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1. Introduction

A relatively wide stream of the financial economics literature focuses on performance

measurement with two main motivations: the introduction of measures capturing stylized

facts of financial returns such as asymmetry or non-Gaussian densities, among many oth-

ers; the use of performance measures in empirical studies dealing with managed portfolio

evaluation or asset allocation. The interest in this research field started with the seminal

contribution of Sharpe in 1966. An increasing number of studies appeared in the follow-

ing decades (see the survey by Caporin et al., 2014). One of the most studied topics is

the performance evaluation of active management, which probably represents the main

element promoting a renewed interest in performance measurement. Among the most

recent contributions, we can quote Cherny and Madan (2009), Capocci (2009), Darolles

et al. (2009), Jha et al. (2009), Jiang and Zhu (2009), Stavetski (2009), Zakamouline and

Koekebakker (2009), Darolles and Gouriéroux (2010), Glawischnig and Sommersguter-

Reichmannn (2010), Billio et al. (2012), Cremers et al. (2013), Kapsos et al. (2014),

Weng (2014), Billio et al. (2014) and Billio et al. (2015).

Performance evaluation has relevant implications from both a theoretical point of

view, as it allows us to understand agent choices, and an empirical one, since practition-

ers are interested in ranking assets or managed portfolios according to a specific non-

subjective criterion. As an example, financial advisors often rank mutual funds according

to a specific performance measure. Moreover, when rankings produced by advisors are

recognized as a reference by the investors, changes in the rankings might influence inflows

and outflows (see Hendricks et al., 1993; Blake and Morey, 2000; Powell et al., 2002;

Del Guercio and Tkac, 2008; Jagannathan et al., 2010).

A large number of performance measures have already been proposed and, as a conse-

quence, related ranks can sensibly vary across different financial advisors, portfolio man-

agers and investment institutions. The identification of the most appropriate performance

measure depends on several elements. Among them, we cite the investors preferences and

the properties or features of the analyzed asset/portfolio returns. Furthermore, the choice

of the optimal performance measure, across a number of alternatives, also depends on the
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purpose of the analysis which might be, for instance, one of the following: an investment

decision, the evaluation of managers abilities, the identification of management strate-

gies and of their impact, either in terms of deviations from the benchmark or in terms of

risk/return. Despite some known limitations, the Sharpe (1966) ratio is still considered as

the reference performance measure. However, if we derive this ratio within a Markowitz

framework, it shares the same drawbacks as the Mean-Variance model, where the rep-

resentative investor is characterized by a quadratic utility function and/or the portfolio

returns are assumed to be Gaussian.1 Clearly, it is well established that financial returns

are not Gaussian, also due to investment strategies based on derivatives with time-varying

exposures and leverage effects. Furthermore, numerous theoretical articles and empirical

studies show that it is unlikely that investors do not care about higher-order moments

(e.g. Scott and Horwath, 1980; Golec and Tamarkin, 1998; Harvey and Siddique, 2000;

Jondeau and Rockinger, 2006; Jurczenko and Maillet, 2006, and references herein).

As a consequence, both an incorrect assumption of Gaussianity and an under-estimation

of the importance of higher-order moments for the investors, may lead to an underestima-

tion of the portfolio total risk (see Fung and Hsieh, 2001; Lo, 2001; Mitchell and Pulvino,

2001; Kat and Brooks, 2002; Agarwal and Naik, 2004) and, consecutively, to biased in-

vestment rankings and financial decisions (a downward biased risk evaluation induces an

upward biased Sharpe ratio). In this case, the Sharpe ratio does not completely reflect

the attitude towards risk for all categories of investors. Moreover, the standard deviation

equally weights positive and negative excess returns. In addition, it has been shown that

volatility can be subject to manipulations (see Ingersoll et al., 2007). Using this quantity

to evaluate the risk of assets with low liquidity can also be another issue (see Getmansky

et al., 2004). Ultimately, the pertinence of using this performance measure relies heavily

on the accuracy and stability of the first and second moment estimations (Merton, 1981;

Engle and Bollerslev, 1986). Finally, the so-called “µ − σ” Paradox illustrates that the

Sharpe ratio is not consistent, in the sense of the Second-order Stochastic Dominance

1The Gaussianity assumption might be relaxed when considering, for instance, a Student-t density
characterized by a specific degree of freedom.
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criterion2 as introduced by Hadar and Russell (1969), when return distributions are not

Gaussian (see Weston and Copeland, 1998; Hodges, 1998).

Based on these critics, academics and practitioners proposed alternative criteria that

can be adapted to more complex settings than the Gaussian one. Among the various pro-

posed measures to remedy these aforementioned shortcomings, the Gain-Loss Ratio was

introduced by Bernardo and Ledoit (2000) as a special case of the Grinblatt and Titman

(1989) Positive Period Weighted Measure of performance; it was then generalized later

on (with a variable threshold instead of the nil reference - see below) first by Keating and

Shadwick (2002) and, secondly, by Farinelli and Tibiletti (2008), Caporin et al. (2014) and

Bellini and Bernardino (2015) using variants of expected shortfall and expectiles. These

performance measures were originally derived to fill the gap between model-based pricing

and no-arbitrage pricing, and thus belong to the so-called “Good-Deal-Bound” literature

(see Cochrane and Saa-Requejo, 2001; Cochrane, 2009; Biagini and Pinar, 2013). This

literature mainly derives price bounds by precluding Stochastic Discount Factors which

would create too attractive assets, with respect to their “Good-Deal” measure in the termi-

nology of Cochrane (2009), and thereby inclining the no-arbitrage price bounds. Cochrane

(2009) derives Good-Deal price bounds for option prices by restricting the Sharpe ratio.

Černỳ (2003) generalizes this approach and made it well-applicable for skewed assets,

whilst Cherny and Madan (2009) study the good properties that should exhibit any good

performance measure. In this context, it appears that the Gain-Loss Ratio approach

provides several significant advantages. A bounded ratio implies the absence of arbitrage

opportunities. Another advantage, which might be the main reason for its success, results

from its asset pricing model foundation. The Gain-Loss Ratio quantifies the attractive-

ness of an investment concerning a benchmark investor, e.g. a representative investor of a

specified asset pricing model. Alongside the determination of price bounds on incomplete

2The following simple illustration shows that the Sharpe ratio does not even comply with the First-
order Stochastic Dominance criterion: if we compare an investment A with potential outcomes such as
{-1%;1%;5%} with probabilities {.1;.45;.45}, to an investment B with potential outcomes of {-1%;1%;3%}
with (the same) probabilities {.1;.45;.45}, then the Sharpe ratio of B is higher than those of A (i.e. 1.30
versus 1.16) whilst, obviously, A dominates B according to the First-order Stochastic Dominance criterion
– see other examples in Hodges (1998), Weston and Copeland (1998); see also Homm and Pigorsch (2012a)
and (2012b) for further discussion.
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markets, the Gain-Loss Ratio can also be used to compare asset pricing models or to

measure the performance of funds in an economically meaningful way, i.e. concerning a

benchmark Stochastic Discount Factor. In addition to the stated theoretical foundation

and the preclusion of arbitrage opportunities, the Gain-Loss Ratio has many other desir-

able properties. It is not only very intuitive, but it also fulfills many requirements of a

good performance measure, e.g. all conditions of an “acceptability index” as put forward

by Cherny and Madan (2009).3

Nevertheless, some authors recently report a first notable drawback: in many stan-

dard models, e.g. the Black-Scholes model, the best Gain-Loss Ratio becomes infinity.

Because of this shortcoming, Biagini and Pinar (2013) conclude that the “Gain-Loss Ra-

tio is a poor performance measure...” (sic). One might argue that the Gain-Loss Ratio

is only constructed for discrete probability space corresponding to real asset returns, but

even in this case, the strong dependence on the specific discretization can be seen as a

severe drawback. Voelzke (2015) recently attempted to solve this issue by proposing the

so-called Substantial Gain-Loss Ratio, that allows us to work in continuous probability

spaces without losing the positive properties of the Gain-Loss Ratio.

In recent years, different authors, however, widely used the extended version of the

Gain-Loss Ratio, called the Omega performance measure as introduced by Keating and

Shadwick (2002), when ordering investment portfolios according to a rational criterion.

The first set of authors consider Omega in the evaluation of active management

strategies in contrast to the well-known Sharpe ratio, supporting their choice by the non-

Gaussianity of returns and by the inappropriateness of volatility as a risk measure when

strategies are non-linear (e.g. Eling and Schuhmacher, 2007; Annaert et al., 2009; Hamidi

et al., 2009; Bertrand and Prigent, 2011; Ornelas et al., 2012; Zieling et al., 2014; Hamidi

et al., 2014).

A second group of articles focuses on Omega as an objective function for portfolio

optimization in order to introduce downside risk in the estimation of optimal portfolio

3Note, however, that Cherny and Madan (2009) use a non-standard definition of the Gain/loss ratio,
with a difference in the numerator: they define the ratio as the expected return over the expected loss
(for positive expected returns), which leads to the consistency of this ratio with the SSD criterion.
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weights (e.g. Mausser et al., 2006; Farinelli et al., 2008, 2009; Kane et al., 2009; Gilli and

Schumann, 2010; Hentati et al., 2010; Gilli et al., 2011). The maximization program in

an Omega paradigm is indeed, per nature, a non-convex non-linear one. As formulated

in Mausser et al. (2006), the investor’s problem in finding the portfolio that optimizes

Omega can be written, under some mild assumptions, as a linear one, after some variable

changes, inspired by the works of Charnes and Cooper (1962) in the field of production

optimization.4

Nevertheless, our main point in this article is that despite the fact that several au-

thors in the literature claimed that the Gain-Loss Ratio (and its generalization: the

Omega measure) “is consistent with second-order stochastic dominance criterion” (sic;

e.g. Darsinos and Satchell, 2004, p.80; Biagini and Pinar, 2013, p. 229), it happens to

be only valid for special cases; more precisely, this general statement is, unfortunately,

untrue for the original general definitions of both the measures and criterion (see also

Voelzke, 2015, for a generalized kernel pricing result).

