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Abstract

To foster human-robot interaction, autonomous robots need to understand
the environment in which they operate. In this context, one of the main chal-
lenges is semantic segmentation, together with the recognition of important
objects, which can aid robots during exploration, as well as when planning
new actions and interacting with the environment. In this study, we extend
a multi-view semantic segmentation system based on 3D Entangled Forests
(3DEF) by integrating and refining two object detectors, Mask R-CNN and
You Only Look Once (YOLO), with Bayesian fusion and iterated graph cuts.
The new system takes the best of its components, successfully exploiting both
2D and 3D data. Our experiments show that our approach is competitive
with the state-of-the-art and leads to accurate semantic segmentations.

Keywords: Semantic Scene Understanding, Object Detection,
Segmentation and Categorization, Mapping

1. Introduction1

Semantic segmentation is the task of decomposing a scene into its mean-2

ingful parts. It received great attention in recent years within the research3

community because of its importance in scene understanding, robotics and4
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autonomous vehicles [1, 2, 3]. In general, this task is non-trivial given the5

high level of variability in the world and the limits of vision sensors; however,6

when dealing with moving robots, the same scene can be framed multiple7

times from different locations, which can make the task easier. In [4, 5, 6, 7],8

visual recognition techniques, which are usually applied to a single view at a9

time, are combined with a Simultaneous Localization and Mapping (SLAM)10

algorithm, which incrementally builds a global map. This allows to find11

correspondences between multiple views, which can be exploited to improve12

the semantic segmentation. Both single-view and multi-view problems have13

received attention in different contexts and at different scales: indoor and14

outdoor scenes, scaling up to entire cities [8]. Semantic segmentation can be15

the sensory input fed to systems reasoning about contents and their represen-16

tation in the domain of natural language [9]. These systems can learn about17

the inter-modal correspondences between language and visual data so that18

they can describe the content of images, e.g. by means of rich and descrip-19

tive captions. Also, semantic segmentation can help robots and autonomous20

cars in a variety of tasks, including object detection and picking [10] and21

autonomous navigation [11].22

Prior work includes many approaches, based both on plain 2D RGB23

data [12, 4] and RGB-D (or 3D) data [13, 7, 3]. In this work, we contribute to24

the problem of segmenting objects, humans and coarse scene elements, e.g.25

walls, floor and ceiling, on RGB-D data, showing that some components of26

the proposed system can be used also when only RGB data is available. Our27

approach can be successfully used in the context of service robotics [14, 15],28

including applications like social companion and health care: the proposed29

system can enhance navigation, planning and interaction thanks to an im-30

proved perception. Industrial applications can also be positively impacted31

by the proposed methods. In [16], semantic segmentation is proposed to de-32

tect the key elements involved in production and automatically sand boat33

components. Since high reliability is required to perform challenging manu-34

facturing operations, all sources of information, in particular multiple views35

and contextual cues, are exploited.36

Another interesting application of the proposed system is the automatic37

annotation of datasets [17]. Indeed, real products, that must satisfy accuracy38

and safety requirements, need huge labeled datasets if based on data-driven39

methods. Making the annotation process faster and less expensive is of ut-40

most importance.41

In this work, we build upon a setting consisting of a single-view semantic42
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segmentation method for indoor scenes called 3D Entangled Forest classifier43

(3DEF), previously presented in [13], and a multi-view frame fusion scheme,44

previously presented in [18] and in [16] for industrial applications.45

3DEF is a 3D semantic segmentation approach which works on single46

camera views of indoor environments and relies on an extension of the Ran-47

dom Forest. Given a single-view image, this approach is able to model its48

complex contextual features in a single pass in about one second. The se-49

mantic segmentation problem is tackled in two stages. First, the scene is50

over-segmented in such a way that each segment contains at most one ob-51

ject. Being an over-segmentation, objects can be split in many segments.52

Second, the semantic label of each segment is inferred by means of the 3DEF53

classifier. In particular, the classification of each segment depends on learned54

geometric relations of neighbouring segments. Finding correspondences be-55

tween multiple views can further enhance the semantic segmentation thanks56

to the various vantage points, namely the good observations points.57

Despite the good results with coarse scene elements, e.g. walls, floor and58

ceiling, this approach often struggle when dealing with objects: semantic seg-59

mentation does not rely on any high-level prior, but focuses on local geometry60

and texture. In this context, object detection can be seen as a complementary61

approach: it is based on strong priors about a given set of objects that need62

to be recognized in a scene. This leads object detectors to accurately detect63

and localize such objects, neglecting all the background, that is, the main64

part of an image. In this work, we study how to exploit both approaches, ex-65

tending a state-of-the-art object detector with iterated graph cuts [19, 20] to66

output accurate segmentation masks and then using Bayesian fusion to com-67

bine such segmentations with 3DEF and the multi-view frame fusion scheme.68

While many approaches have been developed over the last years, we focus69

on Mask R-CNN [21] and You Only Look Once (YOLO) [22, 23, 24]. Mask70

R-CNN is a deep neural network used to detect objects in images while gen-71

erating a segmentation mask for each object detected. YOLO is also a deep72

neural network but it does not generate any segmentation mask. In contrast73

to prior works, these methods do not need object proposals to reduce the74

search space; rather, they apply a neural network to the full image so pre-75

dictions are informed by global image context. These methods are fast: they76

process images in real-time with a GPU acceleration and, using the lightest77

models, they run in a few seconds per image on a CPU. Even with limited78

computational resources, they can be successfully used to refine lighter and79

less precise methods if executed asynchronously alongside them.80
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An example of the final result achieved by the proposed system is reported81

in Figure 1: (a) shows a dining room annotated pixel per pixel, (b) shows an82

outdoor scene with refined segmentation masks for each object.83

The main contributions of this paper are:84

• the introduction of an object detector into our multi-view semantic85

segmentation pipeline, in order to deal with complex objects as well as86

coarse scene elements like walls;87

• the Bayesian approach for incorporating the top-down cues of an ob-88

ject detector into the bottom-up semantic segmentation process, which89

achieves a good balance between the two systems;90

• the extension of state-of-the-art object detector like Mask R-CNN and91

YOLO with graph cut optimization for accurate object detection and92

contour segmentation.93

Our novel approach proved to be competitive with respect to the state-of-94

the-art. It can handle the multiple, sometimes overlapping, bounding boxes95

and segmentation masks returned by the object detector. Furthermore, it96

takes advantage of the confidences provided by the detection and semantic97

segmentation systems to consider the best of the two predictions. The 3D98

multi-view frame fusion technique further refines the semantic segmentation.99

The remainder of the paper is organized as follows. Section 2 overviews100

the state-of-the-art in object detection, single-view semantic segmentation101

and multi-view semantic segmentation. Section 3 introduces both the single-102

view and multi-view approach for semantic segmentation. Special attention103

is paid to the description of the process of creating accurate segmentation104

using the detection priors and iterated graph cuts. Then, the fusion of Mask105

R-CNN and You Only Look Once Detector (YOLO) with the 3D Entan-106

gled Forests (3DEF) is also described in depth. In Section 4, our methods107

are thoroughly evaluated on the NYU Depth Dataset V2 [2]. Further tests108

are performed on the Microsoft Common Objects in COntext (MS COCO)109

dataset [25] showing that the 2D component of our method can be useful even110

for computer vision applications lacking 3D data, both indoor and outdoor.111

Finally, in Section 5, our achievements are recapped and future directions112

of research identified.113
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(a)

