backed by 

batteries with high energy density, but small-sized Direct Methanol Fuel Cells (DMFCs) are emerging as a competitive alternative 

for assuring extended durations. Success in all these sectors relies on the availability of more efficient, more durable and cheaper 

next-generation FCs based on new materials and architectures.  
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1.2. FC material characterization 

Since fuel cells present a stratified structure of thin layers made of different materials, analyzing their behavior requires the full 

characterization of these materials, i.e. the determination of a their chemical, physical, thermal, and electrical parameters [1]. 

Unfortunately, they are hard to measure in real operating conditions. These physical parameters are also needed in FC models, 

which allow the fast exploration of different operating scenarios and can be used in the research of optimized structural design and 

operating conditions [2,3]. The systems of equations involved (Nernst equation, Butler-Volmer equation, Darcy’s equation, 

Fourier’s law, Ohm’s law, …) are strongly non-linear, causing the models to be extremely sensitive to parameter variations and 

uncertainties. Careful ex situ measurements can be performed by means of a number of diagnostic techniques, e.g. cyclic 

voltammetry with the thin-film rotating ring-disc electrode (CV-TF-RRDE) setup, electrochemical impedance spectroscopy (EIS), 

and broadband electrical spectroscopy (BES) [4–8]. However, the transferability of their results to operative fuel cells raises a 

number of issues. Conversely, in situ measurements can provide meaningful operational values, but very few, often complicated 

and cumbersome, techniques are available to determine a limited number of parameters, e.g. EIS, neutron radiography, and 

voltammetric and chronoamperometric approaches in the “driven-cell” mode [4,5,9]. 

1.3. Numerical optimization search approach 

A different approach consists in multiple parameter identification from a rich sample of experimental data obtained at different 

values of temperature, and gas pressure and humidity. Unfortunately, this approach is not so easy to implement, because the 

problem becomes increasingly difficult as the number of parameters increases, resulting in the curse of dimensionality issue [10]. 

This challenge can be faced with mathematical optimization, which typically consists in a minimization or maximization problem 

[11]. In the former case, given a function ƒ (called fitness, objective, quality, or cost function) that maps a domain A (search space) 

of an n-dimensional Euclidean space into real numbers, optimization aims at finding the element x0 of A such that ƒ(x0) is smaller 

than every other ƒ(x) for x in A: 

  
given f (x): A→ R A⊆ Rn

seek xo ∈A: f (xo ) ≤ f (x) ∀x ≠ xo
 (1) 

The optimization problem can be similarly formulated as a mathematical maximization. When using mathematical optimization 

for model parameter identification, x is the n-dimensional vector whose elements are the unknown parameters and ƒ(x) consists of a 

proper error among the computed performance values provided by a parameter-based model and measured performance data. 

Optimization problems are typically constrained, in the sense that A is given with a number of constraints and is also typically 

burdened by model non-linearity, as is the case of an FC model, which results in the non-convexity of ƒ and consequent local 

minima x* [12]: 

  f (x*) ≤ f (x) x − x* ≤ δ  (2) 

Moreover, large problems lead to high computational cost. Given the problems of curse of dimensionality, presence of local 

minima and computational costs, smart strategies can find good solutions, if not the absolute best one, which actually may be 

impossible to find. Although the no-free-lunch theorem shows that “any two optimization algorithms are equivalent when their 

performance is averaged across all possible problems” [13], efficient optimizers exist which allow to solve our specific problem of 

finding only a domain-specific solution. 

Stochastic methods have been introduced in the analyses of FCs in the last decade and their use has been strongly increasing in 

the last three years. The researches published so far aim at exploring the capability of stochastic methods in achieving good fittings 

of PEMFC polarization curves and resort to simplified empirical PEMFC models, used as black boxes. Those stochastic methods 

demonstrate to be efficient at that aim, since their results depend on some optimization parameters which must be trimmed at the 
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experimental polarization curves. In these conditions, fitting a set of empirical parameters to match a given polarization curve is not 

a hard task for numerical optimizers, but the usefulness of the results is limited. By using a proper number of unknown parameters 

(5–7), they provide enough flexibility for fitting purposes without introducing duplicity problems (i.e. multiple fitting solutions 

which can appear when many unknowns are sought). However, duplicity is not crucial, because empirical parameters have no direct 

physical meaning. Conversely, the algorithm that we present, built over an early investigation on the capability of stochastic 

methods to deal with FCs [14], aims at identifying several physical parameters of the materials of a PEMFC by means of an 

optimization approach. At this aim, we use a detailed multi-physical performance model that employs such parameters and takes 

into account some physical control quantities [15]. 

In the following sections, we first present the PEMFC performance model, consisting of non-linear equations, which provides 

the computed performance (the PEMFC polarization curves) at different values of physical control quantities (temperature, gas 

pressure and humidity) making use of the unknown parameters. Then, we present the selective hybrid stochastic algorithm that we 

have developed for identifying the unknown parameters. It consists of a hybrid stochastic method complemented with a selective 

strategy for coping with the duplicity problem. Finally, an example of multi-parameter identification is presented.  

2. PEMFC multiphysics performance model 

The model for the stochastic identification must strike a balance between opposite requirements. On one hand it should be 

extremely rich in order to be able to represent the complete behavior of the cell, i.e. a multiphysical, three-dimensional model, 

described by partial differential equations (PDEs) and characterized by a large number of physical parameters which can capture 

the detailed distribution of the physical quantities inside the cell and their time evolution. On the other hand it should be sufficiently 

simple to be suitable for being included in a stochastic optimization loop, i.e. the model should be numerically computable in a very 

short time, considering the CPU power at hand, and it should be characterized by a relatively small number of parameters in order 

to avoid the curse of dimensionality issue. Here we resort to a zero-dimensional stationary model that avoids PDEs and their 

inherent computational burden in order to match these conflicting requirements and to run the algorithm on a standard PC. 

2.1. Open circuit emf EOC 

The hydrogen oxidation reaction (HOR) occurring at the anode catalyst layer (CL) and the oxygen reduction reaction (ORR) at 

the cathode catalyst layer 

 

anode: H2 → 2H++ 2e−

cathode: 1
2
O2+ 2H

++ 2e− → H2O
 (3) 

are segregated by the membrane (i.e. the proton exchange membrane, PEM, Fig. 1), allowing the development of the cell’s 

reversible voltage E (i.e. the cell’s electromotive force, emf). According to the Nernst equation, E varies with temperature T and gas 

pressures pH2 , pO2  (or equivalently, with concentrations cH2 , cO2 ) [16]: 

BP flow channelDL
Anode

CLBP flow channel DL PEMCL

H+H2
O2

H2O

Cathode

 
 

Fig. 1. Scheme of PEMFC with anode and cathode flow channels of bipolar plates (BPs), diffusion layer (DLs), catalyst layers (CLs), 

and proton exchange membrane (PEM). Convective (in BPs) and diffusive (in DLs) fluid flows are sketched. 
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E = E0 + ΔEs (T )+ ΔEc(T , pH2 , pO2 )  (4) 

where E 0 = 1.229 V is the value at standard temperature T 0 = 298.15 K and pressure p 0 = 100 kPa, ΔEs is the entropic variation, 

and  ΔEc is the variation related with gas pressures and hence with gas concentrations. In order to allow an accurate modeling over a 

wide temperature range, ΔEs is calculated as 

 

