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1 Introduction

In the same way as charged particles in four space-time dimensions are subject to di-

vergent electromagnetic self-interactions, generic charged extended objects, p-branes, in

D space-time dimensions are subject to infinite self-interactions. The reason for this is

that the fields created by a brane become singular on the brane world-volume, meaning

that the self-fields, and hence the self-forces, are infinite. A - in a certain sense dra-

matic - consequence of these ultraviolet divergences is that the theory of self-interacting

branes can not be derived from a variational principle: while the original fundamental

equations of motion for fields and branes follow of course from an action principle, once

one substitutes the fields resolving the formers in the equations of motion of the latter,

the resulting equations are divergent. If one isolates and subtracts - adapting whatever

prescription - the infinities, the resulting non-local equations of motion of the brane do no

longer follow from an action principle. This in turn implies that the conservation laws, in

particular energy-momentum conservation, can not be derived from Noether’s theorem,

see e.g. [1–3] for the case of self-interacting charged particles and dyons in D = 4. Within

this approach one looses thus the control over energy-momentum conservation.

More precisely ultraviolet divergences show up in brane theory in two, a priori, un-

related physical quantities: i) in the self-force of the brane, i.e. the force exerted by

the field generated by the brane on the brane itself, as explained above, and ii) in the

D-momentum contained in a volume V enclosing (a portion of) the brane. Although

the origins of the divergences appearing in these two quantities - the self-force and the

D-momentum - are the same, i.e. the bad ultraviolet behavior of the field in the vicinity

of the brane, their cures require actually two distinct unrelated procedures [4].

To cure the divergent self-force one may proceed, as anticipated above, regularizing

the field produced by the brane in some way, evaluating it on the brane and trying then

to isolate and subtract the divergent terms.

The cure of the infinite D-momentum requires instead the construction of a well-

defined distribution-valued energy-momentum tensor and offers - at the same time - a

strategy for the derivation of the self-force, that is alternative to the approach described

above and overcomes its main drawback, i.e. the missing control over energy-momentum

conservation. It works as follows.
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Generically the standard total energy-momentum tensor has the structure

τµν = τµνfield + τµνkin, τµνkin = M

∫
lµνδD(x− y(σ))

√
γ d2σ, (1.1)

where τµνkin is the free kinetic energy-momentum tensor of the brane (with M the brane

tension and yµ(σ) the brane coordinates, see sections 2 and 3.1 for the notations) and τµνfield

is the bare energy-momentum tensor produced by the fields1: while the fields - solutions of

linear d’Alembert equations - are by definition distributions, the tensor τµνfield - a product

of the fields - is not a distribution. Consequently, i) the D-momentum of the field

P µ
V =

∫
V

τ 0µ
field d

3x

contained in a volume V is in general divergent and, ii) it makes no sense to evaluate the

divergence ∂µτ
µν
field to analyze the conservation properties of τµν . The cure of these patholo-

gies requires the construction of a renormalized distribution-valued energy-momentum

tensor T µνfield, out of τµνfield. A - in principle standard - way to do this consists in the intro-

duction of a regularization - preserving possibly Lorentz- as well as reparameterization-

invariance - and the subsequent subtraction from the regularized energy-momentum tensor

(τµνfield)reg of divergent local counterterms, i.e. of counterterms supported on the brane that

do not converge to distributions as the regularization is removed. By construction the

resulting energy-momentum tensor T µνfield is a distribution and admits hence a well-defined

divergence, supported on the word-volume,

∂µT
µν
field = −

∫
SνδD(x− y(σ))

√
γ dpσ, (1.2)

where the vector Sν is going to become the finite self-force of the brane. In fact, for

the divergence of the renormalized total energy-momentum tensor T µν = T µνfield + τµνkin one

obtains now

∂µT
µν =

∫ (
M∆iU

νi − Sν
)
δD(x− y(σ))

√
γ dpσ, (1.3)

where the quantity ∆iU
νi represents the generalized acceleration of the brane. Upon

requiring local energy-momentum conservation one derives then the equation of motion

for the brane coordinates

M∆iU
νi = Sν . (1.4)

This strategy to derive the self-force may however encounter an obstacle: it can hap-

pen that the vector Sν in (1.2) is not a pure multiplication operator but contains also

terms involving derivatives acting on the δ-function, as for example Sν ∼ ∂ν . In this case

there would be no equation of motion for the brane ensuring the vanishing of ∂µT
µν . This

1Actually in a generic brane- or string-model, as the one considered in this paper, this tensor is given
by a sum τµνfield = τµνf + τµνint, where τµνf depends only on the fields and is supported on the bulk, and τµνint
is a field-brane interaction-term supported on the world-volume.
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obstacle can be faced through the finite-counterterm ambiguity inherent in any renor-

malization process in physics - in the present case the fact that after the subtraction of

divergent local counterterms, the renormalized energy-momentum tensor is defined only

modulo finite local counterterms.

The general strategy just described has been envisaged in [4], where a p-brane in-

teracting minimally with a (p + 1)-form potential in D dimensions has been considered,

based on previous work facing the analogous problem for massive [2] as well as mass-

less [5–7] point-charges in four dimensions. The present paper represents the first step in

the application of this method to the physically more interesting case of the low energy

effective superstring theory, compactified to dimensions D < 10, where the string couples

to the metric gµν , the dilaton Φ and the axion field Bµν . Particular attention will be

paid to four-dimensional space-time. We will actually consider two prototype models: a)

the general model, where a certain set of free parameters, or coupling constants, assume

generic values, and b) the fundamental string model, where these parameters are tied by

the special relations (2.7) predicted by ten-dimensional superstring theory.

The problem of ultraviolet divergences and self-interactions of strings moving in a

space-time of dimension D ≥ 4 has a long history, especially w.r.t. the problem of

tension renormalization and the related finiteness/divergence properties of the self-force

and the self-energy. A far from exhaustive literature with this respect is [8–19]; for

some recent results on the same problem for point-particles see e.g. [20–22]. As observed

above, by-hand subtractions of divergences from the self-force or from the self-energy -

as the ones performed in these references - in general do not ensure energy-momentum

conservation. On the contrary the core of our approach is a systematic renormalization

of the energy-momentum tensor, comprising i) a covariant separation of the - in the

sense of distributions - divergent counterterms, ii) the identification of possible finite

counterterms and eventually, iii) the implementation of energy-momentum conservation

and the consequent derivation of the self-force. In the present paper the implementation

of this program will be carried out explicitly for flat strings, i.e. for strings in uniform

motion, already a non-trivial task, although in this case the self-force is expected to vanish.

Being based essentially on the criteria of finiteness and energy-momentum conservation,

we regard our approach as a fundamental principle for the determination of the dynamics

of self-interacting extended objects. A particularly powerful aspect of the method - that

supports its universality further - is that it is able to control even strong ultraviolet

singularities, as for example the violent divergences generated by growing space-time

dimensions or the a priori uncontrollable divergences generated by objects moving at the

speed of light [7].

Since with this respect the contribution of the gravitational self-energy is of funda-

mental importance, we have to face the problem of which gravitational energy-momentum

pseudo-tensor, and hence which total energy-momentum pseudo-tensor, we choose. To test

the “stability” of our construction against different choices we resort to three frameworks:
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a) in the, in a certain sense hybrid, Dirac framework the gravitational pseudo-tensor [23]

is based on the Noether procedure, while the matter tensor is the symmetric one; b) in

the Landau-Lifshitz framework both the gravitational pseudo-tensor [24] and the matter

tensor are the symmetric ones; c) in the canonical framework both tensors are based on

the Noether procedure and correspondingly the total energy-momentum pseudo-tensor is

neither symmetric nor gauge-invariant.

In the spirit of the above references we will analyze the the dynamics of the theory at

the linearized level, see e.g. [19], which corresponds to a perturbative treatment at first

order in Newton’s constant G. In this setting the on-shell divergent parts of the self-force

of the string turn, however, out to be of order G2 [17]. Consequently there is an intrinsic

ambiguity in the tension renormalization, inherent in standard self-force approaches, in

that at first order in G the divergences simply drop out. These on-shell ambiguities are

absent in our approach, since we do not impose any a-priori equation of motion on the

string.

With respect to the case of a string interacting minimally with a two-form potential

Bµν , the coupling to a metric and to a dilaton introduces additional ultraviolet singular-

ities, due to the presence in the energy-momentum tensor of interaction-terms between

the string and the fields, that are localized on the string world-sheet, see (3.14). These

divergences have a different origin w.r.t. the bulk-divergences of the energy-momentum

tensor discussed above, and our approach entails the further advantage of separating

them cleanly from the formers. This distinction is completely lost if one considers only

the divergences of the total energy [8, 9] or of the total effective action [16] - a feature

that in the past has led to conflicting results concerning tension renormalization: these

contradictions are clarified and solved by our approach.

Considering gravity, as well as the exponential interactions of the dilaton, at a full

non-linear level leads in the presence of distributional sources, like strings, to further

problems, that we will not face, see e.g. [25].

In the next section we present the action describing the microscopic dynamics which

gives rise to self-interacting strings in D space-time dimensions, and present the relevant

gravitational energy-momentum pseudo-tensors. In section 3 we linearize the dynamics,

restricting correspondingly the energy-momentum tensors of the fields to their quadratic

expressions, and present the solutions of the linearized equations of motion in terms of

Green functions. In section 4 we introduce a universal covariant ultraviolet regulariza-

tion, preserving all fundamental symmetries, and present our general approach for the

derivation of the self-force.

In section 5 we apply this approach to strings in uniform motion, constructing a

regularized energy-momentum tensor and performing its renormalization via subtraction

of divergent counterterms, relying on the Dirac framework. Particular attention will be

paid to the cancelation of ultraviolet divergences in the fundamental string model, that

comprises the non-renormalization of the string tension. This latter property, in turn, is
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directly related to the non-renormalization theorems of superstring amplitudes [8], that are

supposed to hold at all orders of perturbation theory. We find that, while in the Landau-

Lifshitz and canonical frameworks for all D ≥ 4 all divergences cancel, so that in particular

the string tension gets not renormalized, in the Dirac framework these cancelations occur

only for D = 4. This may signal a conflict between this classical framework and the

postulates of superstring theory. The subsection 5.5 is devoted specifically to the energy-

momentum-conservation paradigm and the role of finite counterterms in establishing the

correct self-force - which for strings in uniform motion must vanish.

Sections 6 and 7 are devoted respectively to the analogous analysis in the Landau-

Lifshitz and canonical frameworks: while, as anticipated above, the actual cancelation of

divergences depends on the choice of the framework, our general renormalization approach

applies of course independently of the occurrence of those cancelations. In these sections

we establish also the relations between our approach and the energy-divergences analysis

of [8, 9] and the effective-action approach of [16]. In section 8 we outline the steps to be

carried out in the future to derive the dynamics of self-interacting strings in arbitrary

motion and discuss the uniqueness properties of our approach. This more ambitious

program of using our approach to compute the self-force explicitly and compare it, where

possible, with known results, may shed new light on classical-string radiation reaction,

on the causality issue and, may be more marginally, on the viability of cosmic string

dynamics. The final section 9 contains a concise summary of our results and of possible

future developments.

2 Classical string dynamics

We consider a classical string theory in D space-time dimensions whose microscopic dy-

namics is determined by the action

I = If + Is, (2.1)

where the field-action If and the string-action Is are given respectively by

If =
1

G

∫ (
−R +

1

12
e−2αΦHµνρHµνρ +

1

2
gµν∂µΦ ∂νΦ

)
√
g dDx, (2.2)

Is = −M
∫
eβΦ
√

Γ d2σ − Λ

2

∫
W µνBµν

√
Γ d2σ. (2.3)

We use indices µ, ν = 0, · · · , D − 1 for the bulk space-time coordinates xµ, with a mostly

minus lorentzian signature, and indices i, j = 0, 1 for the world-sheet coordinates σi. The

action I is inspired by superstring theory in that it corresponds to the bosonic part of

the low energy effective action of ten-dimensional N = 1 supergravity, compactified to D

dimensions, in the Einstein frame [26–28]. Correspondingly the space-time fields to which

the string couples are the dilaton Φ(x), the axion Bµν(x) and the D-dimensional metric
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gµν(x). In (2.2) R is the scalar curvature associated to gµν and Hµνρ = 3∂[µBνρ] is the

field strength of the axion. G is related to Newton’s constant through GN = G/16π.

