Multiplicative properties of integer valued polynomials over split-quaternions
MULTIPLICATIVE PROPERTIES OF INTEGER VALUED POLYNOMIALS OVER SPLIT-QUATERNIONS

ANTONIO CIGLIOLA, DARIO SPIRITO, AND FRANCESCA TARTARONE

Abstract. We study localization properties and the prime spectrum of the integer-valued polynomial ring \(\text{Int}_{\mathbb{P}_Z}(\mathbb{P}_Z) \), where \(\mathbb{P}_Z \) (respectively \(\mathbb{P}_Q \)) is the algebra of split-quaternion over \(\mathbb{Z} \) (respectively over \(\mathbb{Q} \)).

Introduction

In [14] N. Werner studied the ring of integer-valued polynomials in a noncommutative setting, by considering quaternion algebras. Precisely, he considered the algebras \(\mathbb{H}_Z \) and \(\mathbb{H}_Q \) (respectively over \(\mathbb{Z} \) and over \(\mathbb{Q} \)) generated by the unit elements 1, \(i, j, k \), linked by the relations \(i^2 = j^2 = k^2 = -1 \), \(ij = k = -ji \), \(jk = i = -kj \) and \(ki = j = -ik \), and considered the set \(\text{Int}_{\mathbb{H}_Q}(\mathbb{H}_Z) \) of all polynomials \(f \in \mathbb{H}_Q[x] \) such that \(f(\mathbb{H}_Z) \subseteq \mathbb{H}_Z \). After proving that \(\text{Int}_{\mathbb{H}_Q}(\mathbb{H}_Z) \) is indeed a noncommutative ring (which strictly contains \(\mathbb{H}_Q[x] \)), he investigated the ideal structure of this ring, describing some prime ideals above the zero and the maximal ideals of \(\mathbb{H}_Z \).

Moving from these ideas, in [3] A. Cigliola, K.A. Loper and N. Werner focused on similar problems in a different setting: instead of \(\mathbb{H}_Z \) they considered the set of integer split-quaternions \(\mathbb{P}_Z \), i.e. the \(\mathbb{Z} \)-algebra generated by the unit elements 1, \(i, j, k \) with the relations \(-i^2 = j^2 = k^2 = 1 \) and \(ijk = 1 \) (see Definition 1.1).

In this paper, we continue the study of the ring \(\mathbb{P}_Z \) (Section 1) and of the ring \(\text{Int}_{\mathbb{P}_Q}(\mathbb{P}_Z) \) of integer-valued polynomials over \(\mathbb{P}_Z \) (Section 2). We study some denominator sets of \(\mathbb{P}_Z \) and \(\text{Int}_{\mathbb{P}_Q}(\mathbb{P}_Z) \) that are not subsets of \(\mathbb{Z} \) (in particular, they are not central) and their ring of fractions. Thus, we partially answer to one of the open questions posed in [3, §5] which asks whether it is possible to find and to localize \(\text{Int}_{\mathbb{P}_Q}(\mathbb{P}_Z) \) with respect to noncentral sets. We then study the ring

\textbf{Key words and phrases.} quaternion algebra, prime ideal, Krull dimension.

\textbf{2010 Mathematics Subject Classification.} Primary: 11R52, 16H05, 13F20.

The second and third authors were partially supported by GNSAGA of Istituto Nazionale di Alta Matematica.
Int\(_Q(P_Z)\) of the polynomials in \(Q[x]\) that are integer valued over \(P_Z\).

There is a strict connection between the prime spectrum of this ring and the prime spectrum of \(\text{Int}_{P_Q}(P_Z)\). This allows to calculate the Krull dimension of \(\text{Int}_{P_Q}(P_{Z(p)})\), for an odd prime integer \(p\), starting from the dimension of \(\text{Int}_Q(P_Z)\) and thus to get a partial but interesting information about the Krull dimension of \(\text{Int}_{P_Q}(P_Z)\). Finally, in Section 4, we study in more detail the ideal \(p\text{Int}_Q(P_Z)\) and show that it is not prime. In this last Section we will be able to construct explicitly some polynomials of \(\text{Int}_Q(P_{Z(p)})\).

Throughout the paper, all the rings we consider are unitary but not necessarily commutative.

1. LOCALIZATIONS OF \(P_Z\)

We recall some definitions and basic properties.

Definition 1.1. Let \(R\) be a commutative ring. We denote by \(P_R\) the \(R\)-algebra generated by the four unit elements 1, \(i\), \(j\) and \(k\) with the relations

\[-i^2 = j^2 = k^2 = ijk = 1. \]

Formally \(P_R := \{q = a + bi + cj + dk \mid a, b, c, d \in R\}\).

We call \(P_R\) the **ring of split-quaternions** over \(R\).

Let \(q = a + bi + cj + dk \in P_R\), then:

(a) \(a, b, c,\) and \(d\) are the **coefficients** of \(q\), and \(a\) is the **real part** of \(q\);
(b) the **bar conjugate** of \(q\) is \(\overline{q} := a - bi - cj - dk\);
(c) the **norm** of \(q\) is \(N(q) := q\overline{q} = a^2 + b^2 - c^2 - d^2\);
(d) the **trace** of \(q\) is \(T(q) = q + \overline{q} = 2a\);
(e) the **minimal polynomial** of \(q\) is ([3, Definition 2.4])

\[m_q(x) := \begin{cases} x - q & \text{if } q \in R \\ x^2 - T(q)x + N(q) & \text{if } q \in P_R \setminus R. \end{cases} \]

\(m_q(x)\) is minimal in the way that \(m_q(q) = 0\) and that \(m_q(x)\) is the monic polynomial of least degree having \(q\) as a root.

In this section, we study some localizations of \(P_Z\). We start with the description of its prime and maximal ideals. Recall that an ideal \(P\) of a (not necessarily commutative) ring \(R\) is **prime** if, given \(a, b \in R\) such that \(aPb \subseteq P\), then \(a \in P\) or \(b \in P\).

Theorem 1.2. [3, Theorem 2.11]. The prime ideals of \(P_Z\) are:

(i) \(0\);
(ii) \(pP_Z\) where \(p\) is an odd prime of \(\mathbb{Z}\);
(iii) $\mathcal{M} = (1 + i; 1 + j)$.

Moreover, the primes $p\mathbb{P}_Z$ and \mathcal{M} are maximal, and \mathcal{M} is the only prime ideal containing 2.

Lemma 1.3. Let $q \in \mathbb{P}_Z$ such that $2 \mid N(q)$. Then $q \in \mathcal{M}$. In particular \mathcal{M} contains all the zero-divisors of \mathbb{P}_Z.

Proof. Let $q = a + bi + cj + dk$ be such that $N(q) = a^2 + b^2 - c^2 - d^2 = 2m$, for some $m \in \mathbb{Z}$. By hypothesis, q must have zero, two or four even coefficients. In the case that all coefficients are even, then trivially $q \in (2) \subseteq \mathcal{M}$. If q has exactly two even coefficients, then q is congruent modulo $2\mathbb{P}_Z$ to the sum of two of $1, i, j$ and k, and all of them are elements of \mathcal{M}. Finally, if all coefficients of q are odd, then $q \equiv 1 + i + j + k (\mod 2\mathbb{P}_Z)$, and so $q \in \mathcal{M}$ since $1 + i + j + k = (1 + i)(1 + j) \in \mathcal{M}$. □

Definition 1.4. Let R be a ring and S a multiplicative subset in R. We say that S is a right denominator set if:

(i) for any $a \in R$ and $s \in S$, $aS \cap sR \neq \emptyset$ (this condition is known as right Ore condition and S is called a right Ore set);

(ii) for $a \in R$, if $s'a = 0$ for some $s' \in S$, then $as = 0$ for some $s \in S$ (we say that S is right reversible).

