On definably proper maps

Original Citation:

Availability:
This version is available at: 11577/3216974 since: 2021-03-10T10:06:35Z

Publisher:
Instytut Matematyczny

Published version:
DOI: 10.4064/fm96-12-2015

Terms of use:
This article is made available under terms and conditions applicable to Open Access Guidelines, as described at http://www.unipd.it/download/file/fid/55401 (Italian only)

(Article begins on next page)
ON DEFINABLY PROPER MAPS

MÁRIO J. EDMUNDO, MARCELLO MAMINO, AND LUCA PRELLI

Abstract. In this paper we work in o-minimal structures with definable Skolem functions and show that: (i) a Hausdorff definably compact definable space is definably normal; (ii) a continuous definable map between Hausdorff locally definably compact definable spaces is definably proper if and only if it is a proper morphism in the category of definable spaces. We give several other characterizations of definably proper including one involving the existence of limits of definable types. We also prove the basic properties of definably proper maps and the invariance of definably proper (and definably compact) in elementary extensions and o-minimal expansions.

1. Introduction

Let $M = (M, <, \ldots)$ be an arbitrary o-minimal structure with definable Skolem functions. In this paper we show that Hausdorff definably compact definable spaces are definably normal (Theorem 2.11). We also show a local almost everywhere curve selection for Hausdorff locally definably compact definable spaces (Theorem 2.18).

Theorem 2.11 was only known in special cases: it was proved by Berarducci and Otero for definable manifolds in o-minimal expansions of real closed fields ([1, Lemma 10.4] - the proof there works as well in o-minimal expansions of ordered groups); it was proved in [9] for definably compact groups in arbitrary o-minimal structures. Theorem 2.18 is an extension of the almost everywhere curve selection for M^n in arbitrary o-minimal structures proved by Peterzil and Steinhorn ([17, Theorem 2.3]).

In Corollary 4.6 and Proposition 4.8 we show that definably compact is invariant under elementary extensions and o-minimal expansions of M. In Proposition 4.10 we show that if M is an o-minimal expansion of the ordered set of real numbers, then definably compact corresponds to compact. These invariance and comparison results extend similar results for definably compact subsets of M^n in arbitrary o-minimal structures and answer partially a question from [17].

In the authors recent work on the formalism of the six Grothendieck operations on o-minimal sheaves ([7] and [8]) we require the basic theory of morphisms proper...
in the category of o-minimal spectral spaces similar to the theory of proper morphisms in semi-algebraic geometry ([3, Section 9]) (and also in algebraic geometry [12, Chapter II, Section 4] or [11, Chapter II, Section 5.4]). Here, in Section 3, we provide such a theory by giving a category theory characterization of definably proper maps (as separated and universally closed morphisms in the category of definable spaces) and by proving the basic properties of such morphisms.

In Theorems 4.4 and 4.9 we show that definably proper is invariant under elementary extensions and o-minimal expansions of \(M \). In Theorem 4.11 we show that if \(M \) is an o-minimal expansion of the ordered set of real numbers, then definably proper corresponds to proper. These invariance and comparison results transfer to the notion of proper morphism in the category of o-minimal spectral spaces.

The formalism of the six Grothendieck operations on o-minimal sheaves ([7] and [8]) provides the cohomological ingredients required for the computation of the subgroup of \(m \)-torsion points of a definably compact, abelian definable group \(G \) - extending the main result of [6] which was proved in o-minimal expansions of ordered fields using the o-minimal singular (co)homology. This result is enough to settle Pillay’s conjecture for definably compact definable groups ([19] and [15]) in arbitrary o-minimal structures. See [5]. Pillay’s conjecture is a non-standard analogue of Hilbert’s 5th problem for locally compact topological groups, roughly it says that after taking the quotient by a “small subgroup” (a smallest type-definable subgroup of bounded index) the quotient when equipped with the the so called logic topology is a compact real Lie group of the same dimension.

Finally in Section 5 we prove that definable compactness of Hausdorff definable spaces can be characterized by the existence of limits of definable types (Theorem 5.2), extending a remark by Hrushovski and Loeser ([14]) in the affine case. In Theorem 5.3 we prove a corresponding characterization of definably proper maps between Hausdorff locally definably compact definable spaces which, when transferred to morphisms proper in the category of o-minimal spectral spaces, is the analogue of the valuative criterion for properness in algebraic geometry ([12, Chapter II, Theorem 4.7]). As it is known, in o-minimal structures with definable Skolem functions, definable types correspond to valuations ([16] and [18]).

Acknowledgements. We wish to thank the referee for reading our paper so carefully and for making very detailed reports with suggestions of simplifications of some proofs as well as fixes to gaps in previous versions of the paper.

2. ON DEFINABLY COMPACT SPACES

2.1. Hausdorff definably compact spaces. Here we will show that if \(M \) has definable Skolem functions, then Hausdorff definably compact definable spaces are definably normal.

Below we will assume the reader familiarity with basic o-minimality (see for example [4]). Below, by definable we mean definable in \(M \) possibly with parameters. Recall also that \(M \) has definable Skolem functions if for every uniformly definable family \(\{ F_t \}_{t \in T} \) of definable sets, then there is a definable map \(f : T \to \bigcup_t F_t \) such that for each \(t \in T \) we have \(f(t) \in F_t \).
Recall the notion of definable spaces ([4]):

Definition 2.1. A definable space is a tuple \((X, (X_i, \theta_i)_{i \leq k})\) where:

- \(X = \bigcup_{i \leq k} X_i\);
- each \(\theta_i : X_i \rightarrow M^{n_i}\) is an injection such that \(\theta_i(X_i)\) is a definable subset of \(M^{n_i}\) with the induced topology;
- for all \(i, j\), \(\theta_i(X_i \cap X_j)\) is an open definable subset of \(\theta_i(X_i)\) and the transition maps \(\theta_{ij} : \theta_i(X_i \cap X_j) \rightarrow \theta_j(X_i \cap X_j) : x \mapsto \theta_j(\theta_i^{-1}(x))\) are definable homeomorphisms.

We call the \((X_i, \theta_i)\)'s the definable charts of \(X\) and define the dimension of \(X\) by \(\dim X = \max\{\dim \theta_i(X_i) : i = 1, \ldots, k\}\). If all the \(\theta_i(X_i)\)'s are open definable subsets of some \(M^n\), we say that \(X\) is a definable manifold of dimension \(n\).

A definable space \(X\) has a topology such that each \(X_i\) is open and the \(\theta_i\)'s are homeomorphisms: a subset \(U\) of \(X\) is open in the basis of this topology if and only if for each \(i\), \(\theta_i(U \cap X_i)\) is an open definable subset of \(\theta_i(X_i)\).

A map \(f : X \rightarrow Y\) between definable spaces with definable charts \((X_i, \theta_i)_{i \leq k}\) and \((Y_j, \delta_j)_{j \leq \ell}\) respectively is a definable map if:

- for each \(i\) and every \(j\) with \(f(X_i) \cap Y_j \neq \emptyset\), \(\delta_j \circ f \circ \theta_i^{-1} : \theta_i(X_i) \rightarrow \delta_j(Y_j)\) is a definable map between definable sets.

We say that a definable space is affine if it is definably homeomorphic to a definable set with the induced topology.

The construction above defines the category of definable spaces with definable continuous maps which we denote by Def. All topological notions on definable spaces are relative to the topology above. Note however, that often we will have to replace topological notions on definable spaces by their definable analogue.

We say that a subset \(A\) of a definable space \(X\) is definable if and only if for each \(i\), \(\theta_i(A \cap X_i)\) is a definable subset of \(\theta_i(X_i)\). A definable subset \(A\) of a definable space \(X\) is naturally a definable space and its topology is the induced topology, thus we also call them definable subspaces.

In nonstandard o-minimal structures closed and bounded definable sets are not compact. Thus we have to replace the notion of compactness by a suitable definable analogue.

Let \(X\) be a definable space and \(C \subseteq X\) a definable subset. By a definable curve in \(C\) we mean a continuous definable map \(\alpha : (a, b) \rightarrow C \subseteq X\), where \(a < b\) are in \(M \cup \{-\infty, +\infty\}\). We say that a definable curve \(\alpha : (a, b) \rightarrow C \subseteq X\) in \(C\) is completable in \(C\) if both limits \(\lim_{t \rightarrow a^+} \alpha(t)\) and \(\lim_{t \rightarrow b^-} \alpha(t)\) exist in \(C\), equivalently if there exists a continuous definable map \(\overline{\alpha} : [a, b] \rightarrow C \subseteq X\) such that the diagram

\[
\begin{array}{ccc}
(a, b) & \xrightarrow{\alpha} & C \subseteq X \\
\downarrow & & \downarrow \\
[a, b] & \xrightarrow{\overline{\alpha}} & \end{array}
\]

is commutative.
Definition 2.2. Let X be a definable space and $C \subseteq X$ a definable subset. We say that C is **definably compact** if every definable curve in C is completable in C (see [17]).

The following is easy:

Fact 2.3. Suppose that M has definable Skolem functions. Let $f : X \rightarrow Y$ a continuous definable map between definable spaces. If $K \subseteq X$ is a definably compact definable subset, then $f(K)$ is a definably compact definable subset of Y.

For definable subsets $X \subseteq M^n$ with their induced topology (i.e. affine definable spaces) the notion of definably compact is very well behaved. Indeed, we have ([17, Theorem 2.1]):

Fact 2.4. A definable subset $X \subseteq M^n$ is definably compact if and only if it is closed and bounded in M^n.

However, in general, definably compact definable subsets of a definable space are not Hausdorff and are not even necessarily closed subsets:

Example 2.5 (Non Hausdorff and non closed definably compact subsets). Let $a, b, c, d \in M$ be such that $c < a < b < d$. Let X be the definable space with definable charts $(X_i, \theta_i)_{i=1,2}$ given by: $X_1 = \{ (x, y) \in [c, d] \times [c, d] : x = y \} \cup \{ (b, a) \} \subseteq M^2$, $X_2 = \{ (x, y) \in [c, d] \times [c, d] : x = y \} \subseteq M^2$ and $\theta_i = \pi_{[x]}$, where $\pi : M^2 \rightarrow M$ is the projection onto the first coordinate. Then any open definable neighborhood in X of the point (b, a) intersects any open definable neighborhood in X of the point (b, b). Clearly X is definably compact but not Hausdorff and X_2 is a definably compact subset which is not closed (in X).

It is desirable to work in a situation where definably compact subsets are closed. We will show that this is the case in Hausdorff definable spaces when M has definable Skolem functions.

Before we need to introduce some notations.

Let X be a definable space and let $(X_i, \theta_i)_{i \leq k}$ be the definable charts of X with $\theta_i(X_i) \subseteq M^{n_i}$. Let $N = n_1 + \cdots + n_k$ and fix a point $* \in M$. For each $i \leq k$, let $\pi_i : M^N = M^{n_1} \times \cdots \times M^{n_k} \rightarrow M^{n_i}$ be the natural projection and let $\rho_i : M^{n_i} \rightarrow M^N$ be the inclusion with $\rho_i(M^{n_i}) = \{ * \} \times \cdots \times \bigcup_{j=1}^{n_i} \times \cdots \times \{ * \} \subseteq M^N$. Identify each M^{n_i} with $\rho_i(M^{n_i}) \subseteq M^N$. Identify as well each $\theta_i(X_i) \subseteq M^{n_i}$ and each θ_i with $\rho_i \circ \theta_i$.

For $a \in X$ let $I_a = \{ i \leq k : a \in X_i \}$ and set

$$D(a) = \{ (d_1, \ldots, d_N) \in M^N : \theta_j(a) \in \pi_j(\Pi_{i=1}^N(d_i, d^+_i)) \text{ for all } j \in I_a \}.$$

Consider the finite set $I_X = \{ I \subseteq \{ 1, \ldots, k \} : I = I_a \text{ for some } a \in X \}$. Then each $X_I = \{ x \in X : I_x = I \}$ with $I \in I_X$ is a definable subset and $X = \bigcup_{I \in I_X} X_I$.
Therefore, \[\{D(a)\}_{a \in X} \]
is a uniformly definable family of definable sets, since it is defined by the first-order formula
\[
\bigvee_{i \leq k} \left[(a \in X_i) \land \bigwedge_{j \in I} \bigwedge_{l=N_{j-1}+1}^{N_j} (d^-_l < \theta_j(a)_l < d^+_l) \right]
\]
where for each \(i \leq k \) we set \(N_i = n_1 + \cdots + n_i \) and where \(\theta_j(a)_l \) is the \(l \)-coordinate of \(\theta_j(a) \in M^N \).