In the string-action (2.3) - that describes the string propagation as well as its inter-

action with the bulk fields - we introduced the string coordinates yµ(σ), with tangent

vectors Uµ
i (σ) = ∂iy

µ(σ), and the induced world-sheet metric

Γij = Uµ
i U

ν
j gµν , (2.4)

with inverse Γij. We introduced also the antisymmetric world-sheet tensor

W µν =
εij√

Γ
Uµ
i U

ν
j , where Γ = −det(Γij). (2.5)

On the world-sheet the space-time metric can be decomposed in parallel and orthogonal

projectors

gµν = Lµν +Kµν , Lµν = Uµ
i U

ν
j Γij. (2.6)

The parallel projector Lµν is sometimes referred to as the first fundamental tensor. Bulk

indices and world-sheet indices are raised and lowered respectively with the metrics gµν

and Γij and their inverses.

By definition, the dimensionless parameters α and β and the dimension-one parameters

M and Λ, respectively the tension and the charge of the string, are arbitrary in the general

model. As we anticipated in the introduction, we will pay particular attention to the

fundamental string model where they assume the values [26]

α = β =

√
2

D − 2
, M = Λ. (2.7)

This will allow us on one hand to probe the non-renormalization properties of a superstring-

inspired model [8, 9, 15, 16], and on the other to analyze the consistency and renormaliz-

ability properties of a generic self-interacting classical string model.

Inspired by superstring theory we will assume that the dilaton takes generically a

non-vanishing vacuum expectation value 〈Φ〉 ≡ Ψ, so that, denoting its fluctuation by ϕ,

we have

Φ = Ψ + ϕ, 〈ϕ〉 = 0. (2.8)
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2.1 Equations of motion

The equations of motion for Φ, Bµν , gµν and the string coordinates yµ arising from the

action I = If + Is are

gµνDµ∂νΦ +
α

6
e−2αΦHµνρHµνρ = −GMβ

∫
eβΦ δ

D(x− y)
√
g

√
Γ d2σ, (2.9)

Dµ

(
e−2αΦHµνρ

)
= −GΛ

∫
W νρ δ

D(x− y)
√
g

√
Γ d2σ, (2.10)

Gµν ≡ Rµν − 1

2
gµνR =

G

2
Θµν , (2.11)

MeβΦ
(
DiU

µi − βKµν∂νΦ
)

=
Λ

2
HµνρWνρ. (2.12)

Gµν is the Einstein tensor built with the metric gµν and the generalized acceleration DiU
µi

of the string coordinates yµ is given by

DiU
µi =

1√
Γ
∂i

(√
Γ ΓijUµ

j

)
+ ΓµνρL

νρ, (2.13)

where Γµνρ is the affine connection built with gµν .

The matter energy-momentum tensor Θµν decomposes into a bulk contribution, due

to the fields Φ and B, and a string contribution, supported on the world-sheet,

Θµν = Θµν
b + Θµν

s , (2.14)

given by

Θµν
b =

1

G

(
DµΦDνΦ− 1

2
gµνDρΦDρΦ +

1

2
e−2αΦ

(
HµρσHν

ρσ −
1

6
gµνHρσλHρσλ

))
,

(2.15)

Θµν
s = M

∫
eβΦLµν

δD(x− y)
√
g

√
Γ d2σ. (2.16)

Obviously in Θµν
s there is no contribution from the axion field Bµν because its minimal

coupling to the string in (2.3), being topological, does not contain the metric.

Computing mechanically the covariant divergence of Θµν one obtains the identity

DµΘµν =
1

2G
Hν

ρσDµ

(
e−2αΦHµρσ

)
+

1

G

(
gρσDρ∂σΦ +

α

6
e−2αΦHρσλHρσλ

)
DνΦ

+M

∫
eβΦ

(
DiU

νi + βLνµ∂µΦ
) δD(x− y)

√
g

√
Γ d2σ,

(2.17)

and if one uses the equations (2.9), (2.10) and (2.12) one gets obviously DµΘµν = 0. As

stressed in the introduction, the operations leading to (2.17) have however only formal

validity, in that Θµν is not a distribution - it diverges too violently in the vicinity of the

string - and hence its D-divergence “∂µΘµν” is meaningless. A fortiori one is not allowed

to resort to the Leibnitz-rule ∂µ(f1f2) = ∂µf1f2 + f1∂µf2, that has been used thoughtless

to derive (2.17).
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2.2 Gravitational energy-momentum pseudo-tensors

Since the implementation of D-momentum conservation requires an energy-momentum

tensor that satisfies a standard continuity equation, before attacking the renormalization

issue we must recast the formal equation DµΘµν = 0 in a (still formal) equation of the

type ∂µτ
µν = 0, for some pseudo-tensor τµν . A standard continuity equation is also in

line with our distributional framework in that the D-divergence of a distribution - as

τµν should eventually be - is always a distribution, while on the contrary an object like

DµΘµν ∼ ∂Θ + ΓΘ - involving products between distributions - would not be so.

To attack this problem we must face first the issue of the - non unique - gravitational

energy-momentum pseudo-tensor. We resort to three different choices, giving rise to the

three different conservation frameworks described in the introduction.

2.2.1 Dirac’s energy-momentum pseudo-tensor

The distinguished feature of Dirac’s gravitational energy-momentum pseudo-tensor Σµ
ν

[23] is that it descends canonically from Noether’s theorem, applied to the Einstein-Hilbert

action. It carries one upper and one lower index and reads

Σµ
ν =

1

G

((
Γµαβ − δ

µ
αΓλβλ

)
∂ν
(√

ggαβ
)
− 1

2
δµν
(
Γγαβ − δ

γ
αΓλβλ

)
∂γ
(√

ggαβ
))

. (2.18)

Notice that Σµ
ν is quadratic in the first derivatives of the metric. The term multiplying

δµν is related to the Einstein-Hilbert action through the identity

− 1

G

∫
R
√
g dDx =

1

2G

∫ (
Γγαβ − δ

γ
αΓλβλ

)
∂γ
(√

ggαβ
)
dDx,

i.e. it differs from R
√
g by total derivatives, and represents thus an equivalent quadratic

lagrangian.

As shown by Dirac, Σµ
ν is tied to the Einstein tensor Gµν = Rµν − 1

2
gµνR through

the identity

∂µ

(
Σµ

ν +
2

G

√
g Gµ

ν

)
= 0. (2.19)

Introducing the total energy-momentum tensor - actually a pseudo-tensor, too - with one

upper and one lower index

τµν ≡
√
gΘµ

ν + Σµ
ν , (2.20)

from (2.19) and DµG
µ
ν = 0 we derive that it satisfies the identity

∂µτ
µ
ν =
√
g DµΘµ

ν −
√
g

G

(
Gαβ − G

2
Θαβ

)
∂νgαβ. (2.21)

Since the matter energy-momentum tensor Θµ
ν satisfies the identity (2.17), τµν obeys the

continuity equation ∂µτ
µ
ν = 0, if all fields satisfy their equations of motion (2.9)-(2.12).
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Since (2.19) is an algebraic identity we infer the existence of a tensor P ρµ
ν - antisym-

metric in ρ and µ and built only with gµν - such that

√
g Gµ

ν =
G

2

(
∂ρP

ρµ
ν − Σµ

ν

)
. (2.22)

A direct calculation gives2

P ρµ
ν =

2

G
√
g
∂β
(
ggγ[µgρ]β

)
gγν . (2.23)

Actually equations (2.22) and (2.23) could be taken equivalently as the defining equations

for Σµ
ν .

2.2.2 The Landau-Lifshitz energy-momentum pseudo-tensor

In analogy to (2.22) and (2.23), the Landau-Lifshitz gravitational energy-momentum

pseudo-tensor Σ̃µν [24] - a symmetric tensor with two upper indices - is defined through

the relations

gGµν =
G

2

(
∂ρP̃

ρµν − Σ̃µν
)
, (2.24)

where the tensor P̃ ρµν , antisymmetric in ρ and µ, is by definition [24]

P̃ ρµν =
√
g P ρµ

γg
γν =

2

G
∂β
(
ggν[µgρ]β

)
. (2.25)

Like Σµ
ν also Σ̃µν can be seen to be quadratic in the first derivatives of the metric, and

from (2.24) follows the identity

∂µ

(
Σ̃µν +

2

G
gGµν

)
= 0,

analogous to (2.19). In this framework the total energy-momentum tensor, with two upper

indices, is defined by

τ̃µν ≡ gΘµν + Σ̃µν , (2.26)

and thanks to DµG
µν = 0 this time one arrives at

∂µτ̃
µν = gDµΘµν +

2
√
g

G

(
Gαβ − G

2
Θαβ

)(√
g Γναβ − δνα∂β

√
g
)
, (2.27)

counterpart of (2.21). The r.h.s. vanishes again if the equations (2.9)-(2.12) hold.

With the help of (2.25) we can establish an explicit link between τµν and τ̃µν . Equating

the r.h.s. of (2.24) with
√
g times the r.h.s. of (2.22) with the index ν raised, we establish

first the link between the pseudo-tensors Σ̃µν and Σµ
ν

Σ̃µν =
√
gΣµ

ρ g
ρν + P ρµ

γ ∂ρ (
√
ggγν) , (2.28)

2The most efficient way to perform it is to extract from
√
g Gµν all terms linear in ∂∂g and to cast them

in the form of a divergence of an antisymmetric tensor. As in the whole paper in (2.23) antisymmetrization
is understood with unit weight.
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that is consistent with the fact that both tensors are quadratic in ∂g. (2.28) implies then

the relation between the total energy-momentum tensors (2.20) and (2.26)

τ̃µν =
√
g τµρ g

ρν + P ρµ
γ ∂ρ (

√
ggγν) . (2.29)

From this relation, using again (2.20) and (2.22), one finds eventually that the two total

energy-momentum tensors are connected through a three-tensor Lρµν , antisymmetric in

its first two indices, modulo equations of motion, as it should be:

τ̃µν = τµρη
ρν + ∂ρL

ρµν −
2
√
g

G

(
Gµ

ρ −
G

2
Θµ

ρ

)(√
ggρν − ηρν

)
, (2.30)

where

Lρµν = P ρµ
α

(√
ggαν − ηαν

)
. (2.31)

The analysis of this paper will be performed primarily in the Dirac framework, based

on the energy-momentum tensor τµν . Equations (2.29) and (2.30) will then be used to

translate this analysis to the Landau-Lifshitz framework, based on τ̃µν

2.2.3 The canonical energy-momentum pseudo-tensor

By definition the canonical total energy-momentum tensor τ̂µν follows from Noether’s

theorem applied to the whole action (2.1). Consequently it differs from Dirac’s choice

(2.20) by the divergence of a three-tensor, antisymmetric in its first two indices, modulo

the equations of motion of the axion3:

τ̂µν ≡ τµν + ∂ρS
ρµ
ν +

√
g

G

(
Dρ

(
e−2αΦHρµσ

)
+GΛ

∫
W µσ δ

D(x− y)
√
g

√
Γ d2σ

)
Bσν . (2.32)

The tensor Sρµν is quadratic in the axion and reads

Sρµν =

√
g

G
e−2αΦHρµσBσν = −Sµρν . (2.33)

The major shortcoming of the tensor (2.32) is that it is no longer gauge-invariant under

δBµν = ∂µΛν − ∂νΛµ. Inserting (2.33) in (2.32) we obtain the relation

τ̂µν = τµν −
√
g

G
e−2αΦHµρσ∂ρBσν − Λ

∫
W µσBσν δ

D(x− y)
√

Γ d2σ. (2.34)

The second term at its r.h.s. amounts in (2.15) to the replacement

HµρσHνρσ → Hµρσ∂νBρσ,

while the third term represents a modification of the world-sheet term (2.16), correspond-

ing to the replacement

MeβΦLµν → MeβΦLµν − ΛW µσBσν .

From (2.21) and (2.32) we deduce that ∂µτ̂
µ
ν = 0, if the fields satisfy (2.9)-(2.12).

3The dilaton is a scalar and so its canonical and symmetric energy-momentum tensors coincide.
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3 Linearized dynamics

As stated previously we consider the theory in the linear regime, which corresponds to an

analysis at first order in Newton’s constant G. This amounts to keep in the field-action

(2.2) the terms quadratic in the fields, and in the string-action (2.3) the terms linear in

the fields. Correspondingly in the equations of motion (2.9)-(2.12) we must keep only the

terms linear in the fields.

