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a b s t r a c t

Aim: The recent availability of Sentinel-2 satellites has led to an increasing interest in their use in viticulture. The 
aim of this short communication is to determine performance and limitation of a Sentinel-2 vegetation index in 
precision viticulture applications, in terms of correlation and variability assessment, compared to the same vegetation 
index derived from an unmanned aerial vehicle (UAV). Normalised difference vegetation index (NDVI) was used as 
reference vegetation index.
Methods and Results: UAV and Sentinel-2 vegetation indices were acquired for 30 vineyard blocks located in the 
south of France without inter-row grass. From the UAV imagery, the vegetation index was calculated using both a 
mixed pixels approach (both vine and inter-row) and from pure vine-only pixels. In addition, the vine projected area 
data were extracted using a support vector machine algorithm for vineyard segmentation. The vegetation index was 
obtained from Sentinel-2 imagery obtained at approximately the same time as the UAV imagery. The Sentinel-2 
images used a mixed pixel approach as pixel size is greater than the row width. The correlation between these three 
layers and the Sentinel-2 derived vegetation indices were calculated, considering spatial autocorrelation correction for 
the significance test. The Gini coefficient was used to estimate variability detected by each sensor at the within-field 
scale. The effects of block border and dimension on correlations were estimated.
Conclusions: The comparison between Sentinel-2 and UAV vegetation index showed an increase in correlation 
when border pixels were removed. Block dimensions did not affect the significance of correlation unless blocks were  
< 0.5 ha. Below this threshold, the correlation was non-significant in most cases. Sentinel-2 acquired data were 
strongly correlated with UAV-acquired data at both the field (R2 = 0.87) and sub-field scale (R2 = 0.84). In terms of 
variability detected, Sentinel-2 proved to be able to detect the same amount of variability as the UAV mixed pixel 
vegetation index.
Significance and impact of the study: This study showed at which field conditions the Sentinel-2 vegetation index 
can be used instead of UAV-acquired images when high spatial resolution (vine-specific) management is not needed 
and the vineyard is characterised by no inter-row grass. This type of information may help growers to choose the most 
appropriate information sources to detect variability according to their vineyard characteristics.
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INTRODUCTION

Precision viticulture (PV) has been suggested as 
an effective approach to reach the high-quality 
standards required for wine production (Bramley 
and Hamilton, 2007). In PV, sensors are used 
to detect inter-field and sub-field variability in 
order to allow the application of site-specific 
management for the most important field 
operations (i.e. fertilising, trimming or harvesting) 
(Llorens et al., 2010). Although high-resolution 
and proximal sensors may be used in PV,  
lower-resolution remote-sensing applications, such 
as satellite imagery, have proved to be challenging 
due to peculiarities in vineyards such as vegetation 
within inter-rows or diversity of training systems. 
However, remote sensors allow the collection of 
a significant amount of data in a short time, and 
performances are rapidly improving (Marinello 
et al., 2019). The most common remote-sensing 
platforms in viticulture are unmanned aerial 
vehicles (UAV), airborne sensors and satellites 
(Hall et al., 2002; Matese and Di Gennaro, 2015). 
UAV and airborne sensors provide high-resolution 
imagery (spatial, spectral and radiometric) that can 
be implemented in order to extract various types 
of vineyard information (Pichon et al., 2019), 
however, these are expensive, limited in the area 
of acquisition possible, and require specialised 
postprocessing to achieve good final imagery 
(Candiago et al., 2015). Conversely, satellites are 
more time effective and cheaper for large areas, 
but they are less adaptive to the growers’ needs in 
terms of revisit time and spatial resolution (Sozzi et 
al., 2019). High-resolution satellites (below 1 m 
of spatial resolution) were shown to be potentially 
useful in assessing leaf area of vines (Johnson 
et al., 2003). In the last few years, the availability 

of free-of-charge data from satellites such as 
Sentinel-2 (European Space Agency) has caused 
increased interest in its potential use in viticulture. 
Sentinel 2 is a constellation of two satellites with 
polar orbits. Sentinel 2A was launched in 2015 
and Sentinel 2B was launched in 2017. Since 
2018 Sentinel 2 constellation has provided images 
every 5 days. Both satellites carry a multispectral 
imaging sensor (MSI) able to acquire images from 
433 nm up to 2280 nm, in 13 bands. Red (665 nm) 
and near-infrared (842 nm) are of particular 
interest for agriculture application as they make 
it possible to retrieve several vegetation indices at 
10 m of spatial resolution.