ΔEs =
1
nF Δ ŝ(T )dT

T 0

T

∫ = ΔT
nF Δ ŝ(Ti )i∑  (5) 

rather than with the often used linearized expression (Δ ŝ / nF)(T −T 0 ) . In (5), F = 96485 C/mol is the Faraday constant, n = 2 is 

the number of charge carriers per reaction, according to (3), and Δ ŝ(Ti )  are molar reaction entropy values which are tabulated in 

the literature [17]. By introducing the “bulk” (undisturbed) concentrations 
 
cH2 and cO2 ,  ΔEc can be split into two terms: 
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 (6) 

Here R=8.314 J/mol⋅K is the gas constant and f e=nF/R=23,210 K/V.  ΔEco, which depends on cx / cx
0 , occurs whenever the 

bulk concentrations differ from standard-condition values, also in a no-load state.  ΔEcl, which depends on cx / cx , occurs as the 

concentrations at the electrochemical reaction sites (i.e. the triple phase boundaries, TPBs) inside the catalyst layers (CLs) differ 

from their bulk concentrations, due to gradients which appear in the presence of molar flow, namely, in load conditions. According 

to (4), (5), and (6), the cell’s open circuit emf is: 

EOC = E
0 + 1

nF Δ ŝ(T )dT
T 0
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⎥

 (7) 

EOC differs from the open circuit voltage (OCV) because of gas crossover through the membrane that also occurs in no-load 

condition (Subsection 2.6). Moreover, in steady-state load conditions, the cell voltage V differs from EOC and varies with the 

electric current density j  due to  ΔEcl and other voltage drops ΔVk (namely, overpotentials η) [18]: 

 V ( j)= EOC − ΔVaa − ΔVac − ΔVca − ΔVcc − ΔVm  (8) 

The double subscripts have the following meaning: the first subscripts a and c indicate the activation losses and concentration 

losses respectively, and the second subscripts a and c indicate the anode (HOR electrode) and cathode (ORR electrodes) 

respectively. The subscript m refers to the PEM, where ohmic losses occur. 

2.2. Activation losses and exchange current density 

The electrochemical kinetic activity of the species reacting at the anode and cathode CLs, as in (3), produces the voltage drops 

ΔVaa and ΔVac. Each activation voltage drop is related to the rate of charge density separation ∂tρe (proton and electron creation at 

the anode; ∂t represents the partial time derivative) and recombination (at the cathode), which, in steady-state conditions, are equal 

to the current density jTPB at the TPB and can be modeled by means of the Butler-Volmer equation [16]:  
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jTPB = j0TPBx
cRx
cRx

eα x feΔVax /T − cPx
cPx

e−(1−α x ) feΔVax /T⎛
⎝⎜

⎞
⎠⎟

 (9) 

where α is the transfer coefficient of each half-reaction, j0TPB
 is its exchange current density, subscripts Rx  stands for Ra = H2, in 

the case of the anode, and for Rc = O2, in the case of the cathode, and Px  stands only for Pc = H2O at the cathode. 

Correspondingly, the ratios c / c  have the same meaning as in (6) and differ from 1 due to the concentration gradients appearing in 

load conditions. The structure of TPBs inside the CLs is such that the total active area ATPB where  j0TPB
 is produced is much larger 

than the cross-section A of the device (ATPB/A can be larger than 103). Since we are interested in modeling the cell polarization 

performance, we prefer to refer the exchange current density to A, by using [19] 

 j0 =
ATPB
A

j0TPB  (10) 

and a similar expression is used to adjust the current density of (9). The subscript x has been omitted here and in the following for 

the sake of simplicity. Combining (9) and (10) yields 

 jt = j0
cR
cR
eα feΔVa /T − cP

cP
e−(1−α ) feΔVa /T

⎛
⎝⎜

⎞
⎠⎟

 (11) 

The total equivalent current density jt appears in place of the electric current density j, to account for the effect on the 

overpotentials of the hydrogen crossover (Subsection 2.6). An accurate evaluation of the exchange current densities j0  of the half-

reactions is important because they strongly affect the cell performance and round-trip efficiency, according to (11). Since the 

effects of temperature variations had to be taken into account, the Arrhenius-like dependence of j0  with T has been considered [20]: 

 j0 = j0* e
Wj

R
1
T*

− 1
T

⎛
⎝⎜

⎞
⎠⎟

 (12) 

where Wj is an activation barrier and j0* = j0 (T*) with c = c  (rest condition). The low operating temperature of PEMFCs and the 

exponential dependence of jt on ΔVa make activation losses the major factor responsible for the voltage drop at low current 

densities. Since ΔVac is typically one order of magnitude larger than ΔVaa, cathode activation losses are the dominant effect at low 

current densities [18]. 

2.3. Concentration gradients 

In load operation, the electric current generation at the CLs is sustained by the inflow of reagents and outflow of products, 

which in turn are provided by convective mass flow in the flow channels of the bipolar plates (BPs) and diffusive mass flow in the 

diffusion layers (DLs, Fig. 1). These mass flows produce gradients in the reagent and product concentrations and pressures, making 

the values c and p at the CLs different from the bulk (and inlet) values c and p , which affect (11) [21]. In order to model these 

concentration gradients ∇c, the model resorts to Fick’s first law N = –D∇c , which invokes the medium diffusivity D and the gas 

molar flow vector N, related in turn to the current density vector j  through the Faraday constant F and the charge carriers n = 2 for 

anode hydrogen and n = 4 for cathode oxygen:  

 j = nFN = −nF D∇c  (13) 

Thus, the concentrations of the reacting gases at the CLs are computed as: 

 c = c − 1
nFK

jt  (14) 

The mass transfer coefficient K 
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 K =
d fc
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takes into account both the diffusion effects within the DL laminar motion and the convective flow within the BP flow channels 

(Fig. 1). It depends on the flow channel hydraulic diameter dfc, the DL thickness ddl, their diffusivities Dfc and Ddl
eff , and the flow 

channel Sherwood number Sh  [22].  The effective diffusivity Ddl
eff in the DLs is computed with the usual Bruggeman relation 

Ddl
eff = Ddl ε

τ , where ε is the DL porosity and τ = 1.5 (assuming  τ = ε −0.5 ) [22,23]. The diffusivity dependence on temperature has 

been modeled as: 

 
  
D = D* p*

p
T

T *
⎛
⎝⎜

⎞
⎠⎟

2.33

 (16) 

where D*  is the value of D at the temperature T* and pressure p*. Since our experimental setup allows us to measure pressures 

rather than concentrations, it is convenient to re-write (14) in terms of pressures by means of the gas law p = cRT, which yields for 

both reacting gases 

 p = p − RT
nFK jt  (17) 

In this way, the effect of the temperature variation on concentration gradients can also be taken into account. The percolation of the 

produced liquid water at the cathodic CL also causes a pressure gradient in the water between the CL and flow channel. However, 

the values of p / p  significantly differ from 1 only at high current densities and high overpotentials ΔVac, namely when the second 

exponential in (11) vanishes. Thus they have not been considered in the model. 

