Maximal subgroups of finite groups avoiding the elements of a generating set
MAXIMAL SUBGROUPS OF FINITE GROUPS
AVOIDING THE ELEMENTS OF A GENERATING SET

ANDREA LUCCHINI AND PABLO SPIGA

Abstract. We give an elementary proof of the following remark: if \(G \) is a finite group and \(\{g_1, \ldots, g_d\} \) is a generating set of \(G \) of smallest cardinality, then there exists a maximal subgroup \(M \) of \(G \) such that \(M \cap \{g_1, \ldots, g_d\} = \emptyset \). This result leads us to investigate the freedom that one has in the choice of the maximal subgroup \(M \) of \(G \). We obtain information in this direction in the case when \(G \) is soluble, describing for example the structure of \(G \) when there is a unique choice for \(M \). When \(G \) is a primitive permutation group one can ask whether it is possible to choose in the role of \(M \) a point-stabilizer. We give a positive answer when \(G \) is a 3-generated primitive permutation group but we leave open the following question: does there exist a (soluble) primitive permutation group \(G = \langle g_1, \ldots, g_d \rangle \) with \(d(G) = d > 3 \) and with \(\bigcap_{1 \leq i \leq d} \supp(g_i) = \emptyset \)? We obtain a weaker result in this direction: if \(G = \langle g_1, \ldots, g_d \rangle \) with \(d(G) = d \), then \(\supp(g_i) \cap \supp(g_j) \neq \emptyset \) for all \(i, j \in \{1, \ldots, d\} \).

1. Introduction

We start with a short and elementary proof of the following result:

Theorem 1.1. Let \(G \) be a finitely generated group and let \(d = d(G) \) be the smallest cardinality of a generating set of \(G \). If \(G = \langle g_1, \ldots, g_d \rangle \), then there exists a maximal subgroup \(M \) of \(G \) such that \(M \cap \{g_1, \ldots, g_d\} = \emptyset \).

Proof. If \(G \) is cyclic, that is, \(d \leq 1 \), the statement is clear. When \(d > 1 \), consider \(H = \langle g_1g_2, g_2g_3, \ldots, g_{d-1}g_d \rangle \). Since \(d(H) \leq d - 1 < d = d(G) \), we have \(H \neq G \). Let \(S \) be the family of the proper subgroups of \(G \) containing \(H \), and observe that \(S \) ordered by “set inclusion” is a non-empty partially ordered set. Let \(C \) be a non-empty chain in \(S \) and set \(K = \bigcup_{C \in C} C \). Clearly, \(K \) is a subgroup of \(G \) containing \(H \). Moreover, as \(G \) is finitely generated, it is easy to see that \(K \neq G \), that is, \(K \in S \). Thus every non-empty chain in \(S \) has a maximal element. By Zorn’s lemma, \(S \) has a maximal element \(M \) and, by construction, \(M \) is a maximal subgroup of \(G \) containing \(H \).

If \(g_i \in M \) and \(i \neq d \), then \(g_{i+1} = g_i^{-1}(g_ig_{i+1}) \in M \). Similarly, if \(g_i \in M \) and \(i \neq 1 \), then \(g_{i-1} = (g_{i-1}g_i)g_i^{-1} \in M \). Thus \(M \cap \{g_1, \ldots, g_d\} \neq \emptyset \) implies \(G = \langle g_1, \ldots, g_d \rangle \leq M \), a contradiction. \(\square \)

Theorem 1.1 does not remain true if we drop the assumption \(d = d(G) \). For example, let \(G = \mathbb{F}_2^d \), the additive group of a vector space of dimension \(d \geq 2 \) over the field \(\mathbb{F}_2 \) with 2 elements and let

\[
g_1 = (1, 0, \ldots, 0), \ g_2 = (0, 1, \ldots, 0), \ldots, g_d = (0, \ldots, 0, 1), \ g_{d+1} = (1, 1, 0, \ldots, 0).
\]

1991 Mathematics Subject Classification. primary 20E28; secondary 20B15, 20F05.

Key words and phrases. group generation; maximal subgroups; permutation groups; primitive groups.

1
Let $M = \{(x_1, \ldots, x_d) \in \mathbb{F}_2^d \mid a_1 x_1 + \cdots + a_d x_d = 0\}$ be a maximal subgroup of G. If $i \in \{1, \ldots, d\}$, then $g_i \in M$ only when $a_i = 0$. Therefore

$$\overline{M} = \{(x_1, \ldots, x_d) \in \mathbb{F}_2^d \mid x_1 + \cdots + x_d = 0\}$$

is the unique maximal subgroup of G with $g_i \notin \overline{M}$ for every $i \in \{1, \ldots, d\}$. However $g_{d+1} \in \overline{M}$, hence every maximal subgroup of G contains at least one of the $d + 1$ elements g_1, \ldots, g_{d+1}.

One might wonder, if minded so, whether the Frattini subgroup $\text{Frat}(G)$ may play a role in trying to strengthen Theorem 1.1. However, we cannot weaken the assumption “$G = \langle g_1, \ldots, g_d \rangle$" requiring only that “$g_i \notin \text{Frat}(G)$ for every $i \in \{1, \ldots, d\}$"; take for example $g_1 = (1,0,0)$, $g_2 = (0,1,0)$ and $g_3 = (1,1,0)$ in the additive group $G = \mathbb{F}_3^2$.

Moreover, it is not sufficient to assume that $\{g_1, \ldots, g_d\}$ is a minimal generating set of G (i.e. no proper subset of $\{g_1, \ldots, g_d\}$ generates G): for example, if $G = \langle x \rangle$ is a cyclic group of order 6, then $\{x^2, x^3\}$ is a minimal generating set of G, and $\langle x^2 \rangle$ and $\langle x^3 \rangle$ are the unique maximal subgroups of G.

The proof of Theorem 1.1 is extremely easy, but it does not give any insight on the freedom that we have in the choice of the maximal subgroup M. One of the purposes of this note is to achieve some information in this direction for finite soluble groups.

Notation 1.2. Unless otherwise stated, we assume that G is a finite soluble group with $d = d(G)$ and we assume that g_1, \ldots, g_d satisfy the condition $G = \langle g_1, \ldots, g_d \rangle$.

Let M be a maximal subgroup of G and denote by $Y_M = \bigcap_{g \in G} M^g$ the normal core of M in G and by X_M/Y_M the socle of the primitive permutation group G/Y_M (in its action on the right cosets of M/Y_M in G/Y_M); clearly X_M/Y_M is a chief factor of G and M/Y_M is a complement of X_M/Y_M in G/Y_M.

Let \mathcal{M} be the set of maximal subgroups of G, let V be a set of representatives of the irreducible G-modules that are G-isomorphic to some chief factor of G having a complement and, for every $V \in \mathcal{V}$, let \mathcal{M}_V be the set of maximal subgroups M of G with $X_M/Y_M \cong_G V$. (Here $V \cong_G W$ means that the G-modules V and W are G-isomorphic.)

Observe that each element V of \mathcal{V} is G-isomorphic to X_M/Y_M for some $M \in \mathcal{M}$, and hence $\mathcal{M}_V \neq \emptyset$. Indeed, if X/Y is a chief factor of G with complement K/Y in G/Y, then $K \in \mathcal{M}$ and $X/Y \cong_G X_K/Y_K$.

The question that we want to address is:

For which $V \in \mathcal{V}$, does there exist $M \in \mathcal{M}_V$ with $M \cap \{g_1, \ldots, g_d\} = \emptyset$?

To deal with this question it is useful to recall some results by Gaschütz [9]. Given $V \in \mathcal{V}$, let

$$R_G(V) = \bigcap_{M \in \mathcal{M}_V} M.$$

It turns out that $R_G(V)$ is the smallest normal subgroup of G contained in $C_G(V)$ with $C_G(V)/R_G(V)$ being G-isomorphic to a direct product of copies of V and having a complement in $G/R_G(V)$. The factor group $C_G(V)/R_G(V)$ is called the V-crown of G. The non-negative integer $\delta_G(V)$ defined by

$$\frac{C_G(V)}{R_G(V)} \cong_G V^{\delta_G(V)}$$
is called the V-rank of G and it equals the number of complemented factors in any chief series of G that are G-isomorphic to V (see for example [2, Section 1.3]). Moreover $G/R_G(G) \cong V^{d_{G}(V)} \rtimes H_V$, where $H_V = G/C_G(V)$ acts diagonally on $V^{d_{G}(V)}$, that is, $(v_1, \ldots, v_{\delta_G(V)})^h = (v_1^h, \ldots, v_{\delta_G(V)}^h)$ for every $h \in H_V$ and for every $(v_1, \ldots, v_{\delta_G(V)}) \in V^{\delta_G(V)}$.