Recent studies have demonstrated the potential 
of Sentinel-2 images in viticulture at a territorial 
scale to extract agronomic information and to 
quantify the impact of drought (Devaux et al., 
2019; Cogato et al., 2019).

In this study, performances and limitations of 
Sentinel-2 imagery in vineyards without inter- row 
grass were assessed, based on the normalised 
difference vegetation index (NDVI) (Rouse et 
al., 1973). The ability of satellite NDVI images 
to characterise variability at field and sub-field 
scale were estimated using the Gini coefficient 
(Gini, 1921). To achieve these objectives, 
Sentinel-2  NDVI was compared to UAV extracted 
data as a reference layer.

MATERIALS AND METHODS

1. Study area

For the study, 30 non-irrigated vineyard blocks in 
the Minervois Appellation d’Origine Contrôlée in 
the Languedoc-Roussillon region in the south of 

FIGURE 1. Block size distribution: in the selected study area, 20 blocks were less than 1.5 hectares and  
10 blocks were between 1.5 and 5 hectares.
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France (43°18’25’’ N, 2°37’21’’ E, WGS84) were 
selected. The selected blocks were trained using 
vertical shoot positioning (VSP), with an inter- row 
space ranging from 2.0 to 2.5 m without any 
vegetation cover. The planting dates ranged from 
2003 to 2011. The mean block area was 1.4 ha, 
with a minimum and maximum area of 0.22 and 
4.9 ha, respectively (Figure 1). The features of the 
correspond to the ordinary vineyard conditions in 
the Languedoc-Roussillon region.

2. Data acquisition and processing

The NDVI (Rouse et al., 1973) was selected 
because it is one of the most common vegetative 
indices used in agriculture (Psomiadis et al., 
2017). Data acquisition was performed on August 
2016. Blocks borders were delineated using 
high- resolution images in Google Earth Pro 
(Google Inc., Mountain View, CA, USA). The 
UAV images were acquired on 22 August 2016 
by means of a multispectral camera MicaSense 
RedEdge-MX. UAV-acquired data were converted 
to reflectance based on the measurement in the 
field of a calibrated reflectance target. All collected 
images were elaborated through a standard 
photogrammetry process, then orthorectified 
and tiled. Orthorectification, mosaicing and 
resampling were performed using Pix4D software 
(Pix4D S.A., Prilly, Switzerland) by the UAV 
operator (DELAIR, Toulouse, France). As a result 
of this process, a multispectral image, with a 
spatial resolution of 0.08 m, was obtained for all 
blocks.

The Sentinel-2 imagery was downloaded from 
the official Copernicus Open Access Hub 

(www. scihub.copernicus.eu). A 1C product 
acquired on 26 August 2016 was selected and 
downloaded due to the lack of 2A products (not 
provided before May 2017). The atmospheric 
correction was carried out using SNAP software 
(ESA, European Union).

From the UAV and Sentinel-2 imagery there were 
four defined datasets (layers): three were extracted 
from the UAV imagery and one from Sentinel-2 
imagery. The Sentinel-2 imagery (10 m pixel) 
was chosen as reference spatial resolution for 
the upscaling of other layers. The UAV extracted 
layers were considered as a reference of vineyard 
conditions at field level.

For the first layer extracted from UAV, the images 
were clipped to the polygon of each block and 
then NDVI was calculated for all pixels within 
the block using the formula proposed by Rouse 
et al. (1973). This layer was then upscaled to the 
Sentinel-2 spatial resolution using the mean value 
of the pixel located in the same area (10 m). Such 
upscaling methodology is commonly implemented 
for this type of analysis (Matese et al., 2015;  
Qin et al., 2015). The result of this upscaling 
process corresponds to UAV NDVI mixed 10 m 
(point 1 in Figure 2).