2.4. Concentration losses and limit conditions 

Gas gradients ∇c and ∇p also produce the load term  ΔEcl of the Nernst equation (4), which can be written as: 

 ΔEcl =κ c
T
fe
ln
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 (18) 

where κ c  is a dimensionless coefficient a little larger than unity which allows us to account for secondary concentration-related 

effects.  ΔEcl is a negative variation that reduces the emf with respect to the no-load value EOC and, together with the concentration 

effect on (11), constitutes the concentration losses which dominate the cell’s performance at high current densities. Equation (18) 

can be rewritten as the sum of the anodic and cathodic concentration voltage drops of (8): 

−ΔEcl = ΔVca + ΔVcc =κ ca
T
fe
ln

cH2
cH2

⎛
⎝⎜

⎞
⎠⎟
+κ cc

T
2 fe

ln
cO2
cO2

⎛
⎝⎜

⎞
⎠⎟

 (19) 

These two terms provide the anodic and cathodic current density limits, namely the theoretical values of the current densities 

which cause the CL concentrations and pressures to vanish and the half-reaction stop, in a starvation condition: 

 
jLa = nH2

FKa cH2
= fe Ka pH2

/T

jLc = nO2 FKc cO2 = 2 fe Kc pO2 /T
 (20) 

Since the smaller limit current density occurs at the cathode, due to the lower diffusivity of oxygen compared to hydrogen, jLc 

constitutes the device’s current density limit. 
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2.5. PEM ohmic losses 

Nafion®, which consists of polytetrafluoroethylene (PTFE) backbones bearing perfluoroethereal side chains terminated with 

sulfonic acid groups [24], is the most-used material for PEM, because it exhibits an excellent behavior as a protonic ohmic 

conductor when properly hydrated. ΔVm of (8) is thus: 

 ΔVm = dm
γ

j  (21) 

where dm is the PEM thickness. The conductivity γ  depends on temperature and hydration, namely the ratio λ  = cw /csa between 

water and sulfonic acid concentrations, that can vary in the range 0–22 for typical perfluorinated proton-conducting membranes 

based on Nafion® 

 γ (λ) = γ o(T ) B λ  (22) 

The linear dependence on λ  via the dimensionless coefficient B is the adaptation of an empirical model [25] aimed at avoiding 

a negative value of γ  at lower λ . The temperature dependence is expressed according to the Vogel-Tamman-Fulcher model [26–

28]: 

 γ o(T ) = A0T
−0.5 e

Wm
R Tg−T( )  (23) 

where  A0 = 0.048 K0.5S/cm, Tg = 157 K is the glass transition temperature, and Wm = 1.86 kJ/mol is the activation barrier. Although 

λ  varies along the PEM’s thickness dm according to back-diffusion and electro-osmotic drag [29], the average between the PEM 

boundary values λ a and λ c (i.e. at the CLs) has been used in (22), consistently with a linear profile between λ a and λ c. These 

values depend on the water activities awa and awc of the reacting gases at the CLs, and are computed with the empirical polynomial 

[25]: 

λ =
0.043+17.81aw − 39.85aw

2 + 36.0aw
3 0 ≤ aw ≤1

14 +1.4(aw −1)   1≤ aw ≤ 3

⎧
⎨
⎪

⎩⎪
 (24) 

The water activity is the relative humidity expressed in absolute terms and is computed from the water vapor partial pressure pw 

and the water vapor saturation pressure pws: 

 aw = RH
100

= pw
pws (T )

 (25) 

with [18]: 

pws = 10
(−2.1794+0.2953T −9.1837⋅10−5T 2+1.4454⋅10−7T 3)  (26) 

Since the setup used in collecting the experimental data for the stochastic identification assures high gas flow rates, the values 

pwa and pwc of the partial pressure at the CLs have been assumed equal to the values in the BP flow channels. Consistently, the gas 

bulk pressures and concentrations c and p  used in the previous equations are derived from the total bulk pressures pI at both anode 

(hydrogen) and cathode (oxygen) BPs: 

 
pa = (pIa − awa pwsa )
pc = g (pIc − awc pwsc )

 (27) 

 

ca =
1
RT

(pIa − awa pwsa )

cc =
g
RT

(pIc − awc pwsc )
 (28) 
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where g = 0.21 if the cathode is fed with air and g = 1 in the case of pure oxygen. 

2.6. Hydrogen crossover 

Fuel crossover consists of hydrogen that does not react at the anode but migrates through the PEM to react at the cathode 

directly with oxygen, without producing electric power. This is a major side-effect that affects the FC performance and efficiency 

and depends on two causes, diffusion and electro-osmotic drag. Hydrogen mass flow and its two contributions have been modeled 

as equivalent current densities, according to (13) 

 jco = jcod + jcoe  (29) 

Diffusive crossover depends on the hydrogen concentration gradient inside the PEM and its equivalent jcod can be modeled with 

Fick’s first law:  

 jcod =
nF DmH2

dm
cH2  (30) 

where cH2 is the hydrogen concentration at the anodic CL, as in (14) and constitutes the gradient itself, assuming zero concentration 

at the cathodic CL (namely, a complete reaction of all the hydrogen arriving here). DmH2 is the hydrogen diffusivity inside the PEM, 

whose dependence on temperature has been modeled with an Arrhenius-like equation: 

 DmH2 = DmH2
* e

WmH2
R

1
T*

− 1
T

⎛
⎝⎜

⎞
⎠⎟  (31) 

where WmH2 is an activation barrier and DmH2
* = DmH2 (T*) . Electro-osmotic drag consists of hydrogen drawn by protons while 

migrating from anode to cathode, namely producing the electric current density j. It accounts for crossover effects at low cH2 values, 

i.e. when j approaches the limit current density jL. Its equivalent jcoe is modeled as [30]: 

 jcoe = nζ λ j  (32) 

where ζ is a dimensionless electro-osmotic drag coefficient. Eq. (32) takes into account an intensifying effect with hydration, as 

happens with water electro-osmotic drag. The resulting equivalent crossover current density depends on hydrogen concentration, 

hydration, and PEM protonic current density: 

 jco =
nF DmH2

dm
cH2 + nζ λ j  (33) 

Crossover hydrogen reacts at the cathode, increasing the activation overpotential ΔVac, mass flow in both DLs and their 

concentration losses ΔVca and ΔVcc. Consequently, in (11), (14), and (17), the total equivalent current density jt is considered: 

 jt = j + jco  (34) 

Crossover hydrogen is the main cause of the difference between the open circuit emf EOC of (7) and the observed OCV V(0) 

[31]. It also causes a loss of stored energy that reduces round-trip efficiency. Also oxygen diffuses through the PEM, but, since its 

diffusivity is much lower than hydrogen [23], it has been neglected in this model. 

2.7. Thermal gradient 

The dissipations occurring inside the cell produce thermal gradients which affect the temperature-dependent parameters. The 

model takes into account such dependences by considering the dissipative effects occurring in the CLs and in the PEM. The 

thermodynamic heat generation per unit area (Peltier heating) related to the formation of the reversible voltage E of (4) in load 

condition is written as: 
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 PP = −N (Δĥ − Δĝ) = − j TΔŝ
nF

 (35) 

where Δĥ(T )  and Δ ĝ(T ) are the molar reaction enthalpy and Gibbs’ energy. The losses per unit area related to the electrochemical 

kinetic activity at the anode and cathode CLs are given as: 

 Pa = jΔVa ( j)  (36) 

Finally, the joule losses per unit area in the PEM are written as: 

 Pm = dm
γ

j2  (37) 

so that inside the cell thickness the dissipated power per unit area is: 

 Pdiss = j −TΔŝ
nF

+ ΔVa ( j)
⎡

⎣
⎢

⎤

⎦
⎥ +

dm
γ

j2  (38) 

Heat transport inside the cell depends on conduction, diffusion, convection and possibly radiation and must take into account 

the thermal capacity in dynamic conditions [18,22]. The temperature distribution can then be obtained by 3D integration of the 

resulting partial differential equations. However, for the aim of this model, a simpler evaluation is sufficient, suitable to provide an 

accurate enough estimation of the mean temperature T inside the cell with respect to the room and gas inlet temperature Tr, so the 

following equation has been used: 

 T = Tr + kt pdiss  (39) 

where kt is a global thermal exchange coefficient. In order to avoid further major numerical complication involving convergence 

issues, a second order polynomial approximation of (38) has been adopted, which allows us to re-formulate (39) as 

   T = Tr + kt1 j + kt2 j2
  (40) 

where kt1  and kt2  are parameters to be identified within the stochastic search. 

