
Mathematical

and Computational

Applications

Article

ssMousetrack—Analysing Computerized Tracking
Data via Bayesian State-Space Models in R

Antonio Calcagnì ∗ , Massimiliano Pastore and Gianmarco Altoé

Department of Developmental and Social Psychology, University of Padova, Via 8 Febbraio, 2,
35122 Padova, Italy; massimiliano.pastore@unipd.it (M.P.); gianmarco.altoe@unipd.it (G.A.)
* Correspondence: antonio.calcagni@unipd.it; Tel.: +39-049-827-6524

Received: 23 May 2020; Accepted: 8 July 2020; Published: 9 July 2020

Abstract: Recent technological advances have provided new settings to enhance individual-based
data collection and computerized-tracking data have became common in many behavioral and
social research. By adopting instantaneous tracking devices such as computer-mouse, wii, and
joysticks, such data provide new insights for analysing the dynamic unfolding of response process.
ssMousetrack is a R package for modeling and analysing computerized-tracking data by means of a
Bayesian state-space approach. The package provides a set of functions to prepare data, fit the model,
and assess results via simple diagnostic checks. This paper describes the package and illustrates how
it can be used to model and analyse computerized-tracking data. A case study is also included to
show the use of the package in empirical case studies.

Keywords: state space models; mouse-tracking; dynamic data; bayesian data analysis

MSC: 62F30, 62J12, 62P25

1. Introduction

Recent technological advances allow the collection of detailed data on ratings, attitudes, and
choices during behavioral tasks. Unlike standard surveys and questionnaires, these tools provide a rich
source of data as they adopt tracking devices that collect subject-based information about the dynamics
involved during the data collection task [1,2]. Examples of such devices include eye-tracking, body
movement-tracking, computer mouse-tracking, and electrodermal activity. Among these, computer
mouse-tracking has become an important and widely used tool in behavioral sciences, as it provides a
valid and cost-effective way to measure the usually unknown processes underlying human ratings
and decisions [3]. In a typical mouse-tracking task, individuals are presented with a computer-based
interface showing the stimulus at the bottom of the screen (e.g., the image of a “dolphin”) and two
labels on the left and right top corners (e.g., the labels “mammal” vs. “fish”). They are asked to
decide which of the two labels is appropriate given the task instruction and stimulus (e.g., to decide
whether dolphin is mammal or fish). In the meanwhile, the x-y trajectories of the computer device are
instantaneously recorded. The real-time trajectories offer an effective way to study the decision process
underlying the hand movement behavior by revealing, for instance, the presence of some levels of
decisional uncertainty. Figure 1 shows a graphical exemplification of this task. The applications of
mouse-tracking tools spread across many research area, including cognitive sciences [4], neuroscience
[5], neurology [6], and forensic studies [7].

Several tools for running mouse-tracking analyses are available in open-source specialized
software like MouseTracker [1], EMOT [8], and mousetrap [9]. In the R environment, only the
packages mousetrack [10] and mousetrap [11] are devoted to mouse-tracking data. More generally,
there are other packages developed to handle with tracking data such as trajectories [12], trackeR [13],

Math. Comput. Appl. 2020, 25, 41; doi:10.3390/mca25030041 www.mdpi.com/journal/mca

http://www.mdpi.com/journal/mca
http://www.mdpi.com
https://orcid.org/0000-0003-4969-7577
https://orcid.org/0000-0002-7922-6365
https://orcid.org/0000-0003-1154-9528
http://dx.doi.org/10.3390/mca25030041
http://www.mdpi.com/journal/mca

Math. Comput. Appl. 2020, 25, 41 2 of 18

adehabtatLT [14], and move [15]. Similarly, there are many packages developed for state-space models
like, for instance, KFAS [16], bssm [17], pomp [18], and rbi [19].

In this paper, we present ssMousetrack, a novel R package to analyse computerized tracking data
as they emerge from typical mouse-tracking data recording. The package implements a non-linear
state space model to handle with the dynamics of mouse-tracking data which has been described
in Reference [20]. In this manuscript, we describe the library ssMousetrack from a point of view of
its implementation and we refer the reader to References [3,20] for further theoretical and formal
issues underlying the statistical model implemented in ssMousetrack. Still, a balanced discussion of
advances and limits of the proposed approach has also been proposed in Reference [20]. The model
is estimated using approximated Kalman filter coupled with Markov Chain Monte Carlo (MCMC)
algorithms via the rstan package [21]. The package includes functions for data pre-processing, data
generation, and model assessment. It also provides functionalities to set-up designs for mouse-tracking
data recording. Despite other R packages are available in this context, ssMousetrack differs in some
aspects. For instance, mousetrack and mousetrap focus on descriptive evaluation of mouse-tracking
data static measures (e.g., minima, maxima, flips, curvature). Among others, mousetrap also allows
for clustering of trajectories based on their geometric shapes and specialized visualization functions
like heatmaps and riverbed plots. By contrast, our package (i) implements a dynamic evaluation of the
trajectory data without resorting the use of summary measures and (ii) evaluates the observed data
variability in terms of latent dynamics and external covariates (e.g., experimental variables), which
are usually of relevance in mouse-tracking data analysis. With respect to KFAS and bssm, our package
offers a more focused implementation for mouse-tracking data. For instance, with regards to bssm, the
package does offer an implementation for the Von-Mises distribution which is instead not supported
by bssm. Moreover, although complete and useful in many cases, these packages implement a general
class of state-space representations which may not be widely applicable to computerized tracking
data. Finally, ssMousetrack differs also from trajectories, trackeR, adehabtatLT, and move as they
focus on animal tracking and related problems, such as estimation of habitat choices. This makes them
not directly suitable for analysing the various aspects of mouse-tracking studies. In this respect, the
advantages of ssMousetrack are as follows: (i) it is easy to use as it requires typing a single function to
run the entire procedure, (ii) it allows modeling and analysing computerized tracking data as they
are usually recorded in typical mouse-tracking tasks, (iii) it provides a user-friendly workflow for
all processing steps which can be easily understood by non-expert users, (iv) it offers users a way
to simulate mouse-tracking designs and data as well. In addition, ssMousetrack can be combined
with other R packages, including shinystan [22] and ggmcmc [23] to produce further statistical and
graphical representation of the output. The package is available from the Comprehensive R Archive
Network at https://CRAN.R-project.org/package=ssMousetrack.

