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Abstract

Webly-supervised learning has recently emerged as an alternative paradigm to traditional supervised learning based on large-scale
datasets with manual annotations. The key idea is that models such as CNNs can be learned from the noisy visual data available on
the web. In this work we aim to exploit web data for video understanding tasks such as action recognition and detection. One of the
main problems in webly-supervised learning is cleaning the noisy labeled data from the web. The state-of-the-art paradigm relies
on training a first classifier on noisy data that is then used to clean the remaining dataset. Our key insight is that this procedure
biases the second classifier towards samples that the first one understands. Here we train two independent CNNs, a RGB network
on web images and video frames and a second network using temporal information from optical flow. We show that training the
networks independently is vastly superior to selecting the frames for the flow classifier by using our RGB network. Moreover, we
show benefits in enriching the training set with di↵erent data sources from heterogeneous public web databases. We demonstrate
that our framework outperforms all other webly-supervised methods on two public benchmarks, UCF-101 and Thumos’14.
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1. Introduction

In recent years, deep learning has fueled a significant progress
in several computer vision tasks. One of the main reasons be-
hind such achievements is the development of large-scale datasets
with annotations [1, 2, 3, 4], which enable training of deep neu-
ral networks with millions of parameters without over-fitting.
This has led deep learning based models to approach human
level performance on various visual data classification and recog-
nition tasks [2]. However, data annotation has intrinsic limita-
tions – both in terms of time and cost. This is even more crit-
ical for video data, since annotating action labels and defining
temporal bounds for thousands of videos is particularly tedious
and time consuming, which makes it a non-scalable solution.
Moreover, this manual annotation process often introduces a
bias towards very specific tasks and domains [5, 6].

To overcome these limitations, the webly-supervised paradigm
has emerged as an appealing alternative which aims at learning
features and training models by solely relying on noisy web
data [7, 8, 9, 10, 11]. The clear advantage is that the amount
of data obtainable from the Internet is huge and continuously
growing, and vastly exceeds what is achievable through man-
ual annotation. Notably, webly-supervised approaches already
perform competitively to the state-of-the-art for certain visual
recognition tasks, such as image classification and object de-
tection. For example, in their recent paper Chen and Gupta
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Figure 1: Web images and videos collected from heterogeneous web sources
are characterized by di↵erent appearance and noise. In this work we present a
fully webly-supervised approach for recognizing and localizing a large number
of action categories in trimmed and un-trimmed videos.

[12] show that a CNN trained only with web images gives com-
parable performance to the ImageNet [1] pre-trained network
architecture for object detection, without using a single manu-
ally annotated label. Similarly, Joulin et al. [11] show that it is
possible to train CNNs on massive weakly-labeled image col-
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lections – such as the 100 million Flickr images dataset [13] –
for learning good visual representations.

Inspired by this line of work, we propose a CNN-based,
webly-supervised method for the task of human action recog-
nition from real world videos, where the visual data is entirely
collected from the web. This task has only recently started to
be addressed in literature [14, 15, 16] and poses several chal-
lenges. First, the labels obtained through web search queries
are often noisy and do not represent the content – in terms of
actions – of the retrieved video. Hence, a proper filtering has
to be adopted to remove outliers from the samples that will be
used as training set. Second, a key challenge is represented
by untrimmed videos. Conversely to their trimmed counterpart,
which contain one single action for their whole length, these
videos also include several background frames, i.e. without any
human activity. Often, such videos are long and might contain
multiple actions, belonging to either the same or even di↵erent
classes. To overcome such challenges, a common strategy is
to train an initial set of classifiers from a particular source (e.g.
images) and use the classifier scores to filter out noise and rep-
resent the other source (e.g. videos) [17, 18, 19, 15]. A good
example of this approach is the recent work of Gan et al. [15] in
which video concepts are discovered using two separate classi-
fiers. The first one is trained on noisy data obtained from a
specific web source (i.e. YouTube videos), then it is used to
clean the samples used to train the second classifier (trained on
Google images).