For \(d, d' \in D(a) \) we set \(d \preceq d' \) if we have \(\Pi_{l=1}^{N_i} (d^-_l, d^+_l) \subseteq \Pi_{l=1}^{N_i} (d'^-_l, d'^+_l) \) and the notation \(d \prec d' \) is used whenever we have \(\Pi_{l=1}^{N_i} (d^-_l, d^+_l) \subset \Pi_{l=1}^{N_i} (d'^-_l, d'^+_l) \).

The following are immediate:

1. The relation \(\preceq \) on \(D(a) \) is a definable downwards directed order on \(D(a) \).
2. The set \(D(a) \subseteq M^{2N} \) is an open definable subset.
3. If \(d \in D(a) \) then \(\{d' \in D(a) : d' \prec d\} \) is an open definable subset of \(D(a) \).

For \(a \in X \) and \(d = \langle (d^-_1, d^+_1), \ldots, (d^-_N, d^+_N) \rangle \in D(a) \) set
\[
U(a, d) = \bigcap_{j \in I_a} \theta_j^{-1}(\theta_j(X_j) \cap \pi_j(\Pi_{l=1}^{N_j} (d^-_l, d^+_l)))
\]
Then
\[
\{U(a, d)\}_{d \in D(a)}
\]
is a uniformly definable system of fundamental open definable neighborhoods of \(a \) in \(X \).

The following will also be useful:

1. If \(a, a' \in X \) are such that \(I_{a'} \subseteq I_a \), then for every \(d \in D(a) \cap D(a') \) we have \(U(a, d) \subseteq U(a', d) \).

Finally we will also require:

1. If \(a \in X \) and \(W \) is an open definable neighborhood of \(a \) then the set \(\{d \in D(a) : U(a, d) \subseteq W\} \) is an open definable subset of \(D(a) \).

If \(B \subseteq X \) is a definable subset and \(\epsilon : B \rightarrow M^{2N} \) is a definable map such that \(\epsilon(x) \in D(x) \) for all \(x \in B \), then
\[
U(B, \epsilon) = \bigcup_{x \in B} U(x, \epsilon(x))
\]
is an open definable neighborhood of \(B \) in \(X \).

It follows that:
Remark 2.6. The notions of open (resp. closed) in a definable space X are first-order in the sense that if $(A_t)_{t \in T}$ is a uniformly definable family of definable subsets of X, then the set of all $t \in T$ such that A_t is an open (resp. a closed) subset of X is a definable set.

Recall that a topological space X is regular if one the following equivalent conditions holds:

(1) for every $a \in X$ and $S \subseteq X$ closed such that $a \notin S$, there are open disjoint subsets U and V of X such that $a \in U$ and $S \subseteq V$;

(2) for every $a \in X$ and $W \subseteq X$ open such that $a \in W$, there is V open subset of X such that $a \in V$ and $\overline{V} \subseteq W$.

Proposition 2.7. Suppose that \mathbb{M} has definable Skolem functions. Let X be a Hausdorff definable space. Then for any $a \in X$ and any definably compact subset $K \subseteq X$ such that $a \notin K$, there are finitely many definably compact subsets K_i ($i = 1, \ldots, l$) of K, finitely many continuous definable functions $\epsilon_i : K_i \to M^{2N}$ with $\epsilon_i(x) \in D(x)$ for all $x \in K_i$ and there is $d \in D(a)$ such that:

- $K \subseteq \bigcup_{i=1}^{l} U(K_i, \epsilon_i)$.
- $U(a, d) \cap (\bigcup_{i=1}^{l} U(K_i, \epsilon_i)) = \emptyset$.

In particular, if X is a Hausdorff, definably compact definable space, then X is regular.

Proof. We fix $a \in X$ and prove the result by induction on the dimension of definably compact subsets $K \subseteq X$ such that $a \notin K$.

If $\dim K = 0$, then this follows because X is Hausdorff. Assume the result holds for every definably compact subset L of X such that $a \notin L$ and $\dim L < \dim K$.

Since X is Hausdorff, for each $x \in K$ there is $d_t \in D(x)$ and there is $d \in D(a)$ such that $U(a, d) \cap U(x, d_t) = \emptyset$. By definable Skolem functions there are definable maps

$$g : K \to M^{2N}$$

and

$$h : K \to M^{2N}$$

such that:

(i) $g(x) \in D(a)$ for all $x \in K$;

(ii) $h(x) \in D(x)$ for all $x \in K$;

(iii) $U(a, g(x)) \cap U(x, h(x)) = \emptyset$.

Since, by Remark 2.6, continuity is first-order, the subset of K where either g or h is not continuous is a definable subset. By working in charts and using [4, Chapter 3, (2.11) and Chapter 4, (1.8)] this definable subset has dimension $< \dim K$ and, if L is the closure of this subset, then $\dim L < \dim K$. By induction hypothesis, there are finitely many definably compact subsets L_i ($i = 1, \ldots, k$) of L, finitely many continuous definable functions $\epsilon_i : L_i \to M^{2N}$ with $\epsilon_i(x) \in D(x)$ for all $x \in L_i$ and there is $d_L \in D(a)$ such that:

- $L \subseteq \bigcup_{i=1}^{k} U(L_i, \epsilon_i)$.
- $U(a, d_L) \cap (\bigcup_{i=1}^{k} U(L_i, \epsilon_i)) = \emptyset$.

Lemma 2.9. Suppose that $\beta : K' \rightarrow M^{2N}$ and $h : K' \rightarrow M^{2N}$ are continuous. We show that there is $d_{K'} \in D(a)$ such that $d_{K'} \leq g(x)$ for all $x \in K'$.

Write $g(x) = \langle (g^-(x)_1, g^+(x)_1), \ldots, (g^-(x)_N, g^+(x)_N) \rangle \in D(a)$ where for each $l = 1, \ldots, N$, $g^-(x)_l$ and $g^+(x)_l$ are the two l-components of $g(x)$. By Fact 2.3, for each $l = 1, \ldots, N$, let $d_l^- = \max \{g^-(x)_l : x \in K' \}$ and $d_l^+ = \min \{g^+(x)_l : x \in K' \}$. Since each $d_l^- = g^-(z)_l$ for some $z \in K'$, and similarly each $d_l^+ = g^+(z')_l$ for some $z' \in K'$, we have $d_{K'} := \langle (d^-_1, d^+_1), \ldots, (d^-_N, d^+_N) \rangle \in D(a)$. By construction we also have $d_{K'} \leq g_i(x)$ for all $x \in K'$.

To finish the proof, choose $d < d_L, d_{K'}$ by (D0) and, for each $i = 1, \ldots, k$, set $K_i = L_i$ and take also $K_{k+1} = K'$ and $\epsilon_{k+1} = h_{|K'}$. Then, by construction,

- $K \subseteq \bigcup_{i=1}^{k+1} U(K_i, \epsilon_i)$.
- $U(a, d) \cap (\bigcup_{i=1}^{k+1} U(K_i, \epsilon_i)) = \emptyset$.

The following is now immediate:

Corollary 2.8. Suppose that M has definable Skolem functions. Suppose that X is a Hausdorff definable space. If K is definably compact subset of X, then K is a closed definable subset.

We will require the following:

Lemma 2.9. Suppose that M has definable Skolem functions. Let X be a Hausdorff, definably connected, definable space and $K \subseteq X$ a definably compact subset. Let $\epsilon : K \rightarrow M^{2N}$ be a definable continuous map such that $\epsilon(x) \in D(x)$ for all $x \in K$ and suppose that for each $w \in K$ there is $d \in D(w)$ such that $\epsilon(w) \prec d$ and $\overline{U(w, d)}$ is definably compact. Then

$$\bigcup_{x \in K} U(x, \epsilon(x))$$

is a closed definably compact definable neighborhood of K. In particular we have

$$U(K, \epsilon) = \bigcup_{x \in K} U(x, \epsilon(x)) = \bigcup_{x \in K} U(x, \epsilon(x)).$$

Proof. Let $\alpha : (a, b) \rightarrow \bigcup_{x \in K} \overline{U(x, \epsilon(x))}$ be a definable curve. We have show that the limit $\lim_{t \rightarrow b^-} \alpha(t)$ exists in $\bigcup_{x \in K} \overline{U(x, \epsilon(x))}$.

By definable Skolem functions there is a definable map $\beta : (a, b) \rightarrow K$ such that for each $t \in (a, b)$ we have

$$\alpha(t) \in \overline{U(\beta(t), \epsilon(\beta(t)))}.$$

By o-minimality, after shrinking (a, b) if necessary, i.e., after replacing a by $a' \in (a, b)$ if needed, we may assume that β is a definable curve in K. Since K is definably compact, let $w = \lim_{t \rightarrow b^-} \beta(t) \in K$. Let also $\overline{\beta} : (a, b) \rightarrow K$ be the continuous definable map such that $\overline{\beta}_{|[a, b)} = \beta_{|[a, b)}$.

Recall that we have $\epsilon(D(w)) = D(w) \subseteq M^{2N}$ is an open definable subset by (D1). Since $\epsilon : K \rightarrow M^{2N}$ is continuous, it follows from the continuity of $\epsilon \circ \overline{\beta} : (a, b) \rightarrow M^{2N}$ at b that there is $a' \in (a, b)$ such that $\epsilon \circ \overline{\beta}(t) \in D(w)$ for all $t \in [a', b)$.
Since for each \(j \in I_w, \ X_j \) is an open definable neighborhood of \(w, \) by continuity, after shrinking \((a', b] \) if necessary, we may assume that \(\beta(t) \in X_j \) for all \(t \in [a', b] \) and all \(j \in I_w. \) Thus we must have \(I_w \subseteq J_{\beta(t)} \) for all \(t \in [a', b]. \) Therefore, by (D3), for all \(t \in [a', b] \) we have \(U(\beta(t), \epsilon(\beta(t))) \subseteq U(w, \epsilon(\beta(t))). \)

In particular, for each \(t \in [a', b] \) we have

\[
\alpha(t) \in U(w, \epsilon(\beta(t))).
\]

By hypothesis there is \(d \in D(w) \) such that \(\epsilon(w) = \epsilon(\beta(b)) < d \) and \(U(w, d) \) is definably compact. By (D2) and continuity of \(\epsilon \circ \beta : [a', b] \to D(w) \subseteq M^{2N}, \) after shrinking \((a', b] \) if necessary, we may further assume that \(\epsilon(\beta(t)) < d \) for all \(t \in [a', b]. \) Therefore, for all \(t \in [a', b], \)

\[
\alpha(t) \in U(w, d)
\]

for all \(t \in [a', b]. \)

Since \(U(w, d) \) is definably compact, there exists the limit \(\lim_{t \to b^-} \alpha(t) \in U(w, d). \)

Let \(v = \lim_{t \to b^-} \alpha(t) \in U(w, d). \) We want to show that \(v \in U(w, \epsilon(w)). \) Suppose not and set \(L = U(w, \epsilon(w)). \) Since \(L \) is definably compact subset of \(U(w, d), \) by Proposition 2.7, there are finitely many definably compact subsets \(L_i \) \((i = 1, \ldots, k)\) of \(L, \) finitely many continuous definable functions \(\epsilon_i : L \to M^{2N} \) with \(\epsilon_i(x) \in D(x) \) for all \(x \in L_i \) and there is \(d_L \in D(v) \) such that:

- \(L \subseteq \bigcup_{i=1}^{k} U(L_i, \epsilon_i). \)
- \(U(v, d_L) \cap \bigcup_{i=1}^{k} U(L_i, \epsilon_i) = \emptyset. \)

We have \(U(w, \epsilon(w)) \subseteq L \subseteq \bigcup_{i=1}^{k} U(L_i, \epsilon_i). \) If \(U(w, \epsilon(w)) = \bigcup_{i=1}^{k} U(L_i, \epsilon_i) \) then \(U(w, \epsilon(w)) = L = U(w, \epsilon(w)) \) and so \(U(w, \epsilon(w)) \) is a closed and open definable subset of \(X. \) Since \(X \) is definably connected we would have \(U(w, \epsilon(w)) = X \) and so \(v \in U(w, \epsilon(w)) \) which is a contradiction.

