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Abstract

In this paper, we propose 3D point-capsule networks, an
auto-encoder designed to process sparse 3D point clouds
while preserving spatial arrangements of the input data. 3D
capsule networks arise as a direct consequence of our novel
unified 3D auto-encoder formulation. Their dynamic rout-
ing scheme [30] and the peculiar 2D latent space deployed
by our approach bring in improvements for several common
point cloud-related tasks, such as object classification, ob-
ject reconstruction and part segmentation as substantiated
by our extensive evaluations. Moreover, it enables new ap-
plications such as part interpolation and replacement.

1. Introduction

Fueled by recent developments in robotics, autonomous
driving and augmented/mixed reality, 3D sensing has be-
come a major research trend in computer vision. Conversely
to RGB cameras, the sensors used for 3D capture provide
rich geometric structure, rather than high-fidelity appear-
ance information. This is proved advantageous for those
applications where color and texture are insufficient to ac-
complish the given task, such as reconstruction/detection of
texture-less objects. Unlike the RGB camera case, 3D data
come in a variety of forms: range maps, fused RGB-D se-
quences, meshes and point clouds, volumetric data. Thanks
to their capability of representing a sparse 3D structure ac-
curately while being agnostic to the sensing modality, point
clouds have been a widespread choice for 3D processing.

The proliferation of deep learning has recently leaped
into the 3D domain and architectures for consuming 3D
points have been proposed either for volumetric [28] or
sparse [26] 3D representations. These architectures over-
came many challenges brought in by 3D data, such as order-
invariance, complexity due to the added data dimension and
local density variations. Unfortunately they often discard

•First two authors contributed equally to this work.
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Figure 1. Our 3D-PointCapsNet improves numerous 3D tasks
while enabling interesting applications such as latent space part
interpolation or complete part modification, an application where
a simple cut-and-paste results in inconsistent outputs.

spatial arrangements in data, hence falling short of respect-
ing the parts-to-whole relationship, which is critical to ex-
plain and describe 3D shapes; maybe even more severe than
in the 2D domain due to the increased dimensionality [2].

In this work we first present a unified look to some
well known 3D point decoders. Within this view, and
based on the renowned 2D capsule networks (CN) [30], we
propose the unsupervised 3D point-capsule networks (3D-
PointCapsNet), an auto-encoder for generic representation
learning in unstructured 3D data. Powered by the built-in
routing-by-agreement algorithm [30], our network respects
the geometric relationships between the parts, showing bet-
ter learning ability and generalization properties. We design
our 3D-PointCapsNet architecture to take into account the
sparsity of point clouds by employing PointNet-like input
layers [26]. Through an unsupervised dynamic routing, we
organize the outcome of multiple max-pooled feature maps
into a powerful latent representation. This intermediary la-
tent space is parameterized by latent capsules - stacked la-
tent activation vectors specifying the features of the shapes
and their likelihood.

Latent capsules obtained from point clouds alleviate the
restriction of parameterizing the latent space by a single,
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low dimensional vector; instead they give explicit control
on the basis functions that get composed into 3D shapes.
We further propose a novel 3D point-set decoder operating
on these capsules, leading to better reconstructions with in-
creased operational capabilities as shown in Fig. 1. These
new abilities stem from the latent capsules instantiating as
various shape parameters and concentrating not spatially
but semantically across the shape under consideration, even
when trained in an unsupervised fashion. We also propose
to supply a limited amount of task-specific supervision such
that the individual capsules can excel at solving individual
sub-problems, e.g. if the task is part-based segmentation,
they specialize on different meaningful parts of each shape.

Our extensive quantitative and qualitative evaluation
demonstrates the superiority of our architecture. First, we
advance the state of the art by a significant margin on mul-
tiple frontiers such as 3D local feature extraction, point
cloud reconstruction and transfer learning. Next, we show
that the distinct attention mechanism of the capsules, driven
by dynamic routing, allows a wider range of 3D applica-
tions compared to the state of the art auto-encoders: a)
part replacement, b) part-by-part animation via interpola-
tion. Note that both of these tasks are non-trivial for stan-
dard architectures that rely on 1D latent vectors. Finally,
we present improved generalization to unseen data, reach-
ing accuracy levels up to 85% even when using 1% of train-
ing data. In a nutshell, our core contributions are:

1. Motivated by a unified perspective of the common point
cloud auto-encoders, we propose capsule networks for
the realm of 3D data processing as a powerful and ef-
fective tool.

2. We show that our point-capsule AE can surpass the cur-
rent art in reconstruction quality, local 3D feature ex-
traction and transfer learning for 3D object recognition.

3. We adapt our latent capsules to different tasks with semi-
supervision and show that the latent capsules can master
on peculiar parts or properties of the shape. In the end,
this paves the way to higher quality predictions and a di-
verse set of applications like part specific interpolation.