Our approach stems from the key insight that this proce-
dure biases the second classifier towards samples that the first
one understands well, since it subjectively limits the variability
of the training set. The proposed idea is thus to train two inde-
pendent classifiers – in particular, two CNNs – one specialized
on web images and video frames, the other one encompassing
temporal information obtained from optical flow computed on
subsequent video frames. We demonstrate that the use of two
independent networks can yield significant benefits in terms
of classification accuracy, rather than having the image-based
classifier selecting the frames for the optical flow-based classi-
fier. In addition, we also improve the generalization ability of
the networks, since most action images retrieved with Google
Image Search are usually background free with the human in
the center. The idea is thus to enrich the training set with dif-
ferent heterogeneous web data sources. To this end, we include
images from Flickr, as well as frames collected from real world
videos available on Youtube, the latter being particularly use-
ful also to reduce the semantic gap between the actions being
sought and the images downloaded from the web.

The proposed approach is tested on two publicly available
datasets, namely UCF-101 [20] and Thumos’14 [21], demon-
strating state-of-the-art results with respect to other webly su-
pervised approaches, as well as a performance comparable to
several recent approaches trained with clean, manually anno-
tated datasets.

2. Related work

There is a long history of research in video event detection
and action recognition. Thorough related surveys are given in
[22, 23, 24].

Video Recognition and Action Understanding. Early work fo-
cused on defining hand-crafted features for video analysis such
as 3D Histogram of Oriented Gradients (with the third dimen-
sion being time) and spatio-temporal features based on optical-
flow [25, 26, 27]. State-of-the-art hand-crafted features, i.e. the
dense trajectories of Wang et al. [28], achieved excellent results
on multiple action recognition benchmarks [29, 30]. However,
handcrafting features requires a rich domain knowledge. In
real-world videos, the construction of such features may vary
consistently among di↵erent domains, and hence application
specific features might be required [31, 32].

Following the success of deep learning architectures in im-
age classification [33, 2], there have been attempts to extend this
paradigm to videos as well. To this end, [34] proposes a tech-
nique to extend CNNs for video analysis, where features are
learned from both, spatial and temporal dimensions by using
3D convolutions. Karpathy et al. [35] and Tran et al. [36] learn
spatio-temporal filters and employed di↵erent pooling schemes
across the temporal axis to address time. Simonyan and Zis-
serman [37] propose a two-stream convolutional network for
action recognition in which they learn separate CNNs for dif-
ferent input sources. First, they train a model on RGB video
frames for spatial features, and then they use optical flows be-
tween video frames to incorporate motion information. Tem-
poral segment networks have been recently proposed to over-
come the limitation of these two-stream CNNs in modeling
long-range temporal structure [38]. Duta et al. [39] investi-
gate fusion schemes of di↵erent features for action recognition.
However, the common setup is to rely on a large dataset anno-
tated by human experts in a fully supervised setting.

Learning from Web supervision. Previous work for learning vi-
sual knowledge from the web typically focuses on images and
addresses tasks such as image classification and object detec-
tion [7, 8, 9, 40]. Recently, some works have also proposed
to learn CNNs [11, 12] and visual concepts [10, 41, 42] from
noisy web data. This is also closely related to the vast literature
on image and video tagging [43, 44, 45]. Inspired by this line
of work, we focus on the specific problem of action recognition
in large-scale video data.

There have been few attempts to tackle video understand-
ing tasks using a webly-supervised approach. In their seminal
work, Ikizler et al. [17] present a model for action recognition
in videos using web data. After collecting images from the web,
a person detector is used to filter out noisy images, then a linear
classifier is learned on the resulting features and applied to the
test videos. Similarly, in [18, 19] a set of concept detectors is
discovered from the web using Google or Flickr images. After
this preliminary learning step, these concept models are applied
to the videos to generate video-level representations, which can
be used in a fully supervised setting for event detection. In [46]
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Figure 2: Overview of the proposed model.