(b)

Figure 1: Example of (a) multi-view semantic segmentation with object priors obtained
on the NYU dataset and (b) refined segmentation masks obtained on the COCO dataset.
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2. Related Work114

Nowadays, Deep Neural Networks (DNNs) are boosting many fields. Con-115

volutional Neural Networks (CNNs) already revolutionized semantic segmen-116

tation. One of the early attempts belongs to Couprie et al. [3, 26], who117

proposed a multiscale CNN architecture to combine information at different118

perceptive field resolutions. They were among the first to train a CNN with119

depth information for this task. Later, many other approaches have been120

proposed [7, 12, 27, 28, 29, 30]. The work by L. P. Tchapmi et al. [28] pro-121

poses a deep neural network called SEGCloud able to work with point clouds,122

instead of regular 3D voxel grids or collections of images. The method com-123

bines the advantages of neural networks, trilinear interpolation and fully124

connected Conditional Random Fields to enforce global consistency. For125

robotic or mobile applications, for which computational power is often con-126

strained, the trade-off between speed and accuracy have been further ex-127

plored [31, 13, 32]. To reduce the computational power required, other non128

CNN-based approaches also exist in this scenario, like the two works by D.129

Wolf et al. [31, 13]. Interestingly, in [13], D. Wolf et al. outperform [31]130

introducing the 3D Entangled Forest, an extension to the standard Random131

Forest. This classifier is able to model complex contextual features in one132

single pass in less than one second per frame on a standard CPU, without133

relying on complex graphical models, random fields or other post-processings134

as e.g. in [33]. In this work, the capabilities of this approach are further ex-135

plored. First, it is coupled with an object detector. Then, to get the best136

out of the two methods, Bayesian fusion and a refinement step working in137

3D are proposed.138

In applications with moving robots, recognition techniques can be en-139

hanced by observing the environment from several points of view. This140

problem is a particular instance of semantic mapping, described in [34] as the141

problem of identifying and recording the signs and the symbols that contain142

meaningful concepts for humans. These can be coarse scene elements [35],143

objects [35, 36, 37, 38, 39], places [40, 37] and other elements of interest [41].144

In the literature, the creation of such representation is tackled at different145

scales, indoor and outdoor, and using a reference system that can be either146

local, (e.g. with respect to the sensor), or global. In this work we focus147

on multi-view semantic segmentations of indoor scenes in the camera refer-148

ence system. Solutions to this problem have been proposed by J. Stückler et149

al. [42], A. Hermans et al. [4] and J. McCormac et al. [5]. They differ because150
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of the adopted registration system and semantic segmentation method. For151

registration, they use a Multi-Resolution Surfel Map-based SLAM, a cam-152

era tracking system without explicit loop closure and Elastic Fusion [5], re-153

spectively. For semantic segmentation, they use random decision forests, a154

combination of random decision forests and conditional random fields, and a155

CNN, respectively. They all adopt a Bayesian framework for combining the156

multiple views. In [43], a new method for incrementally building a dense,157

semantically annotated 3D map in real-time is studied. It assigns class prob-158

abilities to each region, not each element, of the 3D map, which is built159

up through a robust SLAM framework and incrementally segmented with a160

geometric-based segmentation method. Alternative multi-view approaches161

incorporating multi-view information into state-of-the art convolutional net-162

works have been proposed in [44, 45, 46]. Another multi-view frame fusion163

scheme was introduced by Antonello et al. [18]. This method is tested with164

a light SLAM algorithm like RGB-D SLAM [47], which finds the correspon-165

dences between the views. The multi-view semantic fusion considers the166

neighbourhood of each point and adds a geometrical verification step, useful167

for improving the semantic segmentation of the single-frames. Wrong con-168

tributions due to lens distortions or alignment errors are filtered out. In this169

work, this method is further studied. With respect to the previous work, the170

single-view contributions are enhanced by detection priors refined with iter-171

ated graph cuts. As discussed in [48], the lack of a uniform representation,172

as well as standard benchmarking suites, prevents the direct comparison of173

many semantic mapping algorithms. Here, since our focus is more the clas-174

sification task, we cast the problem as multi-view semantic segmentation175

and, as in [4, 5, 43], evaluate each single frame after taking into account the176

multiple points of view.177

In the past, the most successful approaches to object detection utilized178

a sliding window paradigm, in which a computationally efficient classifier179

tests for object presence in every candidate image window [49, 50, 51]. The180

steady increase in complexity of the classifiers has led to improved detec-181

tion quality, but at the cost of significantly increased computation time per182

window. Thus, in order to reduce the search space, many top performing183

object detectors [52, 53, 54] work on detection proposals [55, 56], i.e. only184

a small subset of all the possible windows. Two in-depth reviews can be185

found in [57, 58]. In contrast to prior works, the state-of-the-art family of186

object detectors known as You Only Look Once (YOLO) [22, 23] does not187

need object proposals and applies a single neural network to the full image,188
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so its predictions are informed by global context in the image. This network189

divides the image into regions and predicts bounding boxes and related de-190

tection probabilities for each region. These bounding boxes are weighted by191

the predicted probabilities. Such methods are fast: they process images in192

real-time with GPU acceleration and, using a lighter model, they run on a193

CPU at a few seconds per image. In recent years, object detectors capable194

of generating a high-quality segmentation mask for each instance have been195

proposed, e.g. Mask R-CNN [21]. Mask R-CNN extends Faster R-CNN by196

adding a branch for predicting an object mask in parallel with the existing197

branch for bounding box recognition. Given an image as input, Mask R-198

CNN generates proposals about the regions where there might be an object199

and predicts its class. Based on the proposal, it then generates a mask of200

the object. The boxes and masks returned by these methods can be coarse201

and benefit from a further refinement. In the literature, there exists meth-202

ods for segmenting foreground and background given some initial hints, e.g.203

boxes, incomplete segmentation masks [19, 20] and extreme points [59]. In204

this work, we prefer boxes and segmentation masks over extreme points,205

i.e. left-most, right-most, top, bottom pixels, to better cope with imperfect206

boxes and mask. In addition to refining the detected objects in the multiple,207

likely overlapping, priors, we also study how to combine these priors with a208

multi-view semantic segmentation system.209

3. Methods210

Our approach tackles the fusion of a bottom-up semantic segmentation211

with top-down object detection priors and the preliminary refinement of the212

object detector priors. The semantic segmentation and object detection ap-213

proaches are fused with the aim of leveraging the best of the two algorithms,214

which have different properties as they assume different prior knowledge215

about the observed scene, and they are based on 3D data (semantic seg-216

mentation) and 2D data (object detection). Such a combination needs to217

handle multiple, likely overlapping, object priors returned by the detector.218

This will be achieved by integrating the object priors in the right order, fus-219

ing the two contributions in a Bayesian way and smoothing the results in220

3D. For improved results, the object detection priors are refined before fu-221

sion. The obtained single-view semantic segmentation is further improved222

by means of our multi-view fusion scheme. An overview of both the single-223

view and multi-view algorithms is reported in Figure 2. The existing setting224
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Figure 2: Overview of the proposed approach. The single view approach can be 3DEF or
our combination of 3DEF with an object detector, Mask R-CNN or YOLO. The multi-view
frame fusion technique is based on the multiple frame fusion scheme introduced in [18].
The number of frames can be configured. Here, for visualization purposes, just three
frames are visualized.

