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Abstract
In the analysis of cumulative counts of SARS-CoV-2 infections, such as deaths or
cases, commonparametricmodels based on log-logistic growth curves adaptwell
to describe a single wave at a time. Unfortunately, in Italy, as well as all over the
globe, fromFebruary 2020 toMarch 2021more than onewave has been observed.
In this paper, we propose a method to fit more than one wave in the same
model. In particular, we discuss an approach based on a change-point model in
a pseudo-likelihood framework that takes into account some model misspeci-
fication issues, such as those concerning the assumption of Poisson marginals
and those relating to overdispersion and autocorrelation. An application to data
collected in Italy is discussed.
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1 INTRODUCTION

COVID-19 syndrome soon turned into a global-scale crisis. Its worldwide large diffusion is due to the high rates of virus
transmission and the appearance of several variants of the original SARS-CoV-2 coronavirus. After a first epidemic out-
break between March and April 2020, Italy has brought a renewed spread of COVID-19 during the summer 2020 and in
the following months, as reported by other countries around the world (Xu & Li, 2020).
The larger mobility combined with a relaxed easing of the previously imposed restrictive measures to allow a return

to normality and to support the economy, made numbers of new cases of infection, hospitalizations and deaths grow
again, also in those countries where the epidemic stood on very low numbers for several consecutive weeks, such as in
Italy (Girardi et al., 2020b). In Italy, the growth of the contagion has been massive starting from autumn and assessed on
extremely large values during all winter. The number of daily cases peaked in November 13, whereas the daily hospital-
izations and deaths reached the maximum value 10 and 20 days later, respectively. In order to mitigate the diffusion of the
pandemic, the Italian Government introduced progressive and differentiate strategies, such as targeted lockdowns and
other severe actions, as school closure and a prolonged stop to catering and unessential goods selling activities, in addition
to the strict restrictions aimed to regulate social behaviors, transportation, sport events, and all those circumstances
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characterized by a high risk of gathering. Nowadays, we are still running after the contagion. All containment measures
aimed to manage the pandemic turned out to be effective only to a limited extent and often exceedingly costly for their
economic and social consequences. The beginning of the vaccine campaign seems to be the only reliable remedy to
reduce the spread of the contagion and the burden of severe infections, hospitalizations, and deaths.
The availability of public data about the COVID-19 outbreak has soon represented a crucial modeling challenge for

statisticians all over the world, in order to provide meaningful descriptions and predictions. In particular, there is a
widespread interest in modeling the past and current wave of infections or deaths and nowcasting possible future waves.
A simple way to model a single epidemic wave at a time is to resort to common parametric models, often based on log-
logistic growth curves (see among others, Cabras, 2020; Di Loro et al., 2020; Girardi et al., 2020a). Other nowcasting
strategies have been discussed in Farcomeni et al. (2021), who proposed an ensemble approach to predict intensive care
admissions, Schneble et al. (2021), who developed amodel to fit and predictmortality rates related to COVID-19 infections,
Kaxiras and Neofotistos (2020) who described a multiple wave forced-SIR mode, Günther et al. (2021), who suggested a
hierarchical Bayesian model aimed to account for delays between disease onset and case reporting, Kim et al. (2020) who
presented an overdispersed polynomial Poisson regression model (also with covariates) and discussed several approaches
to obtain reliable prediction intervals.
Here, we propose a change-point growth model to fit cumulative incidence data, such as infections and deaths, that is

able to catch subsequent waves of the pandemic. More precisely, we discuss an approach based on a change-point model
in a pseudo-likelihood framework, that allows us to account for model misspecification issues, both with respect to the
assumptions regardingmarginal distributions and independence. Themodel is meant to describe themain features of the
observed trends in the data and, in particular, to give evidence about the time when different waves were more likely to
be originated. The latter estimate could aid the investigation of the main causes leading to different waves.
The rest of the paper is organized as follows. The data are described in Section 2. Section 3 introduces our model, while

Section 4 discusses some inferential issues. An application to Italian data is shown in Section 5. Section 6 provides some
conclusions and possible extensions.

2 DATA

ItalianCOVID-19 epidemic data are available since February 24, 2020 fromaGitHub repository daily updated by theDipar-
timento della Protezione Civile.1 The data give information about a large number of variables, such as the cumulative and
daily counts of laboratory-confirmed infections, the number of swabs, the daily number of hospitalizations and persons
hospitalized in intensive care units, the cumulative deaths’ toll, and the number of hospitalizations. Data are available
both at the national and regional level, so allowing comparisons across the country. When looking at the time series of
both incidence (cases and deaths) and prevalence (hospitalization) data, we can observe some common patterns. Let us
focus on the cumulative number of reported deaths due to COVID-19. The data are displayed in the left panel of Figure 1
from February 24, 2020 to March 10, 2021. Their behavior can be depicted as a sequence of a couple of S-shaped curves,
each of them representing one wave of fatalities due to COVID-19: the second wave starts after that the first wave has
reached a sort of plateau. Moreover, in each wave, we first observe a quick exponential increase in the counts, but then
their growth decelerates and becomes logistic from some point on, so moving toward an upper bound. The picture of
subsequent waves appears more evident when looking at daily counts, as displayed in the right panel of Figure 1. The first
exponential growth determines the first raise, then the logistic increase corresponds to the decrease in daily incidence
after the peak.