Theorem 1.3. Let $G = \langle g_1, \ldots, g_d \rangle$ be a finite soluble group with $d = d(G)$ and let $V \in \mathcal{V}$. Set $\theta_G(V) = 1$ if V is a non-trivial G-module and $\theta_G(V) = 0$ otherwise, $F_V = \text{End}_{G}(V)$, $q_V = |F_V|$ and $n_V = \dim_{F_V}(V)$. If

$$\delta_G(V) \geq (d - 1 - \theta_G(V))n_V + 1,$$

then there exists $M \in \mathcal{M}_V$ with $M \cap \{g_1, \ldots, g_d\} = \emptyset$.

Moreover, if there exists a unique choice for M, then one of the following occurs:

1. V is a trivial G-module, $q_V = 2$ and $\delta_G(V) = d$;
2. V is a non-trivial G-module, $d = 2$, $\delta_G(V) = 1$ and $(q_V, n_V) \in \{(3, 1), (2, 2)\}$.

In Corollary 1.4 and 1.5 we analyse the case that there exists a unique maximal subgroup avoiding a given generating set of minimum cardinality.

Corollary 1.4. Let G be a finite soluble group with $d = d(G) \geq 2$. Suppose that there exist g_1, \ldots, g_d generating G with the property that there is a unique maximal subgroup M of G with $M \cap \{g_1, \ldots, g_d\} = \emptyset$. Then $|G : M| = 2$ and every normal subgroup N of G with $d(G/N) = d$ is contained in $G^{G/2}$.

Corollary 1.4 can be considerably strengthened when $d(G) = 2$.

Corollary 1.5. Let G be a finite group with $d(G) = 2$. Suppose that there exist g_1, g_2 generating G with the property that there is a unique maximal subgroup M of G with $M \cap \{g_1, g_2\} = \emptyset$. Then $|G : M| = 2$, G is nilpotent and the Hall $2'$-subgroup of G is cyclic.

Remark 1.6. We report some results from [6] related to our work that can shed some light on the condition “$\delta_G(V) \geq (d - 1 - \theta_G(V))n_V + 1$” in Theorem 1.3. Let \mathcal{N} be the set of normal subgroups N of G with $d(G/N) = d$ and $d(G/K) < d$ whenever $N < K \leq G$.

Let $N \in \mathcal{N}$, let K/N be an arbitrary minimal normal subgroup of G/N and let $V = K/N$. As $d(G/K) < d$ and as V is an irreducible G-module, it follows easily that $V \in \mathcal{V}$. By [6, Theorem 1.4 and Theorem 2.7], the irreducible G-module V satisfies:

(i): $\delta_G(V) \geq (d(G) - 1 - \theta_G(V))n_V + 1$, and

(ii): $d(G/C_G(V)) < d(G)$.

(See Remark 1.8 for a comment concerning (ii).) In other words, for each $N \in \mathcal{N}$, the minimal normal subgroups of G/N give rise to irreducible G-modules V satisfying the condition “$\delta_G(V) \geq (d - 1 - \theta_G(V))n_V + 1$”.

Therefore, for soluble groups, Theorem 1.1 follows from Theorem 1.3: the set

$$\mathcal{W} = \{V \in \mathcal{V} \mid \delta_G(V) \geq (d - 1 - \theta_G(V))n_V + 1\}$$

is not empty (it contains all the minimal normal subgroups of G/N for each $N \in \mathcal{N}$). Hence, when $G = \langle g_1, \ldots, g_d \rangle$, for every $V \in \mathcal{W}$, there exists $M \in \mathcal{M}_V$ with $M \cap \{g_1, \ldots, g_d\} = \emptyset$.

Remark 1.7. Assume that G is a soluble primitive permutation group on a finite set Ω with $d(G) = 2$. (Here and throughout the paper, we denote by $\text{supp}(g)$, or simply $\text{supp}(g)$, the support $\{\omega \in \Omega \mid \omega^g \neq \omega\}$ of the permutation g.) Observe that $G = V \rtimes H_V$ (for some $V \in \mathbb{V}$, and $H_V \cong G/\text{C}_G(V)$) and that $\mathcal{M}_V = \{G_\omega \mid \omega \in \Omega\}$, where G_ω is the stabilizer of the point $\omega \in \Omega$.

Let $g_1, g_2 \in G$. If $\text{supp}(g_1) \cap \text{supp}(g_2) = \varnothing$, then $\text{supp}(g_1)$ and $\text{supp}(g_2)$ are $\langle g_1, g_2 \rangle$-orbits and hence $\langle g_1, g_2 \rangle \neq G$ because G is transitive. (Observe that this holds true regardless of G being soluble.) Therefore, if $G = \langle g_1, g_2 \rangle$, then $\text{supp}(g_1) \cap \text{supp}(g_2) \neq \varnothing$. Moreover,

$$\{M \in \mathcal{M}_V \mid M \cap \{g_1, g_2\} = \varnothing\} = \{G_\omega \mid G_\omega \cap \{g_1, g_2\} = \varnothing\}$$

and hence the number of maximal subgroups $M \in \mathcal{M}_V$ avoiding $\{g_1, g_2\}$ is exactly $|\text{supp}(g_1) \cap \text{supp}(g_2)|$.

When $|\text{supp}(g_1) \cap \text{supp}(g_2)| = 1$, we have a unique choice for M and, from Theorem 1.3, we obtain that G is either the symmetric group $\text{Sym}(3)$ or the symmetric group $\text{Sym}(4)$.

This has a rather remarkable application. Indeed, fix $n \in \mathbb{N}$ and $a \in \{2, \ldots, n - 1\}$, and consider the two cycles $g_1 = (1, \ldots, a)$ and $g_2 = (a + 1, \ldots, n)$ and the group $G = \langle g_1, g_2 \rangle$. It can be easily seen that G is a primitive subgroup of $\text{Sym}(n)$. Since $\text{supp}(g_1) \cap \text{supp}(g_2) = \{a\}$, we deduce that either $n \leq 4$ or G is insoluble. In this way we prove that $\text{Sym}(n)$ is insoluble for $n \geq 5$ using an argument that relies only on linear algebra. (The proof of Theorem 1.3 relies only on linear algebra.)

Remark 1.8. Here we discuss again the condition $\delta_G(V) \geq (d - 1 - \theta_G(V))n_V + 1$ in Theorem 1.3.

(i): Clearly, this condition is vacuously satisfied when $d = 1$.

(ii): Observe that $d(G/\text{C}_G(V)) \leq d(G) = d$. When $d(G/\text{C}_G(V)) < d$, the condition $\delta_G(V) \geq (d - 1 - \theta_G(V))n_V + 1$ is necessary and sufficient to ensure that, for every generating d-tuple g_1, \ldots, g_d, there exists $M \in \mathcal{M}_V$ with $M \cap \{g_1, \ldots, g_d\} = \varnothing$.

Indeed, if $\delta_G(V) \leq (d - 1 - \theta_G(V))n_V$ and $d(G/\text{C}_G(V)) < d$, then $d(G/\text{R}_G(V)) \leq d - 1$ (see for example [6, Theorem 2.7]) and hence there exist $x_1, \ldots, x_{d-1} \in G$ with $G = \langle x_1, \ldots, x_{d-1}, \text{R}_G(V) \rangle$. By a result of Gaschütz [8], there exist $r_1, \ldots, r_d \in \text{R}_G(V)$ with $G = \langle x_1r_1, \ldots, x_{d-1}r_{d-1}, r_d \rangle$.

When V is a trivial G-module, we have $G = \text{C}_G(V)$, $d(G/\text{C}_G(V)) < d$ and hence the condition $\delta_G(V) \geq (d - 1 - \theta_G(V))n_V + 1$ is necessary and sufficient.

(iv): When $d = 2$ and V is a non-trivial G-module, the condition $\delta_G(V) \geq (d - 1 - \theta_G(V))n_V + 1$ simplifies to $\delta_G(V) \geq 1$, which clearly holds true.