We write the dilaton as in (2.8) as its constant vacuum expectation value Ψ plus a

fluctuation ϕ, i.e. Φ(x) = Ψ+ϕ(x). Moreover, to simplify the formalism, we parameterize

the fluctuation of the space-time metric in terms of a symmetric field F µν , specified by

gµν = ηµν + hµν ≡ ηµν + Fµν −
1

D − 2
ηµνF, F ≡ Fαβη

αβ, (3.1)

i.e. Fµν = hµν − 1
2
ηµνh

α
α and F =

(
1− D

2

)
hαα. This choice is convenient in that we

have, in any dimension D ≥ 4,

√
ggµν = ηµν − F µν + o(F 2). (3.2)

In particular, the harmonic gauge for diffeomorphisms ∂µ(
√
ggµν) = 0, that we will use

throughout the rest of the paper, assumes then the simple linearized form

∂µF
µν = 0. (3.3)

For the axion we use the Lorenz-gauge ∂µB
µν = 0. Henceforth all indices will be raised

and lowered with the flat metric ηµν . In conclusion, the linearization will be in the fields

f = {ϕ,Bµν , Fµν}.

3.1 Equations of motion

The linearized equations of motion (2.9)-(2.12) read (� = ∂µ∂
µ)

�ϕ =− eβΨGMβ

∫
δD(x− y)

√
γ d2σ, (3.4)

�Bµν = −e2αΨGΛ

∫
wµν δ

D(x− y)
√
γ d2σ, (3.5)

�Fµν =− eβΨGM

∫
lµν δ

D(x− y)
√
γ d2σ, (3.6)

MeβΨ∆iU
µi =

Λ

2
Hµαβwαβ +MeβΨ

[
kµν
((

1

2
∂νFαβ − ∂αFβν

)
lαβ +

1

D − 2
∂νF − β∂νϕ

)
lµαβF

αβ − kµνFνρ ∆iU
ρi +

(
F

D − 2
− 1

2
lαβFαβ

)
∆iU

µi

]
≡ Sµbare, (3.7)

where we introduced the flat-space counterparts of the tensors Γij, L
µν , Kµν and W µν in

(2.4)-(2.6)

γij = Uµ
i U

ν
j ηµν , γ = −detγij, lµν = Uµ

i U
ν
j γ

ij, kµν = ηµν − lµν , wµν =
εij
√
γ
Uµ
i U

ν
j ,

(3.8)
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obeying the relations

lµρlρν = lµν , kµρkρν = kµν , kµρlρν = 0, wαβwµν = lανlβµ − lαµlβν . (3.9)

Correspondingly lµµ = 2 and kµµ = D − 2. ∆i is the covariant derivative w.r.t. the flat-

target-space world-sheet metric γij and ∆iU
µi is the flat-target-space reparameterization

invariant acceleration of the string

∆iU
µi =

1
√
γ
∂i
(√

γ γijUµ
j

)
. (3.10)

In (3.7) lµαβ represents the second fundamental tensor, which can be expressed in different

ways and entails several properties e.g. (∆α ≡ U i
α∆i)

lµαβ = lγβ ∆αl
γµ = kµγ ∆αlγβ, lµαβ = lµβα, lνµ l

µ
αβ = 0. (3.11)

Equations (3.6) are the linearized Einstein equations. Applying ∂µ to both sides of

them one arrives formally at a mismatch, since at its r.h.s. one gets a non-vanishing term:

�∂µF µν ∼ G∆iU
νi 6= 0. This is a remnant of the peculiar property of Einstein’s equations

to imply the geodesic equation of motion, in the present case the string equation of motion.

At the linearized level this does however not lead to an inconsistency; in fact, since ∆iU
νi

eventually equals the finite self-force - which is of order G - the above mismatch is of

order o(G2).

Just for the sake of completeness above we wrote out also the linearized version (3.7)

of the string equation of motion (2.12) that, contrary to the field equations (3.4)-(3.6),

is actually ill-defined. In fact, in (3.7) the fields f(x) are evaluated at the world-sheet

x = y(σ), where they diverge, so that the bare self-force Sµbare is infinite. There is moreover

an intrinsic ambiguity in this equation concerning the renormalization of the string tension

M , due to the appearance of the acceleration ∆iU
µi also at its right hand side, where it is

multiplied by the self-fields f(y(σ)). Since the latter are of order G, as is the acceleration

∆iU
µi, the terms of the kind ∆iU

µif(y(σ)) are actually of order G2 and should have

therefore be omitted in (3.7) from the beginning. Similarly (the divergent parts of) the

terms ∂f(y(σ)) in the first line of (3.7) have the structure ∂f(y(σ)) ∼ G∆iU
µi ∼ G2

[15, 19]. Consequently, as observed already in [17], in a first-order setting as the present

one, it appears intrinsically impossible to perform an unambiguous quantitative analysis

of tension renormalization, upon renormalizing directly Sµbare at the basis of (3.7).

According to our approach, our starting point to derive a finite self-force will actually

not be (3.7), but rather energy-momentum conservation.

3.2 Linearized total energy-momentum tensors

3.2.1 Dirac framework

We present first the linearized version of the total energy-momentum tensor (2.20) of

the Dirac framework. We write it as a sum of three terms, each term having its specific
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physical meaning. For notational convenience we write it with two flat upper indices - an

operation that preserves the formal conservation law ∂µτ
µν = 0 - albeit maintaining for

the linearized version the same symbol τ as for the exact one:

τµν ≡ τµρ
∣∣
lin
ηρν = τµνf + τµνint + τµνkin. (3.12)

The first term, the field energy-momentum tensor τµνf , represents the energy due solely to

the fields and is supported on the bulk. It is obtained extracting from (2.15) and (2.18)

the terms quadratic in the fields f = {ϕ,B, F}

τµνf =
(√

gΘµβ
b gβρ + Σµ

ρ

) ∣∣∣
f2
ηρν

=
1

G

{
∂µϕ∂νϕ− 1

2
ηµν∂ρϕ∂ρϕ+

1

2
e−2αΨ

(
HµαβHν

αβ −
1

6
ηµνHαβγHαβγ

)
+

1

2
∂µFαβ∂νFαβ − ∂αF βµ∂νFαβ −

1

2(D − 2)
∂µF∂νF

− 1

2
ηµν
(

1

2
∂γFαβ∂γFαβ − ∂αF βγ∂γFαβ −

1

2(D − 2)
∂γF∂γF

)}
.

(3.13)

The gravitational contribution of τµνf in the last two rows is not symmetric in its indices

- a characteristic feature of the Dirac tensor (2.18).

The interaction energy-momentum tensor τµνint arises from the interaction between the

fields and the string and is hence supported on the world-sheet. It is obtained extracting

from
√
gΘµβ

s gβρ, see (2.16), the terms linear in the fields:

τµνint =
(√

gΘµβ
s gβρ

) ∣∣
f
ηρν

= MeβΨ

∫ ((
1

2
lαβFαβ −

F

D − 2
+ βϕ

)
lµν − lµαlνβFαβ + lµαFα

ν

)
δD(x− y)

√
γ d2σ.

(3.14)

Only the gravitational field and the dilaton contribute to τµνint, but not the axion, for the

reasons explained above.

The term τµνkin represents the free kinetic energy-momentum tensor of the string and is

obtained from Θµν
s (2.16) setting all fields f = {ϕ,B, F} to their background values, i.e.

zero,

τµνkin =
(√

gΘµβ
s gβρ

) ∣∣
f=0

ηρν = MeβΨ

∫
lµνδD(x− y)

√
γ d2σ. (3.15)

3.2.2 Landau-Lifshitz framework

In the framework of Landau and Lifshitz the linearized equations of motion (3.4)-(3.6)

remain clearly the same, what changes is the form of the energy-momentum tensor τ̃µν in

(2.26). The most simplest way to write it down is to use its relation to the Dirac-tensor

(2.29). Setting as in (3.12) - from now on with the symbol τ̃µν we understand its linearized

version -

τ̃µν = τ̃µνf + τ̃µνint + τµνkin, (3.16)
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from (2.29) we see that τ̃µνf receives additional contributions from the gravitational field

and that, due to the presence of the factor
√
ggρν in the first term of (2.29), also the

interaction-term changes:

τ̃µνf = τµνf +
1

G

(
∂αFβ

µ∂αF βν + ∂αF
αβ∂βF

µν − ∂αFαµ∂βF
βν − ∂αF βν∂µFαβ

)
, (3.17)

τ̃µνint = τµνint −MeβΨ

∫
lµαFα

ν δD(x− y)
√
γ d2σ. (3.18)

To derive (3.17) we used in particular the linearized version of (2.23)

P ρµ
ν =

2

G

(
∂[µF ρ]

ν + ∂βF
β[µδρ]

ν

)
, (3.19)

following from (3.2). Obviously τµνkin, the free energy-momentum tensor of the string,

remains the same. It is easily seen that the tensor τ̃µν given by (3.16)-(3.18) is symmetric.

3.2.3 Canonical framework

Writing also the linearized version of the canonical total energy-momentum tensor in the

form

τ̂µν = τ̂µνf + τ̂µνint + τµνkin, (3.20)

from (2.34) we obtain

τ̂µνf = τµνf −
1

G
e−2αΨHµρσ∂ρBσ

ν , (3.21)

τ̂µνint = τµνint − Λ

∫
wµσBσ

ν δD(x− y)
√
γ d2σ. (3.22)

Thanks to (the linearized versions of) (2.21), (2.27) and (2.32), the formal conservation

laws

∂µτ
µν = 0, ∂µτ̃

µν = 0, ∂µτ̂
µν = 0 (3.23)

hold, if the fields and the string coordinates satisfy the equations of motion (3.4)-(3.7).

Since singularities do arise only on the world-sheet, and the tensors τµνint, τ̃
µν
int, τ̂

µν
int, as well

as τµνkin, are supported on the world-sheet, too, the formal equations (3.23) imply that,

if only the fields satisfy their equations of motion (3.4)-(3.6), in the complement of the

world-sheet the field tensors satisfies the true conservation laws

∂µτ
µν
f = 0, ∂µτ̃

µν
f = 0, ∂µτ̂

µν
f = 0. (3.24)

This property will become crucial later one.

4 Regularized field solutions and renormalization

We address now the solutions of the equations (3.4)-(3.6) obeyed by the fields f =

{ϕ,B, F}. They are all of the d’Alembert-type

�f(x) =

∫
j(σ) δD(x− y(σ)) d2σ (4.1)
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and admit thus the solution

f(x) =

∫
G(x− y(σ))j(σ) d2σ, (4.2)

where G(x) - the retarded Green function in D space-time dimensions - satisfies the

equation �G(x) = δD(x); for explicit expressions see (4.8) with ε = 0.

4.1 Singularities and distributions

In this paper we resort to the space of (tempered) distributions in a D-dimensional space-

time, denoted by S ′ ≡ S ′(RD), which is the set of all linear continuous functionals F on

the space S ≡ S(RD), called also the space of test functions. By definition, a function

ϕ : RD → C belongs to S, if it is infinitely differentiable and if ϕ(x) and all its derivatives

decrease for xµ →∞ faster than the inverse of any power of xµ. A distribution F ∈ S ′ is

uniquely specified by the complex values F (ϕ) it takes when it is applied to an arbitrary

function ϕ ∈ S. An important class of distributions are the so-called regular distributions,

represented by functions F (x), which are defined by the ordinary integrals

F (ϕ) =

∫
F (x)ϕ(x) dDx.

Obviously, a necessary condition for a function F (x) to represent an element of S ′ is that

the above integral is finite for every ϕ ∈ S. This requires, in particular, that F (x) is

locally integrable, i.e. integrable in every finite region of RD, and that it increases at

infinity at most as a polynomial in x.

Another important concept regarding distributions is the notion of distributional limit.

A sequence Fn of elements of S ′ is said to converge in the distributional sense to an element

F ∈ S ′, if the ordinary limits in C

lim
n→∞

Fn(ϕ) = F (ϕ) (4.3)

hold for all ϕ ∈ S. In this case we say that Fn converges to F in S ′, and we use the

shorthand notation

S ′ − lim
n→∞

Fn = F. (4.4)

Clearly, if the Fn are regular distributions represented by the functions Fn(x), it can

happen that their point-wise limit, denoted by the usual symbol

lim
n→∞

Fn(x) = f(x), (4.5)

exists for almost all x, but that the resulting function f(x) does not define a distribution,

for an example see section 5.2.

Coming back to the solutions (4.2), denoting generically the D−2 coordinates orthog-

onal to the string world-sheet by x⊥, in the vicinity of the string, that is for x⊥ → 0, the
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fields (4.2) diverge schematically as (see for example (5.2)-(5.4) with ε = 0)

f(x) ∼


1

xD−4
⊥

, for D > 4,

lnx⊥, for D = 4.
(4.6)

The behaviors (4.6) represent distributional types of singularity: the fields f(x) in (4.2) are

indeed distributions. In contrast the bare field energy-momentum tensor (3.13) diverges

for x⊥ → 0 as

τµνf (x) ∼ ∂f(x)∂f(x) ∼ 1

x2D−6
⊥

, (4.7)

a behavior that is not of the distributional type4, unless D < 4. Said in other words, for

D ≥ 4 the functions τµνf (x) are not distributions.

