4 " . SR,
iR, UNIVERSITA
e = DEGLI STUDI
I.:"""l T | | L_‘_ Ij
SR T DI PADOVA

‘{’-'3'.';.1 L

Sede Amministrativa: Universita degli Studi di Padova
Dipartimento di Matematica

SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE MATEMATICHE
INDIRIZZO MATEMATICA
CICLO XXIV

REGULAR BIPRODUCT
DECOMPOSITIONS OF OBJECTS

Direttore della Scuola: Ch.mo Prof. Paolo Dai Pra
Coordinatore d’indirizzo: Ch.mo Prof. Franco Cardin

Supervisore: Ch.mo Prof. Alberto Facchini

Dottorando: Nicola Girardi






ABSTRACT. This thesis mainly pertains biproduct decompositions of objects
in certain additive categories that exhibit a peculiar regular behaviour. More
precisely, in certain additive categories, a biproduct of objects {X,};<, is com-
pletely determined up to isomorphism by a list of invariants ([X;]=, )i<ru<n,
where {=,},-, are suitable equivalence relations (n-Krull-Schmidt Theorem).

In the first chapter we introduce prerequisite notions that enable us to ex-
tend results regarding certain module categories to suitable preadditive cate-
gories: The Jacobson radical of a preadditive category and ideals associated to
ideals of endomorphism rings (subject of research by Facchini and Pfihoda), the
universal embedding of a preadditive category into an additive category, and
the universal embedding of an additive category into an idempotent-complete
additive category. We give a version of the Chinese Remainder Theorem for
preadditive categories, extrapolated from results of Facchini and Perone, and
generalised, and we provide an improved version of the classical Krull-Schmidt
Theorem which is the starting point of later developments. Semilocal rings and
categories are reviewed in the second chapter, and their relationship with the
notion of dual Goldie dimension is explained. The third chapter also deals with
prerequisites, namely, we thereby try to give a careful review of the theory of
the Auslander-Bridger transpose.

In the fourth chapter we generalise Warfield’s results on finitely presented
modules over semiperfect rings to Auslander-Bridger modules, a more gen-
eral class of modules over arbitrary rings. We show how such modules are
characterised by two invariants and such invariants are interchanged by the
Auslander-Bridger transpose. The fifth chapter culminates in a criterion for
the aforementioned n-Krull-Schmidt Theorem to hold in a given additive cate-
gory, and we give some concrete examples in the case of categories of modules,
such as artinian modules with prescribed heterogeneous socle, and quiver rep-
resentations. The case n = 2 of said theorem has long been known as “Weak
Krull-Schmidt Theorem,” and has been proved over the years for various classes
of modules. One of these, the class of couniformly presented modules, is dealt
with in a more elementary way in the sixth chapter.

SOMMARIO. Questa tesi riguarda principalmente le decomposizioni in bi-
prodotti di oggetti di certe categorie additive che esibiscono un comportamento
regolare peculiare. Pili precisamente, in certe categorie additive, un biprodotto
di oggetti {X,};<, &€ completamente caratterizzato a meno di isomorfismo da
una lista di invarianti ([X;]=, )i<r,u<n, dove {=,},<,, sono opportune relazioni
di equivalenza (n-teorema di Krull-Schmidt).

Nel primo capitolo introduciamo prerequisiti che ci permettono di estendere
risultati che riguardano certe categorie di moduli a opportune categorie pread-
ditive: il radicale di Jacobson di una categoria preadditiva e suoi ideali associati
ad ideali di anelli di endomorfismi (soggetto di ricerche da parte di Facchini e



Piihoda), 'immersione universale di una categoria preadditiva in una categoria
additiva, e 'immersione universale di una categoria additiva in una categoria
additiva in cui gli idempotenti si spezzano. Diamo una versione del Teorema
Cinese dei Resti per le categorie preadditive, estrapolato da risultati di Facchini
e Perone e generalizzato, e forniamo una versione migliorata del teorema clas-
sico di Krull-Schmidt che é il punto di partenza di sviluppi seguenti. Gli anelli e
le categorie semilocali sono passati in rassegna nel secondo capitolo, in cui viene
anche spiegata la loro relazione con la nozione di dimensione duale di Goldie.
Il terzo capitolo e pure dedicato ai prerequisiti, precisamente, ivi cerchiamo di
passare in attenta rassegna la teoria della trasposta di Auslander-Bridger.

Nel quarto capitolo generalizziamo i risultati di Warfield sui moduli finita-
mente presentati su anelli semiperfetti ai moduli di Auslander-Bridger, che sono
una classe pit generale di moduli su anelli arbitrari. Mostriamo come tali mod-
uli sono caratterizzati da due invarianti e come tali invarianti siano scambiati
dalla trasposta di Auslander-Bridger. Il quinto capitolo culmina in un criterio
per stabilire la validita del sopracitato n-teorema di Krull-Schmidt in una data
categoria additiva, a diamo alcuni esempi concreti nel caso di categorie di mod-
uli, come i moduli artiniani con zoccolo eterogeneo prefissato, e nel caso di
categorie di rappresentazioni di quiver. Il caso n = 2 di detto teorema € noto
come “teorema debole di Krull-Schmidt,” ed ¢ stato dimostrato negli anni per
varie classi di moduli. Una di queste, la classe dei moduli couniformemente
presentati, & trattata in un modo pitt elementare nel sesto capitolo.
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Introduction

As the title says, this thesis is about “regular biproduct decompositions of ob-
jects.” If, for the benefit of those readers not acquainted with the language
of category theory, we were to restrict our attention to the archetypal case of
modules over a ring, we could say that this thesis is about regular finite direct-
sum decompositions of modules. Indeed, the notion of finite direct-sum (for
modules) is the specialisation of the notion of biproduct (for objects of additive
categories) to the category of modules over a ring. Therefore, in this brief in-
troduction, the reader can replace “object” with “module” and “biproduct” with
“finite direct sum,” if needed. Let us go on to explain what we mean by regular
biproduct decompositions.

An object X of an additive category may be represented as a biproduct of
other objects, a fact which is indicated by notation such as

<n

In other words, X can be expressed, or decomposed, as the biproduct of the
family {X;};<,. The question naturally arises whether this decomposition of X
is to some extent regular, whether it must respect some pattern.

The order of the biproduct factors X; never matters, that is, if equation (1)
holds, it is also true that

X =@ Xoq),
i<n

for every permutation o of the first n natural numbers. In some cases, this is the
only alteration possible to the original decomposition, i.e., if

X=@v,
<<m
then n = m and X; = Y,;), for all i < n, for a suitable permutation o. This
happens, for instance, when every X; has a local ring of endomorphisms ((Krull-
Schmidt) Theorem 1.14), but not only (cf. Theorem 5.12(iii) and the remarks
after its proof). Of course, this is the most regular behaviour for a biproduct
decomposition of X — no other decompositions of X are possible, except for the
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obvious ones obtained by reordering the biproduct factors. When this happens
we say that the decomposition of X is unique.

In 1975 Warfield proved that every finitely presented module over a se-
rial ring decomposes as a finite direct sum of uniserial modules (= modules
M such that, for every two submodules A and B of M, either A < B or
B < A), and he asked whether such decomposition is unique, despite the
fact that uniserial modules do not necessarily have local endomorphism rings
[War75]. In 1996, besides giving a negative answer to said question, Facchini
also discovered a fascinating regularity, which we now explain. To each unis-
erial module U are attached two invariants, its monogeny class [U],, and its
epigeny class [U].. His brilliant finding is that two finite direct sums @,_, U;
and @,_,, Vi of uniserial modules are isomorphic if and only if » = m and

<n

the invariants [Up|m,- .-, [Un-1]m coincide, counting multiplicities, with the
invariants [Vo]m,...,[Va—1]m, and the invariants [Up]e, ..., [U,—1]. coincide,
again counting multiplicities, with the invariants [Vg]e,...,[Va_1]e- In other

words, there are two permutations o and 7 such that [U;],, = [V,(;)]m and
[Uile = [V(5)le, for all i < n [Fac96, Theorem 1.9]. In particular, U = V' if and
only if [U],, = [V]m and [U]e = [V]e.

The author of the present work was deeply impressed by the elegance of
this result, and it had a major influence on his research. Indeed, the main re-
sults in this thesis are generalisations of the mentioned theorem to more general
categories and involving possibly more than two invariants/permutations (The-
orems 5.8 and 5.10). This sort of regularity of biproduct decompositions is the
one alluded to in the title, which we have now hopefully clarified.

Let us now give a summary of the content of the thesis.

After agreeing on some notation and conventions, in Chapter 1, we set about
to discuss some notions concerning preadditive categories and their ideals. In
particular, we introduce the most important ideal of all, the Jacobson radical,
and ideals associated to ideals of endomorphism rings of objects, a key idea from
[FPO9Db]. We show how every preadditive category C can be naturally embed-
ded in an additive category Sums(C), thus introducing biproducts when they
do not already exist in C. The category Sums(C) is unique up to equivalence.
(This is an idea that goes back to [Kel64].) Also, we exhibit how an additive cat-
egory C can be embedded into one in which idempotents split, C, also known
as an idempotent-complete additive category. Roughly speaking, this means
that in the larger category idempotent endomorphisms correspond to biproduct
factors. The category C is also unique up to equivalence. (This construction
was explained in [Fac07].) Thus a preadditive category, apparently poor in
structure, actually determines the richer structure of an idempotent-complete
additive category, which is the best setting for the study of biproduct decom-
positions. For instance, idempotent endomorphisms correspond to biproduct
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factors (= direct summands), as in the case of modules (Lemma 1.11). More
importantly, the Krull-Schmidt Theorem holds in these categories. In this chap-
ter we also prove a strong version of the classical Krull-Schmidt theorem due
to the author (Theorem 1.18), which has a key role in the proofs of the main
results of Chapter 5. Also, we prove a Chinese Remainder Theorem for pread-
ditive categories and ideals, which is implicit in many proofs of [FP09b] and
[FP10] and underpins their main results.

After introducing the classical notions of Goldie dimension and dual Goldie
dimension, first for lattices, then their specialised versions for modules and
rings, and after reviewing some standard material about semisimple and semilo-
cal rings, a brief exposition of results from [FP10] concerning semilocal cate-
gories (= categories where every non-zero object has a semilocal ring of endo-
morphisms, and with at least a non-zero object) follows in Chapter 2. Special
attention is given to those semilocal categories in which every non-zero object
has a ring of endomorphisms S such that S/J(S) is a finite direct product of
division rings, which were studied in [FPO9b]. Also, the author introduces a
notion of dual Goldie dimension for preadditive categories, and characterises
the preadditive categories of finite dual Goldie dimension as those semilocal
categories with finitely many objects.

In the third chapter we construct the stable category of modules, which is
a quotient of the category of (right) R-modules by a suitable ideal, and discuss
the Auslander-Bridger transpose, which is a duality between the stable category
of finitely presented left R-modules and the stable category of finitely presented
right R-modules.