Similar to Weston and Copeland (1998) and Hodges (1998), who illustrate the in-

consistency of the Sharpe ratio when asset return densities do not belong to the same

location-scale family (see Meyer, 1987, and Eling and Schuhmacher, 2011), we show in

the present article that the Omega measure has some severe drawbacks. Of course, con-

sistence with the stochastic dominance criteria, which is entailed by traditional rational

agent behavior, is not a shared characteristic of all portfolio choice theories (for instance,

both Rank Dependent Expected Utility and the Cumulative Prospect Theories5 are not

compliant), but this can be justified when optimal choices can be explained (based on a

subjective transformation of objective probabilities and/or values for instance), and when

they better reflect preferences of investors in empirical studies. This property of consis-

tence with the stochastic dominance should, thus, not be overrated. However, in the case

of Gain-Loss and Omega ratios, it might conduct investors to misleading and irrational

rankings of risky assets, even, surprisingly, in an extremely simplified framework such as

4See Appendix A for details on this optimization approach.
5See Kahneman and Tversky (1979); Quiggin (1982); Tversky and Kahneman (1992); and also Za-

kamouline (2014), in the context of a piece-wise utility function with an extension of the Omega ratio
proposed by Farinelli and Tibiletti (2008).
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the Gaussian one. The main ideas that we present hereafter are: 1) the Omega measure

is biased in some cases due to the importance of the mean return in its computation, and,

2) since gains can be compensated by losses in the computation of the Omega measure,

two densities with (almost) the same means can share identical Omega measures, even

when the risk related to one asset is obviously higher than the other one. In other words,

the Omega ratio may, in some cases, overvalue performance and simply disregard risk,

which is both counter-intuitive and far more severe than just a theoretical inconsistence

with stochastic dominance criteria.

As shown below, these problems mainly come from the fact that Omega indeed does

not comply, in general, with the Second-order Stochastic Dominance criterion (SSD, in

short), as it is falsely stated in the literature. In the limit case, this implies indifference

across assets with the same expected return but with different risk levels. In other words,

we show that 1) on a theoretical basis, the Omega ratio is not compliant with the Second-

order Stochastic Dominance criterion; 2) on an empirical basis, using Omega ratios can

lead to obvious misleading financial choices and that 3) Omega and Sharpe approaches,

whilst built on different concepts and measures, give very similar results when applied to

real market data (long-only and hedge funds), which is in line with the empirical results

by Eling and Schuhmacher (2007), showing very little differences between rankings based

on various performance measures.

Finally, if the Omega measure 1) is not compliant with the main paradigm, 2) may

sometimes lead to obvious irrational choices, 3) generally reaches the same conclusions

than those based on the classical Sharpe ratio, we conclude that its use should always be

cautious.

The article proceeds as follows. Section 2 introduces the Omega function in the

general context of performance measurement and presents some of its properties. Section

3 demonstrates that the Omega measure is inconsistent with the Second-order Stochastic

Dominance criterion. Then, we show that the trade-off of the Omega ratio – between

return and risk – is mostly guided by the first moment of portfolio returns. In Section 4,

we provide numerous illustrations, based on realistic simulations and several asset classes,
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showing incoherencies in fund analyses when considering various (static and dynamic)

optimization settings. Section 5 presents some robustness checks based on different long-

only asset and hedge fund databases. The last section concludes.6

2. Return Density-based Performance and the Omega Measures

The Omega measure belongs to a general class of performance measures based on

features of the analyzed return density. Following the taxonomy proposed by Caporin

et al. (2014), these measures can be represented with the following general notations:

PMp = P+
p (r)×

[
P−p (r)

]−1
, (1)

where PMp is a performance measure of portfolio p, P+
p (.) and P−p (.) are two functions

associated with the right and left parts of the support of the density of returns.

In most cases, measures belonging to this class can be re-defined as ratios of two

probability-weighted Power Expected Shortfalls (or Generalized Higher/Lower Partial

Moments - see Caporin et al., 2014), which read:

PMp = [Ep (|τ1 − r|o1 |r > τ3 )]
(k1)−1

×
{

[Ep (|τ2 − r|o2 |r ≤ τ4 )]
(k2)−1

}−1

× ψp [fp (r)] , (2)

where τ1 is a threshold (a reserve return r, a Minimum Acceptable Return – MAR, the

null return, the risk-free rate rf ...) for computing gains; τ2 is a similar threshold for

calculating losses or risk; τ3 and τ4 are thresholds allowing the performance measure to

focus more or less on the upper/lower part of the support density; constants o1 and o2 are

intensification parameters monitoring the attitude of the investor toward gains and losses,

while k1 and k2 are positive normalizing constants; finally ψp [fp (r)] is a factor depending

on the density of the portfolio returns, fp (r), where r denotes the portfolio returns.

Note that some thresholds might be defined based on quantiles (i.e. Value-at-Risk,

6A general Appendix and a Web Appendix (available on demand) also include complementary results,
details on simulation schemes used in the corpus of the text, proofs and some extra robustness results.
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denoted VaR), such as τ3 = V aR−rp,a1 and τ4 = V aRrp,a2 with a1 and a2 being confidence

levels.

Equation (2) thus highlights that measures belonging to this class capture features

of the return density that are going beyond the first two moments.7 The Keating and

Shadwick (2002) Omega measure, following Bernardo and Ledoit (2000), corresponds to

the case where τ1 = τ2 = τ3 = τ4 = τ and o1 = o2 = k1 = k2 = 1. We have thus a unique

threshold and all intensification and normalizing constants are fixed at 1. Omega indeed

writes:8

Ωp (τ) =
(
GHPMrp,τ,τ,1

)
×
(
GLPMrp,τ,τ,1

)−1

= Ep [r − τ |r > τ ]× {Ep [τ − r |r ≤ τ ]}−1 ×
[

1− Fp (τ)

Fp (τ)

]
, (3)

where GHPMrp,τ,τ,1, GLPMrp,τ,τ,1 and E [. |. ] are, respectively, the Higher/Lower Partial

Moments and the conditional expectation operator, and Fp (.) is the Cumulative Density

Function of the return r.

We see here that the Omega ratio separately considers, in a simple and intuitive way,

favorable and unfavorable potential excess returns with respect to a threshold that has to

be given (arbitrary). More precisely, as noted by Kazemi et al. (2004) and Bertrand and

Prigent (2011), the Omega measure is equal to the ratio of the expectations (under the

historical probability P) of a call option to a put option written on the risky reference asset

with a strike price corresponding to the threshold. The main advantage of the Omega

measure is that it incorporates, in some ways, some features of the return distribution,

such as moments, including skewness and kurtosis. A ranking is theoretically always

possible, whatever the threshold, in contrast to the Sharpe ratio where the threshold is

fixed and equal to the riskless return. Furthermore, it displays some properties such as

(see Kazemi et al., 2004; Bertrand and Prigent, 2011):

• for any portfolio p (with a symmetric return distribution), Ωp (τ) = 1 when τ =

7See Caporin et al. (2014) for further discussions on this class of measures and for a list of derived
measures.

8Several alternative expressions of the Omega measure exist in the literature (Cf. Appendix C).
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Ep [r];

• for any portfolio p (and for all distributions), Ωp (.) is a monotonous decreasing

function in τ ∈ R;

• for any couple of portfolios p = {A,B}, ΩA (.) = ΩB (.) for all τ ∈ R, if and only

if FA (·) = FB (·), where functions Fp (.) is the Cumulative Density Function of the

returns on a portfolio p;

• for any portfolio p and if there exists one risk-free asset p0 with return rp0 , then

Ωp (.) < Ωp0 (.) for all τ ≤ rp0 , with Ωp0 (.) = +∞.

In this setting, the threshold τ must be exogenously specified as it may vary according

to investment objectives and individual preferences. As mentioned by Unser (2000), we

are often only interested in the evaluation of “risky” outcomes that reflect the attitude

towards downside risk. Usually, their values are smaller than a given target, which is,

for example, the riskless asset or the rate of a financial index (benchmark). Downside

risk measures have been examined, for instance, in Ebert (2005), and are linked to the

measures introduced by Fishburn (1977 and 1984). For the background literature on risk

measures and their applications to finance and insurance, we refer to Kaas et al. (2004),

Denuit et al. (2006) and Prigent (2007).

The first purpose of this article is to highlight a severe drawback that characterizes

the Omega measure. We refer, here, to the possibility that the use of Omega leads

investors to create risky asset rankings which are misleading and not compatible with a

rational behavior. Such an event might be realized in simplified frameworks, such as the

Gaussian one, but also under less stringent hypotheses on the features of risky asset return

densities. In order to introduce the Omega “curse”, we will use hereafter the definition

of consistency in the sense of the classical Stochastic Dominance9 that says that a risk

9Cf. Quirk and Saposnik (1962), Hadar and Russell (1969), Hadar and Russell (1971), Hanoch and
Levy (1969), Rothschild and Stiglitz (1970) for the traditional Stochastic Dominance criterion. See also
De Giorgi (2005), Levy (1992) and Levy (1998) for surveys on Stochastic Dominance (Cf. Levy (1998)
for definitions). See also Leshno and Levy (2002) and Tzeng et al. (2013) for other types of stochastic
dominance such as the Almost Stochastic Dominance.
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measure denoted ρ, is consistent with the Stochastic Dominance criterion10 if and only if

A �SD B implies A ≺ρ B and A =SD B implies A =ρ B.

Let us come back now to performance measurement (where the higher the measure,

the better the investment). Considering Omega as an investment decision criterion, we

will demonstrate below that this performance measure is inconsistent with the Second-

order Stochastic Dominance criterion, so that:11 on the one hand, we have A �Ω B (i.e.

ΩA (τ) ≤ ΩB (τ) for some thresholds τ) and, on the other hand, we have A�SSD B. More

precisely, to illustrate this apparent opposition as a counter-example of the consistency

of the Omega criterion, we will first show in the following section, posing EA [r] = EB [r]

for the sake of simplicity, that we can have both ΩA (τ) = ΩB (τ) for some thresholds τ ,

and A�SSD B, implying here as the SSD requires that fund B be objectively riskier than

fund A.

3. Inconsistency of the Omega when Ranking Funds

Let us first grasp the intuition and consider the daily returns of fund A as illustrated

in Figure 1, where (Panel A) represents the Probability Density Functions (PDF in short)

of returns on fund A and fund B in the Gaussian paradigm (for the sake of simplicity

in this example). Both funds have exactly the same average daily return, but the return

distribution of fund B has twice the volatility of that of fund A. Figure 1 (Panel B)

also presents the Cumulative Distribution Function (CDF), the Cumulative Difference in

CDF, as well as the explicit function of the Omega quantile function12 (Panel C) for both

funds.

10In a general context, we use A �X B (respectively, ≈,�,≺,≺) when A is strictly preferred to B
(respectively, A is equivalent to B, A is preferred or equivalent to B, B is strictly preferred to A, B is
preferred or equivalent to A ) according to a criterion X. Cf. Levy (1998) for more details.

