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Abstract

Alluvial aquifers are often characterized by the presence of braided high-permeable

paleo-riverbeds, which constitute an interconnected preferential flow network

whose localization is of fundamental importance to predict flow and transport

dynamics. Classic geostatistical approaches based on two-point correlation (i.e.,

the variogram) cannot describe such particular shapes. In contrast, multiple

point geostatistics can describe almost any kind of shape using the empirical

probability distribution derived from a training image. However, even with a

correct training image the exact positions of the channels are uncertain. State

information like groundwater levels can constrain the channel positions using

inverse modeling or data assimilation, but the method should be able to handle

non-Gaussianity of the parameter distribution. Here the normal score ensemble

Kalman filter (NS-EnKF) was chosen as the inverse conditioning algorithm to

tackle this issue. Multiple point geostatistics and NS-EnKF have already been

tested in synthetic examples, but in this study they are used for the first time

in a real-world case study. The test site is an alluvial unconfined aquifer in

northeastern Italy with an extension of approximately 3 km2. A satellite train-

ing image showing the braid shapes of the nearby river and electrical resistivity
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tomography (ERT) images were used as conditioning data to provide informa-

tion on channel shape, size, and position. Measured groundwater levels were

assimilated with the NS-EnKF to update the spatially distributed groundwater

parameters (hydraulic conductivity and storage coefficients). Results from the

study show that the inversion based on multiple point geostatistics does not

outperform the one with a multiGaussian model and that the information from

the ERT images did not improve site characterization. These results were fur-

ther evaluated with a synthetic study that mimics the experimental site. The

synthetic results showed that only for a much larger number of conditioning

piezometric heads, multiple point geostatistics and ERT could improve aquifer

characterization. This shows that state of the art stochastic methods need to

be supported by abundant and high-quality subsurface data.

Keywords: multiple point geostatistics, normal score transform, ensemble

Kalman filter, groundwater, modeling

1. Introduction

Hydrogeological modeling plays a fundamental role for a large number of

earth sciences and engineering problems, such as groundwater management,

aquifer remediation, and underground waste disposal and management. In or-

der to be capable of reliable predictions, models require a detailed knowledge5

of the aquifer geological structure (e.g., extent and thickness of hydrogeological

units, boundary conditions for flow and transport) and flow and transport pa-

rameters of the aquifer (e.g., hydraulic conductivity and porosity, dispersivity).

In practice, only limited information on the spatial variation of these parameters

is available. Therefore, we must often deal with highly uncertain hydrogeologic10

models, especially with reference to the hydraulic conductivity. Current practice

in stochastic hydrogeologic modeling consists of assuming a multivariate Gaus-

sian distribution for log-transformed hydraulic conductivity (De Marsily, 1986).

However, cases in nature where this assumption is not valid are abundant, e.g.,

when highly permeable preferential flowpaths such as alluvial paleo-channels15
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lie within a statistically homogeneous hydraulic conductivity field. Traditional

geostatistical simulators based on two-points correlation models (i.e. the var-

iogram) cannot describe such shapes and can yield inappropriate stochastic

realizations failing to reproduce the true probability distribution of the ana-

lyzed property (Gómez-Hernández and Wen, 1998). Therefore, more advanced20

approaches that can tackle these limitations are increasingly being used.

By using copula functions (e.g. Bárdossy, 2006; Bárdossy and Li, 2008) or

multiple point geostatistics (MPG) (Caers and Zhang, 2005; Hu and Chugunova,

2008), it is possible to generate any kind of morphological structure, such as

curvilinear facies and interconnected channels that often characterize fluvial de-25

posits. Copulas describe the dependence structure between random variables

without information on the marginal distributions by representing the depen-

dence between the random variables over the range of quantiles. MPG algo-

rithms do not require the definition of a variogram model, but instead rely

on a training image from which the empirical probability distribution of the30

shapes and structures that need to be mimicked is obtained. MPG algorithms

were successfully applied in groundwater flow and transport problems to de-

scribe multimodal spatially heterogeneous parameter fields (Feyen and Caers,

2005; Huysmans and Dassargues, 2009). However, in real-world applications,

an adequate training image may not always be available. Moreover, the use of35

an inappropriate training image can lead to unrealistic stochastic realizations,

drastically affecting the modeling results (Jafarpour and McLaughlin, 2009).

Among many inversion modeling frameworks, one that is particularly ap-

pealing when dealing with groundwater problems with heterogeneous param-

eters is sequential data assimilation. The primary objective of data assimi-40

lation is to provide an optimal estimate of the system state and parameters

given a set of measurements and a dynamical model with known uncertain-

ties. The ensemble Kalman filter (EnKF) (Evensen, 1994; Burgers et al., 1998),

in particular, has become popular in various scientific fields, such as meteo-

rology, hydrogeology and petroleum engineering (e.g., Chen and Zhang, 2006;45

Hendricks Franssen and Kinzelbach, 2008; Crestani et al., 2013; Houtekamer and Mitchell,
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1998; Aanonsen et al., 2009; Camporese et al., 2011). The main advantages of

EnKF over other data assimilation methods are: (i) the ability to handle dif-

ferent sources of uncertainty in a relatively straightforward manner, thanks to its

Monte Carlo-based approach; (ii) the computational efficiency (e.g., Hendricks Franssen and Kinzelbach,50

2009); (iii) the possibility to estimate a posterior probability density function

(pdf) rather than a single optimal solution; and (iv) the ability to include new

observation data from on-line sensors in real-time.

One of the main limitations of the ensemble Kalman filter is that it provides

an optimal solution (in a least-squares sense) only if the state variables follow55

a Gaussian distribution, a condition that is rarely met in practical problems.