is presented from Subsection 3.1 to 3.3. Our contributions are thoroughly225

discussed in Subsection 3.4.226

3.1. 3D Entangled Forest Classifier227

The 3DEF approach in [13] operates on 3D point clouds, which can be228

acquired with an RGB-D sensor. The approach comprehends three phases:229

• supervoxel over-segmentation in 3D patches;230

• fusion of similar adjacent segments into larger, mostly planar segments;231

• segment classification.232

The input point cloud is over-segmented into homogeneous 3D patches233

by means of the Voxel Cloud Connectivity Segmentation (VCCS) [60]. This234

solution aims at preserving the edges by finding patches not crossing ob-235

ject boundaries and, at the same time, it reduces the noise and the amount236

of data. This is a region growing method which incrementally expands237

patches, in particular supervoxels, i.e. volumetric over-segmentations of 3D238

point cloud data, from a set of seed points distributed evenly in space on a239

grid of fixed resolution Rseed. Expansion from the seed points is governed240

by a distance measure D calculated in a feature space consisting of spatial241

extent, color, and normals:242

D =

√
wcD2

c +
wsD2

s

3R2
seed

+ wnD2
n ,
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in which the spatial distance Ds is normalized by the seeding resolution, the243

color distance Dc is the euclidean distance in normalized RGB space, and244

the normal distance Dn measures the angle between surface normal vectors.245

Three weights can be controlled by the user: wc, ws and wn. This method246

was proved to be more effective than existing 2D solutions.247

In the subsequent step, this approach applies a region growing algorithm,248

which recursively merges two adjacent segments ci and cj into larger ones.249

The underlying idea is that bigger segments are better since the classifier250

features tend to be more reliable. This merging step is performed evaluating251

a distance function d(ci, cj). In particular, given a threshold τmerge, the252

constraint d(ci, cj) < τmerge must hold. This distance function is a linear253

combination of the color, surface normal and point-to-plane distance between254

the segments:255

d(ci, cj) = wcdc(ci, cj) + wndn(ci, cj) + wpdp(ci, cj) ,

in which dc is the color distance in Lab CIE 94 color space, dn the surface256

normal difference indicated by the dot product (1− nin
T
j ), dp is the max of257

the point-to-plane distance from ci to cj and viceversa. The user can control258

three weights: wc, wn and wp, normalized to sum up to 1. The algorithm259

stops if there are no more adjacent segments to be merged and returns the260

final set of segments S.261

For each segment generated by the over-segmentation, a feature vector262

x of length 18 is calculated. Besides simple color features, it includes fast263

geometric features. Some of them are calculated from the eigenvalues of the264

scatter matrix of the segment, which represent the variance magnitudes in265

the main directions of the spread of the segment points. Others are calculated266

from the Oriented Bounding Box (OBB) including all the segment points. A267

complete list of features is given in Table 1. Then, for each segment st, a set268

of close-by-segments si is selected on the basis of three constraints: point-269

to-plane distance, enclosed angles and Euclidean distance. During training270

and inference, this set can be used to evaluate five binary tests defining271

the entangled features, which are capable of describing complex geometrical272

relationship between segments in a neighbourhood. A complete list is given273

in Table 2. They are briefly explained as follows:274

• Existing Segment Feature: this evaluates to true if the set of close-by-275

segments si is nonempty;276

10



Table 1: List of unary features calculated for each 3D segment and their dimensionality.

Unary features Dimensionality
Color mean and std. dev. 2

Compactness (λ0) 1
Planarity (λ1 − λ0) 1
Linearity (λ2 − λ1) 1

Angle with floor (mean and std. dev.) 2
Height (top and bottom point) 2

OBB dimensions 3
OBB face areas 3

OBB elongations 3
Total dimensionality 18

Table 2: List of entangled features calculated for each 3D segment and their dimensionality.

Entangled features Dimensionality
Existing segment 4

TopN segment 6
Inverse TopN segment 6

Node descendant 5
Common ancestor 5

Total dimensionality 26

• TopN Segment Feature and Inverse TopN Segment Feature: these fea-277

tures take into account the class label distributions of the current tree278

nodes, which the candidate segments si have reached so far during clas-279

sification. Two parameters are learned: a label l and the bound N . In280

particular, they evaluate to true if a certain label l is among the most281

frequent N labels;282

• Node Descendant Feature and Common Ancestor Feature: these fea-283

tures consider the path a target segment st or candidate segment si took284

through the tree during classification. Two parameters are learned: a285

label l and the bound M . They evaluate to true if a certain label l is286
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Figure 3: Confusion matrix of 3DEF on the NYUv2 dataset. Two challenging classes are
the labels Object and Furniture, which comprehend many different objects of different sizes
and shapes. The main confusion values appear between Wall/Wall Decoration, Wall/Wall
Window and Wall Decoration/TV.

encountered within M steps.287

For further details, we refer to [31]. In our tests, we stuck to the original288

parameters for the sake of comparison.289

The shortcomings of the 3DEF classifier can only be mitigated by the290

availability of multiple points of view, as found out in [18]. To quantita-291

tively analyze its main weaknesses, we calculated its confusion matrix on the292

NYUv2 dataset, see Figure 3. Two challenging classes are the generic labels293

Object and Furniture, which comprehend many different objects of different294

sizes and shapes making it hard for a classifier to capture any distinct prop-295

erties. Also, the class Chair is often confused with the class Sofa. Finally,296

the classes TV, Decoration and Window are challenging since they all are297

objects located/mounted on walls so their segmentation can rely mainly on298

color cues. Given that a multi-view method can only slightly improve over299

these underlying issues, we further studied how to combine the strengths of300

3DEF with those of a state-of-the-art object detector. A semantic segmenta-301

tion approach like 3DEF can accurately segment many coarse scene elements302

and relatively big objects like Floor, Ceiling, Wall, Bed, Sofa, Chair or Book-303
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shelves. Instead, an object detector like Mask R-CNN or YOLO is trained304

to detect a variety of objects with clear boundaries.305

3.2. Multi-view Frame Fusion Scheme306

The multi-view frame fusion scheme presented in [18] operates on se-307

quences of RGB-D frames, which may be acquired during normal robot op-308

erations (consider, for example, a typical patrolling task). These frames may309

overlap and contain different views of the same entity (object or scene ele-310

ment) from different angles and distances. This module is composed of three311

steps which can potentially run in parallel: the 3D reconstruction step, the312

semantic segmentation step and the multi-view frame fusion step. The 3D313

reconstruction step, here based on RGB-D SLAM [47], takes a new frame314

from a sequence of RGB-D frames and registers it to the 3D reconstruction315

returning its rigid transformation with respect to the reference frame. The316

semantic segmentation step can be the original 3DEF approach applied to317

each frame or our combination of 3DEF with Mask R-CNN or YOLO. The318

multi-view frame fusion step, which is the focus of this section, fuses together319

the semantic information for each point in order to exploit the availability of320

multiple points of view.321

Given a sequence S of RGB-D frames Ii with i varying from 1 to N , a322

reference frame Iref can be selected, e.g. with ref = N/2. Every 3D point P xy,323

where x and y are the coordinates in the image reference system, belonging324

to it can be forward-projected to all the other frames in S. This way, the325

optimal label of each point P xy can be estimated after considering all the326

contributions from all the N points of view. Figure 4 shows that the optimal327

label of P xy
N/2 can be selected after considering also the contributions from328

forward-projected points FP xy
i in the frames I1 and IN while Figure 5 shows329

that not always a forward projection exists so the contribution from some330

frames can be missing.331

Anyway, due to lens distortions and SLAM errors like double walls or332

chairs, we cannot be sure that each point P xy ∈ Iref truly coincides with333

the 3D points corresponding to each forward projection {FP xy
i }. Hence, we334

introduced a geometrical validation step: each FP xy
i is transformed to the335

reference coordinate system and can contribute only if:336 ∣∣∣∣FP xy
i .z − P xy

ref .z

∣∣∣∣< ε . (1)
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Figure 4: Forward projection from 3D to Ii, i 6= ref. The red boxes around FP xy
1 and FP xy

N

denote the Moore neighbourhood. The red circle around P xy
N/2 the geometric validation

step: only the points side it can contribute.

