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a b s t r a c t

The perception of human movement is a key component of daily social interactions. Although extra-
striate area MTþ/V5 is closely associated with motion processing, its role in the processing of sparse
‘biological motion’ displays is still unclear. We developed two closed matched psychophysical tasks to
assess simple coherent motion perception and biological motion perception, and measured changes in
performance caused by application of TMS over MTþ/V5. Performance of the simple motion dis-
crimination task was significantly depressed by TMS stimulation, and highly correlated within observers
in TMS conditions, but there was no significant decrement in performance of the biological motion task,
despite low intra-observer correlations across TMS conditions. We conclude that extrastriate area MTþ/
V5 is an obligatory waypoint in the neural processing of simple coherent motion, but is not obligatory for
the processing of biological motion. Results are consistent with a dual neural processing route for bio-
logical motion processing.

& 2016 The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Our ability to perceive the movements of other people’s bodies
is a key component of daily social interactions. We are so adept at
recognising human body movements that highly impoverished
point-light (biological motion) displays are sufficient to support
the construction of sophisticated perceptual representations such
as identity, intention and mood (review in Johnson and Shiffrar,
2013). Thus biological motion displays are widely used in studies
of social movement perception.

Early psychophysical research demonstrated that motion-pro-
cessing neurons in the visual cortex are involved in the processing
of biological motion displays (coding speed and direction of dots;
Mather et al., 1992). However other results indicate that form-
processing systems are involved in biological motion processing
(coding figure pose; Beintema and Lappe, 2002). In the neu-
roscience literature human cortical area MTþ/V5 is known to be a
crucial stage of the cortical motion processing pathway (Campana
et al., 2002; Stevens et al., 2009), but its importance for biological
motion processing is still in considerable doubt. Early neuroima-
ging studies by Grossman et al. (2000) and Grèzes et al. (2001)
found that MTþ/V5 was activated by biological motion displays.
However, more recent research has shown a conflicting pattern of
15
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results. Patients with focal damage to MTþ/V5 do not show def-
icits in biological motion perception (Gilaie-Dotan et al., 2015), and
TMS applied over MTþ/V5 does not affect the discrimination of
upright versus inverted figures (Grossman et al., 2005), nor their
motion direction (Vangeneugden et al., 2014).

One interpretation of this complex pattern of results is that
there is a dual neural processing route for biological motion, one
route involving motion processing via MTþ/V5 en route to STS
and the other by-passing MTþ/V5 via the form-processing route
which also projects to STS (Morel and Bullier, 1990). However is-
sues with previous studies leave the issue open so the role of
motion systems in the processing of biological motion is still un-
clear (Mather et al., 1992; Thornton et al., 1998; Troje and
Westhoff, 2006; Beintema and Lappe, 2002; Beintema et al., 2006).
In particular, although Grossman et al. (2005) found no effect of
TMS over MTþ/V5 on biological motion processing they only
tested left MTþ/V5 using off-line stimulation, which is less ef-
fective than on-line stimulation (van Kemenade et al., 2012).
Moreover Grossman et al. (2005) used only biological motion
displays, so it was uncertain whether their stimulation was more
effective in disrupting other aspects of motion processing. We
therefore designed a TMS experiment to test the role of MTþ/V5
in biological motion, in which stimulation was applied while
participants performed two very closely matched tasks. Further-
more we tested both hemispheres using online stimulation.

The control motion task (Drift) involved discriminating the
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direction of 13 coherently moving but randomly located signal
dots (leftward versus rightward) embedded in a background of
randomly moving noise dots. The biological motion task (Walker)
involved discriminating the facing direction of a point-light
treadmill walker also composed of 13 signal dots and embedded in
a background of randomly moving noise dots. Stimuli in the two
tasks were matched in terms of size, luminance, duration and
average velocity. We first established a baseline level of perfor-
mance in each task by determining the number of noise dots re-
quired to attain a specified level of performance, and then mea-
sured changes in performance due to TMS stimulation during the
task.
2. Methods

2.1. Subjects

Twelve participants who were unaware of the purpose of the
study participated in the experiments. Two of these participants
were discarded by initial screening because they exhibited no
discernible neural effects of TMS due to over-reaction to TMS side
effects (tingling sensations, twitches, noise).

All participants had normal or corrected-to-normal visual
acuity. All participants were screened with an interview for any
condition that could increase the risks associated to the use of
rTMS (Rossi et al., 2009). All participants understood the in-
formation given about TMS and gave written informed consent
according to the Declaration of Helsinki. The study was approved
by the Local Ethics Committee at University of Padova, where the
data was collected.