In Chapter 4 we finally put the machinery previously discussed to good use.
This chapter contains the material from a joint paper with A. Facchini. We in-
troduce Auslander-Bridger modules, which are to general rings what finitely
presented modules are to semiperfect rings. As the name suggests, these mod-
ules behave very nicely under the Auslander-Bridger transpose. The trans-
pose induces a bijection between isomorphism classes of Auslander-Bridger left
modules and isomorphism classes of Auslander-Bridger right modules. (This
generalises results of [War75] on finitely presented modules over semiperfect
rings.) Also, Auslander-Bridger modules are characterised by two invariants,
the lower-isomorphism class and the epi-isomorphism class, which are inter-
changed by the transpose. That is, M and N have the same lower-isomorphism
(epi-isomorphism) class if and only if their transposes Tro(M) and Try (V) have
the same epi-isomorphism (lower-isomorphism) class.

Instrumental in defining Auslander-Bridger modules are finite direct sums
of couniform projective modules. In Chapter 4 we also take a slight detour to
study the analogue of these objects in preadditive categories.

There is a representable contravariant functor Hom(—, F') which induces a
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duality between uniform injective modules and couniform projective modules;
this induces a duality between Auslander-Bridger modules and the dual notion
of dual Auslander-Bridger modules, characterised by the dual invariants, the
mono-isomorphism class and the upper-isomorphism class.

The fifth chapter deals with the author’s results on classes of objects (in
preadditive categories, enlarged if needed to idempotent-complete additive cat-
egories) for which biproduct decompositions are regular, in the sense that (*)
two biproducts @,_,, X; and @
and X; =, Y, (; for i < n, and permutations o,,, where =, are finitely many
suitable equivalence relations indexed by u. Several examples, both old — bi-
uniform modules, uniserial modules, couniformly presented modules, kernels

;<m Yi are isomorphic if and only if n = m

of morphisms between indecomposable injective modules — and new — ar-
tinian modules with heterogeneous socle, noetherian modules with heteroge-
neous top, quiver representations “of type 1 pointwise” — are given. In the last
section of Chapter 5 we show how the question whether the property (*) holds
for a certain class of modules F translates to a combinatorial condition on a
hypergraph H(F) canonically associated to F.

Chapter 6 is devoted to couniformly presented modules, a class of modules
for which a result like (*) holds with two invariants/permutations, and how
these relate to uniserial modules and kernels of morphisms between indecom-
posable injective modules via suitable dualities. This was the subject of a joint
paper with A. Facchini [FG10].

In the mathematical literature there are versions of some of the results in
this thesis for infinite direct sums of certain modules. Among the uniserial mod-
ules, there are the quasi-small uniserial modules, for which the ’96 result by
Facchini, which was quoted above, holds also in the case of an infinite direct
sum (the two permutations of finite sets become bijections of sets) [DF97]. Un-
fortunately, there are also uniserial modules that are not quasi-small, as was
discovered by Puninski [Pun01]. His methods rely heavily on the model theory
of modules. In the final Chapter 7 we explain his example of a non-quasi-small
uniserial module avoiding model theory as much as possible, to make it avail-
able to a larger audience. It recently came to the author’s knowledge, and we
promptly duly point out, that Ptihoda developed an alternative algebraic route
to Puninski’s non-quasi-small uniserial module [P1{06].

We close with some annotations in which we justify some constructions in
the thesis, which may appear solid at first glance, but actually turn out to need
some attention when looked at more closely. The discussion of these relatively
small issues make us reflect on what foundations we build all of our theories
on, and we find ourselves forced to confront the puzzling idea that our mathe-
matical foundations may not be solid as we tend to believe.
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Notation and conventions

All the rings we consider are associative rings with identity. For a ring we require
that 1 # 0, with the only exception of the endomorphism rings of zero objects in
preadditive categories. All modules considered are unital. Notation such as Mg
denotes a right R-module, while gk M denotes a left R-module. When no index
is used, it either means that the ring and side have been specified earlier or that
they are clear from context, or that they are not relevant in the discussion. For
instance, in the phrase “M is semisimple if and only if every submodule of M is
a direct summand of M,” neither the base ring nor the side need to be specified.

The symbol N stands for the set of non-negative integers, that is, 0 € N.

The role of index sets is covered almost exclusively by ordinal numbers,
denoted by Greek letters o, 3, v, ..., except for the natural numbers, which are
denoted by roman letters such as n and m. Thus we will encounter notation
such as (M;);<, and | [,_,. R;, and when the set N of natural numbers is used
as an index set, we denote it by w.

The symbol < denotes set inclusion, and <, or & for emphasis, denotes strict
set inclusion. When a set inclusion respects some sort of algebraic structure, we
prefer to use the symbols < and <.

Sometimes we will use calligraphic letters such as .A and B to denote sets
or classes, if using the corresponding roman letters might cause confusion with
other entities, such as objects A and B.

Categories and their ideals are denoted by bold letters, such as C and I. The
set of morphisms between two objects X and Y of C is denoted by C(X,Y).
Similarly, the subset of morphisms in an ideal I that are in C(X,Y") is denoted
I(X,Y). When X =Y, we shorten C(X,X) to C(X) and I(X, X) to I(X).
To indicate that g is a morphism from X to Y we will write g € C(X,Y), or
sometimes g: X — Y, if the category is understood or not relevant. If g is
a morphism, then dom(g) is its domain and codom(g) its codomain, in other
words we could write g: dom(g) — codom(g).
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Chapter 1

Preadditive categories

In this chapter we recall the notion of “ideal” in a preadditive category, and most
importantly, the Jacobson radical of a preadditive category and “associated ide-
als,” which are ideals of the category associated to ideals of endomorphism rings
of its objects, a very important idea from [FP09b]. We discuss universal embed-
dings of preadditive categories into additive categories first [Kel64] and into
idempotent-complete additive categories later [Fac07]. We also prove a strong
version of the classical Krull-Schmidt theorem (Theorem 1.18), which is of fun-
damental importance in proving the main results of Chapter 5. Eventually, we
prove a Chinese Remainder Theorem for preadditive categories (= rings with
many objects) and ideals, which is implicitly used in many proofs of [FPO9b]
and [FP10].

1.1 Ideals in preadditive categories

A category C is preadditive if for every X,Y € C the set of morphisms C(X,Y)
is an abelian group, and the composition of morphisms in C is bilinear over
the integers, that is, f(g1 + g2) = fg1 + fg2 and (f1 + f2)g = fi1g + fag for all
morphisms f, fi, f2: Y — Z and g,¢g1,92: X — Y and all objects X, Y and Z
of C.

In a preadditive category two objects have a product if and only if they have
a coproduct, if and only if they have a biproduct [Bor94b, Proposition 1.2.4].
Coproducts are often called “direct sums,” although strictly speaking the direct
sum is the coproduct in the category of modules. If finite products exist in a
preadditive category C, we say that C is an additive category. Finite direct sums
are the biproducts in the category of modules.

An ideal of a preadditive category C is a class of morphisms I of C such
that, for every pair of objects X and Y of C, the set I(X,Y) := C(X,Y) nTis
a subgroup of C(X,Y), and such that for every g € I(X,Y), every f € C(Y,Y”)

13
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and every h € C(X’, X), we have fgh € I(X’,Y”"). We will abbreviate I(X, X)
to I(X).

Ideals of preadditive categories satisfy the same basic properties as ideals
of rings. A preadditive category C always has the zero ideal, consisting of all
the zero morphisms, and the improper ideal, consisting of all morphisms of the
category.

For any subset or subclass .S of morphisms of C one may consider the ideal
of C generated by S, that is, the smallest ideal (with respect to inclusion) of C
containing S. Of course, it can be defined as the intersection S of all ideals
containing S, as there is always one such, viz., the improper ideal, and the
intersection of a collection of ideals of C is again an ideal of C. The ideal S can
also be described (as is the case for rings) as the class S of morphisms of the
form Y ,_, figih:, where each g; € S.

As we mentioned, arbitrary intersections of ideals are ideals; similarly, the
sum of an arbitrary family {I,},-, of ideals of C can also be defined, letting
Qe L) (X, Y) =3, L(X,Y) forevery X and Y in C.

The union of a chain of ideals of C is again an ideal of C. This entails that
the Zorn Lemma can be applied to the collection of ideals of C not containing
a given set or class S of non-zero morphisms, thus obtaining a maximal ideal
disjoint from S. This does not grant the existence of maximal proper ideals,
though, cf. [FP10, Example 4.1].

If we consider the class Latt(C) of all ideals of C partially ordered by inclu-
sion, we see that Latt(C) is a large complete lattice with respect to the opera-
tions of intersection and sum, just as is the case for rings.

Ideals are instrumental in defining factor categories. If I is an ideal of a
preadditive category C, we may construct a new category C/I with the same
class of objects as C and morphisms given by the quotient abelian groups
(C/I)(X,Y) = C(X,Y)/I(X,Y), for every pair of objects X, Y of C. The
composition rule on the factor category C/I is induced by that of C, namely,
(f+IY,2)(g + I(X,Y)) = fg +I(X,Z). There is a canonical additive full
functor C — C/I, to which we may refer as the “reduction modulo 1.”

Suppose G: A; — A, is an additive functor and I is an ideal of A;. Then
we define the inverse image G—*(I) of I pointwise, that is, as

(GT'D(M,N) = {f € A1(M,N) : G(f) e (G(M),G(N))},

for all pairs of objects M, N of A;. In short, f € G~*(I) if and only if G(f) € I,
for every morphism f in the category A;. Thus we obtain an ideal G~!(I) of
A

We define the kernel of G to be the preimage of the zero ideal of Ao, and we
denote it as K(G).

We have the analogue of the fundamental theorem of homomorphisms of
rings, namely, we have that every additive functor F: C — D factors as the
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composition F' = F'P of a full functor P and a faithful functor F. Precisely, P is
the canonical functor P: C — C/K(F) while F: C/K(F) — D is induced by
F in the obvious way.

Following [FP09c], an ideal I of a preadditive category C is called completely
prime if

(C1) I contains no non-zero identity morphisms, i.e., I(X) # C(X) for every
non-zero object X of C, and

(C2) whenever a composition fg is in I, then either f or g is in I.

Notice that condition (C1) is stronger than just requiring I to be a proper ideal.
This definition extends that of a completely prime ideal I of a ring R, which
is a proper ideal [ satisfying ab € I if and onlyifa e I or b € I for all a,b € R.

1.1.1 The Jacobson radical of a preadditive category

In this section we define probably the most important ideal, namely, the Jacob-
son radical of a preadditive category. Cf. [Mit72, page 21].