2.8. Model numerical implementation 

In the numerical implementation of the model, consistent analytical expressions for all the input/output relationships have been 

imposed, while avoiding the introduction of approximations. With this aim, the numerical model uses the electric current density j 

as the independent variable to compute all voltage terms of (8). In order to deal with the non-invertible Butler-Volmer equation 

(11), a tabulated dataset approach has been used, which allows us to obtain the activation losses from the current density by 

resampling. 

3. Stochastic optimization 

A number of nonlinear deterministic optimization methods have been applied to PEMFCs in the last decade, proving successful 

in dealing with specific tasks. Least squares methods have been applied to the estimation of single material parameters (e.g. 

membrane conductivity, exchange current densities, oxygen diffusion coefficients as well as parameters evolution under 

degradation events and semi-empirical parameters [32–34]). Support vector machine (SVM) approaches, i.e. learning algorithms 

that analyze data and recognize patterns, have been used for predictive control and real-time diagnostics [35–37]. The Gradient 

method has been exploited in the search for optimal designs and parameters evolution, such as cathode configuration optimization, 

geometric optimization, and flow field serpentine optimization [38–41]. A review of deterministic optimization methods used for 

identification problems in PEMFCs is given in [42]. These researches show that such methods can be effective and fast in solving 

specific problems. However, they suffer from some drawbacks, e.g. they may lack flexibility to handle arbitrary constraints, are 

sensitive to noise, may require function derivatives and are prone to remain trapped in local minima. 
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Stochastic optimization methods are very appealing in dealing with these problems, because they can overcome the limitations 

of deterministic methods. In fact, the strong nonlinearity of FC models yields non-convex formulations of the identification 

problems. Stochastic optimizers are intrinsically tailored for escaping the resulting local minima, unlike deterministic optimizers. 

Moreover, stochastic methods can simultaneously deal with the several parameters used in FC characterization and modeling, 

thanks to their metaheuristic nature (they are the most common of the metaheuristic techniques) and can also deal with non-

differentiable optimization problems. Stochastic methods have also been introduced in the analyses of FCs in the last decade and 

their use has been strongly increasing in recent years. Several stochastic methods have been used, i.e. genetic algorithms (GA) 

[413,44], Particle Swarm Optimization (PSO) [45,46] and Differential Evolution (DE) [47,48], just to name the most well known. 

Such iterative methods typically work with populations of candidate solutions (i.e., of tentative x of (1) which iteratively aim at x0). 

They use random variables, which can be introduced in different points within the optimization algorithm, and the type of 

randomness may be trimmed to the problem at hand in order to achieve the best performance. Although the convergence to the 

global optimum is guaranteed only asymptotically, there is abundant numerical evidence that very good solutions can be obtained 

for most problems without requiring specific and detailed model assumptions. Such methods provide noise robustness, i.e. reduced 

sensitivity to modeling and data errors [49]. On the other hand, stochastic methods are computationally very expensive (i.e. they 

require large CPU and computation time), but are also usually intrinsically suitable for parallel computation, that can be performed 

in high-performance computers. In consideration of their high computational costs, a crucial feature of FC stationary models is that 

the latters avoid partial differential equations thus resulting in numerical formulations with relatively low computational costs, 

which can be affordably used in stochastic routines. A large number of stochastic optimization methods have been developed, 

among which those best fitted to a specific task can be selected. The solution strategy can make use of a single method, as well as 

of combinations of them, in order to exploit and merge their specific capabilities. This is the strategy we have developed, based on 

particle swarm optimization (PSO) and differential evolution (DE). 

3.1. Particle swarm optimization – PSO 

PSO is inspired by the social behavior of birds. After early studies on its mathematical modeling by biologist Craig Reynolds, 

Russel Ebenhart and James Kennedy recognized the suitability of this technique for optimization and developed PSO in 1995 [50]. 

The algorithm makes use of a population of particles, whose positions in the search space A are candidate solutions, all of 

which at every iteration change their positions (i.e., each candidate solution is replaced by another candidate solution) through 

velocities, in search of positions which provide good values of the fitness function ƒ, similarly to birds and fish searching for food 

(Fig. 2-a). At each iteration the personal best of each particle and the global best of the whole population is recomputed and 

updated. Such information is shared among particles, in the same way that birds and fish exchange information by acoustic and 

optical means. Randomness is introduced at every iteration in the individual velocity, while taking into account both personal and 

global performance. In algorithmic terms, the main steps of a PSO are (Fig. 2-b):  

1) PSO is initialized by providing a population of n particles with random positions xi and velocities vi in A. 

2) Each particle’s fitness ƒ(xi) is evaluated and, if improved, the personal best is updated pi = xi; 

  pi (t) =
pi (t −1) if f (xi ) ≥ f (pi (t −1))
xi if f (xi ) < f (pi (t −1))

⎧
⎨
⎪

⎩⎪
 (41) 

and the new global best pg among the pi of the whole population is identified. 

3) Velocity vi and position xi of each particle are updated according to: 
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vi (t+1) = wvi (t)+ c1 r1 pi (t)–xi (t)[ ]+ c2 r2 pg(t)–xi (t)⎡⎣ ⎤⎦
xi (t+1) = xi (t)+ Δt vi (t+1)

 (42) 

and a foraging strategy consisting in a velocity limitation is also adopted: 

            vi (t +1) =
vmax if vi (t +1) > vmax
−vmax if vi (t +1) < vmax
vi (t +1) else

⎧

⎨
⎪

⎩
⎪

 (43) 

4) A convergence test is performed and if not satisfied, the control goes back to step 2); else the algorithm stops. 
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Fig. 2. PSO: (a) scheme of concepts and (b) algorithm. 

 

The number of particles n, the inertia w (weight) and the learning factors c1, c2 are to be tailored by the operator to the 

optimization problem at hand. The weight w (i.e. the inertia) is a positive value and the larger it is the better the global search, while 

the smaller it is the better the local search. Consistently, a linearly decreasing w(t) provides better overall performance, with typical 

boundaries wmax = 0.9 and wmin = 0.4. The learning factors c1, c2 are usually set in order of 2. r1, r2 are two randomly generated 

numbers in the range (0,1). The three terms forming vi in (42) take into account inertia, the cognition (memory) of each particle, 



 12 

and the social behavior (exchange of information among particles), respectively. A large number of iterations is usually needed, as 

large as t = 20,000 and more, which is impracticable with computationally heavy models. The PSO algorithm intrinsically favors, 

with respect to other stochastic algorithms, explorations of the search space A, i.e. the search for the global optimum. This desirable 

feature, however, is obtained at the cost of lower computational efficiency with respect to other competing methods. 

3.2. Differential Evolution – DE 

DE was developed in 1995 by Rainer Storn and Kenneth Price [51,52]. It uses a population of agents which move in the search 

space A according to simple formulae combining the agents’ positions (candidate solutions), and new positions are accepted if their 

fitness improves (Fig. 3-a).  

