A new approach to validate customer satisfaction multi-item measures: the case of shopping goods

Original Citation:

Availability:
This version is available at: 11577/3289709 since: 2020-05-04T09:41:12Z

Publisher:

Published version:
DOI: 10.1080/09593969.2018.1470996

Terms of use:
This article is made available under terms and conditions applicable to Open Access Guidelines, as described at http://www.unipd.it/download/file/fid/55401 (Italian only)
A new approach to validate customer satisfaction multi-item measures: the case of shopping goods

Francesca Bassi, Department of Statistical Sciences, University of Padova, Italy

Abstract

In the field of marketing many objects of interest exist that are not directly observable, nevertheless they can be measured through multi-item measurement scales. These instruments are extremely useful and their importance requires accurate development and validation procedures. The traditional marketing literature highlights specific protocols along with statistical instruments and techniques to be used for achieving this goal. For example, correlation coefficients, univariate and multivariate analysis of variance and factorial analysis are widely employed with this purpose. However, these statistical tools are suited for metric variables but they are adopted even when the nature of the observed variables is different, as it often occurs, since in many cases the items of which the scale is made up are ordinal. Latent class analysis takes explicitly into account the ordinal nature of the observed variables and also the fact that the object of interest is unobservable. The aim of this paper is showing how latent class analysis can improve the procedures for developing and validating a multi-item measurement scale for measuring customer satisfaction with reference to a shopping good that is a good characterized by a high level of involvement and an emotional learning, linked to the lifestyle of the customer. The latent class approach explicitly considers both the ordinal nature of the observed variables and the fact that the construct to be measured is not directly observable. Applying appropriate latent class models, important features such as scale dimensionality, criterion and construct validity can be better assessed while evaluating the scale.

Introduction

One of the most important constructs of interest in marketing research is customer satisfaction because firms build a wide part of their competitive advantage on it (Goetsch and Davis, 2014); nevertheless, the concept is not directly observable, cannot be measured by a single item and, like many other relevant objects in the marketing field, it has to be measured through multi-item scales (Oliver and Sharpe, 2010).

Usually, this kind of scales are developed following traditional protocols and the statistical methodology outlined in the literature often does not explicitly take into account the actual nature of the variables involved. For example, many of them are suited for metric variables while the observed variables are often ordinal. In this paper, we show how latent class analysis (McCutcheon, 1987) can improve the development and validation procedures of a multi-item scale with reference to a shopping good, that is a good characterized by a moderate purchase frequency, mid/high-level price and it is linked to the lifestyle of the customer who feels strong involvement and, as a consequence, evaluates goods belonging to this category more often than goods belonging to other categories (Bagozzi and Ruvio, 2011). In particular, latent class analysis considers explicitly both these aspects: the fact that the construct is complex and not directly observable and, in addition, the fact that customer satisfaction is usually measured with ordinal items. A previous work on this topic (Bassi, 2011) reveals that latent class analysis brings to different results from those obtained with the traditional protocol, when applied for assessing validity and reliability properties of a scale for measuring customer satisfaction with reference to an experiential good, like a movie seen at the cinema. Experiential goods distinguish themselves, compared to shopping goods, because they raise weak involvement in the customer even if both experience and shopping goods are characterized by emotional learning. Starting from this evidence, we want to study if such result can occur even when evaluating a multi-item scale related to a shopping good. The scale considered in this paper was designed to measure customer satisfaction with reference to a pair of branded jeans.

The paper is organized as follows. It starts with the description of the multi-item scale considered here; the following section reports the results obtained with the traditional protocols for
validation and the third one is committed to results with the latent class approach. In this section, latent class models for evaluating scale’s validity and reliability are estimated and outcomes of the analyses are reported. The paper finishes with some concluding remarks. Two appendices contain to the complete questionnaire and the specification of latent class models.

A scale to measure customer satisfaction with reference to a shopping good

The scale considered in this paper aims at measuring customer satisfaction with reference to a shopping good represented by a pair of branded jeans. Shopping goods are linked with the lifestyle of the customers who choose them because they reflect both their values and the image they want to show. This kind of goods are characterized by a moderate purchase frequency since they are purchased just occasionally, and have a mid/high-level price. Moreover, the purchase of these goods is preceded by weighting and selection, since customers compare available alternatives on the basis of price level, style and convenience. The degree of involvement (Zaichkowsky, 1985) is strong and the way of learning is emotional (Guido, 2001). Because of their peculiar nature, goods belonging to this category are evaluated more often than the other kinds of goods (Bettman et al., 1991).