Our source code is publicly available under:
https://tinyurl.com/yxq2tmv3.

2. Related Work
Point Clouds in Deep Networks Thanks to their generic
capability of efficiently explaining 3D data without mak-
ing assumptions on the modality, point clouds are the pre-
ferred containers for many 3D applications [48, 25]. Due
to this widespread use, recent works such as PointNet [26],
PointNet++ [27], SO-Net [22], spherical convolutions [20],
Monte Carlo convolutions [12] and dynamic graph net-
works [44] have all devised point cloud-specific architec-
tures that exploited the sparsity and permutation-invariant

properties of 3D point sets. It is also common to process
point sets by using local projections reducing the convolu-
tion operation down to two dimensions [34, 15].

Recently, unsupervised architectures followed up on
their supervised counterparts. PU-Net [43] proposed bet-
ter upsampling schemes to be used in decoding. Fold-
ingNet [41] introduced the idea of deforming a 2D grid to
decode a 3D surface as a point set. PPF-FoldNet [7] im-
proved upon the supervised PPFNet [8] in local feature ex-
traction by benefiting from FoldingNet’s decoder [41]. At-
lasNet [11] can be seen as an extension of FoldingNet to
multiple grid patches and provided extended capabilities
in data representation. PointGrow [32] devised an auto-
regressive model for both unconditional and conditional
point cloud generation leading to effective unsupervised
feature learning. Achlioptas et al. [1] adapted GANs to 3D
point sets, paving the way to enhanced generative learning.

2D Capsule Networks Thanks to their general applica-
bility, capsule networks (CNs) have found tremendous use
in 2D deep learning. LaLonde and Bagci [19] developed a
deconvolutional capsule network, called SegCaps, tackling
object segmentation. Durate et al. [9] extended CNs to ac-
tion segmentation and classification by introducing capsule-
pooling. Jaiswal et al. [16], Saqur et al. [31] and Upad-
hyay et al. [35] proposed Capsule-GANs, i.e. capsule net-
work variants of the standard generative adversarial net-
works (GAN) [10]. These have shown better 2D image
generation performance. Lin et al. [23] showed that capsule
representations learn more meaningful 2D manifold embed-
dings than neurons in a standard CNN do.

There have also been significant improvements upon the
initial CN proposal. Hinton et al. improved the routing by
EM algorithm [13]. Wang and Liu saw the routing as an op-
timization minimizing a combination of clustering-like loss
and a KL regularization term [36]. Chen and Crandall [6]
suggested trainable routing for better clustering of capsules.
Zhang et al. [47] unified the existing routing methods under
one umbrella and proposed weighted kernel density estima-
tion based routing methods. Zhang et al. [46] chose to use
the norm to explain the existence of an entity and proposed
to learn a group of capsule subspaces onto which an input
feature vector is projected. Lenssen et al. [21] introduced
guaranteed equivariance and invariance properties to cap-
sule networks by the use of group convolutions.

3D Capsule Networks Up until now, the use of the cap-
sule idea in the 3D domain has been a rather uncharted ter-
ritory. Weiler et al. [38] rigorously formalized the con-
volutional capsules and presented a convolutional neural
network (CNN) equivariant to rigid motions. Jimenez et
al. [17] as well as Mobniy and Nguyen [24] extended cap-
sules to deal with volumetric medical data. VideoCapsu-
leNet [9] also used a volumetric representation to handle

https://tinyurl.com/yxq2tmv3
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Figure 2. 3D Point Capsule Networks. Our capsule-encoder accepts an N × 3 point cloud as input and uses an MLP to extract N × 128
features from it. These features are then sent into multiple independent convolutional-layers with different weights, each of which is max-
pooled to a size of 1024. The pooled features are then concatenated to form the primary point capsules (PPC) (1024× 16). A subsequent
dynamic routing clusters the PPC into the final latent capsules. Our decoder, responsible for reconstructing point sets given the latent
features, endows the latent capsules with random 2D grids and applies MLPs (64− 64− 32− 16− 3) to generate multiple point patches.
These point patches target different regions of the shape thanks to the DR [30]. Finally, we collect all the patches into a final point cloud and
measure the Chamfer distance to the input to guide the network to find the optimal reconstruction. In figure, part-colors encode capsules.

temporal frames of the video. Yet, to the best of our knowl-
edge, we are the first to devise a capsule network specif-
ically for 3D point clouds, exploiting their sparse and un-
structured nature for representing 3D surfaces.

3. Method
3.1. Formulation

We first follow the AtlasNet convention [11] and present
a unified view of some of the common 3D auto-encoders.
Then, we explain our 3D-PointCapsNet within this geomet-
ric perspective and justify its superiority compared to its an-
cestors. We will start by recalling the basic concepts:

Definition 1 (Surface and Point Cloud)
A 3D surface (shape) is a differentiable 2-manifold embed-
ded in the ambient 3D Euclidean space: M2 ∈ R3. We
approximate a point cloud as a sampled discrete subset of
the surface X = {xi ∈M2 ∩ R3}.
Definition 2 (Diffeomorphism)
A diffeomorphism is a continuous, invertible, structure-
preserving map between two differentiable surfaces.