Lemma-Definition 1.1. Let C be a preadditive category. Given any two objects A
and B of C, the following sets are all equal:

Ji(A,B) = {f € C(A,B) | 1 — fg is right invertible for all g € C(B, A)},
J2(A,B) = {f € C(A,B) | 1 — fg is invertible for all g € C(B, A)},
J3(A,B) = {f € C(A,B) | 14 — gf is left invertible for all g € C(B, A)},
Ji(A,B) ={f € C(A,B) | 14 — gf is invertible for all g € C(B, A)},
J5(A,B) = {f € C(A,B) | 1g — fgis left invertible for all g € C(B, A)},
Js(A,B) = {f € C(A,B) | 14 — gf is right invertible for all g € C(B, A)}.

If J(A, B) denotes the set described above, then J is an ideal of C, which we call
the Jacobson radical of C. It readily follows from the above description that J(A)
is the Jacobson radical of the endomorphism ring C(A) of A in the category C.

The proof relies on the purely syntactical fact that z(1 — zy) = 1 implies
(1 + yzz)(1 — yz) = 1. Cf. [Mit72, Lemma 4.2].

Proof. Tt is clear that J, < J;. Conversely, suppose f € J;. Let g € C(B, A) be
arbitrary. There exists h € C(B) such that (15 — fg)h = 1. This implies that
h = 1p — f(—gh), so that h is also right invertible in C(B). It follows that h
is a two-sided inverse for 1z — fg and f € J;. This proves that J; = J,, and
similarly one proves that J; = Jy.

Let f: A - B and g: B — A be morphisms in C. Then 14 — ¢gf is left
invertible in C(A) if and only if 15 — fg is left invertible in C(B). Indeed, if A is
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a left inverse of 14 — gf, then 15 + fhg is a left inverse for 15 — fg. Therefore
J3 = Js.

Similarly, if & is a right inverse for 14 — gf then 15 + fhg is a right inverse
of 15 — fg. Hence 14 — gf is right invertible in C(A) if and only if 15 — fg is
right invertible in C(B), so that J; = Js.

It also follows that 14 — gf is invertible in C(A) if and only if 15 — fg is
invertible in C(B), so that Jy = Jy.

To prove that J is an ideal of C, we are left to show that if g € J(A4, B),
h € C(X,A), and f € C(B,Y), then fgh € J(X,Y). Leti € C(Y,X) be
arbitrary. Then 1p — ghif has a left inverse, say ¢ € C(B). It follows that
1y + flghi is a left inverse for 1y — fghi, as required. O

The Jacobson radical of a preadditive category may also be defined using
maximal right ideals or maximal left ideals as it is done for preadditive cate-
gories with one object, i.e., for rings. This approach is taken in [Mit72, page 21].
We will expand on this in Section 2.3, where we characterise preadditive cate-
gories of finite dual Goldie dimension.

1.1.2 Ideals of a category associated to ideals of endomor-
phism rings of its objects

Consider a preadditive category C and an object X of C. Given an ideal M of
the endomorphism ring C(X), one may construct the ideal M of C generated
by M, obtaining M(X) = M. There is another way, a more useful way, of
constructing another different ideal of C with this last property. This technique
has been introduced in [FP09a], and subsequently adopted in [FP10, FPO9Db,
Girlla, Girllb]. Suppose M is an ideal of C(X). (It is actually enough for M
to be an additive subgroup.) Define an ideal A j; by declaring that g € A, if
and only if fgh € M for every h € C(X,dom(g)) and every f € C(codom(g), X).
This is easily seen to be an ideal of C. We call A, the ideal of C associated to
M. An ideal T of C of this type will be called an associated ideal. The associated
ideal A ;s can be characterised as follows:

Lemma 1.2. Suppose M is an ideal of the endomorphism ring C(X). The ideal
A s of Cis the largest among the ideals I of C such that I(X) € M. As a matter
of fact, Ay (X) = M.

Proof. For g € C(X), we have g € Ay (X) if and only if C(X)gC(X) c M,
if and only if g € M. Hence Ap/(X) = M. Suppose I is an ideal of C such
that I(X) < M. If g € I(Y, Z), then C(Z,X)gC(X,Y) < I(X) < M, so that
g € Ay (X). This proves that I = A y,. O

Remark 1.3. Notice that A ;(A, B) depends only on the objects A, B, X and on
the morphisms between them. Therefore, if we consider any full subcategory E
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of C, the ideal of E associated to M is a restriction of that of C associated to
M. Thus we may unambiguously say that A is isomorphic to B modulo A, if A
and B are isomorphic as objects of E/A ,;, where E is any full subcategory of
C containing the objects A, B, X.

The above characterisation of A,; recalls one possible description of the
Jacobson radical J of C. Indeed, one may define J to be the largest ideal I of C
such that I(X) < J(C(X)) for every object X of C [Kel64, Theorem 1]. Indeed,
if T has this last property, and g € I(Y, X), then fg € I(Y) for every f € C(X,Y).
Hence fg € J(C(Y)) and it follows that 1y — fg is invertible. Thus g € J(X,Y).

The resemblance just remarked is no coincidence: It is possible to describe
the Jacobson radical of a preadditive category as the intersection of a very nat-
ural family of associated ideals. Recall that an ideal I of a ring R is right (resp.
left) primitive if it is the annihilator of a simple right (resp. left) R-module, and
that the Jacobson radical of R is the intersection of all its primitive right (resp.
left) ideals [AF92, Theorem 15.3].

Proposition 1.4. Let C be a preadditive category and let Prim(C) be the collection
of all the ideals of C associated to right primitive ideals of endomorphism rings of
objects of C. Then

J = [ Prim(C). (1.5)

Proof. Let P be the intersection on the right hand side of (1.5).

Pick any morphism g: A — B in J(A, B). Consider an ideal I € Prim(C).
Then there is an object X of C and a right primitive ideal P of C(X) such that
I = Ap. Because g € J(A, B), it follows that C(B, X)gC(X, A) < J(X), which
is contained in P because the Jacobson radical of a ring is the intersection of its
primitive ideals. Thus g € Ap = I. Since g and I are arbitrary, this shows that J
is contained in P.

Suppose g € C(A4, B) is not in J(A, B). Then there exists f € C(B, A) such
that 14— fg is not right invertible in C(A). This implies that 14— fg is contained
in a maximal right ideal M of C(A). Let P be the right primitive ideal of C(A)
defined by P = r.anng4)(C(A)/M). Then g ¢ Ap(A, B). Indeed, if g was an
element of Ap(A, B), then fg would be in Ap(A) = P < M, and this would
lead to 14 € M, a contradiction. Thus g ¢ Ap(A, B), hence g ¢ P(A4, B). O

1.2 Universal embeddings of preadditive
categories
Recall that a preadditive category has finite products if and only if it has finite

coproducts, if and only if it has biproducts, and that it is called an additive cate-
gory if these equivalent conditions are satisfied [Bor94b, Proposition 1.2.4]. Not
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all preadditive categories are additive, yet every one of them embeds canon-
ically as a full subcategory of an additive category, its additive closure (Sec-
tion 1.2.1).

A preadditive category C is said to be idempotent-complete if every idempo-
tent endomorphism in C has a kernel. Indeed, the condition that an idempotent
endomorphism has a kernel has many equivalents, cf. Lemma 1.10. For every
preadditive category C, there is a universal full and faithful functor I': C — C
of C into an idempotent-complete preadditive category C, which is called the
idempotent completion of C. In particular, given any pair of objects X and
Y in C, we have that X ~ Y if and only if I'(X) =~ I'(Y), and, given any
morphism ¢ in C, that g is an isomorphism if and only if so is I'(g). If C
is additive, then so is its idempotent completion. Idempotent-complete addi-
tive categories provide the best setting for the study of biproduct decomposi-
tions of objects—most notably, the classical Krull-Schmidt Theorem holds in
these categories (Theorem 1.14). The theorem says that from an isomorphism
g X1®--@X, > Y1 ® - DY, where all the X; and Y; have local endo-
morphism rings, it follows that X; = Y, for a suitable permutation o. In
Theorem 1.18, we show that more information can be gleaned from said iso-
morphism g. Indeed, we find that g,(;),: Xi — Y,(; is an isomorphism, for a
suitable permutation o.

1.2.1 Additive closure

The difference between a preadditive and an additive category is that in the
former finite products (coproducts, biproducts) may not exist, while they do in
the latter. It is nevertheless possible to embed any preadditive category C as a
full subcategory of an additive category Sums(C), as remarked in [Kel64], that
we may call the additive closure of C. The objects of Sums(C) are the finite
sequences (A;);<n of objects A; of C. For morphisms, we define

(Sums(C))((As)i<n, (Bi)i<m) (1.6)

to be the set of m x n matrices g such that g; ; € C(4;, B;) fori <mand j < n.
The set (1.6) is an additive abelian group with respect to pointwise addition.
Matrix multiplication serves as the composition rule. The biproduct of (4;);<,
and (B;)i<m is the concatenation of the two sequences, that is, the sequence
(Ao, ..., An_1,Bo,...,Bm_1). The injections

(Az)z<n e (AOa ceey Anfla B07 ey Bmfl)
(B'L)'L<m - (AOa ce An—l; B07 DR} Bm—l)
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are the matrices

1A0 Onxm

, . 1.7

1p

1a

n—1

07n><n m—1

and the corresponding projections are their transposes. In particular the se-
quence (A;);<n is the biproduct of the family {(A4;)};<,. In some sense, we may
think of (4;);<, as the “formal biproduct” of the objects Ay, ..., A,—1 of C.
We have a full and faithful functor (—): C — Sums(C) which identifies the
objects of C with the sequences of length one.
The embedding (—) is minimal in the following sense:

Proposition 1.8. For every additive functor G: C — D with D additive, there
is an additive functor H: Sums(C) — D such that H o (=) = G, and such H
is unique up to natural isomorphism. This property is universal and characterises
Sums(C) up to category equivalence.

Proof. The property is manifestly universal. Indeed, suppose I'y: C — Cqy and
I'1: C — C; are full and faithful functors from the preadditive category C into
additive categories, and that both embeddings satisfy the property in the state-
ment. Then there are additive functors Hy and H; such that I'y = HgI'; and
'y = HiT'g,sothat 'y = HyH 'y and I'y = Hy HpI';. By uniqueness up to natu-
ral isomorphism, we have that HyH; and H; H; are naturally isomorphic to the
corresponding identity functors, so that Cy and C; are equivalent categories.

We have to show that the full and faithful functor (—) satisfies this universal
property. To sketch a proof of that we need to agree on some notation. An
object of Sums(C) will be denoted by A = (A;);<n,. That is, the length of the
sequence A is ny and its entries are Ay, ..., A,, 1. Thus A is the biproduct of
the family {(A;)};<n,, with canonical morphisms given by matrices analogous
to those in (1.7). We denote by ¢4 ; the injections and by 74 ; the projections,
fori < mngy.