11See Footnote 10 for the notations.
12The Omega Quantile Function highlights the relation existing between the Omega measure and the

density assumed for the returns. Appendix C describes how the Omega measure can be expressed as
a function of the return density, thus recovering the so-called Omega Quantile Function. The formula
is provided for a generic density. Specific cases can be obtained by integrating the results reported in
Appendix C with those of Malo (2005).
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Figure 1: Gaussian Density Functions, Stochastic Dominance Criteria and Omega
for Funds A and B (when τ = EA(r) = EB(r))

Panel A: Probability Density Functions
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The first Figure (Panel A) shows the Probability Density Functions of fund A (bold line) and fund B

(thin line) daily returns. Both fund returns follow Gaussian densities, such as the first two moments

of the fund A distribution being calibrated on those of the daily Dow Jones Index over the period

1st January, 1900 to the 1st March, 2013 (data source: Datastream). The second Figure (Panel B)

pictures the Cumulative Density Functions of fund A (bold line) and fund B (thin line) returns on

the (right) y-axis and the cumulative difference (line with markers) in CDF for the two funds on

the (left) y-axis. The third Figure (Panel C) represents the Omega quantile function corresponding

to several thresholds.
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If we now study the Stochastic Dominance criterion, Figure 1 (Panel B) shows that

fund A does not dominate fund B according to the FSD criterion – since the two CDFs

cross – but fund B is dominated by fund A according to the SSD criterion, because the

cumulative difference in CDF does not change sign (Cf. Appendix B).

In this first simple illustration, we clearly see that fund A should be preferred by any

rational investor with a concave utility function, since the choice of fund B goes with a

higher risk for the same expected return.13 However, we note that the two assets have

both an Omega equal to 1.00 when the threshold is zero (Panel C). Furthermore, the

Omega quantile functions reported in Panel C show that, depending on the threshold,

fund A is, or is not, preferred to fund B.14

We have to admit that these facts are rather counter-intuitive and that Omega deserves

some extra cautionary interest.

Figure 1 illustrates that the Omega measure is inconsistent with the SSD criterion

in a simplified Gaussian framework. However, we can also provide the same qualitative

conclusion within a more complex setting with asymmetric and leptokurtic (log-normal)

densities. For instance, if we consider fund A and fund B with equal mean returns and

a threshold below the means, the Omega measure will still be inconsistent with the SSD

criterion.15 Indeed, if we compute the Omega ratio for two series with some peculiar

features, we can show that the asset ordering is inconsistent with the SSD criterion as

presented in the following proposition:16

13Complementary illustrations are available on demand with different hypotheses on densities and
related moments (Cf. Web Appendix C).

14Even if it is difficult to establish results in a general multivariate framework (multiple comparisons
between funds/assets), we report some complementary results corresponding to various ranking orders
depending on moments and threshold in Web Appendix E.

15Several complementary tests using various densities lead to the same qualitative results. More inter-
estingly, if we hypothesize that the mean return of fund A is superior to that of fund B by 1.00%, which
is higher than the threshold, Omegas of the two funds will be equal, despite a trade-off of 1 against 10 in
terms of expected return versus volatility. Complementary results are available upon request (Cf. Web
Appendix C).

16These statements are in coherence with Darsinos and Satchell (2004) and Kazemi et al. (2004), since
we can show that, under some crucial conditions on the threshold, the traditional second-order stochastic
dominance, such that A �SSD B , implies a Omega (and Sharpe-Omega) dominance so that A �Ω B
(and A �S−Ω B), see Web Appendix B, C and F for some comments.
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Proposition 1. Inconsistency of the Omega Ranking

Consider returns on two assets A and B, with non-degenerated densities, with asset A

being preferred to asset B according to the Second-order Stochastic Dominance criterion

(denoted A�SSD B). We define the following quantity:

∆ (τ) =

τ∫
−∞

[FB(r)− FA(r)] dr

+∞∫
−∞

[FB(r)− FA(r)] dr

A necessary condition for having Omega inconsistent with the Second-order Stochastic

Dominance criterion (SSD) is that ∆ (τ) > 1.

Under this condition, Omega is inconsistent with the Second-order Stochastic Dominance

if:

ΩB (τ) <
∆ (τ)− 1

∆ (τ)
.

Proof: see Appendix D.

Through Proposition 1, we show that the Omega measure is inconsistent with the

SSD criterion if ∆ (τ) > 1. Despite the Proposition provides a condition based only on

the Omega of asset B, the information on asset A density is constrained by the existence of

Stochastic Dominance and is included in the quantity ∆ (τ). In addition, we here observe

that the choice of funds according to Omega is directly dependent on the threshold, which

leads us to present the following corollary.

Corollary 1. Inconsistency of the Omega Ranking under Symmetry of Densities and

Equality of Means

If the two assets of Proposition 1 have returns with a density of the same family, with

identical means EA (r) = EB (r) = µ, but different volatilities such as σA (r) < σB (r),

then, the Second-order Stochastic Dominance criterion implies that the ranking in terms

of Omega of the two assets will be:

1. if τ = µ, A≈Ω B;
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2. if τ > µ, A≺Ω B,

3. if τ < µ, A�Ω B;

and thus Omega is inconsistent with the Second-order Stochastic Dominance criterion.17

Proof: see Appendix D.

Note that the Corollary is coherent with the Proposition as under the assumptions of

the Corollary, ∆ (τ) diverges to plus infinity and the condition of Proposition 1 becomes

ΩB (τ) < 1. The latter holds when τ < µ.

We indeed show that the Omega function is not consistent with the SSD criterion

in general. In fact, we can derive conditions (sufficient and, in some specific cases, also

necessary) for having asset rankings inconsistent with the SSD criterion. In the peculiar

case of two funds with equal means and symmetric distributions, we can obtain any

ranking in terms of Omega depending on the threshold (below, equal or higher than the

mean return), as briefly mentioned by Bertrand and Prigent (2011).18

There is a very counter-intuitive result, since we notice here that the center of the

distribution, where returns are close to 0 (i.e. when nothing happens in the market), has

a significant impact on the Omega measure. If we compare two Omega ratios for the same

portfolio, and move the threshold of the second Omega slightly to the right (respectively,

to the left) of the mean return of the underlying distribution, this will transform relative

gains (respectively, losses) into relative losses (respectively, gains), and thus inverse the

portfolio ordering. This drawback may have severe consequences in terms of investment

choices when comparing several portfolios.

As a result of Corollary 1, if one investor makes decisions based on Omega, he will

prefer the safest asset for thresholds below the mean, and the riskiest asset for thresholds

above the mean. This phenomenon is associated with choices that are driven by the

17However, having in mind that τ is a “Minimum Acceptable Return” (MAR in short), cases 1 and
2 may appear unrealistic when comparing two portfolios. Probably only funds p with an Ωp (τ) that is
much greater than 1 (first part of a ranking) and a µp that is much greater than τ would be considered
(focusing on large losses). Nevertheless, these cases are frequent when all assets are considered in an
optimization program (see the next section).

18Cf. Bertrand and Prigent (2011), Proposition 1 in section 2.3 on page 1,815.
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probability of obtaining positive outcomes with high thresholds. In fact, an agent prefers

the asset that has the highest probability of being above the threshold, without giving

much importance to the risk associated with his choice. On the contrary, if the threshold

is below the mean, the choice made by the agent will focus more on risk.

We point out that our result on the inconsistency of Omega with the SSD criterion

refines the findings of Darsinos and Satchell (2004) and Kazemi et al. (2004).19

We can thus derive here some preliminary conclusions. First, the Omega ratio is

inconsistent in the sense of the SSD. Secondly, the threshold should be linked to the

agent’s preferences since it determines the ranking of the funds and reflects her investment

choice. In other words, the Omega is not a “universal” performance measure. More

specifically, when studying the case of two symmetric densities (simple illustration of

Gaussian laws) such as E [rA] = E [rB] = µ, we may face an irrational ordering when the

chosen threshold is high. We can also show that even in a more complex setting based

on two asymmetric and leptokurtic (log-normal) densities (with some uncertainty), the

results remain similar.20

This latter fact leads us to a more general study into the trade-off between expected

return and risk when Omega is driving allocation and investment choices. Even if the

Omega ratio was truly compatible with the SSD criterion in most cases (but not all as

shown earlier), what really matters is the price of exchange between performance and risk

that the Omega function values.

Based on the simulation scheme used in Ingersoll et al. (2007), Figure 2 below rep-

resents the Iso-Omega curves for various thresholds21 τ , set to .00%, 5.00%, 7.00% and

10.00% (see Keating and Shadwick, 2002; Kane et al., 2009; Hentati et al., 2010; Bertrand

and Prigent, 2011; Gilli et al., 2011).

For a given threshold, an Iso-Omega curve corresponds to identical Omega levels

19See Web Appendix B in which we prove that our results are valid within their framework.
20Another counter-intuitive example with a log-normal (asymmetric) density is available upon request

(Cf. Web Appendix C).
21See Web Appendix A for a full sketch of the algorithm. For the sake of realism, we herein restrict

our next analysis to the various values of thresholds we found in the literature. However, results with
other values (very low or very high) are in line with those presented below.
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for various portfolios characterized by different mean returns and volatilities.22 For the

sake of simplicity, let us compare a fund A with a fund B characterized by the same

volatilities. We can then distinguish three main cases. In the first one, if the funds A

and B are located on the same Iso-Omega curve, this will imply that they have identical

Omega-rankings. In the second case, if fund A is above fund B (ceteris paribus), this

means that Omega will prefer fund A. Finally, in the third case, we assume that fund A

is below fund B (ceteris paribus), then the Omega ratio will prefer fund B.

In Figure 2, we note that when the threshold is equal to zero, the trade-off is very close

to 1, as for the Sharpe ratio, since we require 100 basis points of extra over-performance

for the same amount of over-volatility to reverse the fund rankings obtained with the

Omega measure (slope of the iso-Omega curve being equal to 1 for the threshold on this

sample). For a threshold equal to 10.00%, we only require 100 basis points of extra over-

performance for 400 basis points of over-volatility. This last case can be associated with

the behavior of a greedy agent. Finally, we see here that the lower the threshold, the

closer the rankings between the Sharpe ratio and the Omega criterion.

However, we have seen previously that the threshold should not be too high; otherwise

the conclusion drawn from the Omega measure ranking might be just... wrong.