Figure 5: Example of missing forward projection.

A good ε proved to be 0.05 m since just the contributions of truly coinciding337

3D points are of interest.338

To consider the contributions from the other frames, an approach based339

on the Bayesian fusion at the pixel level is considered. Not only this method340

operates on labels but it takes in input also the classifier confidences. Given a341
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point P xy
ref ∈ Iref and the respective forward projected points {FP xy

i } with i ∈342

{1, ..., N}
∧
i 6= ref, let j be a semantic label and zref = {z1, ..., zref , ..., zN} its343

measurements in each frame Ii, i.e. the labels assigned to the point P xy
ref (zref)344

and its forward-projections FP xy
i (zi, with i 6= ref). According to Bayes’ rule:345

p(j|zref ) =
p(zref |j, zref)p(j|zref)

p(zref |zref)
,

where zref = zref \ {zref}, i.e. the labels assigned to the forward-projections346

only. Under the assumptions of i.i.d. condition (independent and identically347

distributed condition) and equal a-priori probability for each class, it can be348

simplified to:349

p(j|zref) = τj
∏
i

p(zi|j) ,

where τj is a normalization factor such that:350 ∑
j=1...N

τjp(j|zref) = 1 .

In particular τj is calculated as:351

τj =
1∑

k=1...N p(k|zref)
.

Parity cases are important and must be addressed appropriately. In the event352

of parity, the label from the reference frame is kept.353

Finally, the forward projection is improved by means of a smoothing step.354

This step takes into account the pixel context so as to improve robustness355

with respect to errors in the forward projection process, which can be due to356

noise or locally imprecise registration. Each forward-projected point FP xy
i357

does not contribute with its label only but with the most frequent label in its358

Moore neighbourhood, which comprehends itself and the eight neighbours,359

NP xy
ik with 1 ≤ k ≤ 8, see the red boxes enclosing them in Figure 4. Formally,360

let dFPxy,j denote whether the classifier selects the label j on point FP xy
ref or361

not, and let dNPxy
ik ,j denote whether the classifier selects the label j on point362

NP xy
i or not. The majority label combination leads to the class J receiving363

the largest total vote:364
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dFPxy
ref ,J

+
∑

k∈1...8
∧

i 6=ref

dNPxy
ik ,J = max

j=1,...,c

dFPxy
ref ,j

+
∑

k∈1...8
∧

i 6=ref

dNPxy
i k,j

 .

In addition, each forward-projected point does not contribute with its365

label confidences but with those of the neighbour pixel with the most frequent366

label J in the Moore neighbourhood. Nevertheless, without any geometrical367

verification step, this method could introduce noise in the labelling results.368

To be sure that each point in the 2D Moore neighbourhood is a real neighbour369

in 3D, only the points passing the geometrical verification step previously370

introduced in Equation 1 can contribute, in this case:371 ∣∣∣∣NP xy
ij .z − P

xy
ref .z

∣∣∣∣< ε .

3.3. Object Detector372

We selected two state-of-the-art real-time one-shot object detectors, Mask373

R-CNN [21] and You Only Look Once (YOLO) [22], more precisely the second374

version YOLOv2 [23].375

Mask R-CNN generates bounding boxes and segmentation masks for each376

instance of an object in the image. Mask R-CNN extends Faster R-CNN [53]377

by adding a branch for predicting an object mask in parallel with the existing378

branch for bounding box recognition. Given an image as input, Mask R-379

CNN generates proposals about the regions where there might be an object380

and predicts its class. Based on the proposal, it then generates a mask of381

the object. The implementation used in this work [61] is based on Feature382

Pyramid Network (FPN) and a ResNet101 backbone. For a full description,383

we refer to [21].384

In contrast to Mask R-CNN, YOLO generates only the bounding boxes.385

It feeds a single neural network with a full RGB frame so that its predictions386

can be informed by the global frame context. The network divides the image387

into regions and predicts bounding boxes and probabilities for each region.388

These bounding boxes are weighted by the predicted probabilities. The net-389

work architecture of the first version YOLOv1 is inspired by the GoogLeNet390

model [62] for image classification. The network has 24 convolutional lay-391

ers followed by 2 fully connected layers. Instead of the inception modules392
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(a) (b)

Figure 6: (a) Mask R-CNN finds a set of bounding boxes as well segmentation masks, for
each of which a label and a confidence are associated (b) Similarly, YOLO finds a set of
bounding boxes.

used by GoogLeNet, it uses 1× 1 reduction layers followed by 3× 3 convolu-393

tional layers, similar to Lin et al. [63]. The detection framework of YOLOv2394

improves in speed and accuracy thanks to various design choices making it395

competitive with respect to region-based approaches like Faster R-CNN or396

Mask R-CNN. For a full description, we refer to [23].397

For both detectors, we selected a model trained on the COCO detection398

dataset [25], containing over 200 000 images with 80 different object classes.399

The annotations of this dataset are accurate and the models learned from it400

can be reused in other contexts, as shown also in this work. These classes,401

which do not include coarse or large scene elements like Wall, Ceiling and402

Floor, can be easily mapped to the other classes of the semantic segmentation403

problem: most of the COCO classes simply falls in the Object class. For our404

tests, we considered the proposals with a high confidence threshold, greater405

than 0.5. The output of the detectors on two sample images is shown in406

Figure 6.407

3.4. Object Detection and Semantic Segmentation Fusion408

Two steps are required to integrate the detector into our semantic seg-409

mentation pipeline:410

• refinement of the object detection priors with Grabcut;411
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(a)

(b)

Figure 7: (a) Overview of the algorithm performing semantic segmentation with an ob-
ject detector. In this scheme, for ease of visualization, the detector generates only three
priors. (b) Overview of the algorithm to combine 3DEF and an object detector. The
Bayesian fusion leverages on the strengths of both methods. The cluster smoothing is a
final refinement.