Definition 3 (Chart and Parametrization)
We admit an open set U ∈ R2 and a diffeomorphism C :
M2 7→ U ∈ R2 mapping an open neighborhood in 3D to
its 2D embedding. C is called a chart. Its inverse, Ψ ≡
C−1 : R2 7→ M2 is called a parameterization.

Definition 4 (Atlas)
A set of charts with images covering the 2-manifold is called
an atlas: A = ∪iCi(xi).

A 3D auto-encoder learns to generate a 3D surface X ∈
M2 ∩RN×3. By virtue of Dfn. 3 Ψ deforms a 2D point set
to a surface. The goal of the generative models that are of
interest here is to learn Ψ to best reconstruct X̂ ≈ X:

Definition 5 (Problem)
Learning to generate the 2-manifolds is defined as finding
function(s) Ψ(U |θ) : Ψ(U |θ) ≈ X [11]. θ is a lower di-
mensional parameterization of these functions: |θ| < |X|.

Theorem 1
Given that C−1 exists, Ψ, chosen to be a 3-layer MLP, can
reconstruct arbitrary 3D surfaces.

Sketch of the proof. The proof is given in [41] and follows
from the universal approximation theorem (UAT).

Theorem 2
There exists an integer K s.t. an MLP with K hidden units
universally reconstruct X up to a precision ε.

Sketch of the proof. The proof follows trivially
from Thm. 1 and UAT [11].

Given these definitions, some of the typical 3D point de-
coders differentiate by making four choices [26, 11, 41]:

1. An open set U or discrete grid U ≡ P = {pi ∈ R2}.
2. Distance function d(X, X̂) between the reconstruction

X̂ and the input shape X.
3. Parameterization function(s) Ψ.
4. Parameters (θ) of Ψ: Ψ(U |θ).
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Figure 3. Comparison of four different state-of-the-art 3D point decoders. PointNet uses a single latent vector, and no surface assumption.
Thus, θpointnet = f . FoldingNet [41] learns a 1D latent vector along with a fixed 2D grid θfolding = {f , P}. The advanced AtlasNet [11]
learns to deform multiple 2D configurations onto local 2-manifolds: θatlas = {f , {Pi}}. Our point-capsule-network is capable of learning
multiple latent representations each of which can fold a distinct 2D grid onto a specific local patch, θours = {{fi}, {Pi}}

One of the first works in this field, PointNet [26] is ex-
tended naturally to an AE by [1] making arguably the sim-
plest choice. We will refer to this variant as PointNet. It
lacks the grid structure U = ∅ and functions Ψ only de-
pend upon a single latent feature: Ψ(U |θ) = Ψ(θ) =
MLP(· | f ∈ Rk). FoldingNet uses a two-stage MLP as Ψ to
warp a fixed grid P onto X. A transition from FoldingNet
to AtlasNet requires having multiple MLP networks operat-
ing on multiple 2D sets {Pi} constructed randomly on the
domain ]0, 1[2: U(0, 1). These explain the better learning
capacity of AtlasNet: different MLPs learn to reconstruct
distinct local surface patches by learning different charts.

Unfortunately, while numerous charts can be defined in
the case of AtlasNet, all of the methods above still rely on
a single latent feature vector, replicated and concatenated
with U to create the input to the decoders. However, point
clouds are found to consist of multiple basis functions [33]
and having a single representation governing them all is not
optimal. We opt to go beyond this restriction and choose to
have a set of latent features {fi} to capture different, mean-
ingful basis functions.

With the aforementioned observations we can now
re-write the well known 3D auto-encoders and introduce a
new decoder formulation:

PointNet [26]

U = P = ∅
Ψ(θ) := MLP(·)

θ := f

d(X, X̂) := dEMD(X, X̂)

AtlasNet [11]

U = {Pi} : Pi ∈ U(0, 1) (1)
Ψ(θ) := {MLPi(·)} (2)

θ := {f , {Pi}} (3)

d(X, X̂) := dCH(X, X̂) (4)

FoldingNet [41]

U = P = GM×M

Ψ(θ) :=MLP(MLP(·))
θ := {f ,P}

d(X, X̂) := dCH(X, X̂)

Ours

U = {Pi} : Pi ∈ U(0, 1) (5)
Ψ(θ) := {MLPi(·)} (6)

θ := {F , {fi}, {Pi}} (7)

d(X, X̂) := dCH(X, X̂) (8)

where dEMD is the Earth Mover [29] and dCH is the Chamfer
distance. GM×M = {(i ⊗ j) : ∀i, j ∈ [0, . . . , M−1M ]} is a
2D uniform grid. f ∈ Rk represents a k-dimensional latent
vector. U(a, b) depicts an open set defined by a uniform
random distribution in the interval ]a, b[2.