Similarly, also the interaction energy-momentum tensor τµνint (3.14) is ill-defined, be-

cause the self-fields f(y(σ)) = f(x)|x⊥=0 appearing therein are infinite. Contrary to the

singularities of τµνf , the singularities of τµνint are hence strongly local, i.e. they are localized

on the world-sheet as is the whole τµνint. Correspondingly their subtraction encounters

no technical difficulty, so that the finite part of τµνint gives rise directly to a renormalized

interaction energy-momentum tensor T µνint, see (4.12) below.

By contrast the construction of a renormalized field energy-momentum tensor T µνf out

of τµνf is more involved. We impose on T µνf the minimal conditions:

a) T µνf (x) is a distribution, i.e. an element of S ′(RD);

b) T µνf (x) = τµνf (x), if x belongs to the complement of the world-sheet.

Condition a) is a necessary pre-consistency condition for local energy-momentum conser-

vation: the distributional divergence ∂µT
µν
f of a distribution is indeed always a distribu-

tion. Condition b) says instead that we want to modify τµνf “as little as possible”, i.e. we

do not want to change its values in the complement of the world-sheet, since there it is

regular. This condition represents a cornerstone of our approach.

By construction conditions a) and b) determine T µνf modulo terms supported on the

world-sheet: this is the aforementioned finite-counterterm-ambiguity, that we have to take

into account in the following.

4.2 Covariant regularization and renormalized energy-momentum
tensor

To construct out of the (ill-defined) tensor τµνf a tensor T µνf satisfying the above con-

ditions a) and b), we need first of all a set of regular fields fε(x), that for ε → 0 tend

4Applying (4.7) to a test function ϕ(x) = ϕ(x⊥, x
0, x1), schematically one has∫

τµνf (x)ϕ(x) dD−2x⊥dx
0dx1 ∼

∫
dx⊥

xD−3
⊥

,

that diverges for D ≥ 4.
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(pointwise and in the sense of distributions) to the fields (4.2). In what follows ε is a

positive regularization parameter with the dimension of a length. A convenient covariant

regularization consists in replacing in the solutions (4.2) the Green functions G(x) with

the regularized - but still Lorentz-invariant - Green functions (for D = 4 see [29])

Gε(x) =



H(x0)

2πN+1

(
d

dx2

)N
δ(x2 − ε2), for D = 2N + 4,

H(x0)

2πN+1

(
d

dx2

)N
H(x2 − ε2)√
x2 − ε2

, for D = 2N + 3,

(4.8)

where H( · ) is the Heaviside function and x2 = xµx
µ. In practical applications of these

formulae it may be useful to replace the derivative d/dx2 with −d/dε2. The smoothed

fields

fε(x) =

∫
Gε(x− y(σ))j(σ) d2σ (4.9)

are now regular distributions and on the world-sheet one has in particular the small-ε

behaviors, see below,

fε(y(σ)) ∼


1

εD−4
, for D > 4,

ln ε, for D = 4.
(4.10)

The main virtue of the regularization (4.8) is that it preserves manifest Lorentz- as well

as reparameterization-invariance. Consequently the regularized field energy-momentum

tensor τµνfε - obtained from (3.13) replacing the fields f with fε - are distributions, too,

and they are covariant tensors. However, while in the complement of the world-sheet one

has the point-wise limit

lim
ε→0

τµνfε (x) = τµνf (x),

the distributional limit

S ′ − lim
ε→0

τµνfε

does not exist. Indeed, before taking this limit one must isolate from τµνfε the term τµνfε
∣∣
div

that diverges as ε → 0 and that, in turn, must be supported on the world-sheet. The

renormalized energy-momentum tensor T µνf can then be defined subtracting this divergent

counterterm and performing then the distributional limit

T µνf ≡ S
′ − lim

ε→0

(
τµνfε − τ

µν
fε

∣∣
div

)
. (4.11)

By construction this tensor satisfies the above conditions a) and b).

Similarly one introduces a regularized interaction energy-momentum tensor τµνint ε, re-

placing in (3.14) the fields f with fε, and subtracts then its divergent part obtaining the

renormalized interaction energy-momentum tensor

T µνint ≡ S ′ − lim
ε→0

(
τµνint ε − τ

µν
int ε

∣∣
div

)
. (4.12)
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Although the formulae (4.11) and (4.12) are formally identical, in (4.12) the subtraction of

the divergent counterterm, as anticipated above, will be a conceptually trivial operation,

while the analogous process in (4.11) will require the whole apparatus of distribution

theory.

Obviously the kinetic energy-momentum tensor τµνkin (3.15) is well-defined by itself

and needs no renormalization. Eventually we define then the total renormalized energy-

momentum tensor as

T µν = T µνf + T µνint + τµνkin, (4.13)

that by construction is a distribution and coincides in the complement of the world-sheet

with the original - bare - energy-momentum (3.12).

4.3 Energy-momentum conservation and self-force

Both properties a) and b) play an essential role in the implementation of energy-momentum

conservation and in the derivation of the self-force. At the end of section 3.2.3 we saw

that the bare field energy-momentum tensor has the property

∂µτ
µν
f (x) = 0, if x belongs to the complement of the world-sheet,

thanks to the fact that the fields satisfy the linearized equations of motion (3.4)-(3.6).

But since by construction - see condition b) above - the tensor T µνf (4.11) equals τµνf in

the complement of the world-sheet, it follows that the distributional divergence ∂µT
µν
f is

supported on the world-sheet. Since also T µνint is supported on the world-sheet, and our

whole construction preserves Lorentz- as well reparameterization-invariance, we derive the

distributional relation

∂µ
(
T µνf + T µνint

)
= −

∫
SνδD(x− y(σ))

√
γ d2σ, (4.14)

where Sν is some covariant vector defined on the world-sheet. Since the kinetic energy-

momentum tensor of the string (3.15) satisfies the identity, see (3.10),

∂µτ
µν
kin = MeβΨ

∫
∆iU

νi δD(x− y(σ))
√
γ d2σ, (4.15)

imposing on the tensor (4.13) total energy-momentum conservation we obtain

∂µT
µν =

∫ (
MeβΨ∆iU

νi − Sν
)
δD(x− y(σ))

√
γ d2σ = 0. (4.16)

In this way we deduce the equation of motion for the self-interacting string

MeβΨ∆iU
µi = Sµ, (4.17)

replacing the ill-defined equation (3.7). Equation (4.17) identifies the vector Sµ showing

up in (4.14) as the self-force.
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As anticipated in the introduction, it could happen that Sµ is not a multiplicative

vector, but contains also derivative operators, like

Sµ ∼ ∂µ + Aµν ∂
ν + · · · . (4.18)

In this case (4.16) could no longer be made to vanish upon imposing (4.17). As we

will see, even in the most simplest case of a string in uniform motion, Sµ will actually

contain terms like (4.18), but those terms can always be eliminated thanks to the finite-

counterterm-ambiguity.

Concerning this strategy to derive the self-force we insist on the fact that, in presence of

singularities, there is no longer a fundamental principle - as the action principle - allowing

to derive the dynamics of a theory, in particular the self-force. As we observed already, the

alternative strategy based on the direct renormalization of the bare self-force (3.7), as done

e.g. in [17, 19], entails no control on energy-momentum conservation: if the singularities

are too strong, this strategy may even turn out to violate energy-momentum conservation,

in which case it must be rejected; for a concrete example - regarding massless charges in

four dimensions - see [7]. The physical meaning of this potential conflict between different

procedures to derive the dynamics of self-interacting objects in extremal cases, is still an

open problem, to be investigated further. Its origin is however clear: the failure of the

action principle to describe self-interactions.

5 Strings in uniform motion

In this section we apply the procedure outlined in sections 4.2 and 4.3 to a flat string

moving uniformly - in which case the entire program can be carried out analytically -

thereby illustrating its internal consistency in a simple, although non-trivial, physical

situation. In this case we expect of course to gain Sµ = 0. As above, in the following we

will work out the details in the Dirac framework, relegating the differences that occur in

the other two frameworks to sections 6 and 7.

The world-sheet swept out by a string in uniform motion has the form

yµ(σ) = Uµ
i σ

i (5.1)

and correspondingly the tangent vectors Uµ
i = ∂iy

µ(σ) are constant, as are the geometric

objects in (3.8).

5.1 Regularized fields and energy-momentum tensors

For a configuration like (5.1) the regularized fields (4.9) can computed analytically, upon

reading the currents j(σ) from (4.1) and (3.4)-(3.6) and inserting the regularized Green

functions (4.8). The integral over the σi in (4.9) can be carried out explicitly for even as
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well as for odd D - see e.g. the appendix in reference [4] - and the regularized fields fε

have the same analytical form for all D > 4:

ϕε(x) =
βGMeβΨ

(4−D)ΩD−2(−kαβxαxβ + ε2)
D
2
−2
, (5.2)

Bµν
ε (x) =

GΛe2αΨ

(4−D)ΩD−2(−kαβxαxβ + ε2)
D
2
−2
wµν , (5.3)

F µν
ε (x) =

GMeβΨ

(4−D)ΩD−2(−kαβxαxβ + ε2)
D
2
−2
lµν , (5.4)

where we introduced the (D − 2)-dimensional solid angle

ΩD−2 =
2π

D−2
2

Γ
(
D−2

2

) .
For D = 4 the integrals (4.9) are infrared divergent due to the infinite spatial extension of

a flat string. This is merely an artifact of the Green-function method, that for infinitely

extended strings in D = 4 does not work properly5. In this case it is however easy to

solve the equations (4.1) from scratch6, and regularized solutions can be obtained upon

replacing kαβx
αxβ → kαβx

αxβ − ε2:

ϕε(x) =
βGMeβΨ

4π
ln

(
−kαβxαxβ + ε2

λ2

)
, (5.5)

Bµν
ε (x) =

GΛe2αΨwµν

4π
ln

(
−kαβxαxβ + ε2

λ2

)
, (5.6)

F µν
ε (x) =

GMeβΨlµν

4π
ln

(
−kαβxαxβ + ε2

λ2

)
. (5.7)

For dimensional reasons we are obliged to introduce a parameter λ with the dimension of

length - in principle a new constant of the theory. When computing the field-strengths

∂µfε(x), appearing in the the regularized field energy-momentum tensor τµνfε , the constant

λ drops out. It will however survive in the regularized interaction energy-momentum

tensor τµνint ε, see (3.14), where the fields (5.5)-(5.7) are evaluated on the world-sheet.

The regularized fields (5.2)-(5.7) depend in a simple way on xµ through the factor

−kαβxαxβ + ε2, that is positive definite since the orthogonal projector to the string kαβ

is negative definite. They depend in particular only on the D− 2 orthogonal coordinates

kµνxν . The fields (5.2)-(5.7) are regular on the world-sheet: for xµ = yµ(σ) = Uµ
i σ

i we in

fact have −kαβxαxβ + ε2 = ε2 6= 0. These fields are actually of class C∞ in whole RD for

all D ≥ 4. For ε = 0, near the string they exhibit the singular behavior anticipated in

(4.6).

5This is similar to the failure of the Green-function method to solve Maxwell’s equations in D = 4 in
the case of a charged particle moving along a straight line at the speed of light [6].

6Alternatively one may introduce an infrared cut-off l for the coordinate σ1 in (4.9), imposing σ1 < l,
and send then l→∞; equations (5.5)-(5.7) are then regained identifying l↔ λ. Formally the expressions
(5.5)-(5.7) could also be obtained performing in (5.2)-(5.4) the limit D → 4 and identifying 1

D−4 ↔ lnλ.
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Inserting the (derivatives of the) fields (5.2)-(5.7) in (3.13) we obtain a single analytic

expression for the regularized field energy-momentum tensor, valid for all D ≥ 4:

τµνfε =
G

Ω2
D−2(−kαβxαxβ + ε2)D−2

(
C

(
kµαkνβxαxβ −

1

2
ηµνkαβx

αxβ
)
− Λ2e2αΨlµνkαβx

αxβ
)
.

(5.8)

The coefficient C has the expression

C = M2e2βΨ

(
β2 +

D − 4

D − 2

)
− Λ2e2αΨ, (5.9)

which in the fundamental string model (2.7) is zero for allD ≥ 4. In (5.8) the contributions

from the scalar field are those proportional to M2β2, those from the gravitational field

are the ones proportional to M2, and the ones from the axion are proportional to Λ2.