(v): The condition $\delta_G(V) \geq (d - 1 - \theta_G(V))n_V + 1$ in general is not necessary when $d(G/\text{C}_G(V)) = d$. Let \tilde{G} be the soluble primitive permutation group $V \rtimes G/\text{C}_G(V)$ (with its natural affine action) and let $\tilde{G} : G \to \tilde{G}$ be the natural projection. We have $\delta(\tilde{G}) = d$ and, arguing as in Remark 1.7, a sufficient condition for the existence of $M \in \mathcal{M}_V$ with $M \cap \{g_1, \ldots, g_d\} = \varnothing$ is that $\cap_{1 \leq i \leq d} \text{supp}(g_i) \neq \varnothing$ whenever $G = \langle g_1, \ldots, g_d \rangle$. This always holds.
true (for example) when \(d = 3 \), as it can be deduced from the following, more general, result:

Theorem 1.9. If \(G = \langle g_1, g_2, g_3 \rangle \) is a primitive group with \(d(G) = 3 \), then \(\text{supp}(g_1) \cap \text{supp}(g_2) \cap \text{supp}(g_3) \neq \emptyset \).

(See also Remark 1.7 to see how this result fits within our investigation.)

Remark 1.8. (continued)

(v): In particular, when \(d(G) = d(G/C_G(V)) = 3 \), there always exists \(M \in \mathcal{M}_V \) with \(M \cap \{g_1, g_2, g_3\} = \emptyset \), regardless of whether the condition \(\delta_G(V) \geq (d - 1 - \theta_G(V))m_V + 1 \) holds or not.

(vi): We do not have any example of a finite soluble group \(G = \langle g_1, \ldots, g_d \rangle \) with \(d = d(G) = d(G/C_G(V)) \) and of a non-trivial \(G \)-module \(V \in \mathcal{V} \) where there is no \(M \in \mathcal{M}_V \) with \(M \cap \{g_1, \ldots, g_d\} = \emptyset \).

It is not clear whether Theorem 1.9 admits some generalisations. In particular:

Question 1.10. Does there exist a (soluble) primitive group \(G = \langle g_1, \ldots, g_d \rangle \) with \(d(G) = d > 3 \) and \(\bigcap_{1 \leq i \leq d} \text{supp}(g_i) = \emptyset \)?

An answer to Question 1.10 may shed some light on Remark 1.8 (vi). Indeed, an affirmative answer to Question 1.10 yields a primitive group \(G = \langle g_1, \ldots, g_d \rangle \) on \(\Omega \) with \(d(G) = d \) and \(\bigcap_{1 \leq i \leq d} \text{supp}(g_i) = \emptyset \). As \(G \) is soluble, we get \(G = V \times H \) where \(V \) is the socle of \(G \) and \(H \leq \text{GL}(V) \) is irreducible. Now, \(d(G) = d(G/C_G(V)) \) by [6]; moreover \(\mathcal{M}_V = \{G_{\omega} \mid \omega \in \Omega\} \) and hence there is no \(M \in \mathcal{M}_V \) with \(M \cap \{g_1, \ldots, g_d\} = \emptyset \).

A weaker result in this direction is the following:

Theorem 1.11. If \(G = \langle g_1, \ldots, g_d \rangle \) is a primitive permutation group with \(d(G) = d \geq 1 \), then \(\text{supp}(g_i) \cap \text{supp}(g_j) \neq \emptyset \) for all \(i, j \in \{1, \ldots, d\} \).

Theorem 1.11 does not remain true if we replace “primitive” with “transitive”. For example take \(g_1 = (1, 2, 3, 4), g_2 = (5, 7), g_3 = (1, 5)(2, 6)(3, 7)(4, 8) \). We have that \(G = \langle g_1, g_2, g_3 \rangle \) is a Sylow 2-subgroup of \(\text{Sym}(8) \): in particular \(d(G) = 3 \) but \(\text{supp}(g_1) \cap \text{supp}(g_2) = \emptyset \).

2. **Proof of Theorem 1.3**

Before proving Theorem 1.3 we need a preliminary lemma.

Lemma 2.1. Let \(V_1, \ldots, V_d \) be vector spaces of the same dimension, say \(n \), over a finite field \(\mathbb{F} \) of cardinality \(q \). Assume \(d \geq 2 \) and, when \(q = 2 \), assume also \(n \geq 2 \). Let \(W \) be a subspace of the direct product \(V_1 \times \cdots \times V_d \) and let \(U \) be a subspace of \(W \) with \(\dim_{\mathbb{F}}(U) = n \). If \(\dim_{\mathbb{F}}(W) > n(d - 1) \), then there exists \((v_1, \ldots, v_d) \in W \setminus U \) such that \(v_i \neq 0 \) for every \(i \in \{1, \ldots, d\} \). Moreover, when \((q, n, d) \notin \{(3, 1, 2), (2, 2, 2)\} \), there are at least two \(\mathbb{F} \)-linearly independent elements satisfying this property.

Proof. For the time being, let \(W \) be any subspace of \(V_1 \times \cdots \times V_d \) with \(m = \dim_{\mathbb{F}}(W) \), let \(\pi_i \) be the projection from \(V_i \times \cdots \times V_d \) to the direct factor \(V_i \) and let

\[
a_d = \dim_{\mathbb{F}} \pi_d(W),
\]

\[
a_i = \dim_{\mathbb{F}}(\ker \pi_d \cap \ker \pi_{d-1} \cap \cdots \cap \ker \pi_{i+1}),
\]

for each \(i \in \{1, \ldots, d - 1\} \),

\[
\Lambda = \{(v_1, \ldots, v_d) \in W \mid v_i \neq 0, \text{ for every } i \in \{1, \ldots, d\}\}.
\]
We claim that
\[|A| \geq \prod_{i=1}^{d} (q^{a_i} - 1). \]

We argue by induction on \(d \). When \(d = 1 \), we have \(W = \pi_1(W) \leq V_1, a_d = m \) and \(W \) has \(q^m - 1 \) non-zero vectors. Assume now that \(d > 1 \). Let \(\rho: V_1 \times V_2 \times \cdots \times V_d \to V_2 \times \cdots \times V_d \) be the natural projection. Replacing \(V_1 \times \cdots \times V_d \) by \(V_2 \times \cdots \times V_d \), \(W \) by \(\rho(W) \) and \(\Lambda \) by \(\rho(\Lambda) \), the inductive hypothesis gives \(\rho(\Lambda) \geq \prod_{i=2}^{d} (q^{a_i} - 1) \).

For each \(x = (v_2, \ldots, v_d) \in \rho(\Lambda) \), choose \(v_{1x} \in V_1 \) with \((v_{1x}, v_2, \ldots, v_d) \in W \). Observe now that \(\ker \rho = \ker \pi_d \cap \cdots \cap \ker \pi_2 \) has dimension \(a_1 \) and hence \(W \) contains \(q^{a_1} \) vectors of the form \((v_{11}, 0, \ldots, 0)\). In particular, for each \(x = (v_2, \ldots, v_d) \in \rho(\Lambda) \), there are at least \(q^{a_1} - 1 \) elements \((v_1, 0, \ldots, 0)\) in \(W \) with \((v_{1x}, v_2, \ldots, v_d) + (v_1, 0, \ldots, 0) = (v_{1x} + v_1, v_2, v_3, \ldots, v_d) \in \Lambda \).

Therefore \(|A| \geq (q^{a_1} - 1)|\rho(\Lambda)| \geq \prod_{i=1}^{d} (q^{a_i} - 1) \) and the claim is proved.

Assume now that \(d \geq 2, m \geq n(d - 1) + 1 \), and \(n \geq 2 \) when \(q = 2 \). We need to show that \(\Lambda \setminus U \neq \emptyset \) and, for the stronger statement, that \(\Lambda \setminus U \) has at least two \(F \)-linearly independent vectors when \((q, n, d) \notin \{(3, 1, 2), (2, 2, 2)\} \). Since \(\dim_F(U) = n \), \(U \) contains at most \(q^n - 1 \) elements of \(\Lambda \); hence it suffices to prove that
\[|A| \geq q^n \]
and, for the stronger statement, that
\[|A| \geq q^n + (q - 1) \]
when \((q, n, d) \notin \{(3, 1, 2), (2, 2, 2)\} \).

Since \(a_i \leq \dim_F(V_i) = n \) for every \(i \in \{1, \ldots, d\} \) and \(a_1 + \cdots + a_d = \dim_F(W) = m \geq n(d - 1) + 1 \), we have \(1 \leq a_i \leq n \) for every \(i \in \{1, \ldots, d\} \).

CASE 1: \(n = 1 \).

As \(n = 1 \), we have \(q \neq 2 \) and hence
\[|A| \geq \prod_{i=1}^{d} (q^{a_i} - 1) \geq (q - 1)^d \geq (q - 1)^2 \geq q; \]
moreover \((q - 1)^d \geq q + (q - 1) \) when \((q, n, d) \neq (3, 1, 2) \).