The scale considered here is made up of 23 items referring to all phases composing the consumption experience. The questionnaire is reported in Appendix 1. The paradigm used here for defining customer satisfaction can be seen as an extension of the traditional disconfirmation one. In particular, it treats customer satisfaction as the positive result of comparing expectations with the entire consumption experience, and not only with product performance as perceived by customers. This means that the comparative term is extended to include all aspects of consumption experience, not merely product performance (Guido et al., 2007). Indeed, a purchase process can be represented by a sequence of steps that spread from need recognition to post-purchase evaluation (Wilkie, 1994). This sequence of steps describes the entire consumption experience and it is useful in order to develop effective marketing strategies. The steps are the following: need recognition during which the customer perceives a need that must be satisfied usually as a consequence of a gap between the actual condition and the desired one; information search that is the step when information about possible alternatives is collected; evaluation of the alternatives, linked with the evaluation of the available products in order to choose the one that fits better for satisfying the customer’s need; purchase decision, that is the act of purchasing; and post-purchase evaluation during which the chosen product is evaluated taking into account the entire consumption experience; this last stage is really important because it can have a strong impact on firm’s competitive advantage.

The items can be grouped considering each different phase of the consumption experience, this leads to five sets of items. Items named E1-E2 relate to the initial phase of consumption experience when the customer recognizes to have a specific need to be satisfied and explores aspects of major influence on it. Items R1-R6 regard the phase of collecting information and the ways through which this is achieved, pointing out parameters considered for evaluating information themselves, such as clearness, reliability, accessibility and so on. Items V1-V4 are linked with the third phase of comparing different options and examining standards used by customers for selecting between them. Items U1-U5 regard purchase evaluation focusing on what makes customers buy a specific product. Finally, items P1-P6 refer to post-purchase evaluation. In addition, in order to evaluate criterion and construct validity four more items were included. Item S1 intends to measure customer satisfaction with reference to the entire consumption experience. Items C1, C2 and C3 concern repurchase intention, positive word of mouth and absence of complaints. Respondents were asked to express their judgement on each item on a seven-point Likert scale where 1 means “completely not satisfied” and 7 “completely satisfied”.

Data were collected on a (non-probabilistic) sample of 300 units since a list of buyers of branded jeans was not available and so a probabilistic sampling design was not applicable. Many
questionnaires (250) were administered by an interviewer out of retail stores selling branded jeans, while the remainders 50 ones were sent by e-mail (Bassi and Guido, 2006). Although we deal with a convenience sample, the interviewer exploited his own experience to obtain a sample of buyers as most representative as possible of the reference population.

At the beginning, scale properties were evaluated using traditional protocols (De Vellis, 1991), focusing on scale reliability and validity. With reference to scale reliability – the property of the instrument to obtain consistent results over time and over equivalent samples, item-to-total correlation coefficients were higher than 0.30. Cronbach’s alpha was equal to 0.893 and split-half indexes of internal consistency like, Split-half R, Spearman-Brown Y and Guttman G, took on the following values 0.674, 0.806 and 0.805 respectively, showing up that the scale could be considered reliable. Further analyses based on split-half sample procedures led to the same conclusions. Indeed, comparing values assumed by reliability coefficients above mentioned, reported in Table 1, it could be seen they don’t significantly differ between the two subsamples obtained splitting the starting set of 300 units; moreover, the means of the items and of the total scale score were not statistically different in the two subsamples since the p-values associated with the t-statistic were higher than 0.05.

Table 1 about here

For what concerns validity, a popular definition is that given by Messick (1989): “an integrated evaluative judgment of the degree to which empirical evidence and theoretical rationales support the adequacy and appropriateness of inferences and actions based on test scores or other modes of assessment”. Four different types of validity are usually considered in the protocols for scale validation. Construct validity refers to how well a particular test can be shown to assess the construct that is said to be measured; content validity evaluates how well the test scores adequately represent the content domain; concurrent validity is the extent to which individual scores on a new test correspond to scores on an established test of the same construct, nomological validity refers to the set of relationships between constructs and between consequent measures.

In order to assess concurrent validity, an additional item (S1) was introduced asking respondents to express their satisfaction with the entire consumption experience. Both correlation analysis and analysis of variance were carried out. On one hand, the correlation coefficient between the average scale score and the criterion variable was equal to 0.721. On the other hand, the analysis of variance suggested that the average scale scores within groups defined by the levels of the criterion variable were statistically different from one another due to the high F-statistic value (F = 65.949, p < 0.001), confirming the property of concurrent validity.