Let us investigate more precisely the risk of being irrational when choosing to adopt

the Omega measure in comparing two funds. In the following, the first one, named again

fund A (run by an informed portfolio manager), has a higher mean return than the second

one (an uninformed manager), called fund B, but with a higher volatility (due to the

noisy signal received by the informed manager). Table 1 displays the frequency at which

the Sharpe ratio is higher for fund A than for fund B (group of S) and the frequency at

which the Omega measure concludes the opposite (third to fifth groups of columns), when

setting the thresholds equal to 10.00%, 5.00% and .00%. Lines in the table distinguish

several cases corresponding to an increase in the volatility of portfolio returns, obtained

22The trade-off between risk and return observed in Figure 2, when drawing the Iso-Omega curves,
is based on the simulation scheme used in Ingersoll et al. (2007). Please see the source of Figure 2 and
Web Appendix A for more details on the sketch of the algorithm. Other complementary tests on various
databases show that these trade-offs may vary according to the statistical properties of the underlying
return series.
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Figure 2: Iso-Omega Curves displaying the Quantity of Over-volatility required
for a given Over-performance for reversing the Omega Ranking
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Illustration of Iso-Omega curves, i.e. over-performances (y-axis) versus over-volatilities (x-axis) yielding

the same ranking according to the Omega; both are expressed in percentage terms. The ranking curves

(solid lines) are computed for the Omega measure (Cf. Keating and Shadwick, 2002) when the threshold

is equal to .00%, 5.00%, 7.00% and 10.00%. Each Iso-curve represents the amount of over-performance

of a portfolio compared to another one, for a given over-volatility, required to reverse the Omega ranking

between these two funds. The dashed bold line is the Iso-Sharpe (1966) ratio curve assuming that a

unit of extra over-volatility – for a unit of a given over-performance – is required to inverse the ranking

between fund A and fund B.

by multiplying the probability density functions by a distortion coefficient m varying

from 1 to 2 with successive steps equal to .20 (third to eighth rows), without altering the

associated mean returns.23

In Table 1, we observe in the second column that the Sharpe ratio naturally decreases

when the studied portfolio total risk increases, for a same amount of mean return. If we

now focus on the results given by the Omega measure, we can see that the value of the

threshold - equal to 10.00%, 5.00% and .00% (third to fifth groups of columns), has a

real impact on the final ranking. Obviously, the intuition tells us that the Sharpe and the

Omega ratios are equal most of the time.

23Still following the simulation scheme proposed in Ingersoll et al. (2007), our results are based on a
random selection of 10,000 pairs of simulated portfolios (one uninformed portfolio return series against
one informed manager series for all comparisons).
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One of the main reasons that can explain the rate of false answers is the value of

the threshold. But we also note some significant differences between the Omega and

the Sharpe ratios (even when the threshold is low), mainly because Omega is focusing

too much on the difference of expected returns, disregarding in some sense the implied

risks. Another potential explanation is in the relative value of the mean returns of the

compared funds (above and/or below the threshold); in some limited cases, the Omega

ratio will be biased, just as the Sharpe ratio, when considering portfolios with negative

mean performances (see Israëlsen, 2005).

In a simple setting (a Gaussian case for a non-multiple comparison of two funds),

we can thus say that the choice of the level of the threshold is of interest: if too “high”,

some aberrant results may appear (see Proposition 1) and if too “low” (compared to mean

returns of investments considered), the risk of error is accentuated (see results in Table

1). A second rule of thumb is thus to choose a not too high or too low threshold.

We have seen previously that we may face, under some circumstances, misleading

financial advice when using Omega to rank investments when the value of the threshold

is too high or too low. But what is the typical behavior of portfolios optimized according

to this criterion when the threshold is in a reasonable band? The answer to this question

is the objective of the next section.

4. Omega as an Optimization Criterion?

We studied the inconsistency of the Omega ratio (Cf. Proposition 1) through simple

illustrations based on realistic simulations comparing two investment portfolios. We have

shown that using Omega as a ranking criterion may be misleading in some cases since

it is inconsistent with the SSD criterion. We would like now to study the behavior of

Omega in a static and dynamic optimization framework.

We also ran some robustness checks, comparing the performance of portfolios opti-

mized according to the Omega criterion and other classical paradigms, in both static and

dynamic ways. For the sake of robustness, we have dealt with some empirical illustrations

of properties based on, first, realistic simulations and, secondly, on three different market
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databases used in the literature on portfolio optimization (namely Hentati et al., 2010;

Darolles et al., 2009; DeMiguel et al., 2009).

Since the Omega ratio can be inconsistent with the SSD criterion in some cases,

we show as a natural consequence, through Figure 3, that using this measure as an

optimization objective function can also lead to some mismatches, even in the simple

Gaussian framework.24 More precisely, we illustrate a typical case that can happen in

a very common situation when we optimize a portfolio according to Omega. First, we

simulate two Net Asset Value series (once again using the traditional Gaussian hypothesis

on returns), corresponding to distinct risky assets, respectively characterized by annual

mean returns (volatilities) equal to 9.96% (6.44%) for fund A and 10.44% (12.29%) for

fund B. We consider the return of the riskless asset at 2.00% per year without loss of

generality. The threshold used for computing the Omega portfolio is set to 10.00%. In

a static way, we then optimize portfolios according to the maximum Sharpe ratio, the

maximum Omega and the minimum volatility criteria.

We clearly see in Figure 3 that the Omega-based optimal portfolio is misleading

compared to the other ones (namely, maximum Sharpe and minimum volatility). Indeed,

it is completely invested in Fund B that over-performs Fund A by only .48% but with

a much higher volatility (12.29% versus 6.44%).25 Then, we can say that the Omega

measure may not, always, allow us to rationally choose the best investment.

Nevertheless, real financial series are known to be non-Gaussian. We thus want to

highlight some peculiarities of Omega-based strategies on a real dataset. For the sake of

comparison, we refer in the following illustrations to the dataset used in Hentati et al.

(2010) and based on the same methodology. This database is composed of five indexes,

expressed in USD with a monthly frequency, representing the most common asset classes

often used in asset allocation optimization problems, namely: the HFRX Global Index

for hedge funds, the UBS GC Index for convertibles, the JPM GBI Index for bonds, the

24Figure 3 is just one mere illustration among thousands of tests, that exhibits the phenomenon. Our
results are based on the simulation of 10,000 pairs of Gaussian distributions. We also obtain the same
conclusion when using a log-normal law for simulating the NAV of fund A and fund B (results are available
upon request).

25Complementary results are available upon request (Cf. Web Appendix C).
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Figure 3: An Illustration of a Misleading Choice of Omega (Static Analysis)
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The figure illustrates over a 5-year period three static portfolios optimized according to the following

paradigms: maximum Sharpe ratio (light line), maximum Omega ratio (bold line) and minimum volatility

(thin line). The x-axis represents the number of simulated observations and the y-axis is the cumulative

performance of optimal portfolios. Fund A and Fund B return densities are simulated according to

Gaussian laws and are characterized, respectively, by annual mean returns (volatilities) equal to 9.96%

(6.44%) and 10.44% (12.29%). We consider the return of the risk-free asset at 2.00% per year (fixed),

without loss of generality (complementary results are available upon request - Cf. Web Appendix C).

MSCI World Free Equity Index for equities and the S&P GSCI Index for commodities.

In Figure 4, we represent the realized performance of the five indexes from 31st Au-

gust, 1997 to 31st August, 2007. A brief analysis shows that only the commodity market

suffered strongly from the Asian and the Russian crises. Indeed, the S&P GS Commod-

ity Index fell by 40% between October 1997 and December 1998. In contrast, despite

heterogeneous correlation levels between the studied markets, the successive financial tur-

bulences that occurred in 2000 (Internet Bubble), 2001 (terrorist attack and Junk Bonds)

and 2002 (Brazilian crisis) had a more global impact since the convertible, commodity and

equity indexes, dropped between 20.00% and 40.00% within this time period. In Figure

5, we present and compare our results obtained when using the Omega ratio and other

common paradigms as optimization criteria.

We start our study within a static framework using a classical optimization algorithm

over the five assets used by Hentati et al. (2010). In Figure 5, we represent five (long-only)

optimal portfolios, each corresponding to a specific direction of an in-sample optimization.

The first two maximize (only) mean return and mean return under a volatility constraint.
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Figure 4: Performance of the Five Indexes representing the Studied Asset Classes
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Data sources: Source: Bloomberg and Datastream; monthly data in USD from 31st August, 1997 to 31st

August, 2007. On the y-axis cumulative monthly returns in base 100. The figure shows the performance

of the five studied indexes, namely, the HFRX Global Hedge Fund Index (thin line with circular markers),

the UBS Global Convertible Index (thin light line), the JPM Global Bond Index (bold light line), the

MSCI World Equity Index (thin line with cross markers) and the S&P GS Commodity Index (bold dark

line).

The next two paradigms consist of maximizing the Sharpe (1966) and Omega (2002)

ratios. Finally, the last considered portfolio minimizes volatility. The composition of

these static portfolios is represented in Table 2.

We observe that the first one-period optimized portfolio, corresponding to the max-

imum mean return criterion, displays the highest performance, but also the strongest

volatility since it totally disregards risk (or losses) by definition. In contrast, the other

four static optimal portfolios have very similar profiles and smoothed performances in

the sample. Then, the use of the Omega (2002) ratio as an optimization criterion does

not present any major improvement compared to other classical directions (using this

database).

In order to complement the previous static analysis presented in Figure 5, we show in

Table 2 the one-period optimal allocation for each portfolio (reported in the first column)

over the five studied indexes (second to sixth columns).

Here, we read results that are perfectly in line with the given optimization paradigms

and our previous illustration. The first optimal portfolio, corresponding to the maximum
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Figure 5: Performance of Five Portfolios optimized according to the Omega Criterion and other
Classical Paradigms (Static Analysis)
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Data sources: Bloomberg and Datastream; monthly data in USD from 31st August, 1997 to 31st August,

2007. On the y-axis cumulative monthly returns in base 100. The figure presents a static analysis of

the performance of portfolios optimized according to the following criteria: maximum mean return (line

with square markers), maximum mean return under a volatility constraint (thin light line), maximum

Sharpe ratio (bold light line), maximum Omega measure (bold dark line) and minimum volatility (thin

line with cross markers). These five optimal portfolios are composed of the HFRX Global Hedge Fund

Index, the UBS Global Convertible Index, the JPM Global Bond Index, the MSCI World Equity Index

and the S&P GS Commodity Index (Cf. Figure 4).

mean return criterion, naturally overweighs in a static framework the indexes displaying

the highest final performance (see Figure 4 and 5). The one based on the Omega ratio is

very slightly more diversified but it is fundamentally almost identical to the three other

remaining optimal portfolios that disregard the equity and convertible bond indexes.