This paper is organized as follows. Section 2 gives a statistical overview of the model implemented
in the package, the methods of estimation and inference, and the assessment of the model. Section 3
describes the package’s structure and its utilities. Section 4 illustrates the functioning of the package
by means of an illustrative case study. Finally, Section 5 concludes the manuscript with a discussion
and future directions.

https://CRAN.R-project.org/package=ssMousetrack

Math. Comput. Appl. 2020, 25, 41 3 of 18

START

FISH MAMMAL

FISH MAMMAL

(A) (B)

(C) (D)

D T

Figure 1. A typical mouse-tracking task: (A)–(B) Stimulus presentation, (C) participant’s response,
(D) prototypical mouse-tracking trajectories for a set of participants and trials. Note that the correct
response is presented on the top-right corner (T) whereas the corresponding competing response is
presented on the top-left corner (D).

2. Model

In this section, we will briefly illustrate the model implemented in the current version of
ssMousetrack. Further technical details and theoretical issues about the model’s representation
can be found in Reference [20]. Moreover, a more general introduction to the problem of
modeling mouse-tracking trajectories from a cognitive viewpoint can be found in Reference [3].
In mouse-tracking studies, computerized mouse-tracking data typically consist of arrays (x, y)ij ∈
RNij × RNij containing the streaming of x-y Cartesian coordinates of the computer-mouse pointer,
for i = 1, . . . , I subjects, j = 1, . . . , J stimuli, and n = 1, . . . , Nij time steps. To simplify data
analysis, raw trajectories are usually pre-processed according to the following steps [8,24]. First,
the trajectories (x, y)ij are normalized on a common sampling scale such that N is the same over
subjects and stimuli. Next, the arrays (x, y)ij ∈ RN ×RN are rotated and translated into the quadrant
[−1, 1]× [1, 1] with (x0, y0)ij = (0, 0) and (xN , yN)ij = (1, 1) by convention. Finally, normalized data
are projected onto a (lower) 1-dimension space via atan2 function. In this way, the final ordered data
yij = (y(1), . . . , y(n), . . . , y(N)) ∈ (0, π]N lie on the arc defined by the union of two disjoint sets, that
is, the set {y ∈ (0, π] : y ≥ π

2 } which represents the right-side section of the screen (usually called
target, T) and the set {y ∈ (0, π] : y < π

2 } which instead represents the left-side section (usually called
distractor, D). The final data are arranged as an YN×J I column-wise stacked matrix.

The state-space model implemented in ssMousetrack is as follows:

Math. Comput. Appl. 2020, 25, 41 4 of 18

y(n)
J I×1 ∼ vonMises

(
µ
(n)
J I×1, κ

(n)
J I×1

)
(1)

µ
(n)
J I×1 = G

(
x(n)I×1, β J×1

)
(2)

x(n)I×1 ∼ Normal
(

x(n−1)
I×1 , σxII×I

)
(3)

β J×1 = ZJ×K · γK×1 (4)

κ
(n)
J I×1 = exp†

(
λd(n)

J I×1

)
, (5)

where Equation (1) is a von Mises measurement equation with µ
(n)
J I×1 ∈ (0, π]I J being the mean for the

n-th time step and κ
(n)
J I×1 ∈ RI J the concentrations around the n-th mean vector, Equation (2) represents

the locations on the arc defined in (0, π] from which the data vector y(n) is sampled from and it behaves
according to the a real function G : R→ (0, π], which maps reals into radians. In the current version of
ssMousetrack, G can be defined as:

(i) π-scaled logistic function:

G = vec

(
π−1

[
1 + exp

(
β J×111×I − 1J×1x(n)1×I

))])

with β J×1 ∈ RJ representing the contribution of the stimuli on y(n).
(i) π-scaled Gompertz function:

G = vec

(
π
[

exp
(
− β J×111×I exp

(
1J×1x(n)1×I

))])
,

where β J×1 ∈ RJ
+ has the same meaning as before.

Although they represent two cases of the general family of S-shaped functions, logistic and
Gompertz models differ in some respects. For instance, unlike the logistic model, the Gompertz
function is not symmetric around its inflection point, with the consequence that its growth rises rapidly
to its maximum rate occurring before the fixed inflection point [25]. Moreover, the parameters of the
Gompertz function are always positive, a constrain which is often required by applications where the
covariates of the model cannot take negative values (e.g., reaction times). These two implementations
allow users to choose the type of G function on the basis of the experimental designs they have used in
their studies.

Equation (3) represents a Normal states equation in the form of a lag-1 autoregressive process with
time-fixed variance parameter σx. In the current version of ssMousetrack, the covariance matrix of
the latent processes is set to an identity matrix I without loss of generality (σx = 1). Equation (4) is
the linear term modeling the contribution of the experimental design (e.g., two-by-two design) and
variables involved (e.g., categorical variables, continuous covariates). Note that Z is a design (dummy)
matrix of main and high-order effects defined by adopting the dummy coding (e.g., treatment contrasts,
sum contrasts) whereas γ is the associated vector of parameters for the columns of Z, with γ1 being
the usual baseline term for the contrasts. Finally, Equation (5) defines the concentrations around the
n-th location by using the transformed data:

Math. Comput. Appl. 2020, 25, 41 5 of 18

d(n) =


|y(n) − 3π

4 |, if y(n) < π
2

|y(n) − π
4 |, if y(n) ≥ π

2

,

with exp† : (0, π] → [lb, ub] ⊂ R+ being the exponential function scaled in the natural range of the
concentration parameter (e.g., lb = 10, ub = 200). In the current implementation of the package, the
parameter λ is fixed to unity.

The interpretation of Equations (2)–(4) is as follows. The n-th mean vector µ(n) is expressed as
function of the stimuli-related component β and subject-based component x(n), which are integrated
together to form the conditional sampling y(n)|β, x(n) through the function G. As a result, Equation
(3) can be interpreted as the individual latent dynamics that are unaffected by the experimental stimuli
whereas Equation (4) represents the experimental effect regardless to individual dynamics. More
generally, Equation (3) conveys information about the hand movement process underlying the tracking
device and as such it can be used to analyse how much individuals differ in executing the task. By
contrast, Equation (4) collects information on how a certain experimental manipulation has an effect
or not on the movement responses. Interestingly, when normalized into [0, 1], µ(n) can be interpreted
as the probability of the i-th individual at the j-th stimulus to navigate close the distractor cue in the
left-side section of the arc. Finally, Equation (5) follows from the fact that hand movements underlying
computerized tracking data tend to be smooth over the experimental task, with small changes being
more likely close to left (distractor) or right (target) endpoints [26].