Note that it is possible to easily mix these choices to cre-
ate variations‡. Though, many interesting architectures only
optimize for a single latent feature f . To the best of our
knowledge, one promising direction is taken by the capsule
networks [14], where multitudes of convolutional filters en-
able the learning of a collection of capsules {fi} thanks to
the dynamic routing [30]. Hence, we learn our parameters
{θi} by devising a new point cloud capsule decoder that we
coin 3D-PointCapsNet. We illustrate the choices made by
four AEs under this unifying umbrella in Fig. 3.

3.2. 3D-PointCapsNet Architecture

We now describe the architecture of the proposed 3D-
PointCapsNet as a deep 3D point cloud auto-encoder,
whose structure is depicted in Fig. 2.

Encoder The Input to our network is an N × d point
cloud, where we fix N = 2048 and for typical point sets
d = 3. Similarly to PointNet [26], we use a point-wise
Multi-Layer Perceptron (MLP) (3−64−128−1024) to ex-
tract individual local feature maps. In order to diversify the
learning as suggested by capsule networks, we feed these
feature maps into multiple independent convolutional lay-
ers with different weights, each with a distinct summary of
the input shape with diversified attention. We then max-
pool their responses to obtain a global latent representation.
These descriptors are then concatenated into a set of vec-
tors named primary point capsules, F. Size of F depends
upon the size Sc := 1024 and the number K := 16 of in-
dependent kernels at the last layer of MLP. We then use the
dynamic routing [30] to embed the primary point capsules
into higher level latent capsules. Each capsule is indepen-
dent and can be considered as a cluster centroid (codeword)

‡FoldingNet presents evaluations with random grids in their appendix.



Table 1. Descriptor matching results (recall) on the standard 3DMatch benchmark [45, 7].

Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study MIT Lab Average

3DMatch [45] 0.5751 0.7372 0.7067 0.5708 0.4423 0.6296 0.5616 0.5455 0.5961
CGF [18] 0.4605 0.6154 0.5625 0.4469 0.3846 0.5926 0.4075 0.3506 0.4776
PPFNet [8] 0.8972 0.5577 0.5913 0.5796 0.5769 0.6111 0.5342 0.6364 0.6231
FoldNet [41] 0.5949 0.7179 0.6058 0.6549 0.4231 0.6111 0.7123 0.5844 0.6130
PPF-FoldNet-2K [7] 0.7352 0.7564 0.625 0.6593 0.6058 0.8889 0.5753 0.5974 0.6804
PPF-FoldNet-5K [7] 0.7866 0.7628 0.6154 0.6814 0.7115 0.9444 0.6199 0.6234 0.7182

Ours-2K 0.8518 0.8333 0.7740 0.7699 0.7308 0.9444 0.7397 0.6494 0.7867

of the primary point capsules. The total size of the latent
capsules is fixed to 64× 64 (i.e., 64 vectors each sized 64).

Decoder Our decoder treats the latent capsules as a fea-
ture map and uses MLP(64 − 64 − 32 − 16 − 3) to recon-
struct a patch of points X̂i, where |X̂i| = 64. At this point,
instead of replicating a single vector as done in [41, 11],
we replicate the entire capsule m times and to each replica
we append a unique randomly synthesized grid Pi special-
izing it to a local area. This further stimulates the diversity.
We arrive at the final shape X̂i by propagating the repli-
cas through a final MLP for each patch and gluing the out-
put patches together. We choose m = 32 to reconstruct
|X̂| = 32 × 64 = 2048 points, the same amount as the
input. Similar to other AEs, we approximate the loss over
2-manifolds by the discrete Chamfer metric:

dCH(X, X̂) = (9)
1

|X|
∑
x∈X

min
x̂∈X̂
‖x− x̂‖2 +

1

|X̂|

∑
x̂∈X̂

min
x∈X
‖x− x̂‖2

However, this time X̂ follows from the capsules: X̂ =
∪iΨi(Pi|{fi}).

Incorporating Optional Supervision Motivated by the
regularity of capsule distribution over the 2-manifold, we
created a capsule-part network that spatially segments the
object by associating capsules to parts. The goal here is to
assign each capsule to a single part of the object. Hence, we
treat this part-segmentation task as a per-capsule classifica-
tion problem, rather than a per-point one as done in various
preceding algorithms [26, 27]. This is only possible due to
the spatial attention of the capsule networks.