Therefore, different approaches were developed to account for non-Gaussian

distributions. These approaches include: (i) particle filters (Rings et al., 2010;

Pasetto et al., 2012), which do not rely on any assumption on the pdf of the

states and parameters, but typically require larger ensemble sizes compared to60

EnKF and can therefore be computationally unaffordable; (ii) Gaussian mix-

ture model methods, which approximate the non-Gaussian probability density

functions using a probabilistic model with a finite number of Gaussian pdfs

(Chen and Liu, 2000; Apte et al., 2007; Sun et al., 2009; Liu et al., 2016); (iii)

transformed re-parametrization, where non-Gaussian system variables are re-65

placed with alternative variables more suitable to be approximated by a Gaus-

sian distribution (Chen et al., 2009; Chang et al., 2010); (iv) iterative EnKF,

which addresses the issue of non-Gaussianity by repeating the updating process

many times at each update step until the required match between observations

and predicted state variables is obtained (Gu and Oliver, 2007; Li and Reynolds,70

2007; Reynolds et al., 2006; Sakov et al., 2012; Hendricks Franssen and Kinzelbach,

2008); and (v) the normal score approach, where the non-Gaussian distribution

of each state variable is transformed into a Gaussian distribution before each

update step. After the update, the normal score transformed variables are

back-transformed to their original distribution. Applications of the latter ap-75

proach in the field of groundwater hydrology can be found in Zhou et al. (2011),

Schöniger et al. (2012), and Crestani et al. (2013).
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Although the normal score ensemble Kalman filter (NS-EnKF) was already

combined with multiple point geostatistics to develop a data assimilation frame-

work for heterogeneous aquifers with bimodal hydraulic conductivity distribu-80

tions, to date it was tested only in synthetic studies (Zhou et al., 2011; Li et al.,

2012; Schöniger et al., 2012; Zhou et al., 2012; Xu et al., 2013; Xu and Gómez-Hernández,

2016). Only a few case studies can be found in the literature where EnKF-

based data assimilation frameworks were tested in real field experiments for pa-

rameter estimation in groundwater hydrology (Hendricks Franssen et al., 2011;85

Panzeri et al., 2015; Crestani et al., 2015). However, such evaluations are es-

sential because many assumptions, such as the adopted geostatistical model,

remain highly speculative, due to the inherently limited amount of information

that is available to characterize the subsurface.

The main objective of this paper is to evaluate the performance of a data90

assimilation framework for the estimation of heterogeneous subsurface param-

eters based on EnKF and MPG in a real-world test case. The study area is

the Settolo experimental site, an alluvial phreatic aquifer with an extension of

approximately 3 km2 located in Northeastern Italy. The aquifer is character-

ized by the presence of paleo-riverbeds acting as preferential flowpaths. We95

use satellite data to obtain a training image that captures the plausible char-

acteristic shapes of the paleo-riverbeds. Piezometric head data collected in the

field are then assimilated with NS-EnKF into a two-dimensional groundwater

flow model to update states and aquifer parameters. An additional novel as-

pect of this study is the use of electrical resistivity tomography images in the100

MPG simulator to condition the channel positions in the prior realizations of

the hydraulic conductivity fields. Along with the application to the field case

study, a synthetic case study that mimics the Settolo site is developed, in or-

der to give further insights on the potential and drawbacks of the proposed

assimilation/inversion framework.105
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2. Inversion approach

2.1. Groundwater model

Two-dimensional horizontal flow in an unconfined aquifer is described by the

nonlinear Dupuit-Boussinesq equation (De Marsily, 1986):

∂

∂x

[
Kx (h− z0)

∂h

∂x

]
+

∂

∂y

[
Ky (h− z0)

∂h

∂y

]
= [Ss (h− z0) + Sy]

∂h

∂t
+ qa, (1)110

where Kx and Ky (m/s) are the hydraulic conductivities along the x and y

spatial coordinates, respectively, h (m) is the water table elevation, z0 (m) is

the elevation of the aquifer bottom (assumed impermeable), Ss (m−1) is the

specific storage, Sy is the specific yield (m3 m−3), and qa (m/s) represents a

generic nodal source or sink term. Equation (1) is integrated in space by means115

of the linear finite element method. An unstructured mesh can be used, allow-

ing variable element size according to different spatial discretization needs. For

integration over time, an adaptive time stepping with backward Euler scheme

is adopted. The model is completed by appropriate initial and boundary con-

ditions that will be described in detail later.120

We opted for a two-dimensional model after a preliminary comparison with a

fully three-dimensional Richards equation solver (Zovi, 2014). The comparison

highlighted that the groundwater dynamics in the Settolo aquifer is mainly

horizontal and using a three-dimensional model would only imply a much larger

computational effort without evident benefits in terms of solution accuracy.125

2.2. Ensemble Kalman Filter with normal score transform

The normal score ensemble Kalman filter (NS-EnKF) is a variant of the

EnKF (Burgers et al., 1998; Evensen, 1994) that addresses the non-Gaussianity

of the system state variables by transforming the components of the state vectors

for all ensemble members, such that each of these components honors a stan-130

dard Gaussian distribution (Zhou et al., 2011; Li et al., 2012). In this study,

we integrate the NS-EnKF with the previously described groundwater model to

update the system state and parameters through the assimilation of observed
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groundwater levels. While Schöniger et al. (2012) used the NS-EnKF for subsur-

face parameter estimation only, based on the parameter space EnKF proposed135

by Nowak (2009), parameter updating is here achieved here by considering an

augmented system state vector x

x =
[
hT YT Sy

T Ss
T
]
, (2)

where h is a Nn-dimensional vector containing the water table elevations in

each node of the numerical mesh, Y consists of the hydraulic log-conductivity140

values (Y = logK) in the Ne elements, while Sy and Ss are one-dimensional,

as we assume that specific yield and specific storage are spatially homogeneous.

A total of NMC realizations of the vector x are collected in a matrix X of

dimensions Nx ×NMC, where Nx = Nn +Ne + 2.

The proposed inversion approach can be summarized as follows.145

1. Generation of the prior ensemble. NMC equally likely stochastic realiza-

tions of Y , Sy and Ss are generated, assuming they are the only sources

of uncertainty. To test different assumptions and capture all the relevant

sources of uncertainty, the initial ensemble of Y is generated by differ-

ent combinations of the Single Normal Equation Simulation (SNESIM)150

algorithm (Strebelle, 2002; Liu, 2006; Remy et al., 2009), for generating

facies distribution, and Sequential Gaussian Simulation (SGSIM) algo-

rithm (Gómez-Hernández and Journel, 1993; Deutsch and Journel, 1998;

Remy et al., 2009), for populating the different facies. Available condi-

tioning information consists of electrical resistivity tomography data and155

satellite images. The initial ensemble of Sy and Ss is generated by draw-

ing random numbers from uniform distributions with pre-set minimum

and maximum values. The initial ensemble of groundwater levels (i.e.,

initial conditions) is generated with a steady-state run for each realization

of the parameters. This generation step will be described in more detail160

in Section 4.2.