In Figure 6, we now propose an illustration of a dynamic out-of-sample analysis of the

performance of the five portfolios previously studied. The rolling window for estimations

is based on two years and we assume a monthly rebalancing, without specific constraints,

during the period of time that ran from 31st August, 1999 to 31st August, 2007.

This figure shows that not only does the dynamic portfolio maximizing (only) the

mean return displays (almost) the highest terminal performance, but also the largest

volatility compared to the other strategies. In contrast, the less risky optimal portfolio is

the one minimizing volatility that presents the lowest but smoothed performance. If we

now focus on the portfolio maximizing the Omega ratio, we observe that it underperforms
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Table 2: Composition of the Five Optimal Portfolios according to the Omega Criterion and other
Classical Paradigms (Static Analysis)

Optimal Weights

Optimization HFRX Hedge JPM Global MSCI World S&P GS UBS Global
Paradigms Fund Global Bond Index Equity Index Com. Index Conv. Index

Max. Mean Return .00% .00% .00% .00% 100.00%
Max. Mean s.t. Vol. (5.00%) 54.20% 43.90% .00% 1.90% .00%
Max. Sharpe 28.37% 66.45% .00% 5.18% .00%
Max. Omega (τ = .00%) 32.40% 60.15% 1.99% .68% 4.77%
Min. Volatility 27.20% 67.47% .00% 5.33% .00%

Data sources: Bloomberg and Datastream; monthly data in USD from 31st August, 1997 to 31st August,

2007. The table shows the one-period optimal weights of portfolios corresponding to the following direc-

tions: maximum mean return, maximum mean return under a volatility constraint, maximum Sharpe,

maximum Omega and minimum volatility; and for each studied index, namely, the HFRX Global Hedge

Fund Index, the JPM Global Bond Index, the MSCI World Equity Index, the S&P GS Commodity Index

and the UBS Global Convertible Index.

almost all the other ones, and more precisely, those based on the maximum mean return,

the maximum Sharpe ratio and the maximum mean return under a volatility constraint.

We also run some robustness checks,26 varying the inputs, in a static and a dynamic

framework, when optimizing portfolios according to the Omega ratio. First, we use the

same sub-sample of hedge funds adopted in Darolles et al. (2009), we calculate the Sharpe

ratios of several strategies based on the methodology and the datasets used in DeMiguel

et al. (2009). Theses checks confirm our previous results: thus, Omega-based optimal

portfolios, respectively, for a low and a high threshold, are very close to those obtained in

minimum volatility and maximum mean return optimization paradigms. In other words,

it happens in these tests that the use of the Omega ratio does not present here a true

added value.

We now focus our study on the use of the Omega ratio as an optimization criterion.

Similar to our previous analysis, we thus present, first, a static framework, in which we

examine the evolution of the performance of optimal portfolios using the Omega optimiza-

tion criterion according to several thresholds, respectively, equal to .00%, 5.00%, 7.00%

and 10.00%.

As shown in Figure 7, the higher the value of the threshold, the riskier the profile

26For space reasons, all robustness checks have been reported in Web Appendix D.
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Figure 6: Performance of Five Portfolios optimized according to the Omega Criterion and other
Classical Paradigms (Dynamic Analysis)
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Data sources: Bloomberg and Datastream; monthly data in USD from 31st August, 1997 to 31st August,

2007. On the y-axis cumulative monthly returns in base 100. The figure presents a dynamic analysis of

the performance of portfolios optimized according to the following criteria: maximum mean return (line

with square markers), maximum mean return under a volatility constraint (thin light line), maximum

Sharpe ratio (bold light line), maximum Omega measure (bold dark line) and minimum volatility (thin

line with cross markers). We consider a two-year in-sample window and a monthly rebalancing for the

projection period. These five optimal portfolios are initially composed of the HFRX Global Hedge Fund

Index, the UBS Global Convertible Index, the JPM Global Bond Index, the MSCI World Equity Index

and the S&P GS Commodity Index (Cf. Figure 4).

of the optimal portfolio. For instance, the one considering a null threshold presents the

lowest but the most stable performance with a very low risk, whereas the optimal portfolio

based on a threshold set to 10.00% displays a slightly better performance, but for a much

more important risk level. However, we can wonder about the (rational) maximum value

of the threshold since performances of static optimal portfolios based on rates equal to

5.00%, 7.00% and 10.00% are almost identical.

In Figure 8, we now compare the performance of four dynamic portfolios optimized

according to the same setting of thresholds used in the previous analysis. As expected,

this figure shows that the dynamic portfolio based on a threshold equal to 10.00% clearly

overperforms the optimal portfolio for which the threshold is set to .00%. This last

observation raises an important question of the usefulness and justification in optimization

problems of the Omega, and confirms our intuition about its sensitivity to the value of

the threshold. dedicated to some robustness checks.
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Figure 7: Performance of Four Portfolios optimized according to the Omega Ratio
when varying the Threshold (Static Analysis)
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Data sources: Bloomberg and Datastream; monthly data in USD from 31st August, 1997 to 31st August,

2007. On the y-axis cumulative monthly returns in base 100. This figure presents a static analysis of

the performance of portfolios optimized according to the Omega criteria when varying the thresholds,

respectively, equal to .00% (bold dark line), 5.00% (bold light line), 7.00% (thin light line) and 10.00%

(thin light line with cross markers). These four optimal portfolios are initially composed of the HFRX

Global Hedge Fund Index, the UBS Global Convertible Index, the JPM Global Bond Index, the MSCI

World Equity Index and the S&P GS Commodity Index (Cf. Figure 4).

5. Conclusion

We recently observed that an increasing number of significant finance articles refer

to the Omega measure for evaluating the performance of funds or of active strategies (e.g.

Eling and Schuhmacher, 2007; Farinelli and Tibiletti, 2008; Annaert et al., 2009; Bertrand

and Prigent, 2011; Zieling et al., 2014; Kapsos et al., 2014; Hamidi et al., 2014), since

both the return distributions may not be Gaussian and the volatility may not be the

relevant risk measure in such a case. The Omega measure is also used in some non-linear

portfolio optimization problems when returns are characterized by severe downside risks

(e.g. Mausser et al., 2006; Kane et al., 2009; Gilli et al., 2011).

Our article started with a first simple intuition, which was that the Omega measure

might excessively privilege the performance regardless of the implied risk and thus exhibits

inconsistency with the Stochastic Dominance criteria. The second intuition was on the

role of the threshold that we should define for computing Omega, which might be very

crucial, as already pointed out by Bertrand and Prigent (2011). Based on these two
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Figure 8: Performance of Four Portfolios optimized according to the Omega Ratio
when varying the Threshold (Dynamic Analysis)
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Data sources: Bloomberg and Datastream; monthly data in USD from 31st August, 1997 to 31st August,

2007. On the y-axis cumulative monthly returns in base 100. This figure presents a dynamic analysis of

the performance of portfolios optimized according to the Omega criteria when varying the thresholds,

respectively, equal to .00% (bold dark line), 5.00% (bold light line), 7.00% (thin light line) and 10.00%

(thin light line with cross markers). We consider a two-year in-sample window and a monthly rebalancing

for the projection period. These four optimal portfolios are initially composed of the HFRX Global Hedge

Fund Index, the UBS Global Convertible Index, the JPM Global Bond Index, the MSCI World Equity

Index and the S&P GS Commodity Index (Cf. Figure 4).

assumptions, we have studied more precisely the Omega ratio under two main aspects.

The first one is the relevance of using Omega as a portfolio ranking criterion. First,

we show through a simple realistic illustration that the Omega measure can be equal for

two portfolios, even when the total risk of the first fund is twice that of the second one.

Secondly, we observe that for positive thresholds close to .00%, the trade-offs return/risk

of the Omega and the Sharpe ratios are both almost equal to 1.00. This trade-off is inferior

to 1.00 (for instance, equal to .25) when using high thresholds in the computation of the

Omega measure (for example, 10.00%). The lower the threshold, the closer the trade-

offs using the Sharpe ratio and the Omega criterion. We have thus demonstrated that

portfolio rankings obtained according to this performance measure are seriously influenced

by the chosen threshold, and more precisely by the difference between this threshold and

the mean return of studied underlying return distributions. Choices of investments guided

by the Omega measure may thus yield different investment decisions, depending on the

threshold, that should not be too high or too low.
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The second interest is the use of the Omega ratio within an optimization frame-

work. In a simple static Gaussian optimization setting, we first show that the Omega

ratio can lead to clear under-optimal solutions in some realistic cases (mainly when the

given threshold is higher than the mean return of return distributions of some considered

risky assets). Our next results are based on three different market databases used in

publications, respectively, by Hentati et al. (2010), Darolles et al. (2009) and DeMiguel

et al. (2009). The first dataset represents five main asset classes, the second database

regroups 18 hedge funds and the third one corresponds to six sub-markets as classified

by Kenneth French. Using these three datasets, we provide illustrations in which Omega-

based optimal portfolios are sensibly very similar to those obtained according to more

classical criteria (namely the maximum Sharpe ratio and the minimum volatility). Fur-

thermore, we show in our study that an Omega-based optimal portfolio is similar to a

maximum mean return-based optimal portfolio for a high threshold, and to a minimum

volatility-based optimal portfolio for a low threshold. This confirms the intuition that a

low threshold corresponds to risk-averse agents (when the risk-free rate is the preferred

asset in the limit case) and a high threshold represents greedy investors (with a strong

preference for performance).

We conclude that the Omega ratio can entail misleading financial decisions and lead

us to question the use of this measure in any of the traditional finance applications it

was designed for; we finally have some doubts about its accuracy, stability and overall

usefulness.27

Finally, the Omega ratio belongs to a general class of performance measurement

based on features of return densities. Omega is, indeed, a simplified version of some other

measures when varying the parameters in the general function proposed by Caporin et al.

(2014). For instance, the Sharpe-Omega ratio (Kazemi et al., 2004) is reported in some

studies28 to be equal to Ωp (τ)−1; thus, it would also be interesting to challenge such mea-

sures. In the same vein, we should question other related measures such as, for instance,

the Sortino-Meer-Plantinga (1999) Upside-Potential ratio, the Gemmill-Hwang-Salmon

27See Hübner (2007) for a general discussion on the precision and stability of performance measures.
28See also Appendix C for a comparison between the Omega and the Sharpe-Omega ratios.
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(2006) Loss-Averse Performance measures and the Farinelli-Tibiletti (2008) measure (Cf.