For what concerns the regularized interaction energy-momentum tensor, substituting

(5.2)-(5.4) in (3.14) for D > 4 we obtain

τµνint ε =
GM2e2βΨ

(4−D)ΩD−2 εD−4

(
β2 +

D − 4

D − 2

)∫
lµνδD(x− y)

√
γ d2σ, (5.10)

while for D = 4 from (5.5)-(5.7) we get7

τµνint ε =
GM2β2e2βΨ ln(ε/λ)

2π

∫
lµνδ4(x− y)

√
γ d2σ. (5.11)

For strings in uniform motion these tensors have thus purely a divergent part,

τµνint ε
∣∣
div

= τµνint ε,

so that the renormalized interaction energy-momentum tensors (4.12) vanish for all D ≥ 4,

T µνint = 0. (5.12)

We see that the divergent counterterm τµνint ε
∣∣
div

is non-vanishing for all D ≥ 4, for both our

string-models: in the general model the parameters are arbitrary, and in the fundamental

string model (2.7) we have β2 = 2
D−2

. Notice, however, that in D = 4 the gravitational

field - even in the general model - does not contribute to τµνint ε: in (5.11) there is in fact no

term proportional to M2, but only a term proportional to β2M2 coming from the dilaton.

As anticipated, the renormalization of the field energy-momentum tensors (5.8) is more

involved since its support is the bulk RD; we face it in the next sections.

5.2 Renormalization: an example

As ε tends to zero point-wise in (5.8), we obtain a function τµνf (x) - the bare energy-

momentum tensor - that is regular for kµνxν 6= 0, i.e. in the complement of the world-

sheet. In the vicinity of the world-sheet τµνf (x) behaves, however, as in (4.7) and is thus

7(5.11) can be obtained from (5.10) considering the limit D → 4 and identifying 1
D−4 ↔ lnλ.
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not a distribution. To isolate the divergent counterterm τµνfε
∣∣
div

of τµνfε , that diverges as

ε → 0 in the distributional sense, we use a technique that we illustrate first in a simple

example. The results of the actual calculation of τµνfε
∣∣
div

, first for D = 4 and then for

D > 4, will be given subsequently.

Consider the functions of a single variable

Tε(x) =
1

(x2 + ε2)2
,

depending on a positive real parameter ε with the dimension of a length. For every ε > 0

these functions represent distributions Tε ∈ S ′(R). More precisely, if we apply them to a

test function ϕ ∈ S(R) the resulting integrals

Tε(ϕ) =

∫
ϕ(x)

(x2 + ε2)2
dx (5.13)

are convergent8 for every ϕ. The point-wise limit for x 6= 0

lim
ε→0
Tε(x) =

1

x4
(5.14)

does however not represent a distribution, because the integrals∫
ϕ(x)

x4
dx (5.15)

diverge due to the non-integrable singularity at x = 0.

We want to overcome this difficulty at the price of modifying Tε(x) as little as possible,

i.e. only at x = 0. To this order we isolate the singularity at x = 0 in (5.13) writing

Tε(ϕ) =

∫
ϕ(x)− ϕ(0)− x2

2
ϕ′′(0)

(x2 + ε2)2
dx+ ϕ(0)

∫
dx

(x2 + ε2)2
+

1

2
ϕ′′(0)

∫
x2dx

(x2 + ε2)2

=

∫
ϕ(x)− ϕ(0)− x2

2
ϕ′′(0)

(x2 + ε2)2
dx+

π

2ε3
ϕ(0) +

π

4ε
ϕ′′(0). (5.16)

Since the first integral in (5.16) converges now as ε → 0 for every ϕ ∈ S(R), we read off

the “divergent part” of Tε as

Tε
∣∣
div

=
1

(x2 + ε2)2

∣∣∣∣
div

=
π

2ε3
δ(x) +

π

4ε
δ′′(x). (5.17)

Tε
∣∣
div

contains a leading divergence, supported in x = 0, proportional to 1/ε3, and a

sub-leading one - yet supported in x = 0 - proportional to 1/ε: the general lesson is that

the stronger the divergences (higher inverse powers of x) present in Tε, the more terms

proportional to higher derivatives of the δ-function (higher inverse powers of ε) are present

in Tε
∣∣
div

.

8Actually, for Tε to be elements of S ′(R) the quantities |Tε(ϕ)| must be dominated by (a finite sum
of) semi-norms of ϕ.

23



Subtracting the “divergent counterterm” we conclude then that the distributional limit

S ′ − lim
ε→0

(
Tε − Tε

∣∣
div

)
≡ T (5.18)

exists and defines the renormalized version of the function (5.14). The explicit expression

of T is

T (ϕ) =

∫
ϕ(x)− ϕ(0)− x2

2
ϕ′′(0)

x4
dx.

We have thus achieved our goal: from (5.16), (5.17) and (5.18) we deduce that T is a

distribution, that in R \ {0} coincides with 1/x4, i.e. with the point-wise limit (5.14)9.

5.2.1 Subtraction schemes and finite counterterms

In choosing the divergent part (5.17) we tacitly “resolved” an indeterminacy regarding

the finite part of T - relying on what in quantum field theory would be called a minimal

subtraction scheme. In fact, the “renormalized” distribution T is determined only modulo

the finite local counterterms

T → T + a δ(x) + b δ′′(x),

where we omitted odd derivatives of the δ-function to preserve the invariance under parity

of Tε. In the present case the choice (5.17) might be justified because the coefficients a

and b must be dimensionful, i.e. of length dimension respectively 1/L3 and 1/L. If no

fundamental constants with inverse length-dimensions show up in the theory, then a and

b must actually vanish.

Consider with this respect the further example

Uε(x) =
1

|x|+ ε
,

whose divergent part is

Uε
∣∣
div

= −2 ln(ε/L) δ(x).

In this case, for dimensional reasons the separation of the divergent part required the

introduction of an arbitrary parameter L with the dimension of a length. This leads in

the renormalized distribution

U = S ′ − lim
ε→0

(
Uε + 2 ln(ε/L) δ(x)

)
,

to an indeterminacy of the type

U → U + a δ(x),

where a is a dimensionless parameter, that a priori can not be set to zero. This is a simple

example of the finite-counterterm-ambiguity, that will play a significant role in sections

5.5.1 and 8.2.
9The precise meaning of this is that when applied to a test function ϕ(x) that vanishes in an arbitrarily

small neighborhood of x = 0, the function 1/x4 and the distribution T give the same value. In the case
at hand T could actually be written as the distributional derivative of a basic distribution, i.e. of the
principal part of 1/x, namely T = − 1

6 (d/dx)3P (1/x).
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5.3 Renormalization of the field energy-momentum tensor in
D = 4

The determination of the divergent counterterm of the tensors (5.8) relies on a straight-

forward generalization of the above example. Due to its obvious relevance we analyze first

the four-dimensional case.

For D = 4 (5.8) reduces to

τµνfε =
G

4π2(−kαβxαxβ + ε2)2

(
C4

(
kµαkνβxαxβ −

1

2
ηµνkαβx

αxβ
)
− Λ2e2αΨlµνkαβx

αxβ
)
,

(5.19)

where

C4 = M2β2e2βΨ − Λ2e2αΨ.

The formula analogous to (5.17) we need is

kµα kνβ xαxβ

(−kαβ xαxβ + ε2)2

∣∣∣∣
div

= π ln(ε/L)

∫
(ηµν − lµν) δ4(x− y)

√
γ d2σ. (5.20)

There is only a logarithmic divergence, since near the world-sheet for ε = 0 the l.h.s. of

(5.20) diverges as x2
⊥, and the orthogonal space is tow-dimensional. For dimensional rea-

sons we are obliged to introduce an arbitrary length scale L, that reflects the subtraction-

scheme ambiguity discussed above.

Applying (5.20) to (5.19) we obtain the divergent counterterm

τµνfε
∣∣
div

= −G ln(ε/L)

4π

(
M2β2e2βΨ + Λ2e2αΨ

) ∫
lµνδ4(x− y)

√
γ d2σ. (5.21)

As in the case of the interaction energy-momentum tensor (5.11), also in (5.21) there

is no divergent contribution from the gravitational field. Given (5.19) and (5.21), the

distributional limit

T µνf ≡ S
′ − lim

ε→0

(
τµνfε − τ

µν
fε

∣∣
div

)
(5.22)

exists now and defines the renormalized field energy-momentum tensor.

5.3.1 Cancelation of divergences

Within our approach the energy-momentum tensors are always “renormalizable” - in

the sense that the divergent counterterms are localized on the world-sheet - so that the

vanishing of the divergent counterterms is actually not of central importance. Nevertheless

it is instructive, also for the comparison with known results in the literature, to see if there

are models for which the divergences cancel out. To make this analysis comparative we

anticipate some results from later sections.

The divergent counterterms (5.11) and (5.21) are non-vanishing in the general model

as well as in the fundamental string model, unless Λ = β = 0. The situation is different
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for what concerns the total counterterm (we omit finite terms)

τµνint ε
∣∣
div

+ τµνfε
∣∣
div

=
G

4π
ln(ε/L)

(
M2β2e2βΨ − Λ2e2αΨ

) ∫
lµνδ4(x− y)

√
γ d2σ. (5.23)

For the general model this is still divergent, while for the fundamental string model (2.7)

the divergences actually cancel. The cancelation occurs between the dilaton (M2β2)

and the axion (Λ2), while, as we observed above, the divergences of the gravitational field

(M2) just drop out, even in the general model. This result proves in particular, for D = 4,

the compensation between field-divergences, originating from the bulk, and interaction-

divergences, genuinely localized on the world-sheet, conjectured in the effective-action

approach [16]. As we will see in section 5.4, for D > 4 this compensation will no longer

occur, neither in the Dirac framework that we are applying here, nor in the Landau-

Lifshitz and canonical frameworks. Nevertheless in the last two frameworks the field-

divergences and interaction-divergences will cancel separately for all D ≥ 4, see sections 6

and 7.

The cancelation of gravitational divergences, noticed previously, is special toD = 4 and

occurs - even in the general model - separately in τµνint ε|div (5.11) and τµνfε |div (5.21). This

separate cancelation occurs in the Dirac framework and, as we will see, in the canonical

framework, while in the Landau-Lifshitz framework the gravitational field-divergences

will cancel against the gravitational interaction-divergences. In general the pattern of

cancelation of divergences, even in D = 4, is thus framework-dependent.

A characteristic feature of the four-dimensional total counterterm (5.23) is that, being

proportional to lµν , it could be eliminated via the string-tension redefinition (see (3.15))

M →M ′ = M +
G

4π

(
M2β2eβΨ − Λ2e(2α−β)Ψ

)
ln(ε/L). (5.24)

In contrast, in dimensionsD > 4 there will be several different tensorial structures showing

up in the divergent counterterms, whose cancelation could not be achieved renormaliz-

ing the parameters of the original theory: in the general case, by-hand subtractions of

divergences, as in (5.22), represent thus a basic ingredient of our approach.

From the presence of the (lnL)-term in (5.23) we conclude that in D = 4 the finite-

counterterm-ambiguity amounts simply to a redefinition of the string tension.

5.4 Renormalization of the field energy-momentum tensor in
D > 4

To determine the divergent counterterm of the field energy-momentum tensor (5.8) in a

generic space-time, we need the generalization of (5.20) to a generic D ≥ 4 (see refer-

ence [4])

kµα kνβ xαxβ

(−kαβ xαxβ + ε2)D−2

∣∣∣∣
div

=
D−4∑
j=0

′Aj

∫ (
(lµν − ηµν)�− j ∂µ∂ν

)
2j/2−1 δD(x− y)

√
γ d2σ.

(5.25)
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The prime indicates that the sum extends only over even j and the coefficients Aj (diver-

gent for ε→ 0) are given by

Aj =



(−)j/2 π
D−2
2 Γ

(
D−j

2
− 2
)

2j+1 Γ(D − 2) Γ
(
j
2

+ 1
) · 1

εD−j−4
, for j < D − 4,

(−π)
D−2
2

2D−4 Γ(D − 2)Γ
(
D
2
− 1
) · ln (ε/L) , for j = D − 4.