For each sequence A choose a biproduct H(A) in the category D of the
family {G(A;)}i<n., with canonical injections H(¢4,;) and projections H(7m4,;).
The definition of H on morphisms follows by the requirement that H extend G.
Indeed, suppose g: A — B is a morphism in Sums(C). Let g;; € C(4;, B;) be
such that (g;;) = 75 jgta,;. Then we have

g = Z Z LB,jTB,jgLAiT Ais
i<na j<np

hence
H(g)= >, > H(tp;)G(gji)H(ma).
i<ma j<np
It is easy to check that H respects the identities, the composition, and the sum,
hence H is an additive functor, and by construction H o (—) = G.
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Suppose that H’ is another additive functor such that H' o (—) = G. For a
sequence A, define 9y = >, H'(ta;)H(ma,). It is easy to check that these

Lii<n A

maps define a natural isomorphism H — H’. O

From the universal property above, it follows that if C is a full subcategory
of an additive category D, then the category Sums(C) is equivalent to the full
subcategory of D whose objects are all the finite biproducts of objects of D.

Let us record the following useful fact for future reference:

Remark 1.9. An additive functor F': C; — C, between preadditive categories
canonically extends to an additive functor F': Sums(C;) — Sums(Cy) between
the additive closures. Moreover, if F' is full (resp. faithful) (resp. dense), then
so is F. In particular, if F is a category equivalence, then so is F.

Notice that an ideal I of C extends canonically to an ideal I of its additive
closure Sums(C): For a morphism g: (X;)i<n — (Y;)i<m, we inevitably have
that g € T if and only if all its entries are in I,.

1.2.2 Idempotent completion

Let C be any category and e an idempotent endomorphism in C of some object
X, i.e., an element of the ring C(X) such that e = ¢2. For an object Y of C, we
say that e splits through Y if there exist morphisms f € C(X,Y) and g € C(Y, X)
such that e = gf and fg = 1y. We simply say that e splits if it splits through
some object of C.

Recall that, for p, 1 € C(X,Y), an equaliser of ¢ and v is a morphism f such
that ¢ f = 1 f, and universal with this property, that is, if oh = 1h for some mor-
phism h, then there exists a morphism ¢ such that fg = h, and such morphism
¢ is unique. This implies that the equaliser f of a given pair of morphisms is a
monomorphism, i.e., left-cancellable, and that it is unique up to isomorphism,
that is, if there is another morphism f’ with the same universal property, there
exist isomorphisms 7 and ' such that f' = fpand f = f'n’. If C is preadditive,
an equaliser of f € C(X,Y) and the zero element of C(X,Y) is the kernel of
f. Dually one defines coequalisers, which are always epimorphisms, i.e., right
cancellable, and cokernels.

The following lemma characterises idempotents that split. Cf. [Bor94a,
Proposition 6.5.4] and [Fac07, Lemma 2.1].

Lemma 1.10. Let C be any category, X an object of C and e an idempotent
endomorphism of X in C. The following are equivalent:

(i) The idempotent e splits, i.e., there exist morphisms f and g in C such that
e=gf with fg = 1.

(ii) The pair (e, 1x) has an equaliser.
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(iii) The pair (e, 1x) has a coequaliser.
If C is preadditive, then the above conditions are also equivalent to:
(iv) The (idempotent) endomorphism 1x — e has a kernel.
(v) The (idempotent) endomorphism 1x — e has a cokernel.

In the notation of (i), g (resp. f) is the equaliser (resp. coequaliser) of (e,1x),
equivalently, when C is preadditive, the kernel (resp. cokernel) of 1x — e.

Proof. Suppose e splits as in (i). It follows that g = eg. Moreover, if h = eh then
h = g(fh), so that h factors through ¢, and it does so uniquely because g is a
monomorphism. Thus g is the equaliser of the pair (e, 1x), and this shows that
(i) implies (ii).

If (ii) holds, let g be the equaliser of the pair (e,1x). Since e-e = 1x ¢,
we have that e = ¢f for a unique morphism f. Since g = eg = gfg and g is a
monomorphism (being an equaliser) it follows that fg = 1. This shows that e
splits, so (i) holds.

If C is preadditive, (ii) and (iv) are easily seen to be equivalent.

The remaining equivalences follow by duality, because e splits in C if and
only if it splits in C°P. O

As a consequence, we see that an idempotent-complete preadditive category,
earlier defined as one in which every idempotent endomorphism has a kernel,
is a preadditive category in which every idempotent endomorphism splits.

For objects X and Y of a preadditive category, we say that X is a biproduct
factor of Y if there exists an object X’ of the category such that Y is a biproduct
of X and X'. As is the case for modules, we have that:

Lemma 1.11. For objects A and X of an idempotent-complete preadditive cate-
gory, A is a biproduct factor of X if and only if 1 4 factors through X, equivalently,
if and only if there is an idempotent endomorphism of X that splits through A.

Proof. One implication is trivially true in every preadditive category. Suppose
1la = matg with 1ty € C(A,X) and w4 € C(X,A). Then 1x — tam4 is an
idempotent endomorphism, hence there exist an object B and morphisms (5 €
C(B,X) and 7 € C(X, B) such that 1x = 1474 + tp7p and mpip = 1p, and
automatically 7geq = matp = 0, sothat X ~ A @ B. O

Let us turn to the construction of the idempotent completion Cofa pread-
ditive category C. The objects of C are the pairs (X,e) where X is an object
of C and e is an idempotent endomorphism of X in C. As far as morphisms
are concerned, we define 6((X1, e1), (X2, e2)) to be the subgroup of C(X;, X5)
consisting of those elements ¢ such that esge; = g. In other words, we let

~

C((X1,e1), (X2, e2)) = e2C(X1, X2)er.
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The composition rule in C is induced by that of C. It follows that e is the
identity morphism of (X, e¢), and that composition in C is associative and bi-
linear over the integers. Thus Cisa preadditive category. More importantly,
it is idempotent-complete. Indeed, let g be an idempotent endomorphism of
(X,e) in C. Then g can also be regarded as a morphism ¢’: (X, e) — (X, g) or
g": (X,g) — (X,e). Then g = ¢"¢" and ¢'g" = 1(x ), hence g splits.
Furthermore, if C is additive then so is C. To see this, let {(Xi,e;)}i<n be
a finite family of objects of C and let X be the biproduct of the family {X;}i<,
in C, with canonical injections ¢;: X; — X and projections m;: X — X;. The

morphism e = Y. _  1;e;m; is an idempotent endomorphism of X, and the mor-

i<n
phisms

L€ (Xi,ez-) g (X, €)
€Ty ¢ (AX’7 6) - (Xi,ei)

make (X, ¢) the biproduct of the family {(X;,e;)}i<n in C.

There is a full and faithful functor I': C — C, defined on objects by X +—
(X, 1x) and defined as the identity on morphisms. It is clear that X ~ Y if and
only if I'(X) ~ I'(Y), and that g € C(X,Y) is an isomorphism if and only if so
is T'(g).

The construction of the idempotent completion is universal, as the following
proposition shows.

Proposition 1.12. Suppose L is an idempotent-complete preadditive category and
F: C — L is an additive functor. Then there exists a functor G: C — L such that
GT' = F and such G is unique up to natural isomorphism. This property of T is
universal and characterises C up to category equivalence.

Proof. The proof that the property is universal is standard, cf. the beginning of
the proof of Proposition 1.8.

It is left to prove thatT': C — C satisfies the universal property. Let us prove
the existence of G: C — L such that GT' = F.

For every idempotent endomorphism e in C that is not an identity morphism
choose a “splitting diagram” in the category L, that is, a commutative diagram
like the following:

F(dom(e)) o8 (dom(e))

For identity morphisms, let A;, = F'(X) and m1, = t1, = F(lx) = 1px)-
Next define G(X,e) = A, on objects, and for a morphism ¢: (X1,e1) —
(X2, e2), let G(g) = me, F(g)te,- Thus

GD(X) = G(X,1x) = A, = F(X)
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and
GIl(g: X = Y) =m, F(g)y = F(g)-

It is left to prove that G is indeed a functor and that it is additive. Identity
morphisms are preserved, because
G(]-(X,e)) = ’/TeF(e)Le = TeleMele = 14, = 1G(X7e)-

Consider a morphism f: (Xs,e3) — (X3,e3). Then

G(fg) = mes F'(f9)tes
(feag)te,

es F'(F)F(e2) F(g)tes
(WegF (f)tes) (Tea F'(g)tes)
= G(f)G(9),

hence G respect the composition rule. Finally, G is clearly additive.
Next we remark that every additive functor G such that ' = GT arises in

II I| II
“lj

this way. Indeed, for every object (X, e) of C we have a commutative diagram

(X,e) —— (X,e)

N

(Xa 1X) - (Xa lX)
where all arrows are equal to e. Applying G we obtain

Ae = G(X,e) 2= G(X,e)

and this gives rise to a choice of objects A. and morphisms 7. and ¢, as above.
Moreover, applying G to the commutative square

(X1, 61) —2— (X3, €9)

(X171X1) F() (X271X2)

we see that G(g) = 7c, F(g)te,, as in our definition.

To prove uniqueness of G, then, suppose {B., 7., Z.}, Where e ranges over
all idempotent endomorphisms of C, is another suitable choice of objects and
morphisms. Then 7...: Ac — B, is an isomorphism, for every idempotent
endomorphism e in C. In fact,

la, = Tele = (Tete)? = M F(€)te = (Tele)(Tete),
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and similarly 15, = (Tete)(mele). Moreover, said isomorphism is natural in e,
that is, the square

Ae, B,
Tey F(g)te; l iﬂ'egF(g)Lel
Ao, B.,

is commutative. Indeed,
ﬁ'ezF(g)Zelﬁ'eHel = ﬁ'ezF(g)F(el)Lh = 7_762F(62)F(9)L61 = ﬁ'ezLezﬂ'ezF(g)Leu
as required. O

For a preadditive category C, we can first embed it in its additive closure
Sums(C), and then in the idempotent completion S@C), which is addi-
tive. Hence every preadditive category C is canonically a full subcategory of
an idempotent-complete additive category. (Notice that order matters, that is,

~

Sums(C) may not be idempotent-complete.)

1.3 The Krull-Schmidt Theorem

Lemma 1.13. (Cf. [Ste75, Ch. V, Lemma 5.3].) Let C be any preadditive category
and X1, X5,Y1,Y, arbitrary objects of C. Suppose g: (X1, X2) — (Y1,Y2) is an
isomorphism in Sums(C) and that g1 € C(X1,Y1) is also an isomorphism. Then
XQ = )/2

Proof. Replacing g by

1y, 0 gin g2\ _ [* *
—g21917 lvo ) \g21 go2 0 %)’

where the leftmost matrix is an automorphism of (Y7,Y3), we see that we can
assume that go; = 0. Let f = g~ !. Then

gi1 912 f11 f12 _ * *
0 g2 for fa2 *  goafao
shows that go5 foo = 1y,. Moreover,
fir fi2 gi1 912 _ * *
f21 f22 0 922 f21g11 f21g12 + f22922

shows that fo1911 = 0, hence fo; = 0 and fazg20 = 1x,. This shows that gos is
an isomorphism, hence X, =~ Y5. O
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The classical version of the Krull-Schmidt Theorem is proved in [Ste75,
Ch. V] for Grothendieck categories, and stated in [Bas68, p. 20] and in [Fac07,
Lemma 2.1] for idempotent-complete additive categories. Our version is similar
to the latter, and we include a proof for the sake of completeness.