2.2. Apparatus

Stimuli were generated using Matlab and Psychtoolbox (Brai-
nard, 1997; Pelli, 1997) and displayed on a 19-in. ViewSonic G90fB
monitor at a refresh rate of 75 Hz. The screen resolution was
1280�1024 pixels. Each pixel subtended ∼1.7′ (0.028 deg). The
background luminance was 35.7 cd/m2, while luminance of dot
stimuli was 89.7 cd/m2, as measured using a Minolta LS-100
photometer. TMS was delivered via a Magstim Super-Rapid sti-
mulator and a 70mm figure-of-eight coil.

Participants sat in a dark room and were immobilized with a
chin rest placed at 57 cm from the screen. Viewing was binocular.
They were instructed to fixate the centre of the screen and were
given training to familiarize them with the stimuli and task.

2.3. Stimuli

2.3.1. Walker stimuli
Observers viewed a simulation of biological motion on a com-

puter screen, developed using the algorithm described in Cutting
(1978). The shifting pattern of dots generated by a step cycle of a
walking figure (Walker) was sampled to create forty static views. A
subset of fifteen consecutive views was presented for 26.66 ms
each (400 ms in total). When this series of static frames was
presented in rapid succession, observers reported a compelling
impression a walking figure, as expected. Thirteen points were
plotted in each frame to define the figure (signal); one for the
head, two each (left and right) for the shoulders, elbows, wrists,
hips, knees, and ankles. Dot size was 5 pixels (�0.14°). They si-
mulated the pattern generated by a sideways view of a person
walking on a treadmill. In other words, the dot displacements
contained no translatory component, only elliptical and oscillatory
components. In half of the presentations (randomly selected) the
figure faced to the right, and in the other half the figure faced to
the left. The walker’s torso was �2.3° and the entire figure was
�6.5°. The walking figure was embedded in a circular aperture
(11.5°) of scrambled noise dots generated from the same motions
as the walker but with each dot displaced to a new randomly
selected starting location in the stimulus aperture. Previous re-
search has shown that discrimination of walker direction becomes
more difficult as the number of noise dots increases. However
some walker dots (such as those located at the wrists and ankles)
undergo much greater motion than others (such as those on the
shoulders and hips), introducing marked variability in the effec-
tiveness of individually added noise dots. In order to avoid this
problem, we added noise dots in sets of thirteen corresponding to
all the dots defining a walker. The facing direction of each set of
noise dots was randomly set either to the left or the right. The
number of sets of scrambled noise dots to present was determined
separately for each participant before the main experiment (see
baseline sessions).

In order to avoid observers performing the task by identifying
consistent locations within the aperture at which specific walker
dots were expected to occur, from trial to trial the screen x and y
coordinates of the walker figure were randomly jittered by 71.2°.

2.3.2. Drift stimuli
The observer viewed a cloud of dots presented within a circular

aperture (11.5°) for a duration of 400 ms (15 frames). In order to
ensure a close match with the Walker stimuli, 13 dots in random
locations moved coherently leftwards or rightwards at the same
velocity matched to the average velocity as the Walker dots, to
define the signal. Noise dots were added in sets of 13 dots, ran-
domly distributed in the stimulus aperture and each moving in a
randomly selected direction (see Pilly and Seitz, 2009) at the same
speed as the signal dots. Any dots which moved outside the border
of the stimulus aperture re-appeared at the opposite side. Dot size
was �0.14° and as for the Walker stimuli the number of sets of
noise dots to present was determined individually for each parti-
cipant (see Section 2.4.1).

2.4. Procedure

2.4.1. Baseline sessions
Separately for each stimulus type, participants performed a

first block of 30 trials of direction discrimination (left vs. right)
with a signal to noise ratio of 1:3 (for every signal dot there were
three noise dots). Depending on their performance, the number of
noise dots was decreased or increased in subsequent blocks until
each participant reached a response accuracy of between 67% and
83% correct in two consecutive blocks with the same levels of
noise. For one participant, who had a very rapid transition be-
tween accuracy below 67% and above 83% when increasing or
decreasing the noise level by one unit, we used a noise level
producing 90% of correct responses. This level of noise (one noise
level for each stimulus type,Walker and Drift) was then used as the
baseline in the TMS part of this study. Participants responded with
a button press (non-speeded response). An ISI of 500 ms followed
each button press. The order of presentation of the tasks was
counterbalanced across participants.