2.1. Estimation and Inference

The state-space model in Equations (1)–(5) requires estimating the array of latent trajectories
X ∈ RI×N together with the array of parameters γK×1, with γ1 ∈ R and γ(K−1)×1 ∈ RK−1 (logistic
case) or γ(K−1)×1 ∈ [−γ1, ∞)K−1 (Gompertz case). The array of unknown quantities Θ = {X, γ} can
be estimated in various way, by adopting both a frequentist and Bayesian perspectives [27]. In the
ssMousetrack package, the parameters are recovered in Bayesian way by means of MCMC algorithm
through which X and γ are alternately recovered [28,29]. The reason is twofold: (i) MCMC algorithms,
as those implemented in rstan package, provide a more efficient solution for sampling from the
probability distribution of the parameters over standard maximum-likelihood based approach such
as the Expectation-Maximization algorithm. (ii) The Bayesian approach offers an elegant solution for
data analysis and inference [30] by means of which the model is adequately assessed by the analysis of
(marginal) posterior distributions of the parameters [31].

More in details, the posterior density f (Θ|Y) after factorization of the joint density f (γ, X, Y), is
as follows [28]:

f (Θ|Y) ∝ f (γ) f (γ|Y) f (X|Y), (6)

where f (γ|Y) is the (marginal) likelihood function, f (X|Y) is the filtering density, whereas f (γ)
is the prior ascribed on the model parameters. In the current version of ssMousetrack, f (X|Y) is
approximated via Kalman filtering/smoothing, with f (γ|Y) being computed as a byproduct of the
Kalman theory (see Appendix A and Reference [32]). It should be noted that the Kalman filter adopted
here provides an approximation to the estimate of the latent states given the observed data. Likewise
for the more general extended Kalman filter, the quality of the filtering approximation relies upon
the Gaussian approximation of the von-Mises measurement equation (e.g., see Reference [29], ch.
5). Since the states equation of our model is Gaussian (Equation (3)), nonlinearities enter the model
only through Equation (2) which shrinks the domain of the latent states onto the subset (0, π). The
measurement equation uses the Von-Mises distribution, which is a wrapped approximation of the
Gaussian density on the circle, with the approximation being better for larger κJ I×1 [33]. In this sense,

Math. Comput. Appl. 2020, 25, 41 6 of 18

the Kalman filter implemented in ssMousetrack uses the Normal approximation to the von-Mises
distribution while using the nonlinear transformation of the measurements into the update step
(e.g., see Reference [29], ch. 5). In doing so, an update of the variance for the latent states uses

the approximation 1/κJ I×1 = 1
/√

exp†
(

λd(n)
J I×1

)
for the variance of the measurements. Similarly,

an update of the mean for the latent states requires the term yJ I×1 − G
(

x̂(n)I×1, ZJ×K · γ†
K×1

)
, with

G being defined as in Equation (2), which allows the difference between observed and predicted
measurements to be defined on the same domain (0, π). The optimality of the approximation is
guaranteed as long as the Normal approximation to the Von-Mises holds, in particular for larger
values of κJ I×1. In the context of mouse-tracking data, this approximation is valid until computerized
mouse-tracking trajectories show small and smooth changes over the reaching task. This ensures that
using concentrated von-Mises/Normal densities to predict next movements given past data is good
enough to meet the requirements of mouse-tracking applications.

2.2. Model Assessment

In the Bayesian context of data analysis, ssMousetrack provides a simulation-based procedure to
evaluate the adequacy of the model to reproduce the observed data Y [30]. More technically, given
the posteriors of parameters and latent states f (Θ|Y), M new (simulated) datasets Y∗1 , . . . , Y∗M are
generated according to the estimated model structure and, for each new dataset, two discrepancy
measures are considered [34]:

PAoverall = 1−
(
||Ym − Y||2

/
||Y||2

)
(7)

PAsbj = 1−
(
||Y(i)

m − Y(i)||2
/
||Y(i)||2

)
(8)

i = 1, . . . , I,

which measure the total amount of data reconstruction based on the overall J I × N observed array
Y (Equation 7) and the amount of data reconstruction based on the J × N observed matrix Y(i) for
each subject i = 1, . . . , I (Equation 8). Both the indices are in the range 0-100%, with 100% indicating
optimal fit. Note that the measure PAsbj allows for evaluating the adequacy of the model to reconstruct
the individual-based set of data. In addition, the dynamic time warp distance (dtw), as implemented
in dtw package, is also computed between Y(i)

m and Y(i). Unlike the PAsbj index, the dtw distance
measures the similarity among time series by considering their different dynamics [35]. Note that
more general methods and criteria are available in the Bayesian literature (e.g., see Reference [36]),
such as graphical evaluation of the discrepancy between observed and posterior predictive statistics.
In this sense, the foregoing measures—which are generally used to assess how much the predicted
array of data resemble the observed arrays (e.g., see Reference [34])—here are intended to provide
further measures supporting the existing ones, and do not offer an alternative way to do Bayesian
model assessment. Since ssMousetrack uses rstan as backend, users can perform model assessment
by means of other existing libraries, such as bayesplot [37].

3. The ssMousetrack Package

The ssMousetrack is distributed via the Comprehensive R Archive Network (CRAN). It is based
on rstan [21], the R interface to the probabilistic programming language Stan [38]. The current
version of the package allows for (i) simulating data according to a given experimental design, (ii)
analysing mouse-tracking data via state-space modeling, and (iii) evaluating the adequacy of model
results. The package consists of five main function (generate_data(), run_ssm(), check_prior(),
prepare_data(), evaluate_ssm()), two datasets (language, congruency), and three sub-functions
(compute_D(), generate_Z(), generate_design()). The main functions generate_data() and

Math. Comput. Appl. 2020, 25, 41 7 of 18

run_ssm() are wrappers to previously-compiled Stan codes which implement the model described in
Section 2. Table 1 provides an overview of the functions and datasets provided in the ssMousetrack
package whereas a description of the usage of the functions is reported in the next subsections.

Table 1. Overview of the contents of ssMousetrack.

function type description

generate_data() main simulate data according to a user-defined experimental design.
run_ssm() main run state-space model on a given mouse-tracking dataset.
check_prior() main allows users to define a list of priors for f (γ) prior running

run_ssm().
prepare_data() main pre-process raw tracking data prior running run_ssm().
evaluate_ssm() main run model evaluation given an output of run_ssm(). The function

can plot results if requested by users.
compute_D() internal compute the matrix of distances D given the observed data Y (see

Equation (5)).
generate_Z() internal generate the Boolean trial-by-variable (design) matrix Z (see Equation

(4)).
generate_design() internal allows users to specify an experimental design in terms individuals,

trials, variables, and design matrix Z.
congruency dataset subset of data from Reference [4].
language dataset subset of data from Reference [39].