Remark 1.5. (a) We can define left denominator sets in a completely symmetrical way.

(b) Condition (ii) (reversibility) is automatically satisfied when S does not contain zero-divisors.

(c) It is easily seen that the multiplicative subsets contained in the center of R are always denominator subsets.

By [9, Theorem 10.6], if R is a ring and S a multiplicative subset of R, then R has a right ring of fractions with respect to S (namely, the ring $RS^{-1} := \{ as^{-1} \mid a \in R, s \in S \}$ if and only if S is a right denominator set. Similarly we can construct the ring $S^{-1}R := \{ s^{-1}a \mid a \in R, s \in S \}$ if and only if S is a left denominator set. If S is both a right and left denominator set, then $RS^{-1} \simeq S^{-1}R$ by [9, Corollary 10.14].

Lemma 1.6. Let R be a commutative ring and S a multiplicative subset of \mathbb{P}_R, closed under norm (i.e., if $s \in S$ then $N(s) \in S$). Then S verifies both the right and the left Ore condition.

Proof. Fix $a \in \mathbb{P}_R$ and $s \in S$. Since $N(s) \in R$ is a central element, we have that $aN(s) = N(s)a$. It follows that $aN(s) = s(\bar{s}a)$, so S is a right Ore set since $aS \cap s\mathbb{P}_R \neq \emptyset$. Analogously, $(a\bar{s})s = N(s)a$ so S is a left Ore set since $Sa \cap \mathbb{P}_{RS} \neq \emptyset$. □
By the previous lemma, if \(S = \mathcal{R}(R) \) is the set of all (right and left) regular elements of \(R \), then \(S \) is a denominator set and \(RS^{-1} \) is the total ring of fractions of \(R \), which we denote by \(\mathcal{Q}(R) \).

For commutative rings, the most important way of constructing localizations of a ring \(R \) is through the sets \(R \setminus P \), where \(P \) is a prime ideal; however, if \(R \) is not commutative, the complement of a prime ideal may not be multiplicatively closed. For example, if \(p = 2k + 1 \) is an odd prime number, then \(p \mathbb{P}_{\mathbb{Z}} \) is prime, but \(\mathbb{P}_{\mathbb{Z}} \setminus p \mathbb{P}_{\mathbb{Z}} \) is not multiplicatively closed since \(((k + 1) + k j)((k + 1) - k j) = p \in p \mathbb{P}_{\mathbb{Z}} \).

Following the notation of Goldie in [6], we give the following definition:

Definition 1.7. Let be given a ring \(R \) and let \(Q \) be a proper prime ideal of \(R \). We set:

\[
\mathcal{C}(Q) := \{ x \in R \mid xr \notin Q, \forall r \notin Q \},
\]

and

\[
\mathcal{C}'(Q) := \{ x \in R \mid rx \notin Q, \forall r \notin Q \}.
\]

Proposition 1.8. Let \(R \) be a ring and let \(Q \subseteq R \) be a prime ideal of \(R \). Then \(\mathcal{C}(Q) \) is a multiplicatively closed subset of \(R \) containing 1 but not 0, and \(\mathcal{C}(Q) \subseteq R \setminus Q \). The same properties hold for \(\mathcal{C}'(Q) \).

Proof. For each \(r \notin Q \), we have that \(1 \cdot r = r \notin Q \) and that \(0 \cdot r \in Q \). Then, by definition, \(1 \in \mathcal{C}(Q) \) and \(0 \notin \mathcal{C}(Q) \). Take now \(a, b \in \mathcal{C}(Q) \) and \(r \notin Q \). Since \(b \in \mathcal{C}(Q) \), then \(br \notin Q \). Again, since \(a \in \mathcal{C}(Q) \), we have \(a(br) \notin Q \). Thus for all \(r \notin Q \) we have \((ab)r = a(br) \notin Q \).

Finally, if \(x \in \mathcal{C}(Q) \) then, since \(1 \notin Q \), we have \(x \cdot 1 = x \notin Q \). Hence, \(\mathcal{C}(Q) \subseteq R \setminus Q \). \(\square \)

Proposition 1.9. Let \(R \) be a ring and let \(Q \subseteq R \) be a prime ideal of \(R \). Then \(\mathcal{C}(Q) \) is the set of left regular elements of \(R \) modulo \(Q \) and \(\mathcal{C}'(Q) \) is the set of right regular elements of \(R \) modulo \(Q \).

Proof. Take \(x \in R \). Then \(x \) is a left zero-divisor modulo \(Q \) if and only if there is \(r \in R/Q \), \(r \neq 0 \), such that \(xr = 0 \). This is equivalent to saying that there is an \(r \notin Q \) such that \(xr \in Q \). In other words, \(x \notin \mathcal{C}(Q) \).

Similarly for \(\mathcal{C}'(Q) \). \(\square \)

In particular, we have that \(\mathcal{C}(0) = \mathcal{R}_l(R) \) is the set of the left regular elements of \(R \), while \(\mathcal{C}'(0) = \mathcal{R}_r(R) \) is the set of the right regular elements of \(R \).
We now focus on some properties of the sets $\mathcal{C}(Q)$ associated to the prime ideals of \mathbb{P}_Z.

Proposition 1.10. Let Q be a prime ideal of \mathbb{P}_Z. Then:

(i) $\mathcal{C}(Q)$ is closed under bar conjugation;
(ii) $\mathcal{C}(Q)$ is closed under norm;
(iii) $\mathcal{C}(Q) = \{ x \in \mathbb{P}_Z \mid N(x) \notin Q \}$;
(iv) $\mathcal{C}(Q)$ does not contain any zero-divisor.

Proof. By [7, Proposition 1.6] \mathbb{P}_Z is a Noetherian ring. Thus, from [6, Section 3], $\mathcal{C}(Q) = \mathcal{C}'(Q)$.

Consider first $Q = (0)$. Then $\mathcal{C}(0)$ equals $\mathcal{R}(\mathbb{P}_Z)$, the set of all (two-sided) regular elements, and so

$$\mathcal{C}(Q) = \mathcal{R}(\mathbb{P}_Z) = \{ x \in \mathbb{P}_Z \mid N(x) \neq 0 \}.$$

This proves the claim in the case $Q = (0)$.

Let now be $Q = p\mathbb{P}_Z$, for an odd prime integer p. We notice that:

- $\mathcal{C}(Q) \mod Q = \mathcal{C}(0)$ in $\mathbb{P}_Z/Q = \mathbb{P}_{Zp}$ (apply Proposition 1.9);
- $N(x) \mod p = N(\bar{x})$, for $x \in \mathbb{P}_Z$ and $\bar{x} = x \mod p\mathbb{P}_Z$.

Using these equalities, points (i)-(ii)-(iii) reduce to the case $Q = (0)$, which has been already proved. For $p = 2$, the same reasoning applies reducing modulo \mathcal{M}.

For the point (iv), if $p = 2$ the claim follows from Lemma 1.3.

If p is an odd prime, then suppose that $x r' = 0$, for some $x \in \mathcal{C}(Q)$ and $0 \neq r' \in \mathbb{P}_Z$. If we write $r' = p^m r$, for some $r \notin Q$, we get $x r = 0 \in Q$ (since p is not a zero divisor from Lemma 1.3) which is absurd. □

In particular, we observe that $\mathcal{C}(p\mathbb{P}_Z) = \{ x \in \mathbb{P}_Z \mid p \nmid N(x) \}$ and $\mathcal{C}(\mathcal{M}) = \{ x \in \mathbb{P}_Z \mid 2 \nmid N(x) \}$.