For evaluating nomological validity, three additional items were included in the questionnaire. Each of them aimed at measuring constructs theoretically linked with customer satisfaction; in particular, repurchase intention, positive word of mouth and absence of complaints. Like criterion validity, even construct validity was assessed using correlation analysis and analysis of variance. The results obtained carrying out these two kinds of analyses, defined within traditional protocols, were the following. Correlation coefficients between the total scale score and the additional items C1, C2 and C3 were 0.628, 0.700 and 0.602, respectively; while the analysis of variance’s outcome showed that different levels of satisfaction had a statistically significant effect on control variables. Our total scale score was classified into three categories: low (total score ≤ 99), medium (100 – 122) and high (≥ 123), according to the quartiles of the distribution. Furthermore, post-hoc tests led to conclude that the average scores on additional items increased significantly when satisfaction level becomes higher, concluding that construct validity was confirmed.

Content validity was evaluated by means of a qualitative method: a panel of experts were asked to discuss the rationale and the wording of the items of the questionnaire during some focus groups and answering to an exploratory survey with open questions. Construct validity was assessed through factor analysis. Traditional factor analysis highlighted the presence of one latent factor
capable of explaining about 32% of the variance between items with factor loadings higher than the threshold equal to 0.35. This result led to conclude that the construct to be measured was unidimensional.

The goal of this paper is discussing these results showing how latent class analysis can improve the evaluation of a scale for measuring customer satisfaction with reference to a shopping good. This approach differs from the traditional one just described since it considers explicitly the ordinal nature of the observed variables and the fact the object to be measured that is customer satisfaction, is not directly observable.

Scale evaluation with latent class models

Latent class (LC) analysis provides models that consider explicitly the fact that one or more latent variables exist which are not directly observable when studying relationships between observed variables, and take into account the categorical nature of these variables. Since items which made up a measurement scale often generate ordinal variables and the construct to be measured is not directly observable, these models seem to fit well in order to develop and validate a multi-item scale in the field of marketing (Bassi, 2011). Traditional methods and statistical tools widely used to assess scale properties do not reflect the real nature of the variables involved; consequently, they might produce misleading results. For example, in a previous work (Bassi, 2011), considering a scale for measuring customer satisfaction with reference to an experiential good, a film seen at the cinema, the results obtained using latent class analysis showed that traditional protocols were not robust enough. Considering these evidences, we want to study what happens when evaluating a scale for measuring customer satisfaction with reference to a different kind of good, such as a shopping one, like a pair of branded jeans.

Latent class models were introduced by Lazarsfeld and Henry (1968) to express latent attitudinal variables from dichotomous survey items, then they were extended to nominal variables by Goodman (1974a, 1974b), who also developed the maximum likelihood algorithm for estimating latent class models that serves as the basis for many software with this purpose. Later, these models were further extended to include observable variables of mixed scale type, like ordinal, continuous and counts.

Latent class models estimated in this paper are the latent class cluster model, the latent class factor model and the latent class regression model, these models are specified in detail in Appendix 2.

The purpose of this paper is discussing the results obtained following traditional protocols for developing and validating a multi-item measurement scale with reference to a shopping good that is a pair of branded jeans, taking into account that traditional statistical tools employed are suited for metric variables and may not be adequate when items generate ordinal variables. Moreover, they don’t consider explicitly the unobservable nature of the latent variable that is customer satisfaction. Consequently, a different approach based on latent class analysis may improve scale evaluation since it considers both these aspects, and lead to different outcomes revealing that traditional methods might not be adequate enough to carry out this kind of analyses. This is what happened when considering a multi-item measurement scale with reference to an experiential good, a film seen at the cinema (Bassi, 2011). Here, we want to show that such result occurs even for a shopping good, that is a good characterized by a stronger involvement than the ones belonging to the experiential category, and that, consequently, leads to a different type of consumption experience.

The aspects considered in this paper in order to evaluate the scale adopted are internal consistency, scale dimensionality, along with construct validity and concurrent and nomological validity. All these features are important scale properties and are assessed here using latent class models. In particular, latent class factor models are used in order to evaluate scale dimensionality (if a scale is multidimensional internal consistency should be assessed for each of construct
dimensions; Churchill, 1979); latent class cluster models are employed to evaluate concurrent validity; finally, latent class regression models are involved for studying nomological validity\(^1\).