The input of capsule-part network is the latent-capsules
obtained from the pre-trained encoder. The output is the
part label for each capsule. The ground truth (GT) capsule
labeling is obtained from the ShapeNet-Part dataset [42] in
three steps: 1) reconstructing the local part given the cap-
sule and a pre-trained decoder, 2) retrieving the label of
the nearest neighbor (NN) GT point for each reconstructed

point, 3) computing the most frequent one (mode) among
the retrieved labels.

To associate a part to a capsule, we use a shared MLP
with a cross entropy loss to classify the latent capsules into
parts. This network is trained independently from the 3D-
PointCapsNet AE for part supervision. We provide addi-
tional architectural details in the supplementary material.

4. Experiments
We evaluate our method first quantitatively and then

qualitatively on numerous challenging 3D tasks such as
local feature extraction, point cloud classification, recon-
struction, part segmentation and shape interpolation. We
also include a more specific application of latent space
part-interpolation that is made possible by the use of cap-
sules. For evaluation regarding these tasks, we use mul-
tiple benchmark datasets: ShapeNet-Core [5], Shapenet-
Part [42], ModelNet40 [40] and 3DMatch benchmark [45].

Implementation Details Prior to training, the input point
clouds are aligned to a common reference frame and size
normalized. To train our network we use an ADAM op-
timizer with an initial learning rate of 0.0001 and a batch
size of 8. We also employ batch normalization (BN) and
RELU activation units at the point of feature extraction to
generate primary capsules. Similarly, the multi-stage MLP
of the decoder also uses a BN and RELU units except for
the last layer, where the activations are scaled by a tanh(·).
During dynamic routing operation, we use the squash acti-
vation function mentioned in [30, 14].

4.1. Quantitative Evaluations

3D Local Feature Extraction We first evaluate 3D Point-
Capsule Networks on the challenging task of local feature
extraction from point cloud data. In this domain, learn-
ing methods have already outperformed their handcrafted
counterparts by a large margin and hence, we compare only
against those, namely 3DMatch [45], PPFNet [8], CGF [18]
and PPF-FoldNet [7]. PPF-FoldNet is completely unsuper-
vised and yet is still the top performer, thanks to the Fold-
ingNet [41] encoder-decoder. It is thus intriguing to see how



Table 2. Descriptor matching results (recall) on the rotated 3DMatch benchmark [45, 7].

Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study MIT Lab Average

3DMatch [45] 0.0040 0.0128 0.0337 0.0044 0.0000 0.0096 0.0000 0.0260 0.0113
CGF [18] 0.4466 0.6667 0.5288 0.4425 0.4423 0.6296 0.4178 0.4156 0.4987
PPFNet [8] 0.0020 0.0000 0.0144 0.0044 0.0000 0.0000 0.0000 0.0000 0.0026
FoldNet [41] 0.0178 0.0321 0.0337 0.0133 0.0096 0.0370 0.0171 0.0260 0.0233
PPF-FoldNet-2K [7] 0.7352 0.7692 0.6202 0.6637 0.6058 0.9259 0.5616 0.6104 0.6865
PPF-FoldNet-5K [7] 0.7885 0.7821 0.6442 0.6770 0.6923 0.9630 0.6267 0.6753 0.7311

Ours-2K 0.8498 0.8525 0.7692 0.8141 0.7596 0.9259 0.7602 0.7272 0.8074

Table 3. Evaluating reconstruction quality. Oracle refers to a ran-
dom sampling of the input 3D shape and constitutes an lower
bound on what is achievable. The Chamfer Distance is multiplied
by 103 for better viewing. CD denotes Chamfer distance and PB
refers to Point Baseline.

Oracle PB AtlasNet-25 AtlasNet-125 Ours

CD 0.85 1.91 1.56 1.51 1.46

its performance is affected if one simply replaces its Fold-
ingNet auto-encoder with 3D-PointCapsNet. In an identi-
cal setting as [7], we learn to reconstruct the 4 dimensional
point pair features [3, 4] of a local patch, instead of the 3D
space of points, and use the latent capsule (codeword) as a
3D descriptor. To restrict the feature vector to a reasonable
size of 512, we limit ourselves only to 16×32 capsules. We
then run the matching evaluation on the 3DMatch Bench-
mark dataset [45] as detailed in [7], and report the recall of
correctly founded matches after 21 epochs in Tab. 1.

We note that our point-capsule networks exhibit an ad-
vanced capacity for learning local features, surpassing the
state of the art by 10% on the average, even when using 2K
points unlike the 5K of PPF-FoldNet. It is also noteworthy
that, except for the Kitchen sequence where PPFNet shows
remarkable performance, the recall attained by our network
consistently remains above all others. We believe that such
dramatic improvement is related to the robustness of cap-
sules towards slight deformations in the input data, as well
as to our effective decoder.