Since \(U(w, \epsilon(w)) \subseteq \bigcup_{i=1}^{k} U(L_i, \epsilon_i) \) and \(\bigcup_{i=1}^{k} U(L_i, \epsilon_i) \) is an open definable neighborhood of \(w, \) by (D4) there is \(a'' \in [a', b] \) such that \(U(w, \epsilon(\beta(t))) \subseteq \bigcup_{i=1}^{k} U(L_i, \epsilon_i) \) for all \(t \in [a'', b]. \) Therefore, for each \(t \in [a'', b] \) we have

\[
\alpha(t) \in \bigcup_{i=1}^{k} U(L_i, \epsilon_i).
\]

This implies that \(v \in \bigcup_{i=1}^{k} U(L_i, \epsilon_i) \) which contradicts the fact that \(U(v, d_L) \cap \bigcup_{i=1}^{k} U(L_i, \epsilon_i) = \emptyset. \)

By Corollary 2.8, \(\bigcup_{x \in K} U(x, \epsilon(x)) \) is closed and hence

\[
U(K, \epsilon) = \bigcup_{x \in K} U(x, \epsilon(x)) = \bigcup_{x \in K} U(x, \epsilon(x)).
\]

Recall that a definable space \(X \) is \textit{definably normal} if one of the following equivalent conditions holds:

1. for every disjoint closed definable subsets \(Z_1 \) and \(Z_2 \) of \(X \) there are disjoint open definable subsets \(U_1 \) and \(U_2 \) of \(X \) such that \(Z_i \subseteq U_i \) for \(i = 1, 2. \)
(2) for every \(S \subseteq X \) closed definable and \(W \subseteq X \) open definable such that \(S \subseteq W \), there is an open definable subsets \(U \) of \(X \) such that \(S \subseteq U \) and \(U \subseteq W \).

In general regular does not imply definably normal:

Example 2.10 (Regular non definably normal definable space). Assume that \(\mathbb{M} = (M, <) \) is a dense linearly ordered set with no end points. Let \(a, b, c, d \in M \) be such that \(c < a < b < d \) and let \(X = (c, d) \times (c, d) \setminus \{ (a, b) \} \). Since \(X \) is affine it is regular. Note also that the only open definable subsets of \(X \) are the intersections with \(X \) of definable subsets of \(M^2 \) which are finite unions of non empty finite intersections \(W_1 \cap \cdots \cap W_k \) where each \(W_i \) is either an open box in \(M^2 \), \(\{ (x, y) \in M^2 : x < y \} \) or \(\{ (x, y) \in M^2 : y < x \} \).

Let \(C = \{ (x, y) \in X : x = a \} \) and let \(D = \{ (x, y) \in X : y = b \} \). Then \(C \) and \(D \) are closed disjoint definable subsets of \(X \). However, by the description of the open definable subset of \(X \), there are no open disjoint definable subsets \(U \) and \(V \) of \(X \) such that \(C \subseteq U \) and \(D \subseteq V \).

Theorem 2.11. Suppose that \(\mathbb{M} \) has definable Skolem functions. If \(X \) is a Hausdorff, definably compact definable space, then \(X \) is definably normal. In fact, for every \(K \subseteq X \) closed definable subset and for every \(V \subseteq X \) open definable subset, if \(K \subseteq V \), there are finitely many definably compact subsets \(K_i \) \((i = 1, \ldots, l)\) of \(K \) and finitely many continuous definable functions \(\epsilon_i : K_i \to M^{2N} \) with \(\epsilon_i(x) \in D(x) \) for all \(x \in K_i \) such that:

\[
\begin{align*}
\bullet & \quad K \subseteq \bigcup_{i=1}^l U(K_i, \epsilon_i), \\
\bullet & \quad \bigcup_{i=1}^l U(K_i, \epsilon_i) \subseteq V.
\end{align*}
\]

Proof. Clearly we may assume that \(X \) is definably connected and we can fix \(V \subseteq X \) an open definable subset. We prove the result by induction on the dimension of closed definable subsets \(K \subseteq X \) such that \(K \subseteq V \).

If \(\dim K = 0 \) then the result follows since \(X \) is regular (Proposition 2.7). So assume that the result holds for every closed definable subset \(L \) such that \(L \subseteq V \) and \(\dim L < \dim K \).

Since \(X \) is regular (Proposition 2.7), for each \(x \in K \) there is \(d \in D(x) \) such that \(U(x, d) \subseteq V \). Since the property “\(d \in D(x) \) and \(U(x, d) \subseteq V \)” is first-order (Remark 2.6), by definable Skolem functions, there is a definable map \(\delta : K \to M^{2N} \) such that, for all \(x \in K \):

\[
\begin{align*}
\text{(i)} & \quad \delta(x) \in D(x); \\
\text{(ii)} & \quad U(x, \delta(x)) \subseteq V.
\end{align*}
\]

By definable Skolem functions again and by (D2), there is a definable map \(\epsilon : K \to M^{2N} \) such that, for all \(x \in K \):

\[
\begin{align*}
\text{(i)} & \quad \epsilon(x) \in D(x); \\
\text{(ii)} & \quad \epsilon(x) \prec \delta(x); \\
\text{(iii)} & \quad U(x, \epsilon(x)) \subseteq V.
\end{align*}
\]
Since, by Remark 2.6, continuity is first-order, the subset of K where ϵ is not continuous is a definable subset. By working in charts and using [4, Chapter 3, (2.11) and Chapter 4, (1.8)] this definable subset has dimension $< \dim K$ and, if L is the closure of this subset, then $\dim L < \dim K$. By induction hypothesis, there are finitely many definably compact subsets $L_i (i = 1, \ldots, k)$ of L and finitely many continuous definable functions $\epsilon_i : L_i \to M^{2N}$ with $\epsilon_i(x) \in D(x)$ for all $x \in L_i$ such that:

- $L \subseteq \bigcup_{i=1}^{k} U(L_i, \epsilon_i)$.
- $\bigcup_{i=1}^{k} \overline{U(L_i, \epsilon_i)} \subseteq V$.

Let $K' = K \setminus \bigcup_{i=1}^{k} U(L_i, \epsilon_i)$. Then K' is a closed definable subset and $\epsilon' = \epsilon | : K' \to M^{2N}$ is continuous. Furthermore, for each $w \in K'$ there is $d = \delta(w) \in D(w)$ such that $\epsilon'(w) < d$ and $\overline{U(w, d)}$ is definably compact. Therefore, by Lemma 2.9, we have $\overline{U(K', \epsilon')} \subseteq V$.

For each $i = 1, \ldots, k$, set $K_i = L_i$ and take also $K_{k+1} = K'$ and $\epsilon_{k+1} = \epsilon'$. Then, by construction,

- $K \subseteq \bigcup_{i=1}^{k+1} U(K_i, \epsilon_i)$.
- $\bigcup_{i=1}^{k+1} \overline{U(K_i, \epsilon_i)} \subseteq V$.

\[\square\]

Definable normality gives the shrinking lemma (compare with [4, Chapter 6, (3.6)]):

Corollary 2.12 (The shrinking lemma). Suppose that \mathbb{M} has definable Skolem functions. Let X be a Hausdorff definably compact definable space. If $\{U_i : i = 1, \ldots, n\}$ is a covering of X by open definable subsets, then there are definable open subsets V_i and definable closed subsets C_i of X (1 $\leq i \leq n$) with $V_i \subseteq C_i \subseteq U_i$ and $X = \cup \{V_i : i = 1, \ldots, n\}$.

2.2. Local almost everywhere curve selection.

To prove our results about definably proper maps later we will need a local version of an extension to definable spaces of the almost everywhere curve selection ([17, Theorem 2.3]):

Fact 2.13. If $C \subseteq M^n$ is a definable subset which is not closed, then there is a definable set $E \subseteq \overline{C} \setminus C$ such that $\dim E < \dim(\overline{C} \setminus C)$ and for every $x \in \overline{C} \setminus (C \cup E)$ there is a definable curve in C which has x as a limit point.

We say that the almost everywhere curve selection holds for a definable space X if for every definable subset $C \subseteq X$ which is not closed, there is a definable set $E \subseteq \overline{C} \setminus C$ such that $\dim E < \dim(\overline{C} \setminus C)$ and for every $x \in \overline{C} \setminus (C \cup E)$ there is a definable curve in C which has x as a limit point.

For general definable spaces, even affine ones, even if \mathbb{M} has definable Skolem functions, almost everywhere curve selection does not hold:

Example 2.14.

1. In $\mathbb{M} = (\mathbb{Q}, <)$, for the definable set $D = \{(x, y) \in \mathbb{Q}^2 : 0 < y < x\}$ there is no definable curve in D with limit $d = (0, 0)$. (This example is from [17]).
(2) Let $\Gamma = (\mathbb{R}, <, 0, -, +, (q)_{q \in \mathbb{Q}})$. Let $\Gamma_0 = \{0\} \times \Gamma$, $\Gamma_1 = \{1\} \times \Gamma$ and let ∞ be a new symbol such that $\langle 0, x \rangle < \infty < \langle 1, y \rangle$ for all $x, y \in \mathbb{R}$. Let $M = \Gamma_0 \cup \{\infty\} \cup \Gamma_1$ be equipped with the natural induced total order from $<$. Let \mathbb{M} be the structure obtained by putting on Γ_0 and on Γ_1 the induced structure from Γ. Then \mathbb{M} has definable Skolem functions (since each copy of Γ has definable Skolem functions by [4, Chapter 6, (1.2)]). However, for the definable set $D = \{(\langle 0, x \rangle, \langle 0, y \rangle) \in M^2 : x, y > 0\}$ there is no definable curve in D with limit $d = \langle\langle 0, 0\rangle, \infty\rangle$. Indeed, any definable curve in D will be definable in Γ and so its graph will be a piecewise linear subset of D ([4, Chapter I, (7.8)]). By piecewise-linearity there are no definable bijections between bounded and unbounded intervals and so no definable curve in D will have $d = \langle\langle 0, 0\rangle, \infty\rangle$ for a limit point. (This example is essentially the same as the Γ_{∞} from [14, Section 4.1] - the only difference is that we added a new copy of Γ, the Γ_1, so that our \mathbb{M} has no endpoints).

In both cases, if $X = D \cup \{d\}$ then almost everywhere curve selection does not hold for the definable space X since in X we have $\overline{\partial \setminus D} = \{d\}$.

The almost everywhere curve selection fails for $X \subseteq M^2$ in Example 2.14 because X there is not a locally closed subset of M^2.

Lemma 2.15. Suppose that X is a definable space and that the almost everywhere curve selection holds for X. Then the almost everywhere curve selection holds for every locally closed definable subset of X.

Proof. Let Z be a closed definable subset of X and let $C \subseteq Z$ be a definable subset which is not closed in Z. Since Z is closed, $\overline{\mathcal{C}} = \text{cl}_Z(C) \subseteq Z$ (the closure of C in Z), so $\overline{\mathcal{C}} \setminus C = \text{cl}_Z(C) \setminus C \neq \emptyset$ and the result follows by the assumption on X.

Let U be an open definable subset of X and let $C \subseteq U$ be a definable subset which is not closed in U. Note that $\overline{\mathcal{C}} \cap U = \text{cl}_U(C)$ (the closure of C in U). Let $B = C \cup (\overline{\mathcal{C}} \setminus U) = C \cup ((\overline{\mathcal{C}} \setminus \mathcal{C}) \setminus U)$. Then we have $\emptyset \neq \text{cl}_U(C) = \overline{\mathcal{C}} \cap U \subseteq C = (\overline{\mathcal{C}} \setminus \mathcal{C}) \setminus U = \overline{\mathcal{B}} \setminus B$ and the result follows applying the assumption on X to B. Note that any definable curve in B with limit a point in $\overline{\mathcal{B}} \setminus B \subseteq U$ must enter U and so gives a definable curve in $C = B \cap U$.