Scale dimensionality

The first feature studied with the support of latent class analysis is scale dimensionality. In order to determine the number of dimensions underlying the construct to be measured, several latent class factor models were estimated including an increasing number of factors. Looking at Table 2, according to the \(p\)-values associated with the \(L^2\)-statistics, indicating the amount of association between observed variables which remains unexplained after estimating the model, the two-factor and three-factor models were selected. Besides this, \(L^2\) value decreases significantly when the number of latent factors changes from two to three and even the BIC index leads us to conclude that the model with three latent factors is the one that fits better, because it takes on the lowest value among the models which show an adequate fit \((p > 0.05)\).

Looking at the factor loadings in Table 3 and taking into account the content of each item, the first factor is linked to items E1 and R3 and can be interpreted as the capability of advertising to involve customers and catch their attention; the second one, linked to items E2, R2, V2, V3, V4, U1, U4 and P1, refers to wearability and image communicated through the product itself; finally the third factor that is linked to items R1, R4, R5, R6, V1, U2, U3, U5, P2, P3, P4, P5 and P6, represents the quality of the good even in relation with its price.

This outcome is quite different compared to the one obtained previously following traditional protocols. Indeed, traditional factor analysis which is suited for metric variables suggested the presence of one single factor underlying the construct to be measured and the scale seemed to be unidimensional. On the contrary, using a different approach based on latent class analysis it is obtained that customer satisfaction is multidimensional. This is an important evidence with reference to construct validity: our assessed instrument measures three distinct concepts, although all strictly linked to customer satisfaction across the complete consumption experience. This means that the final judgment of satisfaction of the customer is composed by a comparative evaluation of expectations with perceived performance with reference to various features of the consumption experience not merely with reference to post-purchase aspects. This evidence, moreover, suggests that scale reliability should be assessed for each one of these three dimensions in order to avoid misleading results. Cronbach’s alpha coefficients calculated separately for each dimension took on the values 0.800, 0.840, 0.855, respectively, so it can be concluded the scale has the property of being reliable.

Concurrent validity

A different approach than the traditional one based on statistical tools like correlation coefficients and analysis of variance, both suited for metric variables, was followed to assess concurrent validity. Again, the new approach is based on latent class analysis. Taking into account the ordinal nature of the observed variables, several latent class cluster models were estimated for characterizing the latent variable, which was then related to item S1, the criterion variable which

\(^1\) All results were obtained with the software Latent Gold 5.0 (Vermunt and Magidson, 2013)
measures customer satisfaction with reference to the entire consumption experience. This approach lets us to consider explicitly that customer satisfaction is not directly observable.

Table 4 about here

As above said, a set of latent class cluster models with an increasing number of classes, representing customers with different levels of satisfaction, were estimated. Looking at Table 4, according to the \(p \)-values associated with the \(L^2 \)-statistic, two models fit better than the others, the model with three and the model with four latent classes. The amount of association between the observed variables remaining unexplained after estimating the model decreases significantly when the number of classes changes from three to four, so the latter model fits best to the data. Even the BIC value leads us to conclude that the four-class model is the one with the best fit.

Consequently, the latent variable can be described by four different classes of customers with different satisfaction levels, each one of these classes is large enough to be considered relevant for the purpose of the analyses and the profile of customers who belong to them is quite different. In particular, see Table 5, the largest class is composed of 44.4% of the sample and individuals belonging to it have a medium level of satisfaction (4.86). There is a class which includes just 8.2% of the sample with an average satisfaction level equal to 4.76. These customers are particularly unsatisfied with the capability of advertising to involve them and to catch their attention, but at same time, they are really satisfied about the quality of the good, even in relation with its price. These peaks are absent when we consider customers belonging to the largest class, thus these first two clusters are quite different. It is worth noting that the difference of the average satisfaction values in these two classes is not statistically significant, however this same level of satisfaction is attained with distinct processes as the average values of the items in the two classes listed in Table 5 indicate. In addition, we have two classes with opposite satisfaction levels since the first, of size equal to 24.6%, is described by the highest satisfaction level (5.57) and the latter, composed of 22.8% of the sample, includes respondents characterized by the lowest level of satisfaction, equal to 3.69. Another interesting result is that all items contribute in a significant way towards the ability to discriminate between clusters, since the \(p \)-values associated with the Wald statistic, used for testing the null hypothesis stating that all the effects associated with each indicator equal to zero, are always less than 1%.