Ma et al. show that adding web images to supervised training
sets can improve performance of the resulting classifiers. More
closely related to our work is the recent “Lead-Exceed” Neu-
ral Network presented in [16], where a CNN network trained
on web videos is refined using images collected from the web
in a curriculum learning manner. Similarly, [14] uses a do-
main transfer scheme between images and videos to filter out
the noise in the other domain, and obtain so-called Localized
Actions Frames (LAFs). An LSTM over LAFs is then applied
for fine-grained action recognition and localization. The local-
ization problem is also tackled in [47], where they present a
weakly-supervised model to perform spatio-temporal localiza-
tion in videos. However, in these approaches the proposed pro-
cedure biases the recognition process towards samples that are
recognized in the first domain or modality.

3. Proposed Approach

In this work we exploit web images and videos for action
recognition and localization in a fully webly-supervised fash-
ion. Figure 2 shows our model structure. An important obser-
vation is that di↵erent data sources provide varied types of data
and labels. For example, images retrieved from Google image
search are usually clean. Clean in this case means that usually
the object or action of interest is in the center of the image,
no other object is present and the background is white or very
simple. This di↵ers greatly from the way the actions/objects ap-
pear in the wild, where there is clutter, defocus, complex back-
grounds, etc. Web videos usually are closer to the real data
since it is much more work to create a clean video. Thus the
RGB frames from web videos usually depict the actions in real
scenarios, which closes the semantic gap and provides training
data closer to the test sequences. Compared to Google, images
from web sources like Flickr are more natural, in the sense that
the object is usually depicted in the wild. This discrepancy be-
tween di↵erent sources produces an e↵ect that we dub as the
source bias. Another biasing factor arises when using a super-
vised classifier to filter outliers to determine a training set for
a successive classifier (like in [17, 18, 19, 15]). In this case,
the bias is introduced by the fact that the “inliers” determined

by the first classifier will be only samples that were well under-
stood by the first classifier. We refer to this problem as filter
bias.

We propose a methodology that avoids both biasing factors,
respectively by employing the following strategies:

• Source Bias: mix data from di↵erent web sources to
reduce the source bias introduced by prevailing image
structures typical for a single data provider.

• Filter Bias: avoid using a supervised procedure to filter
outliers so not to introduce bias through a specific train-
ing set.

Our action recognition pipeline consists of two main com-
ponents: i) data collection and filtering (Section 3.1 and 3.2).
ii) training a two-stream CNN architecture, one stream based
on RGB data and the other based on optical flow, similar to
[37] (Sections 3.3 and 3.4).

We summarize the proposed pipeline in four steps: i) down-
load a set of web images I and a set of web videosV for each
action label; ii) filter I and V to obtain Î and V̂; iii) train a
network on RGB frames from the filtered sets Î and V̂; iv)
train a network on stacks of optical flow maps from the set V̂.
We detail the individual steps of our pipeline in the following
subsections.

3.1. Data Collection
Google search often returns images in which the human ac-

tor is located in the image center in front of a uniform back-
ground. Training with this data can lead the model to under-
perform in cluttered scenes. To resolve this, we add real world
images chosen from Flickr, which are more diverse in terms
of actor position and background scene. Relevantly, Flickr has
been used for many benchmark datasets like Pascal VOC [48].
Additionally, web searches for some classes return results which
do not represent an action in the wild. There is a so called se-
mantic gap [49, 43] in how the action appears in real world
videos and how they are depicted in web images. This seman-
tic gap can be reduced by using RGB frames from web videos
which we collect from YouTube. As in the case of image data,
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YouTube is queried with the action names. Finally, since web
videos are often rather long and the action can appear in any
part of the sequence, we add action videos as animated GIF
files by querying Google search by activating the “animation
result only” filter, as well as Giphy1, an online GIF database to
download GIF files for the action. Due to poor compression in-
herent in the file format, GIFs are usually very short, this in turn
increasing the probability that the majority of a sequence will
represent the desired action. Please not that even GIFs need to
be filtered, since although the chance is high that they display a
well trimmed action, it can still be the wrong one.