2. Forward model evaluation. The groundwater model is run from the pre-

vious assimilation time ti−1 to the current assimilation time ti for each
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realization of the ensemble in order to compute the distribution of ground-

water levels h. This step is the most computationally intensive, because165

NMC model evaluations are needed. However, these model evaluations

can be easily run in parallel, thereby reducing the computational time.

3. Normal score transformation. All entries of the augmented state vector

(h, Y , Sy, and Ss values), as well as the observed heads z, are normal

score transformed:170

ĥ = Φh (h) , Ŷ = ΦY (Y ) , Ŝy = ΦSy (Sy) , Ŝs = ΦSs (Ss) , (3)

where ĥ, Ŷ , Ŝy, and Ŝs are the normal score transformed variables and for

each entry of the state vector a different transformation function (Φh, ΦY ,

ΦSy , and ΦSs) is generated. For Y , we always use the initial function ΦY

computed at the first assimilation time, which remains unchanged dur-175

ing the iterations, in order to preserve the prior model structure and the

statistical information included in the initial ensemble (Zhou et al., 2011;

Li et al., 2012). For h, Sy, and Ss, we use a new transformation function

at each time step. The observed heads z are transformed into ẑ using a

transformation function derived from the simulated heads in the nodes180

corresponding to the measurement locations, following Schöniger et al.

(2012). For all the transformations, anamorphosis functions are built that

link the original variable to its transformed equivalent. One of the draw-

backs of this approach is that the relationship between untransformed and

transformed variables is only known in a finite number of discrete points,185

so all the other values must be obtained by linear interpolation. To pre-

vent the generation of unrealistic values, we make sure that extrapolation

never occurs by adding reasonable and realistic minimum and maximum

extreme values to the reference dataset, whose respective Gaussian cumu-

lative distribution function (CDF) values are set to 0.000001 and 0.999999,190

respectively.

4. Assimilation. An augmented state vector X̂ is built by assembling ĥ, Ŷ,

Ŝy, and Ŝs, and then updated by means of the measurements available in
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Nobs observation points, according to the following equations:

X̂u = X̂+αĜ
(
ẑ−HX̂

)
, (4)195

Ĝ = P̂HT
(
HP̂HT + R̂

)−1

, (5)

P̂ =
1

NMC

(
X̂−XeT

)(
X̂−XeT

)T

, (6)

Xi =
1

NMC

NMC∑
j=1

X̂i,j , i = 1, . . . , Nx, (7)

where X̂u is the updated transformed state vector of size [Nx ×NMC]; α

is a dampening diagonal matrix [Nx ×Nx] that contains dampening fac-200

tors (ranging between 0 and 1) for each component of the augmented state

vector (Hendricks Franssen and Kinzelbach, 2008); Ĝ is the Kalman gain

[Nx ×Nobs]; ẑ is the ensemble of transformed observations [Nobs ×NMC],

obtained by perturbing the Nobs transformed observation values with a

random noise characterized by mean equal to zero and standard deviation205

ϵ (Burgers et al., 1998); R̂ is the transformed observation error covariance

matrix [Nobs ×Nobs]), which here is assumed to be diagonal, i.e., errors

at different measurement locations are uncorrelated; H is the observa-

tion matrix [Nobs ×Nx] that maps the measurements to the augmented

state and in our case is composed only by 0’s and 1’s, as measurement210

locations correspond exactly to mesh nodes; P̂ is the augmented state

covariance matrix [Nx ×Nx], with X being the ensemble mean [Nx × 1]

and eT =
[
1 . . . 1

]
[1×NMC]. If Nobs ≪ Nx, as in most practi-

cal applications, the Kalman gain can be computed in an efficient way

without the need to calculate directly the whole ensemble covariance ma-215

trix P̂, saving memory and CPU operations (Evensen, 2003). Covariance

localization and inflation, as described by Kurtz et al. (2012, 2014) and

Xu et al. (2013), are also implemented in the inversion approach.

5. Normal score back-transformation. After the update, the augmented state

vector is back-transformed to its original distribution using the inverse of220
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the transformation functions:

h = Φ−1
h

(
ĥ
)
, Y = Φ−1

Y

(
Ŷ
)
, Sy = Φ−1

Sy

(
Ŝy

)
, Ss = Φ−1

Ss

(
Ŝs

)
,

(8)

The inverse of the transformation function is not explicitly computed,

but is approximated by an interpolation of the constructed anamorphosis

function. The updated h distribution is the initial condition for the next225

time step, and points 3 to 5 are repeated until the end of the simulation

period.

The ensemble Kalman filter can be affected by filter inbreeding, which is

an undesired effect whereby ensemble variance is increasingly underestimated

with time. This is due to spurious covariances between pairs of grid cells where230

no correlation would be expected, but that arise due to the finite ensemble

size (Evensen, 2009). Updating on the basis of these spurious covariances causes

a strong variance reduction, as observations are interpreted as informative by

the filter whereas in reality they are not. Filter inbreeding can be reduced by

using a large number of realizations (e.g., Chen and Zhang, 2006) or techniques235

such as dampening (Hendricks Franssen and Kinzelbach, 2008) and covariance

inflation or localization (Evensen, 2009). Localization aims to remove spurious

correlations from the covariance matrix (Nan and Wu, 2011). Here we adopt an

isotropic fifth-order correlation function (Hamill et al., 2001) that sets to zero

the covariance for pairs of points that are separated by a distance larger than240

a pre-defined length scale. Covariance inflation aims at limiting filter inbreed-

ing by empirically inflating the covariance matrix. Here, the time-dependent

inflation algorithm proposed by Wang and Bishop (2003) is used.

3. Study area

The research site is located along the left bank of the Piave River, in the245

Northern Treviso province (North-East Italy), close to the city of Valdobbiadene

(Figure 1). The area lies in a piedmont region of great relevance for aquifer
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recharge, as the river leaves its mountain catchment and feeds the underlying

unconfined aquifer. The site has an extension of 2.7 km2 and elevation ranging

between 155 to 165 m a.s.l. The aquifer is heavily exploited for irrigation and250

drinking water supply. The main drivers of groundwater flow are infiltration

from the Piave River, which determines the southern and western boundary of

the groundwater flow domain, and water extraction from a number of drinking

water wells, indicated with p1, p2, and p3 in Figure 1.