Suppose \(n \geq 2 \). As \(\sum_{i=1}^{d} a_i = m \geq 2(d - 1) + 1 > d \), we get \(a_j > 1 \) for some \(j \in \{1, \ldots, d\} \). Therefore
\[|A| \geq \prod_{i=1}^{d} (q^{a_i} - 1) = (q^{a_j} - 1) \prod_{i=1; i \neq j}^{d} (q^{a_i} - 1) \geq (q^{a_j} - 1) \prod_{i=1; i \neq j}^{d} (q - 1)^{q^{a_i} - 1} \]
\[\geq ((q - 1)^{q^{a_j} - 1}) \prod_{i=1; i \neq j}^{d} (q - 1)^{q^{a_i} - 1} + 1 = (q - 1)^d q^{m-d} + 1 \]
\[\geq (q - 1)^d q^{(d-1)(n-1)} + 1. \]

CASE 2: \(n \geq 2 \) and \(d \geq 3 \).

Here,
\[|A| \geq (q - 1)^d q^{(d-1)(n-1)} + 1 \geq (q - 1)^2 q^{2(n-1)} + 1 \geq (q - 1)^2 + q^{2(n-1)} \geq q - 1 + q^n. \]
(In the third inequality we have used $ab + 1 \geq a + b$, which is valid for all $a, b \in \mathbb{N} \setminus \{0\}$.)

Case 3: $d = 2, n \geq 2$ and $(m, q) \not\in \{(n + 1, 2), (n + 1, 3)\}$. We have

$$|\Lambda| \geq (q^{a_1} - 1)(q^{a_2} - 1) = q^n - q^{a_1} - q^{a_2} + 1 \geq q^n - 2q^n + 1 \geq q^n + (q - 1).$$

(In the last inequality we used $(m, q) \not\in \{(n + 1, 2), (n + 1, 3)\}$.)

Case 4: $d = 2, n \geq 2$ and $(m, q) = (n + 1, 3)$. Here $n + 1 = m = a_1 + a_2$ and $|\Lambda| \geq (3^{a_1} - 1)(3^{a_2} - 1) = 3^n + 3^{n+1} - 3^{a_1} - 3^{a_2} + 1 \geq 3^n + (3 - 1) = 2^n + 3$ because a_1 and a_2 cannot be both n.

Case 5: $d = 2, n \geq 2$ and $(m, q) = (n + 1, 2)$. We have $|\Lambda| \geq 2^n + 2^{a_1} - 2^{a_2} + 1 \geq 2^n + (2 - 1) = 2^n$ except when $(a_1, a_2) \in \{(1, n), (n, 1)\}$.

Assume $(a_1, a_2) = (1, n)$ and fix $(f, 0)$ a non-zero vector of ker π_2. For every non-zero vector $v \in V_2$, there exists $w \in V_1$ such that $(w, v) \in W$. Since also $(w + f, v) \in W$, a moment’s thought gives that either $|\Lambda| \geq 2^n$, or $|\Lambda| = 2^n - 1$ and $\pi_1(W)$ is the 1-dimensional subspace of V_1 spanned by f. In the former case, the lemma is proved. In the latter case, $W = \langle f \rangle \times V_2$, $\Lambda = \{(f, v) \mid v \in V_2 \setminus \{0\}\}$ and $|\Lambda| = 2^n - 1$. With this concrete description of W and Λ, we see that an n-dimensional subspace U of W can contain at most 2^{n-1} elements of Λ: so there are at least $2^n - 1 - 2^{n-1} = 2^{n-1} - 1$ elements in $\Lambda \setminus U$. Clearly, $\Lambda \setminus U$ contains at least two \mathbb{F}-linearly independent vectors as long as $2^{n-1} - 1 \geq 2$, that is, $n \neq 2$.

A similar argument works when $(a_1, a_2) = (n, 1)$. \hfill \Box

Proof of Theorem 1.3. We write $\bar{G} = G/R_G(V)$ and, for every $g \in G$, we denote by \bar{g} the element $gR_G(V)$ of \bar{G}. We distinguish two cases.

Case 1: V is a trivial G-module.

In this case $G = C_G(V)$ and \bar{G} is elementary abelian and hence it can be viewed as the vector space \mathbb{F}_p^d of dimension $\delta = \delta_G(V)$ over the finite field \mathbb{F}_p of prime cardinality $p = |V|$. Therefore $q_V = p$, $n_V = 1$, $\theta_G(V) = 0$ and the condition $\delta_G(V) \geq (d - 1 - \theta_G(V))n_V + 1$ simplifies to $\delta \geq d$. As $d(\bar{G}) = \delta$ and $d(G) = d$, we have $\delta \leq d$ and hence $\delta = d$. Moreover, the elements in \mathcal{M}_V are in one-to-one correspondence with the maximal subgroups of \bar{G}, that is, with hyperplanes of \mathbb{F}_p^d.

For every $i \in \{1, \ldots, d\}$, we identify \bar{g}_i with the vector (x_{i1}, \ldots, x_{id}) of \mathbb{F}_p^d. A maximal subgroup M of \bar{G} is determined by a linear equation $a_1x_1 + \cdots + a_dx_d = 0$ for suitable $a_1, \ldots, a_d \in \mathbb{F}_p$, and $\bar{g}_i \in M$ if and only if $\sum_{j=1}^d a_jx_{ij} = 0$.

Consider the linear map $\phi : \mathbb{F}_p^d \to \mathbb{F}_p^d$ defined by setting

$$\phi(a_1, \ldots, a_d) = \left(\sum_{j=1}^d a_jx_{1j}, \ldots, \sum_{j=1}^d a_jx_{dj} \right)$$

and observe that ϕ is injective and hence bijective because $\delta = d$. Let $\Lambda = \{(b_1, \ldots, b_d) \in \mathbb{F}_p^d \mid b_i \neq 0, \text{ for every } i \in \{1, \ldots, d\}\}$. The existence of $M \in \mathcal{M}_V$ with $M \cap \{g_1, \ldots, g_d\} = \emptyset$ is equivalent to $\phi(\mathbb{F}_p^d) \cap \Lambda \neq \emptyset$, which is clearly satisfied as $\phi(\mathbb{F}_p^d) \cap \Lambda = \Lambda$. Moreover, there are $|\Lambda|/(p - 1) = (p - 1)^{d-1}$ maximal subgroups $M \in \mathcal{M}_V$ with $M \cap \{g_1, \ldots, g_d\} = \emptyset$. Thus the choice of M is unique only when $q_V = p = 2$.

MAXIMAL SUBGROUPS AVOIDING GENERATING SETS

7
CASE 2: V is a non-trivial G-module.

Let $\delta = \delta_G(V), H = G/C_G(V), \mathbb{F} = \text{End}_G(V), q = |\mathbb{F}|, n = uV$. We know that $G = G/R_G(V) \cong V^d \rtimes H$. For every $i \in \{1, \ldots, d\}$, we may write $g_i = h_iw_i$ with $h_i \in H$ and $w_i = (v_{i1}, \ldots, v_{id}) \in V^d$.

Let $\Omega = V \times \mathbb{F} \cong \mathbb{F}^{n+\delta}$ and let $\Omega^* = \{(w, \lambda_1, \ldots, \lambda_\delta) \in \Omega \mid (\lambda_1, \ldots, \lambda_\delta) = (0, \ldots, 0)\}$. For every $\omega = (w, \lambda_1, \ldots, \lambda_\delta) \in \Omega \setminus \Omega^*$, we associate the following subgroup M_ω of G:

$$M_\omega = \left\{ h(v_1, \ldots, v_\delta) \in G \mid w - w^h + \sum_{j=1}^\delta \lambda_j v_j = 0 \right\}.$$

(It is an exercise to prove that M_ω is indeed a subgroup of G.) Observe that if $\omega \in \Omega \setminus \Omega^*$ and $\lambda \in \mathbb{F} \setminus \{0\}$, then $M_\omega = M_{\lambda\omega}$.

Since $(\lambda_1, \ldots, \lambda_\delta) \neq (0, \ldots, 0)$, for every $h \in H$, there exists $(v_1, \ldots, v_\delta) \in V^d$ with $w^h - w = \sum_{j=1}^\delta \lambda_j v_j$, that is, $h(v_1, \ldots, v_\delta) \in M_\omega$. Therefore $M_\omega V^d = H V^d = G$. Moreover $M_\omega \cap V^d$ is a maximal H-submodule of V^d, so M_ω is a maximal subgroup of G.