The package can simply be installed via R console using the function:

install.packages("ssMousetrack")

3.1. Generate Artificial Data

To simulate artificial data we use the function generate_data(), which requires as input the
experimental template for the data generation process. More generally, the function works by first
sampling the parameters γ from the prior density f (γ) and then generates the latent states X from
Equation (3), computes the matrix µ from Equation (2) and the matrix D, drawns the matrix of data
Y by simply applying Equation (1). For instance, an experiment with one categorical independent
variable and two levels, each with three trials, can be generated via the following syntax:

prior_list <- list("normal(-0.25,0.5)","normal(2.7,1)")
datagen1_ssm <- generate_data(N = 61, M = 100,I = 2,J = 6,

K = 2,Z.formula = "~Z1", priors = prior_list),

where M = 100 is the number of data to be generated, N = 61 is the number of time step for the
mouse-tracking trajectories, K = 2 means that we have just one variable with two levels, J = 6
indicates the total number of trials such that J/K is the number of trials for each level of the variable, I
= 2 is the number of subject, Z.formula indicates the formula for the contrast matrix Z with standard R
syntax. Note that selective priors are specified for each level of the experimental design using the Stan
syntax (see the help of check_prior() for further technical details). (Priors are allocated according to
the number of model parameters implied by the design matrix Z of the linear predictor of the model.
Thus, for instance, if we have two predictors in a simple additive model (no interaction), we need to
specify two priors. Instead, a model with two additive predictors and the interaction between them
require three priors as the number of parameters in the linear predictor is three, that is, two for the
additive component and one for the interaction.)

The output is a list containing three sublists, as follows:

• params, which contains the model parameters generated for the M datasets:

List of 4

Math. Comput. Appl. 2020, 25, 41 8 of 18

$ sigmax: num [1:2] 1 1
$ lambda: num [1:12] 1 1 1 1 1 ...
$ gamma : num [1:75, 1:2] 0.228 -0.378 ...
$ beta : num [1:75, 1:12] 0.228 -0.378 ...

• data, which contains the matrices of latent states X and trajectories Y, together with µ, D, and Z:

List of 5
$ Y : num [1:75, 1:61, 1:12] 1.54 1.53 ...
$ X : num [1:75, 1:61, 1:2] 1e-04 1e-04 1e-04 1e-04 1e-04 ...
$ MU: num [1:75, 1:61, 1:12] 1.57 1.57 ...
$ D : num [1:75, 1:61, 1:12] 0.785 0.785 ...
$ Z : num [1:12, 1:2] 1 1 1 1 1 ...

• design, which contains the experimental design used as template to generate the data:

sbj trial Z1
1 1 1 100
2 1 2 100
3 1 3 100

Similarly, artificial datasets can be generated using more complex designs. For instance, a bivariate
design with two variables is produced by typing:

datagen2_ssm <- generate_data(I = 2,J = 8,K = c(2,4),Z.formula = "~Z1*Z2",
Z.type=c("symmetric","random")),

where K = c(2,4) codifies two variables each with two and four levels, Z.formula = " Z1*Z2"
indicates that the variables interact whereas Z.type=c("symmetric","random") indicates that trials
must be assigned to the first variable using the symmetric method and to the second variable using the
random method (see the help of generate_Z() for further details).

Figure 2 shows a sample of mouse-tracking data Y generated in the univariate design case with
I = 2, K = 2 and J = 6. We report the univariate case only for the sake of simplicity but the same
graphical representations can be done for the more complex designs as well.

Math. Comput. Appl. 2020, 25, 41 9 of 18

D

T

D

T

D

T

D

T

condition A condition B

1
2

0 20 40 60 0 20 40 60

-1

0

1

2

3

4

-1

0

1

2

3

4

timestep

trial
1
2
3
4
5
6

Figure 2. Simulated mouse-tracking trajectories Y plotted over time step n = 1, . . . , N. The data refer
to a univariate design with I = 2 (rows of the plot), K = 2 (columns of the plot) and J = 6 (colors of the
plot). Note that each of the K levels has J/K trials, T and D indicate Target and Distractor sections of
the movement space.

3.2. Run State-Space Analysis

State-space analysis can be run on both simulated and real data. In the first case, after the
data-generation process, the state-space model implemented in the ssMousetrack package can be fit
using run_ssm(). For instance, the syntax:

datagen2_ssm <- generate_data(I = 2,J = 8,K = c(2,4),Z.formula = "~Z1*Z2",
Z.type=c("symmetric","random"))

iid <- 2
datagen2_fit <- run_ssm(N = datagen2_ssm$N,I = datagen2_ssm$I,

J = datagen2_ssm$J,Y = datagen2_ssm$data$Y[iid,,],
D = datagen2_ssm$data$D[iid,,],Z = datagen2_ssm$data$Z,
niter = 5000,nwarmup = 2000,nchains = 2)

runs the state-space analysis on the iid = 2 artificial data datagen2_ssm. Note that niter indicates
the number of total samples to be drawn, nwarmup the number of warmup/burnin iterations per chain,
and nchains the number of chains to be executed in parallel. The function run_ssm() allows for
parallel computing via the parallel package when nchains > 1. In this case, since ncores="AUTO"
(default), the function will run two parallel chains using two cores.

Unlike for the case of artificial data, the analysis of real datasets requires preparing raw data in
a proper format via prepare_data(), the function that implements the steps described in Section 2.
Generally, raw datasets need to be organized using the long-format, with information being organized
as nested. The dataset language is an example of a typical data structure required by prepare_data():

Math. Comput. Appl. 2020, 25, 41 10 of 18

data("language")
str(language,vec.len=2)
’data.frame’: 6060 obs. of 6 variables:
$ sbj : int 1 1 1 1 1 ...
$ trial : int 1 1 1 1 1 ...
$ condition: Factor w/ 4 levels "HF","LF","PW",..: 1 1 1 1 1 ...
$ timestep : int 1 2 3 4 5 ...
$ x : num 0 -0.0098 -0.0098 -0.0098 -0.0098 ...
$ y : num 0 0.0025 0.0025 0.0025 0.0025 ...

where condition is the categorical variable involved in the study. The pre-processing of raw data is
performed by the call:

language_proc <- prepare_data(X = language,N = 61,Z.formula = "~condition")

where the output language_proc is a data frame containing the pre-processed dataset together with
the column-wise stacked matrix Y of angles, the contrast matrix Z, and the matrix of distances D.

Once raw data have been pre-processed, the state-space analysis is performed as for the case of
artificial data:

language_fit <- run_ssm(N = language_proc$N,I = language_proc$I,
J = language_proc$J,Y = language_proc$Y,
D = language_proc$D,Z = language_proc$Z,
niter = 5000,nwarmup = 2000,nchains = 2)

The function returns as output a list composed of three sublists, as follows:

• params, which contains the posterior samples for the free parameters γ and β:

List of 6
$ sigmax : num 1
$ lambda : num 1
$ kappa_bnds: num [1:2] 5 300
$ gamma :’data.frame’: 4000 obs. of 4 variables:
$ beta : num [1:4000, 1:60] -0.26 -0.146 ...
$:function (z, ...)