We will work with the following multiplicative subsets of \mathbb{P}_Z:

- the multiplicative subsets of \mathbb{Z};
- the sets $\mathcal{C}(0)$, $\mathcal{C}(\mathcal{M})$ and $\mathcal{C}(p\mathbb{P}_Z)$, for any odd prime integer p.

For a general noncommutative ring, given a prime ideal Q, $\mathcal{C}(Q)$ may not be a denominator set: such an example is given, for instance, in [1, Example 2.3]. However we show that $\mathcal{C}(Q)$ is a denominator sets in \mathbb{P}_Z and also in $\text{Int}(\mathbb{P}_Z)$ (Proposition 2.4), for each prime ideal Q of \mathbb{P}_Z.

Proposition 1.11. The sets $\mathbb{Z} \setminus (0)$, $\mathbb{Z} \setminus p\mathbb{Z}$, for p prime, and $\mathcal{C}(Q)$, for Q prime ideal of \mathbb{P}_Z, are (right and left) denominator sets of \mathbb{P}_Z.
Proof. Let $S = \mathbb{Z} \setminus \{0\}$ or $S = \mathbb{Z} \setminus p\mathbb{Z}$, for a prime p. Then the statement easily follows from the fact that S is contained in the center of \mathbb{P}_Z.

If $S = \mathcal{C}(Q)$, then S does not contain zero-divisors (Proposition 1.10), so $\mathcal{C}(Q)$ is right and left reversible. Finally, $\mathcal{C}(Q)$ is a right (left) Ore set by Lemma 1.6, since it is closed under bar conjugation (Proposition 1.10). Thus $\mathcal{C}(Q)$ is a right and left denominator set of \mathbb{P}_Z. □

Proposition 1.12. Let $S = \mathcal{C}(0)$ or $S = \mathbb{Z} \setminus \{0\}$. Then

$$\mathbb{P}_Z S^{-1} = S^{-1} \mathbb{P}_Z = \mathbb{P}_Q = \mathcal{Q}(\mathbb{P}_Z),$$

which is the total ring of fractions of \mathbb{P}_Z.

Proof. By Proposition 1.11, S is a denominator set. So the ring $\mathbb{P}_Z S^{-1}$ exists and its elements are the fractions rs^{-1}, where $r,s \in \mathbb{P}_Z$ and $N(s) \neq 0$. Then $rs^{-1} = \frac{1}{N(s)} r s \in \mathbb{P}_Q$. Thus $\mathbb{P}_Z S^{-1} \subseteq \mathbb{P}_Q$. Conversely, given $q \in \mathbb{P}_Q$, write q in the form $p \cdot a^{-1}$, where $p \in \mathbb{P}_Z$ and a is a common denominator for the coefficients of q. Obviously, $a \in S$ and so $pa^{-1} \in \mathbb{P}_Z S^{-1}$, i.e., $\mathbb{P}_Z S^{-1} \supseteq \mathbb{P}_Q$. Thus $\mathbb{P}_Z S^{-1} = \mathbb{P}_Q$. Similarly, $S^{-1} \mathbb{P}_Z = \mathbb{P}_Q$. Finally \mathbb{P}_Q is the total ring of fractions of \mathbb{P}_Z because we localize with respect to the set of regular elements of \mathbb{P}_Z. □

Similarly, if we localize \mathbb{P}_Z at $S = \mathbb{Z} \setminus p\mathbb{Z}$ or $S = \mathcal{C}(Q)$, where $Q = p\mathbb{P}_Z$, for a prime number p, we get the algebra of split-quaternions with coefficients in \mathbb{Z}_p, the localization of \mathbb{Z} at the ideal $p\mathbb{Z}$ (as we see in the following Proposition). In the following, \mathbb{Z}_p will denote the field with p elements.

Proposition 1.13. Let p be a prime number and let $S = \mathbb{Z} \setminus p\mathbb{Z}$ or $S = \mathcal{C}(Q)$, where Q is a prime ideal of \mathbb{P}_Z such that $Q \cap \mathbb{Z} = p\mathbb{Z}$.

Then

$$\mathbb{P}_Z S^{-1} = S^{-1} \mathbb{P}_Z = \mathbb{P}_{Z(p)}.$$

Proof. We know that S is a denominator set of \mathbb{P}_Z by Proposition 1.11. So the ring $\mathbb{P}_Z S^{-1}$ exists.

Let $S = \mathbb{Z} \setminus p\mathbb{Z}$. It is easy to see that $\mathbb{P}_Z S^{-1} \subseteq \mathbb{P}_{Z(p)}$. For the reverse inclusion, notice that the minimum common denominator of any element of \mathbb{Z}_p is an element of $\mathbb{Z} \setminus p\mathbb{Z}$. So $\mathbb{P}_Z S^{-1} = \mathbb{P}_{Z(p)}$. Similarly it can be proved that $S^{-1} \mathbb{P}_Z = \mathbb{P}_{Z(p)}$.

Let $S = \mathcal{C}(Q)$. Since the norm of the elements of S is not divisible by p (Proposition 1.10), a right fraction $ps^{-1} \in \mathbb{P}_Z S^{-1}$, for some $p \in \mathbb{P}_Z$ and $s \in S$, can be seen as a rational split-quaternion $q = \frac{1}{N(s)} p s = a + b i + c j + d k$, where $a, b, c, d \in \mathbb{Q}$ and their denominators are not divisible by p. Thus $\mathbb{P}_Z S^{-1} \subseteq \mathbb{P}_{Z(p)}$. For the reverse inclusion let
q ∈ \mathbb{P}_{Z(p)}$. Taking a common denominator, write $q = \frac{1}{n}p$, for some $p ∈ \mathbb{P}_Z$ and $n ∈ \mathbb{Z}$. Since the minimum common denominator of some elements of $\mathbb{Z}_{(p)}$ is an element of $\mathbb{Z} \setminus p\mathbb{Z}$, then n is not divisible by p. Thus neither $n^2 = N(n)$ is divisible by p. So $n ∈ S$ and $\mathbb{P}_ZS^{-1} = \mathbb{P}_{Z(p)}$. In the same manner we can prove that $S^{-1}\mathbb{P}_Z = \mathbb{P}_{Z(p)}$. □

Imitating Proposition 1.12 we can give this general result.

Proposition 1.14. Let R be a commutative ring and let $\mathcal{Q}(R)$ be its total ring of fractions. Then

$$\mathcal{Q}(\mathbb{P}_R) = \mathbb{P}_{\mathcal{Q}(R)}.$$

*Proof. Let S be the set of regular elements of R. Then, S is contained in the center of \mathbb{P}_R, and thus it is a denominator set of \mathbb{P}_R; it is also easy to see that $S^{-1}\mathbb{P}_R = \mathbb{P}_S^{-1}R = \mathbb{P}_{\mathcal{Q}(R)}$ (see proof of Propositions 1.12).

We claim that the elements of $\mathbb{P}_{\mathcal{Q}(R)}$ are either invertible or zero-divisors. Take $q ∈ \mathbb{P}_{\mathcal{Q}(R)}$. If $N(q)$ is regular, then it is invertible in $\mathcal{Q}(R)$, and thus $\frac{1}{N(q)}\overline{q} ∈ \mathbb{P}_{\mathcal{Q}(R)}$ is the inverse of q. Conversely, if $N(q)$ is not regular, then there is $z ∈ R$, $z ≠ 0$, such that $zN(q) = 0$. If $zq ≠ 0$, then also $z\overline{q} = z\overline{q} ≠ 0$. So we have that:

$$0 = zN(q) = z\overline{q}q = (z\overline{q})q$$

hence, q is a zero-divisor.