By [3, Proposition 2.1], the linear map $\phi : V \times \mathbb{F} \rightarrow V^d$ defined by setting

$$\phi(w, \lambda_1, \ldots, \lambda_\delta) = \left(\left(w - wh_1, \sum_{j=1}^\delta \lambda_j v_j \right), \ldots, \left(w - wh_\delta, \sum_{j=1}^\delta \lambda_j v_j \right)\right)$$

is injective. Moreover, $\{M \mid M \in \mathcal{M}_V\} = \{M_\omega \mid \omega \in \Omega \setminus \Omega^*\}$. Therefore we have a one-to-one correspondence between the elements of \mathcal{M}_V and the 1-dimensional subspaces of Ω contained in $\Omega \setminus \Omega^*$. Under this mapping the elements $M \in \mathcal{M}_V$ with $M \cap \{g_1, \ldots, g_d\} = \emptyset$ correspond to the elements $\omega \in \Omega \setminus \Omega^*$ with $\phi(\omega) = (v_1, \ldots, v_\delta)$ having all non-zero coordinates, that is, $v_i \neq 0$ for every $i \in \{1, \ldots, d\}$.

Let $\Lambda = \{(v_1, \ldots, v_\delta) \in V^d \mid v_i \neq 0, \text{ for every } i \in \{1, \ldots, d\}\}, \text{ let } W = \phi(\Omega) \text{ and let } U = \phi(\Omega^*). \text{ Observe that dim}_\mathbb{F}(W) = n + \delta, \text{ dim}_\mathbb{F}(U) = n \text{ and } U \subseteq W \leq V^d.$ Summing up, there exists a maximal subgroup $M \in \mathcal{M}_V$ with $M \cap \{g_1, \ldots, g_d\} = \emptyset$ if and only if there exists a vector of W in $\Lambda \setminus U$.

The condition $\delta_G(V) \geq (d - 1 - \theta_G(V))n + 1$ simplifies to $\delta \geq (d - 2)n + 1$, that is, $\text{dim}_\mathbb{F}(W) = n + \delta \geq n(d - 1) + 1 = \text{dim}_\mathbb{F}(U)(d - 1) + 1$. Now, the existence of a vector of W in $\Lambda \setminus U$ is guaranteed by Lemma 2.1. Moreover, the choice of M is unique if and only if there are no two \mathbb{F}-linearly independent vectors of W in $\Lambda \setminus U$, that is, when $(q, n, d) \in \{(3, 1, 2), (2, 2, 2)\}$ in view of Lemma 2.1.

3. PROOFS OF COROLLARY 1.4 AND COROLLARY 1.5

Proof of Corollaries 1.4 and 1.5. Recall Remark 1.6 and the notation therein. The uniqueness of M implies that the set W contains a unique G-module, say V. Moreover \mathcal{M}_V contains a unique maximal subgroup M with $M \cap \{g_1, \ldots, g_d\} = \emptyset$.

Suppose $d \geq 3$. Now, Theorem 1.3 yields $|V| = 2$, $C_G(V) = G$ and $R_G(V) = G'G^2$. Moreover, from Remark 1.6, we deduce that $N \leq R_G(V) = G'G^2$ for each $N \in N$. Since every normal subgroup N of G with $d(G/N) = d(G)$ is contained in some member of N, it follows that $N \leq G'G^2$. This proves Corollary 1.4 when $d \geq 3$. Observe that Corollary 1.5 implies Corollary 1.4 when $d = 2$. In particular, it remains to prove Corollary 1.5.
Assume then $d(G) = 2$. Suppose that G is not soluble. Let Y_1/Y_2 be a non-abelian chief factor of G and let $X = C_G(Y_1/Y_2)$. The factor group G/X is monolithic (that is, it has a unique minimal normal subgroup) and its socle N/X is isomorphic to Y_1/Y_2. We use the “bar” notation to denote the images under the projection $\pi : G \to G/X = G$. Let P be a Sylow p-subgroup of N. From the Frattini argument we have $G = N_P(P)$, and hence there exists a maximal subgroup M of G with $N_G(P) \leq M$. The action of $\bar{G} = \langle g_1, g_2 \rangle$ on the set Ω of the right cosets of M in G is faithful and primitive. If $M^* \cap \{g_1, g_2\} \neq \emptyset$ for each $x \in G$, then every point of Ω is fixed by either g_1 or g_2, that is, $\Omega = (\Omega \setminus \text{supp}_1(g_1)) \cup (\Omega \setminus \text{supp}_2(g_2))$ and $\text{supp}_1(g_1) \cap \text{supp}_2(g_2) = \emptyset$, but this forces the group $\bar{G} = \langle g_1, g_2 \rangle$ to be intransitive. Therefore there exists $x \in G$ with $M^* \cap \{g_1, g_2\} = \emptyset$.

Since $N \leq M$, there exists a prime q with $q \neq p$, $q \mid |N|$ and with \bar{M} not containing any Sylow q-subgroup of N. Applying the Frattini argument as above with the prime p replaced by the prime q, we find a maximal subgroup \bar{K} of \bar{G} containing the normalizer of a Sylow q-subgroup of \bar{N} and an element $y \in G$ with $K^y \cap \{g_1, g_2\} = \emptyset$. Therefore we have two distinct maximal subgroups M^* and K^y, both avoiding the two generators g_1 and g_2, against our assumption. Thus G is soluble.

Observe that the condition $\delta_G(V) \geq (d - 1 - \theta_G(V))n_V + 1$ is always satisfied when $d = 2$ and V is a non-trivial G-module (see Remark 1.8 (iv)). Therefore, by Theorem 1.3, for every non-trivial G-module $V \in \mathcal{V}$, there exists at least a maximal subgroup $M \in \mathcal{V}$ with $M \cap \{g_1, g_2\} = \emptyset$. Since we are assuming that there is a unique maximal subgroup with $M \cap \{g_1, g_2\} = \emptyset$, we deduce that \mathcal{V} contains at most a unique non-trivial irreducible G-module.

By [7, Ch. A, Theorem 13.8], the Fitting subgroup $\text{Fit}(G)$ is the intersection of the centralisers of the chief factors of G which are complemented. Therefore, from the previous paragraph, either G is nilpotent (that is, G has no non-trivial chief factors) or $\text{Fit}(G) = C_G(V)$, where V is the unique non-trivial G-module in \mathcal{V}. Assume that G is not nilpotent, and let V be the unique non-trivial irreducible G-module in \mathcal{V}. Again by Theorem 1.3, either $|V| = 4$ and $G/C_G(V) \cong \text{GL}_2(2) \cong \text{Sym}(3)$, or $|V| = 3$ and $G/C_G(V) \cong \text{GL}_3(2) \cong C_2$. In both cases, there exists a group epimorphism $\phi : G \to \text{Sym}(3)$ (in the first case, by taking the projection of G to $G/C_G(V)$, and in the second case, by taking the affine action of G on V). Let $x_1 = \phi(g_1), x_2 = \phi(g_2)$. As G contains a unique maximal subgroup avoiding g_1 and g_2, we deduce that $\text{Sym}(3)$ contains a unique maximal subgroup K with $K \cap \{x_1, x_2\} = \emptyset$. But this is false: either one of the two elements x_1, x_2 has order 3 and in this case there are two subgroups of order 2 of $\text{Sym}(3)$ with trivial intersection with $\{x_1, x_2\}$, or both x_1 and x_2 have order 2, in which case there is one subgroup of order 2 and one of order 3 avoiding x_1 and x_2. Therefore \mathcal{V} has no non-trivial irreducible G-modules, and G is nilpotent.

The condition $\delta_G(V) \geq (d - 1 - \theta_G(V))n_V + 1$ reduces to $\delta_G(V) \geq 2$ for each $V \in \mathcal{V}$ because $d(G) = 2$. In particular, if $\delta_G(V) \geq 2$ for some irreducible G-module $V \in \mathcal{V}$ of odd order p (that is, G has an epimorphic image isomorphic to $C_p \times C_p$), then the second part of Theorem 1.3 guarantees the existence of two distinct maximal subgroups avoiding g_1, g_2, contrary to our assumption. Therefore $\delta_G(V) = 1$ for each irreducible G-module $V \in \mathcal{V}$ of odd order, that is, the Hall 2'-subgroup of G is cyclic. Let M be the unique maximal subgroup avoiding g_1 and g_2. As $d(G) = 2$, G is not cyclic and hence G has an irreducible G-module
We have G Case a: use the classification of Guralnick and Magaard and we distinguish two possibilities:

Moreover Y is the subgroup of $\text{Sym}(T)$ induced by the conjugacy action of $\{Y_1, \ldots, Y_\ell\}$. Let $V_m = V_{m,1} \oplus \cdots \oplus V_{m,\ell_m}$, where $V_{m,i}$ is an irreducible N-module for every $i \in \{1, \ldots, \ell_m\}$. Since N is generated by transvections and since N acts faithfully on V, there exists a transvection $h \in N$ with h not centralizing V_m, that is, h acts as a transvection on V_m. Therefore, h acts as a transvection on $V_{m,i}$ for some $i \in \{1, \ldots, \ell_m\}$, and h centralizes $V_{m,j}$ for every $j \in \{1, \ldots, \ell_m\} \setminus \{i\}$. If $\ell_m > 1$, then this contradicts the fact that $V_{m,1}, \ldots, V_{m,\ell_m}$ are pair-wise isomorphic N-modules. Thus $\ell_m = 1$ and V_m is an irreducible N-module.