• fusion of the refined detection priors with the semantic segmentation.412

The two steps are illustrated in Figure 7 and detailed as follows.413

A straightforward implementation of the first step consists in labeling all414

the pixels in the detection prior, i.e. the segmentation mask returned by415

Mask R-CNN and the bounding box returned by YOLO. Instead, we further416

refine these priors with the approach illustrated in Figure 7(a) and formally417

described in Algorithm 1. The approach exploits both 2D and 3D data and418

handles overlapping priors. For each RGB frame, the detector proposes a419

set of detection priors associated with a label and a confidence. Given each420

detection prior, the detected object is segmented with a method based on421

Grabcut, a state-of-the-art unsupervised segmentation algorithm [19]. It can422

be initialized in three ways using:423

18



Algorithm 1 Detector Prior Refinement with Grabcut

1: procedure REFINE PRIORS(IRGB, Idepth) . Input images
2: priors← DETECT(IRGB) . Mask R-CNN or YOLO
3: sorted priors← SORT(priors) . Decreasing size order
4: new priors← ∅
5: for all prior : prior ∈ sorted priors do
6: new priorRGB ← REFINE(prior, IRGB) . Grabcut
7: new priordepth ← REFINE(prior, Idepth) . Grabcut
8: new prior ← new priorRGB ∨ new priordepth
9: new priors← new priors ∪ {new prior}

10: Ilabeled ← LABEL IMAGE(new priors)
11: return Ilabeled . With objects classes and confidences

• a mask with pixels labeled as foreground, background, probable fore-424

ground and probable background;425

• a bounding box around the foreground region;426

• both the mask and bounding box.427

For Mask R-CNN, we exploit the first option. The third option did not prove428

helpful since the bounding box is too coarse to help refining the mask. In429

particular, we set the border of the original mask as probable foreground, the430

inner area as foreground and the outer area as background. We determine431

the border thickness t as a fraction f of the radius r of a circle with perimeter432

p as long as the bounding box perimeter:433

t = fr = f
w + h

π
,

where f was set to 0.1 in our experiments, w is the bounding box width and434

h the bounding box height. For YOLO, we exploit the second option since435

YOLO does not provide any segmentation mask. This option corresponds436

to marking the outer area as background and the inner area as probable437

foreground. Given the labeled masks in input, Grabcut creates the back-438

ground/foreground segmentation by solving a max-flow min-cut problem. A439

weighted graph is created based on the pixel neighbouring and the labeled440

masks. In particular, given the label α, the color z and some parameters θ441

describing foreground and background color distributions, the cost function442
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E(α, θ, z), that Grabcut minimises with iterated graph cuts, is defined by a443

data term U(α, θ, z) and a smoothness term V (α, z):444

E(α, θ, z) = U(α, θ, z) + V (α, z) .

The two terms describe how well the pixels fit the background/foreground445

color distributions and how smooth the labeling is over similar/a-similar446

neighboring pixels. The optimization is followed by border matting to deal447

with blur and mixed pixels along smooth object boundaries on which both448

Mask R-CNN and 3DEF struggle. For robustness, given that not always a449

segmentation can be found, Grabcut is run on both RGB and depth frames.450

This way, the segmentations obtained from RGB and depth frames can be451

fused using a pixel-per-pixel OR operation. We run the graph cut opti-452

mization for 5 iterations; if Grabcut cannot return any segmentation, we453

consider the initial object detection priors as foreground. This solution does454

not penalize labels like Object and Book, which can be characterized by tight455

bounding boxes. Then, a label and confidence is assigned to each pixel.456

Since detection priors can overlap, the order with which the bounding457

boxes are processed may negatively impact the results. For instance, de-458

pending on the processing order of Grabcut, an object on a table may be459

segmented before the table itself, so the subsequent table segmentation may460

override the previous object segmentation, see examples in Figure 6. Because461

of this, a straightforward method running Grabcut on each bounding box is462

not ideal. Here, with a heuristic, detection priors are sorted in decreasing463

order of size. This way, bigger boxes are segmented before smaller ones. In-464

deed, big boxes might be supporting surfaces like tables while small boxes465

may contain objects lying on them. This component already improves the466

semantic segmentation of 3DEF.467

Given that the detector does not support the detection of all the 13 classes468

(e.g. it cannot detect coarse scene elements like floor, walls and ceiling, be-469

cause they do not have clear boundaries) the output it provides is incomplete470

and needs to be fused with a semantic segmentation approach. An overview471

of the fusion process is illustrated in Figure 7(b) and formally described in472

Algorithm 2. For each frame pixel, the predictions of 3DEF and of the detec-473

tor are fused in a Bayesian way. The two contributions can be easily retrieved474

in 2D by iterating over the output of 3DEF and of our semantic segmentation475

method based on the detector. Indeed, both outputs are semantic images,476

encoding the most likely label and the probability distribution over the set477
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Algorithm 2 Semantic Segmentation with Refined Priors

1: procedure SEMANTIC SEGMENTATION(cloud, IRGB, Idepth) .
Input point cloud and images

2: Ilabeled ← REFINE PRIORS(IRGB, Idepth) . With confidences
3: cloud labeled, clusters← 3DEF(cloud) . With confidences
4: cloud labeled← BAYESIAN FUSION(Ilabeled, cloud labeled)
5: cloud labeled← SMOOTH CLUSTERS(cloud labeled, clusters)
6: return cloud labeled . Labeled point cloud

of labels. For simplicity, we assume that the two semantic segmentations are478

independent and identically distributed. This is reasonable since the detector479

and semantic segmentation rely on different features, 2D and 3D, therefore480

they have different strengths and weaknesses. Given a frame I and a frame481

pixel P xy ∈ I, let j be its semantic label, z3DEF the semantic label returned482

by 3DEF and zDet the semantic label returned by the detector. According to483

Bayes’ rule and under the assumption of i.i.d. condition, confidences can be484

accumulated as follows:485

p(j|z3DEF ∧ zDet) = τjp(z3DEF|j)× p(zDet|j) ,

where p(zDet) is the confidence returned by 3DEF, p(zDet) is the confidence486

returned by the detector and τj is a normalization factor such that:487 ∑
j=1...N

τjp(j|z3DEF ∧ zDet) = 1 .

The selected label J is the one with the highest probability:488

J = arg max
j

p(j|z3DEF ∧ zDet) .

Nevertheless, errors in the detector prior location or in the Grabcut-based489

segmentation may lead to the assignment of wrong labels and confidences490

to the pixels close to the object borders. To alleviate this, a subsequent491

cluster smoothing step is performed. In contrast with previous steps, this492

one exploits the point cloud, in particular the 3D preliminary segmentation493

based on the the Voxel Cloud Connectivity Segmentation (VCCS) [60] and494

the subsequent region growing, see Section 3.1. Given each unlabeled cluster495

C, which is the output of the preliminary segmentation phase in the 3DEF496
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approach, the most frequent label of the points in C is considered. Each497

point in C is labelled consistently with the most voted label in the cluster.498

In the same way, the respective confidences are propagated inside the cluster499

to all the other points.500

The performance of the presented methods will be extensively discussed501

in the following section.502

4. Experiments503

4.1. Datasets504

We assessed the performance of our methods on the popular NYU Depth505

dataset NYUv2 [2] and further evaluated the detection refinement on the506

Microsoft Common Objects in COntext (MS COCO) dataset [25].507

The NYUv2 dataset contains 1449 pixel-wise labeled RGB-D frames which508

are commonly split into a subset of 795 frames for training/validation and509

654 for testing. It was recorded with a Kinect v1 sensor. In contrast to its510

predecessor NYUv1, the annotation quality is higher and it does not wrap511

the class Object in the class Background. In particular, we tested our meth-512

ods on the 13-class semantic segmentation problem. The 13 classes include513

objects, furniture and coarse scene elements, e.g. walls, ceiling and floor.514

MS COCO is a large-scale dataset object detection and segmentation515

dataset containing about 200k labeled RGB images. The object detection516

and segmentation problem considers 80 class labels of common objects in517

everyday scenes from all around the world. The dataset is split into a subset518

of 155k training images, 5k validation images and 40k test images. The labels519

of the test set are not public available and the evaluation is performed in a520

test server.521

4.2. Experiments on NYUv2522

Similarly to the other approaches evaluated on this dataset, we used two523

performance indicators: pixelwise recall (in the following: Global Accuracy –524

GA) and classwise recall (in the following: Class Accuracy – CA). In addition,525

we also reported a third performance indicator, the classwise precision (in526

the following: Class Precision – CP), useful to further compare the variants527

of our methods. Considering a label set with n class labels and based on the528

elements of the confusion matrix (true positives tp, false positives fp and529

false negatives fn), the metrics are defined as follows. GA is calculated as530

the overall portion of correctly labeled points:531
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Table 3: Evaluation of the fusion of 3DEF with Mask R-CNN and YOLO on the NYUv2.
The methods are reported in increasing order of class-wise accuracy CA. The best result
are in bold. Integrating an object detector always improves over the baseline 3DEF.
3DEF+YOLO+Grabcut performs slightly better than 3DEF+Mask R-CNN. Using the
depth image improves Grabcut segmentations.