2.4.2. Transcranial magnetic stimulation (TMS) sessions
Tasks were the same as those described in the behavioural

sessions of the study. For each stimulus type, participants per-
formed a direction discrimination task while rTMS was adminis-
tered over either Cz, left MTþ/V5 or right MTþ/V5 in different
blocks. Each block comprised 30 trials. In these blocks, the ISI was
3 s in order to minimize any potential risk due to temporal sum-
mation of neural excitation (Rossi et al., 2009). Fig. 1 illustrates the
timeline of the Baseline and TMS sessions. The order presentation



Fig. 1. Timeline of a single trial in the Baseline and TMS sessions. Stimulus duration was 400 ms, with TMS pulses delivered at 100 ms intervals during presentation in the
stimulus.
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of the tasks and the area stimulated was counterbalanced across
participants.

For phosphene detection, the stimulation intensity was set at a
value for which each subject perceived clear phosphenes with the
eyes closed (65–80% of the maximum stimulator output-MSO). For
the experiment the intensity was then set at 65% of MSO. A total of
five pulses were delivered over a period of 500 ms (10 Hz). In
particular, TMS pulses were delivered at the onset of the stimulus.
For stimulation over MTþ/V5 the coil was held tangential to the
skull with the handle pointing upwards. Localization of stimula-
tion sites aimed at targeting areas MTþ/V5 was determined as
follows (see Campana et al., 2002). Two stimulation sites were first
roughly localized in all subjects by using predetermined co-
ordinates: 3 cm dorsal to inion and 5 cm leftward or rightwards
from there. For all subjects TMS pulses were delivered at these
sites and then at sites from 0.5 to 1.0 cm away until the subjects
reported the most vivid phosphenes in the contralateral hemifield
and approximately at the centre of the visual field along the ver-
tical axis. Subjects were asked about the size and position of the
perceived phosphenes and whether they were moving or sta-
tionary. All participants perceived larger phosphenes (often re-
ferred as “elongated”) when stimulated over the left or right MTþ/
V5 sites. Eight out of ten participants perceived moving phos-
phenes. At the TMS intensity we used it is common that not all
subjects report moving phosphenes with stimulation of MTþ/V5
(e.g., Campana et al., 2011; Silvanto and Cattaneo, 2010). In any
case, for all subjects the characteristics of the phosphenes (Sil-
vanto et al., 2007), together with the distance of the stimulated
position from the inion strongly suggest that the sites correspond
to area MTþ/V5. Indeed, this technique provides a localization
consistent with fMRI localisers (Thompson et al., 2009). None of
the participants reported seeing phosphenes during the experi-
ment, when the stimulator output was reduced to 65%.
Fig. 2. Direction discrimination performance as a function of stimulation condition.
(a) Mean percentage correct discrimination of direction for the Drift stimulus (71
SEM). TMS over MTþ/V5 significantly depressed performance relative to TMS over
Cz. (b) Mean percentage correct discrimination of direction for the Walker stimulus
(71 SEM). There was no significant difference in performance between the TMS
conditions.
3. Results

Fig. 2a plots mean direction discrimination accuracy for the
Drift stimuli for each TMS condition. Performance was much lower
when TMS was applied to MTþ/V5 than with no TMS or when it
was applied to Cz. Fig. 2b plots corresponding data for the Walker
stimuli. There is relatively little difference in performance level
between the conditions.

We ran a Shapiro-Wilk test in order to evaluate the normality
of our data distributions. In no condition were data distributions
significantly different from a normal distribution (SW10o0.88,
p40.05 for all conditions). The sphericity assumption was as-
sessed with Mauchly’s test, but was never found to be significant
(W240.06, p40.05).

A t-test between the Drift and the Walker conditions when TMS
was not applied (No TMS condition; left-most columns in Fig. 2a
and b) yielded no significant difference between these two data
sets (t9¼1.09, p¼0.304), indicating that the level of difficulty of
the two tasks was equivalent.

Since the No TMS condition is not strictly comparable to the
active stimulation conditions due to the absence of specific inter-
ference such as audible noise, tingling skin sensations or even
twitches that TMS might cause, we did not include this condition
in subsequent analyses. TMS over Cz was taken as the baseline
condition, where no neural interference on visual motion per-
ception is expected but all other interfering effects of TMS are
present.