River stage and groundwater level are continuously measured in twenty lo-255

cations as shown in Figure 1. Four of these locations are used to define the

time-variable boundary conditions of the groundwater model domain (I1, I2,

w7 and wS). The remaining data from sixteen boreholes are used for data as-

similation. Pumping rates at the production wells and rainfall rate are also

continuously measured (Zovi, 2014). More details about the experimental site260

can be found at http://settolo.dicea.unipd.it/index.php.

Additional available data include five electrical resistivity tomography (ERT)

profiles (Figure 2), whose position is shown in Figure 1. The resistivity images

were obtained using the 2-D resistivity, 3-D current ERT code R2 by A. Binley,

Lancaster University (http://www.es.lancs.ac.uk/people/amb/Freeware/freeware.htm),265

to invert field data collected with 10 m resolution Schlumberger arrays and the

roll-along technique to concatenate consecutive transects. The ERT profiles

highlight a pronounced zonal heterogeneity mainly due to the presence of highly

permeable paleo-riverbeds (Sartor, 2006). Therefore, it is assumed that a bi-

modal hydraulic conductivity distribution would be needed to reproduce the270

heterogeneity of the study area.

In-situ pumping and slug tests resulted in hydraulic conductivity values that

range from about 5 × 10−4 to 5 × 10−2 m/s, specific yield values from 0.16

to 0.29, and specific storage values from 1.5 × 10−2 m−1 to 2.5 × 10−2 m−1.

A preliminary analysis of the pumping test data with the method proposed275

by Schneider and Attinger (2008) resulted in an estimate of the horizontal inte-

gral scale of 84 m. Note that all these in-situ tests were performed in a small area

around well p1 (Figure 1) and therefore cannot be considered as representative
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for the whole aquifer.

4. Model and simulation setup280

4.1. Model setup

The Settolo aquifer was discretized with an unstructured finite element tri-

angular mesh consisting of 11939 elements and 5866 nodes. To be able to better

reproduce the local groundwater table variations, finer triangles (2 m size) were

used around the pumping wells, while coarser triangles of 20 m size were used285

away from the wells. The latter size corresponds to almost 1/4 of the minimum

expected integral scale (84 m). The locations of observation and pumping wells

correspond exactly to nodes of the mesh.

Boundary conditions for the groundwater model are shown in Figure 1. The

Piave river to the western and southern boundary of the flow domain constitutes290

a known variable head boundary condition that is measured by the gauges I1 and

I2 (Figure 1) and linearly interpolated along the A-B segment. At the northern

boundary, a fluvio-glacial alluvial terrace constitutes an almost impermeable

boundary (C-D and E-A segments), except where the Funer valley intersects

the test site (D-E segment). Here, the groundwater level measured in well w7 is295

used in order to account for the recharge contribution from the upstream basin.

To the south-east, the boundary condition for the B-C segment is obtained from

the groundwater level measurement in well wS. Pumping well extraction rates

are imposed as sink terms in the corresponding nodes.

A preliminary calibration of the groundwater flow model with homogeneous300

parameters using measured groundwater levels gave a value of 1.4 · 10−2 m/s

for the hydraulic conductivity, which is one order of magnitude higher than the

values obtained with pumping and slug tests. Based on the ERT transects, we

adopt a conceptual model dividing the aquifer in two different zones: channels,

with higher hydraulic conductivity, in a background with lower conductivity. We305

assume that channel segments (indicated as red transparent rectangles in Figure

2) correspond to portions of the subsurface where the 400 Ωm iso-resistivity line

12



  

extends below a depth ranging from an average of 30 m in the North to 50 m in

the South. This depth is indicated by red lines in Figure 2 and represents the

assumed aquifer thickness in the groundwater model.310

4.2. Real-world experiments

We simulated a time period of 365 days (from 1 February 2011 to 31 January

2012) and selected a daily interval for data assimilation. The selected time

period includes both flood events and a long water production period, in order

to consider the aquifer response to different forcing conditions (Figure 3). In our315

data assimilation experiments we used an ensemble size (NMC) of 2000, which

is often considered to be large enough for accurate estimation and avoiding filter

inbreeding (Hendricks Franssen and Kinzelbach, 2008; Camporese et al., 2015).

A binary indicator field identifying the facies distribution (i.e., channel and

matrix) was generated with the SNESIM algorithm (Strebelle, 2002; Liu, 2006;320

Remy et al., 2009). Next, both facies were populated with hydraulic conductiv-

ity values generated by the SGSIM algorithm (Gómez-Hernández and Journel,

1993; Deutsch and Journel, 1998). The parameters for both algorithms were

assigned according to the following steps:

1. Training image. A crucial point for multiple point geostatistics, as pointed325

out by Jafarpour and McLaughlin (2009), is the need for a representative

training image, because its choice highly affects the shape of the generated

facies. We derived a training image from a satellite image of the current

floodplain of the Piave River (Figure 4). By doing so, it is assumed that

the geomorphological phenomena responsible for the deposition of fluvial330

sediments in past ages are also responsible for the generation of present

braided river shapes. This assumption might be considered questionable,

because past morphodynamic conditions, i.e., river discharge and sediment

size and type, were not the same as nowadays, due to tectonic activity,

climate change and anthropogenic activities such as the construction of335

fluvial dams and dikes (Leopold et al., 1957; Leopold, 1995). Furthermore,
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the derivation of a training image from a satellite image is subject to inter-

pretation, for example in the choice of the channel widths. Nevertheless,

we considered the use of satellite photographs the only feasible choice in

this case.340

To partly address uncertainty in the selection of the training image, we

added uncertainty to the MPG generation by randomly varying several

parameters of the SNESIM algorithm. The varied parameters were: Px

and Py, i.e., the training image scaling factors for the generated chan-

nels in x and y directions, respectively, the planar rotation αTI (i.e., the345

inclination on the x − y plane of the generated channels), and the areal

fraction of the two facies %ch. For each realization, these four parame-

ters were randomly drawn from a uniform distribution with minimum and

maximum values as defined in Table 1. This approach is similar to the

one used by Jafarpour and Tarrahi (2011).350

2. Conditioning to geophysical data. The facies distribution obtained from

the ERT transects was considered as conditioning data for the facies gen-

eration with SNESIM (Figure 4). As the distinction between channels and

background in the ERT transects is also subject to interpretation, the geo-

physical data should not be considered as hard data during conditioning.355

Therefore, uncertainty was added to this conditioning step by imposing

a 60% probability that a particular conditioning point obtained from the

geophysical data is honored by SNESIM. In addition, 20% of the realiza-

tions were not conditioned to geophysical data in the initial ensemble, to

allow for diversity and the possibility that our geophysical interpretation360

is not accurate.