Method CA GA CP
3DEF [13] 55.7 65.0 53.3

3DEF+YOLO+Grabcut (rgb) 60.9 67.4 56.0
3DEF+Mask R-CNN+Grabcut (rgb) 61.2 67.3 56.1

3DEF+Mask R-CNN+Grabcut (rgb and depth) 61.2 67.3 56.2
3DEF+Mask R-CNN 61.2 67.4 56.2

3DEF+YOLO+Grabcut (rgb and depth) 61.3 67.6 56.3

GA =

∑n
i=1 tpi∑n

i=1(tpi + fni)
.

CA is the average class recall:532

CA =
1

n

∑n
i=1 tpi∑n

i=1(tpi + fni)
.

CP is the average class precision:533

CP =
1

n

∑n
i=1 tpi∑n

i=1(tpi + fpi)
.

The last two indicators are less biased towards frequent classes. In the follow-534

ing, we will analyze the different combinations of 3DEF and object detector,535

the multi-view contribution and how our best approaches do in comparison536

with other state-of-the-art approaches.537

We compared different ways to integrate 3DEF with Mask R-CNN and538

YOLO. Table 3 shows that integrating an object detector always improves539

over the baseline 3DEF, up to +5.6% in CA, +2.6% in GA and +2.0% in CP.540

3DEF+YOLO+Grabcut performs slightly better than 3DEF+Mask R-CNN.541

Indeed, even if Mask R-CNN segmentations are precise, the method is penal-542

ized by misclassifications. Experimental results do not highlight any benefits543

in using Grabcut with Mask R-CNN: they report a situation of substantial544
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(a) Mask R-CNN (b) Mask R-CNN+Grabcut

(c) Mask R-CNN (d) Mask R-CNN+Grabcut

Figure 8: Examples of Mask R-CNN masks refined by Grabcut.

parity with a small detriment (−0.1%) in GA. Nevertheless, inspecting the545

generated masks, we found out that Grabcut refines the segmentations, as546

shown by a couple of examples in Figure 8. This improvement is counter-547

balanced by misclassified objects: in other words, the negative impact of548

misclassified objects increases if their masks are refined. To further inves-549

tigate the combination of Mask R-CNN with Grabcut, we detail additional550

tests on the COCO dataset in Section 4.3, which better show the benefits of551

using Grabcut both quantitatively and qualitatively. In Figure 9, we present552

additional qualitative results for 3DEF+YOLO+Grabcut. We report the553

initial output of 3DEF in Figure 9(a). The integration of YOLO without554

Grabcut, see Figure 9(b), generates a semantic labeling clearly less accurate555

than the integration of YOLO with Grabcut, see Figure 9(c). We also re-556
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(a) (b) (c) (d)

Object Table Floor Ceiling

Figure 9: Semantic segmentation of a fire extinguisher on the wall: (a) 3DEF: the object is
mainly confused with a table; (b) YOLO-based semantic segmentation without Grabcut:
the object is correctly classified but many points on the wall are misclassified; (c) YOLO-
based semantic segmentation: many points are correctly classified but the object is still
partially labeled as table and the wall as object; (d) 3DEF+YOLO with Bayesian fusion
and the final cluster smoothing: there are no wrong labels on the object and only a few
points of the wall are still labeled as object because of the imperfect initial segmentation
of the 3DEF framework.

Table 4: Evaluation of the multi-view approaches on the NYUv2. The methods are
reported in increasing order of class-wise accuracy CA. The best result are in bold. Using
multiple views lead to the best results in CA, GA and CP.

Method CA GA CP
3DEF [13] 55.7 65.0 53.3

MV-3DEF [18] 56.1 65.3 53.7
3DEF+Mask R-CNN (best) 61.2 67.4 56.2

3DEF+YOLO (best) 61.3 67.6 56.3
MV-3DEF+YOLO 61.5 67.7 56.4

MV-3DEF+Mask R-CNN 64.0 66.0 56.5

port the improved output after Bayesian fusion and clustering smoothing in557

Figure 9(d).558

We selected the best approaches in the previous experiment and tested559

the multi-view frame fusion scheme in [18] on them. For simplicity, we refer560

to 3DEF+YOLO+Grabcut as 3DEF+YOLO (the best approach). Table 4561

shows that using multiple views does not have the same effect on all meth-562
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Table 5: Performance comparison on the NYUv2. The methods are reported in increasing
order of class-wise accuracy CA. The class performance improvements with respect the
baselines 3DEF and MV-3DEF are in boxes. The best result are in bold. Combining 3DEF
with a detector makes the approach more competitive with respect to existing approaches.

Method CA GA CP
Couprie et al. [3] 36.2 52.4 -
Hermans et al. [4] 48.0 54.2 -

3DEF [13] 55.7 65.0 53.3
MV-3DEF [18] 56.1 65.3 53.7
SEGCloud [28] 56.4 66.8 -

Nakajima et al. [43] 58.5 70.7 -
Eigen [12, 5] 59.9 66.5 -

3DEF+MaskRCNN (best) 61.2 67.4 56.2
3DEF+YOLO (best) 61.3 67.6 56.3
MV-3DEF+YOLO 61.5 67.7 56.4

Eigen-SF [5] 63.2 69.3 -
Eigen-SF-CRF [5] 63.6 69.9 -

MV-3DEF+MaskRCNN 64.0 66.0 56.5
MVCNet-MaxPool [45] 69.5 77.7 -

ods. In particular, MV-3DEF+YOLO slightly improves over all the coeffi-563

cients (+0.2%, +0.1%, +0.1%) while MV-3DEF+Mask R-CNN improves in564

classwise recall and precision (+3.5% and +0.1%) but deteriorates the global565

accuracy (−1.4%). This difference is expected since different methods have566

different success and failure models, and different confidence distributions.567

On this dataset, the average number of labelled frames per scene is 2.74. As568

shown in [18], this reduces the performance benefit of the multi-view method,569

which improves with the number of forward-projected frames.570

In Table 5 and Table 6, we compare our methods with state-of-the-art571

methods for single-view and multi-view semantic segmentation. In Table 5,572

we report the results of single-view methods working on both RGB-D data,573

Couprie et al. [3] and Eigen et al. [12, 5], and 3D point clouds, 3DEF [13] and574

SEGCloud [28]. We also report the results of different multi-view methods,575

Hermans et al. [4], Eigen-SF-CRF [5], MV-3DEF [18], Nakajima et al. [43]576

and MVCNet-MaxPool [45]. These works are evaluated at full resolution577

26



Table 6: Class performance comparison on the NYUv2. The class performance improve-
ments with respect the baselines 3DEF and MV-3DEF are in boxes. The best result are
in bold. Combining 3DEF with a detector makes the approach more competitive with
respect to existing approaches.