Similar to Gan et al. [16], we perform small changes to the
category labels for querying the web. For example for the la-
bel nun chucks, the search term is modified to doing nun
chucks to avoid retrieving pictures and videos of the object in-
stead of the corresponding action.

3.2. Filtering
The images collected from the web contain outliers that do

not belong to the query, such as di↵erent action classes, anima-
tions, or just text. To minimize the influence of these samples
it is necessary to filter the retrieved images before training a
classifier. To portray an example, Figure 3 shows the image
search results given the query doing archery from Google
image search. Clearly, the images highlighted in the red box
are outliers since they do not depict any human action, and will
confuse the model being learned if included in the training set.

As previously mentioned, we aim at filtering the image set
in a way that prevents the aforementioned filter bias. Filter bias
can formally described as a set C ⇢ X of correctly labeled sam-
ples being corrupted by outliers O ⇢ X. We are given the super-
set S = C[O and need to find a filter function f : X! {�1, 1}
that classifies elements ofC as positive and detects outliers from
O as negative such that the selected set Ĉ = {x| f (x) = 1, x 2 S}
equals the clean samples Ĉ = C. Hence, filter bias occurs when
f selects a strict subset of Ĉ ⇢ S which changes the distribution
of samples and thus biases any classifier trained on it.

A common strategy deployed by state-of-the-art webly su-
pervised approaches for action recognition [17, 14, 16] is to
train a classifier that is then used to filter out noise on the re-
maining set. We will hereinafter refer to this paradigm as su-
pervised filtering. As we will show in the experimental section,
such supervised filtering approaches easily lead to filter bias, as
they tend to filter out di�cult but correct samples, thus biasing
the resulting set Ĉ to contain many simple examples and only
few di�cult ones.

Hence, we suggest to use an approach for filtering web data
outliers that does not rely on a training set. We refer to this
filtering paradigm as independent filtering. Specifically, we
rely on a filtering algorithm based on random walk similarly
to [50, 47]. To this end, we define a fully connected graph
Z(N, E), where N is the set of all n images and E represents
the set of edges between them. We map an image Ni to a fea-
ture vector using �(Ni). The Euclidean distance in feature space

1http://giphy.com/

Figure 3: Query: doing archery (from images.google.com). We highlight
all the frames that we do not expect to encounter in a video depicting a human
doing archery with a red border.

Figure 4: Images of action archery after applying random walk filtering. Left:

image subset obtained by removing the noisy images. Right: images filtered
out by random walk.

of a pair of nodes �(Ni) and �(Nj) is a measure of similarity. A
small distance implies similar images. The transition probabil-
ity between any two nodes Ni and Nj is given by:

pi, j =
e��k�(Ni)��(N j)k2

Pn
m=1 e��k�(Ni)��(Nm)k2

(1)

We will compute the relevance rk(Nj) of image Nj iteratively
over iterations k. Let v j =

1
n be the initial probabilistic score.

The update rule can then be written as:

rk( j) = �
nX

i

rk�1(i)pi, j + (1 � �)v j (2)

where � controls the contribution of both terms to the final
score. In all our experiments we set � = 0.99 and � = 0.01.
The filtered image set for the archery action are shown in Fig-
ure 4. Most images which do not contain any human action
such as target boards, arrow set, clip-art images are sorted out.

3.3. RGB Network
As for the RGB network, four di↵erent models were trained

on color frames to evaluate the contribution provided by di↵er-
ent web sources:

• Web images: trained with only web images collected
from Google and Flickr. After filtering with random walk,
the best 450 images are selected for training.
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• Web videos: per class, we sample 50 videos from YouTube
to obtain 1500 frames. After random walk, the 500 high-
est ranked frames were chosen for the training set.

• Web images + videos: the training set includes 400 web
images, 500 frames from videos and 100 additionally
frames from animated GIFs, for a total of 1000 training
samples per class. We train two variants: one’s training
set is filtered by random walk, the other’s by the network
trained only on web images.