Let Y_m and X_m be the linear groups induced, respectively, by the actions of N and $N_H(V_m)$ on V_k. We also write $X = X_1$ and $Y = Y_1$. Then N is a subdirect product of $Y_1 \times \cdots \times Y_\ell$ and H acts transitively by conjugation on $\{Y_1, \ldots, Y_\ell\}$. Moreover $Y_1 \cong \cdots \cong Y_\ell \cong Y$, $X_1 \cong \cdots \cong X_\ell \cong X$, $Y \leq X \leq \text{SL}_m(2)$, with $m = k/\ell$, and H can be identified with a subgroup of the imprimitive linear group X/T, where T is the subgroup of $\text{Sym}(\ell)$ induced by the conjugacy action of H on $\{Y_1, \ldots, Y_\ell\}$.
Notice that T is an epimorphic image of G/N, which is generated by the elements $g_k N$ with $k \in \{1, \ldots, d\} \setminus \{i, j\}$, so
\begin{equation}
 d(T) \leq d - 2.
\end{equation}

As N is generated by transvections, we deduce that also Y is generated by transvections. Then the structure of Y can be deduced from [17, Theorem]: Y is one of the following groups:

1. $\text{SL}_m(2)$ for $m \geq 2$,
2. $\text{Sp}_m(2)$ for $m \geq 4$,
3. $\text{O}^+_m(2)$ for $m \geq 6$,
4. $\text{O}^-_m(2)$, for $m \geq 4$,
5. $\text{Sym}(m+2)$ or $\text{Sym}(m+1)$ for $m \geq 4$.

From [13, Section 3 and Table 3.5A], we see that $\text{Sp}_m(2)$ is maximal in $\text{SL}_m(2)$ and, from [13, Section 3 and Table 3.5C], we see that $\text{O}^+_m(2)$ and $\text{O}^-_m(2)$ are both maximal in $\text{Sp}_m(2)$. It follows that $\text{SL}_m(2)$, $\text{Sp}_m(2)$, $\text{O}^+_m(2)$ and $\text{O}^-_m(2)$ are self-normalizing in $\text{SL}_m(2)$. As $\text{Aut}(\text{Sym}(\kappa)) = \text{Sym}(\kappa)$ except when $\kappa = 6$, it follows from Schur’s lemma that also $\text{Sym}(m+2)$ and $\text{Sym}(m+1)$ are self-normalizing in $\text{SL}_m(2)$, except possibly when $m \in \{4, 5\}$. Finally, a direct computation yields that $\text{Sym}(6)$ is self-normalizing in $\text{SL}_4(2)$ and in $\text{SL}_5(2)$. Therefore, in all these cases, Y is self-normalizing in $\text{SL}_m(2)$.

Since $Y \leq X$, we conclude $Y = X$. Moreover $\text{soc}(Y)$ is a simple group (not necessarily non-abelian) and $|Y/\text{soc}(Y)| \leq 2$. Let $\Delta = Y \setminus \{1\}$ if $Y = \text{soc}(Y)$, and let $\Delta = Y \setminus \text{soc}(Y)$ otherwise.

Since N is a subdirect product of Y^ℓ and it is generated by transvections, there exists a transvection $n = (y_1, \ldots, y_\ell) \in N$ with $y_j \in \Delta$ for some $j \in \{1, \ldots, \ell\}$. Now, to be a transvection n must be equal to $(1, \ldots, 1, y_j, 1 \ldots 1)$. Let π_j be the projection from N to Y_j. Since $\pi_j(N) = Y_j$, we have that $[N, n]$ contains all the elements of the form $(1, \ldots, s, \ldots, 1)$ with $s \in [Y, y_j]$. As $\langle y_j, [Y, y_j] \rangle = Y$, we obtain that N contains $(1, \ldots, y_j, 1 \ldots 1)$ for every $y \in Y$. This implies $N = Y^\ell$ and $H = Y \wr T$.

Let $K = (\text{soc}(Y))^\ell$: an easy case-by-case analysis shows that K is the unique minimal normal subgroup of H, so by [16, Theorem 1.1] $d(H) = \max\{2, d(H/K)\}$. On the other hand either $\text{soc}(Y) = Y$ and $H/K \cong T$ or $[Y : \text{soc}(Y)] = 2$ and $H/K \cong C_2 \wr T$. In both cases, $d(H/K) \leq d(T) + 1$. Now, Eqs. (4.1) and (4.2) yield $2 < d = d(G) = d(H) \leq \max\{2, d - 1\}$, a contradiction.

Case b: $G \leq H \wr \text{Sym}(t)$, where H is a primitive group on Δ and the wreath product $H \wr \text{Sym}(t)$ has its product action on $\Omega = \Delta^t$. Moreover H is almost simple with $\text{soc}(H) \in \{\text{Alt}(k), \Omega_{2k+1}(2), \Omega_{2k}^+(2), \Omega_{2k}(2)\}$ and $|H/\text{soc}(H)| \leq 2$.

The argument here is similar to the previous case. Write the element $g \in G$ as $(x_1, \ldots, x_t)\pi_s$ where (x_1, \ldots, x_t) lies in the base subgroup H^t and $\pi_s \in \text{Sym}(t)$. Setting $g_i = (a_1, \ldots, a_t)\pi_i$ and $g_j = (b_1, \ldots, b_t)\pi_j$ with $\pi_i, \pi_j \in \text{Sym}(t)$ and $(a_1, \ldots, a_t), (b_1, \ldots, b_t) \in H^t$, it can be easily seen that the assumption $\text{supp}(g_i) \cap \text{supp}(g_j) = \emptyset$ implies $\pi_i = \pi_j = 1$ and that there exists $s \in \{1, \ldots, t\}$ with $a_r = b_r = 1$ whenever $r \in \{1, \ldots, t\} \setminus \{s\}$.

If a_s and b_s are both in $\text{soc}(H)$, then $g_i, g_j \in \text{soc}(G) = \text{soc}(H)^t$ and this implies $d(G/\text{soc}(G)) \leq d - 2$. As usual, from [16, Theorem 1.1], we deduce $d(G) = \max\{2, d(G/\text{soc}(G))\} \leq \max\{2, d - 2\}$, a contradiction. Thus, we may assume $a_s \notin \text{soc}(H)$. Then $|H : \text{soc}(H)| = 2$.
Arguing exactly as in Case A, we get $G = H \wr T$ with T a transitive subgroup of $\text{Sym}(t)$ and $G/\text{soc}(G) \cong C_2 \wr T$. Since $g_1, g_2 \in H^t$, we must have $d(T) \leq d - 2$ and therefore $d(G) = \max\{2, d(G/\text{soc}(G))\} \leq \max\{2, d(T) + 1\} \leq \max\{2, d - 1\}$, again a contradiction.

Proof of Theorem 1.9. Let $G = \langle g_1, g_2, g_3 \rangle$ be a primitive subgroup of $\text{Sym}(\Omega)$ with $d(G) = 3$. We argue by contradiction and we suppose that $\text{supp}(g_1) \cap \text{supp}(g_2) \cap \text{supp}(g_3) = \emptyset$. Then $\text{fix}(g_1) \cup \text{fix}(g_2) \cup \text{fix}(g_3) = \Omega$ and

$$
|\text{fix}(g_1)| + |\text{fix}(g_2)| + |\text{fix}(g_3)| \geq |\Omega|.
\tag{4.3}
$$

We use the O’Nan-Scott theorem, as stated in [14]. According to this, we have five cases to consider. Let N be the socle of G.

Case A: G is an affine group.

Here, N is an elementary abelian p-group for some prime p, $G = N \rtimes H$ where H is an irreducible subgroup of $\text{GL}(N)$ and the action of G on Ω is permutation equivalent to the affine action of $N \rtimes H$ on N.

