
Skeleton estimation and tracking by means of depth
data fusion from depth camera networks

Marco Carraroa, Matteo Munaroa,b, Emanuele Menegattia

aUniversity of Padova, Via G. Gradenigo 6/A, Padova, Italy
bFyusion Inc.

Abstract

In this work, we describe an approach for estimation and tracking of the skeleton

of the human body from camera networks exploiting only depth data. The algo-

rithm takes advantage of multiple views by building and merging together the

3D point clouds. The final skeleton is computed from a virtual depth image gen-

erated from this point cloud by means of back-projection to a reference camera

image plane. Before the back-projection, the person point cloud is frontalized

with respect to the reference camera, so that the virtual depth image represents

the person from a frontal viewpoint and the accuracy of the skeleton estima-

tion algorithm is maximized. Our experiments show how the proposed approach

boosts the performance with respect to other state-of-the-art approaches. More-

over, the proposed algorithm requires low computational burden, thus running

in real-time.

Keywords: multi-view skeletal tracking, markerless human body pose

estimation, depth data, frontalization, camera networks

1. Introduction

Human Body Pose Estimation (H-BPE) in single and multi-camera networks

is a hot research topic since a long-time, due to its importance to fields as

Action Recognition [1], Entertainment [2], Rehabilitation [3], Human-Computer

Interaction [4] and Robotics [5]. The most common solution to this problem,5

in the so-called ”motion-capture systems”, is to have the user to wear a special

Preprint submitted to RAS - SI on IAS August 14, 2018

suit or a set of markers that can be easily detected and that approximate the

performer motion.

While this solution provides very good results in terms of accuracy (usually

with an accuracy of a millimeter), it is often unfeasible to use in real-world10

scenarios, in particular, when real-time processing of the motion is needed.

Moreover, the set of markers to be weared encumbers the user movements,

impacting his/her performance. For those reasons, marker-less motion capture

systems would be preferred and have been also studied. In particular, many

efforts have been put in RGB-based human BPE, since RGB cameras are very15

common and cheap. To this end, recently, new computational capabilities and

deep neural networks allowed to solve this problem with detection accuracy

approaching that of marker-based systems [6, 7]

At the same time, RGB-only solutions heavily rely on the lighting of the

scene. In many real-world applications as automated assembly in industrial ap-20

plication lines or in theaters, it is not always possible to guarantee enough light

to obtain useful RGB information. In the literature, this problem is commonly

overcome by using depth images as the input data. Nevertheless, if this data

are obtained by passive sensors as stereo-cameras, they suffer from the same

aforementioned problems of scarcity of light. On the other hand, active cam-25

eras do not rely on the visible light. They project an infrared pattern useful to

triangulate and generate depth information, as the Microsoft Kinect v1, or use

an array of emitters and measure the phase shift of the returning signal, as the

Microsoft Kinect v2 [8].

In this work, we are proposing a marker-less solution to the human BPE30

problem. In particular, the solution we will describe uses depth-only information

to be reliable in most light conditions and it best exploits a single-view state-

of-the-art depth-based skeletal tracker by using a frontal view warping of each

subject. The novelty of this work is two-fold:

• we enhance the performance of a state-of-the-art depth-based skeletal35

tracker.

2

• we propose a novel pose-invariant algorithm for solving the human BPE

problem in multi-camera scenarios.

The remainder of the paper is organized as follows: in Section 2 we will

review the state-of-the-art of both single and multi-view human body pose es-40

timation. Section 3 describes the algorithm details, while in Section 4 we will

validate our approach with experiments done with two different persons. Finally,

in Section 5 we will draw our conclusions and describe the future work.

2. Related Work

Research about BPE is active in both single and multi-camera scenarios. In45

this section we will discuss about both.

2.1. Single-view skeletal tracking

Since it is way easier and cheaper to deal with a single sensor, most of the

BPE research is focused on this category. Recent years have seen a general

improvement from the quality point of view thanks to advances in the machine50

learning field, in particular with deep learning solutions. As an example, Con-

volutional Neural Networks (CNNs) showed great success when trained on very

large datasets with sufficient texture information as with RGB images. The

impressive quality result is usually paid in terms of the final framerate achiev-

able. Nevertheless, this limitation is going to be leveraged by using new efficient55

network architectures.