For all networks, the images are randomly separated into a train-
ing (80%) and a validation set (20%). The network, a 50-
layer ResNet [51], is trained using Ca↵e [52] with pre-trained
weights from ImageNet [1]. Stochastic Gradient Descent (SGD)
with a batch-size of 10 and a learning rate of 10�5 (decreased 10
times after every 100k iterations) is used. After 200k iterations
the optimization converges.

3.4. Optical Flow Network
Motion is an important cue for the identification of actions.

When the models are trained only with still RGB images, the
lack of temporal information a↵ects performance. In this sec-
tion, the focus is on adding temporal motion information to the
model. We train a CNN using optical flow images as input to
predict the action class. Optical flow between pairs of consecu-
tive video frames represents a short motion. To capture longer
temporal dependencies, the optical flow images are stacked for
a sequence of frames. Such inputs implicitly describe the mo-
tion in a sequence, which makes recognition easier.

Similar to RGB images, the input for the network in case
of optical flow is also in the form of a volume. The flow im-
ages are split into horizontal (x) and vertical (y) displacements.
These displacements are stacked one after another as multiple
channels, with the goal of modeling longer temporal dependen-
cies. For frames of size w⇥ h, the input volume for the network
will be w ⇥ h ⇥ 2D. D represents the number of stacked optical
flow frames.

For the flow classification model, the feature map of the first
convolutional layer has size 64 ⇥ 3 ⇥ 7 ⇥ 7 since it was trained
on 3-channel RGB images. The mean of the weights across the
3 channels can be replicated 2D times to match the new input
dimensions. The resulting first layer will thus have a size of
64⇥2D⇥7⇥7. The weights of all remaining layers are kept the
same for initialization to train a Resnet-50 model [51]. Again,
SGD is used as a solver with batch size of 10. The training is
performed over 60 epochs and the initial learning rate is set to
10�3 which is reduced by a factor of 10 after every 20 epochs.
The optical flow between two consecutive frames is computed
using Brox’s method [53].

Each frame sequence is run separately through the RGB and
the flow network to obtain video level probabilities. To get a
final score, the probabilities from the two networks are com-
bined by two di↵erent schemes, namely fusion-by-averaging
and fusion-by-product. In the first case, we compute the element-
wise average of the two probability vectors from the RGB and
the flow CNN. In the second case, instead, we compute the

element-wise product of the two probability vectors from the
two networks. The class that corresponds to the entry with max-
imal probability forms the final prediction.

3.5. Action Understanding Tasks
A major benefit of the proposed pipeline is that the trained

networks can be used for three di↵erent action understanding
tasks. We show how the networks, trained on the same set
of action labels, can be used for trimmed action classification,
untrimmed action classification and action localization. To the
best of our knowledge, this is the first work that employs the
same fully webly-supervised method for all three tasks.

Action classification in trimmed videos is arguably the eas-
iest of the three tasks, since at test time the algorithm is given
a short video that fully contains a single action to be classified.
Since the same action covers the whole clip, there is no pres-
ence of background actions which might confuse the network.
To compute a label for each video, the probability vectors cor-
responding to each frame, obtained by forward pass through
the trained CNNs, are averaged along the temporal axis to get
the final score for the video. Di↵erently, action classification
in untrimmed videos includes the additional challenge that the
video is not cut around the action. Videos are typically longer
and the action to be recognized spans only a short portion of
the whole clip. In addition, the action to be recognized could
be present in one or multiple instances. Although the system
is trained only on actions, it needs to be robust to long back-
ground sequences in between actions. Here, we also average all
frame-wise probability scores temporally to yield the score for
each video.