Thus, $\mathbb{P}_{\mathcal{Q}(R)}$ is a total ring of fractions, and so it is the total ring of fractions of \mathbb{P}_R. □

2. **Integer-valued polynomials**

The ring of integer-valued polynomials over \mathbb{P}_Z is

$$\text{Int}_{\mathbb{P}_Q}(\mathbb{P}_Z) = \{ f(x) ∈ \mathbb{P}_Q[x] \mid f(\mathbb{P}_Z) ⊆ \mathbb{P}_Z \}.$$

This set is actually a ring ([15, Theorem 1.2]), and in [3] the authors describe explicitly some proper ideals of $\text{Int}_{\mathbb{P}_Q}(\mathbb{P}_Z)$. A similar construction can be done if, instead of \mathbb{P}_Z, we use $\mathbb{P}_{Z(p)}$ or \mathbb{P}_Q; in the former case, [15, Theorem 1.2] guarantees that $\text{Int}_{\mathbb{P}_Q}(\mathbb{P}_{Z(p)})$ is a ring, while in the latter $\text{Int}_{\mathbb{P}_Q}(\mathbb{P}_Q) = \mathbb{P}_Q[x]$ is the whole ring of polynomials (and, in particular, is a ring).

For simplicity of notation, in this Section we will write $\text{Int}(\mathbb{P}_Z)$ instead of $\text{Int}_{\mathbb{P}_Q}(\mathbb{P}_Z)$.

A class of ideals of \(\text{Int}(\mathbb{P}_\mathbb{Z}) \) can be constructed in the following way: if \(q = a + bi + cj + dk \in \mathbb{P}_\mathbb{Z} \) and \(I \) is a principal ideal of \(\mathbb{P}_\mathbb{Z} \) generated by an element of \(\mathbb{Z} \), then
\[
\mathfrak{P}_{I,q} := \{ f(x) \in \text{Int}(\mathbb{P}_\mathbb{Z}) \mid f(z) \in I \forall z \in C(q) \},
\]
is an ideal of \(\text{Int}(\mathbb{P}_\mathbb{Z}) \), where \(C(q) = \{ a \pm bi \pm cj \pm dk \} \) ([3, Proposition 4.2]).

If \(P \) is a prime ideal of \(\text{Int}(\mathbb{P}_\mathbb{Z}) \), then \(P \cap \mathbb{P}_\mathbb{Z} \) is a prime ideal of \(\mathbb{P}_\mathbb{Z} \); since we have a classification of the prime ideals of \(\mathbb{P}_\mathbb{Z} \) (Theorem 1.2), we can study the spectrum of \(\text{Int}(\mathbb{P}_\mathbb{Z}) \) according to the restriction to \(\mathbb{P}_\mathbb{Z} \).

Proposition 2.1. The following hold.

1. [3, Corollary 4.10] The prime ideals \(P \) of \(\text{Int}(\mathbb{P}_\mathbb{Z}) \) with \(P \cap \mathbb{P}_\mathbb{Z} = (0) \) are exactly those of the form
\[
P = M(x) \cdot \mathbb{P}_\mathbb{Q}[x] \cap \text{Int}(\mathbb{P}_\mathbb{Z}) =: P_{M(x)},
\]
where \(M(x) \in \mathbb{Z}[x] \) is an irreducible polynomial.

 In particular, if \(m_q(x) \) is the minimal polynomial of an element \(q \in \mathbb{P}_\mathbb{Z} \) then \(P_{m_q(x)} = \mathfrak{P}_{0,q} \) is a prime ideal.

2. [3, Theorem 4.16] Let \(q := a + bi + cj + dk \in \mathbb{P}_\mathbb{Z} \setminus \mathbb{Z} \) and let \(p \) be an odd prime. If \(\gcd(b, c, d, p) = 1 \), then \(\mathfrak{P}_{p\mathbb{P}_\mathbb{Z},q} \) is prime if and only if \(m_q(x) \) is irreducible mod \(p \), in which case \(\mathfrak{P}_{p\mathbb{P}_\mathbb{Z},q} \) is maximal.

3. [3, Corollary 4.22] Let \(q = a + bi + cj + dk \in \mathbb{P}_\mathbb{Z} \), and assume that either \(b \equiv c \pmod{2} \) or \(b \equiv d \pmod{2} \). Then,
\[
\mathfrak{M}_q := \{ f \in \text{Int}(\mathbb{P}_\mathbb{Z}) \mid f(q) \in \mathcal{M} \}
\]
is a maximal ideal of \(\text{Int}(\mathbb{P}_\mathbb{Z}) \).

Remark 2.2.

1. While the first case of the proposition completely classifies the prime ideals above \((0) \), the other two merely give some examples of the prime ideals above \(p\mathbb{P}_\mathbb{Z} \) and \(\mathcal{M} \), but not a complete list.

2. We refer to [3] for some results about the equality among these ideals.

Lemma 2.3. The following hold:

1. If \(p \) is an odd prime number and \(q \in \mathbb{P}_\mathbb{Z} \), then \(\mathfrak{P}_{m_q(x)} \subseteq \mathfrak{P}_{p\mathbb{P}_\mathbb{Z},q} \).

2. If \(q \in \mathbb{P}_\mathbb{Z} \) is as in Proposition 2.1(3), then \(\mathfrak{P}_{m_q(x)} \subseteq \mathfrak{M}_q \).

Proof. Let \(f(x) \in \mathfrak{P}_{m_q(x)} \): then, \(f(x) = m_q(x)g(x) \) for some \(g(x) \in \mathbb{P}_\mathbb{Q}[x] \). Since \(m_q(x) \) has coefficients in the center of \(\mathbb{P}_\mathbb{Q} \), we have \(f(q) = m_q(q)g(q) = 0 \). Hence, \(f(x) \in \mathfrak{M}_q \); furthermore, \(m_q(q') = 0 \) for all \(q' \in \mathbb{P}_\mathbb{Z} \).
C(q) (since the elements of C(q) have the same minimal polynomial of q [3, paragraph after Definition 4.1]) and thus \(f(x) \in \mathcal{P}_{p \mathbb{Z}, q} \). Therefore \(\mathcal{P}_{m_{q}(x)} \) is contained in both \(\mathcal{P}_{p \mathbb{Z}, q} \) and \(\mathfrak{m}_{q} \).

By intersecting the ideals with \(\mathbb{Z} \), it is easily seen that the inclusions are proper. \(\square \)

When \(D \) is a Noetherian commutative domain, the integer-valued polynomials over \(D \) behave well with respect to the localization, that is, if \(S \) is a multiplicative subset of \(D \) then \(S^{-1} \text{Int}(D) = \text{Int}(S^{-1}D) \) ([2, Theorem I.2.3]). In [3, Theorem 3.4] an analogous result has been showed for \(\text{Int}(\mathbb{P}_Z) \) when \(S \) is a multiplicatively closed subset \(S \subset \mathbb{Z} \) (it is central). In the following we prove that \(\text{Int}(\mathbb{P}_Z) \) behaves well with respect to localization also for denominator sets whose elements are not necessarily central, as \(S = \mathcal{C}(Q) \), where \(Q \) is a prime ideal of \(\mathbb{P}_Z \).