(5.26)

Applying (5.25) to (5.8) we obtain for its divergent counterterm the expression, valid for

all D ≥ 4,

τµνfε
∣∣
div

=
G

Ω2
D−2

D−4∑
j=0

′Aj

∫ ((
C + (D + j − 2)Λ2e2αΨ

)
lµν � +

1

2
C
(
D + j − 4

)
ηµν �

− j C∂µ∂ν
)
�j/2−1 δD(x− y)

√
γ d2σ. (5.27)

Contrary to the four-dimensional case, this counterterm exhibits a sum of derivatives

of δ-functions ∂jδD(x − y), multiplied by the divergent factor 1/εD−j−4. The leading

divergence is 1/εD−4 and corresponds to j = 0. The terms with j > 0 represent an entire

series of subleading divergences - absent in D = 4 - and none of them could be eliminated

through the redefinition of the tension, or some other coupling constants, like in (5.24).

Notice also the appearance of gravitational divergences, i.e. the terms proportional to

(D − 4)M2 in the coefficient C in (5.9), that were absent in D = 4.

Let us analyze more closer the leading divergence in (5.27), that has the form

τµνfε
∣∣lead
div

=
Gπ1/2Γ

(
D−4

2

)
2D−1 ΩD−2Γ

(
D−1

2

)
εD−4

∫ ((
C + (D − 2)Λ2e2αΨ

)
lµν

+
1

2
C
(
D − 4

)
ηµν
)
δD(x− y)

√
γ d2σ.

(5.28)

For D > 4 it contains hence the two tensorial structures lµν and ηµν . Correspondingly,

for D > 4 in the general model there is no way to cancel even this leading field-divergence

against the interaction-divergence (5.10), which contains only lµν .

But even in the fundamental string model, where C = 0 and the tensor ηµν drops out,

the numerical coefficients of lµν in (5.10) and (5.28) do not match. We conclude thus that

in the Dirac framework in the fundamental string model the total divergences cancel in

D = 4, but not for D > 4. In particular in this framework for D > 4 the string tension

suffers a non-vanishing renormalization - a feature that would not be expected at the

basis of the non-renormalization theorems of superstring amplitudes [8]. This occurrence

may disfavor the Dirac-framework w.r.t. the other two frameworks, although we were not

able to find a physical reason for this.
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In the general model we define the renormalized field energy-momentum tensor as in

(5.22), with τµνfε and τµνfε
∣∣
div

given respectively in (5.8) and (5.27),

T µνf(0) ≡ S
′ − lim

ε→0

(
τµνfε − τ

µν
fε

∣∣
div

)
. (5.29)

We put a (0) in the definition of T µνf , due to the finite-counterterm-ambiguity that we

will encounter in the next section.

We emphasize that the tensor (5.29) is not a merely abstract object in that, being

regular in whole space, i.e. being a distribution, it can be used to compute concretely the

finite energy and momenta in arbitrary finite volumes - even if these volumes intersect the

world-sheet. T µνf(0) shares this property with the renormalized energy-momentum tensor of

the electromagnetic field of a charged point-particle in four dimensions, whose integrals

over a volume enclosing the particle always converge, giving rise to finite four-momenta [2].

5.5 Energy-momentum conservation

By construction (5.29) is a distribution and so its divergence ∂µT
µν
f(0) is perfectly well-

defined. From the general analysis of section 4.2 we know furthermore that ∂µT
µν
f(0) is

supported on the word-sheet. To evaluate it explicitly we use that derivatives are con-

tinuous operations in distribution space, so that in (5.29) we can freely interchange the

derivatives with the limit. Moreover, since τµνfε is a regular distribution, its derivatives

can be computed in the usual way. From (5.8) and (5.27) we get

∂µ
(
τµνfε − τ

µν
fε

∣∣
div

)
=

GC

2Ω2
D−2

∂ν
(

ε2

(−kαβxαxβ + ε2)D−2

−
D−4∑
j=0

′(D − j − 4)Aj

∫
�j/2 δD(x− y)

√
γ d2σ

)
,

(5.30)

where, for convenience, we factorized out a derivative. The first term between parentheses

at the right hand side, coming from the divergence of τµνfε , multiplies a factor of ε2. This

means that, when taking ε→ 0, this term is entirely supported on the world-sheet, as it

must be. Applying this term to a test function ϕ and performing the expansion in powers

of ε, one gets [4]

ε2

(−kαβxαxβ + ε2)D−2
=

D−4∑
j=0

′Bj 2
j/2 δD(x− y)

√
γ d2σ + o(ε), (5.31)

where

Bj =

(D − j − 4)Aj, for j < D − 4,

(−1)D/2ΩD−2

2D−3 Γ(D − 2)
, for j = D − 4, (if D is even),

(5.32)

with Aj given in (5.26). In (5.31) with o(ε) we understood terms that converge to zero

as ε → 0 in the distributional sense. We see that all divergences in (5.30) cancel out,
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as they must by construction. However, for D even the expansion (5.31) contains also

a non-vanishing finite term, the one corresponding to j = D − 4. Consequently, for the

divergence of the energy-momentum tensor (5.29) we get

∂µT
µν
f(0) =


0, for D odd, (5.33a)

GCBD−4

2Ω2
D−2

∫
∂ν �

D−4
2 δD(x− y)

√
γ d2σ, for D even. (5.33b)

For the four-dimensional string we have for example

∂µT
µν
f(0) =

GC

8π

∫
∂νδ4(x− y)

√
γ d2σ.

5.5.1 Finite counterterms

In principle, according to our approach the anomaly encountered in (5.33b) for D even - a

non-vanishing D-divergence for the otherwise well-behaved distribution T µνf(0) - determines

the self-force Sµ. Recalling that the renormalized interaction energy-momentum tensor

(5.12) is zero, from (4.14) and (5.33b) we would then get an Sµ that is a derivative

operator, and not a simply a vector. There would thus exist no string-equation of motion

ensuring total energy-momentum conservation.

On the other hand it is a basic fact in any renormalization process, in quantum as well

as in classical theory, that once we subtract divergent terms from a physical quantity, this

quantity remains by itself determined only modulo finite terms of the same structure as

the divergent ones. This offers a way out thanks to the fact that the anomaly in (5.33b)

is a trivial anomaly, in that in can - and must - be eliminated by subtracting a finite

counterterm, in very much the same way as one eliminates trivial anomalies in quantum

field theory, once one has introduced a regularization that breaks a classical symmetry.

In the present case the appropriate finite counterterm is

T µν
∣∣
fin

=
GCBD−4

2Ω2
D−2

∫
ηµν �

D−4
2 δD(x− y)

√
γ d2σ, (5.34)

which in D = 4 becomes

T µν
∣∣
fin

=
GC

8π

∫
ηµνδ4(x− y)

√
γ d2σ. (5.35)

The final renormalized field energy-momentum tensor

T µνf = T µνf(0) − T
µν
∣∣
fin

(5.36)

satisfies in turn

∂µT
µν
f = 0. (5.37)

Together with (5.12) equation (4.14) gives then rise to a vanishing self-force, Sµ = 0, as

is of course in line with our string moving freely in space-time.
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6 Landau-Lifshitz framework

In this section we display the main changes that arise w.r.t. the preceding analysis, when

we use for the gravitational field the Landau-Lifshitz pseudo-tensor Σ̃µν ((2.24) and (2.25))

in place of the Dirac pseudo-tensor Σµ
ν (2.18). As we saw, the use of Σ̃µν instead of Σµ

ν

induces in the field and interaction energy-momentum tensors the modifications (3.17)

and (3.18), so that it is easy to extract from those relations and our previous results (5.8)

and (5.10), using still (5.2)-(5.7), the new regularized tensors for a generic D ≥ 410

τ̃µνfε =
G

Ω2
D−2(−kαβxαxβ + ε2)D−2

(
C

(
kµαkνβxαxβ −

1

2
ηµνkαβx

αxβ
)

+Klµνkαβx
αxβ
)
,

(6.1)

τ̃µνint ε =
GM2e2βΨN

(4−D)ΩD−2 εD−4

∫
lµνδD(x− y)

√
γ d2σ = τ̃µνint ε

∣∣
div
. (6.2)

We introduced the coefficients (C is the same as in (5.9))

C = M2e2βΨ

(
β2 +

D − 4

D − 2

)
− Λ2e2αΨ, (6.3)

K = M2e2βΨ − Λ2e2αΨ, (6.4)

N = β2 − 2

D − 2
. (6.5)

Notice that w.r.t. (5.8) in (6.1) only the coefficient of the last term changed. The divergent

counterterm of (6.1) has correspondingly a structure very similar to (5.27)

τ̃µνfε
∣∣
div

=
G

Ω2
D−2

D−4∑
j=0

′Aj

∫ ((
C − (D + j − 2)K

)
lµν � +

1

2
C
(
D + j − 4

)
ηµν �

− j C∂µ∂ν
)
�j/2−1 δD(x− y)

√
γ d2σ.

(6.6)

6.1 D = 4

Specializing the above formulae to D = 4 we obtain

τ̃µνfε
∣∣
div

= −G ln(ε/L)

4π

(
(β2 − 2)M2e2βΨ + Λ2e2αΨ

) ∫
lµνδ4(x− y)

√
γ d2σ, (6.7)

τ̃µνint ε
∣∣
div

=
G ln(ε/λ)

2π
(β2 − 1)M2e2βΨ

∫
lµνδ4(x− y)

√
γ d2σ. (6.8)

For the total counterterm, disregarding finite terms, we get then

τ̃µνint ε
∣∣
div

+ τ̃µνfε
∣∣
div

=
G

4π
ln(ε/L)

(
M2β2e2βΨ − Λ2e2αΨ

) ∫
lµνδ4(x− y)

√
γ d2σ. (6.9)

10It is understood that the expression of τ̃µνint ε for D = 4 is obtained from (6.2), taking the appropriate
limit, see footnote 7 in section 5.1.
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Comparing with the Dirac-framework results we notice first of all that the total divergent

counterterm (6.9) matches exactly (5.23). The main difference is, however, the appear-

ance of gravitational divergences in (6.7) as well as in (6.8), proportional respectively to

M2e2βΨ/2π and −M2e2βΨ/2π, which are absent in (5.21) and (5.11). In the sum (6.9)

they cancel therefore out.

In the general model there are again no cancelations, while in the fundamental string

model (2.7) - a further main difference w.r.t. the Dirac framework - the field-divergences

and the interaction-divergences cancel now separately

τ̃µνfε
∣∣
div

= 0 = τ̃µνint ε
∣∣
div
. (6.10)

These results support in particular the hypothesis formulated in [16] to explain the appar-

ently contradictory results of the analysis of [8,9], concerned with field-energy-divergencies

of static strings in D = 4. The authors of [8,9] found indeed that the total field-divergences

cancel, whilst the gravitational field-divergences alone did not. Since the authors of [16]

- within their effective-action approach - found that in D = 4 there were no divergent

gravitational divergences contributing to the tension renormalization, they hypothesized

that the gravitational field-divergences revealed in [8,9] should cancel against gravitational

interaction-divergences. Yet the total divergences had to cancel. All these expectations

are precisely confirmed by our formulae (6.7)-(6.10)11.

6.2 D > 4

Coming back to generic dimensions D > 4, we notice that in the fundamental string model

the coefficients C, K and N in (6.3)-(6.5) are all zero. Given (6.2) and (6.6) this implies

that in this model the identities (6.10) hold for all dimensions D ≥ 4, meaning that

all leading and subleading field-divergences and interaction-divergences cancel separately.

However, for D > 4 there is no compensation between these two types of divergences: in

particular τ̃µνint ε
∣∣
div

(6.2) contains only the leading divergence 1/εD−4, while τ̃µνfε
∣∣
div

(6.6)

contains also the subleading divergences 1/εD−4−j for all even 0 < j ≤ D − 4.

In the fundamental string model it happens actually that the regularized tensors τ̃µνfε
(6.1) and τ̃µνint ε (6.2) vanish identically: this feature is characteristic for strings in uniform

motion, while for accelerated strings these tensors will obviously be different from zero,

see section 8.

In the general model the divergent counterterms are non-vanishing and must be sub-

tracted, as in (5.29). Since w.r.t. the Dirac framework the divergent counterterms changed

only by terms proportional to lµν - see (5.10) versus (6.2) and (5.27) versus (6.6) - the

(distributional limit of the) divergence ∂µ
(
τ̃µνfε − τ̃

µν
fε

∣∣
div

)
is the same as in the Dirac frame-

work. This implies that also the finite counterterm (5.34) to be subtracted remains the

11Actually the authors of [8, 9] do not specify which gravitational energy-momentum pseudo-tensor
they use. To be precise, what we have shown above is that the Landau-Lifshitz choice is consistent with
their results.
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same. The renormalized field energy-momentum tensor in the Landau-Lifshitz framework

is therefore

T̃ µνf = S ′ − lim
ε→0

(
τ̃µνfε − τ̃

µν
fε

∣∣
div

)
− T µν

∣∣
fin
, ∂µT̃

µν
f = 0. (6.11)

Similarly the renormalized interaction energy-momentum tensor is again zero, T̃ µνint =

S ′ − limε→0

(
τ̃µνint ε − τ̃

µν
int ε

∣∣
div

)
= 0, as is the self-force.