Finally, untrimmed action localization is the task where, in
addition to the action label, temporal action boundaries defin-
ing the start and end moments of the action in the video have to
be estimated. This problem is particularly challenging since the
background frames often bear some resemblance to the action.
For instance, most videos with activity labels such as ”diving”,
”breast stroke”, ”front crawl” are all similar to each other, as
they contain a swimming pool. We employ two di↵erent tech-
niques to perform the temporal localization of actions. As for
the first one, referred to as frame-by-frame localization scheme,
the global level prediction for the whole video is first obtained
from the network. Then, the action is localized on a frame-
by-frame basis. Specifically, all video frames conforming to
the global prediction above a certain probability threshold are
grouped together along the temporal axis. Such sequences that
are longer than 0.1 seconds count as positive localizations. The
second localization scheme, denoted as sliding window, uses
a small sub-window of the full video and tries to localize the
action therein. Di↵erently to frame-by-frame localization, no
global level predictions or thresholds are taken into account. If
an action is predicted in the sub-window by averaging its single
predictions, the whole window’s temporal bound is reported.

4. Results

We benchmark our framework on two publicly available
large-scale datasets, UCF-101 [20] and Thumos’14 [21], and
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compare to the state of the art.

4.1. Datasets and Metrics
UCF-101 [20] is a large-scale dataset consisting of 13,320

trimmed videos from 101 action classes. We test our webly-
supervised model on the provided three test splits consisting
of 3783, 3734 and 3696 video respectively. The metric used to
measure performance is classification accuracy (Acc.) averaged
across the three test splits.

Thumos’14 [21] is a large scale dataset consisting of only
untrimmed videos from the same 101 action classes as of UCF-
101. An untrimmed video may contain one or multiple in-
stances of same or di↵erent actions within its temporal bounds.
This dataset presents two tasks: (1) action recognition in video,
as well as (2) localizing the action temporally among the videos.
The test set consists of 1574 videos from 101 action classes, but
the localization task is only applicable for 20 selected classes.
The metric used for evaluation as per o�cial Thumos’14 proto-
col is mean Average Precision (mAP).

4.2. Analysis of Filtering Method
In this section we compare the random walks filtering tech-

nique to the E-LDA [54] based filtering of [12]. To be able to
use ground truth for this task, we use images from the PASCAL
VOC 2012 dataset, which in turn was created from web (flickr)
images. For all our experiments we take all images of one of
the 20 classes and subsequently add more and more ’noisy sam-
ples’ in the form of images from the other classes. We then run
E-LDA and RW filtering on the corrupted dataset and can pre-
cisely measure how well the outliers are removed by the filter-
ing procedure. The experiment is repeated and averaged over
19 classes2. To the original image we add 1%, 2%, 3%, 4%,
5%, 10%, 15% and 20% noise samples and then filter with the
same thresholds in all noise levels. As expected the best per-
formance in achieved when the noise level matches the filtering
amount. When more is filtered than actual noise, naturally the
recall decreases while precision stays maximal.

The results can be found in Figure 5. The Figure clearly
shows that RW filtering achieves a better performance than E-
LDA at all noise levels. Furthermore, it is noteworthy that
RW-filtering with up to 15% noise always reaches 100% pre-
cision with over 90% recall. This ensures that no false positives
are left in the data and the network can be trained with only
clean images. It is also interesting to note, that, especially for
higher noise levels, the recall first drops and then the precision
increases. This indicates that there are some outliers that are
di�cult to detect for both filtering techniques and are only re-
moved by RW with a higher threshold. E-LDA is not able to
identify the outliers especially with noise greater than 5%.

4.3. Evaluation of Bias Removal
We will analyze the e↵ects of the two di↵erent types of bi-

ases on our model. Firstly, we analyze the e↵ects of source

2Class person was excluded due to the much larger amount of images which
would take more than one week for the noise analysis for E-LDA.

Figure 5: Analysis of filtering methods on the UCF-101 dataset. a) shows
precision-recall curves filtering results for the Random Walk based method
while b) depicts the results for E-LDA. In all noise levels RW filtering performs
better than E-LDA.