Do Our Features Also Perform Well Under Rotation?
PPF local encoding of PPF-FoldNet is rotation-invariant.
Being based on the same representation, our local feature
network should enjoy similar properties. It is of inter-
est to see whether the good performance attained on the
standard 3DMatch benchmark transfers to more challeng-
ing scenes demanding rotation invariance. To this aim,
we repeat the previous assessment on the Rotated-3DMatch
benchmark [7], a dataset that introduces arbitrary rotations
to the scenes of [45]. Since this dataset contains 6DoF scene
transformations, many methods that lack theoretical invari-
ance, e.g. 3DMatch, PPFNet and FoldingNet simply fail.

Table 4. Accuracy of classification by transfer learning on the
ModelNet40 dataset. Networks are trained out ShapeNet55, ex-
cept Ours-Parts that is trained on smaller ShapeNet-Parts dataset.

Latent-GAN[1] FoldingNet[41] Ours-Parts Ours

Acc. 85.7 88.4 88.9 89.3

Our unsupervised capsule AE, however, is once again the
top performer, surpassing the state of the art by ∼ 12% on
2K-point case as shown in Tab. 2. This significant gain jus-
tifies that our encoder manages to operate also on the space
of 4D PPFs, holding on the theoretical invariances.

3D Reconstruction In a further experiment, we evaluate
the quality of our architecture in point generation. We as-
sess the reconstruction performance by the standard Cham-
fer metric and base our comparisons on the state of the art
auto-encoder AtlasNet and its baselines (point-MLP) [11].
We rely on the ShapeNet Core v2 dataset [5], using the same
training and test splits as well as the same evaluation metric
as those in AtlasNet’s [11]. We show in Tab. 3 the Cham-
fer distances averaged over all categories and for N > 2K
points. It is observed that our capsule AE results in lower
reconstruction error even when a large number of patches
(125) is used in favor of AtlasNet. This justifies that the
proposed network has a better summarization capability and
can result in higher fidelity reconstructions.

Transfer Learning for 3D Object Classification In this
section, we demonstrate the efficiency of learned represen-
tation by evaluating the classification accuracy obtained by
performing transfer learning. Identical to [39, 1, 41], we
train a linear SVM classifier so as to regress the shape class
given the latent features. To do that, we reshape our la-
tent capsules into a one dimensional feature and train the
classifier on Modelnet40 [40]. We use the same train/test
split sets as [41] and obtain the latent capsules by train-
ing 3D-PointCapsNet on a different dataset, the ShapeNet-
Parts [42]. The training data has 14,000 models subdivided
into 16 classes. The evaluation result is shown in Tab. 4,
where our AE, trained on a smaller dataset compared to the
ShapeNet55 of [1, 41] is capable of performing at least on



(a) Unprocessed part segmentation on same class (b) Part segmentation of multiple objects of different class

Figure 4. Part segmentation by capsule association. Having pre-trained the auto-encoder, we append a final part-supervision layer and use a
limited amount of data to specialize the capsules on object parts. (a) across the shapes of the same class capsules capture semantic regions.
(b) inter-class part segmentation. Colors indicate different capsule groups and (b) uses only a simple median filter to smooth the results.

Table 5. Part segmentation on ShapeNet-Part by learning only on
the x% of the training data.

Metric SONet-1% Ours-1% SONet-5% Ours-5%

Accuracy 0.78 0.85 0.84 0.86
IoU 0.64 0.67 0.69 0.70

par or better. This shows that learned latent capsules can
handle smaller datasets and generalize better to new tasks.
We also evaluated our classification performance when the
training data is scarce and obtained similar result as the
FoldingNet, ∼ 85% on ∼ 20% of training data.

4.2. Qualitative results

3D Object Part Segmentation with Limited Data We
now demonstrate the regional attention of our latent capsule
and their capacity to learn with limited data. To this end, we
trained 3D-PointCapsNet on the ShapeNet-Part dataset [5]
for part segmentation as explained in § 3, with a supervision
of only 1 − 5% part labeled training data. We tested our
network on all of the available test data. To specialize the
capsules to distinct parts, we select as many capsules as the
part labels and let the per-capsule classification coincide to
part predictions. Predicted capsule labels are propagated
to the related points. For the sake of space, we compared
our results only with the state of the art on this dataset, the
SO-Net [23]. We use identical evaluation metrics as SO-
Net [23]: Accuracy and IoU (Intersection over Union), and
report our findings in Tab. 5. Note that, when trained on 1%
of input data, we perform 7% better than SO-Net. When the
amount of training data is increased to 5%, the gap closes
but we still surpass SO-Net by 2%, albeit training a smaller
network to classify latent-capsules rather than 3D points.