3. Population of the facies with Gaussian random fields. The two zones ob-

tained from SNESIM are populated with hydraulic conductivity values

extracted from a Gaussian random field (GRF) using the SGSIM algo-

rithm (Gómez-Hernández and Journel, 1993; Deutsch and Journel, 1998;365

Remy et al., 2009). An anisotropic exponential correlation function was

adopted. The main uncertainty lies in the definition of the mean (⟨Y ⟩),
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variance (σ2
Y ), integral scales in the x and y direction (Ix and Iy), and

anisotropy angle (αxy) of the correlation function for both the high and

low conductivity zones. From available field data (Section 3), plausible370

ranges for these parameters were obtained (Table 1). As for the SNESIM

parameters, a set of values was obtained using a uniform random draw be-

tween the predetermined minimum and maximum values, independently

for the two facies. In this way, the initial ensemble contains realizations

generated with a range of geostatistical parameters, which is expected to375

lead to a better representation of the uncertainty in the structure of the

logK field (Jafarpour and Tarrahi, 2011). It is then left to the EnKF to

condition the realizations to the available groundwater measurements.

To summarize, each realization is generated as follows: (1) extract random val-

ues for SNESIM parameters (Px, Py, αTI , %ch); (2) generate facies distributions380

with SNESIM from the training image, conditioning 80% of the realizations to

geophysical data; (3) extract random values for SGSIM parameters (⟨Y ⟩, σ2
Y ,

Ix, Iy, αxy), independently for each zone; (4) populate both zones with ran-

dom fields generated with SGSIM. This procedure was used to generate a first

ensemble of hydraulic conductivity fields, hereafter denoted as “Ensemble 1”.385

Panels a), b), and d) of Figure 5 show three examples of realizations from this

ensemble.

A second ensemble, denoted as “Ensemble 2”, was generated by using the

same procedure as described above, with the exception that the facies distri-

bution was not conditioned to our interpretation of the ERT transects. One390

realization sampled from this ensemble is shown in Figure 5c) as an example.

To further elaborate on the advantages of considering MPG, the results of

the simulations with the first two ensembles were compared with those obtained

with a more standard approach to generate the initial ensemble. Here, an initial

set of Gaussian random fields without zonation was generated with SGSIM395

(Gómez-Hernández and Journel, 1993; Deutsch and Journel, 1998; Remy et al.,

2009). Again, uncertainty in the definition of the geostatistical parameters for

15



  

SGSIM was considered following the approach outlined above. One realization of

this ensemble, denoted as “Ensemble 3”, is provided as an example in Figure 6.

Two other groundwater parameters considered uncertain are specific yield400

and specific storage (Sy and Ss, respectively). Their influence on the ground-

water dynamics in our site, however, is less important than that of Y . This was

confirmed by a preliminary sensitivity analysis of the groundwater model. For

this reason, it was assumed that these parameters are homogeneous in space.

For every realization, Ss and Sy were sampled randomly from a uniform distri-405

bution in the ranges 0.1 ≤ Sy ≤ 0.35 and 10−5 ≤ Ss ≤ 10−1.

The proposed approaches were evaluated using six scenarios, as shown in

Table 2. Each of the three initial ensembles were conditioned by assimilation

of groundwater level data with both the NS-EnKF and the standard EnKF

(without normal score transformation). The parameter ensemble resulting from410

each scenario was then assessed by running the groundwater model without data

assimilation for an additional 90-day verification period (from 1 December 2010

to 28 February 2011).

4.3. Synthetic inversion experiments

To better investigate the capabilities and limitations of the proposed inver-415

sion approach for our experimental site, we also conducted a synthetic test,

which mimics the real-world case. More specifically, this synthetic test case was

carried out for three main purposes. First, due to the limited number of obser-

vation wells available in the real-world case, it is important to assess to what

extent the results of the real-world case are a consequence of the limited amount420

of information available. Tests with different data sets allow us to evaluate the

improvement in aquifer characterization and model predictions that could be

achieved if more data were available. Second, a synthetic test case can give

additional insights on the performance of the normal score transformation and

the conditioning to geophysical data and further support the conclusions drawn425

from the real world case study. Third, for the synthetic test case, covariance

localization and inflation were also tested, to explore whether the use of such
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techniques can significantly improve the data assimilation results.

Using the same approach as described in section 4.2, a logK field was gen-

erated that was considered as the reference field. The forward problem was430

solved to generate synthetic groundwater levels from which measurement data

were taken for the subsequent data assimilation scenarios. The same boundary

conditions, time window, mesh discretization, groundwater model setup and

NS-EnKF parameters were used as in the real-world application. Thus, the

only important difference was that we knew a priori the true logK distribution,435

so that the estimation error could be directly estimated.

The reference field shown in Figure 7 was generated with the same training

image used in the real-world application, and was conditioned to geophysical

data, as in section 4.2. Synthetic numerical experiments were then conducted

using 14 scenarios, which are summarized in Table 3. We used three different440

sets of observation points: 16 observations, distributed exactly like the real-

world case; 65 observations, representing a refined measurement network, and a

much refined case with 250 observations. Each of the three sets was tested with

and without normal score transformation and with and without conditioning

on geophysical data. Covariance localization and inflation were tested only for445

the case with 65 observations, normal score transformation and conditioning to

geophysical data.

4.4. Performance assessment

To assess the performance of the proposed modeling framework in the various

scenarios, a number of measures were used. At each assimilation time t the Y450

field is updated by EnKF (with or without normal score transform, depending

on the scenario), and for each grid element i the ensemble mean is calculated

as follows:

EMY (i, t) =
1

NMC

NMC∑
j=1

Yi,j,t; (9)

while the ensemble variance is given by455

EVY (i, t) =
1

NMC

NMC∑
j=1

(Yi,j,t − EMY (i, t))
2
; (10)
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and the ensemble spread by:

ESY (t) =
1

Atot

Ne∑
i=1

AiEVY (i, t) (11)

where Yi,j,t is the logK of the ith element, jth realization at time step t, Atot

is the total area of the mesh and Ai is the area of the ith element. The EMY460

map after the last update (365th day) represents the best possible estimate of

the true Y field that can be obtained from the available data, while the EVY

map represents the local degree of uncertainty in the estimation.