Caporin et al., 2014), in order to see if they share, or not, the same drawbacks.
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Appendix A. Optimization of Omega

Given the growing popularity of the Omega ratio, building a portfolio that maximizes
Omega has become both a topical and practical problem. Maximizing Omega can be
difficult since the resulting optimization problem is not convex. The problem of find-
ing a portfolio that maximizes the Omega measure has been considered by Avouyi-Dovi
et al. (2004), who use a global optimization approach, and Passow (2005), who considers
a parametric approach using the four-parameter family of Johnson distributions. Briec
et al. (2004) develop an implicit enumeration strategy for solving non-convex optimization
problems to obtain closed-form solutions. Briec and Kerstens (2006) refine this method-
ology by showing how a non-linear problem can be transposed into a more familiar linear
programming problem.

Based on the work of Charnes and Cooper (1962), and in the same vein as Briec and
Kerstens (2006), Mausser et al. (2006) propose a non-parametric model29, in which the
investor’s problem of finding the portfolio that optimizes the Omega measure is written
as:

Ω∗p (τ) = max
(wi,ut,dt)∈[0,1]×R2

+

T∑
t=1

P u
p,t (rt)× ut

T∑
t=1

P d
p,t (rt)× dt

, (A.1)

with: 
N∑
i=1

ri,twi − ut + dt = τ,

N∑
i=1

wi = 1,

and: 
Aw ≤ b,
ut, dt, wi ≥ 0,
utdt = 0,

where ut is the excess return of the portfolio p above the threshold τ and P u
p,t (rt) is the

corresponding probability, dt is the excess return of the portfolio p below the threshold τ
and P d

p,t (rt) is the corresponding probability, wi is the weight assigned to the asset i, ri,t
is the return at time t of the asset i.

However, Mausser et al. (2006) show that this non-convex non-linear program is, un-
der some conditions, equivalent to a linear program through a transformation of variables,
if we drop the complementarity constraint utdt = 0 – see also Charnes and Cooper (1962).

If we define:

ζ =

[
T∑
t=1

P d
p,t (rt) dt

]−1

, (A.2)

we note that if Ω∗p (τ) ∈ (0,+∞) then ζ > 0 is finite.

29A parametric approach for optimizing Omega discussed in Passow (2005) can be an alternative to
the approach proposed by Mausser et al. (2006).
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The transformed variables are defined as:
w̃i = wi × ζ,
ũt = ut × ζ,
d̃t = dt × ζ.

(A.3)

Since ζ > 0, we observe that the non-negativity of the transformed variables is
equivalent to that of the original variables. Additionally, it is possible to return to the
original variables using the inverse transformation such as:

wi = w̃i × (ζ)−1 ,

ut = ũt × (ζ)−1 ,

dt = d̃t × (ζ)−1 .

(A.4)

Substituting the transformed variables into the problem (A.2) and dropping the con-
straint utdt = 0 give the following optimization problem:

Ω̃p (τ) = max
(w̃i,ũt,d̃t,ζ)∈[0,1]×R3

+

T∑
t=1

P u
p,t (rt) ũt, (A.5)

with: 

N∑
i=1

ri,tw̃i − ũt + d̃t − τ × ζ = 0,

N∑
i=1

w̃i − ζ = 0,

T∑
t=1

P d
p,t (rt) d̃t = 1,

and: {
Aw̃ − bζ ≤ 0,

ũt, d̃t, w̃i ≥ 0,

which is a linear program in the variables ζ, w̃i, ũt, d̃t.
It is not automatically assumed that the optimal solution of equation (A.5) gives an

optimal solution to (A.1) by reversing the transformation (A.3), because the complemen-
tarity constraint utdt = 0 has been dropped.

Note, however, that when the optimal Omega is less than one (which is unrealistic),
the linear program (A.5) will not reach an optimum since it will produce a solution with
an optimal value that violates the complementarity constraints utdt = 0 and is therefore
financially meaningless.
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Appendix B. On the First-order and Second-order Stochastic Dominance Cri-
teria

Several studies, such as Darsinos and Satchell (2004), refer to the traditional (First
and Second-order) Stochastic Dominance definitions30 to show that Omega is a consistent
measure.

In the same vein, we will use the following notations. Let us consider two portfolios A
and B, r is a random variable that corresponds to returns on a portfolio p with p = {A,B},
with r ∈ [a, b], where (a, b) are two constants that define the support31 of r such as
(a, b) = {min (r) ,max (r)}, fp (r) is the Probability Density Function, Fp(r) denotes
the Cumulative Density Function, u (.) is a utility function belonging to the set U , of
increasing, concave and continuous real valued functions, u

′
(.) is its first derivative, and

1I{.} is the Heaviside function.
Without loss of generality, we only consider here the non-trivial case,32 such as fA (r) 6=

fB (r) for at least one r ∈ [a, b].

Proposition B1. First-order Stochastic Dominance Criterion
A portfolio A is preferred to a portfolio B according to the First-order Stochastic

Dominance criterion, i.e.:
A �FSD B, (B.1)

if and only if:

FA(r) ≤ FB(r) for all r ∈ [a, b], (B.2)

with at least a return r ∈ [a, b] for which the strict inequality is true, and where Fp(.) cor-
responds to the Cumulative Density Functions of returns r on the portfolios p = {A,B},
which entails that:

EA [u (1 + r)] ≥ EB [u (1 + r)] , (B.3)

with at least a function u (.) for which the strict inequality is true, and where u (.) is an in-
creasing and continuous utility function, Ep [u (.)] is the expected utility and r corresponds
to the portfolio returns.
Proof of Proposition B1

• Regarding the sufficient part of Proposition B1. [i.e. Equation (B.3) is sufficient for
Equation (B.1)].

30Cf. Weston and Copeland (1998) and Huang and Litzenberger (1988) for the traditional definitions
of the First and Second-order Stochastic Dominance criteria.

31So that Fp(a) = 0 and Fp(b) = 1, where Fp(.) is the CDF of returns r on portfolios p, herein with
p = {A,B} .

32In fact, the Second-order Stochastic Dominance criterion may lead to irrational investment choices.
According to the traditional definition of the Stochastic Second-order Dominance criterion, the trivial
case where FA(.) = FB(.) is not excluded. When

∫ τ
a
FB(r) − FA(r)dr ≥ 0 for all τ ∈ [a, b], we can face

the following counter-intuitive situation in which (with the previous notations): 1) EA(r) = EB(r); 2)
σA < σB ; 3) A �SSD B; 4)

∫ τ
a
FB(r) − FA(r)dr ≥ 0 for all τ ∈ [a, b] (see Figure 1 for an illustration

of this case when Omega is the decision criterion.); while, obviously, A should be strictly preferred to
B. In the strict version of the SSD criterion, with a strict inequality (in the non-trivial case where
FA(r) 6= FB(r)), we have, in this case, A �SSD B, since

∫ τ
a
FB(r) − FA(r)dr ≥ 0 for all τ ∈ [a, b] and∫ τ

a
FB(r)− FA(r)dr > 0 for some τ ∈ [a, b].
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Let us start by assuming that the returns r on the portfolios A and B belong to
the interval [a, b] where a and b are some constants (corresponding to some low and high
returns defining the support of the returns).

First, we suppose that, ∀r ∈ [a, b]:

FA (r) ≤ FB (r) , (B.4)

with a strict inequality for some r.
Secondly, let us consider a rational continuous and increasing utility function, denoted

u (.), representing a non-satiable individual’s preferences and assume, without loss of
generality, that this individual has an initial wealth equal to 1.00. If the individual
invests in portfolio A, his expected utility is EA [u (1 + r)] and similarly for B, where r
denotes the returns. We want to show that (B.1) implies (B.3), or similarly:

b∫
a

u (1 + r) dFA (r) ≥
b∫

a

u (1 + r) dFB (r) . (B.5)

If we now integrate by parts Equation (B.5), we have (with the previous notations):

z∫
a

u (1 + r) d [FA (r)− FB (r)]

= u (1 + r) [FA (r)− FB (r)]za −
z∫
a

[FA (r)− FB (r)] du (1 + r) . (B.6)

Since FA (b) = FB (b) = 1, we get:

b∫
a

u (1 + r) d [FA (r)− FB (r)] = −
b∫

a

[FA (r)− FB (r)] du (1 + r) . (B.7)

However, following the hypothesis that FA (r) − FB (r) ≤ 0 for all r ∈ [a, b] and
FA (r)− FB (r) < 0 for some r, and u (.) is strictly increasing, the sign of Equation (B.7)
is positive. Thus, Equation (B.4) is a sufficient condition for Equation (B.3).�

• Regarding the necessary part of Proposition B1. [i.e. Equation (B.3) is necessary
for Equation (B.1)].

Let us suppose that A�FSDB , FA (r) ≥ FB (r) for all r ∈ [a, b]. Since FA (.) and
FB (.) are increasing and right continuous, there must be an interval [c, d] ⊂ [a, b] so that,
∀r ∈ [c, d]:

FA (r) > FB (r) . (B.8)

If we now define a continuous and increasing utility function, with standard prop-
erties, that increases only on [1 + c, 1 + d], the sign of Equation (B.7) would be negative,
which contradicts the hypothesis that A �FSD B.
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First, let us define the simplest utility function u(.), as:

u (1 + τ) =

τ∫
a

1I{1+c≤x≤1+d} (1 + r) dr, (B.9)

where 1I{.} is the Heaviside function.
Recalling that u (.) is increasing and continuous, we have:

u
′
(1 + τ) =

{
1 if (1 + τ) ∈ [1 + c, 1 + d] ,
0 elsewhere.