Table 5 about here

The latent variable just described was then studied in relation with the criterion variable by means of the Pearson Chi-squared test and the Goodman and Kruskal Gamma index. Both these tools are suited for ordinal variables and show a significant association between them, the latent variable and criterion variable (item S1). On one hand, the Pearson Chi-squared test statistic is equal to 181,585 with an associated \(p \)-value which takes on a value lower than 0.001; on the other hand, Goodman and Kruskal Gamma is equal to 0.665, confirming in both cases the concurrent validity property for our scale.

Nomological validity

The last feature taken into account here in order to study the properties of the scale is nomological validity. For improving scale evaluation, a different procedure based on the latent class regression model was adopted. The main difference between this kind of regression model and the traditional one is that the first allows for different causal relationships between observed variables among latent classes. The purpose of the analyses is to study if there are any differences in causal relationships between the total scale score and the control variables generated by the additional
items, C1, C2 and C3, given a specific latent class. Moreover, latent class regression models consider the ordinal nature of the dependent variables generated by the additional items, thus, as a consequence, latent class analysis is still more adequate for studying this sort of relationships compared to traditional correlation coefficients and analysis of variance.

To achieve this goal, a set of latent class regression models were estimated including an increasing number of latent classes representing customers with different satisfaction levels. According to the BIC index, for all three additional items C1, C2 and C3, models with just one latent class show the best fit, this means that the causal relationship between the total scale score and each one of these three variables is the same for the whole sample. Furthermore these relationships are positive and statistically significant, as it can be seen in Table 6 which reports regression coefficients and associated z-values.

This procedure replaces the traditional approach based on statistical instruments such as correlation coefficients and analysis of variance which are suited for metric variables and not take explicitly into account the fact that the latent variable is unobservable.

Another proof of association between control variables and customer satisfaction was obtained computing Goodman and Kruskal Gamma cograduation coefficients. They were equal to 0.603, 0.695 and 0.522 for items C1, C2 and C3, respectively; thus, there is cograduation between the latent variable defined previously with the support of the traditional latent class cluster model and each one of these items. Gathering these outcomes, it looks like that even nomological validity is confirmed.

Comparing results: a summary

The main difference in validating the multi-item scale to measure satisfaction with reference to the entire consumption experience of a pair of branded jeans with a traditional approach and with latent class models is related to scale dimensionality and construct validity. Factor analysis identifies one latent construct underlying observed items, that can be interpreted as overall satisfaction with the consumption experience. The estimation of a latent class factor model identifies three distinct unobservable constructs: the first one can be interpreted as satisfaction with advertising, the second one as satisfaction with wearability and image communicated by the use of the product, and the third one as satisfaction with quality in relation with price. This result suggests that the scale is multidimensional and reliability has to be evaluated with reference to each of the constructs that are measured.

The scale is shown to have the properties of concurrent and nomological validity with both approaches. However, applying latent class models we are more secure of these results since we treat the variables as ordinal and we consider satisfaction as a not directly observable phenomenon.

Conclusions

The aim of this paper is showing how latent class analysis can improve multi-item scale evaluation when we consider a scale for measuring customer satisfaction with reference to a shopping good, a kind of good characterized by a strong involvement and an emotional learning especially due to the mid/high-level price and the fact these goods are linked with the lifestyle of the customer. Such an evidence arose in a previous work about a scale with reference to an experiential good, a film seen at the cinema, characterized by a weaker degree of involvement than the shopping good considered here, determining a different kind of consumption experience. However, this occurs even when considering a pair of branded jeans, a product that belongs to the shopping category, as we do in
this paper. The assumptions that latent class analysis makes reflect more accurately the nature of the observed variables taking into account the fact they are ordinal and let us consider explicitly that the construct to be measured, that is customer satisfaction, is a latent variable which is not directly observable. These are the main differences between the latent class approach and procedures defined within traditional protocols, based on statistical tools better suited for metric variables which do not often consider explicitly that customer satisfaction is a construct not directly observable. As a consequence, latent class analysis is more adequate for scale evaluation and development and sometimes leads to different conclusions compared with outcomes of traditional analyses.

The data used here were obtained administering a scale for measuring customer satisfaction with reference to a branded pair of jeans to a sample of 300 customers. The scale considers all phases of which consumption experience is made up.

Within the new approach based on latent class analysis, latent class factor models were used for studying scale dimensionality and construct validity, latent class cluster models for assessing concurrent validity and latent class regression models in order to evaluate nomological validity.