3 METHODS

Here, we assume a parametric model that allows to fit the subsequent waves simultaneously but also to estimate the
time in which is more likely that the transition from the first to the second wave occurred. We believe this is a crucial
aspect in the comprehension of the evolution of the pandemic, to evaluate the effectiveness of past policies and to design
new interventions.

1 https://github.com/pcm-dpc/COVID-19

https://github.com/pcm-dpc/COVID-19
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F IGURE 1 Time series of the number of cumulative (left) and daily (right) deaths in Italy from February 24, 2020 to March 10, 2021

3.1 Pseudo-likelihood modeling of one wave of cumulative counts

The behavior of cumulative incidence data can bemodeled by thewell-known five parameters log-logistic growth function
(Ritz et al., 2015), given by

𝜇(𝑡; 𝜃) = 𝑐 +
𝑑 − 𝑐[

1 +
(
𝑡

𝑒

)𝑏]𝑓 , 𝜃 = (𝑏, 𝑐, 𝑑, 𝑒, 𝑓), 𝑏 < 0, 𝑐, 𝑑, 𝑒, 𝑓 > 0, (1)

which is expressed as a function of time 𝑡. The presence of five parameters in (1) allows a great modeling flexibility.
The parameters 𝑏, 𝑒, and 𝑓 determine the shape of the growth function, 𝑐 returns the lower asymptote, in the sense that
𝑐 = lim

𝑡→0
𝜇(𝑡; 𝜃), and 𝑑, on the opposite, represents the upper asymptote, that is a direct measure of the final size of the

pandemic, with 𝑑 = lim
𝑡→∞

𝜇(𝑡; 𝜃). When 𝑓 = 1, the model is such that 𝜇(𝑒; 𝜃) = (𝑑 + 𝑐) − 𝜇(𝑒; 𝜃) = (𝑑 + 𝑐)∕2 and the log-
logistic model is said to be symmetric. The first derivative 𝜇′(𝑡; 𝜃) = 𝜕𝜇(𝑡; 𝜃)∕𝜕𝑡 describes the behavior of the growth rate
over time and allows to model the pattern of daily incidence data. Actually, according to a first-order Taylor expansion,
we have that

𝜇(𝑡; 𝜃) − 𝜇(𝑡0; 𝜃) = 𝜇′(𝑡0; 𝜃)(𝑡 − 𝑡0) + 𝑜(|𝑡 − 𝑡0|). (2)

From (2), after setting 𝑡0 = 𝑡 − 1, it follows that the approximation 𝜇(𝑡; 𝜃) − 𝜇(𝑡 − 1; 𝜃) ≈ 𝜇′(𝑡 − 1; 𝜃) holds.

3.2 Misspecification I: Independence

Let 𝑌𝑐
𝑡 be the random variable that describes the cumulative number of counts data, with 𝑡 = 1, … , 𝑇. Let 𝑦𝑐 =

(𝑦𝑐1, 𝑦
𝑐
2, … , 𝑦𝑐𝑇) denote the observed series of cumulative counts. The first assumption of our model concerns the speci-

fication of the marginal model for 𝑌𝑐
𝑡 . Here, it is assumed that 𝑌

𝑐
𝑡 obeys a Poisson distribution with expected value 𝜇(𝑡; 𝜃)

given by the log-logistic growth curve (1).
Since the nature of the data is such that 𝑦𝑐𝑡+1 ≥ 𝑦𝑐𝑡 , ∀𝑡, the assumption of independence is questionable. In this respect, in

the following, we pursue an approach based on a suitable composite log-likelihood function, based onmarginal probability
or density functions (Varin et al., 2011). In particular, we consider the simplest composite marginal likelihood, that is the
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pseudo-log-likelihood constructed under the working independence assumption, that is,

𝓁𝐼(𝜃) =

𝑇∑
𝑡=1

log 𝑝(𝑦𝑐𝑡 ; 𝜃), (3)

sometimes referred to in the literature as the independence log-likelihood (Chandler & Bate, 2007). The independence
likelihood permits inference only on marginal parameters. A related approach has been also adopted in Girardi et al.
(2020a), while the reader is pointed to Di Loro et al. (2020) for a likelihood-based nowcasting strategy well suited for
count incidence data.
The validity of inference about 𝜃 using the independence log-likelihood (3) can be justified invoking the general theory

of unbiasedM-estimating functions (see Varin et al., 2011). Actually,𝓁𝐼(𝜃) shares the properties of a log-likelihood function
stemming from a misspecified model. In particular, the maximum composite likelihood estimate (MCLE)