Method Bed
Objec

t
Chair

Furnitu
re

Ceili
ng

Floor
Pict

ure
Sofa

Table
Wall

W
indow

Books
TV

Couprie et al. [3] 38.1 8.7 34.1 42.4 62.6 87.3 40.4 24.6 10.2 86.1 15.9 13.7 6.05
Hermans et al. [4] 68.4 8.6 41.9 37.1 83.4 91.5 35.8 28.5 27.7 71.8 46.1 45.4 38.4

3DEF [13] 74.2 17.2 63.4 48.1 80.3 98.7 26.5 71.0 46.5 84.0 25.4 55.1 34.1
MV-3DEF [18] 73.2 17.5 64.5 48.8 80.2 98.7 27.2 74.5 50.4 84.2 29.5 56.0 42.7
SEGCloud [28] 75.1 39.3 62.9 61.8 69.1 95.2 34.4 62.8 45.8 78.9 26.4 53.5 28.5

Nakajima et al. [43] 83.7 52.5 56.7 76.1 24.4 83.3 40.8 77.7 53.0 75.3 64.4 15.6 57.3
Eigen [12, 5] 42.3 46.5 72.4 60.8 73.1 85.7 57.3 38.9 42.1 85.5 55.8 49.1 68.5

3DEF+Mask R-CNN 85.2 18.5 82.8 57.8 79.2 97.4 23.8 76.7 55.1 80.1 22.2 61.3 55.8
3DEF+YOLO 86.9 17.7 82.4 55.0 79.2 96.8 24.1 71.6 51.4 82.7 25.0 66.3 57.5

MV-3DEF+YOLO 87.8 17.7 82.3 54.8 81.3 96.6 23.0 71.6 51.2 82.7 25.8 66.7 57.3
Eigen-SF-CRF [5] 48.3 46.9 74.7 63.5 79.0 90.8 63.6 46.5 45.9 89.4 55.6 51.5 71.5

MV-3DEF+Mask R-CNN 95.3 18.9 85.9 62.8 89.4 96.2 22.6 75.9 53.7 79.8 14.5 68.8 67.7

(640× 480) with the exception of the approaches presented in [5, 43] which578

report the result when working at half resolution (320 × 240). In Table 6,579

we compare the methods class by class. We do not report the results for580

MVCNet-MaxPool [45] since they are not available and we report the results581

of Eigen-SF-CRF over Eigen-SF since it is the best performing among the582

two.583

As reported in both tables, a significant boost in performance is ob-584

tained by combining the 3DEF classifier and a detector, both Mask R-CNN585

and YOLO. In particular, our best single-view 3DEF+YOLOs outperform586

the baselines based on 3DEF (+5.2% in CA, +2.3% in GA and +2.5%587

in CP) as well as SEGCloud [28] (+4.9% in CA and +0.8% in GA) and588

Eigen [5, 43] (+1.3% in CA and +1.1% in GA). 3DEF+YOLO outperforms589

also Nakajima et al. [43] in CA (+3.0%) but not in GA (-3.0%) since590

our method offers better performance class by class but not on classes with591

more samples in the dataset. Using multi-views highlights the strengths of592

our methods: MV-3DEF+YOLO gets closer to Eigen-SF, Eigen-SF-CRF593

and MVCNet-MaxPool while MV-3DEF+Mask R-CNN outperforms Eigen-594

SF and Eigen-SF-CRF, and gets closer to MVCNet-MaxPool. In particular,595

MV-3DEF+Mask R-CNN outperforms Eigen-SF-CRF in CA (+0.4%) but596

not in GA (−3.9%). The method is stronger class by class but penalized597

by the performance with the classes with more samples in the dataset, in598

particular the class Wall. Neither the integration of the object detector nor599

the multi-view allow to outperform MVCNet-MaxPool [45], (−5.5% in CA600
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Table 7: Class performance differences between the two best methods on the NYUv2.
MV-3DEF+YOLO and MV-3DEF+Mask R-CNN outperform MV-3DEF in 8 and 9 out
of 13 classes, respectively. Improvements are in bold.

Method vs MV-3DEF [18] Bed
Objec

t
Chair

Furnitu
re

Ceili
ng

Floor
Pict

ure
Sofa

Table
Wall

W
indow

Books
TV

MV-3DEF+YOLO +14.6 +0.2 +17.8 +6.0 +1.1 -2.1 -4.2 -2.9 +0.8 -1.5 -3.7 +10.7 +14.6
MV-3DEF+Mask R-CNN +22.1 +1.4 +21.4 +14.0 +9.2 -2.5 -4.6 +1.4 +3.3 -4.4 -15.0 +12.8 +25.0

Table 8: Class performance differences between the two best methods on the NYUv2.
MV-3DEF+YOLO and MV-3DEF+Mask R-CNN outperforms Eigen-SF in 7 out of 13
classes. MV-3DEF+Mask R-CNN and Eigen-SF-CRF are almost equivalent in 2 other
classes. Improvements are in bold.

Method vs Eigen-SF-CRF [5] Bed
Objec

t
Chair

Furnitu
re

Ceili
ng

Floor
Pict

ure
Sofa

Table
Wall

W
indow

Books
TV

MV-3DEF+YOLO +39.5 -29.2 +7.6 -8.7 +2.3 +5.8 -40.6 +25.1 +5.3 -6.7 -29.8 +15.2 -14.2
MV-3DEF+Mask R-CNN +47.0 -28.0 +11.2 -0.7 +10.4 +5.4 -41.0 +29.4 +7.8 -9.6 -41.1 +17.3 -3.8

and −11.7% in GA). This approach already exploits multiple views and it601

would be interesting to study how to combine it with an object detector.602

Class by class performance is further investigated comparing our best603

methods against the baseline MV-3DEF [18] in Table 7 and against Eigen-604

SF-CRF [5] in Table 8. MV-3DEF+YOLO and MV-3DEF+Mask R-CNN605

outperform MV-3DEF [18] in 8 and 9 out of 13 classes, respectively. The im-606

proved classes are Bed, Object, Chair, Furniture, Ceiling, Sofa, Table and607

Bookshelf. MV-3DEF+YOLO and MV-3DEF+Mask R-CNN outperform608

Eigen-SF-CRF [5] in 7 out of 13 classes, Bed, Chair, Ceiling, Floor, Sofa,609

Table and Bookshelf. MV-3DEF+Mask R-CNN and Eigen-SF-CRF [5] are610

almost equivalent in 2 other classes, Furniture and TV. Both tables show611

that our methods suffer when classifying Wall, Picture and Window. This612

is a weakness of 3DEF that cannot be compensated by the detectors since613

they are not trained on those classes. This could be further investigated by614

training the detector on the classes Picture and Window or by improving615

the preliminary region growing segmentation in 3DEF. Indeed, the region616

growing can erroneously merge the three classes in a single cluster making it617

impossible for 3DEF to classify them correctly.618

Additional qualitative results are reported in Figure 10. For each scene,619

the predicted semantic segmentation and its ground truth are reported side620
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(a) MV-3DEF+Mask R-CNN (b) Groundtruth

(c) MV-3DEF+Mask R-CNN (d) Groundtruth

(e) MV-3DEF+Mask R-CNN (f) Groundtruth

(g) MV-3DEF+Mask R-CNN (h) Groundtruth

Bed Object Chair Furniture Ceiling Floor Picture

Sofa Table Wall Windows Books TV

Figure 10: Qualitative results on the NYUv2 dataset: (a)(c)(e)(g) multi-view seman-
tic segmentation obtained with the best of our methods, MV-3DEF+Mask R-CNN and
(b)(d)(f)(h) groundtruth semantic segmentation.
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Table 9: Average precision comparison on the COCO dataset. The performance improve-
ments with respect to the baseline Matterport Mask R-CNN [61] are enclosed in boxes.
The best results are in bold.