Does unsupervised training lead to specialized capsules?
It is of interest to see whether the original argument of the
capsule networks [30, 14] claiming to better capture the in-
trinsic geometric properties of the object still holds in the
case of our unsupervised 3D-AE. To this aim, we first show

Conv-Layer Dynamic-Routing Conv-Layer Dynamic-Routing

Figure 5. Distribution of 10 randomly selected capsules on the re-
constructed shape after unsupervised autoencoder training a) with
dynamic routing, b) with a simple convolutional layer.

in Fig. 5 that even with lack of supervision the capsules spe-
cialize on local parts of the model. While these parts may
sometimes not correspond to the human annotated part seg-
mentation of the model, we still expect them to concentrate
on semantically similar regions of the 2-manifold. Fig. 5
visualizes the distribution of 10 capsules by coloring them
individually and validates our argument.

To validate our second hypothesis, stating that such clus-
tering arises thanks to the dynamic routing, we replace the
DR part of the AE with standard PointNet-like layers pro-
jecting the 1024×64 PPC to 642 capsules and repeat the ex-
periment. Fig. 5 depicts the spread of the latent vectors over
the point set when such layer is employed as opposed to DR.
Note that using this simple layer instead of DR both harms
the reconstruction quality and yields an undesired spread of
the capsules across the shape. We leave it as a future work
to study the DR energy theoretically and provide more de-
tails on this experiment in the supplement.

Semi-supervision guides the capsules to meaningful
parts. We now consider the effect of training in steering
the capsules towards the optimal solution in the task of su-
pervised part segmentation. First, we show in Fig. 4 the re-
sults obtained by the proposed part segmentation: (a) shows
part segmentation across multiple shapes of the same class.
These results are also unfiltered and the raw outcome of our
network. (b) depicts part segmentation across a set of object
classes from Shapenet-Part. It also shows that some minor



Source Shapes Latent Interpolation of a Single Part Target Shapes

Figure 6. Part interpolation on the Shapenet-Part [42] dataset. (left) The source point cloud. (right) Target shape. (middle) Part interpo-
lation. Fixed part is marked in light blue and the interpolated part is highlighted. Capsules are capable of performing part interpolation
purely via latent space arithmetic.

Figure 7. Visualizing the iterations of unsupervised AE training
on the airplane object. For clear visualization, we fetch the col-
ors belonging to the ∼20 capsules of the wing-part from our part
predictions trained with part supervision.

confusions present in (a) can be corrected with a simple me-
dian filter. This is contrary and computationally preferable
to costly CRFs smoothing the results [37].

Next, we observe that, as training iterations progress, the
randomly initialized capsules specialize to parts, achieving
a good part segmentation at the point of convergence. We
visualize this phenomenon in Fig. 7, where the capsules
that have captured the wings of the airplane are monitored
throughout the optimization procedure. Even though the
initial random distribution is spatially spread out, the re-
sulting configuration is still part specific. This is a natural
consequence of our capsule-wise part semi-supervision.

Part Interpolation / Replacement Finally, we explore
the rather uncommon but particularly interesting applica-
tion of interpolating, exchanging or switching object parts
via latent-space manipulation. Thanks to the fact that 3D-
PointCapsNet discovers multiple latent vectors specific to
object attributes/shape parts, our network is capable of per-
forming per-part processing in the latent space. To do
that, we first spot a set of latent capsule pairs belonging to
the same parts of two 3D point shapes and intersect them.
Because these capsules explain the same part in multiple
shapes, we assume that they are specific to the part under
consideration and nothing else. We then interpolate linearly
in the latent space between the selected capsules. As shown
in Fig. 6 the reconstruction of intermediate shapes vary

Input Shapes Cut-Paste Our Replacement Input Shapes Cut-Paste Our Rep.

Figure 8. Part replacement. Performing replacement in the latent
space rather than Euclidean space of 3D points yields geometri-
cally consistent outcome.

only at a single part, the one being interpolated. When the
interpolator reaches the target shape it replaces the source
part with the target one, enabling part-replacement. Fig. 8
further shows this in action. Given two shapes and latent
capsules of the related parts, we perform a part exchange
by simply switching some of the latent capsules and recon-
structing. Conducting a part exchange directly on the input
space by a cut-and-place would yield inconsistent shapes as
the replaced parts would have no global coherence.

5. Conclusion
We have presented 3D Point-Capsule Network, a flexible

and effective tool for 3D shape processing and understand-
ing. We first presented a broad look to the common point
cloud AEs. With the observation that a one dimensional
latent embedding, the choice of the most preceding auto-
encoders, is potentially sub-optimal, we opted to summarize
the point clouds as a union of disjoint latent basis functions.
We have shown that such choice can be implemented by
learning the embedded latent capsules via dynamic routing.
Our algorithm proved successful on an extensive evaluation
on many 3D shape processing tasks such as 3D reconstruc-
tion, local feature extraction and part segmentation. Having
a latent capsule set rather than a single vector also enabled
us to address new applications such as part interpolation and
replacement. In the future, we plan to deploy our network
for pose estimation and object detection from 3D data, cur-
rently two of the key challenges in 3D computer vision.
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Appendix

A. Semi-supervised Classification
We begin by showing semi-supervised classification re-

sults in Tab. 6. Note that our network can generate predic-
tions that are on par with or better than FoldingNet [41].
Table 6. Part segmentation on ShapeNet-Part by learning on lim-
ited training data. The table shows the accuracies obtained by
FoldingNet [41] and our approach for different amount of train-
ing data.