In this context, the work of Cao et al [6] was one of the first to reach real-

time performance by using an architecture which jointly computes the body

part locations of all the persons in an image together with their Part Affinity

Fields (PAFs). This approach is similar to the work of Insafutdinov et al [9],60

while it is more efficient, since it associates the different body parts using a fast

greedy algorithm which exploits the computed PAFs.

On the other hand, the availability of different types of data as the depth in-

formation, gives the possibility of being more robust to light conditions, tracking

the persons’ skeleton more reliably.65

3

In [2], the Microsoft Kinect skeletal tracker is described. The authors trained

a random forest to classify the pixels of a depth image as belonging to different

human body parts or not. The final algorithm works in real-time and has been

adopted by Microsoft in its entertainment applications. The algorithm is closed-

source, but is available with Windows-only computers through the Microsoft70

Kinect SDK.

A similar work was released as open-source in the Point Cloud Library1[10]

by Buys et. al [11]. In this work, we adopt this skeletal tracker as part of our

pipeline, by enhancing its performance using a prior people detection step.

Another famous skeletal tracker which uses depth information to compute75

the skeleton is the NiTE skeletal tracker, which is closed-source and licensed

by the Israeli PrimeSense, acquired by Apple in 2013. Unfortunately, given its

nature, we have no information on how this skeletal tracker works, even if several

works proved that it provides worse results compared to the ones obtained with

other available skeletal trackers.80

In this work, we improve the performances of [11] by combining it with a

people detection module. We also enrich the overall results by introducing an

alpha-beta tracking module.

2.2. Multi-view skeletal tracking

Intelligent BPE systems must deal with occlusions and should cover larger85

areas. For this reason, the direction is towards camera networks which can

exploit multiple views and enlarge the single camera field-of-view. In this way,

it is possible to observe people movements for longer periods enabling BPE to

be useful for different applications as behavior analysis [12], long-term people

re-identification [13, 14] , as well as action recognition [1].90

In [15], each sensor computes the single-view skeleton from the RGB images

which are then fused with the skeleton estimated from the 3D model obtained

using the visual hull technique. Such model is exploited to refine the skeletons

1https://github.com/pointcloudlibrary/pcl

4

https://github.com/pointcloudlibrary/pcl

obtained.

In [16] and [17], the authors used the single view skeletons obtained with as95

a feed to compute the final 3D skeleton exploiting the combination of proposal

from the PBD algorithm. The skeletons are rendered in 3D by means of pro-

jection using each couple of cameras as a stereo couple.

The recent work described in [18]2 is one of the first open-source solutions to

give a general approach for the real-time BPE using RGB-D camera networks100

of different sizes and for multiple people that does not require synchronization

between the cameras. Nevertheless, the skeletal tracker used rely on RGB data,

therefore, illumination may impact the overall skeleton estimation quality. In

order to be robust with different illumination variation the literature rely on

depth or point cloud data to compute the skeleton information.105

Gao et. al[19] solved the BPE problem by registering a point cloud obtained

by two Microsoft Kinects to a 3D model. While the results are very accurate, the

work is not feasible to work in real-time given the high computational burden

of the approach (roughly 6 seconds per frame).

On the other hand, Yeung et al [20] propose a real-time solution for a camera110

network composed of two orthogonal Kinects. While the solution is fast, it is

not clear if it scales to different number and position of sensors.

Our work exploits multiple sensors and their extrinsic calibration in a novel

way. We propose a depth-based fusion of the data gathered by the sensors

which are then frontalized with respect to a reference camera. A virtual depth115

image resulting from the back-projection of the fused points is then fed to a

state-of-the-art depth-based skeletal tracker [11] to estimate the body poses of

the different persons in the scene. Experimental results show that we improved

state-of-the-art performance for different sequences involving different persons.

5

People
DetectorSensor 0

Sensor 1
People

Detector

Cloud
Fusion

Frontal
view warp

Joint estimation

Figure 1: The system overview with a 2-sensor network. At each new frame the sensors in

the network provide the master computer with new synchronized point clouds built from the

depth images. After an initial fusion, the master computer warps the data to a frontal view

in order to obtain the best results and estimate the joint locations of each person in the scene.