�̂�𝐼 = argmax𝜃𝓁𝐼(𝜃) (4)

can be also defined as the root of the composite score equation

𝑢𝐼(𝜃) =

𝑇∑
𝑡=1

𝑢𝐼(𝑦
𝑐
𝑡 ; 𝜃) =

𝜕𝓁𝐼(𝜃)

𝜕𝜃
= 0. (5)

The corresponding estimator is asymptotically normally distributed with mean 𝜃 and covariance matrix

𝑉(𝜃) = 𝐺(𝜃)−1 = 𝐾(𝜃)−1𝐽(𝜃)𝐾(𝜃)−1, (6)

where 𝐺(𝜃) is the Godambe information matrix, with

𝐾(𝜃) = E(−𝜕𝑢𝐼(𝜃)∕𝜕𝜃
⊤), 𝐽(𝜃) = var(𝑢𝐼(𝜃)) = E(𝑢𝐼(𝜃)𝑢𝐼(𝜃)

⊤). (7)

Composite likelihood versions ofWald, score and suitably adjusted likelihood ratio statistics can be obtained that all share
the classical asymptotic chi-squared distribution (see Pace et al., 2011, and references therein). Standard error evaluation
requires consistent estimation of the matrices 𝐽(𝜃) and 𝐾(𝜃): for large 𝑇, they may be estimated by

𝐽 =
1

𝑇

𝑇∑
𝑡=1

𝑢𝐼(𝑦
𝑐
𝑡 ; �̂�

𝐼)𝑢𝐼(𝑦
𝑐
𝑡 ; �̂�

𝐼)
⊤
, �̂� =

1

𝑇

𝑇∑
𝑡=1

𝜕𝑢𝐼(𝑦
𝑐
𝑡 ; 𝜃)

𝜕𝜃⊤

|||||𝜃=�̂�𝐼 . (8)

Moreover, when it is possible to simulate from the model, the matrices 𝐽(𝜃) and 𝐾(𝜃) can be estimated through Monte
Carlo samples (Cattelan and Sartori, 2016; Varin et al., 2011).

3.3 Misspecification II: Overdispersion and autocorrelation

The classical sandwich estimator of 𝑉(𝜃)may not be able to catch some important aspects in the data and lead to under-
estimate uncertainty. First, the assumption of Poisson marginals may lead to neglect possible overdispersion in the data.
Furthermore, the nonstationarity of the series of cumulative counts data suggests some adjustments to take into account
autocorrelation, but also some type of heteroskedasticity that is not completely caught by the Poisson assumption.
In order to deal with these two issues, we propose a couple of possible adjustments. The first correction term comes

from the general theory of regression models for counts data (Agresti, 2015). By paralleling the approach based on quasi-
likelihood inference, one could take into account overdispersion by inflating the sandwich variance–covariance matrix
𝑉(𝜃) by a dispersion parameter estimate, obtained as

�̂� =
1

𝑇 − 𝑝

𝑇∑
𝑡=1

[
𝑦𝑐𝑡 − 𝜇(𝑡; �̂�𝐼)

]2
𝜇(𝑡; �̂�𝐼)

, (9)
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where 𝑝 = dim(𝜃). Then, the estimated variance–covariance matrix is

ˆvar𝑎(�̂�𝐼) = �̂� 𝑉(�̂�𝐼). (10)

The second robust covariance estimation consists in the evaluation of the Newey–West heteroskedasticity and autocor-
relation consistent (HAC) sandwich estimate of the variance–covariancematrix (Newey &West, 1987; Zeileis, 2004, 2006).
This procedure allows us to take into account the unknown autocorrelation and heteroskedasticity patterns of the cumu-
lative counts at hand (Dorward et al., 2021; Hardin, 1998). In this case, the fitted variance–covariance matrix is denoted as

ˆvar𝑏(�̂�𝐼) = 𝑉𝐻𝐴𝐶(�̂�
𝐼). (11)

3.4 Change-point growth model

Let us consider the situation with two waves. Assuming that each wave can be modeled according to (1), the expected
value of 𝑌𝑐

𝑡 is given by

𝜇(𝑡; 𝜏) =

{
𝜇(𝑡; 𝜃1), 𝑡 ≤ 𝑡0,

𝜇(𝑡 − 𝑡0; 𝜃2), 𝑡 > 𝑡0,
(12)

where 𝜏 = (𝜉, 𝑡0), with 𝜉 = (𝜃1, 𝜃2). The function (12) is characterized by one change point at an unknown time 𝑡0 where
themean switches from 𝜇(𝑡; 𝜃1) to 𝜇(𝑡; 𝜃2). Moreover, in the second branch the lower asymptote is fixed as 𝑐2 = 𝜇(𝑡0; 𝜃1) so
that 𝜇(𝑡; 𝜃2) ≥ 𝜇(𝑡; 𝜃1) ∀𝑡, and equality holds at 𝑡 = 𝑡0. Therefore, a fourparameter log-logistic model is fitted in the second
wave, with 𝜃2 = (𝑏2, 𝑑2, 𝑒2, 𝑓2), while 𝜃1 = (𝑏1, 𝑐1, 𝑑1, 𝑒1, 𝑓1).
The independence log-likelihood function for 𝜏 is