Let $F = \text{End}_H(N)$, $q = |F|$, $\kappa = \text{dim}_F(N)$. We write $g_1 = h_1v_1$, $g_2 = h_2v_2$, $g_3 = h_3v_3$, with $h_1, h_2, h_3 \in H$ and $v_1, v_2, v_3 \in N$. In particular, given $n \in N$, we have $n^{h_i}v_i = n^{h_i} + v_i$ and hence $\text{supp}(g_i) = \{n \in N \mid n^{h_i} + v_i \neq n\}$. For simplicity, we define $\text{supp}(g_i) = N_i = \{n \in N \mid n - n^{h_i} = v_i\}$. As $\text{supp}(g_1) \cap \text{supp}(g_2) \cap \text{supp}(g_3) = \emptyset$, there exists no $w \in N$ with $w - w^{h_i} \neq v_i$ for every $i \in \{1, 2, 3\}$.

The mapping $\phi : N \times F \to N^3$ defined by setting

$$
\phi(w, \lambda) = (w - w^{h_1} + \lambda v_1, w - w^{h_2} + \lambda v_2, w - w^{h_3} + \lambda v_3)
$$

is clearly linear and (by [3, Proposition 2.1]) injective. We have $d(H) = d(G) = 3$ from [1, Corollary 1], and hence $h_i \neq 1$ for every $i \in \{1, 2, 3\}$. This means that $\kappa_i = \text{dim}_F(N^{1-h_i}) \geq 1$; in particular the set $N_i = \{n \in N \mid n - n^{h_i} = v_i\}$ has cardinality at most $q^{\kappa_i - 1} \leq q^{\kappa_i - 1}$. If $\sum_{1 \leq i \leq 3} q^{\kappa_i} < q^\kappa$, then $N \neq N_1 \cup N_2 \cup N_3$ and we are done: in particular, since $\sum_{1 \leq i \leq 3} q^{\kappa_i} \leq 3q^{\kappa_i - 1}$, we may assume $q \leq 3$.

If $q = 3$, then $N \neq N_1 \cup N_2 \cup N_3$ except (possibly) when $\kappa_i = 1$ for every $i \in \{1, 2, 3\}$. In this case, the fact that ϕ is injective implies that $3 = \kappa_1 + \kappa_2 + \kappa_3 \geq \kappa$. On the other hand, if $\kappa \leq 2$, then $d(H) \leq 2$ by [12, Theorem 1.2], against our assumption; so $\kappa = 3$ and $(N \times \{0\})^\phi = N^{1-h_1} \times N^{1-h_2} \times N^{1-h_3}$ and we can easily conclude that there is $(u_1, u_2, u_3) \in N^{1-h_1} \times N^{1-h_2} \times N^{1-h_3}$ with $u_i \neq v_i$ for every $i \in \{1, 2, 3\}$.

Finally suppose $q = 2$. Relabelling the indexed set $\{1, 2, 3\}$ if necessary, we may assume that $\kappa_1 \leq \kappa_2 \leq \kappa_3$. As above, if $N \neq N_1 \cup N_2 \cup N_3$, then we are done. Since $|N_1 \cup N_2 \cup N_3| \leq 2^{\kappa_1 - \kappa_3} + 2^{\kappa_2 - \kappa_3} < 2^{\kappa_1 - \kappa_3} + 2^{\kappa_2 - \kappa_3}$, we may restrict our attention to the case $2^{\kappa_1 - \kappa_3} + 2^{\kappa_2 - \kappa_3} \geq 2^\kappa$. This implies that either $(\kappa_1, \kappa_2, \kappa_3) = (1, 2, 2)$, or $(\kappa_1, \kappa_2) = (1, 1)$. In the first case $\kappa \leq \kappa_1 + \kappa_2 + \kappa_3 \leq 5$, but then $d(H) \leq 2$ by [12, Theorem 1.2], against our assumption. It remains to consider the case $(\kappa_1, \kappa_2) = (1, 1)$. This means that h_1, h_2 both act as transvections on the irreducible H-module N.

Using as a crib the argument in Case A in the proof of Theorem 1.11, we deduce $d(G) \leq 2$, a contradiction.

Case B: G is of simple diagonal type.

Here $N = S^\kappa$, for some non-abelian simple group S and for some positive integer κ with $\kappa \geq 2$. Moreover, $|\Omega| = |S|^\kappa - 1$. Let g be a non-identity element of G. An upper bound for $|\text{fix}(g)|$ is given in [15, p. 310] (see also [10, Section 5]). We have
When \(\kappa \geq 3 \), we deduce \(|\text{fix}(g)| \leq |\Omega|/60 \), contradicting (4.3). Suppose then \(\kappa = 2 \). From [18, Theorem 3.1], we have \(|\{s \in S \mid s^\alpha = s^{-1}\}| \leq 4|S|/15 \), for each automorphism \(\alpha \) of \(S \). Therefore, \(|\text{fix}(g)| \leq 4|\Omega|/15 < |\Omega|/3 \), contradicting again (4.3).

Case c: \(G \) is of twisted wreath type.

Here \(N \) is a normal regular subgroup of \(G \) and the action of a point-stabilizer on \(\Omega \) is permutation equivalent to its action on \(N \) by conjugation. Consequently, if \(g \) is a non-identity element of a point-stabilizer, then \(|\text{fix}(g)| \leq |C_N(g)| \leq |N|/5 = |\Omega|/5 \), again contradicting (4.3).

Case d: \(G \) is almost simple.

From [5], the condition \(d(G) = 3 \) implies that either \(N = \text{PSL}_n(q) \) with \(n \geq 4 \) or \(N = \text{PQ}_n^+(q) \) with \(n \geq 8 \), moreover (in both cases) \(q \) is an even power of an odd prime. In particular, \(q \geq 9 \). By [15, Theorem 1], for each non-identity element \(g \in G \), we have

\[
|\text{fix}(g)| \leq \frac{4|\Omega|}{3q} \leq \frac{4|\Omega|}{27} < \frac{|\Omega|}{3},
\]

again contradicting (4.3).

Case e: \(G \) is of wreath product type.

In particular \(G \leq H \wr \text{Sym}(t) \), where \(H \) is a primitive group on \(\Delta \) and the wreath product has its product action on \(\Omega = \Delta^t \). Moreover \(H \) is either of almost simple type or of simple diagonal type and \(\text{soc}(G) = (\text{soc}(H))^\prime \). Let \(g_1 = (a_1, \ldots, a_t)\pi_1 \), \(g_2 = (b_1, \ldots, b_t)\pi_2 \) and \(g_3 = (c_1, \ldots, c_t)\pi_3 \), where \((a_1, \ldots, a_t) \), \((b_1, \ldots, b_t) \) and \((c_1, \ldots, c_t) \) are in the base group \(H^t \) and \(\pi_1, \pi_2, \pi_3 \in \text{Sym}(t) \).

Let \(g \in G \) and write \(g \) as \((x_1, \ldots, x_t)\pi_g \) where \((x_1, \ldots, x_t)\) lies in the base group \(H^t \) and \(\pi_g \in \text{Sym}(t) \).

We claim that, if \(\pi_g \neq 1 \), then

\[(4.4) \quad |\text{fix}(g)| \leq |\Delta^{t-1}|\]

and the bound is met if and only if \(g \) is \((H \wr \text{Sym}(t))-\)conjugate to

\[(x, x^{-1}, 1, \ldots, 1)(1 \, 2),\]

for some \(x \in H \). Indeed, choose \(i, j \in \{1, \ldots, t\} \) with \(i\pi_g = j \) and \(i \neq j \). Observe that if \((\delta_1, \ldots, \delta_t) \in \text{fix}(g)\), then \(\delta_j = \delta_{\pi_g}^i \). Consequently, for the elements in \(\text{fix}(g) \) the \(j^{\text{th}}\)-coordinate is uniquely determined by the \(i^{\text{th}}\)-coordinate and (4.4) is proved. Moreover, if the bound in Eq. (4.4) is met then, \(\pi_g \) is a transposition, say \(\pi_g = (i \, j) \), and moreover \(x_k = 1 \) for every \(k \in \{1, \ldots, t\} \setminus \{i, j\} \). Now, a direct computation with this explicit description of \(g \) yields that the bound in Eq. (4.4) is met if and only if \(x_i x_j = 1 \).

We observe that, if \(\pi_g = 1 \) and \(g \neq 1 \), then

\[(4.5) \quad |\text{fix}(g)| \leq (|\Delta| - 2)|\Delta|^{t-1}\]

and the bound is met if and only if \(g \) is \((H \wr \text{Sym}(t))-\)conjugate to

\[(x, 1, \ldots, 1),\]
where \(x \) is a transposition in \(H \). See for example [10, Section 3].