Let $Z \cap U$ be a general locally closed definable subset of X, where Z is a closed definable subset and U is an open definable subset. Let $C \subseteq Z \cap U$ be a definable subset which is not closed in $Z \cap U$. Then $\text{cl}_{Z \cap U}(C) = \overline{\mathcal{C}} \cap U = \text{cl}_U(C)$ and $\text{cl}_U(C) \setminus C = \text{cl}_{Z \cap U}(C) \setminus C \neq \emptyset$ and therefore, the result follows from the previous case. \hfill \Box

Lemma 2.16. Suppose that X is a definable space and V and W are open definable subsets such that $V \cup W = X$ and almost everywhere curve selection holds for V and W. Then almost everywhere curve selection holds for X.

Proof. Let $C \subseteq X = V \cup W$ be a definable subset which is not closed. Let $C_V = C \cap V \subseteq V$ and let $C_W = C \cap W \subseteq W$. Then we have $C = C_V \cup C_W$, $C = \overline{C_V} \cup \overline{C_W}$ and $\text{cl}_V(C_V) = \overline{C_V} \cap V = \overline{C} \cap V$ and similarly $\text{cl}_W(C_W) = \overline{C_W} \cap W = \overline{C} \cap W$. So $\overline{C} = (\overline{C} \cap V) \cup (\overline{C} \cap W) = \text{cl}_V(C_V) \cup \text{cl}_W(C_W)$. Therefore, $\overline{C} \setminus C = (\text{cl}_V(C_V) \setminus C) \cup (\text{cl}_W(C_W) \setminus C) = (\text{cl}_V(C_V) \setminus C_V) \cup (\text{cl}_W(C_W) \setminus C_W)$. \hfill \Box
If C_V is not closed in V, by the hypothesis, there is a definable set $F_V \subseteq \text{cl}_V(C_V) \setminus C_V$ such that $\dim F_V < \dim(\text{cl}_V(C_V) \setminus C_V)$ and for every $x \in \text{cl}_V(C_V) \setminus (C_V \cup F_V)$ there is a definable curve in C_V which has x as a limit point. Similarly, if C_W is not closed in W, there is a definable set $F_W \subseteq \text{cl}_W(C_W) \setminus C_W$ such that $\dim F_W < \dim(\text{cl}_W(C_W) \setminus C_W)$ and for every $x \in \text{cl}_W(C_W) \setminus (C_W \cup F_W)$ there is a definable curve in C_W which has x as a limit point. Let E_V be F_V if it exists and let it be \emptyset otherwise. Similarly, let E_W be F_W if it exists and let it be \emptyset otherwise. Let $E = E_V \cup E_W$. Since $C \setminus C = (\text{cl}_V(C_V) \setminus C_V) \cup (\text{cl}_W(C_W) \setminus C_W)$ we have $E \subseteq C \setminus C$. Since $C = C_V \cup C_W$ we also have that for every $x \in C \setminus (C \cup E)$ there is a definable curve in C which has x as a limit point. Since $\dim E = \max\{\dim E_V, \dim E_W\}$ and $\dim(\overline{C} \setminus C) = \max\{\dim(\text{cl}_V(C_V) \setminus C_V), \dim(\text{cl}_W(C) \setminus C_W)\}$ we also have $\dim E < \dim(\overline{C} \setminus C)$ as required.

By Fact 2.13, Lemma 2.15 and an induction argument using Lemma 2.16 we see that:

Corollary 2.17. Almost everywhere curve selection holds for locally closed definable subsets of definable manifolds.

Let X be a definable space. We say that:

- X is locally definably compact if every $x \in X$ has a definably compact neighborhood.

We now have the following extension of the almost everywhere curve selection to the non-affine case which will be useful later:

Theorem 2.18 (Local almost everywhere curve selection). Suppose that \mathcal{M} has definable Skolem functions. Let X be a Hausdorff, locally definably compact definable space. If $C \subseteq X$ is a definable subset which is not closed, then for every $z \in \overline{C} \setminus C$ there is a definable open neighborhood V of z in X such that \overline{V} is definably compact and there is a definable set $E \subseteq (\overline{C} \setminus C) \cap V$ such that $\dim E < \dim((\overline{C} \cap V) \setminus (C \cap V))$ and for every $x \in (\overline{C} \cap V) \setminus ((C \cap V) \cup E)$ there is a definable curve in $C \cap V$ which has x as a limit point.

Proof. By the assumption on X we get V such that \overline{V} is definably compact and so definably normal (Theorem 2.11). The result then follows at once after we show that almost everywhere curve selection holds for definably normal, definably compact definable spaces Y.

So let Y be such a definable space. Consider the definable charts $(U_i, \phi_i)_{i=1}^l$ of Y. Since Y is definably normal, by the shrinking lemma, there are open definable subsets V_i ($1 \leq i \leq l$) and closed definable subsets C_i ($1 \leq i \leq l$) such that $V_i \subseteq C_i \subseteq U_i$ and $Y = \cup\{V_i : i = 1, \ldots, l\}$. Since each C_i is definably compact and each ϕ_i is a definable homeomorphism, we have that each $\phi_i(C_i)$ is a closed (and bounded) definable subset of M^n_i and so by Fact 2.13 and Lemma 2.15, each $\phi_i(C_i)$ and so each C_i has almost everywhere curve selection. So by Lemma 2.15, each V_i has almost everywhere curve selection. Now we conclude by induction of l, using Lemma 2.16, that Y has almost everywhere curve selection.

The second part of the proof of Theorem 2.18 shows that:
Corollary 2.19. Almost everywhere curve selection holds for definably normal, definably compact definable spaces - even without assuming that M has definable Skolem functions.

3. PROPER MORPHISMS IN Def

3.1. Preliminaries. Here we recall some preliminary notions for the category Def whose objects are definable spaces and whose morphism are continuous definable maps between definable spaces.

Let $f : X \to Y$ be a morphism in Def. We say that:

- $f : X \to Y$ is closed in Def (i.e., definably closed) if for every object A of Def such that A is a closed subset of X, its image $f(A)$ is a closed (definable) subset of Y.
- $f : X \to Y$ is a closed (resp. open) immersion if $f : X \to f(X)$ is a homeomorphism and $f(X)$ is a closed (resp. open) subset of Y.

Proposition 3.1. In the category Def the cartesian square of any two morphisms $f : X \to Z$ and $g : Y \to Z$ in Def exists and is given by a commutative diagram

$$
\begin{array}{ccc}
X \times_Z Y & \xrightarrow{p_Y} & Y \\
\downarrow{p_X} & & \downarrow{g} \\
X & \xrightarrow{f} & Z
\end{array}
$$

where the morphisms p_X and p_Y are known as projections. The cartesian square satisfies the following universal property: for any other object Q of Def and morphisms $q_X : Q \to X$ and $q_Y : Q \to Y$ of Def for which the following diagram commutes,

$$
\begin{array}{ccc}
Q & \xrightarrow{u} & X \times_Z Y \\
\downarrow{q_X} & & \downarrow{q_Y} \\
X & \xrightarrow{f} & Z
\end{array}
$$

there exist a unique natural morphism $u : Q \to X \times Y$ (called mediating morphism) making the whole diagram commute. As with all universal constructions, the cartesian square is unique up to a definable homeomorphism.

Proof. The usual fiber product $X \times_Z Y = \{(x, y) \in X \times Y : f(x) = g(y)\}$ (a closed definable subspace of the definable space $X \times Y$) together with the restrictions $p_X : X \times_Z Y \to X$ and $p_Y : X \times_Z Y \to Y$ of the usual projections determine a cartesian square in the category Def. \square

Given a morphism $f : X \to Y$ in Def, the corresponding diagonal morphism is the unique morphism $\Delta : X \to X \times_Y X$ in Def given by the universal property of
cartesian squares:

\[
\begin{array}{c}
X \\
\downarrow \Delta \\
X \times_Y X \\
\downarrow p_X \\
X \\
\downarrow f \\
Y.
\end{array}
\]

We say that:
- \(f : X \to Y \) is separated in Def if the corresponding diagonal morphism \(\Delta : X \to X \times_Y X \) is a closed immersion.

We say that an object \(Z \) in Def is separated in Def if the morphism \(Z \to \{ \text{pt} \} \) to a point is separated.

Remark 3.2. Since in the above diagram we have \(p_X \circ \Delta = p_Y \circ \Delta = \text{id}_X \), it is clear that the following are equivalent:

1. \(f : X \to Y \) (resp. \(Z \)) is separated in Def.
2. The image of the corresponding diagonal morphism \(\Delta : X \to X \times_Y X \) is a closed (definable) subset of \(X \times_Y X \) (resp. the diagonal \(\Delta_Z \) of \(Z \) is a closed (definable) subset of \(Z \times Z \)).

Let \(Z \) be an object of Def and \(s : Z' \to Z \) a morphism in Def.
- By a *morphism over \(Z \) in Def* we mean a commutative diagram

\[
\begin{array}{c}
X \\
\downarrow p \\
Z \\
\downarrow q \\
Y
\end{array}
\]

of morphisms in Def.
- We call \(s : Z' \to Z \) a *base extension in Def* and the induced commutative diagram

\[
\begin{array}{c}
X \times_Z Z' \\
\downarrow f' \\
Y \times_Z Z'
\end{array}
\]

where \(f' = f \times \text{id}_{Z'} \) and the downarrows are the natural projections, is called the *base extension in Def* of

\[
\begin{array}{c}
X \\
\downarrow p \\
Z \\
\downarrow q \\
Y
\end{array}
\]

Note that since the \(f' \) above is completely determined by the corresponding morphism over \(Z \) we will often just say that \(f' : X \times_Z Z' \to Y \times_Z Z' \) is the
corresponding base extension morphism.

Let \(f : X \to Y \) be a morphism in Def. We say that:

- \(f : X \to Y \) is \textit{universally closed in} Def if for any morphism \(g : Y' \to Y \) in Def the morphism \(f' : X' \to Y' \) in Def obtained from the cartesian square

\[
\begin{array}{ccc}
X' & \xrightarrow{f'} & Y' \\
\downarrow{g'} & & \downarrow{g} \\
X & \xrightarrow{f} & Y
\end{array}
\]

in Def is closed in Def.

\textbf{Definition 3.3.} We say that a morphism \(f : X \to Y \) in Def is \textit{proper in} Def if \(f : X \to Y \) is separated and universally closed in Def.

\textbf{Definition 3.4.} We say that an object \(Z \) of Def is \textit{complete in} Def if the morphism \(Z \to \text{pt} \) is proper in Def.

Below we will relate the notion of proper in Def and complete in Def with the usual notions of definably proper and definably compact.

\textbf{3.2. Separated and proper in} Def. Here we list the main properties of morphisms separated or proper in Def.

From Remark 3.2 and the way cartesian squares are defined in Def we easily obtain the following:

\textbf{Remark 3.5.} Let \(f : X \to Y \) be a morphism in Def. Then the following are equivalent:

1. \(f : X \to Y \) is separated in Def.
2. The fibers \(f^{-1}(y) \) of \(f \) are Hausdorff (with the induced topology).

Directly from the definitions (as in [10, Chapter I, Propositions 5.5.1 and 5.5.5]) or more easily from Remark 3.5 the following is immediate:

\textbf{Proposition 3.6.} In the category Def the following hold:

1. \textit{Injective continuous definable maps are separated in} Def.
2. \textit{A composition of two morphisms separated in} Def \textit{is separated in} Def.

3. Let \(X \xrightarrow{f} Y \) be a morphism over \(Z \) in Def and \(Z' \to Z \) a base extension in Def. If \(f : X \to Y \) is separated in Def, then the corresponding base extension morphism \(f' : X \times_Z Z' \to Y \times_Z Z' \) is separated in Def.
(4) Let $X \xrightarrow{f} Y$ and $X' \xrightarrow{f'} Y'$ be morphisms over Z in Def. If $f : X \to Y$ and $f' : X' \to Y'$ are separated in Def, then the corresponding product morphism $f \times f' : X \times Z X' \to Y \times Z Y'$ is separated in Def.

(5) If $f : X \to Y$ and $g : Y \to Z$ are morphisms such that $g \circ f$ is separated in Def, then f is separated in Def.

(6) A morphism $f : X \to Y$ is separated in Def if and only if Y can be covered by finitely many open definable subsets V_i such that $f_1 : f^{-1}(V_i) \to V_i$ is separated in Def.