The second layer consisted of the selection of vine-
only pixels in UAV imagery, achieved by removing 
inter-row and potentially mixed pixels. This process 
was carried out using a supervised classification 
process. Taking advantage of the classification 
wizard in ArcGIS Pro 2.4 (ESRI, Redlands, 
CA, USA), a multiclass support vector machine 
(SVM) algorithm was trained using 850 polygons 

FIGURE 2. Processing flow applied to datasets.
NDVI was extracted from UAV multispectral image (UAV NDVI mixed), then was segmented to obtain pure vine index (UAV 
NDVI pure) and vine area. These three datasets were upscaled to the same resolution on Sentinel-2 image (10×10 m). NDVI 
Sentinel-2 were calculated from multispectral Sentinel-2 image
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manually classified into four classes: high vigour 
vine, low vigour vine, soil, and shadow. This 
learning dataset covered an area of 718 m2 (0.1 % 
of the total area). The segmentation algorithm was 
trained considering spectral and shape features of 
grouped UAV NDVI mixed pixels. The accuracy 
assessment of the classification process was 
performed using Cohen’s kappa, which is based 
on a confusion matrix of true positive/negative 
and false positive/ negative. The final Cohen’s 
kappa of the SVM classification algorithm was 
0.86. Pixels arising from high vigour and low 
vigour vines were merged and extracted as a 
shapefile. This pure vine mask was used to clip the 
original UAV NDVI image. The resulting raster 
was filled with zero NDVI value in the inter-row 
(non-vine) space, in order to simulate a no effect 
of soil in terms of NDVI. Then, the raster was 
upscaled using the same methodology described 
for the UAV NDVI mixed layer. The result of this 
workflow corresponds to UAV NDVI pure 10 m 
pixels (point 2 in Figure 2) and it only considers 
the vine response.

The pure vine mask was also used to extract the 
projected vine area per pixel. This latter parameter 
is abbreviated in the following paragraphs as Vine 
Area, although it represents the planar vine area and 
not the vine area commonly defined in viticulture 
(total area of the canopy). The pixel grid of the 
Sentinel-2 product was intersected with the pure 
vine mask to obtain the value in square metres of 
vine over a 10 m pixel. This layer corresponds to 
vine area 10 m (point 3 in Figure 2).

The Sentinel-2 NDVI (S2 NDVI) was calculated 
with band 4 (Red) and band 8 (near-infrared), 
obtaining an NDVI image with 10 m pixel 
resolution. The last step of satellite image 
processing was to clip the NDVI according to the 
border of each block, done by means of ArcGIS 
Pro 2.4 software. The result of these processes 
corresponds to S2 NDVI 10 m (point 4 in 
Figure  2).

Partially different spectral and optical properties 
characterise the Sentinel-2 and MicaSense- MX 
sensors. However, when accounting for the 
major sensitivity of silicon sensors to the central 
wavelength, differences in bandwidths were 
considered to be negligible in the calculation of 
NDVI and for other reported analyses.

3. Statistical analysis

Data were analysed using four different approaches. 
First, the border effect on S2 NDVI was evaluated 

in comparison to UAV NDVI pure. Even if some 
studies have already applied masks for border 
effects, a statistical justification is still missing 
(Devaux et al., 2019). In the second and third 
approaches, each block was analysed singularly 
(sub-field scale) and in relation to all other blocks 
(inter-field scale). Pearson’s correlation coefficient 
was used to compare the similarity between 
different information sources. The Dutilleul 
correction was applied to account for spatial 
autocorrelation of data (Dutilleul et al., 1993) in 
sub-field scale analysis. Spatial autocorrelation 
may violate the assumption of independence in the 
correlation analysis, leading to a biased estimation 
of variances and correlation coefficient (Dutilleul 
et al., 1993). Although the Dutilleul correction is 
commonly applied in ecology, it is not widespread 
in agricultural studies, which often overestimate 
the significance of the Pearson’s coefficient in 
spatial datasets (Taylor and Bates, 2013). The 
analysis at sub-field level was performed using 
PASSaGE v2 software (Pattern Analysis, Spatial 
Statistics and Geographic Exegesis; Tempe, AR, 
USA) to calculate the modified significance test as 
proposed by Dutilleul (Rosenberg and Anderson, 
2011). The field-scale comparison was performed 
without considering spatial autocorrelation, as 
each block can be considered an independent 
observation. In order to compare data acquired 
from different sensors, correlations between 
all four layers (S2 NDVI, UAV NDVI mixed, 
UAV NDVI pure, and Vine Area) were also 
analysed, considering effects of borders and block 
dimensions.