Theorem 2.4. Let \(Q \) be a prime ideal of \(\mathbb{P}_Z \) and let \(S = \mathcal{C}(Q) \). Then \(S \) is also a denominator set of \(\text{Int}(\mathbb{P}_Z) \) and \(\text{Int}(\mathbb{P}_Z)S^{-1} = \text{Int}(\mathbb{P}_Z S^{-1}) \).

Proof. To prove that \(S \) is a denominator set of \(\text{Int}(\mathbb{P}_Z) \) it is sufficient to use the same argument of Lemma 1.6 and Proposition 1.11, observing that \(N(s) \) is in the center of \(\text{Int}(\mathbb{P}_Z) \) for each \(s \in S \).

Let \(Q \) be a prime ideal of \(\mathbb{P}_Z \), and let \(Q \cap \mathbb{Z} = p\mathbb{Z} \) (where \(p \) is either a prime number or 0). Set \(T := \mathbb{Z} \setminus p\mathbb{Z} \). By Propositions 1.12 and 1.13, we have \(\text{Int}(\mathbb{P}_Z T^{-1}) = \text{Int}(\mathbb{P}_Z \mathcal{C}(Q)^{-1}) = \text{Int}(\mathbb{P}_{Z(p)}) \).

To prove the statement it is enough to show that

\[
(1) \quad \text{Int}(\mathbb{P}_Z)T^{-1} \subseteq \text{Int}(\mathbb{P}_Z \mathcal{C}(Q)^{-1}) \subseteq \text{Int}(\mathbb{P}_{Z(p)}) \subseteq \text{Int}(\mathbb{P}_Z)T^{-1}.
\]

The first inclusion follows from the fact that \(T \subseteq \mathcal{C}(Q) \), while the last one from [3, Theorem 3.4] (it is actually an equality). Thus, we only need to prove that \(\text{Int}(\mathbb{P}_Z \mathcal{C}(Q)^{-1}) \subseteq \text{Int}(\mathbb{P}_{Z(p)}) \). Again by [3, Theorem 3.4], we have \(\text{Int}(\mathbb{P}_Z) \subseteq \text{Int}(\mathbb{P}_{Z(p)}) \); furthermore, each element of \(\mathcal{C}(Q) \) becomes invertible in \(\mathbb{P}_{Z(p)} \) and thus in \(\text{Int}(\mathbb{P}_{Z(p)}) \). Hence, \(\text{Int}(\mathbb{P}_Z \mathcal{C}(Q)^{-1}) \subseteq \text{Int}(\mathbb{P}_{Z(p)}) \) and all the containments must be equalities. \(\square \)

Note that the exact same argument can be used if we localize on the left: if \(S \) is \(S = \mathcal{C}'(Q) \) then \(S^{-1} \text{Int}(\mathbb{P}_Z) = \text{Int}(S^{-1}\mathbb{P}_Z) \).

Corollary 2.5. The following hold.

1. If \(S = \mathcal{R}(\mathbb{P}_Z) \) or \(S = \mathbb{Z} \setminus \{0\} \) then \(\text{Int}(\mathbb{P}_Z)S^{-1} = \text{Int}(\mathbb{P}_Q) = \mathbb{P}_Q[x] \).

2. If \(p \) is a prime number and \(S = \mathbb{Z} \setminus p\mathbb{Z} \) or \(S = \mathcal{C}(Q) \), with \(Q \) a prime ideal of \(\mathbb{P}_Z \) such that \(Q \cap \mathbb{Z} = p\mathbb{Z} \), then \(\text{Int}(\mathbb{P}_Z)S^{-1} = \text{Int}(\mathbb{P}_{Z(p)}) \).
Proof. For the first point, the equality $\text{Int}(\mathbb{P}_Z)S^{-1} = \text{Int}(\mathbb{P}_Q)$ follows from Theorem 2.4 and Proposition 1.12. The equality $\text{Int}(\mathbb{P}_Q) = \mathbb{P}_Q[x]$ follows directly from the definitions.

Similarly, the second point follows from Theorem 2.4 and from Proposition 1.13. □

These results allow us to represent \mathbb{P}_Z and $\text{Int}(\mathbb{P}_Z)$ as intersection of localizations.

Proposition 2.6. Let \mathcal{P} be the set of prime numbers. Then, the following hold.

1. $\mathbb{P}_Z = \bigcap_{p \in \mathcal{P}} \mathbb{P}_Z(p)$.
2. $\text{Int}(\mathbb{P}_Z) = \bigcap_{p \in \mathcal{P}} \text{Int}(\mathbb{P}_Z(p))$.

Proof. (1) The inclusion (\subseteq) is obvious since for every prime p, $\mathbb{P}_Z \subseteq \mathbb{P}_Z(p)$. For the reverse inclusion, take an element $q = a + bi + cj + dk$ of the intersection. Then $a, b, c, d \in \bigcap_p \mathbb{Z}_p = \mathbb{Z}$ and $q \in \mathbb{P}_Z$.

(2) For all primes p, let Q_p be the maximal ideal of \mathbb{P}_Z above p. We have that $\text{Int}(\mathbb{P}_Z) \subseteq (\text{Int}(\mathbb{P}_Z))^{(Q_p)^{-1}} = \text{Int}(\mathbb{P}_Z(p))$, and thus $\text{Int}(\mathbb{P}_Z)$ is inside the intersection. Conversely, if $f(x)$ belongs to the intersection and $q \in \mathbb{P}_Z$, then $f(q) \in \mathbb{P}_Z(p)$ for every prime number p, and thus $f(q) \in \bigcap_p \mathbb{P}_Z(p) = \mathbb{P}_Z$ (by the previous point) and $f(x) \in \text{Int}(\mathbb{P}_Z)$.

3. **Matrix representations**

To study the spectrum of $\text{Int}(\mathbb{P}_Z)$, we introduce the related commutative ring

$$\text{Int}_Q(\mathbb{P}_Z) := \{ f(x) \in Q[x] \mid \forall q \in \mathbb{P}_Z : f(q) \in \mathbb{P}_Z \},$$

and we define similarly $\text{Int}_Q(\mathbb{P}_Z(p))$. These sets are easily seen to be rings by using polynomial evaluation. To avoid confusion in the notation, from now in we will go back to write $\text{Int}_{\mathbb{P}_Q}(\mathbb{P}_Z)$ and $\text{Int}_{\mathbb{P}_Q}(\mathbb{P}_Z(p))$ for $\text{Int}(\mathbb{P}_Z)$ and $\text{Int}(\mathbb{P}_Z(p))$, respectively. Note that, if we consider $Q[x]$ as as subring of $\mathbb{P}_Q[x]$ in the obvious way, then $\text{Int}_Q(\mathbb{P}_Z) = \text{Int}_{\mathbb{P}_Q}(\mathbb{P}_Z) \cap Q[x]$.

The relation between $\text{Int}_Q(\mathbb{P}_Z)$ and $\text{Int}_{\mathbb{P}_Q}(\mathbb{P}_Z)$ passes through a matrix representation of the rings \mathbb{P}_Z and $\mathbb{P}_Z(p)$. We denote by $\mathcal{M}_n(R)$ the ring of matrices of order n over R.

Proposition 3.1. [3, Proposition 2.2] The following hold.