Directly from the definitions (as in [11, Chapter II, Proposition 5.4.2 and Corollary 5.4.3], see also [3, Section 9]) one has the following. For the readers convenience we include some details:

Proposition 3.7. In the category Def the following hold:

1. Closed immersions are proper in Def.
2. A composition of two morphisms proper in Def is proper in Def.
3. Let $X \xrightarrow{f} Y$ be a morphism over Z in Def and $Z' \to Z$ a base extension in Def. If $f : X \to Y$ is proper in Def, then the corresponding base extension morphism $f' : X \times Z Z' \to Y \times Z Z'$ is proper in Def.
4. Let $X \xrightarrow{f} Y$ and $X' \xrightarrow{f'} Y'$ be morphisms over Z in Def. If $f : X \to Y$ and $f' : X' \to Y'$ are proper in Def, then the corresponding product morphism $f \times f' : X \times Z X' \to Y \times Z Y'$ is proper in Def.
5. If $f : X \to Y$ and $g : Y \to Z$ are morphisms such that $g \circ f$ is proper in Def, then:
 (i) f is proper in Def;
 (ii) if g is separated in Def and f is surjective, then g proper in Def.
6. A morphism $f : X \to Y$ is proper in Def if and only if Y can be covered by finitely many open definable subsets V_i such that $f_1 : f^{-1}(V_i) \to V_i$ is proper in Def.

Proof. (1) Let $X \to Y$ be a closed immersion and $Y' \to Y$ a morphism in Def. Since $X \times Y' \to Y \times Y' = Y'$ is also a closed immersion, it is closed in Def. So $X \to Y$ is universally closed and is separated by Proposition 3.6 (1).

(2) Let $X \to Y$ and $Y \to Z$ be morphisms proper in Def and let $Z' \to Z$ be a morphism in Def. Since $X \times Z Z' = X \times_Z (Y \times_Z Z')$ and $X \times Z Z' \to Z'$ is $X \times_Y (Y \times_Z Z') \to Y \times_Z Z' \to Z'$, the result follows from the fact that the composition of morphisms closed in Def is closed in Def and Proposition 3.6 (2).
(3) Let \(X \to Y \) be a morphism over \(Z \) in \(\text{Def} \), \(Z' \to Z \) a base extension in \(\text{Def} \) and suppose that \(X \to Y \) is a morphism proper in \(\text{Def} \). Since \(X \times_Z Z' = X \times_Y (Y \times_Z Z') \), for every morphism \(W \to Y \times_Z Z' \) we have
\[
(X \times_Z Z') \times_{Y \times_Z Z'} Z = (X \times_Y (Y \times_Z Z')) \times_{Y \times_Z Z'} W = X \times_Y W.
\]
Hence, since \(X \times_Y W \to W \) is closed in \(\text{Def} \) by hypothesis, the result follows using also Proposition 3.6 (3).

(4) Let \(X \to Y \) and \(X' \to Y' \) be morphisms over \(Z \) in \(\text{Def} \) with \(X \to Y \)

and \(X' \to Y' \) proper in \(\text{Def} \). Then the product morphism \(X \times_Z X' \to Y \times_Z Y' \)

is the composition of the base extension \(X \times_Z X' \to Y \times_Z X' \), the identification \(Y \times_Z X' = X' \times_Z Y \) and the base extension \(X' \times_Z Y \to Y' \times_Z Y \). So the result follows from (1) and (3).

(5) Let \(X \to Y \) and \(Y \to Z \) be morphisms in \(\text{Def} \) such that the composition \(X \to Y \to Z \) is proper in \(\text{Def} \).

(i) Let \(Y' \to Y \) be a morphism in \(\text{Def} \). Then \(X \times_Z Y' \to Y' \) obtained with the

composition \(Y' \to Y \to Z \) is the same as \(X \times_Y Y' \to Y' \). So since \(X \times_Z Y' \to Y' \)

is closed in \(\text{Def} \), so is \(X \times_Y Y' \to Y' \) and the result follows using also Proposition

3.6 (5).

(ii) Let \(Z' \to Z \) be a morphism in \(\text{Def} \). Then
\[
\begin{array}{c}
X \times_Z Z' \\
\downarrow p
\end{array}
\begin{array}{c}
Y \times_Z Z' \\
\downarrow p'
\end{array}
\begin{array}{c}
Z' \to
\end{array}
\]

is a commutative diagram, with \(f \times \text{id}_{Z'} \) surjective and \(p \) closed in \(\text{Def} \) by hypothesis.

It follows that \(p' \) is closed in \(\text{Def} \) as required.

(6) Suppose that \(f : X \to Y \) is a morphism in \(\text{Def} \) and let \(\{V_i\}_{i \leq k} \) be a finite

cover of \(Y \) by open definable subsets. If \(g : Y' \to Y \) is a morphism in \(\text{Def} \), then

\(\{f^{-1}(V_i)\}_{i \leq k} \) (resp. \(\{g^{-1}(V_i)\}_{i \leq k} \)) is a finite cover of \(X \) (resp. \(Y' \)) by open definable

subsets and \(\{f^{-1}(V_i) \times_Y g^{-1}(V_i)\}_{i \leq k} \) is a finite cover of \(X \times_Y Y' \) by open definable

subsets. One the other hand, \(f^{-1}(V_i) \times_Y g^{-1}(V_i) = f^{-1}(V_i) \times_{V_i} g^{-1}(V_i) \) and
\[
\begin{array}{c}
f^{-1}(V_i) \times_{V_i} g^{-1}(V_i) \\
\downarrow p' \downarrow \downarrow j
\end{array}
\begin{array}{c}
X \times_Y Y' \\
p' \downarrow
\end{array}
\begin{array}{c}
Y' \to
\end{array}
\]

is a commutative diagram with \(i \) and \(j \) the inclusions, \(p' \) the projection and \(p'_i \) the

restriction of \(p' \). Since \(p' \) is closed in \(\text{Def} \) if and only if each \(p'_i \) is closed in \(\text{Def} \) the

result follows using also Proposition 3.6 (6).
Corollary 3.8. Let \(f : X \to Y \) be a morphism in Def and \(Z \subseteq X \) an object in Def which is complete in Def. Then the following hold:

1. \(Z \) is a closed (definable) subset of \(X \).
2. \(f|_Z : Z \to Y \) is proper in Def.
3. \(f(Z) \subseteq Y \) is (definable) complete in Def.
4. If \(f : X \to Y \) is proper in Def and \(C \subseteq Y \) is an object in Def which is complete in Def, then \(f^{-1}(C) \subseteq X \) is (definable) complete in Def.

From Proposition 3.7 we also obtain in a standard way the following:

Corollary 3.9. Let \(B \) be a full subcategory of the category of definable spaces Def whose set of objects is:

- closed under taking locally closed definable subspaces of objects of \(B \),
- closed under taking cartesian products of objects of \(B \).

Then the following are equivalent:

1. Every object \(X \) of \(B \) is completable in \(B \) i.e., there exists an object \(X' \) of \(B \) which is complete in Def together with an open immersion \(i : X \to X' \) in \(B \) with \(i(X) \) dense in \(X' \). Such \(i : X \to X' \) is called a completion of \(X \) in \(B \).
2. Every morphism \(f : X \to Y \) in \(B \) is completable in \(B \) i.e., there exists a commutative diagram

\[
\begin{array}{ccc}
X & \xrightarrow{i} & X' \\
\downarrow{f} & & \downarrow{f'} \\
Y & \xrightarrow{j} & Y' \\
\end{array}
\]

of morphisms in \(B \) such that: (i) \(i : X \to X' \) is a completion of \(X \) in \(B \); (ii) \(j \) is a completion of \(Y \) in \(B \).

3. Every morphism \(f : X \to Y \) in \(B \) has a proper extension in \(B \) i.e., there exists a commutative diagram

\[
\begin{array}{ccc}
X & \xrightarrow{i} & P \\
\downarrow{f} & & \downarrow{f'} \\
Y & \xrightarrow{j} & Y' \\
\end{array}
\]

of morphisms in \(B \) such that \(i \) is a open immersion with \(i(X) \) dense in \(P \) and \(f' \) a proper in Def.

Proof. Assume (1). Let \(h : X \to Y \) be a morphism in \(B \). Let \(j : Y \to Y' \) be a completion of \(Y \) in \(B \). Choose also a completion \(g : X \to X'' \) of \(X \) in \(B \) and note that \(g \times j : X \times Y \to X'' \times Y' \) is a completion of \(X \times Y \) in \(B \) (since \(X'' \times Y' \) is complete in Def by Proposition 3.7 (4)). Let \(X' \) be the closure of \((g \times j)(\Gamma(h)) \) in \(X'' \times Y' \). Then \(i : X \to X' \) given by \(i = (g \times j) \circ (\text{id}_X \times h) \) is a completion of \(X \) in \(B \) (by Proposition 3.7 (1) and (5)), and the restriction of the projection
$X'' \times Y' \to Y'$ to X' is a morphism $h' : X' \to Y'$ making a commutative diagram

\[
\begin{array}{ccc}
X & \xrightarrow{i} & X' \\
\downarrow{h} & & \downarrow{h'} \\
Y & \xrightarrow{j} & Y'
\end{array}
\]

of morphisms in \mathcal{B} as required in (2).

Assume (2). Let $h : X \to Y$ be a morphism in \mathcal{B}. Then there exists a commutative diagram

\[
\begin{array}{ccc}
X & \xrightarrow{i} & X' \\
\downarrow{h} & & \downarrow{h'} \\
Y & \xrightarrow{j} & Y'
\end{array}
\]

of morphisms in \mathcal{B} such that: (i) $i : X \to X'$ is a completion of X in \mathcal{B}; (ii) $j : Y \to Y'$ is a completion of Y in \mathcal{B}. Let $P = h'^{-1}(j(Y))$ (an open definable subspace of X') and $\overline{h} = j^{-1} \circ h'_P : P \to Y$ where $j^{-1} : j(Y) \to Y$ is the inverse of $j : Y \to j(Y)$ which is a definable homeomorphism. Then we have a commutative diagram

\[
\begin{array}{ccc}
X & \xrightarrow{i} & P \\
\downarrow{h} & & \downarrow{\overline{h}} \\
Y & \xrightarrow{j} & Y
\end{array}
\]

of morphisms in \mathcal{B} such that $\iota = i : X \to P$ is a definable open immersion with $\iota(X)$ dense in P and \overline{h} is proper in Def (since $h' : X' \to Y'$ is proper in Def by Corollary 3.8 (2)) as required in (3).

Assume (3). Let X an object of \mathcal{B}. Take $h : X \to \{pt\}$ to be the morphism in \mathcal{B} to a point. Applying (3) to this morphism we obtain (1). □

3.3. Definably proper maps

Here we recall the definition of definably proper map between definable spaces and prove its main properties. A special case of this theory appears in [4, Chapter 6, Section 4] in the context of affine definable spaces in o-minimal expansions of ordered groups.

Definition 3.10. A continuous definable map $f : X \to Y$ between definable spaces X and Y is called *definably proper* if for every definably compact definable subset K of Y its inverse image $f^{-1}(K)$ is a definably compact definable subset of X.

From the definitions we see that:

Remark 3.11. A definable space X is definably compact if and only if the map $X \to \{pt\}$ to a point is definably proper.

Typical examples of definably proper continuous definable maps are: (i) $f : X \to Y$ where X is a definably compact definable space and Y is any definable space; (ii) the projection $X \times Y \to Y$ where X is a definably compact definable space and Y is any definable space; (iii) closed definable immersions.
The following is proved just like in the affine case in o-minimal expansions of ordered groups treated in [4, Chapter 6, Lemma (4.5)]:

Theorem 3.12. Let \(f : X \to Y \) be a continuous definable map. Suppose that every definably compact subset of \(Y \) is a closed subset (e.g. \(M \) has definable Skolem functions and \(Y \) is Hausdorff). Then the following are equivalent:

1. \(f \) is definably proper.
2. For every definable curve \(\alpha : (a, b) \to X \) and every continuous definable map \([a, b] \to Y\) which makes a commutative diagram

\[
\begin{array}{ccc}
(a, b) & \xrightarrow{\alpha} & X \\
\downarrow & & \downarrow f \\
[a, b] & \xrightarrow{\pi} & Y
\end{array}
\]

there is at least one continuous definable map \([a, b] \to X\) making the whole diagram commutative.