(a)

xr1

xr2

xr3

xr4

xr2 – xr3 xr5

ƒ(x) contours in R2
xbest

yi

x0

xbest = current best agent 
x0 = global best 

yi = donor (in the case xr1 + F1(xr2 – xr3)) 
xri = randomly chosen candidate solution 

 

 

 

(b)      

Fig. 3. DE: (a) Scheme of Scheme of concepts ; (b) algorithm. 

 

The algorithm iteration consists of three steps (Fig. 3-b) and the iterations proceed as follows: 

1) DE is initialized by providing a population of n agents with random positions xi in A and their fitness ƒ(xi) is evaluated. 

2) The mutation step allows the search macro-space to be expanded by adding difference vector(s) to all agents, according to 

specifically tailored schemes. Some examples are: 

 

yi = xr1 + F1 xr2 − xr3( )
yi = xbest + F1 xr2 − xr3( )
yi = xr1 + F1 xr2 − xr3 + xr4 − xr5( )
yi = xbest + F1 xr2 − xr3 + xr4 − xr5( )
yi = xr1 + F1 xr2 − xr3( ) + F2 xbest − xr1( )
yi = xi + F1 xr2 − xr3( ) + F2 xbest − xi( )

 (44) 

3) The recombination step recovers the features of previously successful individuals (candidate solutions): 

 uij =
yij if  Rij ≤CR   or   j = Ir
xij else

⎧
⎨
⎪

⎩⎪
 (45) 
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4) The selection step allows selection of the best performing candidate solutions, mimicking a survival-of-the-fittest. A greedy 

scheme is used, that enables a fast convergence: 

xi
k+1 =

ui
k if  f (ui

k ) ≤ f (xi
k )

xi
k else

⎧
⎨
⎪

⎩⎪
 (46) 

5) A convergence test is performed and if not satisfied, the control goes back to point 2); else the algorithm stops. 

In (44), donors yi are proposed changes in agent positions, computed from randomly chosen candidate solutions xr1, …, xr5 and 

the current best agent xbest, making use of operator-chosen parameters F1 and F2 (mutation factors). In (45), uij is the j-th 

component of the trial agent ui, that is a tentative new candidate solution, Rij the corresponding uniformly distributed random real 

number in the range 0–1, CR is the operator-chosen crossover ratio, and Ir is a random integer in the range 1–n (with n the 

dimension of Rn). In (46), the tentative new candidate solutions are accepted if they improve the agent fitness. A DE algorithm 

intrinsically favors exploitation, i.e. fast convergence toward a minimum, because of the greedy scheme (46), but the solution can 

remain trapped in local minima. 

4. Tailoring the stochastic search 

4.1. Hybrid stochastic strategy 

In order to take advantage of the capability of PSO as regards exploration and DE as regards exploitation, we developed a 

hybrid optimization scheme that uses alternatively both of them at each iteration, according to the scheme of Fig. 4a, with each 

algorithm utilizing its own population of candidate solutions. As shown later on, tests proved that this hybrid scheme is capable of 

avoiding local minima and rapidly converging to what is reasonably the global minimum. Fig. 4b shows that both populations 

cooperate in the identification of the minimum and Table 1 presents a comparison among the results obtained with the hybrid 

algorithm and with the PSO and DE alone.  
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Fig. 4. Hybrid scheme based on the combination of PSO and DE. a) flowchart, b) objective function improvement due to DE and PSO for the polarization curve at 

Tr = 40°C, pbp = 15 psig, and RH = 100%. 
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Table 1: Effect of the specific optimization algorithm. Statistics collected over 50 runs, performed on an experimental polarization curve at Tr = 40°C, pbp = 15 

psig, and RH = 100%. Bold indicates best value in the column. The objective function f is given in (47). 
 

 Best f Avg. f Worst f Std. Dev. f 
DE 218.1E-3 277.0E-3 388.2E-3 41.8E-3 
PSO 278.1E-3 356.9E-3 536.2E-3 55.7E-3 
Hybrid PSO+DE 153.5E-3 228.4E-3 359.7E-3 40.5E-3 

 

4.2. Fitness function 

The fitness function ƒ of (1) that has to be minimize is built on the differences between the computed Vmod(j) and measured 

Vexp(j) voltages along the cell polarization curves. Vmod(j) are provided by (19), based on the model described in Section 2, while 

Vexp(j) are obtained from an experimental set-up that assures controlled cell temperature, gas pressures and relative humidity, as 

described in Section 5. Several fitness functions ƒ of (1) can be defined, e.g. functions f1 and f2 in (47), and in principle all can 

provide a perfect fit between the experimental data and model outputs when minimized, but they have different “landscapes” that 

make the minimization process harder or easier. Numerical experiments have shown that the best results in terms of computational 

efficiency and the stability of the obtained results over several runs are obtained by the following fitness function:  

 

f (x) = 0.5 f1(x)+ 0.5 f2 (x)
x =Vmod −Vexp
f1 = max | xi |

f2 = xi∑ 2

 (47) 

 

Table 2 shows a comparison between different choices for f. It can be noted that constructing an objective function which is a 

weighted average between the maximum (f1) and RMS (f2) deviation between model output and experimental data provides better 

final RMS approximation than using f2 which uses the RMS value only.  

 
Table 2: Effect of the choice of objective function f. Statistics collected over 50 runs of the hybrid PSO-DE algorithm, performed on an experimental polarization 

curve at Tr = 40°C, pbp = 15 psig, and RH = 100%. Bold indicates best value in the column. 

 

 Best f1 Avg. f1 Worst f1 Std. Dev. f1 Best f2 Avg. f2 Worst f2 Std. Dev. f2 
f = f1 of (47) 21.5E-3 32.95E-3 41.3E-3 5.0E-3 459.2E-3 722.8E-3 941.2E-3 129.6E-3 
f = f2 of (47) 20.8E-3 75.5E-3 94.9E-3 21.6E-3 294.3E-3 452.7E-3 861.1E-3 120.5E-3 
f = 0.5 f1+0.5 f2 19.9E-3 45.3E-3 78.8E-3 21.5E-3 283.2E-3 411.4E-3 675.2E-3 91.7E-3 

 

4.3. Anti-duality strategies 

Duality, namely multiple solutions x achieving the same accuracy in minimizing ƒ, is a major problem arising when the number 

of unknowns is large and the non-linear problem is weakly constrained. In order to overcome it, a strategy has been adopted that 

consists in splitting the search into more identification sub-problems, each having a lower number of unknowns. A number of 

techniques are available with which to take advantage of this approach and they basically rely on isolating a group of equations, 

which can yield some of the unknowns, some having already been applied to fuel-cell analyses [53,54]. One example is the current 

switch method [55,56]. Our strategy consists in a three-phase approach: 

1) Preprocessing: in the first phase the PEMFC open circuit operation is analyzed; 

2) Core processing: in the second phase the working points in load condition along the polarization curves are selectively used 

according to the locally dominant loss effect (i.e. activation losses, ohmic losses, and concentration losses); 
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3) Postprocessing: in the third phase, the parameters identified in the previous two phases are used to determine the remaining 

unknowns and validate the previous ones. 

4.4. Preprocessing: OCV analyses 

Tafel’s slope method allows us to extract information from working points at low current density j along the polarization curve. 