3. Algorithm Details120

Figure 2 shows the overview of the system proposed. The input of the

algorithm comes from a camera network composed of a set of sensors C =

{C1, C2, ..., CN} with N ≥ 1, where each Ci provides at time t a frame Fi(t) =

{Di(t), Ii(t)}, where Di(t) is the depth image and Ii(t) is the RGB image. It

is worth noting that the RGB image is here used just to colorize the point125

cloud, but it has no effect on the algorithm results, thus it can be omitted from

Fi(t). Starting from this input, each camera Ci locally computes the point

cloud Pi(t) using its intrinsic calibration matrix Ki. In particular, given a value

di of a point (x, y) ∈ Di(t), it is possible to compute its 3D projection pi as

shown in Equation 1. As a final step, each camera sends the point cloud to the130

master computer. This node is in charge of computing the multi-view result by

fusing the different views. The algorithm requires a set of synchronized clouds

2https://github.com/openptrack/open_ptrack_v2

6

https://github.com/openptrack/open_ptrack_v2

Figure 2: The topology of the camera network. Each sensor is connected to a computer which

is sending its depth information through the network. One of the computers, here called

master computer, is in charge of reading the information from the others and computing the

multi-view body pose estimation. Image courtesy of [21]

P(t) = {CiPi(t) | 1 ≤ i ≤ N} coming from each Ci ∈ C. Whenever a new P(t)

arrives, the master node transforms the different clouds in P(t) in the common

world reference frame using the transformation explained in Section 3.1 and then135

computes the multi-view results as explained in the remainder of the paper. In

order to validate our approach, for the sake of simplicity, the results and each

figure we reported are referred to a 2-camera network, but it is worth noting

that the same approach can be easily applied to a larger number of sensors.

∀Di(t) Pi(t) = {pi = (X, Y, Z, R,G, B) | (X, Y, Z) ∈ R3, (R,G, B) ∈ N3}

di

x

y

1

 = Ki

X

Y

Z

 , pi =

X = (x−cx)di

fx

Y =
(y−cy)di

fy

Z = di

, Ki =

fx 0 cx

0 fy cy

0 0 1

(1)

7

3.1. Network Calibration140

In order to exploit the different sensors in a camera network, the set of roto-

translations between all of them needs to be known. This procedure is usually

referred to as extrinsic calibration of the camera network. In this work, we use

the library described in [21] which extrinsically calibrates the network by using a

checkerboard and then refines the results by exploiting the detection of a person145

in the scene. As a result of this procedure, we fix a world reference frame W,

which is placed with the y-axis pointing to the projection of a reference camera,

here referred to as C0. The set of transformations available in the system at this

point are indicated in the remainder of the paper as TWCi

∣∣
0≤i≤N. In particular,

each transformation TWCi
is the roto-translation to be applied to a point to150

change its reference system from Ci toW. Wherever necessary, we will indicate

a point cloud with the term WP to show that the point cloud P is expressed in

the W reference system. it is worth noting that the reference camera C0, which

in our tests corresponds to a real camera, can also be a virtual one C∗, given

that the user can define its position with respect to other cameras.155

3.2. Single-view skeletal tracking

The work presented in [11] is one of the few open-source depth-based skeletal

trackers. One of the main contribution of this paper is to enhance the results

of [11] by introducing a people detection module prior to the joints estimation.

Although the part based classification provided by [11] is background indepen-160

dent, it is difficult to associate the right joints where the person is, since also

the background pixels are classified as body parts. Background subtraction may

be of interest to solve this issue, but it is only applicable to static cameras and

static backgrounds. For this reason, we decided to exploit the people detection

performed by OpenPTrack [21, 22, 23], which is background independent and165

relies only on depth information to preserve the light invariant capability. As

depicted in Figure 2, the people detection module is run by each detector and

the results are sent to the master computer which is in charge of fusing them.

8

In particular, the master computer needs the cloud data belonging to the per-

sons in the scene. To this end, the people detector message is enriched with the170

point cloud data belonging to each person detected. Since the amount of data

are big and it may result in network congestion, a sub-sampling is performed

by means of voxelization. Indeed, a point cloud of 640x480 points is usually

encoded with 20MB. Since we need the data of all the persons in the scene for

each camera, the data exchanged via network for a frame can easily be of the175

order of hundreds of MegaBytes. By using a voxelization of 0.02 cm as leaf size,

we are approximating each cloud by keeping its surface information, resulting

in a point could encoded with approximately 0.6MB.