Network trained on Accuracy %

web video frames 52.40
web images 62.44
video frames + images 65.60

Table 1: Source Bias experiment: performance on the UCF-101 dataset of dif-
ferent networks trained on RGB data only.

bias on UCF-101. Table 1 shows the benchmark results of
training three networks. All training sets are filtered by ran-
dom walk. When using web video frames only, we achieve the
lowest performance since web videos are untrimmed and the
desired action frames are often surrounded by large number of
background frames leading to di�culties in removing outliers.
On the other hand, using web images alone, we gain 10% ac-
curacy since there are usually less outliers in the search results.
Finally, by combining the data of the two sources we achieve
the best performance. This result clearly shows that combining
di↵erent data sources improves the generalization ability of the
trained classifier, as the source bias decreases.

In a second experiment, we investigate the e↵ects of filter
bias. In Table 2 we compare the recognition accuracy for opti-
cal flow maps by comparing two filtering methods. We select
RGB frames from the videos, compute its optical flow map and
add it to the training set. We show two methods for RGB frame
selection. One is by using the independent Random Walk fil-
tering, the other uses RGB network from the previous experi-
ments to select frames with high confidence. In the results one
can clearly observe the degraded performance induced by filter-
ing with the classifier. This is caused by two factors: the RGB
network works well for video frames of actions that can be clas-
sified easily by a single frame. This is not necessarily true for
optical flow maps. In fact, the whole idea behind using flow
additionally to the images was to create two complementary
classifiers. Pre-selecting the training data with the RGB net-
work defeats this purpose. Secondly, for some classes the RGB
network is almost never confident enough to generate su�cient
training data for the flow network.

To show that the filter bias is not specific to trimmed video
flow classification only, we show an additional experiment, this
time evaluating on the untrimmed Thumos’14 dataset using an
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Input Filter Accuracy %

Flow only RGB net 15.46
Flow only Random Walk 50.67

Table 2: Filter Bias experiment: optical flow classification performance by fil-
tering the training set with random walk and the RGB frame classifier on UCF-
101 (split 1).

Training Set Filter mAP %

web images + videos filtered videos 58.11
web images + videos Random Walk 60.89

Table 3: Untrimmed video classification results on Thumos’14 dataset.

RGB network. Here we train on web images and video frames
jointly but we compare two methods of selecting frames from
the video. One is by using the RGB image network to identify
confident frames, the other performs a random walk on images
and video frames jointly. Again, we observe degraded perfor-
mance due to filter bias.

4.4. Evaluation of Fusion Schemes
In addition, we analyze the performance of the introduced

fusion schemes, i. e. fusion-by-average and fusion-by-product,
and the influence of the number of stacked flow maps D input
into the flow network in Table 4.

We show that in the end combining all three networks -
both flow and the RGB one - yields the best results. Com-
bining both flow networks is beneficial since short (D = 1)
and longer (D = 10) temporal dependencies can be captured.
When adding the RGB network, product fusion between di↵er-
ent modalities seems to emphasize their synergies. The overall
impact of adding temporal information improves the recogni-
tion accuracy for 88 out of the 101 classes of UCF-101.

In the past two subsections we have analyzed the influence
of bias and shown that independent filtering is superior to fil-
tering by classifying. Additionally, we analyzed performance
under di↵erent forms of fusion and the hyper parameter D. In
the following, we will compare our approach to the state of the
art.

4.5. Action Classification of Trimmed and Untrimmed Videos
We compare our approach to state-of-the-art methods that

use training data (Table 5) as well as those being purely webly-
supervised (Table 6). Relevantly, without using even a single
humanly annotated training sample, our approach performs bet-
ter than [35, 55] who use annotations for training. In compari-
son to webly-supervised approaches, our CNN approach works
slightly better than Lead-Exceed network without LSTM [16].

For the case of action recognition in un-trimmed video on
Thumos’14, to the best of our knowledge, we do not have a di-
rect comparison in webly-supervised methods doing un-trimmed
recognition. Table 7 shows a comparison of our approach against
the methods, both trained on the annotated dataset from the
Thumos’14 challenge.

Input Fusion Accuracy %

Flow D=1 - 50.61
Flow D=10 - 51.52
Flow (D=1) + (D=10) average 52.62
RGB + Flow D=1 average 71.24
RGB + Flow D=1 product 72.75
RGB + Flow (D=1) + (D=10) product 74.7

Table 4: Analyzing the influence of the number of stacked flow maps D and the
two fusion methods on UCF-101.