• data, which contains the posterior samples for the latent states X and the moving means µ:

List of 6
$ Y : num [1:101, 1:60] 1.56 1.7 ...
$ X : num [1:4000, 1:101, 1:5] 1e-04 1e-04 1e-04 1e-04 1e-04 ...
$ MU : num [1:4000, 1:101, 1:60] 1.76 1.68 ...
$ D : num [1:101, 1:60] 0.592 0.474 ...
$ Z : num [1:60, 1:4] 1 1 1 1 1 ...
$ X_smooth: num [1:4000, 1:101, 1:5] -0.0878 -0.0635 ...

• stan_table, containing the typical Stan output (i.e., point estimates, credibility intervals, and
Gelman–Rubin index) for the sampling() method as implemented in the rstan package:

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
gamma[1] -0.05 0 0.19 -0.43 -0.18 -0.05 0.08 0.33 3047 1
gamma[2] -0.02 0 0.06 -0.13 -0.06 -0.02 0.02 0.09 2764 1
gamma[3] 0.16 0 0.06 0.04 0.12 0.16 0.20 0.28 2782 1

Math. Comput. Appl. 2020, 25, 41 11 of 18

Note that users can also export the stanfit object with all the Stan results by specifying
stan_object=TRUE in run_ssm().

The function run_ssm() allows for different priors specification. In particular, users can specify
different priors for the model parameters γ as follows:

priors_list <- list("lognormal(1,0.5)","normal(1,2)","chi_square(2)","normal(0,1)")
language_fit <- run_ssm(..., priors = priors_list)

which means that γ1 ∼ lognormal(1, 0.5), γ2 ∼ normal(1, 2), γ3 ∼ chi_square(2), γ4 ∼ normal(0, 1).
The list of probability distributions accepted by run_ssm() is described in the help of the function
check_prior(). Specification of priors for single parameters is also allowed, by using NULL attributes:

priors_list <- list(NULL,"normal(1,2)","chi_square(2)",NULL)
language_fit <- run_ssm(..., priors = priors_list)

where predefined priors are used for parameters γ1 and γ4. Further examples about run_ssm() are
illustrated in the manual of the package.

3.3. Evaluate the Model Results

The methods described in Section 2.2 for the model evaluation are implemented by the function
evaluate_ssm(), which requires as input the output of run_ssm(). For instance, considering the fitted
object language_fit, the model evaluation can simply be run via the command:

language_eval <- evaluate_ssm(ssmfit = language_fit, M = 1000, plotx = FALSE),

where M = 1000 is the number of replications to compute the indices. The function returns as ouput
a list containing the mean values of the indices PAoverall, PAsbj, and dtw, as well as the distributions
obtained over the M replications. Note that, users can also ask for a graphical representation of the
indices by setting plotx = TRUE.

4. Application

In this section we provide a full example of the way ssMousetrack can be used for state-space
analysis of real computerized tracking data. Note that the application reported here has an illustrative
purpose only. To this end, we will make use of the dataset language, a subset of data originally
presented in Reference [39]. In this typical computerized tracking task, participants saw a printed
stimulus on the screen (e.g., the word water) and were requested to perform a dichotomous choice
task where stimuli need to be classified as word or non-word. The experimental variable condition
was a categorical variables with four levels (HF: High-frequency word; LF: Low-frequency word; PW:
Pseudo-word; NW: Non-word). Participants had to classify each stimulus as word vs. non-word by
using a computer-mouse tracking device. The dataset contains I = 5 participants, J = 12 trials, one
categorical variable with K = 4 levels, each with J/K = 3 trials. From the data-analysis viewpoint,
we evaluat the extent to which the parameters of the state-space model γ reflect eventual differences
associated with the levels of condition.

The raw computerized tracking trajectories in the dataset consist of Cartesian coordinates with
N = 101 (i = 1, . . . , I; j = 1, . . . , J). The dataset is partially pre-processed as raw trajectories have the
same length (N = 101). However, we need to run prepare_data() in order to rotate/translate the raw
data into the quadrant [−1, 1]× [1, 1] and compute the atan2 projections. The pre-processing step is
called by the command:

data("language")
language_proc <- prepare_data(X = language, N = 101, Z.formula = "~condition")

Math. Comput. Appl. 2020, 25, 41 12 of 18

Figure 3 shows the trajectories Y associated with the task for all participants and trials.

HF LF NW PW

1
2

3
4

5

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

0.5

1.0

1.5

2.0

2.5

0.5

1.0

1.5

2.0

2.5

0.5

1.0

1.5

2.0

2.5

0.5

1.0

1.5

2.0

2.5

0.5

1.0

1.5

2.0

2.5

timestep

trial

1

2

3

4

5

6

7

8

9

10

11

12

Figure 3. language dataset: Mouse-tracking trajectories Y plotted over the time step n = 1, . . . , N. Note
that the categorical levels are represented column-wise, subjects are represented row-wise, whereas
distractor (D) and target (T) sections are represented above and below the solid gray line.

Next, the state-space model is fit to the pre-processed data by the following call:

priors_list <- list("normal(0,1)","normal(1,1)","normal(-2,1)","normal(2,1)")
language_fit <- run_ssm(N = language_proc$N,I = language_proc$I,

J = language_proc$J,Y = language_proc$Y,
D = language_proc$D,Z = language_proc$Z,
niter = 6000,nwarmup = 2000,nchains=4,
priors = priors_list,
gfunction = "logistic")

where, in this case, the prior for γ have been choosen to codify a priori expectations about the effect
of the variable condition [39]. Figure 4 shows some MCMC graphical diagnostics for the model
parameters γ computed using bayesplot [37] whereas Table 2 reports the posterior quantities for the
model parameters. In the Bayesian context of data-analysis, we evaluate the effects of the variable
condition by computing the degree of overlapping among marginal posterior densities for each level
of the experimental variable (i.e., the more the overlapping, the weaker the evidence supporting the
experimental manipulation). Figure 5 shows the results graphically. Overall, the variable condition
showed no strong effect, as the densities of the levels are overlapped. In particular, stimuli in HF, LF,
and NW conditions showed no activation of the distractor section of the tracking space as γ̂HF, γ̂NW,
and γ̂LF approach zero. By contrast, stimuli in PW condition showed a small effect on activating the
target section (γ̂HF > 0), possibly due to the fact that PW stimuli require less cognitive workload [39].