Theorem 1.14 (Krull-Schmidt Theorem). Let C be an idempotent-complete addi-
tive category and {X;};<, a finite family of objects of C with local endomorphism
ring.

() IfA®B =~ @,_,, X, then there is a partition [ il = {0,...,n—1} such
that A=@,.;, X;and B= P, ;. X

i€l 1€lp

(ii) In particular, if @®,_,, X; is isomorphic to the biproduct of a family {Y;}i<m
of indecomposable objects of C, then n = m and there is a permutation o
such that X; = Y, ; for every i <n.

Proof. (i) Suppose A@® B =~ @P,_,, X;. Write the second biproduct as X, @ X
with X =~ @, _,_, Xi. Let ma,t4,7p,tp and mo, 19, 7x,tx be the canonical
morphisms.

Since 1x, = motamato + motpmpto and the endomorphism ring C(X) is
local, either mpeamatg Or ToLpmpLg is an automorphism of X,. Without loss
of generality, assume that mgtm4¢¢ iS an automorphism, with inverse, say, g.
Then 1x, = (gmota)(mato) and (maio)(gmota) is an idempotent endomorphism
of A. It follows that 14 — (mat0)(gmota) is also an idempotent endomorphism
of A, hence, by Lemma 1.10, there is an object A’ and morphisms ;' € C(4’, A)
and 7' € C(A, A’) such that 7't/ = 14 and 14 = (7mat0)(gmota) + /7'. In
other, words, A is a biproduct of X, and A’ with canonical injections 7 4o and
¢/, and canonical projections gmgr4 and «’. It follows that X is a biproduct of
Xop, A’ and B with injections t4matg, t4t’ and ¢p, and projections gmoLama,
m'ma, and wg. The identity morphism of X can be seen as an isomorphism
Xo@ADB) > Xo® (X1 ®---®X,,—1), and its top-left entry is mo(tamato),
which is an isomorphism. By Lemma 1.13, we have A/ @B >~ X1 ® - ® X,,_1,
hence (i) follows by induction.

(ii) Applying (D to A =Yy and B=Y1®---@®Y,,_1, we get that [, = {ip} is
a singleton, because Y} is indecomposable, hence Y1 ®---®Y,, 1 = XD -- @D
)/(; @ - @ X,,_1 and we conclude by induction. O

We conclude this section with a version of the Krull-Schmidt Theorem which
is instrumental in the proof of the main results of Chapter 5. First we need to
recall a result from combinatorics:

Theorem 1.15 (Hall’s Theorem). Let {S,}:c; be a finite indexed family of finite
sets, and let S be their union. An injective mapping g: I — S such that g(i) € S; is
called a transversal for the family. Such a transversal exists if and only if for every
Io = I we have |Io| < |U;c;, Sil
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Proof. Suppose that a transversal g exists. Since g is injective and g(Iy) <
Uier, Si> we have |Io| < |Uie[0 Si
that it is sufficient by induction on |I|. The base step |I| = 1 is trivial. Thus

, hence the condition is necessary. We prove

assume |[I| =n > 2.
Suppose for every non-empty proper subset Iy of I the inequality in the
statement is strict, that is, that

[Io] +1< USi

i€ly

Choose iy € I and g € S, arbitrarily. Suppose Iy < I'\{io} is non-empty. Then

Us

iEIo

— 13 |I).

U si\ao)

i€ly

=

By induction, the family {S;\{zo}}icp (i) has a transversal g. Prolonging g by
g(ig) = x gives a transversal for the family {S;};c;.
Thus we may assume that there is a non-empty proper subset I of I such

that
Us

i€ely

|lo] =

By induction {S;};c1, has a transversal, say g. Let I = I\Iy. If we prove that
{Si\g(Io)}icr, has a transversal f, then g u f is a transversal for {S;};cr. If
I, < I;, we have that

U sivgto)| =S\ s =] U Si|—[U Si|= 120 L] —|1o| = |Lal,
i€ls i€ls i€lp ielrauly i€ly
and we conclude by induction that the required transversal f exists. O

Lemma 1.16. Let C be a preadditive category and J its Jacobson radical, as in
Lemma-Definition 1.1.

(D) Let A, B € C be such that B # 0 and C(A) has only the trivial idempotents.
Then a morphism f € C(A, B) is an isomorphism if and only if it has a right

inverse.

(ii) Let f = f1--- fn be a composition of morphisms in C between non-zero
objects whose endomorphism rings have only the trivial idempotents. Then
f is an isomorphism if and only if fi, ..., f, are all isomorphisms.

(iii) If X,Y are objects of C such that C(X) is a local ring and C(Y') has only
the trivial idempotents, then J(X,Y) is the set of non-isomorphisms.

Proof. (i) Suppose f: A — B has a right inverse, say g: B — A, so that fg =
1. Then gf is an idempotent endomorphism of A. Since gf = 04 implies
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15 = fg = (fg)(fg) = Op, which is false because B # 0, we must have
gf # 04. Then A # 0 and, as C(A) has only the trivial idempotents, gf = 14,
so that g and f are mutually inverse isomorphisms in C. In particular, f is an
isomorphism. The converse implication is clear.

(ii) A composition of isomorphisms is an isomorphism, so thatifall f1,..., f,
are isomorphisms, then f; - -- f,, is an isomorphism. Conversely, suppose that
f1++- fn is an isomorphism. To prove that fi,..., f, are all isomorphisms, it
suffices to prove the case n = 2 and use induction. From 1 = f; fo(f1f2) " we
obtain that f; has a right inverse, hence is an isomorphism by (i). It follows that
f2 = f{ '(f1f2) is also an isomorphism.

(iii) If f: X — Y is an isomorphism, then 1x — f~!f = 0x is not invertible
in C(X) because X # 0, thus f ¢ J(X,Y). Conversely, if f: X — Y is notin the
Jacobson radical, there exists g: Y — X be such that 1x — ¢f is not invertible.
Since C(X) is a local ring, ¢f is an automorphism of X. In particular, g has a
right inverse. As X # 0 and C(Y') has only trivial idempotents, (i) applies to
show that g is an isomorphism. Then f = g~ !(gf) is also an isomorphism. [J

Notice that, if C is an idempotent-complete additive category, the condition
in Lemma 1.16 that the endomorphism ring of a non-zero object X of C has
only the trivial idempotents amounts to the condition that X be an indecom-
posable object (Lemma 1.11). In general, for a non-zero object X of C, we only
have the implication that if C(X) has only the trivial idempotents then X is
indecomposable.

Notation 1.17. If g is a morphism between two biproducts in some additive
category, say

we denote by g;;: X; — Y, the morphism 7;g:;, where ¢;: X; — X is the
i-th canonical injection of the domain and 7;: ¥ — Y is the j-th canonical
projection of the codomain of g. This way we do not have to explicitly allocate
symbols for the canonical morphisms of the various biproducts in question.

Theorem 1.18 (Krull-Schmidt Theorem, revisited). [Girlla, Theorem 2.2] Let
X1,..., X, and Yy,...,Y,, be objects with local endomorphism ring of an addi-
tive category A. Suppose that g: X1 ®--- @ X,, > Y1 ®--- @Y, is an isomor-
phism. Then n = m and there exists a permutation o of {1,...,n} such that each
Jo(i),it Xi = Yo(;) is an isomorphism.

Proof. Let J be the Jacobson radical of A and Q: A — A/J be the canonical
functor. LetI': A/J — K/\J be the canonical additive full and faithful functor
into the idempotent completion X/\J of A/J. For all morphisms « in A between
objects with local endomorphism ring, « is an isomorphism if and only if Q(«) #
0 by Lemma 1.16(iii), if and only if TQ(«) # 0.



28 CHAPTER 1. PREADDITIVE CATEGORIES

By the classical Krull-Schmidt Theorem 1.14 for idempotent-complete addi-
tive categories, and because I'Q(g) is an isomorphism, we deduce in particular

that n = m.
View g as an n x n matrix, where g;;: X; — Y;. Foreach j =1,...,nlet S;
be the set of indices ¢ = 1,...,n such that g;; is an isomorphism. Consider the

collection of sets {S;};—1,...,. We need to pick an element ¢(j) from S; for each
j =1,...,nin such a way that o(j) # o(k) if j # k. By Hall's Theorem 1.15,
this can be done if and only if |I| < || J,.; Si| forall I < {1,...,n}. Assume by
contradiction that for some I we have |I| > || J,.; Si|. Without loss of generality

i€l
we may assume that I = {1,...,r} and that {1,...,n}\(S1 U --- US,) = {s +
1,...,n} with 0 < s < r < n. Thus we can write g in block matrix form as

[0 %
g=1,
(6] %

where a: X0 - 0X, -YV® - BY, and o': XX, HY€+1®"'@YW,
is such that T'Q(«’) = 0, and similarly we write

(")

where 3: V1@--@Ys - X1@- @ X, and f: V11D - @Y, » X10---®X,.
Computing the top left entry of g~ 'g we have 1 = Ba + '/, from which 1 =
I'Q(Ba). Hence I'Q(L«) is an automorphism of TQ(X;) @ - - - ® T'Q(X,) which
factors through I'Q(Y1) @ --- ® T'Q(Y;). Since idempotents split in K/\J, we
conclude by Lemma 1.11 that TQ(X;) ® - -- ®T'Q(X,.) is a biproduct factor of
QY1) ®--- ®T'Q(Ys). By the classical Krull-Schmidt Theorem 1.14, it follows

that r < s, contradiction. O

1.4 The Chinese Remainder Theorem

In this section we develop a generalisation of the Chinese Remainder Theorem
to rings with many objects, i.e., to preadditive categories. This result is implicitly
used in the proof of the main theorems of [FP10, FPO9b].

For the sake of completeness, we include, and begin with, a version of
the Chinese Remainder Theorem for non-commutative rings. (The only non-
commutative version known to the author is the one sketched in [Hun80, The-
orem 2.25], for riings, i.e., rings that are not required to have an identity ele-
ment.)

Recall that two ideals A and B of a ring R are called comaximal if A+ B = R.

Theorem 1.19 (C.R.T. I). Let R be a ring and {I;};<, a finite collection of ideals
of R. Consider the canonical injective ring morphism

p: R/ (I - [[ R/Ts

i<n <n
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which maps r € R to the n-tuple (r + I;);<n. The following are equivalent:
(i) Theideals Iy, ..., I, | are pairwise comaximal.
(ii)) The map p is an isomorphism.

Proof. If (ii) holds and ¢ < j < n, there is an element r € R such that r + I, =
1+ ;andr+1; =0+ I, thatis,re I and 1 —r e I;,. Thus 1 € I; + I;, and (i)
holds.