1% 2% 5% 20% 100%

FoldingNet 56.15 67.05 75.97 84.06 88.41
Ours 59.24 67.67 76.49 84.48 88.91

B. Part Segmentation
We first give a small summary of the part association

network for optional supervision. The input to this one-
layer architecture is the latent capsules combined with one-
hot vector of the object category. The output is the part
prediction of each capsule. We use the cross entropy loss
as our loss function and Adam as the optimizer with the
learning rate of 0.01. The network structure is shown in
Fig. 9.

Then we utilize the pre-trained decoder to reconstruct
the object with the labeled capsules. Fig. 11 depicts further
visualizations for different objects from the ShapeNet-Part
dataset [42]. Our results are also qualitatively comparable
to ground truth.

C. Part Interpolation
We first show an overview of how we perform part inter-

polation. While this part has been thoroughly explained in
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Figure 9. Supervising the 3d point capsule networks for part pre-
diction. Instead of performing a point-wise part labeling, we use a
capsule-wise association requiring less data annotation efforts.

the paper, we have omitted this architecture illustration due
to space considerations. We now provide this in Fig. 12.

Next we show, the part interpolation results on differ-
ent objects. In this qualitative evaluation, we are given two
shapes and the goal is to interpolate the source part towards
the target. To do that we find the matching capsules that rep-
resent the part of interest in both shapes. We then linearly
interpolate from the capsule(s) of the source to the one(s)
of the target. This generates visually pleasing intermediate
shapes, which our network has never seen before. Here we
see that the learned embedding resemble a Euclidean space
where linear latent space arithmetic is possible. It is also
visible that such interpolation scheme can handle topologi-
cal changes such as merging or branching legs. In the end
of interpolation a new shape is generated in which the part
is replaced completely with the target’s. That brings us to
our second and interesting application, part replacement.

D. Part Replacement
We now supplement our paper by presenting additional

qualitative results on the task of part replacement. Fig. 14
shows numerous object pairs where a part-of-interest is se-
lected in both and exchanged by the help of latent space
capsule arithmetic. Analogous to the ones in the paper we
also show a cut-and-paste operation that is a mere exchange
of the parts in 3D space, obviously resulting in undesired
disconnected shapes. Thanks to our decoder’s capability in
generating high fidelity shapes, our capsule-replacement re-
spects the overall coherence of the resulting point cloud.

E. Ablation Study
In order to show the prosperity of the dynamic routing,

we compare the reconstruction result by replacing the DR
with PointNet-like set of convolutional layers. In this abla-

tion study, the primary point capsules (1024× 16) are con-
sidered as 1024 point-features and each point has the fea-
ture dimension of 16. We utilize a shared MLP to increase
the feature dimension from 16 to 64. After conducting max
pooling, we can obtain a vector of length 64. With multiple
MLPs and max-pooling, we are able to generate 64 vectors
which have the same dimensions as the latent capsules pro-
duced by dynamic routing. The structure of this comparison
module is shown in Fig. 10. To carry out our fair evaluation,
we re-train the whole AE with this module. The result of the
reconstruction is shown in Fig. 5 of the main paper.
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Figure 10. The structure of the comparison module that operates
on the primary point capsules and generates a set of vectors having
the same dimensionality as the latent capsule output of DR.

F. A Discussion on the Local Spatial Attention
Our network consists of multiple MLPs acting on a sin-

gle capsule. It encodes the part information inside that cap-
sule rather than the MLPs themselves. For that reason, the
local attention stems from both the organization of primary
point capsules (in our case obtained by dynamic routing)
and potentially the decoder (see Fig. 5 of the main pa-
per). Thus, we are able to control and represent the shape
instantiation in the latent space as shown in part interpo-
lation/replacement evaluations. Contrarily, AtlasNet recon-
structs different local patches with different MLPs from the
same latent vector. This embeds the part knowledge into
the MLPs, making it challenging to control the shape prop-
erties.
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Figure 11. Part segmentation on limited amount of training data.
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Figure 12. Our interpolation / replacement pipeline.



Source Capsule Interpolation of a Single Part on the Source Shape Target

Figure 13. Visualization of part interpolation from source shape part to target. By simple linear interpolation on the correspondent cap-
sule(s), smooth intermediate topologies could be generated.
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Figure 14. Part replacement visualization and comparison. By operating in the latent space, more natural replacement results could be
obtained, without suffering from the detachment problems as with simple Cut & Paste method.