Math. Comput. Appl. 2020, 25, 41 13 of 18

−0.8

−0.4

0.0

0.4
ga

m
m

a1

−0.2
−0.1

0.0
0.1
0.2

ga
m

m
a2

0.0
0.1
0.2
0.3

ga
m

m
a3

−0.1
0.0
0.1
0.2

ga
m

m
a4

0 5 10 15 20
0.0

0.5

1.0

0 5 10 15 20
0.0

0.5

1.0

0 5 10 15 20
0.0

0.5

1.0

0 5 10 15 20
0.0

0.5

1.0

−0.5 0.0 0.5

−0.2 −0.1 0.0 0.1 0.2

0.0 0.1 0.2 0.3

−0.1 0.0 0.1 0.2

Figure 4. Illustrative example: MCMC traces, autocorrelation plots, and marginal posterior distributions
for the model parameters. Note that all the Gelman-Rubin indices (Rhat) of the parameters are 1.0.

Table 2. Illustrative example: Posterior quantities and Gelman-Rubin indices (Rhat) for the model
parameters.

mean sd 25% 50% 75% n_eff Rhat

gamma1 −0.05 0.19 −0.18 −0.05 0.08 3047.00 1.00
gamma2 −0.02 0.06 −0.06 −0.02 0.02 2764.00 1.00
gamma3 0.16 0.06 0.12 0.16 0.20 2782.00 1.00
gamma4 0.05 0.06 0.01 0.05 0.09 2680.00 1.00

pairs

HF-LF

overlap

HF-NW

HF-PW

LF-NW

LF-PW

NW-PW

0.93

0.51

0.81

0.47

0.75

0.64

0.0

0.5

1.0

1.5

2.0

-0.5 0.0 0.5

-0.5

0.0

0.5

HF LF NW PW

par
HF

LF

NW

PW

Figure 5. Illustrative example: Marginal posterior densities and violin plots for the levels of condition
(recoded via dummy code). Note that black dots represent posterior means of the parameters γ whereas
overlaps have been computed via the package overlapping [40].

Figure 6A reports the filtered latent states X̂ for the subjects in the dataset. To further investigate
how individual dynamics differ over the levels of condition, we can make use of X̂ and ask whether

Math. Comput. Appl. 2020, 25, 41 14 of 18

HF, LF, NW, and PW stimuli differ in terms of evidence of mouse-tracking competition. The idea is that
the higher the evidence, the larger the difficulty in categorizing stimuli as word (target) or non-word
(distractor).

To do this, we follow the findings of Reference [39] and divide the entire respose process 1, . . . , N
into three disjoint windows W1 = 10− 35%, W2 = 45− 65%, and W3 = 70− 85%. Usually it is
expected that a higher competition would be observed in W1 and W2 rather than W3. More formally,
let x̂(i)M×1 = (x̂(i)1 , . . . , x̂(i)M) be the sequence of filtered states for the i-th subject and the generic time
window W, with M being equals to the cardinality of W. Next, the probability to select non-word
(distractor) responses are computed by normalizing the G function into the domain [0, 1], as follows:

P(i)
M×K =

[
1 + exp

{
x̂(i)M×111×K − 1M×1γ̂1×K

}]−1
, (9)

where γ̂ is the array of posterior means of the model parameters. Note that in this example we use the
logistic function because we set gfunction="logistic" in run_ssm(). Finally, the evidence measures
can be defined in terms of log-odd ratio using the probability matrix P(i):

r(i)K×1 = log
(

p(i)
K×1

/
1− p(i)

K×1

)
, (10)

where pK×1 = 1
M

(
11×MP(i)

M×K

)T
is the profile probability for HF, LF, NW, and PW. The interpretation

of r(i) is as follows. For r(i) > 0 there is a higher competition in categorizing the stimulus as word
(target) vs. non-word (distractor). By contrast, for r(i) < 0 there is a lower competition in the response
process, as stimuli are easily categorized as word (target). Finally, the case r(i) = 0 indicates that
there is no difference in terms of evidence between word (target) and non-word (distractor) responses.
Figure 6B shows the results for the four levels of condition. As expected, the competition in the third
phase of the response process W3 is low, as the probability to select the target is higher. The same
applies to W2. On the contrary, in the first stage of the process W1 the competition is higher although
the evidence ratio for all the levels of condition approximate zero. Interestingly, the second phase
W2 shows a higher whithin-subject variability of competition, which probably indicates that subjects
differ in the categorization process just in the middle phase of the response process.

-1.0

-0.5

0.0

0.5

0 25 50 75 100
time step

X

subject
1

2

3

4

5

A

-1.0

-0.5

0.0

W1 W2 W3
windows

lo
g-

O
R

HF

LF

NW

PW

B

Figure 6. Illustrative example: (A) Estimated latent dynamics X̂ for I = 5 subjects plotted over the
scale N = 0%, . . . , 100%. (B) log-Odd ratio for the evidence analysis.

Math. Comput. Appl. 2020, 25, 41 15 of 18

Finally, we assess the adequacy of the model with regards to the observed data by means of
evaluate_ssm(), as follows:

language_fit_eval <- evaluate_ssm(ssmfit = language_fit,M = 500,plotx = FALSE)

where language_fit is the fitted object returned by run_ssm() whereas M = 500 is the number of
replications used to compute the three fit indices. The output of the function consists of a list containing
means and distributions of the fit indices:

List of 2
$ dist :List of 3
..$ PA_ov : num [1:500] 0.944 0.938 ...
..$ PA_sbj: num [1:500, 1:5] 0.991 0.991 ...
..$ DTW : num [1:500, 1:60] 0.0945 0.1105 ...
$ indices:List of 3
..$ PA_ov : num 0.936
..$ PA_sbj: num 0.99
..$ DTW : num 0.119

Overall, in this example the fitted model is adequate to reproduce the observed trajectory data as
supported by high values of the indices PAov, PAsbj, and dtw.

5. Conclusions

In this paper we introduced the R package ssMousetrack that analyses computerized-tracking
data using Bayesian state-space modeling. The package provides a set of functions to facilitate the
preparation and analysis of tracking data and offers a simple way to assess model fit. The package can
be of particular interest to researchers needing tools to analyse computerized-tracking experiments
using a complete statistical modeling environment instead of descriptive statistics only. In addition,
the package ssMousetrack allows for individual-based analysis of trajectories where latent dynamics
are used to obtain richer information which can pave the way to further analyses (e.g., profile analysis).
The current version of the package can be extended in several ways. For instance, the inclusion of other
state-space representations beyond the simple Gaussian AR(1) model can be a further generalization
of the package. Still, model parameters like σx and λ can be free to allow for multi-group analysis.
Similarly, more comprehensive model diagnostics could also be considered in future releases of
the package. Additionally, the current version of the library can be extended to interact with other
modeling packages available on R, such as pomp [18] or libBi [41], which can be successfully used
to estimate model’s parameters. Finally, it should be stressed that the method implemented in the
current version of ssMousetrack produces approximate inference for the model’s parameters and exact
methods, such as particle filtering based MCMC [28], may instead be used. Although they can show
slower computational time when compared to approximated methods, they may improve the quality
of estimates. This can constitute a future venue of our research and next versions of ssMousetrack
may incorporate particle filter methods as well.