𝓁𝐼(𝜏) =

𝑇∑
𝑡=1

[
𝑧𝑡 log 𝑝(𝑦

𝑐
𝑡 ; 𝜇1(𝑡; 𝜃1)) + (1 − 𝑧𝑡) log 𝑝(𝑦

𝑐
𝑡 ; 𝜇2(𝑡 − 𝑡0; 𝜃2))

]
, (13)

where 𝑧𝑡 = 1 for 𝑡 ≤ 𝑡0 and zero otherwise. The change point can be estimated by a composite log-likelihood profile
approach as

𝑡𝐼0 = argmax𝑡0
𝓁𝐼𝑝(𝑡0), (14)

where 𝓁𝐼𝑝(𝑡0) = 𝓁𝐼(�̂�
𝐼
𝑡0
, 𝑡0) and �̂�𝐼𝑡0 is the constrained MCLE of the branches parameters for fixed change point. Then, the

unconstrained MCLE of 𝜉 is obtained as �̂�𝐼
𝑡0
.

4 INFERENTIAL ISSUES

Standard errors for the components of �̂�𝐼
𝑗
and for the fitted values𝜇𝑗(𝑡, �̂�𝐼𝑗), 𝑗 = 1, 2, can be evaluated conditionally on 𝑡𝐼0 and

using the asymptotic distribution of �̂�𝐼
𝑗
, that is a normal distribution centered at the MCLE �̂�𝑗 with variance–covariance

matrix ˆvarℎ(�̂�
𝐼
𝑗
), where ˆvar𝑎(�̂�

𝐼
𝑗
) = �̂�𝑗𝑉(�̂�

𝐼
𝑗
) for ℎ = 𝑎 and ˆvar𝑏(�̂�

𝐼
𝑗
) = 𝑉𝐻𝐴𝐶(�̂�

𝐼
𝑗
) for ℎ = 𝑏, 𝑗 = 1, 2.

Wald-type asymptotic confidence intervals (CIs) for themean function 𝜇𝑗(𝑡; 𝜃𝑗) and its first derivative 𝜇′𝑗(𝑡; 𝜃𝑗), 𝑗 = 1, 2,
can be obtained using the delta method. For instance,

varℎ

[
𝜇(𝑡; �̂�𝑗)

]
=

(
𝜕𝜇𝑗(𝑡; 𝜃𝑗)

𝜕𝜃⊤

)⊤

varℎ(�̂�
𝐼
𝑗
)

(
𝜕𝜇𝑗(𝑡; 𝜃𝑗)

𝜕𝜃⊤

)
, ℎ = 𝑎, 𝑏. (15)
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CIs around 𝑡𝐼0 can be evaluated according to the inverse function

𝜇−1(𝜇; 𝜃) = 𝑒

[(
𝑑 − 𝑐

𝜇 − 𝑐

)1∕𝑓

− 1

]1∕𝑏
(16)

at 𝜇 = 𝜇(𝑡𝐼0; �̂�
𝐼
1) and the delta method, as well.

In addition to CIs for the mean function, prediction intervals are fairly derived through a parametric double bootstrap
procedure (Di Loro et al., 2020; Efron, 2004, 2012). This strategy allows us to take into account two sources of uncertainty:
one stemming from parameter estimation and the other from the distribution of the data. In the double bootstrap proce-
dure, first parameters values are drawn from the asymptotic distribution of �̂�𝐼 = (�̂�𝐼1, �̂�

𝐼
2), and then cumulative data are

simulated according to a Poisson–Gamma mixture. This strategy obeys the assumptions about marginals and allows us
to take into account overdispersion. It is worth noting that bootstrap is performed conditionally on the estimated change
point 𝑡𝐼0. Thismeans that prediction intervals are obtained separately for each branch of themodel and uncertainty around
𝑡𝐼0 is not taken into account. This strategy is coherent with the estimation technique described in Subsection 3.4. In details,
the procedure can be summarized as follows:

1. Generate 𝐵 realizations �̂�𝐼1, … , �̂�𝐼𝐵 from the asymptotic distribution

N8

(
�̂�𝐼 ,

ˆ
varℎ(�̂�𝐼)