For large enough ΔVa (say >100 mV), the backward current density of the Butler-Volmer equation (11) is negligible compared with 

the forward one (roughly by a factor of 100), so that the equation can be reversed as 

 ln jt = − ln j0 + ln
cR
cR

+ α f
T

ΔVa  (48) 

On the other hand, if the current density j is not too high (typically 100–150 mA) the activation voltage drops, and in particular 

the cathodic one ΔVac, are much higher than the concentration and membrane voltage drops ΔVc and ΔVm, so we can assume that 

ΔVac ≅ ΔV = EOC – V(j). Consistently with (19), in such a low current density condition we can also assume the CL gas 

concentrations equal to the bulk values, c ≅ c, so that Tafel’s approximation holds [23]: 

 ln jt = − ln j0c +
αc f
T
(EOC −V )  (49) 

This equation allows us to extract the dominant (cathodic) exchange current density j0c and its transfer coefficient αc from 

properly selected experimental data j and V, at known bulk gas pressures pI  and temperature T, EOC being computed by means of 

(7). Furthermore, extrapolating V(j) data at very low j provides the OCV V(0), which differs from the open circuit fem EOC because 

of hydrogen crossover, represented by jcod of (30). By using j0c, αc, and ΔV(0) in (11), jt = jcod at j = 0 is obtained, that allows to 

compute DmH2. Repeating the computation at different temperatures provides data for a best-fit determination of WmH2 of (31). In 

short, this phase allows us to identify αc , j0c , Wi , jcod , DmH2 , WmH2 . 

4.5. Core processing: selective variable separation 

A straightforward use of a stochastic optimizer with a large number of unknowns (n of Rn) can result in duality with unrealistic 

results, because the objective function may be much more sensitive to some unknowns than to others causing the latter to vanish. 

This behavior has emerged in experimenting with the present application of stochastic optimizers, in which we found that the 

parameters related to the activation losses and to the concentration losses, which are strongly non-linear, prevail over the ohmic 

losses, which are linear at given hydration and temperature, and their identified values tend to vanish. On the other hand, we can 

use this non-linearity to our advantage. Our strategy consists in exploiting the characteristic behavior of FCs, by selectively using 

the typical three portions of their polarization curves. Thus we used the experimental data at low current density to identify the 

parameters related with the activation losses, which dominate the polarization curve in such working condition. Then we used the 

experimental data at high current density to identify the parameters related with the concentration losses, which dominate the 

corresponding portion of the polarization curve. Finally, we used the experimental data at intermediate current density to identify 

the parameters related with the ohmic losses. 

4.6. Postprocessing: temperature correlations 

In the final phase we used the parameters identified from the experimental data acquired at different temperatures for fitting 

pertinent correlation parameters, such as the activation barriers. 

4.7. Computational complexity 

The numerical model described in Section 2 allows to evaluate a single polarization curve in less than 0.1 seconds on standard 

PC hardware so that the complete set of 12 experimental curves described in Section 5 were reconstructed in approximately 1 

second (we used a Mac ibook with a 2.6 GHz i7 Intel processor and a 1.6 GHz 8 GB DDR3 memory). A typical optimization run 
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requires the evaluation of some thousands of models, the exact number depending on algorithmic settings and convergence criteria, 

and lasted between 1 and 3 hours in our case. Speedups of one order of magnitude, i.e. maximum total run times in the order of 20 

minutes can be easily achieved through parallelization of the objective function evaluation, which is not currently implemented in 

our algorithm. A high performance machine with parallelized computing can allow to implement more sophisticated PDE models 

describing the spatial distribution and time evolution of the physical quantities inside the cell, which can underpin a keener 

optimization processes. 

5. Experimental data 

5.1. Test PEMFC preparation  

The experiments were carried out on a membrane-electrode assembly (MEA) fabricated in accordance with the procedure 

reported in [57]. Briefly, a Nafion117™ membrane procured from Ion Power was activated as described in [58] and subsequently 

dried overnight at room temperature. Two identical electrode inks were prepared, comprising a Pt-black electrocatalyst (BASF C6-

100) and Nafion® ionomer (Ion Power 5 wt% solution), which were suspended in a water/isopropanol 1/10 w/w solution. Each 

electrode ink was thoroughly homogenized with a probe sonicator and subsequently painted on a square 2 × 2 cm gas diffusion 

substrate (GDS1120 carbon paper with a thickness of 184 microns, obtained from Ballard Material Products); solvents were 

removed under an IR lamp. The resulting gas diffusion electrodes were hot-pressed onto the dried Nafion117™ membrane, 

yielding an MEA. The loading of Pt in each catalyst layer was 4 mg cm–2. The electrochemically active surface area ATPB referred to 

the Pt loading was 19.4 m2gPt
–1, as determined in situ with the “driven cell” method [4,5,9]. 

5.2. Experimental set-up 

The MEA experimental data were acquired on a high-performance dedicated test station consisting of a single cell fixture, a test 

chamber, a gas supply system, an electronic load and an acquisition system. The test chamber (Fig. 5) allowed the experiments to 

be run under a controlled room temperature. The reactants were humidified, achieving a dew point up to 100°C; their pressures 

were controlled by means of back-pressure valves, which allowed a back pressure of up to 100 psig to be achieved. The gas supply 

system provided highly pure reactants. 99.9999% pure H2 was produced by a hydrogen generator (Strumenti Scientifici Cinel); pure 

O2 was obtained from a conventional high-pressure tank (Alphagaz® 1 grade, Air Liquide); air was drawn from a conventional 

high-pressure tank. The flow rate of H2 could be varied in the 10–1000 sccm range; in the case of both pure oxygen and air, the 

flow rate could be varied in the 20–2000 sccm range. The electronic load allowed exploration of the polarization curve from near 

open-circuit to almost short-circuit (i.e. near the cell limit current density). 

Experiments were carried out in the following physical conditions: 

1) room temperature: Tr = 40–60–85°C, 
2) total gas back pressure: pbp  = 15–65 psig (205–550 kPa), 
3) inlet gas relative humidity: RH = 50–100%, 

 
It is pointed out that: (i) the flow rates chosen for the experiments corresponded to very high stoichiometric factors (equal to ca. 

30 or higher); (ii) the active area A of the single cell was very small; (iii) the water provided by the reactant streams was always 

much more than that produced by the cell upon operation; and (iv) in the experimental setup, the MEA was placed in a very 

massive, temperature-controlled single fuel cell fixture (Fig. 5). In these conditions, it could be assumed that: (i) the controlled back 

pressures pbp at each electrode are equal to the total bulk pressures pI used in the model; (ii) liquid water does not condense in the 

PEMFC during operation, preventing complications arising from two-phase liquid saturation; (iii) PEMFC hydration is controlled 

for the most part by the reactant streams, allowing to neglect issues arising from water transport; and (iv) the amount of heat 

produced by the cell (on the order of a few watts) was effectively removed by the circulating fluids and was insufficient to affect 
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significantly the temperature of the system, thus preventing heat buildups. The above considerations ensure the applicability of the 

proposed stationary zero-dimensional multiphysics performance model to the analysis of the experimental polarization curves. 

 
 

Fig. 5. Test chamber used for collecting the experimental polarization curves under controlled conditions 

 

6. Results 

In the following, we present the result of multi-parameter identification obtained by means of the PEMFC multiphysics 

performance model coupled with the stochastic algorithm described in sections 4 and 5, respectively. The experimental data used in 

the identification were obtained with the experimental set-up described in section 6 and consisted of 12 polarization curves, each 

obtained in a different physical condition as regards room temperature Tr, total gas back pressure pbp and gas relative humidity RH 

(i.e. water activity aw). 