The outcomes of the analyses, as above mentioned, do not always confirm what was obtained following traditional protocols. In particular, a scale judged unidimensional revealed as multidimensional instead, thus reliability issue should be assessed for each dimension separately. Furthermore, this new approach provided additional information about traits like customers’ profile and relationships between customer satisfaction and other variables theoretically liked with it, like repurchase intention, positive word of mouth and absence of complaints. In any way the scale and its components were judged valid and reliable even adopting a latent class approach.

An important result achieved estimating latent class models is the identification of a small group of customers, those in class 4 of Table 5 with the same average level of satisfaction of the bigger segment represented by class 1 but with very different judgments on many of the aspects involved in the consumption experience. This small group of customer is, for example, critical towards product advertising while they appreciate brand and quality. The greatest difference between the customers in classes 1 and 4 relates to their satisfaction with the first latent factor measured with the scale, the factor representing the capability of advertising to involve customers and catch their attention. This information might be particularly useful for planning future targeted marketing strategies.

Concluding, the new procedure based on latent class analysis disclosed its usefulness and potential for evaluating and developing multi-item scales, suggesting its application in this field even when considering a shopping good. The results presented in the paper suggest that latent class analysis may be used in combination with traditional methods to improve validity and reliability of multi-item scales.
Appendix 1.: Final questionnaire

A scale to measure customer satisfaction with reference to shopping goods

<table>
<thead>
<tr>
<th>Code</th>
<th>How much am I satisfied about…</th>
<th>Completely unsatisfied</th>
<th>Completely satisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>… the way the strong advertising campaign involved me?</td>
<td>1 2 3 4 5 6 7</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>… product’s style: the degree of adherence to new fashions and trends?</td>
<td>1 2 3 4 5 6 7</td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>… information search through business sources regarding product’s manufacturing?</td>
<td>1 2 3 4 5 6 7</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>… information search through business sources regarding product’s aesthetic features (color and shape)?</td>
<td>1 2 3 4 5 6 7</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>… strong advertising campaign’s capability to catch my attention?</td>
<td>1 2 3 4 5 6 7</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>… shop’s personnel’s competence in describing product’s features?</td>
<td>1 2 3 4 5 6 7</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>… clearness of information included on the label?</td>
<td>1 2 3 4 5 6 7</td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Screening question:

Think of a purchase experience with reference to a pair of branded jeans with a strong advertising campaign.

WARNING: If the respondent does not have this kind of experience, thank him/her and close the interview. Otherwise proceed with it.

First of all, we want to thank you for your kind cooperation. We are carrying on a research about customer satisfaction with reference to consumption experiences. We inform you that all your answers will be completely anonymous and data collected about your personal information will be just used for statistical purposes. We ask you to answer _all questions_ honestly (don’t omit any question) as we consider your opinions really important.
<table>
<thead>
<tr>
<th>Column</th>
<th>Question</th>
<th>Scale 1</th>
<th>Scale 2</th>
<th>Scale 3</th>
<th>Scale 4</th>
<th>Scale 5</th>
<th>Scale 6</th>
<th>Scale 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>R6</td>
<td>… information I gathered with reference to brand image in terms of quality?</td>
<td>☐ ☐ ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1</td>
<td>… product’s perceived quality compared with that of the alternatives available on the market?</td>
<td>☐ ☐ ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2</td>
<td>… the presence of wanted features in the product compared with the alternatives available on the market?</td>
<td>☐ ☐ ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V3</td>
<td>… the notoriety of the chosen branded jeans compared with that of the other branded jeans available on the market?</td>
<td>☐ ☐ ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V4</td>
<td>… the wearability of the chosen branded jeans compared with that of the other branded jeans available on the market?</td>
<td>☐ ☐ ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>… the shop being modern and comfortable?</td>
<td>☐ ☐ ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2</td>
<td>… the outlet’s personnel’s being willing?</td>
<td>☐ ☐ ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U3</td>
<td>… product’s price-quality ratio?</td>
<td>☐ ☐ ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U4</td>
<td>… the image communicated through the jeans of the chosen brand?</td>
<td>☐ ☐ ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U5</td>
<td>… the price paid with relation to the offer (that is not only considering the product itself but also the warranty, brand image and so on)?</td>
<td>☐ ☐ ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>… the overall performance (wearability) of the chosen branded jeans I actually perceived in their using?</td>
<td>☐ ☐ ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>… the degree to which collected information regarding the chosen branded jeans were confirmed?</td>
<td>☐ ☐ ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>… product reliability I actually perceived in its using?</td>
<td>☐ ☐ ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>… product’s capability to keep its features like color, shape and dimensions as they are?</td>
<td>☐ ☐ ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>… product’s convenience?</td>
<td>☐ ☐ ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>How much am I satisfied about…</td>
<td>Completely unsatisfied</td>
<td>Completely satisfied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>… my own entire consumption experience with relation to the jeans of the chosen brand?</td>
<td>1 2 3 4 5 6 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>How much do I agree with the following statements?</th>
<th>I fully DON’T agree</th>
<th>I fully agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>I’m going to purchase the product again</td>
<td>1 2 3 4 5 6 7</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>I will speak well about the consumption experience I had with the product</td>
<td>1 2 3 4 5 6 7</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>I do not have any complaints about any aspects of the consumption experience I had with the product</td>
<td>1 2 3 4 5 6 7</td>
<td></td>
</tr>
</tbody>
</table>