We now use Eqs. (4.4) and (4.5) and their characterisation of equalities to the elements \(g_1, g_2, g_3 \). Suppose that \(\pi_1, \pi_2, \pi_3 \neq 1 \). Using Eqs. (4.4), we get \(|\Omega| \leq \sum_{i=1}^{t} |\text{fix}(g_i)| \leq 3|\Delta|^t - 1 < |\Delta|^t = |\Omega| \), a contradiction. Suppose next that \(\pi_1 = 1 \) and \(\pi_2, \pi_3 \neq 1 \). Using Eqs. (4.4) and (4.5), we get \(|\Omega| \leq \sum_{i=1}^{t} |\text{fix}(g_i)| \leq (|\Delta| - 2)|\Delta|^{t-1} + 2|\Delta|^{t-1} = |\Delta|^t = |\Omega| \). In particular, \(|\text{fix}(g_1)| = (|\Delta| - 2)|\Delta|^{t-1} \) and \(|\text{fix}(g_2)| = |\text{fix}(g_3)| = |\Delta|^{t-1} \). Using the characterisations above it is easy to conclude that \(G = \text{Sym}(\Delta) \wr \text{Sym}(2) \) or \(G = \text{Sym}(\Delta) \wr \text{Sym}(3) \). In both cases, \(d(G) = 2 \), a contradiction.

Relabelling the indexed set \(\{1, 2, 3\} \) if necessary, we may assume \(\pi_1 = \pi_2 = 1 \). In particular, \(\pi_3 \) is a \(t \)-cycle and, relabelling the indexed set \(\{1, \ldots, t\} \) if necessary, we may assume \(\pi_3 = (1 2 \ldots t) \).

There exists \(j_1, j_2 \in \{1, \ldots, t\} \) with \(a_{j_1} \neq b_{j_2} \neq 1 \). If \(\text{supp}(a_{j_1}) > |\Delta|/2 \) and \(\text{supp}(b_{j_2}) > |\Delta|/2 \), then there exist \(i \in \{1, \ldots, t\} \) and \(\omega = (\delta_1, \ldots, \delta_t) \in \Delta^t = \Omega \) such that \(\delta_j a_{j_1} \neq \delta_j, \delta_j b_{j_2} \neq \delta_j, \) and \(\delta_i \neq \delta_{i+2} \). In this case \(\omega \in \text{supp}(g_1) \cap \text{supp}(g_2) \cap \text{supp}(g_3) \) and we are done. Therefore, we may assume that there exists \(h \in H \) with \(|\text{supp}(h)| \leq |\Delta|/2 \). The primitive groups with these properties have been classified by Guralnick and Magaard [11, Theorem 1]: \(H \) is an almost simple group and in all cases \(|H/\text{soc}(H)| \leq 2 \). (Here we follow closely the ideas in the proof of Theorem 1.11 Case B.) Then \(G/\text{soc}(G) \leq C_2 \wr C_n \). To conclude the proof we need the following claim.

Claim Let \(X \) be a subgroup of \(C_2 \wr \langle \sigma \rangle \), where \(\sigma = (1, \ldots, t) \in \text{Sym}(t) \). If \(X \) contains an element \(g \) of the form \(g = (c_1, \ldots, c_t) \sigma \), then \(d(X) \leq 2 \).

Let \(W = C_2^t \) be the base of the wreath product \(C_2 \wr \langle \sigma \rangle \) and let \(U = W \cap X \). We can view \(W \) as a cyclic \(\mathbb{F}_p[x] \)-module with \(x \) acting as \(g \) does. As \(\mathbb{F}_p[x] \) is polynomial ring, it is a principal ideal domain, therefore every submodule of \(W \) is cyclic: in particular there exists \(u \in U \) generating \(U \) an \(\mathbb{F}_p[x] \)-module. Thus \(X = \langle g, u \rangle \) and \(d(X) \leq 2 \).

Applying the previous claim with \(G/\text{soc}(G) \) and using [16, Theorem 1.1], we deduce \(d(G) = \max\{2, d(G/\text{soc}(G))\} = 2 \), but this contradicts \(d(G) = 3 \). \(\square \)

5. Direct product of non-abelian simple groups

Let \(S \) be a finite non-abelian simple group. Given a positive integer \(d \geq 3 \), consider the action of \(\text{Aut}(S) \) on \(S^d \) and let \(\Omega_d \) be the set of \(\text{Aut}(S) \)-orbits on the set of \(d \)-tuples \((x_1, \ldots, x_d) \in S^d \) with the following properties:

1. \(S = \langle x_1, \ldots, x_d \rangle \);
2. for every maximal subgroup \(M \) of \(S \), there exists \(i \in \{1, \ldots, d\} \) with \(x_i \in M \).

Notice that, since \(d \geq 3 \), \(\Omega_3 \) is non-empty, there are several generating \(d \)-tuples in which at least one entry coincides with the identity element. (However, when \(d = 2 \), we have \(\Omega_2 = \emptyset \) by Theorem 1.1.)

We use the notation \(\left[(x_1, \ldots, x_d) \right] \) to denote the \(\text{Aut}(S) \)-orbit containing \((x_1, \ldots, x_d) \in \Omega_d \). We define the graph \(\Gamma_d \) with vertex set \(\Omega_d \) and where two distinct vertices \(\left[(x_1, \ldots, x_d) \right] \) and \(\left[(y_1, \ldots, y_d) \right] \) are declared to be adjacent if and only if, for every \(\gamma \in \text{Aut}(S) \), there exists \(i \in \{1, \ldots, d\} \) (which may depend on \(\gamma \)) such that \(y_i = x_i^\gamma \).
Theorem 5.1. Let $\omega(\Gamma_d)$ be the clique number of Γ_d and let $P_S(k)$ be the probability of generating S with k-elements. We have

$$\omega(\Gamma_d) \leq \frac{P_S(d-1)|S|^{d-1}}{|\text{Aut}(S)|}.$$

Proof. Let $t = \frac{P_S(d-1)|S|^{d-1}}{|\text{Aut}(S)|} + 1$ and suppose, by contradiction, that

$$\omega_1 = [(x_{11}, \ldots, x_{d1}], \omega_2 = [(x_{12}, \ldots, x_{d2}], \ldots, \omega_t = [(x_{1t}, \ldots, x_{dt}]]$$

are $t + 1$ vertices of a clique of Γ_d. Consider the d elements

$$g_1 = (x_{11}, \ldots, x_{1d}), g_2 = (x_{21}, \ldots, x_{2d}), \ldots, g_d = (x_{d1}, \ldots, x_{dt})$$

of S^t. We have that $S^t = \{g_1, \ldots, g_d\}$ and S^t cannot be generated by $d - 1$ elements (by the way in which t is defined, see for example [4] for some details). So $d(S^t) = d$ and we may apply Theorem 1.1: there exists a maximal subgroup M of S^t with $M \cap \{g_1, \ldots, g_d\} = \emptyset$. Now, there are two possibilities:

Case A: M is of “product type”, i.e. there exists $i \in \{1, \ldots, t\}$ and a maximal subgroup K of S such that $M = \{(s_1, \ldots, s_t) \in S^t \mid s_i \in K\}$. In this case, as $M \cap \{g_1, \ldots, g_d\} = \emptyset$, we have $x_{ji} \notin K$ for every $j \in \{1, \ldots, d\}$, but then $\omega_i \notin \Omega_d$ because we are violating the condition (1) above, a contradiction.

Case B: M is of “diagonal type”, i.e. there exist $i, j \in \{1, \ldots, t\}$ with $i \neq j$ and $\gamma \in \text{Aut}(S)$ such that $M = \{(s_1, \ldots, s_t) \in S^t \mid s_j = s_i^\gamma\}$. In this case, as $M \cap \{g_1, \ldots, g_d\} = \emptyset$, we have $x_{kj} \neq x_{ki}^\gamma$ for every $k \in \{1, \ldots, d\}$, in contradiction with the fact that ω and ω_i are adjacent vertices of Γ_d. □

References

Andrea Lucchini, Dipartimento di Matematica Pura e Applicata, University of Padova, Via Trieste 53, 35121 Padova, Italy
E-mail address: lucchini@math.unipd.it

Pablo Spiga, Dipartimento di Matematica Pura e Applicata, University of Milano-Bicocca, Via Cozzi 55, 20126 Milano, Italy
E-mail address: pablo.spiga@unimib.it