3.3. Multi-view Data Fusion

(a) (b) (c) (d)

Figure 3: An example of the cloud fusion performed by the master computer with a 2-camera

network. (a) and (b) depict the single-view point clouds taken from the two cameras, while

(c) and (d) show two different views of the fused point cloud.

At this point, the data are fused and skeletal estimation and tracking is180

performed. Given the set of clouds P(t), each point cloud is referred to the world

reference systemW and they are merged by means of the Iterative Closest Point

algorithm [24] to overcome the possible calibration misalignments. Formally,

9

given the set P(t) the multi-view fusion algorithm computes the point cloud

Pf(t) obtained as explained in Equation 2:185

WPf(t) =
(
TWC0
·C0 P0(t)

) ⊕

1≤i<N

(
Ti
ICP · TWCi

·Ci Pi(t)
)

(2)

where the operator ⊕ operates on two point clouds and returns a new one which

is composed of the union of the two set of points. The transformation Ti
ICP is the

one obtained by the ICP algorithm [24] to align the cloud WPi to the reference

cloud WP0.

As explained in Section 4, the entire algorithm achieves real-time framerates190

using a two Kinect v1 sensor network. Nevertheless, the computational burden

required by Equation 2 is linear in the number of cameras and persons in the

scene. In order to cope with this problem, it is possible to remove the ICP

pre-alignment of the clouds, thus removing the Ti
ICP element from Equation 2.

Indeed, ICP is particularly effective for sensors that have large errors in depth195

estimation when the target distance increases. For smaller camera networks or

camera networks that use other types of sensors (e.g. the Kinect v2), this step

can be skipped, reducing the computational load of the entire pipeline.

3.4. Frontal view warping

Depth-based skeletal trackers are not yet able to achieve the great perfor-

mance shown by their RGB counterparts in presence of occlusions and non-

frontal views. In order to exploit at the best the single-view algorithm, we

perform a frontal view warping of the point cloud Pf(t). Given the point cloud

Pf(t), the goal of the frontal view warping algorithm is to compute Pfv(t) which

is frontal with respect to the reference camera C0. In order to achieve this goal,

we project the points of Pf(t) to the x-y plane of the world coordinate system,

obtaining the cloud Pxyf :

Pxyf =

p =

1 0 0

0 1 0

0 0 0

 · p̂ | ∀p̂ ∈ Pf(t)

 (3)

10

Z
X

Y

v̂

θ

Figure 4: The frontal view-warping algorithm. On the left, the fused point cloud in native

colors is shown on top of its projection on the xOy plane of the world reference system P
xy
f

(shown in red). On the right, the principal component v̂ translated to the origin is shown.

The angle to be applied to frontalize the cloud is θ.

and given the covariance matrix ΣPxy
f

(t) of Pxyf (t):

ΣPxy
f

(t) =
1

||Pxyf (t)||

||Pxy
f

(t)||∑
i=1

(pi − p)(pi − p)
T , p =

1

||Pxyf (t)||

||Pxy
f

(t)||∑
i=1

pi (4)

we compute the two principal components [25] v1, v2 of Pxyfv :

∃λ1, λ2 ∈ R | viλi = ΣPxy
f

(t)λi , 1 ≤ i ≤ 2 (5)

The two vectors v1 and v2, by definition, lie on the axis of Pxyf which, by

construction, represents an oval shape. The transformation needed to obtain

Pfv can be described as a rotation around the z-axis of the world reference frame

of the cloud Pxyf . The magnitude of the rotation is given by the angle θ which is

the angle between the ux = (1, 0, 0), versor of the orthonormal basis [ux, uy, uz]

that identifies W, and the vector v̂ = max (v1, v2). Mathematically, given θ:

θ = arccos

(
v̂ · ux

||v̂||

)
(6)

11

and knowing p, the Pxyf centroid already defined in Equation 4, the transfor-

mation to be applied can be formulated as expressed in Equation 7.

Tfv =

cos θ sin θ 0 −px

− sin θ cos θ 0 −py

0 0 1 0

0 0 0 1

(7)

The final point cloud Pfv(t) is finally obtained by applying the transformation

Tfv to the original fused point cloud Pf(t):

Pfv(t) = Tfv · Pf(t) (8)

It is worth noting that the arms may introduce noise in the frontalization of200

a specific pose, since they usually are not aligned with the human orientation.