)
, (17)

where ˆ
varℎ(�̂�𝐼) = ( ˆvarℎ(�̂�

𝐼
1),

ˆvarℎ(�̂�
𝐼
2)) is block diagonal, for ℎ = 𝑎, 𝑏. The matrix is block diagonal since parameters in

each branch, accordingly to the independence log-likelihood (13) for 𝜏, have been estimated independently from each
other, conditionally on the fitted change point;

2. Simulate 𝐵 series of cumulative counts 𝑦𝑐 = (𝑦𝑐1, 𝑦
𝑐
2, … , 𝑦𝑐𝑇) from a Poisson–Gamma mixture;

3. Prediction intervals are obtained computing pointwise percentiles.

In Step 2, cumulative counts are simulated from a Poisson–Gamma mixture with linear variance function, consistently
with the adjustment described in Subsection 2.2, in order to account for overdispersion in the data. The procedure is
structured as follows:

(a) Simulate𝑚𝑡 ∼ Gamma(�̂�𝑡, 𝜈𝑡), with expected value

�̂�𝑡 =

{
𝜇(𝑡; �̂�𝐼1), 𝑡 ≤ 𝑡𝐼0

𝜇(𝑡 − 𝑡0; �̂�
𝐼
2), 𝑡 > 𝑡𝐼0

(18)

and shape parameter

𝜈𝑡 =

{
𝜆1𝜇(𝑡; �̂�

𝐼
1), 𝑡 ≤ 𝑡𝐼0

𝜆2𝜇(𝑡 − 𝑡0; �̂�
𝐼
2), 𝑡 > 𝑡𝐼0.

(19)

(b) Simulate 𝑌𝑐
𝑡 |𝑚𝑡 ∼ Pois(𝑚𝑡).

The values for (𝜆1, 𝜆2) can be obtained according to

var(𝑌𝑐
𝑡 ) = var𝑚𝑡

[E𝑌𝑐𝑡 (𝑌
𝑐
𝑡 |𝑚𝑡)] + E𝑚𝑡

[var𝑌𝑐𝑡 (𝑌
𝑐
𝑡 |𝑚𝑡)]

=
�̂�𝑗

𝜆𝑗
+ �̂�𝑡 =

(
1 + 𝜆𝑗

𝜆𝑗

)
�̂�𝑡 = �̂�𝑗�̂�𝑡 (20)

with 𝑗 = 1 for 𝑡 = 1, 2, … , 𝑡0 and 𝑗 = 2 for 𝑡 = 𝑡𝐼0 + 1,… , 𝑇. We get 𝜆𝑗 = (�̂�𝑗 − 1)−1.
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F IGURE 2 Selection of 𝑡0. The plain black circle gives the fitted change point

A similar approach can be used to evaluate prediction intervals for daily incidence counts 𝑦𝑑𝑡 . To this end, we further
assume the daily counts also stem from a (overdispersed) Poisson distribution with expected value �̂�𝑑𝑡 = �̂�𝑡 − �̂�𝑡−1 and a
variance inflated by the parameter 𝜙𝑗 , with 𝑗 = 1 for 𝑡 = 1, … , 𝑡𝐼0 and 𝑗 = 2 for 𝑡 = 𝑡𝐼0 + 1,… , 𝑇. Then, overdispersed daily
incidence counts can be generated from a Poisson–Gamma mixture as follows:

(a) simulate𝑚𝑑
𝑡 ∼ Gamma(�̂�𝑑𝑡 , 𝜈

𝑑
𝑡 )

(b) simulate 𝑌𝑑
𝑡 |𝑚𝑑

𝑡 ∼ Pois(𝑚𝑑
𝑡 ),

with 𝜈𝑑𝑡 = �̂�𝑑𝑡 ∕(�̂�𝑗 − 1) and 𝜙𝑗 is estimated from the cumulative data. Actually, here we assume that var(𝑌𝑑
𝑡 ) = 𝜙𝑗𝜇

𝑑
𝑡 and

var(𝑌𝑡) = var(
∑𝑡

𝑘=1
𝑌𝑑
𝑡 ) = 𝜙𝑗𝜇𝑡, and thus the dispersion parameter is the same. In view of this, we suggest to use the esti-

mate of 𝜙𝑗 evaluated over the cumulative data, since we fit the model over cumulative and not daily counts. Furthermore,
daily data exhibit a severe autocorrelation that does not allow us to obtain a reliable estimate of the dispersion parameter.

4.1 Computational details

The analyses have been carried out using the R software environment (R Core Team, 2020). The independence log-
likelihood function in (3) has been optimized according to the function drm available from package drc. The sandwich
estimator has been evaluated with the function sandwich, whereas the sandwich estimator HAC can be obtained with
the command vcovHAC, both available from the package sandwich. Wald-type CIs around the mean function, its first
derivative, and its inverse function based on the delta method can be evaluated on the basis of the function nlConfint
from package nlWaldTest.