Let us prove that (i) implies (ii) by induction on n. The case n = 1 is trivial
and the case n = 2 follows from the definition of comaximality. To give a proof
by induction it then suffices to show that I; and I » --- n I,, are comaximal,
and use the canonical commutative diagram

R/(Lhn-nl,)—2 >R/, x --- x R/,

|

R/I x R/(Iy n-+-n1I,) —=R/I} x --- x R/I,

Thus we turn to showing by induction on ¢ = 2,...,n that
11+(Igﬁ-~-ﬁli)=R
The case ¢ = 2 is trivial. If > 2, then

R=R?
=L +Tan--- L)L+ L)
ch+Ion---nI)
R

from which the conclusion follows. O

Definition 1.20. If A and B are ideals of a preadditive category C, we say that
they are comaximal if A + B is the improper ideal of C, equivalently, if A(X)
and B(X) are comaximal ideals of the ring C(X), for every object X of C.

Definition 1.21. Recall that, in any preadditive category, when we have an
equality 14 = gf where f: A — B and g: B — A, we say that A is a retract of
B, g is a retraction of f, and f is a section of g [Bor94a].

A functor F: C — D is called isomorphism-reflecting , or we say that F
reflects isomorphisms, if, for every pair of objects X and Y of C, we have that
X =Y if F(X) = F(Y) [Fac07]. Similar notions were introduced already in
[Kel64].

The functor F' is said to be retract-reflecting if, for every pair of objects X and
Y of C, we have that X is a retract of Y whenever F(X) is a retract of F(Y).
In other words, for every pair of objects X and Y of C, the identity morphism
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of X factors through Y if the identity morphism of F'(X) factors through F'(Y).
When this happens we may also say that F' reflects retracts. This notion is
weaker than the notion of a “functor which reflects direct summands,” given in
[Fac07] for additive categories. Indeed, consider the additive category C of all
vector spaces over a field and let C’ be the full subcategory of C consisting of
all the vector spaces of dimension # 1, so that C’ is also additive. Then the
inclusion of C’ in C reflects retracts but not direct summands. For instance K2
and K? are objects of C’, and obviously K? is a direct summand of K2 in C,
but not in C'.

Theorem 1.22 (C.R.T. II). Let C be a preadditive category and {I,};<, a finite
collection of ideals of C. Then we have a canonical faithful additive functor

F:c/(Li— ][] o/

<n <n
The following are equivalent:
() The ideals 1y, ...,1,_1 are pairwise comaximal.
(ii) The functor F' is also full.
If these equivalent conditions hold, then F reflects isomorphisms and retracts.

Let us note that the above theorem does not grant, in general, a category
equivalence, because the canonical functor F' may not be dense. To see an
example, please consult Section 7.2.

Proof. If (ii) holds, for each object X of C we have that the canonical ring
morphism

C(X)/ (LX) - [[C(X)/L(X) (1.23)

<n <n
is an isomorphism, and by Theorem 1.19 this implies that the ideals {I;(X)};<n
of C(X) are pairwise comaximal. Since X is arbitrary, this gives (i).
Suppose now that (i) holds. Let X and Y be fixed objects of C. To prove
(ii), we need to show that

F:C(X,Y) - [[C(X,Y)/L(X,Y)
<n
is surjective. By Theorem 1.19, we have that the ring morphism (1.23) is an
isomorphism. Hence, for each i < n, there is an endomorphism h; of X such
that P,F'(h;) = 1x + I,(X) and P;F(h;) = 0 for j # i. Hence for a given tuple
(9; + Li(X,Y));<, we have that

B F (Z gjhj> = Y, PiF(g;)PiF(h;) = PiF(gi) = g: + L(X,Y),

j<n j<n
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as required.

Assume that the two equivalent conditions hold and that F(X) ~ F(Y).
Then there is an isomorphism n: F(X) — F(Y'). Since F is full, we may choose
f: X ->Yandg: Y — X such that F(f) =nand F(g) = n~!. Then F(fg) =1
and F(gf) =1, so that fg = 1 and gf = 1, because F is faithful, hence X >~ Y.

Suppose 1p(x) = fa with a: F(X) — F(Y) and 3: F(Y) — F(X). Since
Fis full, @ = F(g) and 8 = F(f) for suitable morphisms g: X — Y and
f:Y — X. Therefore F(1x—fg) = 0, hence 1x = fg, because F'is faithful. [

Conditions (i) and (ii) of Theorem 1.22 are not equivalent to “F’ is a cate-
gory equivalence.” Indeed, even if F is faithful and full, it is not necessarily a
category equivalence, because it may not be dense. We will give an example
later on (page 135) when the necessary notions will have been introduced.

We conclude with an easy generalisation of the Chinese Remainder Theorem
for preadditive categories:

Theorem 1.24 (C.R.T. III). Let C be a preadditive category and {1;};<, a family
of pairwise comaximal ideals of C, and suppose that for every object X of C the
set supp(X) = {i < K : I;(X) is proper } is finite. Then the canonical faithful
additive functor

F:c/L-]]c/m

<K 1<K
is also full. As a consequence, F reflects isomorphisms and retracts.
Proof. This is a straightforward generalisation of the previous version, Theo-

rem 1.22. Indeed, for any two objects X and Y of C, let S = supp(X ) nsupp(Y).
We have the following canonical commutative diagram

C(Xv Y)/ ﬂieS I’i(X7 Y) - HieS C(X’ Y)/Ii(Xv Y)

l

C(X7 Y)/ mi<n Ii(X’ Y) - Hi<n C(X’ Y)/Ii(Xv Y)

where the top arrow is an abelian group isomorphism by Theorem 1.22. If i < &
is not in S, then either 1x € I;(X) or 1y € I;(Y), and in both cases I;(X,Y)
is improper; this justifies the leftmost vertical identification and shows that the
rightmost vertical arrow is an isomorphism. It now follows that the bottom
arrow is an isomorphism as well. That F' reflects isomorphisms and retracts
follows as in the proof of Theorem 1.22. O
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Chapter 2

Semilocal categories

In this chapter we first recall some notions from ring theory and module theory.
More precisely, we define the concepts of Goldie dimension of a module and
of dual Goldie dimension of modules and rings, and explain their arithmetical
properties. We define semisimple modules and rings, and semilocal rings, and
we collect several characterisations from the literature.

The salient point of this chapter is a result of [FP10], which pertains cate-
gories C that have at least a non-zero object, and such that for every non-zero
object X of C the endomorphism ring C(X) is semilocal. There exists an addi-
tive functor F': C/J — []1cp,im(c) C/I with the property that if /(X) = F(Y)
then X = Y (the functor F reflects isomorphisms), and if 15 x factors through
F(Y), then 1x factors through Y (the functor F reflects retracts). Thus objects
of C have a full class of invariants, their isomorphism classes modulo the ideals
I. This is a result that we will use in the study of Auslander-Bridger modules
(Chapter 4).

In the last part of the chapter we concentrate on the objects of finite type
of a preadditive category A, that is, objects whose endomorphism rings F have
the property that E/J(F) is isomorphic to a finite product of division rings.
Thus the full subcategory C of A whose objects are of finite type is semilo-
cal (provided it has a non-zero object), hence a canonical isomorphism- and
retracts-reflecting functor F' as above exists. Some more can be said about iso-
morphism of indecomposable objects of C in this special case (Corollary 2.25).
These results are a straightforward generalisation of those in [FPO9b] for cate-
gories of modules, and they will be used in the study of biproducts of objects of
finite type in Chapter 5.

33
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2.1 Goldie dimensions and semilocal rings

In this section we introduce the arithmetical properties of the Goldie dimension
and the dual Goldie dimension of modular lattices and the facts about semilocal
rings that are most relevant for this thesis.

The notion of Goldie dimension for modules and rings was introduced in
[Gol58, Gol60] and generalised to arbitrary modular lattices in [GP84]. The
notion of dual Goldie dimension was introduced in [Var79]. The most important
properties of semilocal rings and results about them are originally found in
[CD93], [Bas64] and [Eva73]. All this information is collected in [Fac98, 2.6—
8] and [Fac98, Ch. 4].

2.1.1 Goldie dimension of a modular lattice

Both the notions of Goldie dimension and dual Goldie dimension of a module
are specialisations of the notion of Goldie dimension of a complete modular
lattice L, that is, a lattice satisfying the modular identity, which is the property

c<a = an(bve)=(anb)ve,

and with a greatest element 1 and a smallest element 0. (These can always be
added.) For elements ¢ and b of L such that a < b, we denote by [a,b] the
interval from a to b, that is, the set of elements x of L such that a < z < b.

The central notion here is that of a join-independent subset of non-zero el-
ements of L. For a finite subset A = {a;};<, of non-zero elements of L, we

say that A is join-independent if a; A (\/ a;) = 0 for every ¢ < n. For an

(3 <n
arbitrary family A of non-zero elements of;éfi we say that A is join-independent
if all its finite subsets are. Thus, the notion of join-independence is finitary by
its very definition. An element a of L is said to be essential if it satisfies the
property

anr=0—= =0,
while « is called uniform if it is non-zero and satisfies
O#z,y<a = z Ay #0.

In other words, the interval [0, a], seen as a complete modular lattice in its own
right, has the property that every non-zero element is essential. Here is the
main theorem of this section:

Theorem 2.1. [GP84] For a complete modular lattice L the following are equiv-
alent:

(i) There are no join-independent subsets of L of infinite cardinality.
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(ii) The cardinality of an arbitrary join-independent subset of L is bounded by
some m < w.

(iii) There is a finite join-independent subset {a;};<y of L such that \/
an essential element and all the elements a; are uniform.

i<n @i 1S

When the equivalent conditions of Theorem 2.1 are satisfied, we say that L
has Goldie dimension n (the integer from condition (iii)), and denote this fact
by dim(L) = n. In all other cases we agree that dim(L) = oo, so that dim is a
function taking values in N U {oo}, with the usual conventions that n < cc and
n+ o0 =0+0w = o foraln < w.

2.1.2 Goldie dimension of a module

The Goldie dimension of a module M is defined as the Goldie dimension of
its lattice of submodules. Uniform elements translate to non-zero uniform sub-
modules. More explicitly, a module U is uniform if it is non-zero and the inter-
section of non-zero submodules of U is non-zero, equivalently, if all non-zero
submodules of U are essential submodules. An essential element translates to
an essential submodule. A subset {M;};~, of non-zero submodules of M is a
join-independent subset of the lattice of submodules of M if and only if the

sum Y .__M; is in fact direct. Therefore, for a module M, if there exists a non-

i<k
negative integer n such that M contains an essential submodule of the form
@, ., Us where each U; is uniform, then we say that M has Goldie dimension
n and denote this fact by dim(M) = n. Such non-negative integer n may not
exist, and (*) this is the case precisely when M contains as submodules direct
sums of arbitrarily many submodules, as it follows by specialising Theorem 2.1.
When this is the case, we say that M has infinite Goldie dimension and write
dim(M) = co. Thus the dimension dim(M) is defined for every module M and
is an element of the linearly ordered set N u {co}, with the usual convention
that n < oo for every n < w, and that anything added to o yields oo. From the
definition and property (*) one obtains easily that

Proposition 2.2. The Goldie dimension enjoys the following properties:
() dim(M) = 0if and only if M = 0.
(i) dim(M) = 1if and only if M is uniform.
(iii) If M <. N, then dim(M) = dim(N).
(iv) dim(M) = dim(E(M)).