Proof. Assume (1). Let \(\alpha : (a, b) \to X \) be a definable curve in \(X \) such that \(f \circ \alpha \) is completable in \(Y \), say \(\lim_{t \to b^-} f \circ \alpha(t) = y \in Y \). Take \(c \in (a, b) \) and set

\[
K = \{ f(\alpha(t)) : t \in [c, b) \cup \{ y \} \subseteq Y \}.
\]

Then \(K \) is a definably compact definable subset of \(Y \) and so, \(f^{-1}(K) \) is a definably compact definable subset of \(X \) containing \(\alpha((c, b)) \). Thus \(\alpha \) must be completable in \(f^{-1}(K) \), hence in \(X \).

Assume (2). Suppose that \(f \) is not definably proper. Then there is a definably compact definable subset \(K \) of \(Y \) such that \(f^{-1}(K) \) is not a definably compact definable subset of \(X \). Thus there is a definable curve \(\alpha : (a, b) \to f^{-1}(K) \subseteq X \) in \(f^{-1}(K) \) which is not completable in \(f^{-1}(K) \). Since \(f^{-1}(K) \) is closed (by assumption on \(Y \), \(K \) is closed), \(\alpha \) is not completable. But \(f \circ \alpha : (a, b) \to K \subseteq Y \) is completable which contradicts (2). \(\square \)

By Theorem 3.12 we have the following which summarizes the main properties of definably proper maps.

Corollary 3.13. Let \(A \) be a full subcategory of \(\text{Def} \) such that every definably compact subset of an object of \(A \) is a closed subset. Suppose that the set of objects of \(A \) is:

- closed under taking locally closed definable subsets of objects of \(A \);
- is closed under taking cartesian products of objects of \(A \).

In the category \(A \) the following hold:

1. Closed immersions are definably proper.
2. A composition of two definably proper morphisms is definably proper.
3. Let \(\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow p & & \downarrow q \\
Z & \xrightarrow{g} & Z
\end{array} \) be a morphism over \(Z \) in \(A \) and \(Z' \to Z \) a base extension in \(A \). If \(f : X \to Y \) is definably proper, then the corresponding base extension morphism \(f' : X \times_Z Z' \to Y \times_Z Z' \) is definably proper.
(4) Let \(X \xrightarrow{f} Y \) and \(X' \xrightarrow{f'} Y' \) be morphisms over \(Z \) in \(A \). If \(f : X \rightarrow Y \) and \(f' : X' \rightarrow Y' \) are definably proper, then the corresponding product morphism \(f \times f' : X \times_Z X' \rightarrow Y \times_Z Y' \) is definably proper.

(5) If \(f : X \rightarrow Y \) and \(g : Y \rightarrow Z \) are morphisms such that \(g \circ f \) is definably proper, then:

(i) \(f \) is definably proper;

(ii) if \(M \) has definable Skolem functions, then \(g_{|_{f(X)}} : f(X) \rightarrow Z \) is definably proper.

(6) A morphism \(f : X \rightarrow Y \) is definably proper if and only if \(Y \) can be covered by finitely many open definable subsets \(V_i \) such that \(f|_{f^{-1}(V_i)} \rightarrow V_i \) is definably proper.

Proof. (1) Consider the commutative diagram:

\[
\begin{array}{ccc}
(a, b) & \xrightarrow{\alpha} & X \\
\downarrow & & \downarrow f \\
\downarrow & & \downarrow f(X) \\
[a, b] & \xrightarrow{\pi} & Y
\end{array}
\]

where \(f : X \rightarrow Y \) is a definable closed immersion and we assume we have \(\alpha \) such that \(\pi \) exists. We must show that \(\gamma' \) exists. Since the inclusion \(f(X) \subseteq Y \) is closed and we have \(f \circ \alpha \) such that \(\pi \) exists, \(\gamma \) exists. So, since \(f : X \rightarrow f(X) \) is a definable homeomorphism, we let \(\gamma' = f^{-1} \circ \gamma \).

(2) Consider the commutative diagram:

\[
\begin{array}{ccc}
(a, b) & \xrightarrow{\alpha} & X \\
\downarrow & & \downarrow f \\
\downarrow & & \downarrow g \\
[a, b] & \xrightarrow{\pi} & Z
\end{array}
\]

where we assume we have \(\alpha \) such that \(\pi \) exists. We must show that \(\gamma' \) exists. Since \(g : Y \rightarrow Z \) is definably proper and we have \(f \circ \alpha \) such that \(\pi \) exists, by Theorem 3.12 \(\gamma \) exists. Since \(f : X \rightarrow Y \) is definably proper and we have \(\alpha \) such that \(\gamma \) exists, by Theorem 3.12 \(\gamma' \) exists.

(3) Since the base extension morphism is a special case of the product morphism, the result follows from (4) below.
(4) Consider the commutative diagram:

where we assume we have α such that $\overline{\pi}$ exists. We must show that $\gamma' : [a, b] \to X \times_Z X'$ exists. Since $f : X \to Y$ is definably proper and we have $p_X \circ \alpha$ such that $q_Y \circ \overline{\pi}$ exists, by Theorem 3.12, $[a, b] \to X$ exists. Since $f' : X' \to Y'$ is definably proper and we have $p_X' \circ \alpha$ such that $q_Y' \circ \overline{\pi}$ exists, by Theorem 3.12 $[a, b] \to X'$ exists. So we let γ' be the morphism given by the universal property of Cartesian squares.

(5)

(i) Consider the commutative diagram:

where we assume we have α such that $\overline{\pi}$ exists. We must show that $\gamma' : [a, b] \to X \times_Z X'$ exists. Since $g \circ f : X \to Y$ is definably proper and we have α such that $g \circ \overline{\pi}$ exists, by Theorem 3.12, γ' exists.

(ii) Consider the commutative diagram:

where we assume we have α such that $\overline{\pi}$ exists. We must show that $\gamma' : [a, b] \to Y \times_Z Y'$ exists. Since f is surjective, by definable Skolem function let β be such that $\alpha = f \circ \beta$. Since
$g \circ f : X \to Y$ is definably proper and we have β such that π exists, by Theorem 3.12, γ exists. Now take $\gamma' = f \circ \gamma$.

(6) One implication is clear. Suppose that there are open definable subsets V_1, \ldots, V_l of Y such that each restriction $f|_{f^{-1}(V_i)} : V_i \to Y$ is definably proper. Let $\alpha : (a, b) \to X$ be a definable curve such that $\lim_{t \to b^-} \alpha(t)$ exists in X. Let $z = \lim_{t \to b^-} f \circ \alpha(t) \in Y$ and let $c \in (a, b)$ be such that $f \circ \alpha([c, b)) \subseteq V_i$. Then $\alpha_1 : (c, b) \to f^{-1}(V_i) \subseteq X$ is a definable curve in $f^{-1}(V_i)$ such that $f \circ \alpha_1 : (c, b) \to V_i$ is completable. By hypothesis, $\alpha_1 : (c, b) \to f^{-1}(V_i) \subseteq X$ is completable in $f^{-1}(V_i)$ and so $\lim_{t \to b^-} \alpha(t)$ exists in X as required.

From Corollary 3.13 we obtain as in Corollary 3.9 the following analogue for definably proper. In the case of o-minimal expansions of real closed fields this can be read off from [4, Chapter 10, (2.6) and (2.7)].

Corollary 3.14. Let B be a full subcategory of Def. Suppose that the set of objects of B is:

- closed under taking locally closed definable subspaces of objects of B;
- is closed under taking cartesian products of objects of B.

Then the following are equivalent:

1. Every object X of B is definably completable in B i.e., there exists a definably compact space X' in B together with a definable open immersion $i : X \hookrightarrow X'$ in B with $i(X)$ dense in X'. Such $i : X \hookrightarrow X'$ is called a definable completion of X in B.
2. Every morphism $f : X \to Y$ in B is definably completable in B i.e., there exists a commutative diagram

$$
\begin{array}{ccc}
X & \xrightarrow{i} & X' \\
\downarrow{f} & & \downarrow{f'} \\
Y & \xrightarrow{j} & Y'
\end{array}
$$

of morphisms in B such that: (i) $i : X \to X'$ is a definable completion of X in B; (ii) j is a definable completion of Y in B.
3. Every morphism $f : X \to Y$ in B has a definable proper extension in B i.e., there exists a commutative diagram

$$
\begin{array}{ccc}
X & \xrightarrow{i} & P \\
\downarrow{f} & & \downarrow{f'} \\
Y & \xrightarrow{j} & Y
\end{array}
$$

of morphisms in B such that i is a definable open immersion with $i(X)$ dense in P and f' is definably proper.

If $B = \text{Def}$ we don't mention B and we talk of definably completable, definable completion and definable proper extension.
3.4. Definably proper and proper in Def. Assuming that \(M \) has definable Skolem functions, below we will: (i) show that a definably proper map between Hausdorff locally definably compact definable spaces is the same a morphism proper in Def; (ii) prove the definable analogue of the topological characterization of the notion of proper continuous maps (as closed maps with compact and Hausdorff fibers).

Theorem 3.15. Suppose that \(M \) has definable Skolem functions. Let \(X \) and \(Y \) be Hausdorff definable spaces with \(Y \) locally definably compact. Let \(f : X \to Y \) be a continuous definable map. Then the following are equivalent:

1. \(f \) is proper in Def.
2. \(f \) is definably proper.

Proof. Assume (1). Let \(\gamma : (a, b) \to X \) be a definable curve in \(X \) and suppose that \(f \circ \gamma : (a, b) \to Y \) is completable. By Theorem 3.12, we need to show that \(\gamma : (a, b) \to X \) is completable in \(X \). By assumption \(f \circ \gamma \) extends to a continuous definable map \(g : [a, b] \to Y \). Consider a cartesian square of continuous definable maps

\[
\begin{array}{ccc}
(a, b) & \xrightarrow{\gamma} & X \\
\downarrow & & \downarrow f \\
X \times_Y [a, b] & \xrightarrow{g'} & X \\
\downarrow & & \downarrow f' \\
[a, b] & \xrightarrow{g} & Y
\end{array}
\]

together with the continuous definable map \(\gamma' : (a, b) \to X \times_Y [a, b] \) obtained from the maps \(\gamma : (a, b) \to X \) and \((a, b) \hookrightarrow [a, b] \).

Consider \(\gamma'((a, b)) \subseteq X \times_Y [a, b] \). By assumption, \(f' : X \times_Y [a, b] \to [a, b] \) is definably closed. So \(f'((\gamma'((a, b)))) \) is a closed definable subset of \([a, b] \). But \((a, b) = f'((\gamma'((a, b))) \subseteq f'((\gamma'((a, b)))) \) and so \(f'((\gamma'((a, b)))) = [a, b] \). Hence there are \(u, v \in \gamma'((a, b)) \) such that \(f'(u) = a \) and \(f'(v) = b \). Since \(f' \) is the restriction of the projection \(X \times [a, b] \to [a, b] \), \(f' \) is definably open. Therefore, we have \(\lim_{t \to a^+} \gamma'(t) = u \) and \(\lim_{t \to b^-} \gamma'(t) = v \) respectively and \(\gamma' : (a, b) \to X \times_Y [a, b] \) is completable in \(X \times_Y [a, b] \). Thus \(\gamma = g \circ \gamma' \) is completable in \(X \) as required.

Assume (2). Since \(f : X \to Y \) is separated in Def (Remark 3.5), it is enough to show that \(f \) is universally closed in Def. For that it is enough to consider a cartesian square of continuous definable maps

\[
\begin{array}{ccc}
X \times_Y Z & \xrightarrow{f'} & Z \\
\downarrow \downarrow & & \downarrow \downarrow \\
X & \xrightarrow{f} & Y
\end{array}
\]
and show that \(f' \) is definably closed (i.e. closed in Def).