Additionally, the variability of each layer was 
estimated using the Gini coefficient (Gini, 1921) 
to highlight the magnitude of variation of each 
block in each layer. The use of the Gini coefficient 
in agriculture is not common, even though it is 
useful in describing the inequality in a distribution 
(Sadras and Bongiovanni, 2004; Woodward 
et al., 2007). To calculate G, all observations  
(S2 NDVI, UAV NDVI mixed, UAV NDVI pure, 
and Vine Area) were ranked for each block from 
smallest to largest, then the cumulative fraction of 
each variable was plotted against the cumulative 
fraction of the population. In case of perfect 
equality (low variability) the cumulative fraction 
of the variable corresponds to the cumulative 
fraction of population. The Gini coefficient (G) 
was calculated according to the following formula:
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RESULTS 

1. Border effect and block dimension 
evaluation

The first analysis compared the sub-field correlation 
between S2 NDVI and UAV NDVI pure, with this 
latter layer considered as a reference for the block 
variability. The correlations were calculated using 
10×10 m pixel information and considering the 
whole block and the block after removing border 
pixels (within 10 m of the block boundary) on the 
S2 NDVI. This test was carried out to evaluate the 
influence of border pixels, which might be mixed 
(vineyard and headland).

The r values computed with the whole blocks 
(including border pixels) had a wide range of 
variation, with 93 % of r values (28/30 blocks) 
ranging from 0.52 up to 0.93, and two extreme 
values of -0.32 and 0.45. When the border pixels 
were removed, 93 % of r values (28/30 blocks) 
ranged from 0.76 to 0.97 with two extreme values 
of 0.07 and 0.56. The border pixel removing 
process influenced the correlation coefficient, 
leading to an increase of the mean r (from 0.772  to 
0.837) but conversely decreased (from 29 to 27) 
the number of blocks with a significant correlation 
(Table 1).

Figure 3 shows how the significance of the 
correlation between S2 NDVI (without border 
pixels) and NDVI pure was affected by block area. 
According to Figure 3, non-significant correlations 
occurred in smaller blocks (0.193 ha), whereas the 
average area of the blocks where it was significant 
was larger (1.03 ha). 

The difference between the average block area of 
both groups was significant (t-test, p < 0.001).

FIGURE 3. Effect of block area on the significance 
of correlation (with the Dutilleul correction) 
between S2 NDVI (after border pixel removal) 
and the UAV NDVI derived from pure vine-only 
pixels. The embedded table indicates the mean 
and variance associated with the two groupings.

2. Sub-field scale correlation

In agreement with results reported in the previous 
paragraph, the following analysis focuses only 
on data (layers) where border pixels have been 
removed.

The sub-field correlation coefficients were 
calculated between S2 NDVI and the other three 
datasets (UAV NDVI mixed, UAV NDVI pure, 
and Vine Area), again adjusting the significance 
test using the Dutilleul correction. The comparison 
of the Pearson’s coefficient distribution is reported 
in Table 2. At the sub-field scale, the average 
correlation between S2 NDVI and UAV NDVI 
pure was 0.837, for UAV NDVI mixed it was 
0.834, and for Vine Area it was 0.798. A different 
ranking was found for the standard deviation of 
Pearson’s coefficient, which decreased from UAV 
NDVI pure to UAV NDVI mixed.

Table 2 also reports the average correlation 
coefficients between S2 NDVI and all the other 
three datasets when blocks with only significant 
correlation were considered. In this case, an 
overall increase of correlation and decrease of 
standard deviation was found. Moreover, the 
highest correlation was reached by the couple S2 
NDVI – UAV NDVI mixed, which is characterised 
by the same mixed pixel composition.

3. Field-scale correlation

The following analysis was carried out considering 
mean block values, rather than the pixel-wise 

TABLE 1. Distribution of correlation coefficients 
and their significance between S2 NDVI and the 
upscaled (10×10 m) UAV NDVI derived from 
pure vine pixels only when the border pixels are 
kept (Whole) and when these pixels are removed 
(Border removed). Significance was assessed with 
Dutilleul correction for spatial autocorrelation.