Nevertheless, the points generated by the arms are less than those generated by

the body, resulting in a lower contribution of the calculation of the eigenvectors

v1 and v2. As a future work, we will remove the biggest part of this noise by

projecting the points belonging to a convex hull around the center of the body205

of a person.

3.5. Synthethic Depth Generation

The single-view depth-based skeletal tracker described by Buys [11] uses

a random forest trained to classify each pixel of a depth image as part of a

body part of a human limb3. In order to generate the same input data, we

backproject Pfv(t) to the C0 camera image plane obtaining a virtual depth

image as explained in Equation 9.

D∗(t) = {dij = (i, j) ∈ N2 | i ∈ (0, 480), j ∈ (0, 640)} (9)

Since we perform a voxelization of the point clouds to avoid congestions in the

network, at this point it may result that the virtual depth image contains holes.

3We are using the term limb to improperly refer to a human body part, i.e. the part

between two adjacent joints

12

For overcoming this problem that seriously affects the overall performance of

the skeletal tracker, we applied the following depth filling formula:

∀dij ∈ D∗(t), dij =

z, ∃(x, y, z) ∈ Pfv |K0 · [x, y, z]T = z[i, j, 1]T

z, ∃(x, y, z) ∈ Pfv |K0 · [x, y, z]T = z[i, j, 1]T ,

with (i, j) = arg min
(̂i,j)

||(i, j) − (î, j)|| < ε

+∞, otherwise

(10)

The depth filling defined by Equation 10 by scanning each point dij of the

depth image D∗(t). If dij is the backprojection of a point in the cloud (we

do know this by using the intrinsics of the reference camera), it assumes its z210

value. Otherwise, the algorithm looks for the closest backprojected point in its

neighborhood (defined by parameter ε. If this is found, its value is associated

to dij, otherwise, dij assumes a very high value. In this way, these points for

which we have no cloud information cannot interfere with the joint estimation

algorithm explained in Section 3.6.215

Figure 5 shows an example of the depth backprojection and hole-filling al-

gorithm.

Figure 5: An example of the hole-filling algorithm for the virtual depth image generation. On

the left, the original backprojected virtual depth image. On the right, the same image after

the application of the algorithm. For visualization purposes, we changed to black all the valid

depth value, while in white we show missing or very high depth values.

13

3.6. Joint Estimation and Tracking

The output of the body part detector [11] is a function F : D→ L, where L,

defined at training time, is a set of 24 labels each one associated to a different

body part. In this way, is particularly difficult to detect the joint position for220

each person in the scene, since also the pixel belonging to clutter or background

are classified as belonging to a body part.

Nevertheless, by using the improvements already explained in the previous

sections, the algorithms classifies an image where it exactly knows where the

pixels belonging to a person are, thus improving the overall accuracy. By ap-225

plying [11] to D∗(t), we calculate the body joints locations following two steps.

Firstly, we consider the problem of a single label that could be assigned to mul-

tiple coherent groups of voxels. Two simple methods to solve this problem are

to group the coherent voxels into a single blob or to sort the voxels by their size

and consider only the largest one for the joint position calculation. However,230

whenever the distinction of the smaller and bigger body parts are not so clear,

as it commonly happens with hands or elbows, such methods do not provide

good results. For this reason, we consider an optimal tree of the body parts,

starting from the Neck as the root joint and recursively estimating the child-

blobs. The method is therefore based on a pre-defined skeleton structure, which235

defines whether a body part is linked to another one as well as an expected size

of the body limbs.

The 3D centroid of each blob is then used for the computation of the joint

location. In most cases, the centroid is a good estimation of the joint location

itself, but a different algorithm is used for estimating the hip, shoulder and240

elbow joints as described below:

• Hip: The original hip blob returned by the body part detector is generally

big and includes part of the torso. The hip centroid is therefore selected

by considering only the lower part of the initial hip blob;

14

Algorithm 1 .