(v) An injective module has finite Goldie dimension n if and only if it is a direct
sum of n uniform submodules.
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(vi) A module M has finite Goldie dimension n if and only if E(M) = @, _,, E;
where each E; < E is uniform.

(i) If M = A® B, then dim(M) = dim(A) + dim(B).
(viii) If M < N, then dim(M) < dim(N).

Proof. The definition proves (i) and (ii) (a module with a uniform essential
submodule is uniform). For (iii), if dim(M) is finite then dim(M) = dim (V)
follows by the definition, while if dim(M) is infinite, it follows from (*). Since
M <. E(M), (iv) is a special case of (iii).

Let us prove property (v). If F is injective and dim(F) = n < w, then there
is a direct sum @, _,,
implies that £ ~ (P
the injective envelope of a uniform module [Fac98, Lemma 2.24], hence each
E(U;) is uniform. The converse implication holds by the definition.

U; with each U; uniform which is essential in E. This
E(U;). An injective module is uniform if and only if it is

i<n

Property (vi) follows at once from (iv) and (v).

If A or B have infinite dimension, then (vii) follows from (*). If they have
finite dimensions a and b respectively, we have that E(M) =~ E(A) @ E(B) is
the direct sum of a + b uniform modules by (iii) and (v), hence dim(M) =a+b
by (iii).

To prove (viii), notice that if dim(M) = oo then dim(N) = o« by (*), and if
dim(N) = oo then the inequality holds trivially. Hence we can assume that M <
N and both M and N have finite dimension m and n respectively. Since E(M)
is a direct summand of E(N), we have that m = dim(E(M)) < dim(E(N)) =n
by (iii) and (vii). O

As an example of how the Goldie dimension could be used, suppose E is an
injective module of finite Goldie dimension, M is any module with dim(M) =
dim(E), and ¢: E — M is a morphism. Then if ¢ is injective, it is an isomor-
phism. Indeed, since F is injective, ¢ splits, that is, there is ¢): M — FE such that
e = 1. Therefore M = ¢(F)®ker(¢)). Hence dim(M) = dim(FE)+dim(ker())),
from which ker(¢y)) = 0. In particular:

Lemma 2.3. An endomorphism of an injective module of finite Goldie dimension
is an automorphism if and only if it is injective.

2.1.3 Dual Goldie dimension of a modular lattice

To any lattice L one may associate its dual lattice L, obtained by reversing the
partial order, exchanging supremum with infimum. If L is a complete modular
lattice, its dual is still complete and modular, where maximum and minimum
are swapped, that is, 1z = Oy and Ore» = 1;. The dual Goldie dimension of
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a lattice L is defined as the Goldie dimension of the dual lattice L. Let us be
more explicit.

A finite subset {a;};<n of L\{1} is meet-independent if a; v (/\ ien aj) —1
for every i < n. An arbitrary subset A < L\{1} is meet-independent if every
finite subset of A is. Thus meet-independence is a finitary notion, dual to that
of join-independence. An element a of L is superfluous if we have

atzrz=1=—= z=1
for every = € L. A lattice L' is couniform if
r,y#l = z+y#1,

for every x,y € L’. Thus “superfluous” is the dual of “essential” and “[a, 1] is
couniform” dualises “[0, a] is uniform.” We have the dual of Theorem 2.1:

Theorem 2.4. For a complete modular lattice L, the following are equivalent:
(i) All meet-independent subsets of L are finite.

(ii) There exists m < w such that, for every meet-independent subset A of L, we
have that |A| < m.

(iii) There is a finite meet-independent subset {a;}; <y of L such that A
superfluous and each [a;, 1] is couniform.

i<n @i s

When the equivalent conditions of Theorem 2.4 are satisfied, we say that L
has dual Goldie dimension n (the integer from condition (iii)), and denote this
fact by codim(L) = n. Otherwise we set codim(L) = o and agree on the usual
arithmetic rules as for the dimension.

2.1.4 Dual Goldie dimension of a module

The first specialisation of the general notion of dual Goldie dimension is to
lattices of submodules. The dual Goldie dimension of a module M is defined
as the dual Goldie dimension of its lattice of submodules. Elements « such that
[a,1] is a couniform lattice translate to submodules A of M such that M/A
is couniform (= non-zero and the sum of two proper submodules is a proper
submodule). A superfluous element « of the lattice L translates to a superfluous
submodule A of M. A subset {M,};, of non-zero submodules of M is a meet-
independent subset of the lattice of submodules of M if and only if the canonical
morphism M — @, _,.
term coindependent subset rather than meet-independent subset. Therefore, for
a module M, if there exists a non-negative integer n such that M contains
a superfluous submodule K such that M/K is a direct sum of n couniform

M /M, is onto. In the context of modules, we prefer the

submodules, then we say that M has dual Goldie dimension n and denote this
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fact by codim(M) = n. Such non-negative integer n may not exist, and (**) this
is the case precisely when M contains arbitrarily large coindependent subsets of
submodules, as it follows by specialising Theorem 2.4. When this is the case, we
say that M has infinite dual Goldie dimension and write codim(M) = oo. The
codimension function assigns to a module M an element of the linearly ordered
set N u {00} with the usual arithmetic conventions, as for the dimension. We
have the analogue of Proposition 2.2, though both the statement and its proof
are slightly different due to the potential lack of projective covers.

Proposition 2.5. The dual Goldie dimension enjoys the following properties:
() codim(M) = 0 if and only if M = 0.
(i) codim(M) = 1 if and only if M is couniform.
(iii) If X <4 M, then codim(M/X) = codim(M).
(iv) If M has a projective cover P, then codim(M) = codim(P).
(v) If M = A® B, then codim(M) = codim(A) + codim(B).
(vi) If X < M, then codim(M/X) < codim(M).

Proof. Properties (i) and (ii) follow from the definition (a module M with a
superfluous submodule A such that M /A is couniform is couniform).

If {N;/X}i<n is a coindependent family of n submodules of M /X, then
{N;}i<n is a coindependent family of n submodules of M. Therefore (vi) follows
from (**).

Suppose that X <; M. If codim(M /X) is infinite, then codim(M ) is infinite
as well, by (vi). Then suppose codim(M/X) = n < w. There is a superfluous
submodule K/X of M/X such that (M/X)/(K/X) =~ M/K is isomorphic to
a direct sum of n couniform modules. From X <, M and K/X <; M/X we
deduce K <, M, hence also codim(M) = n. This proves (iii).

Inasmuch as it is a particular case of (iii), property (iv) holds.

Let us prove (v). If A or B has infinite codimension, then so has M, by (vi).
Then assume A and B have finite codimensions « and b respectively. There are
Ky <s Aand Kg <, B such that A/K4 and B/Kp are the direct sum of a and
b couniform submodules respectively. Then M /(K4 & Kg) ~ A/K, ® B/Kp
is the direct sum of a + b couniform submodules and K4, @ Kg <; M. Thus
codim(M) = a + b. O

Let g: M — P be a morphism of M into a projective module P, and sup-
pose codim(M) = codim(P) < w. If g is surjective, then g is an isomorphism.
Indeed, if g is surjective, it splits, that is, there is f: P — M such that gf = 1p.
Thus M = f(P) @ ker(g). Since f is injective, we have P =~ f(P), hence
codim(f(P)) = codim(M) and codim(ker(g)) = 0, so that g is also injective. In
particular:
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Lemma 2.6. An endomorphism of a projective module of finite dual Goldie dimen-
sion is an automorphism if and only if it is surjective.

2.1.5 Semilocal rings

Recall that a module M is simple if its lattice of submodules is trivial, that is,
its only submodules are 0 and M. The module M is called semisimple if every
submodule of M is a direct summand of M. It is well-known that a module M
is semisimple if and only if it is a sum of simple submodules, if and only if it is
a direct sum of simple submodules. The direct-sum decomposition into simple
submodules of a semisimple module is unique, i.e., if {M;};e; and {M/}ier
ier Mi and @, M; are
isomorphic if and only if there is a bijection o: I — I’ such that M; = M,
for all ¢ € I. Submodules and quotients of semisimple modules are semisimple.
Cf. [AF92, §9].

If a ring R is such that Ry is a semisimple module, then R is said to be a

are sets of simple modules, then the direct sums P

semisimple ring.!" There are many characterisations of semisimple rings: R is
semisimple if and only if every right R-module is semisimple, if and only if every
right R-module is projective, if and only if every right R-module is injective, if
and only if every short exact sequence of right R-modules splits, if and only if
R is right artinian and J(R) = 0. The most important characterisation is due
to Wedderburn-Artin: A ring R is semisimple if and only if it is isomorphic to
a finite product of matrix rings over division rings, that is, R = [[,_, M,,(D;),
where each D; is a division ring, and n,n; < w. This last condition is left-right

<n

symmetric, hence all the left versions of the conditions above also characterise
semisimple rings. For details about semisimple rings, see [AF92, §13].

A ring R is a semilocal ring if R/J(R) is a semisimple ring. The connection
between semilocal rings and the theory of dimensions is that a ring R is semilo-
cal if and only if codim(Rg) is finite, if and only if codim(rR) is finite. If R is
semilocal, codim(Rg) = codim(gR) = codim(gR/J(R)) = codim(Rgr/J(R)).
Cf. [Fac98, Proposition 2.43]. This common codimension is denoted codim(R).

Lemma 2.7. The codimension for rings is additive, in the sense that codim(R; x
R3) = codim(R;) + codim(Rz). Moreover, if I is an ideal of an arbitrary ring
R, then codim(R/I) < codim(R), with equality if I < J(R). Thus the class of
semilocal rings is closed by finite products and by quotients.

Proof. Suppose R = R; x Ry. Consider the central orthogonal idempotents
e1; and e such that 1 = e; + eg, and R; =~ ¢;Re; = ¢;R. Then codim(R) =
codim(Rr) = codim(eyRp) + codim(eaRp). Notice that an additive subgroup

(DWe note that some authors call these rings “semisimple artinian rings.”
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of e; R is an R-submodule if and only if it is an e; R-submodule, hence it follows
that codim(e; Rg) = codim(e; Re, r) = codim(e; R).

If I is an ideal of an arbitrary ring R, then codim(R/I) = codim((R/I)r,r) by
definition. Since the lattice of R/I-submodules of R/I coincides with the lattice
of R-submodules, codim(R/I) = codim((R/I)g) < codim(Rg) = codim(R), by
Proposition 2.5(vi), where the inequality is an equality if I < J(R) <, Rg, by
Proposition 2.5(iii).