7 Canonical framework

From (3.21) and (3.22) - proceeding as above - in the canonical framework we obtain

τ̂µνfε =
GC

Ω2
D−2(−kαβxαxβ + ε2)D−2

(
kµαkνβxαxβ −

1

2
ηµνkαβx

αxβ
)
, (7.1)

τ̂µνint ε =
GC

(4−D)ΩD−2 εD−4

∫
lµνδD(x− y)

√
γ d2σ = τ̂µνint ε

∣∣
div
. (7.2)

Contrary to the Dirac and Landau-Lifshitz frameworks, in the canonical framework the

axion contributes now also to the interaction tensor τ̂µνint ε.

The divergent counterterm of the field energy-momentum tensor becomes now

τ̂µνfε
∣∣
div

=
GC

Ω2
D−2

D−4∑
j=0

′Aj

∫ (
lµν � +

1

2

(
D + j − 4

)
ηµν �− j ∂µ∂ν

)
�j/2−1 δD(x−y)

√
γ d2σ.

(7.3)

The expressions (7.2), (7.3) of the counterterms are simpler than the corresponding ex-

pressions (5.10), (5.27) and (6.2), (6.6) of the other two frameworks. In particular the

string coupling constants enter only through the single constant C (5.9) which, we recall,

vanishes in the fundamental string model. In this model we have therefore for all D ≥ 4

τ̃µνfε
∣∣
div

= 0 = τ̃µνint ε
∣∣
div
, (7.4)

as in the Landau-Lifshitz framework.

In a certain sense the canonical framework “maximizes” the cancelation of ultraviolet

divergences in the fundamental string model: for all D ≥ 4 the field- and interaction-

divergences cancel separately - as in the Landau-Lifshitz framework - and in D = 4, in

addition, the gravitational field-divergences and interaction-divergences cancel separately

- as in the Dirac framework.

In D = 4 we obtain in particular (C = M2β2e2βΨ − Λ2e2αΨ)

τ̂µνint ε
∣∣
div

+ τ̂µνfε
∣∣
div

=
GC

4π
ln(ε/L)

∫
lµνδ4(x− y)

√
γ d2σ, τ̂µνfε

∣∣
div

= −1

2
τ̂µνint ε

∣∣
div
, (7.5)

so that the total counterterm coincides with the expressions (5.23) and (6.9) of the other

two frameworks. For D = 4 the total ultraviolet divergence appears thus to have universal

character, in that it is framework-independent. We did not found an a priori reason for

this “coincidence” - which does not occur for D > 4.
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For future reference we write out (7.3) for D = 5

τ̂µνfε
∣∣
div

=
GC

64

∫
1

ε

(
1

2
ηµν + lµν

)
δ5(x− y)

√
γ d2σ, (7.6)

as well as for D = 6

τ̂µνfε
∣∣
div

=
GC

48π2

∫ (
1

ε2
(ηµν + lµν) + ln(ε/L)

((
ηµν +

1

2
lµν
)
�− ∂µ∂ν

))
δ6(x−y)

√
γ d2σ.

(7.7)

A part from the the simplifications showing up in formulae (7.1)-(7.3), in the general

model the divergent counterterms must again be subtracted, and the renormalized field

energy-momentum tensor T̂ µνf is defined exactly in the same way as in (6.11), with the

same finite counterterm (5.34); it satisfies still ∂µT̂
µν
f = 0. Also in the canonical framework

we have of course T̂ µνint = S ′− limε→0

(
τ̂µνint ε − τ̂

µν
int ε

∣∣
div

)
= 0, so that the self-force vanishes,

as in the other frameworks.

In the general model, by construction the renormalized field energy-momentum ten-

sors of the three frameworks T µνf (5.36), T̃ µνf (6.11) and T̂ µνf - being all divergence-less

distributions - differ from each other by the distributional divergence ∂ρC
ρµν of an an-

tisymmetric tensor: this means hat for strings in uniform motion these frameworks are

physically equivalent.

7.1 Comparison with the effective-action approach

It seems not straightforward to establish a direct link between the non-renormalization

property (7.4) - holding in the fundamental string model where C = 0 - and the results

of the effective-action method of [16], applied to the same model. The latter tests indeed

different physical properties w.r.t. our approach, i.e. the ultraviolet renormalization of

the string tension through a computation of the (divergent) coefficient of the kinetic action∫√
γ d2σ. This computation amounts essentially to the (gaussian) functional integral over

the fields of the linearized form of the action (2.1), giving rise to the “effective action”.

The latter is a non-local functional of only the string coordinates yµ(σ), that contains

as divergent part a term like Mdiv

∫√
γ d2σ, where Mdiv is a divergent coefficient. The

authors of [16] found the proportionality relation

Mdiv ∝ C, (7.8)

where C is precisely the coefficient (6.3). If we identify the effective action with the total

energy integrated over time - although it is not clear, at least to us, whether this is the

correct physical interpretation of the effective action - we may compute the (divergent

part of the) former integrating the 00 components of the canonical-framework expressions

(7.2) and (7.3) over whole space-time: the outcome is clearly C
∫√

γ d2σ, times a divergent

factor, in agreement with (7.8). In this sense the effective-action approach appears to

parallel the canonical framework, while in the other two frameworks the total energy
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integrated over time produces a divergent coefficient in front of
∫√

γ d2σ, that depends

in a more complicated way on the string coupling constants.

7.2 General conclusions on cancelation of divergences

In the general model there are non-vanishing divergent counterterms in all three frame-

works. The occurrence of the cancelation of these divergences in the fundamental string

model depends on the choice of the total energy-momentum pseudo-tensor: in the Landau-

Lifshitz and canonical frameworks the divergences cancel for all D ≥ 4, while in the Dirac

framework they cancel only in D = 4. From this point of view the canonical framework

seems the most convenient one, in that all divergences are proportional to the same coeffi-

cient C. The energy-divergence-analysis of [8,9] rephrases the Landau-Lihshitz framework,

while the effective-action-analysis of [16] rephrases the canonical one.

In general in all frameworks the cancelation of divergences requires actually only the

conditions

MeβΨ = ΛeαΨ, β =

√
2

D − 2
, (7.9)

which are weaker than the defining relations (2.7) of the fundamental string model. No-

tice in particular that the first relation amounts to the equality between the effective

string tension and charge - a property that is strictly related to the supersymmetry, more

precisely k-symmetry, of the Green-Schwarz sigma-model action [30], that in absence of

fermions reduces indeed to the action (2.3).

One has to keep in mind that, even if the divergences cancel for an appropriate choice

of the coupling constants, the energy-momentum tensor must nevertheless be regularized:

indeed, even in this case the single terms of the bare energy-momentum tensor are not

distributions, so that it would make no sense to take their D-divergence. Obviously,

for strings in uniform motion satisfying the conditions (7.9), the regularized field- and

interaction-energy-momentum tensors themselves vanish before and after regularization

(in the Landau-Lifshitz and canonical frameworks), so that for all practical purposes the

regularization can be removed. However, for accelerated strings, even if the conditions

(7.9) hold, the energy-momentum tensors will be non-vanishing and the regularization

must be maintained.

8 Accelerated strings

In this section we perform a preliminary analysis of the additional problems one has to

face, when our approach is applied to accelerated strings, where its final more ambitious

goal is the explicit determination of the self-force. The general properties of the string

self-forces - highly non-local functions of the whole retarded string-history - are poorly

known, and in the literature one finds typically approximated explicit expressions, see
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for example [10, 12, 17]. For what concerns our approach, the main implication of a non-

vanishing acceleration is the appearance of new divergent counterterms of the energy-

momentum tensor, which in turn bear also new finite counterterms.

8.1 New counterterms

For strings in generic accelerated motion the velocity vectors Uµ
i (σ) are no longer constant,

so that their multiple covariant derivatives

∆j1 · · ·∆jpU
µ
i (8.1)

are generically non-vanishing. The main implication of this feature is that the diver-

gent counterterms (7.2) and (7.3) - to be specific from now on for simplicity we refer to

the canonical framework - will receive corrections. Thanks to the manifest Lorentz- and

reparameterization-invariances of our regularization, these corrections amount to addi-

tional tensorial structures in the integrands of (7.2) and (7.3). Since the divergences arise

from the small-distance behavior of the fields near the world-sheet, these new tensors must

be, moreover, local expressions involving the generalized accelerations (8.1). This prop-

erty restricts actually strongly the form of these new tensors. Similarly, the non-vanishing

of (8.1) allows for the appearance of new finite counterterms, too.

Generically, since the indices can be contracted only with the invariant tensors Uµ
i and

ηµν , or their combinations, the total number of derivatives appearing in the new tensors,

acting on δD(x− y), or on Uµ
i as in (8.1), must be even. Instead of presenting a general

classification of these new structures, that would be rather cumbersome, in the following

we work them out for low space-time dimensions.

D=4. In four dimensions we found that for a string in uniform motion the total

(divergent + finite) counterterm to be subtracted from the regularized energy-momentum

tensor is (see (7.5) and (5.35))

τ̂µν
∣∣
unif

= τ̂µνint ε
∣∣
div

+ τ̂µνfε
∣∣
div

+ T µν
∣∣
fin

=
GC

4π

∫ (
ln(ε/L) lµν +

1

2
ηµν
)
δ4(x− y)

√
γ d2σ.

(8.2)

In this case the divergence is logarithmic in ε, and the tensor between parenthesis is

dimensionless. Consequently, since acting with derivatives lowers the length-dimension,

there is no new (divergent or finite) counterterm that can show up if the string is acceler-

ated. We conclude thus that in D = 4 also for accelerated strings the total counterterm

is given by (8.2), i.e. τ̂µν
∣∣
acc

= τ̂µν
∣∣
unif

. According to (4.11)-(4.13) the total renormalized

energy-momentum tensor is therefore

T µν = S ′ − lim
ε→0

(
τ̂µνfε + τ̂µνint ε − τ̂µν

∣∣
acc

)
+ τµνkin. (8.3)

According to the general strategy of section 4.3, the continuity equation ∂µT
µν = 0

determines then the - this time non-vanishing - self-force Sµ.
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D=5. In five dimensions for strings in uniform motion there is no finite counterterm

and hence the total counterterm - adding (7.6) and (7.2) - becomes

τ̂µν
∣∣
unif

=
GC

64

∫
1

ε

(
1

2
ηµν +

(
1− 16

π

)
lµν
)
δ5(x− y)

√
γ d2σ. (8.4)

This time the leading divergence is a simple pole 1/ε and, in principle, for an accelerated

string there could show up new subleading divergent and also finite counterterms, pro-

portional to ln ε. However, for dimensional reasons the corresponding additional tensors

in the integrand in (8.4) would involve just one derivative, whereas, as we saw above, for

covariance reasons these tensors must involve an even number of derivatives. This means

that also in D = 5 the total counterterm for accelerated strings is given by (8.4), so that

the total energy-momentum tensor is still (8.3) with τ̂µν
∣∣
acc

= τ̂µν
∣∣
unif

.

For generic odd dimensions D ≥ 7, the total divergent counterterm of the uniform

motion will, however, receive non-vanishing corrections if the string is accelerated, but,

contrary to even D, there will be no finite counterterms at all. The reason is the same

as in D = 5: the finite tensors in the integrand in (8.4) should have an odd number, i.e.

D − 4, of derivatives, but an even number, i.e. two, of indices, and there are no such

tensors.

D=6. In six dimensions for strings in uniform motion the total counterterm to be

subtracted from the regularized energy-momentum tensor τ̂µνfε + τ̂µνint ε is obtained adding

up (7.7), (7.2) and (5.34) (there is now again a finite counterterm)

τ̂µν
∣∣
unif

=
GC

48π2

∫ {
1

ε2
(ηµν − 5lµν) + ln(ε/L)

((
ηµν +

1

2
lµν
)
�− ∂µ∂ν

)
(8.5)

− 1

8
ηµν �

}
δ6(x− y)

√
γ d2σ. (8.6)

As for D = 4 and D = 5, for accelerated strings the leading divergence - in this case

1/ε2 - can not be modified, and there can be no new divergences multiplying a subleading

pole 1/ε. This time, however, the regularized tensor τ̂µνfε + τ̂µνint ε can produce new sub-

leading divergences of order ln ε, multiplying two-derivative terms of the kind (8.1). For

accelerated strings the total divergent counterterm has, in fact, the structure

τ̂µν
∣∣
acc

= τ̂µν
∣∣
unif

+G ln(ε/L)

∫
Aµν δ6(x− y)

√
γ d2σ, (8.7)

where the tensor Aµν , involving two derivatives, is a finite sum of terms like

Aµν = a1 ∆iU
µi ∆jU

νj + a2 U
µj∆i∆

iUν
j + a3 ∆iU

µi∂ν

+ a4 η
µν∆iU

ρi∆jU
j
ρ + a5 l

µν∆iU
ρi∆jU

j
ρ + · · · .