5 APPLICATION: ITALIAN DEATH COUNTS

In this section, we consider the cumulative death counts collected from February 24, 2020, until Mach 10, 2021. As previ-
ously stated, in this period we have observed two epidemic waves, characterizing the trajectories of infections, hospital-
izations, and deaths.
The analysis aims to estimate the change point and to model the shape of the two waves for Italy, taking into account

model misspecifications. Here, in order to avoid unpleasant optimization convergence issues, we set 𝑐1 = 0 in 𝜇(𝑡; 𝜃1).
This choice is reasonable in our study, since we assume there were not any COVID-19 death before the date of the first
reported cases.
The composite log-likelihood profile criterion in (14) is displayed in Figure 2. The change-point growthmodel for cumu-

lative death counts locates the structural break 𝑡𝐼0 on July 24, 2020 (see last line in Table 1). There is evidence that the second
wave of deaths has started well before the end of summer 2020. This result confirms that the number of infections growth
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TABLE 1 Parameter estimates with 99% confidence intervals based on the overdispersed-inflated sandwich and the HAC sandwich
covariance matrix estimate

MCLE Overdispersed HAC
𝜃1 𝑏1 −3.18 −3.37 to −3.00 −3.53 to −2.84

𝑑1 35,892.07 35,628.85–36,155.30 35,351.91–36,432.24
𝑒1 40.20 37.72–42.68 36.57–43.82
𝑓1 1.33 1.16–1.50 1.05–1.60

𝜃2 𝑏2 −8.61 −9.97 to −7.26 −9.63 to −7.60
𝑑2 106,591.97 100,717.85–112,466.09 105,019.25–108,164.69
𝑒2 257.46 246.05–268.86 230.59–284.33
𝑓2 3.39 2.45–4.33 1.10–5.68
𝑡0 07/24 07/14–08/03 07/03–08/14

Note. The entries in the last row are dates in the form month/day.
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F IGURE 3 Left: cumulative deaths. Right: daily deaths. Fitted model with 0.99-level confidence and prediction intervals based on the
HAC sandwich covariance matrix estimate. The dotted vertical lines give the fitted change point with the corresponding 0.99-level confidence
interval

again during the first half of summer 2020. The entries in Table 1 give parameters estimates (�̂�𝐼1, �̂�
𝐼
2), with 99% CIs based

on both ˆvar𝑎(�̂�
𝐼
𝑗
) and ˆvar𝑏(�̂�

𝐼
𝑗
), 𝑗 = 1, 2. On the basis of the results, it can be noted that the fitted model estimates a total

amount of deaths in the second wave about three times the amount in the first wave. The observed cumulative number
of deaths on March 10 was 100, 842. Then, according to the fitted model there are about 7000 COVID-19 deaths that are
still to happen, assuming that a third wave would have not occurred. Unfortunately, a third wave affected Italy and, at the
time of writing, the deaths toll is about 120,000.
The fitted curve (12) is given in the left panel of Figure 3, together with pointwise 0.99-level Wald-type asymptotic CIs

based on theHAC sandwich covariancematrix estimate and double bootstrap prediction intervals. Prediction intervals are
based on 10,000 simulated samples. The right panel of Figure 3 shows the daily counts alongwith the first derivative of each
branch of (12) and the corresponding confidence and prediction intervals. The figures stemming from the employ of the
overdispersed-inflated sandwich estimate ˆvar𝑎(�̂�𝐼) were very similar and are not displayed here. We report a satisfactory
coverage accuracy equal to 99% for cumulative counts (99% also using the overdispersed-inflated sandwich estimate of
the covariance matrix) and about 90% for daily counts (87% with the alternative estimate of the covariance matrix).
The benefits of the proposed misspecified modeling approach are evident when comparing the results about empiri-

cal coverages stated above with those stemming from methods that do not account for: (i) the independence adjustment
made by the composite likelihood-based sandwich estimate of the variance–covariancematrix; (ii) overdispersion or auto-
correlation. The entries in Table 2 give empirical coverages of 99% double bootstrap prediction intervals based on the
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TABLE 2 Empirical coverages of nominal 99% double bootstrap prediction intervals based on the overdispersed-inflated sandwich, the
HAC sandwich, the classical MLE, and the noninflated sandwich, over cumulative counts

Cumulative Daily
MLE 0.661 0.446
Sandwich 0.696 0.459
Overdispersed 0.990 0.874
HAC 0.990 0.900