Whole Border removed

Mean 0.772 0.837

Dev.St 0.147 0.164

Count (n. field) 30 30

Significant at p  < 0.05 29 27

Not significant 1 3

Only significant fields p < 0.05

Mean (only significant) 0.787 0.865

Dev.st (only significant) 0.123 0.083
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comparisons implemented in the case of Results  
1 and 2. The analysis were focused on blocks 
where significant correlation (p < 0.05) at sub- field 
scale was found. In this case, measurements were 
considered to be independent (with no spatial 
autocorrelation), and the significance test was 
done without the Dutilleul correction.

Figure 4 shows three linear regression models 
fitting the three UAV-derived layers to the S2 
NDVI layer. The R² values of the linear regressions 
between S2 NDVI and UAV NDVI mixed, UAV 
NDVI pure and Vine Area were 0.81, 0.87, and 
0.79, respectively. R² was significant in all cases 
(p < 0.01), which is evidence of a relevant link 
between S2 NDVI and all derived UAV indices. 
Considering slope and intercepts, UAV NDVI 
mixed and Vine Area are proportionally correlated 
with S2 NDVI (1:1 regression), while UAV NDVI 
pure exhibits lower variance than S2 NDVI.

4. Gini coefficient interpretation

Figure 5 shows the boxplot graph of Gini coefficient 
(G) distribution, which explains the variability 

of the four layers. A similar G distribution was 
found between S2 NDVI and UAV NDVI mixed. 
Such behaviour was caused by the similar mixed 
pixel composition of the two layers. In the same 
way, a similar distribution was found between 
UAV NDVI pure and Vine Area. In this case, 
the similarity was a result of the two layers only 
including information related to the vine response 
(and masking the inter-row response).

Figure 5 reports also some example values of 
NDVI and G, with respective maps. In the case of 
Field 1, a low value of NDVI was combined with a 
high G while, in Field 2, a high NDVI was paired 
with a low G. These examples suggest that in case 
of high average NDVI, this might be not equally 
distributed over the block.

DISCUSSION

The comparison between NDVI from Sentinel-2 
and pure vine NDVI extracted from UAV images 
showed an increasing correlation if the border 
pixels were removed from the satellite’s images. 
According to this result, it is advisable to remove 

S2 Vs UAV NDVI Pure S2 Vs UAV NDVI Mixed S2 vs Vine Area

Pearson  (mean) 0.837 0.834 0.798

Pearson  (dev.st) 0.164 0.215 0.210

Count (n. fields) 30 30 30

Significant at p  < 0.05 27 27 28

Not significant 3 3 2

Only significant fields p < 0.05 

Pearson  (mean, only significant) 0.865 0.875 0.831

Pearson  (dev.st, only significant) 0.083 0.079 0.096

TABLE 2. Descriptive statistics of correlation for all block considered calculated using Dutilleul correction 
for significance test.

At sub-field scale, S2 NDVI is more correlated with UAV NDVI mixed than Vine Area than UAV NDVI pure.

FIGURE 4. Regression models between S2 NDVI and UAV-derived datasets based on the mean value of 
blocks.
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border pixels of Sentinel-2 imagery for viticulture 
applications. Edge effects are introducing 
uncertainty into the spectral response and the 
information at the borders is less indicative of 
actual vine properties. However, the process for 
removing border pixels is problematic in smaller 
blocks, because such borders constitute a large 
percentage of the whole block pixels. For blocks 
< 0.5 ha, removal of border pixels can lead to a 
decrease in the significance of correlation between 
satellite and UAV layers. According to these 
considerations, Sentinel-2 images with border 
pixels removed can be used for blocks larger than 
0.5 ha, whereas for smaller blocks (<0.5 ha), the 
satellite imagery is less reliable. For these blocks 
higher resolution sensing is required, such as 
UAV-acquired images. This characteristic is an 
important limitation for the use of Sentinel-2 
images for viticulture regions with small vineyard 
blocks.