Method Accuracy %

Karpathy et al. [35] 65.4
LRCN [55] 71.1
LSTM composite model [56] 75.8
C3D [36] 82.3
Two-stream network [37] 88.0
ST-VLMPF [39] 93.6

RGB+Flow (ours) 74.7

Table 5: Comparison with state-of-the-art methods that use labeled UCF-101
dataset for training.

4.6. Action Localization Results
As previously described, the aim of the action localization

task is to recognize and localize an action temporally in a given
untrimmed video, i.e. the output is represented by a real-valued
score indicating the confidence of the prediction, together with
the starting and ending frame for the given action. We report ex-
periments for both introduced localization schemes, i.e. Frame-
by-frame and Sliding window. For this latter, results for di↵er-
ent window sizes are reported.

It can be seen that the frame-by-frame method of prediction
works better than the sliding window approach in these experi-
ments. This may be due to over-estimating the temporal bounds
with sliding window which causes the intersection over union
score to deteriorate. The shorter actions are detected better in
a frame-by-frame manner. The proposed method works better
than the webly state-of-the-art for smaller overlap ratios. This
can be due to detecting only the highlights, e.g. actions present
in web images, but not the full activity from beginning to end.
In comparison to the state-of-the-art methods that use the manu-
ally annotated data for training, the webly supervised approach
still lags behind in performance.

4.7. Qualitative Analysis
In general, as can be seen in Figure 7, actions that are re-

lated to a characteristic scenario or that involve a specific ob-
ject tend to be accurately recognized, as they can directly be
identified from individual RGB frames, which are abundantly
available on the web to learn from. As an example, actions like
billiards, bowling and actions associated to playing a musi-
cal instrument are all identified correctly with almost 100% ac-
curacy by means of RGB nets only. Recognition becomes more
di�cult with actions which have intricate motion, for which
optical flow helps (e.g., the knitting action Figure 6b). How-
ever some actions, especially those which involve body move-

7



Method Accuracy %

Gan et al. [15] 69.3
Lead-Exceed (w/o LSTM) [16] 74.4
RGB+Flow (ours) 74.7

Table 6: Comparison with webly-supervised state-of-the-art methods tested on
UCF-101.

Method mAP %

Jain et al. [57] 69.3

INRIA Lear [58] 64.4
ours 60.8

Table 7: Comparison of Thumos’14 results against the state of the art.

ments only, are very di�cult for the model to recognize. For
instance, Jumping Jacks, Jump Rope and Lunges (0% re-
call rate) have a limited number of real world images to be
trained on, and, as said before, images from Google su↵er from
source bias. In these cases, optical flow also does not help much
due to lack of descriptive samples in the training set, often be-
ing confused by similar classes characterized by similar body
movements. For instance Lunges is often confused with Body
weight squats and Jump Rope (all characterized by similar
up-and-down movements).

5. Conclusion

Webly-supervised methods open a new direction to extend
video analysis tasks to a larger scale and at a lower cost com-
pared to current systems. Our experiments on two large-scale
datasets demonstrate that data collected from the web is e↵ec-
tive in training powerful models for human activity recognition
in videos. Our method is even comparable to some existing ap-
proaches that rely on manually-labeled supervised training sets.
Additionally, we improve over the state of the art for webly-
supervised methods. We identify two biases: source bias and
filter bias, that can occur in webly trained models at di↵erent
stages of the pipeline, and show how they can be e↵ectively
reduced. The results further encourage the research into the di-
rection of webly-supervised methods, as it holds the potential to
save both time and money associated with data annotation. As
analyzed in details at the end of our experimental section, future
research work should be targeted at improving webly recogni-
tion for actions with limited real world training data and charac-
terized by similar body movements. Further, we believe that the
localization task can be improved with typical action proposal
methods, however the networks need to be trained to recognize
background classes to discard proposals e↵ectively.
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