F IGURE 4 Left: cumulative weekly deaths. Right: weekly deaths. Fitted model with 0.99-level confidence and prediction intervals based
on the HAC sandwich covariance matrix estimate. The dotted vertical lines give the fitted change point with the corresponding 0.99-level
confidence interval

overdispersed-inflated sandwich, the HAC sandwich, the classical maximum likelihood estimate (MLE), and the nonin-
flated sandwich, over cumulative counts. The classical MLE stems from the genuine likelihood function and violates both
misspecification adjustments, while the noninflated sandwich does not account for overdispersion or autocorrelation. The
gain of the proposed techniques is overwhelming.
In order to validate the findings of our analysis, we also considered aggregated data at weekly level. This strategy allows

to mitigate the effect of several measurement issues in the data collection process that has given place to wide daily oscil-
lations and an evident weekly seasonality (Bartolucci & Farcomeni, 2021). Starting from February 24, we now consider 54
consecutive weeks. The results are in strong agreement with those discussed above and are displayed in Figure 4. A 99%CI
around the week 𝑡𝐼0 goes from 08–14/06 to 20–26/07, giving again evidence supporting a second epidemic wave already
during the first half of July. Moreover, the weekly estimate (with corresponding CIs) of the parameter 𝑑2 is close to that
given in Table 1.

5.1 Model validation

Since the choice of a log-logistic curve may result in a robust but rigid model, in particular for future prediction, we
considered two types of validation analysis. In order to test the ability of themodel to predict the evolution of the epidemic,
the first analysis was built to verify the error size of a short to medium window forecast. For this purpose, we calculated
the out-of-sample root mean squared prediction error (RMSPE) for:

∙ a model fitted on different time windows 𝑡 = 1, … , 𝑡∗, where 𝑡∗ goes from April 13, 2020 up to March 10, 2021;
∙ an increasing forecast horizon 𝐾 ∈ 1, 3, 7, 14 days.
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F IGURE 5 Black: fitted cumulative deaths. Gray: % NRMSPE. Results presented for 1, 3, 7, and 14 days step-ahead forecast

For each subset 𝑡 = 1, … , 𝑡∗, we estimated a log-logistic model �̂�(𝑡; �̂�𝑡∗ ) and, for each value of 𝐾, we calculated the RMSPE
as

𝑅𝑀𝑆𝑃𝐸(𝑡∗, 𝐾) =

√√√√ 1

𝐾

𝐾∑
𝑖=1

(
�̂�(𝑡∗ + 𝑖; �̂�𝑡∗ ) − 𝑦𝑐

𝑡∗+𝑖

)2
. (21)

Moreover, in order to relate this quantity with the process average, we calculated its normalized version (Normalized
RMSPE) as

𝑁𝑅𝑀𝑆𝑃𝐸(𝑡∗, 𝐾) =
𝑅𝑀𝑆𝑃𝐸(𝑡∗, 𝐾)

𝜇(𝑡∗; �̂�𝑡∗ )
, (22)

that can be expressed as pure number or its relative percentage. The % NRMSPEs for each step-ahead are presented in
Figure 5. As we can observe, the % NRMSPEwas relatively high at the beginning of the considered period, while relatively
low values, below the 5% in both 1-day step ahead and 3-days steps ahead predictions, were reported. In the 7-day and
even more in the 14-day steps ahead case, a generalized increase of the % NRMSPE was observed for the whole period,
but the values were still below the 5% with the exception of the 14 days steps ahead, in which the NRMSPE percentage
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F IGURE 6 Fitted (line) and observed (points) cumulative
deaths and 95% and 99% confidence interval

F IGURE 7 Fitted upper asymptote in the first wave (left), in the second (middle), and overall (right) at the regional level. Note that data
from the P.A. of Trento and P.A. of Bolzano have been merged

reached values equal to 12% and 8.2% at the beginning of the considered window and of the second wave, respectively. To
assess the coverage of our confidence band, we performed a second analysis in which we calculated the coverage rate in
1-day-ahead prediction. In order to stress the model, we considered the last 100 days (from November 11, 2020 to March
10, 2021) calculating for each estimated model 𝜇(𝑡; �̂�𝑡∗ ), with 𝑡 = 1, … , (𝑇 − 𝑡∗) and 𝑡∗ = 1,… , 100. We performed a 1-day
step ahead prediction estimating the relative 95% and 99%CI via double bootstrap and checking if the observed value falls
in the interval. Figure 6 reported the two confidence bands, the fitted and observed deaths. Results were discrete, that is,
the coverage in 1-step ahead calculated in the last 100 days prediction reported a 52% in the 95%CI and 78% in the 99%CI.
In addition, looking to the estimated trajectory, the fitted curves seems to underestimate the number of cumulative death
especially in the second part of the considered temporal window.