(B.10)

Equation (B.10) corresponds to the marginal utility that is equal to 1 on [1 + c, 1 + d]
and 0 elsewhere. Secondly, using Equation (B.7) and Equation (B.8), we obtain:

b∫
a

u (1 + r) d [FA (r)− FB (r)] = −
b∫

a

[FA (r)− FB (r)] du (1 + r) . (B.11)

However, results in Equation (B.11) contradict A�FSDB.
Thus, we must have, ∀r ∈ [a, b]:

FA(r) ≤ FB(r), (B.12)

with a strict inequality for some r.
Then, Equation (B.3) is a sufficient and necessary condition for Equation (B.1).�

Proposition B.2. Second-order Stochastic Dominance Criterion
A portfolio A is preferred to a portfolio B according to the Second-order Stochastic

Dominance criterion, i.e. (with the previous notations):

A�SSDB, (B.13)

if and only if:
τ∫
a

[FB(r)− FA(r)] dr ≥ 0 for all τ ∈ [a, b], (B.14)

with at least a return τ ∈ [a, b] for which the strict inequality is true, which implies that:

EA [u (1 + r)] ≥ EB [u (1 + r)] , (B.15)

with at least a function u (.) for which the strict inequality is true.
Proof of Proposition B2

• Regarding the sufficient part of Proposition B2. [i.e. Equation (B.15) is sufficient
for Equation (B.13)].

Let us first define the continuous function S (.) as being:
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S (τ) :=


τ∫
a

[FA(r)− FB(r)] dr ≤ 0 for all τ ∈ [a, b],

τ∫
a

[FB(r)− FA(r)] dr < 0 for a least one τ ∈ [a, b],
(B.16)

If we integrate by parts Equation (B.7), we have:

−
τ∫
a

[FA (r)− FB (r)] du (1 + r) = −
τ∫
a

u′ (1 + r) dS (r) . (B.17)

where u′ (.) is the first derivative of the utility function u (.).
From Equation (B.9) and Equation (B.16), and assuming that function u′ (.) is de-

creasing, we can rewrite Equation (B.17) as follows:

τ∫
a

u (1 + x) d [FA (x)− FB (x)] =

r∫
a

S (x) du′ (1 + x) . (B.18)

From the Equation (B.17), stating that
∫ τ
a

[FA(r)− FB(r)] dr ≥ 0 for all τ ∈ [a, b],

and
τ∫
a

[FB(r)− FA(r)] dr > 0 for at least one τ ∈ [a, b], we can write that:
τ∫
a

S (r) du′ (1 + r) ≥ 0 for all τ ∈ [a, b],

τ∫
a

S (r) du′ (1 + r) > 0 for at least one τ ∈ [a, b]..
(B.19)

Thus, Equation (B.15) is a sufficient condition for Equation (B.13).�

• Regarding the necessary part of Proposition B2. [i.e. Equation (B.13) is necessary
for Equation (B.15)].

Let us assume that, first, A�SSDB and, secondly, that function S (.) is not negative.
From the continuity of S (.), it then follows that there must exist an interval [c, d], with
c 6= d and ∀τ ∈ [c, d], such as:

S (τ) > 0. (B.20)

If we can find a concave utility function whose first derivative is continuous, except
possibly on a countable set, and strictly decreases only on [1 + c, 1 + d], then the inequality
in Equation (B.19) will not be valid anymore and the hypothesis that A�SSDB will be
contradicted.

Let us define, ∀ (τ, r) ∈ [a, b]2:

u (1 + τ) =

τ∫
a

b∫
y

1l{1+c≤x≤1+d} (1 + r) drdτ. (B.21)

Since the utility function u(.) is continuously differentiable and concave, we have
(with the previous notations):
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u′ (1 + τ) =

b∫
τ

1l{1+c≤x≤1+d} (1 + r) dr. (B.22)

We then obtain:

τ∫
a

u (1 + τ) d [FA (r)− FB (r)] =

τ∫
a

S (r) du′ (1 + r) . (B.23)

Equation (B.23), being negative, contradicts the hypothesis that A�SSDB, and thus,
Equation (B.13) is a necessary condition for having Equation (B.15). �
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Appendix C. Complementary Results on the Omega measure

Some authors (e.g. Mausser et al., 2006; Farinelli and Tibiletti, 2008; Bertrand and
Prigent, 2011) write the Omega ratio as:

Ωp (τ) = Ep [max (r − τ, 0)]× {Ep [min (r − τ, 0)]}−1

= Ep[(r − τ)+]× {Ep[(r − τ)−]}−1, (C.1)

where Ep[(.)
+] = max (., .) and Ep[(.)

−] = min (., .) .
They use the traditional option payoff notation (Cf. Kazemi et al., 2004, Eq. 11 page

24), which is different in the presentation from the original version proposed in Keating
and Shadwick (2002), who define the Omega measure by means of integrals, and also
different from the notation we adopted in Section 2. We provide here detailed equations
showing the link between alternative representations of the Ωp (τ) function.

Keating and Shadwick (2002) define Omega by means of integrals based on the CDF
of the portfolio returns. Following their contribution, Omega is given as:

Ωp (τ) =

+∞∫
τ

[1− Fp (r)] dr

τ∫
−∞

Fp (r) dr

, (C.2)

where Fp (r) is the CDF of the portfolio returns.
Focus now on the numerator. By integrating in parts, we can easily obtain the follow-

ing equalities:

+∞∫
τ

[1− Fp (r)] dr = r [1− Fp (r)] |+∞τ +

+∞∫
τ

rfp (r) dr

= −τ [1− F (τ)] + Ep [r|r > τ ] [1− Fp (τ)]

= Ep [r − τ |r > τ ] [1− Fp (τ)]

= Ep [max (r − τ, 0)] . (C.3)

We can proceed in a similar way on the denominator, obtaining a second set of equal-
ities:

τ∫
−∞

Fp (r) dr = rFp (r) |τ−∞ −
τ∫

−∞

rfp (r) dr

= τFp (τ)− Ep [r|r ≤ τ ]Fp (τ)

= Ep [τ − r|r ≤ τ ]Fp (τ)

= Ep [max (τ − r, 0)] . (C.4)

Therefore, combining the previous equalities, we can obtain the following alternative
equivalent representations of the Omega function:
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Ωp (τ) =

+∞∫
τ

[1− Fp (r)] dr

τ∫
−∞

Fp (r) dr

=
Ep [r − τ |r > τ ] [1− Fp (τ)]

Ep [τ − r|r ≤ τ ]Fp (τ)

=
Ep [max (r − τ, 0)]

Ep [max (τ − r, 0)]
. (C.5)

The first equation corresponds to the original formula in Keating and Shadwick (2002),
the second equation is the one we adopted in Section 2, while the last equation is inspired
by the option theory and is referred to, among others, by Mausser et al. (2006), Farinelli
and Tibiletti (2008), and Bertrand and Prigent (2011).

Alternatively, following Gouriéroux and Liu (2012), we can express Omega thanks to
a quantile function, defined as: Qp (u) = F−1

p (u). From the previous equalities, we have:

Ep (r| r ≤ τ) =
1

Fp (τ)

τ∫
−∞

rfp (r) dr

=
1

Fp (τ)

Fp(τ)∫
0

Qp (u) du, (C.6)

and we can redefine Omega as follows:

Ωp (τ) =
[1− Fp (τ)]

Fp (τ)

∫ +∞
Fp(τ)

[Qp (u)− τ ] du∫ Fp(τ)

−∞ [τ −Qp (u)] du
. (C.7)

In addition, once a specific distribution is chosen, a more detailed or analytical repre-
sentation is, in general, available. A related representation for the Omega can be derived
from the work of Malo (2005). For instance, we can assume that the portfolio net asset
value, denoted Xt, follows a mean reverting process such as:

dXt = θ (µ−Xt) dt+ σp (Xt) dWt. (C.8)

where θ > 0 measures the speed of mean reversion, µ is the long run mean to which the
process tends to revert, σp (.) is the diffusion function and Wt denotes the Wiener process.

Under the conditions in Malo (2005), the following results hold:

Ep [r|r ≤ τ ] = µ−
σ2
p (τ)

2θ

fp (τ)

Fp (τ)
, (C.9)

and:

Ep [r|r > τ ] = µ+
σ2
p (τ)

2θ

fp (τ)

[1− Fp (τ)]
. (C.10)
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Now focus on the Omega measure, which can be written, following previously reported
equivalences, such as:

Ωp (τ) =
−τ [1− Fp (τ)] + Ep [r|r > τ ] [1− Fp (τ)]

τFp (τ)− Ep [r|r ≤ τ ]Fp (τ)
. (C.11)

Using the results obtained in Equation (C.9) and Equation (C.10), we thus have:

Ωp (τ) =
−τ [1− Fp (τ)] +

{
µ+

[
σ2
p (τ) /2θ

]
× [fp (τ) /1− Fp (τ)]

}
[1− Fp (τ)]

τFp (τ)−
{
µ−

[
σ2
p (τ) /2θ

]
× [fp (τ) /1− Fp (τ)]

}
Fp (τ)

=
(µ− τ) [1− Fp (τ)] +

[
σ2
p (τ) /2θ

]
fp (τ)

(τ − µ)Fp (τ) +
[
σ2
p (τ) /2θ

]
fp (τ)

. (C.12)

The last formula is the generic Omega Quantile Function. Once a specific density is
chosen, following the examples in Malo (2005), explicit/specific Omega Quantile Functions
can be easily recovered (see below Table C.1 for some examples with the most usual
densities used in Finance). For instance, in the case of Gaussian innovations with mean
µ and variance σ2, we have σ2

p (τ) = 2θσ2, thus obtaining:

Ωp (τ) =
(µ− τ) [1− Fp (τ)] + σ2fp (τ)

(τ − µ)Fp (τ) + σ2fp (τ)
. (C.13)

If we further impose µ = 0 and σ2 = 1, we get:

Ωp (τ) =
−τ [1− Fp (τ)] + fp (τ)

τFp (τ) + fp (τ)
. (C.14)

Finally, we can derive a relation between Omega and the Sharpe-Omega ratio (Kazemi
et al., 2004). Now focusing on the expectation of a random variable r, the following
relations hold when considering deviations from a given threshold:

Ep [r − τ ] =

+∞∫
−∞

(r − τ) fp (r) dr

=

τ∫
−∞

(r − τ) fp (r) dr +

+∞∫
τ

(r − τ) fp (r) dr

= Ep [(r − τ) |r ≤ τ ]Fp (r) + Ep [(r − τ) |r > τ ] [1− Fp (r)]

= Ep [(r − τ) |r > τ ] [1− Fp (r)]− Ep [(τ − r) |r ≤ τ ]Fp (r)

= Ep [max (r − τ, 0)]− Ep [max (τ − r, 0)] . (C.15)

Therefore:

Ep [max (r − τ, 0)] = Ep [max (τ − r, 0)] + Ep [r − τ ] , (C.16)

which leads to:
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Ωp (τ) =
Ep [max (τ − r, 0)] + Ep [r − τ ]

Ep [max (τ − r, 0)]

=
Ep [r − τ ]

Ep [max (τ − r, 0)]
+ 1,

= S-Ωp + 1. (C.17)

where S-Ωp is the Sharpe-Omega ratio (Kazemi et al., 2004).
The Omega function can thus be recast into a quantity that can be interpreted in a

way similar to the Sharpe-Omega ratio, with a risk indicator which is a weighted expected
shortfall with respect to a given threshold.