When Sentinel-2 images are acquired in larger 
blocks (>0.5 ha), they can be used to compare 
different vineyard blocks, considering the mean 
block values (inter-field comparison). In this 
situation, Sentinel-2 images can therefore constitute 
a relevant decision support for advisory services to 
manage vigour or vegetative expression or for any 
other application requiring the characterisation 
of the vegetative expression levels of blocks at 
a denomination or regional scale. However, end-
users still need to be conscious that the Sentinel-2 
mixed pixels integrate information about the 
spectral properties of vines, the projected vine 
area, and inter-row space and training systems, 
which may affect comparisons and decisions.

However, for blocks larger than 0.5 ha, Sentinel-2 
images may well be used to characterise the within-
field variability. Indeed, this study shows that they 
can constitute an interesting decision- making 
support for the following: i) identifying blocks 
with high spatially organised variability (Leroux 
and Tisseyre, 2019); ii) prioritising blocks on 
which spatial variability requires the use of 
differentiated management strategies at the 
within-field level; and iii) possibly defining 
within-field management zones or broad trends 
in vine properties. This is in contrast with other 
reported studies of satellite imagery in viticulture 
(Khaliq et al., 2019). However, it is necessary to 
consider that the 10 m mixed pixels do smooth 
the real magnitude of variation of vine properties 
(with UAV NDVI of pure vines as a reference) and 
cannot be used for any vine-specific application. 
It is recommended that variability revealed by 
Sentinel-2 and other medium-resolution sensors 
should not be compared without considering this 
latter point. The results of this study in terms of 
R2 between S2 NDVI and UAV NDVI mixed are 
comparable to other studies. Conversely, the R2 
between S2 NDVI and UAV NDVI pure is higher 
than seen in previous work (Di Gennaro et al., 
2019). This latter condition may be ascribable 
by the simulation of no soil effects on NDVI 
performed in this study.

All the analyses performed in this study were 
applied to blocks without cover crops in the 
inter- row space. The presence of an inter-row crop 
would introduce additional noise to spectral data, 
and misleading considerations could be drawn. 
This study cannot be used to validate the use of 

FIGURE 5. Range of variation, expressed using the Gini coefficient in boxplot form, in the four layers 
across 30 vineyard blocks. Three example blocks are shown to visually illustrate the variability in the 
S2 NDVI response across blocks. For each block the field-specific mean S2 NDVI and G value are also 
provided.
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Sentinel-2 imagery (or any medium-resolution 
sensor with mixed pixels) in vineyard blocks with 
inter-row growth. Indeed, the spectral information 
on inter-row crops cannot be divided by the 
vine signal, leading to an erroneous variability 
estimation: in this case, high-resolution images 
should be preferred as they allow extraction of vine 
pixels (Khaliq et al., 2019). However it should be 
noticed that, at present, the majority of vineyards 
are not irrigated; due to the summer water deficit, 
the inter-row grass is dry at the beginning of the 
summer, thus at an NDVI state that does not differ 
too much from the zero NDVI condition simulated 
for the present work. Therefore, at veraison, the 
effect of inter-row grass may be considered 
negligible (Kazmierski et al., 2011).

CONCLUSION

Vegetation index patterns in vineyard blocks with 
no inter-row cropping were similar for Sentinel-2 
imagery (medium resolution) and high-resolution 
UAV imagery upscaled to a medium-resolution. 
There were effects on the canopy vigour pattern 
associated with pixels along the border of blocks, 
which is likely due to variable mixed pixel effects 
at the vineyard border. Removing border pixels 
is recommended when analysing Sentinel-2 
imagery of vineyards, but this is only feasible in 
blocks >0.5 ha. For blocks <0.5 ha, Sentinel-2 
imagery applications appear limited. For broad 
canopy and vine management decisions within 
and between vineyard blocks, Sentinel-2 imagery 
appears just as useful as high-resolution UAV/
aerial imagery and should provide cost and access 
benefits (Sozzi et al., 2019). Sentinel-2 imagery 
cannot currently provide vine-specific information 
and high-resolution imagery is required for such 
applications. These results are not transferable to 
vineyard blocks with inter-row growth; indeed, the 
experimentation was carried out in blocks without 
inter-row grass coverage.
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