Method AP AP50 AP75 APS APM APL

Matterport Mask R-CNN [61] 28.2 47.1 30.0 12.7 30.0 38.0
Mask R-CNN+Grabcut 28.4 47.7 29.9 12.5 29.9 39.1
FAIR Mask R-CNN [21] 43.8 68.8 47.1 23.7 46.4 61.4

Table 10: Average recall comparison on the COCO dataset. The performance improve-
ments with respect to the baseline Matterport Mask R-CNN [61] are enclosed in boxes.
The best results are in bold.

Method AR1 AR10 AR100 ARS ARM ARL

Matterport Mask R-CNN [61] 24.6 34.3 34.9 15.9 37.2 47.9
Mask R-CNN+Grabcut 25.0 34.9 35.5 15.7 37.5 49.8
FAIR Mask RCNN [21] 34.7 55.0 58.0 40.7 62.1 73.3

by side. Generally, our approach successfully classifies several classes, e.g.621

Chair, Furniture, Table and Books in the reported scenes. Also some correct622

instances of Object are visible. Nevertheless, as previously discussed, the623

method struggles with Picture, Wall and Windows.624

4.3. Experiments on COCO625

We further investigate the performance of the 2D component of our ap-626

proach on the COCO dataset [25]. Similarly to other approaches evaluated627

on this dataset, we characterized the performance of our method using the628

12 metrics proposed by the authors. They capture the average precision at629

different Intersection over Unions (IoU), i.e. with loose or strict detection630

versus groundtruth matching criteria, and across scales, i.e. evaluating the631

performance separately when dealing with small objects and large objects.632

They capture also the average recall given a maximum number of objects per633

frame and across scales. Each metric is described in the following:634

• average precision with IoUs from 0.50 to 0.95 with a step of 0.05 (AP);635
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• average precision at IoU 0.50 (AP50);636

• average precision at IoU 0.75 (strict metric) (AP75);637

• average precision for small objects with an area less than 322 px2 (APS);638

• average precision for medium objects with an area greater than 322 px2
639

and less than 962 px2 (APM);640

• average precision for large objects with an area greater than 962 px2
641

(APL);642

• average recall given one detection per image (AR1);643

• average recall given 10 detections per image (AR10);644

• average recall given 100 detections per image (in the following: AR100);645

• average recall for small objects with an area less than 322 px2 (ARS);646

• average recall for medium objects with an area greater than 322 and647

less than 962 px2 (ARM);648

• average recall for large objects with an area greater than 962 px2 (ARL).649

In Table 9 and 10 we compare our method against Matterport Mask R-650

CNN [61] and FAIR Mask R-CNN [21]. Matterport Mask R-CNN [61] is651

an open-source implementation of Mask R-CNN we use as baseline for de-652

veloping our method Mask R-CNN+Grabcut. FAIR Mask R-CNN [21] is653

an ensemble of 30 Mask R-CNN methods. This method is the best per-654

forming one. As reported in Table 9 and 10, our approach obtains better655

results in both AP and AR with respect to the baseline Matterport Mask656

R-CNN [61]. The performance improvement with respect to the baseline is657

enclosed in boxes. Most of the metrics (AP, AP50, APL, AR1, AR10, AR100,658

ARM and ARL) are improved while the two approaches are almost equivalent659

with respect to the remaning ones (AP75, APS, APM, ARS).660

Qualitative results are shown in Figure 11. Using our method, the object661

contours are better defined, as it is visible comparing Figure 11(a)(b) with662

Figure 11(b)(d). Nevertheless, the mask can get worse if the color model is663

not captured by Gaussian mixture model used by Grabcut. An example of664

this behaviour in shown in Figure 11(g)(h) in which Grabcut is confused by665

the square pattern of the shirt.666
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(a) Mask R-CNN (b) Mask R-CNN+Grabcut

(c) Mask R-CNN (d) Mask R-CNN+Grabcut

(e) Mask R-CNN (f) Mask R-CNN+Grabcut

(g) Mask R-CNN (h) Mask R-CNN+Grabcut

Figure 11: Qualitative results on the COCO dataset: (a)(c)(e)(g) segmentation masks
obtained with Matterport Mask R-CNN [61] and (b)(d)(f)(h) refined segmentation masks
obtained with Mask R-CNN+Grabcut. Our approach refines the mask contours.
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Table 11: Running times of our system on the laptop Dell Inspiron 15 7000 installed on
our mobile robot [14].

Method fps
Semantic segmentation with 3DEF 0.53

Mask R-CNN detector 0.94
YOLO detector 4.20

Mask R-CNN refinement with Grabcut 0.19
YOLO refinement with Grabcut 0.90
Multi-view frame fusion scheme 2.27
Full system with Mask R-CNN 0.12

Full system with YOLO 0.27

4.4. Runtime Analysis667

We tested our system on a standard laptop Dell Inspiron 15 7000 installed668

on our mobile robot [14]. It runs Ubuntu 18.04 and is equipped with an Intel669

Core i7-6700HQ CPU with 4 cores clocked at 2.60 GHz, the graphic card670

NVIDIA GeForce GTX 960M and 16 GB of DDR3 RAM. We worked at full671

resolution (640×480 px). The running times evaluated on the NYUv2 dataset672

are reported in Table 11. The proposed approach makes use of a technique for673

semantic segmentation, which requires approximately 0.53 fps on the CPU.674

The object detectors Mask R-CNN and YOLO work on the GPU at 0.94 fps675

and 4.20 fps, respectively. The combinations of the detectors with Grabcut676

work at an average speed of 0.19 fps when using masks and 0.90 fps when677

using boxes. The multi-view works at an average speed of 2.27 fps leading to678

a total runtime of approximately 0.12 fps with Mask R-CNN and 0.27 fps with679

YOLO. The current system requires more work to be used in real-time on a680

standard laptop. Nevertheless, it is suitable in less demanding applications681

requiring occasional accurate decisions or for offline processing.682

5. Conclusions683

In this work, we extended a multi-view semantic segmentation system684

based on 3D Entangled Forests (3DEF) by integrating and refining two object685

detectors, Mask R-CNN and You Only Look Once (YOLO), with Bayesian686
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fusion and Grabcut. The new system takes the best of its components, suc-687

cessfully exploiting both 2D and 3D data. Our experiments on two popular688

datasets, NYUv2 and COCO, show that our approach is competitive with689

the state-of-the-art and leads to accurate semantic segmentations. In par-690

ticular, the 2D component of our method can be useful even for computer691

vision applications lacking 3D data, both indoor and outdoor. In the future,692

we would like to explore other semantic segmentation techniques and study693

how to perform accurate detection and segmentation of both objects and694

coarse scene elements limiting the number of separate components.695
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[7] Saurabh Gupta, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. In-725

door scene understanding with rgb-d images: Bottom-up segmentation,726

object detection and semantic segmentation. International Journal of727

Computer Vision, 112(2):133–149, 2015.728

[8] Kenneth Vanhoey, Carlos Eduardo Porto de Oliveira, Hayko Riemen-729
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