The Sharpe-Omega measure thus shares with Omega similar drawbacks (same ranks
for funds for both measures). Indeed, the riskiest asset will be better ranked by the
Sharpe-Omega ratio for two given assets with different risks and equal expectations on
return deviations from a common threshold.
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Appendix D. Proofs of Proposition 1 and Corollary 1

Proposition 1. Inconsistency of the Omega Ranking
Consider returns on two assets A and B, with non-degenerated densities, with asset A

being preferred to asset B according to the Second-order Stochastic Dominance criterion
(denoted A�SSD B). We define the following quantity:

∆ (τ) =

τ∫
−∞

[FB(r)− FA(r)] dr

+∞∫
−∞

[FB(r)− FA(r)] dr

A necessary condition for having Omega inconsistent with the Second-order Stochastic
Dominance criterion (SSD) is that ∆ (τ) > 1.
Under this condition, Omega is inconsisten with the Second-order Stochastic Dominance
if

ΩB (τ) <
∆ (τ)− 1

∆ (τ)
.

Proof of Proposition 1.
The Second-order Stochastic Dominance of A with respect to B implies that:

τ∫
−∞

[FB(r)− FA(r)] dr ≥ 0, (D.1)

where τ is a given threshold and the equality is strict for at least one value of τ .
We search conditions giving:

ΩB(τ) > ΩA(τ), (D.2)

thus pointing at a preference ordering which is reversed to that obtained by Second-
order Stochastic Dominance.

First, we note that
ΩA(τ) =

+∞∫
τ

[1− FA(r)] dr ×
[

τ∫
−∞

FA (r) dr

]−1

,

ΩB(τ) =
+∞∫
τ

[1− FB(r)] dr ×
[

τ∫
−∞

FB (r) dr

]−1

,

and that both Omega measures are, by definition, positive.
To simplify notations, we redefine the previous ratios as:

Ωp(τ) =
ip(τ)

Ip(τ)
, (D.3)

where ip(τ) =
∫ +∞
τ

[1− Fp(r)] dr and Ip(τ) =
∫ τ
−∞ Fp (r) dr with p = {A,B}.
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Using Equations (D.2) and (D.3), we have:

ΩB(τ)− ΩA(τ) > 0

⇔ iB(τ)

IB(τ)
− iA(τ)

IA(τ)
> 0

⇔ iB(τ)IA(τ)− iA(τ)IB(τ) > 0

⇔ iB(τ)IA(τ)− iA(τ)IB(τ) + iB(τ)IB(τ)− iB(τ)IB(τ) > 0

⇔ iB(τ) [IA(τ)− IB(τ)]− IB(τ) [iA(τ)− iB(τ)] > 0. (D.4)

If we focus on the last term of Equation (D.4), we obtain the following equalities:

iA(τ)− iB(τ) =

+∞∫
τ

[1− FA(r)] dr −
+∞∫
τ

[1− FB(r)] dr

=

+∞∫
τ

{[1− FA(r)]− [1− FB(r)]} dr

=−
+∞∫
τ

[FA(r)− FB(r)] dr. (D.5)

From Equation (D.1), we thus have:

lim
τ→+∞


τ∫

−∞

[FA(r)− FB(r)]

 dr =

+∞∫
−∞

[FA(r)− FB(r)] dr ≤ 0. (D.6)

Equation (D.6) is identical to Equation (D.1) when τ = +∞. When τ = +∞,
however, I+∞

A − I+∞
B = E [B] − E [A].33 Further, we stress that if the Second Order

Stochastic dominance is strict for each value of τ , the quantity in D.6 is negative, being the
opposite of equation D.1 for the threshold τ diverging toward +∞, while if the dominance
is not strict it can be negative, but can also be null.

We can rewrite the indefinite integral as follows:

+∞∫
−∞

[FA(r)− FB(r)] dr =

τ∫
−∞

[FA(r)− FB(r)] dr +

+∞∫
τ

[FA(r)− FB(r)] dr. (D.7)

From this relation, we can write that:

−
+∞∫
τ

[FA(r)− FB(r)] dr =

τ∫
−∞

[FA(r)− FB(r)] dr −
+∞∫
−∞

[FA(r)− FB(r)] dr

= [IA(τ)− IB(τ)]− (E [B]− E [A]) . (D.8)

33The term I+∞
p corresponds to the limit of Ip(τ) when τ tends to infinity, i.e. I+∞

p =

limτ→+∞

[∫ τ
−∞ Fp (r) dr

]
, with p = {A,B}. Moreover

+∞∫
−∞

[FA(r)− FB(r)] dr = E [B]− E [A].
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Substituting Equation (D.8) into Equation (D.4) leads us to the following result:

iB(τ) [IA(τ)− IB(τ)]− IB(τ) [iA(τ)− iB(τ)] > 0

⇔ iB(τ) [IA(τ)− IB(τ)]− IB(τ) {[IA(τ)− IB(τ)]− (E [B]− E [A])} > 0

⇔ [iB(τ)− IB(τ)]× [IA(τ)− IB(τ)] + IB(τ) (E [B]− E [A]) > 0 . (D.9)

Then, taking in mind that the last term in parentheses is negative, we have

[iB(τ)− IB(τ)]× IA(τ)− IB(τ)

E [B]− E [A]
+ IB(τ) < 0 . (D.10)

We redefine the ratio as

∆ (τ) =
IA(τ)− IB(τ)

E [B]− E [A]
. (D.11)

and note that, being a ratio of negative quantities it must be positive. Furthermore,
it is related to the Stochastic Dominance being, by definition, equivalent to

∆ (τ) =
IB(τ)− IA(τ)

E [A]− E [B]
, (D.12)

where the numerator measures the condition for stochastic dominance at the threshold
level τ whether the denominator measures the condition for τ diverging to infinity. Note
that the denominator might be zero when SSD is not strict, leading to a divergence of
∆ (τ) to infinity.

If we assume the Stochastic Dominance is strict for the limiting case, then ∆ (τ) always
exist, and it assumes values on {0} ∪ R+.

Therefore, a condition for having B Omega-preferred to A comes from a relation of
the form

[iB(τ)− IB(τ)]×∆ (τ) + IB(τ) < 0,

⇔ iB(τ)∆ (τ)− IB(τ)∆ (τ) + IB(τ) < 0

⇔ [1−∆ (τ)] IB(τ) + iB(τ)∆ (τ) < 0

⇔ [1−∆ (τ)] +
iB(τ)

IB(τ)
∆ (τ) < 0

⇔ [1−∆ (τ)] + ΩB (τ) ∆ (τ) < 0

⇔ ΩB (τ) <
∆ (τ)− 1

∆ (τ)
. (D.13)

We distinguish between three cases of ∆ (τ)

• ∆ (τ) = 0. In this case ΩB(τ) cannot be greater than ΩA(τ) as, by simplifying
(D.10) we have IB (τ) < 0, which is impossible;

• 0 < ∆ (τ) ≤ 1. This gives from (D.13) that to have B Omega-preferred to A,
we must have ΩB(τ) < 0, which is not possible as the indicator is positive by
construction;

• ∆ (τ) > 1. This is the only case in which the preference ordering is reversed with
respect to that of the Second Order Stochastic dominance, leading to the condition
reported in Proposition 1.
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Note that, when ∆ (τ) diverges to plus infinity, the condition of Proposition 1 converges
to ΩB (τ) < 1.

Corollary 1. Inconsistency of the Omega Ranking under Symmetry of Densities and
Equality of Means

If the two assets of Proposition 1 have returns with a density of the same family, with
identical means EA (r) = EB (r) = µ, but different volatilities such as σA (r) < σB (r),
then, the Second-order Stochastic Dominance criterion implies that the ranking in terms
of Omega of the two assets will be:

1. if τ = µ, A≈Ω B;

2. if τ > µ, A≺Ω B,

3. if τ < µ, A�Ω B;

and thus Omega is inconsistent with the Second-order Stochastic Dominance criterion
(SSD in cases 1 and 2).

Proof of Corollary 1.
We are in the first case of Proposition 1 and the proof is thus straightforward.
However, a more direct relation between thresholds and preference can be now ob-

tained. The proof corresponds to that of Proposition 1 up to Equation (D.4) of the
previous proof. By the SSD properties, the symmetry of FA(r) and FB(r), and the equal-
ities of the means, we have the indefinite integral as:

+∞∫
−∞

[FB(r)− FA(r)] dr =

τ∫
−∞

[FB(r)− FA(r)] dr +

+∞∫
τ

[FB(r)− FA(r)] dr

=0. (D.14)

We can express the second term as:

+∞∫
τ

[FB(r)− FA(r)] dr = −
+∞∫
τ

[1− FB(r)− 1− FA(r)] dr. (D.15)

Thus:
IB(τ)− IA(τ)− [iB(τ)− iA(τ)] = 0

IB(τ)− IA(τ) = iB(τ)− iA(τ), (D.16)

and by replacing Equation (D.16) into Equation (D.13), we have:

iA(τ)[IB(τ)− IA(τ)]− IA(τ)[IB(τ)− IA(τ)] > 0

⇔ [iA(τ)− IA(τ)] [IB(τ)− IA(τ)] > 0. (D.17)

The second term in Equation (D.17) derives from the SSD, and the symmetry of the
density and the equality of the means, leads us to write:

[IB(τ)− IA(τ)] > 0, (D.18)
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with:
lim

τ→+∞
[IB(τ)− IA(τ)] = 0. (D.19)

For the first term in Equation (D.17), i.e. iA(τ)− IA(τ), we have by symmetry:

τ∫
−∞

FA(r)dr =
+∞∫
τ

[1− FA(r)] dr, if τ = µ,

and
τ∫
−∞

FA(r)dr <
+∞∫
τ

[1− FA(r)] dr, if τ < µ.

(D.20)

In conclusion, when we consider two symmetric distributions and equal mean returns,
ΩA(τ) > ΩB(τ) is true if and only if τ < µ.

The result is coherent with Proposition 1, as under the condition of the Corollary,
∆ (τ) diverges to plus infinity, and to obtain that B is preferred to A on the basis on an
Omega criterion, we need the threshold τ to be above the mean µ. �
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