1. Let R be a commutative ring with identity such that 2 is a unit of R. Then, $\mathbb{P}_R \cong \mathcal{M}_2(R)$ as R-algebras.
2. Let $\mathcal{A} = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a \equiv d, \ b \equiv c \ mod \ 2 \} \subseteq \mathcal{M}_2(\mathbb{Z})$. Then, $\mathbb{P}_Z \cong \mathcal{A}$ as \mathbb{Z}-algebras.
Let D be a domain with quotient field K. We define
\[
\text{Int}_K(M_n(D)) := \{ f(x) \in K[x] \mid \forall A \in M_n(D) : f(A) \in M_n(D) \}
\]
and
\[
\text{Int}_{M_n(K)}(M_n(D)) := \{ f(x) \in M_n(K)[x] \mid \forall A \in M_n(D) : f(A) \in M_n(D) \}.
\]
These rings roughly correspond, respectively, to $\text{Int}_Q(P_Z)$ and $\text{Int}_{P_Q}(P_Z)$.

Proposition 3.2. Let D be a domain with quotient field K. Then
\[
\text{Int}_{M_n(K)}(M_n(D)) \simeq M_n(\text{Int}_K(M_n(D))).
\]
Moreover:
(i) The ideals of $\text{Int}_{M_n(K)}(M_n(D))$ are in 1-1 correspondence with the sets of the form $M_n(\mathcal{I})$, where \mathcal{I} is an ideal of $\text{Int}_K(M_n(D))$.
(ii) The prime ideals of $\text{Int}_{M_n(K)}(M_n(D))$ are in 1-1 correspondence with the sets of the form $M_n(\mathcal{P})$, where \mathcal{P} is a prime ideal of $\text{Int}_K(M_n(D))$.
(iii) The maximal ideals of $\text{Int}_{M_n(K)}(M_n(D))$ are in 1-1 correspondence with the sets of the form $M_n(\mathcal{M})$, where \mathcal{M} is a maximal ideal of $\text{Int}_K(M_n(D))$.

Proof. See [4, Theorem 7.2] and [4, Theorem 7.3]. The remaining part follows from [8, Theorem 3.1]. □

Putting together these two results, we have the following theorem.

Theorem 3.3. Let p be an odd prime integer. Then, the prime ideals of $\text{Int}_{P_Q}(P_{Z(p)})$ are in 1-1 correspondence with the prime ideals of $\text{Int}_Q(P_{Z(p)})$.

Proof. By Proposition 3.1, $P_Q \sim M_2(Q)$, and the isomorphism brings $P_{Z(p)}$ into $M_2(Z(p))$. By Proposition 3.2,
\[
\text{Int}_{P_Q}(P_{Z(p)}) \simeq \text{Int}_{M_2(Q)}(M_2(Z(p))) \simeq M_2(\text{Int}_Q(M_2(Z(p)))) \simeq M_2(\text{Int}_Q(P_{Z(p)}));
\]
thus the prime ideals of $\text{Int}_{P_Q}(P_{Z(p)})$ are in bijective correspondence with the prime ideals of $\text{Int}_Q(P_{Z(p)})$, as claimed. □

The main advantage of this theorem is that $\text{Int}_Q(P_{Z(p)})$ is a commutative ring properly contained in between the two well-studied rings $Z[x]$ and $Q[x]$.

Proposition 3.4. The nonzero prime ideals P of $\text{Int}_Q(P_Z)$ such that $P \cap Z = (0)$ are pairwise incomparable.
Corollary 3.6. If \(p \) is an odd prime, then \(\text{Int}_{\mathbb{F}_p}(\mathbb{P}_\mathbb{Z}(\mathbb{P}_Z)) \) has dimension 2. Furthermore, \(\dim(\text{Int}_{\mathbb{F}_p}(\mathbb{P}_Z)) \geq 2 \).

Proof. By Theorem 3.3, the dimension of \(\text{Int}_{\mathbb{F}_p}(\mathbb{P}_Z) \) is the same of \(\text{Int}_{\mathbb{Q}}(\mathbb{P}_Z) \), which is 2 by Theorem 3.5. The last claim follows since \(\text{Int}_{\mathbb{F}_p}(\mathbb{P}_Z(\mathbb{P}_Z)) \) is a localization of \(\text{Int}_{\mathbb{F}_p}(\mathbb{P}_Z) \). □
An important difference between $\text{Int}(\mathbb{Z})$ and $\text{Int}_Q(\mathbb{P}_Z)$ is that the latter is not integrally closed (and thus it is not a Prüfer domain); see Corollary 3.8 below. However, we can describe its integral closure by using algebraic integers.

Given a finite degree extension $\mathbb{Q}(\theta)$ of \mathbb{Q}, we indicate by \mathcal{A}_θ the ring of algebraic integers of $\mathbb{Q}(\theta)$. If $n \in \mathbb{N}$ is positive, the set of all algebraic integers of degree at most n over \mathbb{Q} is

$$\mathcal{A}_n := \bigcup_{[\mathbb{Q}(\theta):\mathbb{Q}] \leq n} \mathcal{A}_\theta;$$

similarly, if p is a prime number, we denote by $\mathcal{A}_{n,p}$ the set of algebraic numbers that are root of a monic irreducible polynomial of degree n over $\mathbb{Z}(p)$.

In [10] the authors define the set of integer-valued polynomials over \mathcal{A}_n with rational coefficients to be the set

$$\text{Int}(\mathcal{A}_n) := \bigcap_{\theta \in \mathcal{A}_n} \text{Int}_\mathbb{Q}(\mathcal{A}_\theta).$$

The ring $\text{Int}(\mathcal{A}_n)$ can be seen as the set of all polynomials with rational coefficients that map \mathcal{A}_n into \mathcal{A}_n. They also show that $\text{Int}_\mathbb{Q}(\mathcal{A}_n)$ is a Prüfer domain for every n ([10, Theorem 3.9]).

Theorem 3.7. Let p be an odd prime integer. Then $\text{Int}_\mathbb{Q}(\mathcal{A}_2)_p = \text{Int}_\mathbb{Q}(\mathcal{A}_{2,p})$ is the integral closure of $\text{Int}_\mathbb{Q}(\mathbb{P}_Z(p))$ in $\mathbb{Q}[x]$.

Proof. By [10, Theorem 4.6], $\text{Int}_\mathbb{Q}(\mathcal{A}_2)$ is the integral closure of $\text{Int}_\mathbb{Q}(\mathcal{M}_2(\mathbb{Z}))$. Using Proposition 3.1, and recalling that the localization at prime integers preserves the integral closure, we have that:

$$\text{Int}_\mathbb{Q}(\mathcal{A}_2)_p = \text{Int}_\mathbb{Q}(\mathcal{M}_2(\mathbb{Z}))_p = \text{Int}_\mathbb{Q}(\mathcal{M}_2(\mathbb{Z}))_p = \text{Int}_\mathbb{Q}(\mathbb{P}_Z(p)),$$

Finally, using [13, Theorem 13] with $\mathcal{A} = \mathbb{P}_Z(p)$, we have that $\text{Int}_\mathbb{Q}(\mathbb{P}_Z(p))$ is also the integral closure of $\text{Int}_\mathbb{Q}(\mathcal{A}_2,p)$.

Corollary 3.8. The ring $\text{Int}_\mathbb{Q}(\mathbb{P}_Z)$ is not integrally closed.