(8.8)

As the coefficient C in (6.3), the ai are - calculable - uniquely determined coefficients of

the form

ai = biM
2 + ciΛ

2,
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where bi and ci are dimensionless numbers.

This procedure carries on in any dimension D ≥ 6, and the divergent part τ̂µν
∣∣
acc

is always uniquely determined. From these examples we see that, as the space-time

dimension grows, the number - as well as the inverse length-dimensions - of the new

divergent counterterms, generalizing (8.8), become larger and larger and more involved.

The renormalized total energy-momentum tensor (8.3) is then a distribution, and the

divergence of its field- and interaction-parts - for the reasons explained in section 4.3 -

gives rise to a local expression of the kind

∂µ

(
S ′ − lim

ε→0

(
τ̂µνfε + τ̂µνint ε − τ̂µν

∣∣
acc

))
=

−
∫ (
Sν + Sνα1···αn ∂α1 · · · ∂αn

)
δD(x− y)

√
γ d2σ, (8.9)

where we singled out the term Sν without derivatives. The derivative terms would not give

rise to a consistent self-force, but they can be eliminated performing the finite-counterterm

subtraction

τ̂µν
∣∣
acc
→ τ̂µν

∣∣
acc
−
∫
Sνµα2···αn ∂α2 · · · ∂αnδ

D(x− y)
√
γ d2σ. (8.10)

According to (4.14) the vector Sµ identifies then the self-force. As we saw, in D = 4 and

D = 5 for accelerated strings no such new finite counterterms appear, but in D = 6 the

finite derivative-counterterm in (8.6) could be modified by terms involving two derivatives,

like the third term in (8.8). In conclusion, for any D ≥ 4 the self-force will eventually be

a multiplicative vector.

There is a last condition that Sµ must satisfy to be acceptable as a consistent self-force.

The geometrical identity

Uµj ∆iU
µi = 0, (8.11)

stating that the acceleration is orthogonal to the velocities, requires indeed that

Uµj Sµ = 0, (8.12)

as a consistency condition for the string equation (4.17). Though necessary for the ex-

istence of an internally consistent string dynamics compatible with energy-momentum

conservation, the condition (8.12) is not guaranteed a priori12. It could very well be that

in order to satisfy (8.12) - in line with our strategy that fixes the energy-momentum tensor

only in the complement of the world-sheet - one must subtract further finite counterterms

of the form (8.8). We will come back to this point in the concluding section.

12Notice that, thanks to reparameterization invariance, the infinite bare self-force (3.7) would satisfy
(8.12) automatically.
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8.2 Uniqueness: finite counterterms

Eventually we address the problem of whether the dynamics of self-interacting strings,

codified by the self-force, derived according to the above procedure is uniquely determined.

Within our approach this question is tied intimately to the uniqueness properties of the

renormalized total energy-momentum tensor T µν (8.3), that is actually subject to an

ultimate finite-counterterm-ambiguity, i.e. the freedom of modifying it according to

T ′µν = T µν +G

∫
Iµν δD(x− y)

√
γ d2σ, (8.13)

where, for a generic D ≥ 6, the tensor Iµν is made out of the higher dimensional kine-

matical analogues of (8.8). To say it again, the freedom of adding such terms arises from

the fact that in the divergent counterterm (8.7) the tensors (8.8) appear multiplied by

the finite coefficients lnL, required for dimensional reasons, which are actually arbitrary.

The tensor Iµν is, however, constrained by two consistency conditions. In the first

place the divergence of the added term must have the structure

∂µ

∫
IµνδD(x−y)

√
γ d2σ =

∫
Iµν ∂µδ

D(x−y)
√
γ d2σ = −

∫
Iν δD(x−y)

√
γ d2σ, (8.14)

for some multiplicative vector Iν . Only in this case the modification (8.13) can indeed

give rise, through ∂µT
′µν = 0, to the modified self-force (see again (4.14))

S ′µ = Sµ +GIµ,

and hence to a physically inequivalent dynamics. The second condition is that the vector

Iµ must respect the geometrical identity (8.12), i.e.

UµiI
µ = 0. (8.15)

There are of course a lot of tensors Iµν satisfying (8.14) and (8.15) trivially, namely

derivative operators of the kind Iµν = W ρµν∂ρ, with W ρµν = −W µρν . In these cases (8.14)

would hold simply with Iµ = 0, so that the self-force would remain unaltered. For a non-

vanishing Iµ the properties (8.14) and (8.15) turn out to be very restrictive. For D = 4,

for example, there would be only the trivial choice Iµν = bM2lµν - with b a dimensionless

constant - that corresponds merely to a redefinition of the string tension13. No such tensor

exists for D = 5. For the simplest non-trivial dimension D = 6 the tensor Iµν must be a

combination of terms like (8.8). We found actually only one tensor satisfying (8.14) and

(8.15), whose construction is as follows.

Consider the functional of the string coordinates yµ(σ)

L[y] = bM2

∫
∆iU

µi∆jU
νj ηµν

√
γ d2σ, (8.16)

13The choice between M and Λ in Iµν is purely conventional, since they have both the dimension of
an inverse length squared.
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which can be seen to be the unique reparameterization- and Lorentz-invariant local func-

tional containing two derivatives (b is a dimensionless constant as above). Construct its

curved counterpart Lg[y], obtained from (8.16) replacing everywhere the flat matric ηµν

with gµν , e.g. γij → Γij etc. Define then the tensor Iµν through the functional derivative

− 2
√
g

δLg[y]

δgµν(x)

∣∣∣∣
g=η

=

∫
Iµν δ6(x− y)

√
γ d2σ, (8.17)

and introduce the world-sheet vector

Iµ = −δL[y]

δyµ
. (8.18)

Then from D = 6 diffeomorphism invariance of Lg[y] it follows that the so defined tensors

Iµν and Iµ satisfy (8.14), and from the world-sheet reparameterization invariance of L[y]

it follows that Iµ satisfies (8.15). Given the structure of (8.16), the tensor Iµν defined in

(8.17) has precisely the form (8.8), containing in particular two derivatives.

In conclusion, in D = 6 after renormalization the effective string dynamics is deter-

mined modulo the self-force GIµ, defined via (8.16) and (8.18), which introduces thus a

new coupling constant in the theory, namely the coefficient b. It is clear that this new

interaction amounts to the the replacement of the string kinetic action

−MeβΨ

∫
√
γ d2σ → −MeβΨ

∫
√
γ d2σ +GL[y], (8.19)

which introduces new local higher-derivative self-interactions.

We stress that the occurrence of this new interaction is an unavoidable consequence of

the renormalization process itself: it is the simple mathematical statement that a divergent

term is intrinsically defined modulo finite terms. While in the generic string model the

coupling constant b appears to be arbitrary, it may happen that in the fundamental string

model - as a classical version of superstring theory - this coupling constant must vanish,

or be fixed to some specific value. For higher even dimensions D ≥ 8, the invariant self-

interaction functionals of the type (8.16) contain a growing number of derivatives, and so

the number of independent functionals, and thus new coupling constants, grows rapidly.

8.3 Uniqueness: framework-dependence

A further source of non-uniqueness of the self-force could arise from the dependence of

the whole procedure on the choice of the framework, that is, the freedom in the choice of

the total energy-momentum pseudo-tensor. Before regularization each pair of the three

total energy-momentum tensors (2.20), (2.26), (2.34) - i.e. τµν , τ̃µν and τ̂µν - are tied by

a relation of the kind (see (2.30) and (2.32))

τµν(2) − τ
µν
(1) = ∂ρZ

ρµν + field equations of motion, (8.20)
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where Zρµν = −Zµρν . Since τµν(2) and τµν(1) contain as kinetic part of the string the same

tensor τµνkin (3.15), the equation (4.14) would give rise formally to the same self-force, since

Zρµν simply drops out from that equation.

At the regularized level there is, however, a subtlety that may arise. If we consider

the regularized energy-momentum tensors τµν(i)ε, constructed with the regularized fields fε

(4.9), the relation (8.20) would still hold for the τµν(i)ε, where the regularized tensor Zρµν
ε is

still antisymmetric in its first two indices. Consequently, since distributional derivatives

always commute, the identity ∂µ∂ρZ
ρµν
ε = 0 holds true also for finite ε. But this time the

field equations of motion at the r.h.s of (8.20) would amount to regularized equations of

motion - not identically vanishing - which as ε→ 0 could give rise in (8.20) to (divergent

and finite) contributions supported on the world-sheet. Clearly - by construction - the

divergent contributions are removed by our renormalization procedure, but there could

remain finite parts which in (4.14) could give rise, in turn, to different self-forces. We

believe actually that such discrepancies do not arise, in that we conjecture that the unique

freedom of the dynamics of self-interacting strings is represented by the universal local

self-coupling (8.16), arising directly from the renormalization process. After all, a part

from this self-coupling, there should exist a unique well-defined dynamics “associated” to

the linearized formal action (2.1), as it happens e.g. for self-interacting charged particles

in D = 4 [1]. Probably a definitive test of this conjecture can be provided only through

a direct calculation of the self-forces in the three frameworks.

9 Conclusions

Due to the presence of ultraviolet divergences, the derivation of the dynamics of self-

interacting strings, taking back-reaction into account, can not be founded on a variational

principle - based on a canonical, local and finite action. In absence of such a principle,

in this paper we proposed a universal procedure for the derivation of this dynamics in

arbitrary dimensions that, i) incorporates by construction energy-momentum conservation

and, ii) gives rise automatically to a finite self-force.

We tested three versions - frameworks - of this procedure, in the pilot program of flat

strings, where its main characteristics and advantages emerge clearly: manifest reparam-

eterization and Lorentz-invariance, separability and locality of divergences, the presence

of subleading divergences, the need of local finite counterterms to derive a multiplica-

tive self-force. All frameworks give in this case rise to a consistent total conserved and

covariant energy-momentum tensor and to a vanishing self-force. In the fundamental

string model for all D ≥ 4 we retrieved in the Landau-Lifshitz and canonical frameworks

the cancelation of all ultraviolet divergences, including also the entire set of subleading

divergences - cancelations that incorporate the tension non-renormalization retrieved in

previous approaches and foreseen by superstring theory. In the Dirac framework this

cancelation occurs only in D = 4. The cancelation of ultraviolet divergences is thus in
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general framework-dependent; in particular the failure of the non-renormalization of the

string tension in the Dirac framework for D > 4 may signal that this framework is unable

to furnish the correct classical counterpart of superstring theory. This feature is however

not a problem for what concerns the construction of a correct classical theory, since in our

approach a consistent dynamics of self-interacting strings can be derived independently

of the values of the coupling constants.

We faced the problem of the derivation of the self-force Sµ for accelerated strings,

analyzing in particular the form of the new divergent counterterms. We found that all

derivative-self-forces can be eliminated through the subtraction of finite counterterms from

the energy momentum tensor. The explicit check whether or not the resulting multiplica-

tive self-forces satisfy the orthogonality condition (8.12), is tied to the future program of

determining the self-forces explicitly. With this respect the simplest case is D = 4, since

there the exact total counterterm (8.2) is known and receives no acceleration-induced

corrections. The validity of the conjectured relation (8.12) is based on a physical credo:

would it not hold, there would exist no dynamics of self-interacting strings compatible

with energy-momentum conservation. From this point of view the situation is the same

as for a charged self-interacting particle in D = 4: a priori there is no reason that the

Lorentz-Dirac self-force

Sµ =
e2

6π

(
d2uµ

ds2
+

(
du

ds

)2

uµ
)
,

derived from the requirement of conservation of the renormalized total energy-momentum

tensor [1, 2], is orthogonal to the four-velocity uµ, but eventually it turns out to be so.

Regarding the uniqueness of our construction we revealed the appearance of a finite

number of new local self-interactions - none of them occurs in D = 4 and D = 5 and only

a single self-interaction term occurs in D = 6 - that are tied intrinsically to the renormal-

ization process. Correspondingly we believe that this is the unique source of ambiguity in

the dynamics of self-interacting strings, so that the self-force is not framework-dependent.

Again, this statement requires a test through an explicit computation.
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