6.1. Pre-identification – Tafel slope 

In this phase, the model parameters αc , j0c , Wj , jcod , DmH2 , WmH2  were pre-identified. In order to perform the preprocessing 

algorithm as described in subsection 5.4, proper sub-sets of each experimental polarization curve were used, typically with j 

ranging from 2.5 mAcm–2 to 25–38 mAcm–2. As an example, some values obtained at Tr = 40–85°C, pbp = 15 psig, RH = 100% are 

shown in Table 3. Changing these conditions, consistent values were obtained, e.g.  αc=0.59 at Tr = 40–85°C, pbp = 65 psig, RH = 

100%. These values were used as reasonable starting values for the stochastic optimization performed in the core identification 

phase. 
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Table 3: Some model parameters identified in the pre-processing phase. 

 

 αc  j0c 

µAcm–2
 

Jcod 
mAcm–2 

DmH2 

cm2 s–1 
WmH2 

J mol–1 
T = 40°C 
pbp = 15 psig 
RH = 100% 

0.36 3.16 0.23 0.17 576 

T = 85°C 
ppb = 15 psig 
RH = 100% 

0.38 4.85 0.27 0.42 576 

 

6.2. Core identification – Hybrid selective stochastic method 

This phase allowed us to identify the model parameters αc , j0c , Wj c , jcod ,  Kc, Ka, κca, κcc, B, ζ, kt1, kt2, by means of the hybrid 

PSO-DE optimization algorithm presented in section 5. The polarization curve of a fuel cell presents three distinct sections in which 

different loss effects dominate the cell behavior, namely: i) the activation losses at low current density, ii) the ohmic losses at 

intermediate current density, and iii) the concentration losses at high current density. This feature was exploited in order to 

minimize the duplicity problem, by selectively operating the hybrid optimization algorithm in four steps. 
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Fig. 6. Core identification of hybrid PSO-DE algorithm, performed on an experimental polarization curve at Tr = 40°C, pbp = 15 psig, and RH = 100%. 

a) Step 1 = low current density and activation-related parameters. b) Step 2 = intermediate current density and ohmic-related parameters. 

c) Step 3 = high current density and concentration parameters. d) Step 4 = trimming of all parameters on the whole polarization curve. 
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Step 1: Identification of activation loss parameters 

The algorithm searched for the parameters related to the activation losses by using the initial part of the polarization curve in the 

fitness function ƒ of (47) and assuming that in this part of the curve the concentration ratios in (11) can be considered equal to 

one, namely that the concentration of the reactants at the CLs is the same as in the bulk. The parameters identified were: αc , j0c , 

Wj c , jcod . Fig. 6-a shows the result of step 1 for the experimental curve at Tr = 40°C, pbp = 15 psig, RH = 100%. 

 

Step 2: Identification of membrane loss parameters 

The algorithm retained the parameters identified in step 1 and searched for the parameters related to the ohmic losses in the 

membrane by using the polarization curve at intermediate current density the fitness function (47). The parameter identified was 

B. Fig. 6-b shows the result of step 2. 

 

Step 3: Identification of concentration loss parameters 

The algorithm retained the parameters identified in steps 1 and 2 and searched for the parameters related to the concentration 

losses by using the complete polarization curve in the fitness function (47). The parameters identified were: Ka,  Kc, κca, κcc. Fig. 6-

c shows the result of step 3. 
 

Step 4: Combined optimization of all parameters 

Since the initial guess can significantly affect the performance of any stochastic optimization, a final search was performed, in 

which the algorithm executed a post-optimization which rearranged all parameters starting from their already identified values. In 

this step parameters kt1, kt2 and ζ were also added to the problem degrees of freedom. This final step was actually found to further 

improve the fit. Fig. 6-d shows the result of step 4. 

 

The core identification based on the selective hybrid PSO-DE algorithm can be carried out not only on single curves, as shown 

above, but also on several curves at once. This approach was used to obtain the polarization curves shown in Fig. 7. 
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Fig. 7. Result of the core identification by means of the selective hybrid PSO-DE algorithm run simultaneously on all polarization curves. 

Dashed lines: experimental, continuous lines: optimized models. 

 



 20 

6.3. Postprocessing 

Since the optimization procedure is stochastic, different runs produce different results which may or may not give a satisfactory 

fitting of the experimental curve, calling for a critical analysis of the optimization outputs. Fig. 8-a highlights this effect, by 

showing the seven best optimized parameter combinations obtained after 20 different runs of the procedure. The corresponding 

polarization curves are shown in Fig. 8-b. It can be seen that quite good results can be obtained for several values of most 

parameters, although the correspondence between the model and experiment is more sensitive to some parameters than to others, as 

shown by their tighter clustering. Table 4 reports the values of the parameters αc , j0c , Wj c , jcod ,  Kc, Ka, κca, κcc, B, ζ, kt1, kt2 

identified with the hybrid selective stochastic method in the core phase. 
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Fig. 8. Stochastic effect - Seven best optimizations after 20 runs a) Distribution of the best optimized parameters; b) resulting modeled polarization curves 

 

Table 4: Model parameters identified by means of the hybrid PSO-DE algorithm. 
 

 αc  j0c 

µAcm–2
 

Wjc 
J mol–1 

Jcod 
mAcm–

2 

Kc 

cm s–1 
Ka 

cm s–1 
κca κcc B ζ 

×10–3 

kt1 

K 
cm2A–1 

kt2 

K 
cm4A–2 

T = 40°C 
pI = 15 psig 
RH = 100% 

0.33 1.71 43218 0.23 97.3 0.314 11.2 2.21 7.79 8.4 2.04 8.09 

T = 60°C 
pI = 15 psig 
RH = 100% 

0.39 1.71 41883 0.32 120.5 0.352 12.1 1.97 6.70 9.2 1.95 8.13 

T = 85°C 
pI = 15 psig 
RH = 100% 

0.37 1.71 47430 0.097 98.4 0.499 10.8 2.01 8.57 8.5 2.21 7.77 

T = 40°C 
pI = 65 psig 
RH = 100% 

0.37 1.68 47451 0.24 100.2 0.134 11.2 1.88 2.81 8.7 1.98 7.69 

T = 60°C 
pI = 65 psig 
RH = 100% 

0.43 1.66 48618 0.099 97.4 0.136 11.4 1.96 5.79 9.1 2.20 8.01 

T = 85°C 
pI = 65 psig 
RH = 100% 

0.61 1.68 46414 0.24 131.3 0.185 12.2 2.04 5.10 9.7 1.79 8.11 

T = 40°C 
pI = 15 psig 
RH = 50% 

0.52 1.84 43538 0.29 120.0 0.346 10.8 1.98 2.88 31 2.31 8.14 
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T = 60°C 
pI = 15 psig 
RH = 50% 