For classifying previous data, finally answer the following questions:

<table>
<thead>
<tr>
<th>Code</th>
<th>Personal information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEX</td>
<td>Sex</td>
</tr>
<tr>
<td></td>
<td>1 [] Male</td>
</tr>
<tr>
<td></td>
<td>2 [] Female</td>
</tr>
<tr>
<td>AGE</td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td>Fill in your age (in years): ____________</td>
</tr>
</tbody>
</table>

The questionnaire is over. Thank you for your kind cooperation again.
A traditional latent class cluster model, with one latent variable and four nominal indicators, for example, can be expressed with the following equation (1):

$$\pi_{ijkl}^{ABCDX} = \pi_t^X \pi_i^{A|X} \pi_j^{B|X} \pi_k^{C|X} \pi_l^{D|X},$$

where π_{ijkl}^{ABCDX} is the proportion of units in the five-way contingency table; π_t^X is the probability of being in latent class $t = 1, \ldots, T$ of variable X; $\pi_i^{A|X}$ is the conditional probability of obtaining the ith, $i = 1, 2, \ldots, I$, response to item A from members of latent class t; $\pi_j^{B|X}$, $\pi_k^{C|X}$, $\pi_l^{D|X}$, $j = 1, 2, \ldots, J$, $k = 1, 2, \ldots, K$, $l = 1, 2, \ldots, L$, are the conditional probabilities of item B, C, D respectively. An important assumption is that of local independence, that is, given a latent class, the indicators are independent from one another.

Haberman (1979) demonstrated that the model just described is equivalent to a hierarchical log-linear model with the following form (2):

$$\ln F_{ijkl}^{ABCDX} = \lambda + \lambda_i^X + \lambda_j^B + \lambda_k^C + \lambda_l^D + \lambda_{it}^{AX} + \lambda_{jt}^{BX} + \lambda_{kt}^{CX} + \lambda_{lt}^{DX},$$

where F_{ijkl}^{ABCDX} is the absolute frequency in the generic cell of the five-way contingency table; $\lambda_i^X, \lambda_j^B, \lambda_k^C$ and λ_l^D are the first-order effects and $\lambda_{it}^{AX}, \lambda_{jt}^{BX}, \lambda_{kt}^{CX}$ and λ_{lt}^{DX} are the second-order or interaction effects. The link between the parameters of these two representations of the same model can be expressed as follows (Haberman, 1979; Heinen, 1993):

$$\pi_{it}^{A|X} = \frac{\exp(\eta_{it}^A)}{\sum_{t'=1}^T \exp(\eta_{t'|it}^A)},$$

with

$$\eta_{it}^A = \lambda_i^A + \lambda_{it}^{AX}.$$

The same holds for the other indicators B, C and D. If the observed variables are nominal there is no need for further restrictions except for dummy or effect coding constraints in order to let the parameters be identifiable. On the contrary, if the observed variables are ordinal this aspect is taken into account restricting the two-variable log-linear parameters appearing in the logistic form of $\pi_{it}^{A|X}$ using the category scores y_i^A, that is the score y assigned to the ith response to item A, in the following way $\lambda_{it}^{AX} = \lambda_i^X y_i^A$.