Let \(A \subseteq X \times_Y Z \) be a closed definable subset and suppose that \(f'(A) \subseteq Z \) is not closed. By the local almost everywhere curve selection (Theorem 2.18) there is \(z \in (f'(A) \setminus f'(A)) \) together with a definable curve \(\beta : (a, b) \to f'(A) \subseteq Y \) such
that \(\lim_{t \to b^-} \beta(t) = z \). By replacing \((a, b)\) by a smaller subinterval we may assume that \(\lim_{t \to a^+} \beta(t) \) exists in \(Z \), so \(\beta \) is completable in \(Z \). By definable Skolem functions, after replacing \((a, b)\) by a smaller subinterval, there exists a definable curve \(\gamma : (a, b) \to X \) in \(X \) such that for every \(t \in (a, b) \) we have \((\gamma(t), \beta(t)) \in A \). Since \(f \circ \gamma = g \circ \beta \) and \(\beta \) is completable in \(Z \), \(g \circ \beta \) is completable in \(Y \). Thus by (2) and Theorem 3.12, \(\gamma \) is completable in \(X \) and \(\lim_{t \to b^-} \gamma(t) \) exists in \(X \), call it \(x \). If \(\alpha = (\gamma, \beta) : (a, b) \to X \times_Y Z \), then \(\lim_{t \to b^-} \alpha(t) = (x, z) \in X \times_Y Z \) and so \((x, z) \in A \) because \(A \) is closed. But then \(z = f'(x, z) \in f'(A) \) which is absurd. \(\square \)

Note that the assumption that \(Y \) is locally definably compact is needed:

Example 3.16. Consider the setting of Example 2.14 and let \(X = D, Y = D \cup \{d\} \) and \(f : X \to Y \) the inclusion. Then \(f : X \to Y \) is definably proper, \(Y \) is not locally definably compact and \(f \) is not definably closed.

Corollary 3.17. Suppose that \(M \) has definable Skolem functions. Let \(X \) be a Hausdorff definable space. Then the following are equivalent:

1. \(X \) is definably compact.
2. \(X \) is complete in Def.

The following is the definable analogue of the topological characterization of the notion of proper continuous maps (as closed maps with compact and Hausdorff fibers). A similar result appears in the semi-algebraic case ([3, Theorem 12.5]):

Theorem 3.18. Suppose that \(M \) has definable Skolem functions. Let \(X \) and \(Y \) be Hausdorff definable spaces with \(Y \) locally definably compact. Let \(f : X \to Y \) be a continuous definable map. Then the following are equivalent:

1. \(f \) is definably proper.
2. \(f \) is definably closed and has definably compact fibers.

Proof. Assume (1). Then \(f : X \to Y \) has definably compact fibers and, by Theorem 3.15, \(f \) is definably closed.

Assume (2). Let \(K \) be a definably compact definable subset of \(Y \). Let \(\alpha : (a, b) \to f^{-1}(K) \) a definable curve in \(f^{-1}(K) \). Suppose that \(\lim_{t \to b^-} \alpha(t) \) does not exist in \(f^{-1}(K) \). Then this limit does not exist in \(X \) as well since \(f^{-1}(K) \) is a closed definable subset of \(X \) (by Corollary 2.8, \(K \) is closed). Therefore, if \(d \in (a, b) \), then for every \(e \in [d, b] \), \(\alpha([e, b]) \) is a closed definable subset of \(X \) contained in \(f^{-1}(K) \).

Indeed, we can first replace \(a \) by \(a' \in (a, b) \) if necessary so that \(\alpha \) is injective and so \(\alpha((a, b)) \) has a definable total order such that \(\alpha \) is increasing; then if \(\alpha([e, b]) \) is not closed, one can use the local almost everywhere curve selection (Theorem 2.18) to obtain a definable curve \(\delta : (a', b') \to \alpha([e, b]) \) with, say \(\lim_{t \to b^-} \delta(t) \in \text{cl}_X(\alpha([e, b])) \setminus \alpha([e, b])) \); replacing \(a' \) by some \(a'' \in (a', b') \) if necessary, \(\delta \) will be strictly increasing, but then we would have \(\lim_{t \to b^-} \alpha(t) = \lim_{t \to b^-} \delta(t) \).

By assumption, for every \(e \in [d, b] \), \(f \circ \alpha([e, b]) \) is then a closed definable subset of \(Y \) contained in \(K \). Since \(K \) is definably compact, the limit \(\lim_{t \to b^-} f \circ \alpha(t) \) exists in \(K \), call it \(c \). Hence, \(c \in f \circ \alpha([e, b]) \) for every \(e \in [d, b] \). Since the definable subset \(\{t \in [d, b] : f \circ \alpha(t) = c\} \) is a finite union of points and intervals,
it follows that there is $d' \in [d, b)$ such that $f \circ \alpha(t) = c$ for all $t \in [d', b)$. Thus
\[
\alpha([d', b)) \subseteq f^{-1}(c) \subseteq f^{-1}(K).
\]
Since $f^{-1}(c)$ is definably compact, the \(\lim_{t \to b^-} \alpha(t) \) exists in $f^{-1}(K)$, which is absurd. \qed

By Example 3.16 the assumption that Y is locally definably compact is needed.

4. INvariance AND COMPARISON RESULTS

4.1. Definably proper in elementary extensions. Here S is an elementary
extension of M and we consider the functor
\[
\text{Def} \to \text{Def}(S)
\]
from the category of definable spaces and continuous definable maps to the
category of S-definable spaces and continuous S-definable maps. This functor sends a
definable space X to the S-definable space $X(S)$ and sends a continuous definable
map $f : X \to Y$ to the continuous S-definable map $f^S : X(S) \to Y(S)$. We show that: (i) f is proper in Def if and only if f^S is proper in Def(S) (Theorem 4.3); (ii)
if M has definable Skolem functions and Y is Hausdorff, then f is definably proper
if and only if f^S is S-definably proper (Theorem 4.4).

The following is easy and well known:

Fact 4.1. If M has definable Skolem functions, then S has definable Skolem functions.

Since functor Def \to Def(S) is a monomorphism from the boolean algebra of
definable subsets of a definable space X and the boolean algebra of S-definable
subsets of $X(S)$ and it commutes with:

- the interior and closure operations;
- the image and inverse image under (continuous) definable maps;
we have:

Lemma 4.2. Let $f : X \to Y$ a morphism in Def. Then the following are equivalent:

1. f is closed in Def (i.e. definably closed).
2. f^S is closed in Def(S) (i.e. S-definably closed).

Proof. Assume (1). Let $A \subseteq X(S)$ be a closed S-definable subset and suppose that $f^S(A)$ is not a closed subset of $Y(S)$. Then there is a uniformly definable family \{ $A_t : t \in T$ \} of definable subsets of X such that $A = A_s(S)$ for some $s \in T(S)$. Since the property on t saying that A_t is closed is first-order, after replacing T by a definable subset we may assume that for all $t \in T$, A_t is a closed definable
subset of X. We also have that \{ $f(A_t) : t \in T$ \} is a uniformly definably family of
definable subsets of Y such that $f^S(A) = f^S(A_s(S))$. Let E be the definable subset of T of all t such that $f(A_t)$ is not closed. Since $s \in E(S)$, we have $E \neq \emptyset$ which is a contradiction since by assumption, for every $t \in T$, $f(A_t)$ is a closed definable
subset of Y.
Assume (2). Let \(A \subseteq X \) be a closed definable subset. Then \(A(S) \subseteq X(S) \) is a closed \(S \)-definable subset and by assumption, \(f(A)(S) = f^S(A(S)) \) is a closed \(S \)-definable subset of \(Y(S) \). So \(f(A) \) is a closed definable subset of \(Y \). \(\square \)

Since functor \(\text{Def} \rightarrow \text{Def}(S) \) sends open (resp. closed) definable immersion to open (resp. closed) \(S \)-definable immersion and sends cartesian squares in \(\text{Def} \) to cartesian squares in \(\text{Def}(S) \) we have, using Lemma 4.2:

Theorem 4.3. Let \(f : X \rightarrow Y \) a morphism in \(\text{Def} \). Then the following are equivalent:

1. \(f \) is proper (resp. separated) in \(\text{Def} \).
2. \(f^S \) is proper (resp. separated) in \(\text{Def}(S) \).

We also have:

Theorem 4.4. Suppose that \(\mathcal{M} \) has definable Skolem functions. Let \(X \) and \(Y \) be definable spaces with \(Y \) Hausdorff. Let \(f : X \rightarrow Y \) be a continuous definable map. Then the following are equivalent:

1. \(f \) is definably proper.
2. \(f^S \) is \(S \)-definably proper.

Proof. First note that \(\mathcal{S} \) has definable Skolem functions (Fact 4.1) and \(Y(S) \) is Hausdorff \(\mathcal{S} \)-definable spaces (since Hausdorff is a first-order property). Using Corollary 2.8 and Theorem 3.12 in \(\mathcal{M} \) and Corollary 2.8 and Theorem 3.12 in \(\mathcal{S} \), the result follows from the claim:

Claim 4.5. The following are equivalent:

1. There is a definable curve \(\alpha : (a, b) \rightarrow X \) such that \(f \circ \alpha : (a, b) \rightarrow Y \) is completatable in \(Y \) but \(\alpha \) is not completatable in \(X \).
2. There is an \(\mathcal{S} \)-definable curve \(\beta : (c, d) \rightarrow X(S) \) such that the \(\mathcal{S} \)-definable curve \(f^S \circ \beta : (c, d) \rightarrow Y(S) \) is completatable in \(Y(S) \) but \(\beta \) is not completatable in \(X(S) \).

Assuming (1) then (2) holds with \((c, d) = (a, b)(S) \) and \(\beta = \alpha^S \) since “\(\alpha \) is continuous”, “\(f \circ \alpha : (a, b) \rightarrow Y \) is completatable in \(Y \)” and “\(\alpha \) is not completatable in \(X \)” are first-order properties.

Assume (2) then (1) also holds since “\(\beta \) is continuous”, “\(f^S \circ \beta : (c, d) \rightarrow Y(S) \) is completatable in \(Y(S) \)” and “\(\beta \) is not completatable in \(X(S) \)” are first-order properties in the parameters defining \(\beta \) (together with \(c \) and \(d \)). \(\square \)

The proof of Claim 4.5 above actually shows:

Corollary 4.6. Let \(X \) be a definable space. Then the following are equivalent:

1. \(X \) is definably compact.
2. \(X(S) \) is \(\mathcal{S} \)-definably compact.
4.2. Definably proper in o-minimal expansions. Here \mathbb{S} is an o-minimal expansion of \mathbb{M} and we consider the functor

$$\text{Def} \to \text{Def}(\mathbb{S})$$

from the category of definable spaces and continuous definable maps to the category of \mathbb{S}-definable spaces and continuous \mathbb{S}-definable maps. This functor sends a definable space X to the \mathbb{S}-definable space X and sends a continuous definable map $f : X \to Y$ to the continuous \mathbb{S}-definable map $f : X \to Y$. We show that if \mathbb{M} has definable Skolem functions, X and Y are Hausdorff and Y is locally definably compact, then f is definably proper if and only if $f^\mathbb{S}$ is \mathbb{S}-definably proper and f is proper in Def if and only if $f^\mathbb{S}$ is proper in $\text{Def}(\mathbb{S})$ (Theorem 4.9).

Fact 4.7. If \mathbb{M} has definable Skolem functions, then \mathbb{S} has definable Skolem functions.

Proof. By Fact 4.1 we may assume that both \mathbb{M} and \mathbb{S} are ω-saturated. In this case, by the (observations before the) proof of [4, Chapter 6, (1.2)] (see also Comment (1.3) there), \mathbb{S} has definable Skolem functions if and only if every nonempty \mathbb{S}-definable subset $X \subseteq M$ defined with parameters in $\overline{\pi} = a_1, \ldots, a_m$ has an element in $\text{dcl}_\mathbb{S}(\overline{\pi})$.

So let X be an \mathbb{S}-definable subset of M. By o-minimality, X is a finite union of points $\{c_0, \ldots, c_m\} \subseteq M$ and open intervals $I_0, \ldots, I_n \subseteq M$ with end points in $M \cup \{-\infty, +\infty\}$ with all the c_i's and the endpoints of the I_k's in $\text{dcl}_\mathbb{S}(\overline{\pi})$. So X is definable over $\text{dcl}_\mathbb{S}(\overline{\pi})$ using just equality and the order relation, hence X is \mathbb{M}-definable. Since \mathbb{M} has definable Skolem functions X has a point in $\text{dcl}_\mathbb{M}(\text{dcl}_\mathbb{S}(\overline{\pi}))$. Since \mathbb{S} is an expansion of \mathbb{M}, we have $\text{dcl}_\mathbb{M}(\text{dcl}_\mathbb{S}(\overline{\pi})) \subseteq \text{dcl}_\mathbb{S}(\text{dcl}_\mathbb{S}(\overline{\pi})) = \text{dcl}_\mathbb{S}(\overline{\pi})$.