Proof. If $\text{Int}_\mathbb{Q}(\mathbb{P}_Z)$ is integrally closed, then its localization at an odd prime p, $\text{Int}_\mathbb{Q}(\mathbb{P}_Z(p))$, is integrally closed too. Thus, from Theorem 3.7, $\text{Int}_\mathbb{Q}(\mathbb{P}_Z(p)) = \text{Int}_\mathbb{Q}(\mathcal{A}_2)_p$ and this is Prüfer. Since $\text{Int}_\mathbb{Q}(\mathbb{P}_Z(p)) \cong \text{Int}_\mathbb{Q}(\mathcal{M}_2(\mathbb{Z}(p)))$, it follows that the ring

$$\text{Int}_\mathbb{Q}(B, \mathcal{M}_2(\mathbb{Z}(p))) := \{ f \in \mathbb{Q}[x] \mid f(B) \in \mathcal{M}_2(\mathbb{Z}(p)) \}$$
is an overring of $\text{Int}_Q(M_2(\mathbb{Z}_p))$, for every matrix $B \in M_2(\mathbb{Z}_p)$. Taking $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and arguing as in [10, §4], it can be shown that $\text{Int}_Q(B, M_2(\mathbb{Z}_p))$ is not integrally closed. The claim follows.

4. The ideal $p\, \text{Int}_Q(\mathbb{P}_Z)$

In this section we study in more detail the ideal $p\, \text{Int}_Q(\mathbb{P}_Z)$ generated by a prime number p (not necessarily odd). Our first result can be seen as a refinement of the proof of Theorem 3.5.

Proposition 4.1. Let p be a prime number. Then, every prime ideal of $\text{Int}_Q(\mathbb{P}_Z)$ containing p is maximal.

Proof. We follow the proof of [2, Lemma V.1.9].

Let u_1, \ldots, u_k be a set of residues of $\mathbb{P}_Z/p\mathbb{P}_Z$ (with $k = p^4$), and let P be a prime ideal of $\text{Int}_Q(\mathbb{P}_Z)$ containing p. Take any $a(x) \in \text{Int}_Q(\mathbb{P}_Z)$, and let $a_i(x) := a(x) - u_i$. Let $b(x) := a_1(x) \cdots a_k(x)$: by construction, for every $q \in \mathbb{P}_Z$ there is an i such that $a(q) \equiv u_i \mod p\mathbb{P}_Z$.

Since the a_i have coefficients in the commutative ring Q, we have $b(q) = a_1(q) \cdots a_k(q)$: hence, $b(q) \in p\mathbb{P}_Z$ and so $b(x) \in p\, \text{Int}_Q(\mathbb{P}_Z) \subseteq P$; since P is prime, there must be an i such that $a_i(x) \in P$. However, $a_i(x) \equiv u_i \mod P$, and thus $\text{Int}_Q(\mathbb{P}_Z)/P$ is isomorphic to $\mathbb{P}_Z/p\mathbb{P}_Z \cong \mathbb{P}_{Z_p}$. Hence, P is maximal, as claimed.

Corollary 4.2. Let p be an odd prime integer. Then, every prime ideal of $\text{Int}_Q(\mathbb{P}_{Z(p)})$ containing p is maximal.

Proof. It is enough to use Proposition 4.1 and the correspondence of Theorem 3.3.

Remark 4.3.

(1) The previous two results allow to give an alternative proof of Theorem 3.5. Indeed, if $(0) \subsetneq Q_1 \subsetneq Q_2 \subsetneq Q_3$ is a chain of prime ideals of length 3, then either $Q_1 \cap \mathbb{P} = Q_2 \cap \mathbb{P} = (0)$ or $Q_2 \cap \mathbb{P} = Q_3 \cap \mathbb{P} = p\mathbb{P}$, for some prime number p. The latter case is made impossible by Proposition 4.1 (as Q_2 contains p but is not maximal); on the other hand the former case would imply that two nonzero prime ideals of $\text{Int}_{\mathbb{P}_Q}(\mathbb{P}_Z)$ over (0) are comparable, against Proposition 3.4.

(2) The proof of Proposition 4.1 does not work in the ring $\text{Int}_{\mathbb{P}_Q}(\mathbb{P}_Z)$, since the evaluation of a product of polynomials cannot be done separately for each factor, and thus $b(q) \neq a_1(q) \cdots a_k(q)$ in general. Nevertheless, we conjecture (but we don’t have a proof) that the same property holds also in $\text{Int}_{\mathbb{P}_Q}(\mathbb{P}_Z)$.
A consequence of Proposition 4.1 is that the ideals $p \text{Int}_Q(P_{Z(p)})$ are not prime. We now want to find an explicit description of the polynomials in $\text{Int}_Q(P_{Z(p)})$ and, as a corollary, to find two polynomials outside $p \text{Int}_Q(P_{Z(p)})$ whose product is inside the ideal.

Proposition 4.4. Let R, S be commutative rings and let $\pi : R \to S$ be a homomorphism. Then, the natural map

$$\varphi : P_R \to P_S$$

$$a + b \alpha + c \beta + d \gamma \mapsto \pi(a) + \pi(b) \alpha + \pi(c) \beta + \pi(d) \gamma$$

is a ring homomorphism. Furthermore, if π is surjective then φ is surjective and $\ker \varphi = (\ker \pi)P_R = \ker \pi = \{a + b \alpha + c \beta + d \gamma \mid a, b, c, d \in \ker \pi\}$; in particular, $P_R / \ker \varphi \simeq P_S$.

Proof. Straightforward. □

An important particular case is when $R = \mathbb{Z}$ or $R = \mathbb{Z}_p$ and $S = \mathbb{Z}_p$; in this case, the kernel of π is generated by p, and thus we obtain the well-known isomorphisms $P_{\mathbb{Z}} / pP_{\mathbb{Z}} \simeq P_{\mathbb{Z}_p} / pP_{\mathbb{Z}_p} \simeq \mathbb{Z}_p$.

In particular, the previous proposition shows that polynomial evaluation behaves well with respect to quotients. Given a surjection $\pi : R \to S$ and a polynomial $f(x) = \sum_{t=0}^{n} p_t x^t \in R[x]$, we denote by $\overline{f}(x) = \sum_{t=0}^{n} \pi(p_t) x^t \in S[x]$ the polynomial obtained by reducing the coefficients modulo $\ker \varphi$. Then, for every $q \in P_{\mathbb{Z}}$, we have $\pi(f(q)) = \overline{f}(\pi(q))$.

Proposition 4.5. Let p be a prime integer. Let $f(x) \in \mathbb{Z}[x]$ and $\overline{f}(x) \in \mathbb{Z}_p[x]$ be as above. Given an integer $n > 1$ such that $n = p^\alpha m$ with $p \nmid m$, then $\frac{1}{n} f(x) \in \text{Int}_Q(P_{Z(p)})$ if and only if $f(q) \in p^\alpha P_{Z(p)}$, for all $q \in P_{Z(p)}$. In particular if $\alpha = 1$, $\frac{1}{n} f(x) \in \text{Int}_Q(P_{Z(p)})$ if and only if $\overline{f}(q) = 0$ in $P_{\mathbb{Z}_p}$, for all $q \in P_{\mathbb{Z}_p}$.