Rejection of a traditional T-class latent class cluster model because it doesn’t fit well, means that the local independence assumption does not hold with T classes. In such cases, a model with $T + 1$ classes is fitted to the data; however different model-fitting strategies may be adopted in order to obtain a model that fits better, for example increasing the number of latent variables rather than latent classes. This leads to an important extension of traditional latent class cluster model that is the latent class factor model (Magidson & Vermunt, 2001). Traditional latent class cluster models containing four or more classes can be interpreted in terms of two or more component latent variables by treating those components as a joint variable. For example a latent variable X consisting of $T = 4$ classes can be re-expressed in terms of two dichotomous latent variables $V = \{1, 2\}, W = \{1, 2\}$ using the following correspondences: $X = 1$ corresponds with $V = 1$ and $W = 1$; $X = 2$ with $V = 1$ and $W = 2$; $X = 3$ with $V = 2$ and $W = 1$; $X = 4$ with $V = 2$ and $W = 2$. Formally, for four nominal variables, the four-class latent class cluster model can be
reparameterized as an unrestricted latent class factor model with two dichotomous latent variables as follows (4):

$$
\pi_{ijkrts}^{ABCDVW} = \pi_{rs}^{AV} \pi_{ijkt}^{BCD|VW} = \pi_{rs}^{VW} \pi_{ijkt}^{A|VW} \pi_{rs}^{B|VW} \pi_{rs}^{C|VW} \pi_{rs}^{D|VW}.
$$

Again, there is an equivalent hierarchical log-linear representation of this model, which is (5);

$$
\ln F_{ijkt}^{ABCDVW} = \lambda + \lambda^V + \lambda^W_s + \lambda^V_x + \lambda^B + \lambda^C + \lambda^D + \lambda^AV + \lambda^BV + \lambda^CW + \lambda^DV + \lambda^AW + \lambda^BW + \lambda^CV + \lambda^BW + \lambda^AW + \lambda^BW + \lambda^CW
$$

The main advantage of this basic latent class factor model is a consequence of the following result: it turns out that the number of distinct parameters of a basic latent class factor model is the same as an LC cluster model with only \(R \) classes; so it allows a specification of a \(2^R \) -class model with the same number of parameters as a traditional latent class cluster model with only \(R \) classes. This offers a great advantage in parsimony over traditional latent class cluster models and let the parameters be identifiable even when traditional latent class cluster model parameters are not.

To take into account the fact that the latent factors are dichotomous or ordinal, conditional response probabilities, for example \(\pi_{ij}^{A|VW} \), are restricted by means of logit models with linear terms:

$$
\eta_{ijr,s}^{A} = \lambda^A_i + \lambda^AV_{ir} x^V_r + \lambda^AW_{is} x^W_s.
$$

As it can be seen, the two-variable terms \(\lambda^AV_{ir} \) and \(\lambda^AW_{is} \) are restricted using the category scores \(x^V_r \), \(x^W_s \), that is the scores \(x \) assigned to the \(r \)th and the \(s \)th category of factor \(V \) and \(W \), respectively.

Another kind of non-traditional latent class model is the latent class regression model (see, for example, Agresti, 2002; Vermunt and Van Dijk, 2001; Wedel and DeSarbo 1994; Wedel and Kamakura, 1998).

The main difference between this model and the other two described above is that the latent class regression model has just one dependent variable which may be measured repeatedly on a single unit. Another difference regards the distinction between the two types of exogenous variables which may be included in the model. The ones affecting the latent variable, called covariates, and the ones affecting the dependent variable, called predictors. This model differs from traditional regression models because it allows for different causal relationships between observed variables among latent classes, since it considers explicitly the presence of a latent variable interacting with the dependent one.

The most general probability structure of a latent class regression model takes on the form (8):

$$
f(y_i|x_i^{cov}, z_i^{pred}) = \sum_{x=1}^{K} p(x|z_i^{cov}) \prod_{t=1}^{T_i} f(y_{it}|x, z_{it}^{pred}),
$$
where \(y_{it} \) is the value of the dependent variable observed on unit \(i \) at occasion \(t \); \(T_i \) is the number of observations on unit \(i \); \(z_{i}^{\text{cov}} \) is a vector of covariates and \(z_{i}^{\text{pred}} \) is a vector of predictors.

A special case of this model is when we have just one replication for each case and there are no covariates interacting with the latent variable. Such a model is the one used here for studying construct validity and it is described by the equation (9):

\[
f(y_i | z_{i}^{\text{pred}}) = \sum_{x=1}^{K} P(x) f(y_i | x, z_{i}^{\text{pred}}).
\]

(9)

References