To evaluate the performance of the best estimate of the logK field as well as

the whole final ensemble of realizations for each scenario, the root mean square465

error of the groundwater levels simulated in the 90-day verification period was

calculated in two ways:

RMSEens
wl =

√√√√ 1

Nobs ·Nt ·NMC

NMC∑
j=1

Nt∑
t=1

Nobs∑
p=1

(
hp,j (t)− hmeas

p (t)
)2
, (12)

and

RMSEwl =

√√√√ 1

Nobs ·Nt

Nt∑
t=1

Nobs∑
p=1

(
hp (t)− hmeas

p (t)
)2
, (13)470

where hp(t) is the simulated water level at the pth observation point and tth

time step obtained using the ensemble mean distribution EMY , hmeas
p (t) is

the measured groundwater level, and hp,j(t) is the simulated water level using

the jth realization of the ensemble at the pth observation point and tth time

step. To validate the model, a time discretization suitable to fully catch the475

groundwater dynamics was chosen, i.e., one observed data every 3 hours (8 time

steps each day). RMSEens
wl represents the capability of the whole ensemble to

reproduce the piezometric data. RMSEwl, instead, represents the capability of

the ensemble mean to reproduce the real data. The ensemble mean represents

the “best estimate”, but does not contain all the information about uncertainty480

that the filter can provide. Moreover, the hydraulic head distribution resulting

from the best Y field estimate is not necessarily the best head field due to
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nonlinearity. Therefore, for completeness, we included both measures in our

performance analysis.

The data assimilation results are also compared with an open-loop run, i.e.,485

RMSEens
wl and RMSEwl were also computed with the initial ensemble without

any update by EnKF or NS-EnKF. The open-loop run represents the initial level

of uncertainty and is the estimate without data assimilaton. Such a comparison

highlights the benefits of using EnKF or NS-EnKF for updating the logK field.

Table 2 summarizes the six scenarios with the relevant parameters.490

In the synthetic test case, the true hydraulic conductivity distribution is

known and we can therefore evaluate directly the error of the Y estimates.

Here, the mean absolute error (MAE) weighted with the element area was

used, instead of the RMSE, as it is less sensitive to the occasional large error

introduced by the possible misrepresentation of different local zones. As for the495

RMSE, also MAE can be computed in two ways:

MAEens
Y (t) =

√√√√ 1

NMC ·Atot

Ne∑
i=1

NMC∑
j=1

Ai|Yi,j (t)− Y true
i |, (14)

and

MAEY (t) =

√√√√ 1

Atot

Ne∑
i=1

Ai|EMY (i, t)− Y true
i |, (15)

where Y true
i is the reference logK value of the ith element. In addition, a facies500

matching ratio (FMR%) was calculated in the synthetic test case by converting

a continuous logK field into a binary indicator field. In our experiments, we

used a threshold value of -4.6 log(m/s), which corresponds to the centre of mass

of the histogram of the reference logK field shown in Figure 7. The FMR% is

the percentage of area that was correctly classified as channel or background505

material.
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5. Results and discussion

5.1. Real-world test case

The wall-clock time required to complete the data assimilation simulations

was around 30 hours on a 4-core desktop workstation. However, in a second510

round of runs it was possible to reduce such time to 25-30 minutes on a cluster

with 256 allocated processors.

Table 2 reports the performance statistics of the six scenarios for the real-

world application, while Figures 8 and 9 show the six retrieved EMY maps for

all scenarios and the corresponding EVY maps. The obtained logK distribu-515

tions of all the scenarios show similarities in the zone where the measurements

are most dense (Figure 8), while major differences arise elsewhere. In all six

scenarios no clear curvilinear channel shapes seem to emerge. Nevertheless, the

RMSEens
wl and RMSEwl for groundwater levels (Table 2) show an improve-

ment with respect to the open loop runs for all scenarios. The best performing520

scenario is the one with the initial ensemble generated with a GRF and without

normal score transformation (scenario 3), while initial ensembles generated with

MPG exhibit a poorer performance. This is probably due to the fact that the

measurements are mostly concentrated around the central part of the domain

and cannot provide enough information to identify the channels. On the other525

hand, scenario 3, which is not constrained by MPG and ERT data, has more

degrees of freedom and can adapt better to the observations.

Figures 8 and 9 also show that scenarios with normal score transforma-

tion always result in a final ensemble variance that is larger compared to the

corresponding runs without normal score. It has been demonstrated that trans-530

forming the variables can introduce noise into the EnKF procedure, due to a

significant reduction of the correlation between state variables and parameters

(Schöniger et al., 2012; Crestani et al., 2013). As a result, in the scenarios with

normal score transform, the updates cannot propagate in space as they would

normally do without transformation and therefore the hydraulic head values far535

from the measurement locations have more freedom to differentiate and main-
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tain a higher variance.

Figures 10 and 11 show measured and simulated groundwater levels for

the 90-day verification period in different observation wells and for scenarios

3 (multiGaussian random fields) and 4 (MPG with conditioning on ERT data540

and normal score transform), respectively. The results highlight that, although

on average the performance of scenario 3 is better, scenario 4 exhibits a larger

ensemble spread that always envelops the real data, even if the ensemble mean

is far from the true response. On the other hand, scenario 3 has a smaller en-

semble spread, thus all the realizations tend to collapse to the ensemble mean,545

leading to some significant local mismatches, as in borehole w42 (Figure 10).

This is further confirmed by the values of ESY in Table 2. Therefore, scenario 4

(ensemble 1 with normal score transform) seems to better represent the uncer-

tainty of the estimation and it can be argued that RMSE alone is not sufficient

to capture the overall performance of the inversion results, as it does not provide550

a meaningful measure of the uncertainty.

It is difficult to determine which approach provides the best estimates of the

actual logK distribution, because of two reasons: (i) the observation wells used

for data assimilation were used also for performance evaluation, and this can

lead to an unrealistic validation; (ii) the use of only 16 observation wells seems555

to be inadequate to obtain good inversion results. This latter issue also cleary

emerges from the ensemble variance maps in Figures 8 and 9.