1: Input: Xm = [Xm1, ..., Xmn] - measured values of m body joints; Xp =

[Xp1, ..., Xpn] - previous values of m body joints; V = [V1, ..., Vn] - velocities

of the body joints

Output: X = [X1, ..., Xn] - estimated joint positions; V = [V1, ..., Vn] -

updated velocities

For each body joint k in {1, n}:

2: Calculate the predicted position: Xk = Xpk + Vk ∗ dt

3: Difference between measured and predicted: Rk = Xmk − Xk

4: New joint position value: Xk = Xk + α ∗ Rk
5: New joint velocity value: Vk = Vk + (β ∗ Rk)/dt

• Shoulder: Given the chest blob, we estimate the sub-voxel Vy max with245

the maximum Y-value. We further embed voxels belonging to the chest

blob to Vy max while mantaining the maximum distance wrt Vy max below

a threshold (i.e. 10 cm). Finally, we use the centroid of this sub-blob as

the location of the shoulder;

• Elbow: The elbow is one of the smallest part returned by the body part250

detector. Moreover, for some frames, the elbow is not detected at all. In

this case, we consider as the elbow location, the point of the arm blob

which has the longest distance from the previously estimated shoulder

point. Otherwise, we use the normal approach already explained.

The joint estimation algorithm is further refined with a alpha-beta tracking255

algorithm described in Algorithm 1. In this way, we ensure a continous motion

and smoothing of the joint locations over time. Each new joint position is

estimated starting from the predicted and measured position, weighted with the

α parameter, and its velocity update, weighted with the β parameter. Those

parameters are different only for the hands joints which normally have higher260

velocity and therefore faster trajectories.

15

4. Experiments

head neck shoulder elbow wrist hip knee ankle torso

single-view [11] 31,73 39,09 175,57 86,88 144,88 139,35 132,27 107,42 109,65

single-view ours 11,35 8,96 18,82 28,44 80,35 38,68 22,73 36,93 51,74

multi-view [16, 17] 15,48 15,43 17,81 26,74 61,19 48,48 24,46 43,53 62,05

multi-view ours 11,59 7,02 17,49 30,87 44,57 19,68 21,50 39,18 20,95

overall

single-view [11] 107,43

single-view ours 33,11

multi-view [16, 17] 35,02

multi-view ours 23,65

Table 1: Numerical results of the proposed algorithms with respect to the state-of-the-art.

The numbers expressed are obtained using Equations 11 and 12 respectively for the top and

bottom part of the table. All the numbers are in millimeters.

In order to evaluate the method proposed in this work, we recorded a set

of RGB-D frames from a 2-Kinect v1 sensor network. In particular, the set of

frames involves two different persons performing different movements in front265

of the cameras. For the sake of comparison, we manually annotated the ground

truth for the set of recorded frames taken from the reference camera. For each

joint j, let B be the set of dataset frames and Lj(i), Gj(i), respectively, the loca-

tion of the joint j on frame i returned by the algorithm considered and its ground

truth, the numerical comparison is performed by means of the reprojection error270

defined in Equation 11.

ej =
1

||B||
∑
i∈B

||Gj(i) − Lj(i)|| (11)

Since the methods considered are very different between each other, we high-

lighted the overall performance of each of them in the last part of Table 1 by

averaging ej over all the joints and both sequences:

e∗ =
1

||B||

||B||∑
j=0

ej (12)

16

Figures 6 and 7 show some example frames of the different tested methods.

All the 3D skeletons obtained by the different methods have been reprojected

on the reference camera C0.

The results achieved highlight how the original depth based skeletal tracker275

is good at estimating body parts, but not at distinguishing between background

and foreground. Indeed, the proposed single-view skeletal tracker greatly im-

proved the performance achieved, as shown in the first two rows of Table 1.

In order to evaluate the accuracy of the proposed multi-view algorithm, we

used as a baseline a state-of-the-art multi-view approach described in [16, 17].280

This approach computes the final 3D skeleton of each person in the scene by

means of triangulation of the single-view 2D ones. In order to be as fair as

possible in our comparison, we used the same improved skeletal tracker as a feed

for both algorithms. The results reported in Table 1 show that the performance

obtained by our approach is around 30% better than the baseline. Indeed, the285

strong point of our approach is that the data are fused and warped in order to

get the best possible result from the single-view skeletal tracker. Approaches

based on the fusion of single-view skeletons, like the baseline, are not able to

distinguish between noisy and good joints.