5.2 A study across Italian regions

The spread of the contagion across Italy showed some heterogeneity at the regional level. Actually, the COVID-19 infection
emerged in February 2020 in the two regions of Lombardia and Veneto and then severely hit also all the other Northern
regions mainly. In contrast, the second wave was widely spread all over the country. In order to investigate more in-depth
the dynamics of the epidemic, the same analysis carried out for the deaths series at the national level has been conducted
for each region. Fittedmodels at the regional level are given in FiguresA.1 andA.2. As a summary, Figure 7 shows the fitted
upper asymptote for deaths in each region at the end of the first wave (𝑑𝐼1), the relative upper asymptote only concerning
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F IGURE 8 Fitted upper asymptote relative to population size during the second wave only (top) and overall at the end of the second
wave (bottom), for Northern, Central, Southern Italy, and overall. The estimated size 𝑑𝐼 is given in the second column: 𝑑𝐼2 − 𝜇(𝑡𝐼0; �̂�

𝐼
1) in the top

panel, 𝑑𝐼2 in the bottom panel

the second wave (𝑑𝐼2 − �̂�(𝑡𝐼0; �̂�
𝐼
1)), and the overall fitted size of the number of deaths at the end of the second wave (𝑑

𝐼
2).

The tribute in human lives paid by Northern regions, and in particular by Lombardia, was impressive in the first wave of
the contagion. During this period, the Central and Southern regions suffered a relatively low death incidence. The fitted
upper asymptote in the first wave for Lombardia only is 17,103, whereas it amounts to 3675 and 1566 for all Central and
Southern regions, respectively. The large differences between Northern Italy and the rest of the country were mitigated
during the second wave due to the spread of the contagion all over the county. In particular, Central and Southern regions
experimented with records of infections and deaths never met during the first wave. Then, Italian regions have been
grouped in the three macroareas corresponding to Northern (Valle d’Aosta, Piemonte, Liguria, Lombardia, P.A. Trento,
P.A. Bolzano, Veneto, Friuli Venezia Giulia, and Emilia Romagna), Central (Toscana, Umbria, Marche, Abruzzo, and
Lazio), and Southern (Molise, Campania, Basilicata, Puglia, Calabria, Sicilia, and Sardegna) Italy. Figure 8 gives the final
size for the number of deaths fitted over the three areas during the second wave only and overall at the end of the second
wave, relative to population size. The top panel confirms the spread of the epidemic all over the country with 146, 107, and
126 deaths for 100,000 inhabitants, in Northern, Central, and Southern regions, respectively. The bottom panel, however,
remarks the different overall incidence betweenNorthern regions and the rest of the country, with 257, 134, and 140 deaths
for 100,000 inhabitants, respectively. Figures have been produced based on the facilities of the R package forestplot. The
behavior of cumulative and daily deaths in the three macroareas is displayed in Figure 9, along with fitted models, 99%
pointwise confidence and prediction intervals. The panels on the left give cumulative incidence, whereas those in the right
column give daily incidence. The first wave was mainly driven by Northern Italy where people suffered an unsurpassed
deaths toll; then, the second wave did not exceed the first daily peak. In contrast, the second wave of deaths in Central
and Southern Italy was superior to the first. However, Northern Italy still had to deal with a remarkably larger number
of deaths (and infections) with respect to Central and Southern Italy. We also notice some common features: the two
waves both peaked in the same period all over Italy and inferences about the change point are consistent among the three
macroareas. It is worth to remark the large uncertainty that characterizes predictions interval over daily death counts for
Central and Southern Italy. Actually, they account for the large variability in the observed data, that is likely due to some
heterogeneity in the collection process of records among regions.
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F IGURE 9 Left: cumulative deaths for
Northern, Central, and Southern Italy. Right:
daily deaths for Northern, Central, and
Southern Italy. Fitted model with 0.99-level
confidence and prediction intervals based on
the HAC sandwich covariance matrix
estimate. The dotted vertical lines give the
fitted change point with the corresponding
0.99-level confidence interval

6 DISCUSSION

We proposed a methodology to model cumulative counts in an epidemic characterized by two distinct subsequent waves.
Themethod is based on the combination of two growth curves employing a change-pointmodel. Our proposal is consistent
with counting data and the presence of a potential overdispersion/serial dependence. Actually, the proposed technique is
robust in the sense thatwe relaxed assumptions about independence, but two adjustments in the evaluation of the standard
errors were suggested, in order to account for overdispersion and heteroskedasticity and serial dependence, respectively.
We considered an application to Italian death counts. The results confirm the renewed spread of the contagion during

the beginning of summer. Evidence for a second wave of deaths already during July, means that the growth of infections
can be placed 2–3 weeks before, as soon as many restrictions have been removed. However, the two waves were very
different in nature, since the first was mainly driven by Northern regions whereas the second had spread all over the
country. The main differences, but also the common features, across Italy have been studied in a regional-level analysis.
The method performed satisfactory both in terms of goodness of fit and prediction ability, even if there is still room

for improvement.
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As a future line of research, the present methodology can be developed further to include more than two epidemic
waves and allow some comparisons between models characterized by a different number of waves. Moreover, one could
consider the possible inclusion of covariates and joint analysis of infections and deaths. We remark that we considered
the series of deaths, since they exhibit a more regular behavior, due to a likely more homogeneous collection process of
the records.
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F IGURE A . 2 Daily deaths and first derivative of the fitted change-point growth model at the regional level
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