5.2. Synthetic test case

Table 3 summarizes the performance of the fourteen synthetic test case sce-

narios. As in the real-world case, the results of the synthetic test case also show560

an improvement for all the scenarios with respect to the open loop run. Figures

12 and 13 show that no channels seem to appear in the inversion results ob-

tained with only 16 observations. This is fully consistent with the results of the

real world case study. In contrast, the inversion results obtained with 65 and

250 observations show much clearer channels that are correctly retrieved. In-565

creasing the number of observation points clearly leads to a better performance,
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regardless of which measure of performance is considered (Table 3).

The performance statistics in terms of MAEens
Y (Table 3) show that condi-

tioning initial realizations to ERT transects results in an improvement when the

number of observation wells is increased. Compared to the open loop, MAEens
Y570

for scenarios 1, 5, and 11 (i.e., 16, 65, and 250 observations) is 10%, 24%, and

28% lower, respectively. Scenarios where normal score transformation was used

also resulted in a better delineation of the channels (Figure 13), with sharper

boundaries. Scenarios without normal score transform exhibit a smooth tran-

sition between the two facies, resulting in some logK values (cyan elements in575

Figure 12) that are not represented in the reference logK field (Figure 7).

Analyzing the results in Table 3, the best scenario for predicting Y (based

on MAEens
Y ) for the case of 16 observation points (as for the real-world appli-

cation) is without normal score transform and with geophysical conditioning,

while for the cases with more observations (65 and 250), the lowest MAEens
Y is580

obtained for the cases with normal score transform and geophysical condition-

ing. Compared to the same scenarios without normal score transformation, the

cases with 65 or 250 observations result in values of MAEY and MAEens
Y that

are 2-5% smaller if normal score transformation is used, while geophysical con-

ditioning can reduce by up to 12% the error if compared to the same scenarios585

without geophysical conditioning. A ranking of the simulation runs based on

groundwater levels (RMSEens
WL) leads to quite different results. For instance,

in all the cases with 16, 65 and 250 observation points, the best performing

scenario in terms of RMSEens
WL is the one without normal score transform and

geophysical conditioning, while different rankings are obtained for MAEY and590

RMSEWL. The latter gave the best scores in the cases with 65 and 250 observa-

tions if conditioning to geophysical information was performed, without normal

score transformation. Nevertheless, normal score transformation resulted in just

slightly larger errors. This suggests that the validation obtained by the RMSE

of groundwater levels computed at the assimilation nodes may not be the best595

indicator of model performance and can lead to misleading interpretations. Val-

idation based on facies matching ratio (FMR% in Table 3) is in agreement with
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RMSEWL, except for the case with 16 observations, and also gives the best

results if geophysical information was used for conditioning. Again, results were

slightly worse if in addition a normal score transformation was performed.600

In general, covariance localization and inflation did not improve the assim-

ilation results (compare scenarios 9 and 10 in Table 3 with scenario 7). We

attribute this to the fact that uncertainty was already well-represented in the

scenarios and therefore there was no need to correct for variance underestima-

tion. Moreover, localization based on isotropic distance is probably not appro-605

priate for the case considered here, because it excludes all the logK values that

fall outside a certain distance from the measurement points from the update.

As the Settolo aquifer has a main flow direction from north-west to south-east,

the piezometric behavior in one point highly depends on the K of all the up-

stream locations. The localization scheme adopted here, with a 600 m exclusion610

range, probably excluded some important information that the NS-EnKF needs

to suitably update the system states.

5.3. Discussion

Overall, the results for the real-world case study illustrate the problems

we can expect to encounter in practical applications of MPG-NS-EnKF. Even615

though geological evidence suggests the presence of channelized structures that

cannot be reproduced by a multiGaussian model, it cannot be demonstrated

that an MPG-based model outperforms a multiGaussian one. The results are

not clearly improved by conditioning to geophysical information either, or by us-

ing NS-EnKF instead of EnKF. This may be related to the limited information620

available: (i) imprecise information about the geological structure so that the

training image (or in general the geostatistical model) is uncertain, and (ii) too

few hydraulic conductivity and piezometric head data to constrain the spatial

distribution of hydraulic conductivity. In line with our results, Schöniger et al.

(2015) found that hydrogeological inversions based on geostatistics are signifi-625

cantly affected by prior geological knowledge and incorporating wrong informa-

tion may lead to poor performance. In our study, the prescription of the channel
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structure does not seem accurate enough and the hydrogeophysical information

from ERT is either too uncertain or too little for the inversion to actually bene-

fit from this hard constraint, while in Schöniger et al. (2015) a relatively simple630

geological zonation based on accurate prior information clearly outperformed

Gaussian random fields, because sharp contrasts in logK could not be resolved

by the multiGaussian approach.

The synthetic test case confirmed the results of the real-world case study,

as for 16 observations no advantage was observed by including geophysical in-635

formation and multiple point geostatistics with normal score transformation.

However, the synthetic scenarios also showed that for a larger number of head

data a clear positive impact of geophysical conditioning may be expected. On

the other hand, even for many head data, MPG in combination with NS-EnKF

did not show a clear advantage over a conventional approach. This could be640

partly explained also by the effect of boundary conditions, which in our test

case are more realistic than those typically used in previous synthetic studies.

For example, Zhou et al. (2011), Xu et al. (2013), and Schöniger et al. (2012),

who showed a better performance of NS-EnKF compared to EnKF, worked with

prescribed flux boundary conditions for at least part of the boundaries or in-645

cluded pumping tests that stressed most of the modelling domain. This is likely

to have a significant impact on the pressure head distribution and makes the

groundwater level measurements more informative with respect to the hydraulic

conductivity distribution, helping to identify also non-multi-Gaussian hydraulic

conductivity fields.650

In summary, our results suggest that in practical problems it is difficult

to obtain an improved characterization with the help of advanced stochastic

approaches, which probably require a large number of data. Additional data

types (e.g., temperature, electrical conductivity), combined with hydraulic head

data, might help to better delineate the heterogeneous hydraulic conductivity655

distribution and states in complex aquifers such as the one investigated here.
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6. Summary and conclusions

We applied an inversion approach based on the normal score transform en-

semble Kalman filter to a real-world test case in Northern Italy, where continu-

ous measurements of water table level in an unconfined aquifer were assimilated.660

Using multiple point geostatistics with a training image derived from satellite

data and conditioning the initial realizations to electrical resistivity tomography

transects, the proposed approach succeeded to estimate a posterior probability

distribution function of the log-transformed hydraulic conductivity (K) field

that minimized the error in the groundwater level predictions, and also pro-665

vided an estimate of the related uncertainty. However, the proposed inversion

approach could not reconstruct the characteristic paleo-channel shapes, due to

the relatively small number of observation points with respect to the extension

of the study area.