Regarding runtime, our algorithm is able to generate multi-view skeletons290

at about 10 fps, while using a non-optimized version of the code on a Intel i7

equipped with a NVidia GTX 670 GPU.

5. Conclusions

In this work, we proposed several improvements regarding the subject of

depth-based single and multi-view skeletal tracking algorithms.295

The first contribution is an extension to Buys’ skeletal tracker [11] with a

prior people detection phase. While the original algorithm is able to correctly

classify the pixels of each person in the scene, it is not able to distinguish between

pixels belonging to the background of an image. On the contrary, the proposed

algorithm is able to generate a virtual depth image that keeps the depth value300

17

of the pixels belonging to the persons in the image, while removing the other

ones. The results achieved demonstrate how our approach greatly enhances the

accuracy in terms of re-projection error of the detected skeleton joints.

The second contribution of this paper is about multi-view depth-based skele-

tal tracking. The proposed approach extracts the best performance from the305

single-view skeletal tracker by presenting a frontal-view warping of the fused

data coming from the camera network. The results highlight how this approach

can overcome a state-of-the-art multi-view skeletal tracker algorithm [16, 17]

that exploits a fusion at the skeleton level rather than at the depth data level.

The overall improvement is around 30% in terms of the re-projection error de-310

scribed in Equation 11.

A limitation of the current approach is the fact that it does not address the

case of multiple persons together in the same scene. To this aim, it is anyway

possible to combine the proposed approach together with a state-of-the-art data

association algorithm [18, 21, 22].315

Given the low computational burden required, the algorithms described in

this work can be used for building real-time marker-less body pose estimation

camera networks that work also in dimmer scenes and with a low number of

cameras. Moreover, given the nature of the algorithm, the more cameras are in

the network, the more informative and accurate will be the final depth image320

to perform body pose estimation. In particular, a better coverage of the field-

of-view will result in better accuracy of the overall algorithm.

References

[1] Y. Du, W. Wang, L. Wang, Hierarchical recurrent neural network for skele-

ton based action recognition, in: Proceedings of the IEEE conference on325

computer vision and pattern recognition, 2015, pp. 1110–1118.

[2] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake,

M. Cook, R. Moore, Real-time human pose recognition in parts from single

depth images, Communications of the ACM 56 (1) (2013) 116–124.

18

[3] A. Aguado, I. Rodŕıguez, E. Lazkano, B. Sierra, Supervised+ unsupervised330

classification for human pose estimation with rgb-d images: a first step

towards a rehabilitation system, in: Converging Clinical and Engineering

Research on Neurorehabilitation II, Springer, 2017, pp. 795–800.

[4] K. Ehlers, K. Brama, A human-robot interaction interface for mobile and

stationary robots based on real-time 3d human body and hand-finger pose335

estimation, in: Emerging Technologies and Factory Automation (ETFA),

2016 IEEE 21st International Conference on, IEEE, 2016, pp. 1–6.

[5] F. Han, X. Yang, C. Reardon, Y. Zhang, H. Zhang, Simultaneous feature

and body-part learning for real-time robot awareness of human behaviors,

arXiv preprint arXiv:1702.07474.340

[6] Z. Cao, T. Simon, S.-E. Wei, Y. Sheikh, Realtime multi-person 2d pose

estimation using part affinity fields, in: CVPR, 2017.

[7] E. Insafutdinov, M. Andriluka, L. Pishchulin, S. Tang, E. Levinkov, B. An-

dres, B. Schiele, S. I. Campus, Arttrack: Articulated multi-person tracking

in the wild, in: IEEE Conference on Computer Vision and Pattern Recog-345

nition (CVPR), Vol. 4327, 2017.

[8] S. Zennaro, M. Munaro, S. Milani, P. Zanuttigh, A. Bernardi, S. Ghidoni,

E. Menegatti, Performance evaluation of the 1st and 2nd generation kinect

for multimedia applications, in: Multimedia and Expo (ICME), 2015 IEEE

International Conference on, IEEE, 2015, pp. 1–6.350

[9] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, B. Schiele, Deep-

ercut: A deeper, stronger, and faster multi-person pose estimation model,

in: European Conference on Computer Vision, Springer, 2016, pp. 34–50.