In closing, we believe our package may be a useful tool supporting researchers and practitioners
who want to make analysis of computerized-tracking experiments using a statistical modeling
environment. This will surely help them to improve the interpretability of data analysis as well
as the reliability of conclusions they can draw from their studies.

Author Contributions: conceptualizaton, A.C.; methodology, A.C; software, A.C., M.P., G.A.; formal analysis,
A.C., M.P.; writing—original draft preparation, A.C.; writing—review and editing, A.C., G.A., M.P. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Math. Comput. Appl. 2020, 25, 41 16 of 18

Appendix A

Given a candidate sample γ†, the mean x and variance λ of the density f (X|Y) are approximated
via the following recursion:

(n = 0) x̂(n)I×1 = 0I×1

λ̂
(n)
I×1 = 1I×1

(n > 0) x(n)I×1 = x̂(n−1)
I×1

λ
(n)
I×1 = λ̂

(n−1)
I×1

ŷJ I×1 = G
(

x(n)I×1, ZJ×K · γ†
K×1

)
σJ I×1 =

(
IJ×J ⊗ λ

(n)
I×1

)
1J×1 + 1�

√
exp†

(
d(n)

J I×1

)
KJ I×1 =

(
IJ×J ⊗ λ

(n)
I×1

)
1J×1 � σJ I×1

x̂(n)I×1 = x(n)I×1 +

((
(yJ I×1 − ŷJ I×1)�KJ I×1

)T
AJ I×I

)T

λ̂
(n)
I×1 = λ

(n)
I×1 +

((
KJ I×1 � σJ I×1 �KJ I×1

)T
AJ I×I

)T

where ⊗ is the Kronecker product, � the (element-wise) Hadamard product, � the (element-wise)
Hadamard division, whereas A = II×I ⊗

(
n1J×1

)
is a scaling matrix with n = 1/J. As a byproduct of

the Kalman filter, the marginal likelihood f (γ†|Y) is multivariate Gaussian with mean ŷ and variance
diag(σ), with diag() being the linear operator that transforms a vector into a diagonal matrix. Finally,
the array X̂I×N contains the filtered latent states implied by the model whereas Λ̂I×N is the array of
variances associated with the filtered states. The smoothing part of the algorithm is implemented
using the fixed-interval Kalman smoother [29] where the filtered arrays X̂I×N and Λ̂I×N are used as
input of the backward recursion.

References

1. Freeman, J.B.; Ambady, N. Software for studying real-time mental processing using a computer
mouse-tracking method. Behav. Res. Methods 2010, 42, 226–241. doi:10.3758/BRM.42.1.226.

2. Michael Schulte-Mecklenbeck, A.K.; Johnson, J.G. A Handbook of Process Tracing Methods, 2nd ed.; Routledge:
New York, NY, USA, 2019.

3. Freeman, J.B. Doing psychological science by hand. Curr. Dir. Psychol. Sci. 2018, 27, 315–323.
doi:10.1177/0963721417746793.

4. Coco, M.I.; Duran, N.D. When expectancies collide: Action dynamics reveal the interaction
between stimulus plausibility and congruency. Psychon. Bull. Rev. 2016, 23, 1920–1931.
doi:10.3758/s13423-016-1033-6.

5. Stolier, R.M.; Freeman, J.B. A neural mechanism of social categorization. J. Neurosci. 2017, 37, 5711–5721.
doi:10.1523/JNEUROSCI.3334-16.2017.

6. Ruitenberg, M.F.; Duthoo, W.; Santens, P.; Seidler, R.D.; Notebaert, W.; Abrahamse, E.L. Sequence
learning in Parkinson’s disease: Focusing on action dynamics and the role of dopaminergic medication.
Neuropsychologia 2016, 93, 30–39. doi:10.1016/j.neuropsychologia.2016.09.027.

7. Monaro, M.; Gamberini, L.; Sartori, G. The detection of faked identity using unexpected questions and
mouse dynamics. PLOS ONE 2017, 12, e0177851. doi:10.1371/journal.pone.0177851.

https://doi.org/10.3758/BRM.42.1.226
https://doi.org/10.1177/0963721417746793
https://doi.org/10.3758/s13423-016-1033-6
https://doi.org/10.1523/JNEUROSCI.3334-16.2017
https://doi.org/10.1016/j.neuropsychologia.2016.09.027
https://doi.org/10.1371/journal.pone.0177851

Math. Comput. Appl. 2020, 25, 41 17 of 18

8. Calcagnì, A.; Lombardi, L.; Sulpizio, S. Analyzing spatial data from mouse tracker methodology: An
entropic approach. Behav. Res. Methods 2017, 49, 2012–2030. doi:10.3758/s13428-016-0839-5.

9. Kieslich, P.J.; Henninger, F. Mousetrap: An integrated, open-source mouse-tracking package. Behav. Res.
Methods 2017, 49, 1652–1667. doi:10.3758/s13428-017-0900-z.

10. Coco, M.; Duran, N. mousetrack: Process and Analyze Mouse-Tracking Data. Available online: https:
//cran.r-project.org/web/packages/mousetrack/ (accessed on 9 July 2020).

11. Kieslich, P.; Henninger, F.; Wulff, D.U.; Haslbeck, J.M.B.; Schulte-Mecklenbeck, M. Mouse-tracking:
A practical guide to implementation and analysis. In A Handbook of Process Tracing Methods;
Schulte-Mecklenbeck, M., Ed.; Routledge: New York, NY, USA, 2019.

12. Pebesma, E.; Klus, B. trajectories: Classes and Methods for Trajectory Data. Available online: https:
//cran.r-project.org/web/packages/trajectories/ (accessed on 9 July 2020).

13. Frick, H.; Kosmidis, I. trackeR: Infrastructure for Running and Cycling Data from GPS-Enabled Tracking
Devices. Available online: https://cran.r-project.org/web/packages/tracker/ (accessed on 9 July 2020).

14. Calenge, C. The package adehabitat for the R software: A tool for the analysis of space and habitat use by
animals. Ecol. Model. 2006, 197, 516–519. doi:10.1016/j.ecolmodel.2006.03.017.

15. Kranstauber, B.; Smolla, M.; Scharf, A. move: Visualizing and Analyzing Animal Track Data. Available
online: https://cran.r-project.org/web/packages/move/ (accessed on 9 July 2020).