This was confirmed in a subsequent synthetic case study, which showed that670

the logK distribution could be retrieved more accurately with more observation

points (65 and 250, compared to 16). This suggests that there are practical

limitations on the use of advanced stochastic methods like those used in this

study. Although there is evidence for the presence of channelized structures

in the aquifer at this site, not enough information is available to constrain the675

prior multiple point geostatistical model and the position of the paleo-channels.

Therefore, the inversions relying on multiple point geostatistics did not outper-

form inversions with the simpler multiGaussian model, even though information

from several geophysical investigations was included in the inverse conditioning.

Similar issues might be encountered in many other hydrogeological sites and680

our results highlight that advanced stochastic methods can still be very useful,

but they should be carefully chosen according to the level of residual uncertainty

that practitioners are willing to accept. Such uncertainty can be drastically

reduced only if abundant and high-quality subsurface data are available, which

obviously imply costly experimental investigations. Whether or not it is worth685

the effort of course depends on the specific problem at hand, its scale, and the
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final objective, but, in general, hydrogeologists should stress to stakeholders

that uncertainty must always be dealt with and correct deterministic solutions

are not possible in practice.
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Figure 1: Map of the Settolo study area. The black lines denote the contour of the modeled

domain and the boundary conditions: solid for no flow (Neumann) and dashed for prescribed

head (Dirichlet). Prefixes “w”, “p”, “I”, and “G” denote observation wells, pumping wells,

river stage stations, and electrical resistivity tomographies, respectively.
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Table 1: Geostatistical parameters used to generate the initial ensembles of logK random

fields. For each realization, parameters were randomly extracted from a uniform distribution

whose support is defined by the “min” and “max” values. Angles are indicated with respect

to the main flow direction.

Ensembles 1 and 2: multiple point geostatistics + Gaussian random field

min max

SNESIM parameters for facies generation

Px and Py 0.85 1.15

αTI [◦] -15 +15

%ch 40% 60%

SGSIM parameters for zone 1 (channels)

⟨Y ⟩ [log(m/s)] log(2× 10−2) log(5× 10−2)

σ2
Y [log(m/s)2)] 0.1 0.2

Ix [m] 85 160

Iy [m] 45 85

αxy [◦] -10 +10

SGSIM parameters for zone 2 (matrix)

⟨Y ⟩ [log(m/s)] log(5× 10−4) log(2× 10−3)

σ2
Y [log(m/s)2)] 0.2 0.5

Ix [m] 85 160

Iy [m] 45 85

αxy [◦] -10 +10

Ensemble 3: Gaussian random field

SGSIM parameters

⟨Y ⟩ [log(m/s)] log(2× 10−3) log(2× 10−2)

σ2
Y [log(m/s)2)] 0.25 0.75

Ix [m] 85 160

Iy [m] 45 85

αxy [◦] -10 +10

Ensembles 1, 2, and 3

Sy [-] 0.10 0.35

Ss [m−1] 10−5 10−1
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Figure 2: Electrical resistivity tomography transects. The location of the transects is reported

in Figure 1. Orientation is from southwest to northeast for lines G3, G4, and G5, from north-

west to southeast for line G1. Intersections with other tomographies are shown in green, while

black segments represent wells. The 400 Ωm white line indicates the assumed impermeable

bedrock.
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Figure 3: Example of groundwater level data assimilated with EnKF in the real-world inversion

runs, together with the main hydrological drivers of groundwater dynamics, i.e., the Piave

River stage and rainfall rate. For clarity, only data from a selected number of observation

wells is shown.
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Figure 4: Training image extracted from satellite data and used as input to the SNESIM

algorithm for the generation of random facies distributions honoring geophysical data.
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Figure 5: Example of four realizations of logK fields generated with MPG and conditioned

to geophysical data (ensemble 1), except for the lower left field, which was generated with-

out conditioning (ensemble 2). The four realizations were generated with different sets of

geostatistical parameters.

Figure 6: Realization of a logK gaussian random field (ensemble 3) generated with SGSIM.
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Figure 7: Reference logK field for the synthetic test case, generated with the same parameters

as ensemble 1 (Table 1), and corresponding probability distribution function.
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Figure 8: Ensemble mean (EMY ) and variance (EVY ) of the logK distribution as computed

at the last update for scenarios 1 (top), 2 (middle), and 3 (without normal score transform,

bottom) of the real-world test case (Table 2).
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Figure 9: Ensemble mean (EMY ) and variance (EVY ) of the logK distribution as computed

at the last update for scenarios 4 (top), 5 (middle), and 6 (with normal score transform,

bottom) of the real-world test case (Table 2).

43



  

Figure 10: Comparison between measured and simulated groundwater levels in three obser-

vation wells (w42, w40, and wN2, clockwise from top left, respectively) for the verification

period. The simulations were run using the ensemble of K distributions derived from scenario

3 of the real-world test case (see Table 2).
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Figure 11: Comparison between measured and simulated groundwater levels in three observa-

tion wells (w9, wN3, and w42, clockwise from top left, respectively) for the verification period.

The simulations were run using the ensemble of K distributions derived from scenario 4 of

the real-world test case (see Table 2).
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Figure 12: Ensemble mean of the logK distributions resulting from the last update of the

synthetic test scenarios without normal score transform, for both the cases with and without

conditioning on geophysical data and for different sets of observations (white dots in the

figure).
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Figure 13: Ensemble mean of the logK distributions resulting from the last update of the

synthetic test scenarios with normal score transform, for both the cases with and without

conditioning on geophysical data and for different sets of observations (white dots in the

figure).
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• Hydraulic head data are assimilated in a real aquifer with ensemble Kalman 

filter 

• Multiple point geostatistics (MPG) and normal score transform used with ERT 

data 

• Data assimilation provides good estimate of heterogeneous hydraulic 

conductivity 

• Multiple point geostatistics and conditioning to ERT data do not improve 

results 

• An additional synthetic study shows more data are needed for MPG to be 

effective 