[10] R. B. Rusu, S. Cousins, 3d is here: Point cloud library (pcl), in: Robotics

and automation (ICRA), 2011 IEEE International Conference on, IEEE,355

2011, pp. 1–4.

19

[11] K. Buys, C. Cagniart, A. Baksheev, T. De Laet, J. De Schutter, C. Panto-

faru, An adaptable system for RGB-D based human body detection and

pose estimation, Journal of visual communication and image representation

25 (1) (2014) 39–52.360

[12] S. Wu, H. Yang, S. Zheng, H. Su, Y. Fan, M.-H. Yang, Crowd behavior

analysis via curl and divergence of motion trajectories, International Jour-

nal of Computer Vision 123 (3) (2017) 499–519.

[13] R. Vezzani, D. Baltieri, R. Cucchiara, People reidentification in surveillance

and forensics: A survey, ACM Computing Surveys (CSUR) 46 (2) (2013)365

29.

[14] M. Munaro, A. Basso, A. Fossati, L. Van Gool, E. Menegatti, 3d recon-

struction of freely moving persons for re-identification with a depth sensor,

in: Robotics and Automation (ICRA), 2014 IEEE International Conference

on, IEEE, 2014, pp. 4512–4519.370

[15] A. Kanaujia, N. Haering, G. Taylor, C. Bregler, 3d human pose and shape

estimation from multi-view imagery, in: Computer Vision and Pattern

Recognition Workshops (CVPRW), 2011 IEEE Computer Society Confer-

ence on, IEEE, 2011, pp. 49–56.

[16] M. Lora, S. Ghidoni, M. Munaro, E. Menegatti, A geometric approach375

to multiple viewpoint human body pose estimation, in: Mobile Robots

(ECMR), 2015 European Conference on, IEEE, 2015, pp. 1–6.

[17] S. Ghidoni, M. Munaro, A multi-viewpoint feature-based re-identification

system driven by skeleton keypoints, Robotics and Autonomous Systems

90 (2017) 45–54.380

[18] M. Carraro, M. Munaro, J. Burke, E. Menegatti, Real-time marker-less

multi-person 3d pose estimation in rgb-depth camera networks, arXiv

preprint arXiv:1710.06235.

20

[19] Z. Gao, Y. Yu, Y. Zhou, S. Du, Leveraging two kinect sensors for accurate

full-body motion capture, Sensors 15 (9) (2015) 24297–24317.385

[20] K.-Y. Yeung, T.-H. Kwok, C. C. Wang, Improved skeleton tracking by

duplex kinects: A practical approach for real-time applications, Journal of

Computing and Information Science in Engineering 13 (4) (2013) 041007.

[21] M. Munaro, F. Basso, E. Menegatti, Openptrack: Open source multi-

camera calibration and people tracking for rgb-d camera networks, Robotics390

and Autonomous Systems 75 (2016) 525–538.

[22] M. Munaro, A. Horn, R. Illum, J. Burke, R. B. Rusu, Openptrack: People

tracking for heterogeneous networks of color-depth cameras, in: IAS-13

Workshop Proceedings: 1st Intl. Workshop on 3D Robot Perception with

Point Cloud Library, 2014, pp. 235–247.395

[23] M. Munaro, E. Menegatti, Fast rgb-d people tracking for service robots,

Autonomous Robots 37 (3) (2014) 227–242.

[24] P. J. Besl, N. D. McKay, et al., A method for registration of 3-d shapes,

IEEE Transactions on pattern analysis and machine intelligence 14 (2)

(1992) 239–256.400

[25] C. R. Rao, The use and interpretation of principal component analysis

in applied research, Sankhyā: The Indian Journal of Statistics, Series A

(1964) 329–358.

21

Figure 6: Some results of the single-view algorithm. On the left, the original skeletal tracker

algorithm, while, on the right, the proposed one.

22

Figure 7: Some results of the multi-view algorithm. On the left, the baseline approach, while,

on the right, our proposed multi-view algorithm.

23

	Introduction
	Related Work
	Single-view skeletal tracking
	Multi-view skeletal tracking

	Algorithm Details
	Network Calibration
	Single-view skeletal tracking
	Multi-view Data Fusion
	Frontal view warping
	Synthethic Depth Generation
	Joint Estimation and Tracking

	Experiments
	Conclusions