0.51 1.86 54173 0.17 99.8 0.398 11.4 2.09 19.3 29 1.96 7.88 

T = 85°C 
pI = 15 psig 
RH=50% 

0.53 1.85 32965 0.20 101.1 0.498 12.0 2.11 13.3 31 1.97 8.34 

T = 40°C 
pI = 65 psig 
RH = 50% 

0.35 1.17 44391 0.099 122.3 0.117 11.3 1.89 12.9 32 2.02 7.90 

T = 60°C 
pI = 65 psig 
RH = 50% 

0.37 1.16 45432 0.17 109.6 0.146 11.9 1.92 23.3 29 2.02 7.95 

T = 85°C 
pI = 65 psig 
RH = 50% 

0.40 1.17 42519 0.19 102.3 0.196 11.9 1.98 51.3 32 1.91 8.18 

6.4. Lessons learned 

Some final considerations emerge after performing the parameters identification and the consequent model fitting to the 

experimental curves. First, the larger the number of unknown parameters, the wider and more accurate must be the experimental 

data and the experimental conditions. Such accuracy may be critical to obtain in the case of experimental data consisting of the 

polarization curves of a fuel cell, which depend on a large number of factors related to both the samples under test and the 

experimental conditions, some of which are hard to repeat with high accuracy. Such difficulties can be dealt with by collecting 

more curves in the same operating conditions, which allows us to perform a quality control of the materials used in preparing the 

samples and make a statistical selection of the experimental data. Moreover, enriched experimental conditions may allow to 

identify also some parameters which have a minor effect on the polarization curve, e.g. a set of experimental data captured with 

different back pressures between anode and cathode may allow the identification of the anodic exchange current density, which is 

otherwise hidden by the larger effect of the cathodic exchange current density. This issue confirms that accurate parameter 

identification in fuel cells is a “no-free-lunch” task [13]. On the other hand, the identification procedure, or, more precisely, the 

poorly accurate fitting of the whole polarization curves over every operating condition, can be instrumental in revealing weakness 

factors of the model, calling for further work for its improvement and enrichment, so as to take into account hidden and subtle 

effects. 

7. Conclusions 

As reported in previous literature, stochastic optimizers have already proven to be particularly effective for fitting models 

depending on a large number of parameters to experimental data, as is the case of PEMFC numerical models which aim at 

reproducing their polarization curve. The challenge we have faced consists in using stochastic optimizers for the identification of 

multiple physical parameters via in situ measurements. Our work highlights that this is a much more challenging task than simply 

fitting empirical models, but it is feasible. To achieve this aim, care and work are required, as regards model accuracy and 

optimization strategy. The results can be of great importance in addressing future research on materials. Comparison of the results 

with ex situ measurements also allows us to address the pathways for transferring the performance parameters to fuel cell operative 

conditions. Better performance can be achieved using optimization algorithms tailored to the problem at hand and the operator’s 

expertise is crucial to fit the algorithm formulation to the required parameters. Wider ranges of experimental data, such as curves 

extended to extreme current density values and resolved at different operating conditions (T, p, pa ≠ pc, RH, RHa ≠ RHc ), assure a 

wider knowledge of the problem that can fully exploit the stochastic optimizer capabilities. Duplicity problems are lurking in this 

kind of identification, but they can be prevented by means of stepwise and selective procedures incorporating the stochastic 

optimizer as a core processor, which result in variable separation techniques. Finally, stochastic optimization can reveal physical 

model weaknesses and can suggest model improvements. 
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Nomenclature 

 

Acronyms 

BES broadband electrical spectroscopy 

BP bipolar plate 

CV-TF-RRDE cyclic voltammetry with the thin-film rotating ring-disc electrode 

DE differential evolution 

DL diffusion layer 

DMFC direct methanol fuel cells 

EIS electrochemical impedance spectroscopy 

FC fuel cell 

MCFC molten carbonate fuel cells 

PEMFC proton exchange membrane fuel cells 

PSO particle swarm optimization 

SOFC solid oxide fuel cells 

VTF Vogel-Tamman-Fulcher 

 

Symbols in stochastic optimization 

A search space 

c1, c2 learning factors 

CR crossover ratio 

f objective, quality, fitness, or cost function 

F1,  F2 mutation factors 

f1,  f2 partial fitness functions 
I random integer 

I random integer 

n dimension of Rn, number of variables to be optimized, number of particles 

p personal best 

R set of the real numbers 

Rn n-dimensional set of the real numbers 
r1, r2 randomly generated numbers 

Rij uniformly distributed random real number 

t number of iterations 

u trial 

v velocity 

w weight 

x element of the search space, candidate solution 

w1,  w2 partial objective weights 

x* maximum, minimum of the search space, solution of the optimization problem 
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y donor 
 

Symbols in fuel cell model 

A cell active cross-section cm2 
ATPB total triple phase boundaries area  cm2 
A0 VTF conductivity parameter K0.5 S cm–1 

aw water activity  

B  dimensionless conductivity coeff.  
b concentration voltage drop coeff. V 

c concentration mol cm–3 

D diffusivity cm2 s–1 

d thickness cm 

E Nernst cell voltage V 

E0 Standard Nernst cell voltage V 

F Faraday constant C mol–1 

f e  electrochemical parameter K V–1 

g dimensionless gas fraction  

i electric current A 

j electric current density A cm–2 

j , N  vectors of j, N  

j0 exchange current density A cm–2 

jco equivalent crossover current density A cm–2 

jcod equivalent diffusive crossover current density A cm–2 

jcoe equivalent electro-osmotic crossover current 

density 

A cm–2 

jL limit crossover current density A cm–2 

jt total current density A cm–2 

K mass transfer coefficient cm s–1 

kt global thermal exchange coefficient K W–1 

kt1 1st thermal exchange coefficient K cm2 A–1 
kt2 2nd thermal exchange coefficient K cm4 A–2 
n charge carriers per reaction  

N gas molar flow mol cm–2 s–1 

p pressure Pa 

Pa kinetic activity dissipation per unit area W cm–2 

Pdiss total dissipation per unit area W cm–2 

pI total bulk pressures  kPa 

Pm membrane dissipation per unit area W cm–2 

PP thermodynamic dissipation per unit area W cm–2 

pw vapor pressure kPa 

pws vapor saturation pressure kPa 
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R gas constant J mol–1 K–1 

Rcol collector ohmic resistance Ω 

RH relative humidity % 

Rm membrane ohmic resistance Ω 

Rohm ohmic resistance Ω 

Sh Sherwood number  

T temperature K 

Tg glass transition temperature K 

Tr room temperature K 

W activation barrier J mol–1 

α transfer coefficient  

γ membrane conductivity S cm–1 

γ0 membrane conductivity at λ= 0.115 S cm–1 

Δ variation, increment  

 ΔEc Nernst voltage variation with c  V 

 ΔEs Nernst voltage variation with Δ ŝ  V 

ΔVa activation voltage drop V 

ΔVc concentration voltage drop V 

ΔVm membrane ohmic voltage drop V 

ΔVohm ohmic voltage drop V 

ε DL porosity  

ζ electro-osmotic drag coefficient  

κ coefficient in concentration losses  

λ  membrane hydration  

ρe surface electric charge density C cm–2 

τ  Bruggeman coefficient  

B  membrane conductivity coefficient  

Δ ŝ  molar reaction entropy J mol–1 K–1 

Δĥ  molar reaction enthalpy J mol–1 

Δ ĝ  molar reaction Gibbs free energy J mol–1 

∂t partial time derivative  

∇  nabla operator  
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Subscripts and superscripts in fuel cell model 

aa activation anodic 

– (upper) bulk value 

* reference value 

a anode 

A cross-section area 

ac activation cathodic 

ATPB electrochemical active area (i.e. at TPB) 

c cathode 

ca concentration anodic 

cc concentration cathodic 

cl concentration in load condition 

co concentration in open circuit 

col collector 

dl diffusion layer 

e electrical  

eff effective 

fc flow channel 

H2 hydrogen 

m membrane 

mH2 hydrogen in the membrane 

O2 oxygen 

OC open circuit 

ohm ohmic 

P product 

R reagent 

sa sulfonic acid groups 

TPB triple phase boundaries 

x species/electrode index 

 