Proof. We have that

$$\frac{1}{n} f(x) \in \text{Int}_Q(P_{Z(p)}) \iff \frac{1}{n} f(q) \in P_{Z(p)} \forall q \in P_{Z(p)} \iff f(q) \in nP_{Z(p)} \forall q \in P_{Z(p)}.$$

Since $p \nmid m$, $nP_{Z(p)} = p^\alpha P_{Z(p)}$. □

Lemma 4.6. Let R be a commutative domain. Take $q \in P_R \setminus R$ and let $m_q(x) \in R[x]$ be its minimal polynomial over R. If a polynomial $f(x) \in R[x]$ is such that $f(q) = 0$, then $m_q(x) \mid f(x)$ in $R[x]$.
Proof. Since $m_q(x)$ is monic we can divide $f(x)$ by $m_q(x)$ obtaining

$$f(x) = g(x)m_q(x) + r(x),$$

for some $g(x), r(x) \in R[x]$. In particular $r(x) = ax + b$ is linear as $m_q(x)$ is of degree two. Since $R[x]$ is contained in the center of $\mathbb{P}_R[x]$, we can evaluate the polynomial relation above in q, obtaining $0 = f(q) = g(q) \cdot 0 + aq + b$. Since R is a domain and $q \notin R$, necessarily $a = b = 0$. □

We observe that Lemma 4.6 does not hold if $f(x) \in \mathbb{P}_R[x] \setminus R[x]$. For example, consider $i \in \mathbb{P}_Z$ and $f(x) = x^3 + ix + (i + 1)x + i + 1$. Then $f(i) = 0$ but $f(x) = (x^2 + 1)(x + i) + ix + 1$ and the remainder is nonzero.

Corollary 4.7. With the hypothesis and notation of Proposition 4.5, let p be a prime integer and $n = pm$ with $p \nmid m$. Then $\frac{1}{n}f(x) \in \text{Int}_Q(\mathbb{P}_{Z_{(p)}})$ if and only if $f(x)$ is divided by all the minimal polynomials of the elements of $\mathbb{P}_{Z_{(p)}}$.

Proof. It is an immediate consequence of Proposition 4.5 and Lemma 4.6. □

Using the previous Corollary we can construct a nontrivial element of $\text{Int}_Q(\mathbb{P}_{Z_{(p)}})$.

Example 4.8. The polynomial

$$\Phi_p(x) = \frac{1}{p}(x^p - x)(x^{p^2} - x)$$

belongs to $\text{Int}_Q(\mathbb{P}_{Z_{(p)}})$.

By Proposition 4.5, it is sufficient to show that $f(x) = (x^p - x)(x^{p^2} - x) \in Z[x]$ vanishes over all elements of \mathbb{P}_{Z_p}. Observe that every monic and irreducible polynomial of $Z_p[x]$ of degree one or two is a factor of $f(x)$. In particular, if $g(x)$ is a linear polynomial then $g(x)^2$ divides $f(x)$, since $g(x)$ divides both $x^p - x$ and $x^{p^2} - x$. By Corollary 4.7, this also means that the minimal polynomial of every split-quaternion of \mathbb{P}_{Z_p} is a factor of $f(x)$.

In particular we can show that every monic and quadratic polynomial of $Z_p[x]$ is the minimal polynomial for some element of \mathbb{P}_{Z_p}. The proof is mutatis mutandis the same as the proof of [14, Lemma 3.5]. This means that the polynomial $\Phi_p(x)$ does not contain any redundant factor.

Proposition 4.9. With the above notation we have the following proper inclusions:

$$Z_{(p)}[x] \subsetneq \text{Int}_Q(\mathbb{P}_{Z_{(p)}}) \subsetneq \text{Int}(Z_{(p)}).$$
Let us consider the polynomials:

\[
\begin{align*}
\Phi_p(x) &\quad \text{given in Example 4.8 belongs to } \text{Int}_Q(\mathbb{P}_{\mathbb{Z}(p)}) \\
\text{Example 4.8} &\quad \text{The minimal polynomial } \Phi_p(x) \text{ is not divisible by any quadratic polynomial over } \mathbb{Z}_p, \text{ and thus by Corollary 4.7 } f(i) \notin \mathbb{P}_{\mathbb{Z}(p)} \text{ by Corollary 4.7. It follows that } f(x) \notin \text{Int}_Q(\mathbb{P}_{\mathbb{Z}(p)}). \\
\text{The fact that the two containments of the previous proposition are } &\quad \text{strict also follows from } [11, \text{Theorem 2.12}] \text{ (the first one) and } [12, \text{Theorem 2.11}] \text{ (the second one).}
\end{align*}
\]

Proposition 4.10. The ideal \(p \text{Int}_Q(\mathbb{P}_{\mathbb{Z}(p)}) \) is not a prime ideal of \(\text{Int}_Q(\mathbb{P}_{\mathbb{Z}(p)}) \).

Proof. Let us consider the polynomials:

\[
\begin{align*}
f(x) &= (x^p - x)^2 \in \mathbb{Z}[x], \\
g(x) &= \frac{1}{p} (x^p - x)^2 \in \mathbb{Q}[x], \\
F(x) &= f(x)g(x) = \frac{1}{p} (x^p - x)^2(x^p - x)^2 \in \mathbb{Q}[x].
\end{align*}
\]

These three polynomials are elements of \(\text{Int}_Q(\mathbb{P}_{\mathbb{Z}(p)}) \). Indeed, for \(f(x) \) it follows from the inclusion \(\mathbb{Z}[x] \subseteq \text{Int}_Q(\mathbb{P}_{\mathbb{Z}(p)}) \). For \(F(x) \) and \(g(x) \) observe that they are equal to \(\Phi_p(x) \) (Example 4.8) multiplied by a polynomial with integer coefficients.

We claim that \(F(x) \in p \text{Int}_Q(\mathbb{P}_{\mathbb{Z}(p)}) \) while \(f(x) \) and \(g(x) \) do not belong to this ideal.

Indeed, \(\frac{1}{p} F(x) = (\Phi_p(x))^2 \in \text{Int}_Q(\mathbb{P}_{\mathbb{Z}(p)}) \) and thus \(F(x) \in p \text{Int}_Q(\mathbb{P}_{\mathbb{Z}(p)}) \).

As regards \(f(x) \), we have that \(\mathcal{F}(x) \) is not divisible by any quadratic irreducible polynomial over \(\mathbb{Z}_p \), and thus by Corollary 4.7 \(\frac{1}{p} f(x) \notin \text{Int}_Q(\mathbb{P}_{\mathbb{Z}(p)}) \).

For \(g(x) \), consider \(\frac{1}{p} g(x) = \frac{1}{p^2} (x^p - x)^2 \). If \(p = 2 \) then \(\frac{1}{p} g(i) = -\frac{1}{2} \notin \mathbb{P}_{\mathbb{Z}(2)} \). If \(p \) is odd, then we set \(q := i + (p - 1)k \). We have that \(q^2 = p^2 - 2p \), and if we raise \(q \) to an even power greater than 2, we obtain an integer divisible by \(p^2 \). Since \(\frac{1}{p} g(x) \) is a central polynomial,
we can evaluate it in \(q \) using its factorization. Thus, we have

\[
\frac{1}{p} g(q) = \frac{(q^{p^2} - q)^2}{p^2} = \frac{q^{2p^2} + q^2 - 2q^{p^2 + 1}}{p^2} = m + \frac{p - 2}{p} \notin \mathbb{P}_{\mathbb{Z}(p)}
\]

for some \(m \in \mathbb{Z} \).

Since \(F(x) = f(x)g(x) \), we can conclude that \(p \text{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}(p)}) \) is not a prime ideal of \(\text{Int}_{\mathbb{Q}}(\mathbb{P}_{\mathbb{Z}(p)}) \). □

5. Acknowledgements

We would like to thank the referee for his/her useful suggestions.

References

Dipartimento di Scienze Statistiche, Sapienza Università di Roma, Istituto Comprensivo "G. Bagnera", Roma - Italy
E-mail address: antonio.cigliola@uniroma1.it

Dipartimento di Matematica "Tullio Levi Civita", Università degli Studi di Padova, Padova - Italy
E-mail address: spirito@math.unipd.it

Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Roma - Italy
E-mail address: tfrance@mat.uniroma3.it