16. Helske, J. KFAS: Exponential Family State Space Models in R. J. Stat. Softw. 2017, 78.
doi:10.18637/jss.v078.i10.

17. Helske, J.; Vihola, M. bssm: Bayesian Inference of Non-Linear and Non-Gaussian State Space Models.
Available online: https://cran.r-project.org/web/packages/bssm/ (accessed on 9 July 2020).

18. King, A.A.; Nguyen, D.; Ionides, E.L. Statistical Inference for Partially Observed Markov Processes via the
R Package pomp. J. Stat. Softw. 2016, 69, 1–43. doi:10.18637/jss.v069.i12.

19. Pierre E. Jacob, Anthony Lee, L.M.M.S.F.; Abbott, S. rbi: Interface to LibBi. Available online: https:
//cran.r-project.org/web/packages/rbi/ (accessed on 9 July 2020).

20. Calcagnì, A.; Lombardi, L.; D’Alessandro, M.; Freuli, F. A state space approach to dynamic modeling of
mouse-tracking data. Front. Psychol. 2019, 10, 2716.

21. Stan, D.T. rstan: the R interface to Stan. Available online: https://cran.r-project.org/web/packages/rstan
(accessed on 9 July 2020).

22. Stan, D.T. shinystan: Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian
Models. Available online: https://cran.r-project.org/web/packages/shinystan (accessed on 9 July 2020).

23. Xavier, F.i.M. ggmcmc: Tools for Analyzing MCMC Simulations from Bayesian Inference. Available online:
https://cran.r-project.org/web/packages/ggmcmc (accessed on 9 July 2020).

24. Hehman, E.; Stolier, R.M.; Freeman, J.B. Advanced mouse-tracking analytic techniques for enhancing
psychological science. Group Process. Intergr. Relat. 2015, 18, 384–401. doi:10.1177/1368430214538325.

25. McNeish, D.; Dumas, D. Nonlinear growth models as measurement models: A second-order growth curve
model for measuring potential. Multivar. Behav. Res. 2017, 52, 61–85. doi:10.1080/00273171.2016.1253451.

26. Brockwell, A.E.; Rojas, A.L.; Kass, R. Recursive Bayesian decoding of motor cortical signals by particle
filtering. J. Neurophysiol. 2004, 91, 1899–1907. doi:10.1152/jn.00438.2003.

27. Shumway, R.H.; Stoffer, D.S. Time Series Analysis and Its Applications: With R Examples; Springer Science &
Business Media: New York, NY, USA, 2006.

28. Andrieu, C.; Doucet, A.; Holenstein, R. Particle markov chain monte carlo methods. J. R. Stat. Soc. B Stat.
Methodol. 2010, 72, 269–342. doi:10.1111/j.1467-9868.2009.00736.x.

29. Särkkä, S. Bayesian Filtering and Smoothing; Cambridge University Press: Cambridge, UK, 2013; Volume 3.
30. Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis; CRC

Press: Boca Raton, FL, USA, 2014; Volume 2.
31. Kruschke, J. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan; Academic Press: Cambridge,

MA, USA, 2014.
32. Kamil, A.A. Bayesian approach for robust parameter tracking. Electron. J. Appl. Stat. Anal. 2008, 1, 24–32.
33. Bhattacharjee, S.; Das, K.K. Estimation of circular-circular probability distribution. Electron. J. Appl. Stat.

Anal. 2018, 11, 155–167.

https://doi.org/10.3758/s13428-016-0839-5
https://doi.org/10.3758/s13428-017-0900-z
https://cran.r-project.org/web/packages/mousetrack/
https://cran.r-project.org/web/packages/mousetrack/
https://cran.r-project.org/web/packages/trajectories/
https://cran.r-project.org/web/packages/trajectories/
https://cran.r-project.org/web/packages/tracker/
https://doi.org/10.1016/j.ecolmodel.2006.03.017
https://cran.r-project.org/web/packages/move/
https://doi.org/10.18637/jss.v078.i10
https://cran.r-project.org/web/packages/bssm/
https://doi.org/10.18637/jss.v069.i12
https://cran.r-project.org/web/packages/rbi/
https://cran.r-project.org/web/packages/rbi/
https://cran.r-project.org/web/packages/rstan
https://cran.r-project.org/web/packages/shinystan
https://cran.r-project.org/web/packages/ggmcmc
https://doi.org/10.1177/1368430214538325
https://doi.org/10.1080/00273171.2016.1253451
https://doi.org/10.1152/jn.00438.2003
https://doi.org/10.1111/j.1467-9868.2009.00736.x

Math. Comput. Appl. 2020, 25, 41 18 of 18

34. Kiers, H.A. Techniques for rotating two or more loading matrices to optimal agreement and
simple structure: A comparison and some technical details. Psychometrika 1997, 62, 545–568.
doi:10.1007/BF02294642.

35. Giorgino, T.; others. Computing and visualizing dynamic time warping alignments in R: the dtw package.
J. Stat. Softw. 2009, 31, 1–24. doi:10.18637/jss.v031.i07.

36. Gabry, J.; Simpson, D.; Vehtari, A.; Betancourt, M.; Gelman, A. Visualization in Bayesian workflow. J. R.
Stat. Soc. Stat. Soc. 2019, 182, 389–402.

37. Gabry, J.; Mahr, T. bayesplot: Plotting for Bayesian Models. Available online: https://cran.r-project.org/
web/packages/bayesplot (accessed on 9 July 2020).

38. Carpenter, B.; Gelman, A.; Hoffman, M.D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.;
Riddell, A. Stan: A probabilistic programming language. J. Stat. Softw. 2017, 76. doi:10.18637/jss.v076.i01.

39. Barca, L.; Pezzulo, G. Unfolding visual lexical decision in time. PLOS ONE 2012, 7, e35932.
doi:10.1371/journal.pone.0035932.

40. Pastore, M. Overlapping: a R package for Estimating Overlapping in Empirical Distributions. J. Open
Source Softw. 2018, 3, 1023.

41. Murray, L.M. Bayesian State-Space Modelling on High-Performance Hardware Using LibBi. J. Stat. Softw.
2015, 67, doi:10.18637/jss.v067.i10.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1007/BF02294642
https://doi.org/10.18637/jss.v031.i07
https://cran.r-project.org/web/packages/bayesplot
https://cran.r-project.org/web/packages/bayesplot
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1371/journal.pone.0035932
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model
	Estimation and Inference
	Model Assessment

	The ssMousetrack Package
	Generate Artificial Data
	Run State-Space Analysis
	Evaluate the Model Results

	Application
	Conclusions
	
	References