The shrinking lemma gives the following:

Proposition 4.8. Suppose that \mathbb{M} has definable Skolem functions. Let X be a Hausdorff definable space. Then the following are equivalent:

1. X is definably compact.
2. X is \mathbb{S}-definably compact.

Proof. By Theorem 2.11, X is definably normal. Let $(X_i, \phi_i)_{i \leq l}$ be the definable charts of X. By the shrinking lemma, there are open definable subsets $V_i (1 \leq i \leq l)$ and closed definable subsets $C_i (1 \leq i \leq l)$ such that $V_i \subseteq C_i \subseteq X_i$ and $X = \cup \{C_i : i = 1, \ldots, l\}$.

Then we have that X is definably compact if and only if each C_i is a definably compact definable subset of X if and only if each $\phi_i(C_i)$ is also a definably compact definable subset of M^n, and therefore, by [17, Theorem 2.1], if and only if each $\phi_i(C_i)$ is a closed and bounded definable subset of M^n. Similarly we have that X is \mathbb{S}-definably compact if and only if each C_i is an \mathbb{S}-definably compact \mathbb{S}-definable subset of X if and only if each $\phi_i(C_i)$ is also an \mathbb{S}-definably compact \mathbb{S}-definable subset of M^n, and therefore, by [17, Theorem 2.1] in \mathbb{S}, if and only if each $\phi_i(C_i)$ is a closed and bounded \mathbb{S}-definable subset of M^n. Since “closed” and “bounded” are preserved under going to \mathbb{S} the result now follows.
Theorem 4.9. Suppose that \mathcal{M} has definable Skolem functions. Let X and Y be Hausdorff definable spaces with Y locally definably compact. Then the following are equivalent:

1. f is proper in Def.
2. f is definably proper.
3. f is S-definably proper.
4. f is proper in $\text{Def}(S)$.

Proof. First note that since Y is locally definably compact, $Y(S)$ is locally S-definably compact. By Theorem 3.15 in \mathcal{M} and in S it is enough to show that f is definably proper if and only if f is S-definably proper. Using the fact that Y is locally definably compact and Proposition 4.8 one can show the later claim as in [4, Chapter 6, (4.8) Exercise 2] (see page 170 for the solution).

4.3. Definably proper in topology. Here \mathcal{M} is an o-minimal expansion of the ordered set of real numbers and we consider the functor

$$\text{Def} \to \text{Top}$$

from the category of definable spaces and continuous definable maps to the category of topological spaces and continuous maps. We show that if \mathcal{M} has definable Skolem functions, then for Hausdorff locally definably compact definable spaces definably proper is the same as proper and proper in Def is the same as proper in Top.

As before we have:

Proposition 4.10. Suppose that \mathcal{M} has definable Skolem functions. Let X be a Hausdorff definable space. Then the following are equivalent:

1. X is definably compact.
2. X is compact.

Proof. Follow the proof of Proposition 4.8 using the Heine-Borel theorem (a subset of \mathbb{R}^n is compact if and only if it is closed and bounded) instead of [17, Theorem 2.1].

A result similar to the following appears in the semi-algebraic case with a completely different proof ([3, Theorem 9.11]):

Theorem 4.11. Suppose that \mathcal{M} has definable Skolem functions. Let X and Y be Hausdorff definable spaces with Y locally definably compact. Then the following are equivalent:

1. f is proper in Def.
2. f is definably proper.
3. f is proper.
4. f is proper in Top.

Proof. First note that Y is locally compact. Next recall that f is proper if $f^{-1}(K) \subseteq X$ is a compact subset for every $K \subseteq Y$ compact subset and f is proper in Top if it is separated and universally closed in the category Top of topological spaces. Also, it is well know that f is proper if and only if f is proper in Top if and only if f is closed and has compact fibers (see [2, Chapter 1, §10, Theorem 1]).
By Theorem 3.15 it is enough to show that \(f \) is definably proper if and only if \(f \) is proper. Using Theorem 3.18 and Proposition 4.10 one can show the later claim as in [4, Chapter 6, (4.8) Exercise 3] (see page 170 for the solution).

\[\square\]

5. **Definably compact, definably proper and definable types**

Here we show that definable compactness of Hausdorff definable spaces in \(\omega \)-minimal structures with definable Skolem functions can also be characterized by existence of limits of definable types - extending a similar result in the affine case ([14, Remark 4.2.15]). The corresponding characterization for definably proper maps between Hausdorff, locally definably compact definable spaces is also given (Theorem 5.3).

Let \(X \) be a definable space. A **type on** \(X \) is an ultrafilter \(\alpha \) of definable subsets of \(X \). A type \(\alpha \) on \(X \) is a **definable type on** \(X \) if for every uniformly definable family \(\{ F_i \}_{i \in T} \) of definable subsets of \(X \), with \(T \subseteq M^n \) for some \(n \), there is a definable subset \(T(\alpha) \subseteq T \) such that \(F_i \in \alpha \) if and only if \(t \in T(\alpha) \).

If \(\alpha \) is a type on \(X \) and \(x \in X \), we say that \(x \) is a **limit of** \(\alpha \), if for every open definable subset \(U \) of \(X \) such that \(x \in U \) we have \(U \in \alpha \).

For affine definable spaces existence of limits of definable types gives another criteria for definable compactness (see [14, Remark 4.2.15]). Since the proof is not written down in [14], for convenience, we include the details.

Fact 5.1. Let \(Z \subseteq M^n \) be a definable set. Then the following are equivalent:

1. \(Z \) is closed and bounded (i.e., definably compact).
2. Every definable type on \(Z \) has a limit in \(Z \).

Proof. Assume (1). Let \(\alpha \) be a definable type on \(Z \). For each \(i = 1, \ldots, n \), let \(\pi_i : M^n \to M \) be the projection onto the \(i \)-coordinate and let \(Z_i = \pi_i(Z) \) and \(\alpha_i = \pi_i(\alpha) \) (the definable type on \(Z_i \) determined by the collection of definable subsets \(\{ A \subseteq Z_i : \pi_i^{-1}(A) \in \alpha \} \)). By [16, Lemma 2.3], each \(\alpha_i \) is not a cut and so, since each \(Z_i \) is bounded, there is \(a_i \in M \) such that \(\alpha_i \) is either determined by \(x = a_i \) or \(\{ b < x < a_i : b \in M, b < a_i \} \) or \(\{ a_i < x < b : b \in M, a_i < b \} \). In either case \(a_i \) is the limit of \(\alpha_i \) in \(M \). Clearly \(a = \langle a_1, \ldots, a_n \rangle \in M^n \) is the limit of \(\alpha \) in \(M^n \) and, since \(Z \) is closed, \(a \in Z \) as required.

Assume (2). Let \(\alpha : (a, b) \to Z \) be a definable curve. Then the collection of definable subsets \(\{ \alpha([t, b]) : t \in (a, b) \} \) of \(Z \) determines a type \(\beta \) on \(Z \) such that \(S \in \beta \) if and only if \(\alpha([t, b]) \subseteq S \) for some \(t \in (a, b) \). This type \(\beta \) is definable since for any uniformly definable family \(\{ F_i \}_{i \in L} \) of definable subsets of \(Z \) we have \(\{ l \in L : F_i \in \beta \} = \{ l \in L : \exists t \in (a, b)(\alpha([t, b]) \subseteq F_i) \} \). By hypothesis, \(\beta \) has a limit \(z \) in \(Z \). This \(z \in Z \) is also the limit \(\lim_{t \to b} \alpha(t) \) since for every \(d \in D(z) \) we have \(U(z, d) \in \beta \), so \(\alpha([t, b]) \subseteq U(z, d) \) for some \(t \in (a, b) \).

\[\square\]

We can use the shrinking lemma to extend this result to non affine Hausdorff definable spaces:
Theorem 5.2. Suppose that \(M \) has definable Skolem functions. Let \(X \) be a Hausdorff definable space. Then the following are equivalent:

1. \(X \) is definably compact.
2. Every definable type on \(X \) has a limit in \(X \).

Proof. By Theorem 2.11, \(X \) is definably normal. Let \((X_i, \theta_i)_{i \leq k} \) be the definable charts of \(X \) with \(\theta_i(X_i) \subseteq M^{n_i} \). By the shrinking lemma there are definable open subsets \(V_i \) and definable closed subsets \(C_i \) of \(X \) (\(1 \leq i \leq n \)) with \(V_i \subseteq C_i \subseteq X_i \) and \(X = \bigcup\{C_i : i = 1, \ldots, n\} \). We have that: (i) \(X \) is definably compact if and only if each \(C_i \) is definably compact; (ii) every definable type on \(X \) has limit in \(X \) if and only if for each \(i \), every definable type on \(C_i \) has a limit in \(C_i \). Since \(\theta_i : C_i \rightarrow \theta_i(C_i) \subseteq M^{n_i} \) is a definable homeomorphism the result now follows by Fact 5.1. \(\square \)

We also have the following definable types criterion for definably proper:

Theorem 5.3. Suppose that \(M \) has definable Skolem functions. Let \(X \) and \(Y \) be Hausdorff definable spaces with \(Y \) locally definably compact. Let \(f : X \rightarrow Y \) be a continuous definable map. Then the following are equivalent:

1. \(f \) is definably proper.
2. For every definable type \(\alpha \) on \(X \), if \(\bar{f}(\alpha) \) has a limit in \(Y \), then \(\alpha \) has a limit in \(X \).

Proof. Assume (1). Let \(\alpha \) be a definable type on \(X \) such that \(\bar{f}(\alpha) \) has a limit in \(Y \), say \(\lim \bar{f}(\alpha) = y \in Y \). Since \(Y \) is locally definably compact, there is a definable open neighborhood \(V \) of \(y \) in \(Y \) such that \(\overline{V} \) is definably compact. So, \(f^{-1}(\overline{V}) \) is a definably compact definable subset of \(X \) and \(\alpha \) is a definable type on \(f^{-1}(\overline{V}) \). But then by Theorem 5.2 \(\alpha \) has a limit in \(f^{-1}(\overline{V}) \), hence in \(X \).

Assume (2). Suppose that \(f \) is not definably proper. Then there is a definably compact definable subset \(K \) of \(Y \) such that \(f^{-1}(K) \) is not a definably compact definable subset of \(X \). Thus by Theorem 5.2 there is a definable type \(\alpha \) on \(f^{-1}(K) \) which does not have a limit in \(f^{-1}(K) \). Since \(f^{-1}(K) \) is closed (by Corollary 2.8, \(K \) is closed), \(\alpha \) does not have a limit in \(X \). But \(f(\alpha) \) is a definable type on \(K \subseteq Y \) and has a limit by Theorem 5.2, which contradicts (2). \(\square \)

The following was observed in [14, Remark 4.2.15] in the affine case but the same proof works.

Fact 5.4. Suppose that \(M \) has definable Skolem functions. Let \(X \) be a definable space and \(C \subseteq X \) a definable subset which is not closed. If \(x \in \overline{C} \setminus C \) then there is a definable type \(\alpha \) on \(C \) such that \(x \) is a limit of \(\alpha \).

Proof. Consider the definable set \(D(x) \) with the relation \(\leq \) (a definable downwards directed order). By [14, Lemma 4.2.18] (or [13, Lemma 2.19]) there is a definable type \(\beta \) on \(D(x) \) such that for every \(d \in D(x) \) we have \(\{d' \in D(x) : d' \leq d\} \in \beta \).

Since \(x \in \overline{C} \), for every \(d \in D(x) \) we have that \(U(x, d) \cap C \neq \emptyset \). By definable Skolem functions, there is a definable map \(h : D(x) \rightarrow C \) such that for every \(d \in D(x) \) we have \(h(d) \in U(x, d) \cap C \). Let \(\alpha = \bar{h}(\beta) \) be the definable type on \(C \)
determined by the collection of definable subsets \(\{ A \subseteq C : h^{-1}(A) \in \beta \} \). Clearly, \(x \) is a limit of \(\alpha \). □

By Example 3.16 and Fact 5.4, in Theorem 5.3 the assumption that \(Y \) is locally definably compact is needed. Note that, by the same example, this observation applies also if one replaces the Peterzil-Steinhorn definition of definable compact (using definable curves - [17]) by the Hrushovski-Loeser definition of definable compact (using definable types - [14]).

References