A two-way within-subjects ANOVA with motion type (Drift vs.
Walker) and TMS site (Cz, left MTþ/V5, right MTþ/V5) as factors
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showed a significant effect of TMS site (F2,18¼4.11, p¼0.034,
ηp

2¼0.31) and of the interaction between motion type and TMS site

(F2,18¼3.84, p¼0.041, ηp
2¼0.30), suggesting that TMS at certain

sites affected performance on only one type of visual motion. In
fact, Bonferroni-corrected post-hoc t-tests showed a significant
decrement in task performance using TMS over left (t9¼3.35,
p¼0.018) or right MTþ/V5 (t9¼3.58, p¼0.012) relative to TMS
over Cz, but only for the Drift motion type, not for the Walker
motion type (t9¼0.72, p¼0.980 and t9¼�0.50, p¼1 respectively
for TMS over the left and right MTþ/V5, with respect to TMS over
Cz). The Scaled JZS Bayes Factor (BF; Rouder et al., 2009; Morey
and Rouder, 2011) calculated on these t-tests support this view:
BFs of 7.07 and 9.67 provide substantial evidence in favour of the
alternative hypothesis (Jeffreys, 1961) when comparing the accu-
racy obtained on the Drift stimulus with TMS over Cz with respect
to TMS over the left or right MTþ/V5 respectively, whereas BFs of
0.29 and 0.26 provide substantial evidence in favour of the null
hypothesis when comparing the accuracy obtained on the Walker
stimulus with TMS over Cz with respect to TMS over the left or
right MTþ/V5 respectively.
4. Discussion

Results indicate that TMS applied to MTþ/V5 was very effective
in interfering with the Drift task: Stimulation in either hemisphere
was sufficient to cause a significant decrement in performance. On
the other hand, TMS had no significant effect on performance in
the Walker task. Given that the two tasks were closely matched in
terms of both stimulus properties and baseline psychophysical
performance, the obtained difference cannot be explained in terms
of variations between the tasks. The decrement in performance
due to TMS is quite severe (approximately 10%), in line with pre-
vious studies of direction discrimination under magnetic stimu-
lation (Beckers and Homberg, 1992; Cowey et al., 2006; Sack et al.,
2006; Stevens et al., 2009). Evidence also indicates that the effect
of TMS is quite spatially specific to the area of the cortex stimu-
lated so our effect is highly likely to be due to stimulation of MTþ/
V5 (Bona et al., 2015). The effects produced by online rTMS are
likely due to an increase in neural noise that might reduce the
signal-to-noise ratio (Miniussi et al., 2013). Online rTMS would
mainly excite the less active neurons (state-dependent TMS effects
theory: Silvanto and Muggleton, 2008; Silvanto et al., 2008), which
in the case of our studies are those MTþ/V5 neurons not tuned to
the specific stimulus presented. This increase in neural activity
would counteract the specific activation of neurons tuned to the
stimulus, thus online rTMS is likely to interfere with performance
more than the general and aspecific reduction in excitability pro-
duced by offline 1 Hz stimulation (Sandrini et al., 2011).

Data are consistent with the dual processing route hypothesis:
MTþ/V5 is not an obligatory waypoint in the neural processing of
biological motion, though it is obligatory for discrimination of
coherent drift motion. To further test the hypothesis, we examined
the intra-subject correlations in task performance across TMS
conditions. When the same processing route is used in different
conditions, then correlations between performance in those con-
ditions should be high. However if different processing resources
are recruited in different conditions, then correlations between
performance should be lower. For the Drift task there was a very
high correlation between TMS over Cz and TMS over left (r¼0.86,
p¼0.001) and right MTþ/V5 (r¼0.82, p¼0.004) respectively. On
the other hand for the Walker task there was no significant cor-
relation between performance with TMS over Cz and TMS over left
(r¼0.42, p¼0.229) and right MTþ/V5 (r¼0.40, p¼0.254) re-
spectively. Correlations between TMS conditions thus support the
hypothesis of a dual processing route for processing biological
motion.

Recent psychophysical and computational studies are con-
sistent with flexible use of form and motion cues in biological
motion (Thirkettle et al., 2009; Thurman et al., 2010; Singer and
Sheinberg, 2010). Psychophysical and computational studies by
Thurman et al. (2010) indicate that biological motion perception
relies more on form-based processing strategies as motion in-
formation becomes less available. In their study motion informa-
tion was manipulated by varying exposure time. In our study
motion information was presumably corrupted by the application
of TMS over MTþ/V5, and we infer that the high level of task
performance we observed in this condition was due to the use of a
form-based processing strategy.

In summary, using closely matched tasks we found that TMS
applied over cortical area MTþ/V5 disrupted discrimination of
coherent motion direction but did not disrupt discrimination of
biological motion facing-direction. Results are consistent with
flexible use of motion cues in biological motion perception,
mediated by a dual neural processing route.
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