The last assertion of the statement stems from the fact that a ring R is semilo-
cal if and only if codim(R) is finite, as recalled above from [Fac98, Proposi-
tion 2.43]. O]

For instance, a matrix ring R = M,, (D) over a division ring D has codimen-
sion n. If e; denotes the square matrix of order n whose only non-zero entry
is the i-i entry, one sees that Rg = e;R® - -- @ e, R, and each e; R is a simple
(hence couniform) right ideal. Thus codim(M,,(D)) = n.

Lemma 2.8. A semilocal ring R has at most codim(R) maximal two-sided ideals,
and their intersection is J(R).

Proof. Suppose M is a maximal two-sided ideal of R. Then M < Ng for some
maximal right ideal Ng. Thus M < r.anng(Rr/Ng), and equality holds by the
maximality of M. Since Rp/Npg is simple and J(R) is the intersection of all
annihilators of simple right R-modules, J(R) < M. This proves that J(R) is
contained in the intersection of all the maximal two-sided ideals of R. Factoring
out the Jacobson radical, it now remains to prove that the lemma is true for
semisimple rings. Now a semisimple ring S is isomorphic to a finite product of
matrix rings over division rings My, (K7) x -+ x My, (K,) say. Each My, (K;) is
a simple and artinian ring of dual Goldie dimension d;, as we calculated above.
Thus S has dimension d; + --- + d,, (Lemma 2.7), has exactly 2" two-sided
ideals, n of which are maximal, and the intersection of the maximal two-sided
ideals is zero. This allows us to conclude. O

A ring morphism g: R — S is said to be local if, for every r € R, we have
re U(R) if g(r) € U(S). Here is a very important result about semilocal rings:

Theorem 2.9 (Camps and Dicks). Suppose R — S is a local ring morphism. Then
codim(R) < codim(S). Thus if S is semilocal, so is R. (Cf. [CD93, Theorem 1].)

If C is any additive category, then the class of objects X of C such that C(X)
is a semilocal ring is closed under the formation of biproducts. To prove it, we
need the following:

Lemma 2.10. [SV79, Theorems 2.3 and 2.5] Let R be a ring and P a finitely
generated projective right R-module. Then codim(P) = codim(Endg(P)). In
other words, the dual Goldie dimension (as a module) of P equals the dual Goldie
dimension (as a ring) of its endomorphism ring.
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Proof. Suppose first that J(R) = 0. Assume that P has finite dual Goldie di-
mension n. Then there is a surjective R-morphism g: P — @),_,, C; with each
C; couniform and ker(g) <; P. Since J(R) = 0, we have Rad(P) = PJ(R) =0,
from which ker(g) = 0, hence g is an isomorphism. Since C; is couniform,
it has at most one maximal submodule. Because C; is projective, Rad(C;) =
C;J(R) = 0. Since the radical of a module is the intersection of its maximal
submodules, we conclude that 0 is the maximal submodule of C;, hence C; is
simple. Thus P is a semisimple module of length n, and rearranging the fac-
Sy with
2<mMu = n and the modules S, pairwise non-isomorphic simple modules.
Thus Endg(P) = [],.,,
sion is n by Lemma 2.7 and the remark before Lemma 2.8.

tors in the direct-sum decomposition of P, we obtain P =~ &, _,,

M, (Endr(S,,)) is a semisimple ring, whose codimen-

Conversely, let us assume that S = Endgr(P) has finite dual Goldie di-
mension n. Recall that ¢ € J(S) if and only if ¢(P) <, P [AF92, Proposi-
tion 18.20], that is, if and only if ¢(P) < PJ(R) = 0. Thus J(S) = 0. Since
codim(S) = codim(Ss), we have by the same argument as above that Sg is a

semisimple module of length n. Suppose S = @.__ e;S is a decomposition into

i<n
simples, where {e;};<, is a suitable complete orthogonal set of idempotents of
S. Correspondingly we have P = @,__e;P, and the endomorphism ring of

e; P is isomorphic to e;Se;, a division ring. This means that e; P is couniform by

<n

Lemma 4.2, hence codim(P) = n.

Now let J(R) be arbitrary. Let R = R/J(R) and P = P/PJ(R). Since
P is finitely generated, PJ(R) <s P, hence codim(Pg) = codim(Pg). Since
P is a finitely generated projective right R-module and J(R) = 0, by the al-
ready proved part we have codim(Pgz) = codim(Endz(P)). An additive sub-
group of P is an R-submodule if and only if it is an R-submodule, and an
additive group endomorphism of P is an R-endomorphism if and only if it
is an R-endomorphism. Hence codim(Pg) = codim(Pg) = codim(Pg), and
codim(Endz(P)) = codim(Endg(P)). Because P is a finitely generated pro-
jective R-module, we have Endz(P) =~ Endg(P)/J(Endg(P)) [AF92, Corol-
lary 17.12], hence codim(Endg(P)) = codim(Endg(P)/J(Endg(P))), which
equals codim(Endg(P)) by Lemma 2.7. O

The next observation was remarked in passing in [FHO4]:

Corollary 2.11. Let C be an additive category and My and My objects of C. The
endomorphism rings of M, and M, are semilocal if and only if so is the endomor-
phism ring of M = My @ Ms. More precisely, codim(C(M)) = codim(C(M;)) +
codim(C(M3)).

Proof. Let S = C(M) and e; = y;m; € S. Thus Sg = 1.5 @ e2S, hence
codim(S) = codim(Sg) = codim(e;S) @ codim(esS), and by Lemma 2.10,
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codim(e;S) = codim(e;Se;). Because e;Se; =~ C(M;), the conclusion follows.
O

The importance of semilocal rings for the study of direct-sum decomposi-
tions is that if a module M has semilocal endomorphism ring, then it can-
cels from direct sums, that is, M @ X ~ M @Y implies X =~ Y (Theo-
rem 2.13 (Evans)). This cancellation theorem actually holds in every pread-
ditive category, where the direct sums become (possibly “formal”) biproducts
(Section 1.2.1). In other words, it is a theorem about matrices of morphisms;
no module theory is actually involved. The proof of the cancellation theorem
relies on the fact that a semilocal ring has stable range 1:

Theorem 2.12. [Bas64] A semilocal ring R has stable range 1, that is, if Ra +
Rb = R, then a + tb € U(R) for some t € R.

Proof. Suppose first that R is semisimple and that Ra + Rb = R. Because the
ring is semisimple, Rb is a semisimple module, and Ran Rb is a direct summand
of Rb, i.e., (Ra n Rb) @ I = Rb for some left ideal I of R. It follows that
Ra@® I = grR. Consider the surjective morphism p: R — Ra given by r — ra.
We have that ker(u) @ C = R for some left ideal C of R, and p|c: C — Ra
is an isomorphism. Then prR = ker(u) @ Ra = Ra ® I hence ker(u) =~ I,
because R is semisimple (cf. remarks at the beginning of the section on the
uniqueness of the direct-sum decomposition of a semisimple module into simple
modules). Fix an isomorphism f: ker(u) — I. Thus we have an automorphism
n: RR = C@ker(u) > rR = Ra@® I given by ¢ + k — pu(c) + f(k). On the
other hand, » must be right multiplication by some element u € R, necessarily
invertible. Write 1 = ¢ + k with ¢ € C and k € ker(u), so that ka = 0. Thus
a=ca,and v = n(1) = nlc+ k) = plc) + f(k) = ca + f(k) = a + f(k). Recall
that f takes values in I < Rb, hence f(k) = tb for some ¢ € R. This proves that
u=a+theU(R).

Suppose now that R is semilocal, and again that Ra + Rb = R. The ring
R = R/J(R) is semisimple, and Ra + Rb = R. Then there is f € R such that
a + tb € U(R), which implies a + tb € U(R). (The canonical ring morphism
R — Rislocal) O

The following result is known as the cancellation property of modules with
semilocal endomorphism rings.

Theorem 2.13. (Cf. [Eva73, Theorem 2].) Let A be an object of a preadditive
category whose endomorphism ring has stable range 1. Suppose that there are
objects B and C of the category in question such that the biproducts A ® B and
A@C are isomorphic (possibly in the additive closure of the category in question).
Then B =~ C.
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Proof. Consider an isomorphism

Fo(f24 Jan) uep o asc,
fe,a feB

whose inverse is

(9“ g“) L A®C - A®B.
gB,A 9YB,C

It follows that

(1A 0 ) _ <9A,AfA,A +gacfca gaafap+ gA,CfC.,B)

0 1gp 9B,aAfaa+9Bcfc,a 9B.afaB+9BcfoB

By hypothesis, there is an endomorphism ¢ of A such that

u= faa+tgacfca

is an automorphism of A. Consider the mapping

G = ( La tg“) L A®DC > AD B.
9gB,A 9B,C

One has that

u %
GF—( ):A@BﬁA@B,
0 1p

which is clearly an automorphism of A @ B, regardless of the top right entry
that we did not calculate. Then G is an isomorphism, and its top left entry is
14. Then we conclude that B ~ C by applying Lemma 1.13. O

2.2 A full class of invariants for objects of semilo-
cal categories

It is natural to try to use the Chinese Remainder Theorem 1.24 together with
Proposition 1.4 to find a canonical functor C — [[ycp,in(c) C/1 that reflects
isomorphisms, thus obtaining a full set (or class) of invariants for the objects of
C. In trying to do so, one is hindered by the fact that the ideals in Prim(C) may
not be pairwise comaximal. Another problem is that, for a given object X of C,
there may be infinitely many ideals I € Prim(C) such that I(X) # C(X).

In this section, we will see that a setting in which these obstructions van-
ish is that of a semilocal category C. In [FP10], Facchini and Perone define
a semilocal category to be a preadditive category C with at least one non-zero
object, and such that C(X) is a semilocal ring for every non-zero object X of C.
From Lemma 2.7 we immediately deduce that a factor of a semilocal category
by a proper ideal is semilocal, and that the product of finitely many semilocal
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categories is semilocal, while from Theorem 2.9 we deduce that if C — D is
an almost local functor (Lemma-Definition 5.1) and D is semilocal, then so is
C. Also, the additive closure and the idempotent completion of a semilocal
category are semilocal, because finite direct sums and direct summands of ob-
jects which have semilocal endomorphism rings are again semilocal (by Corol-
lary 2.11).

Recall that for a ring R, a prime ideal I is an ideal of R such that, for every
pair of ideals A and B of R such that AB < I, it is the case that A < [ or
B < I. Equivalently, for every pair of elements a,b € R such that aRb < I, we
have ¢ € I or b € I [LamO1, p. 165]. We begin this section with a neat result
generalising [FP10, Lemma 2.1].

Theorem 2.14. Let X and Y be non-gzero objects of a preadditive category C, and
let I be a prime ideal of C(X). Then:

D IfI' = A;(Y) is a proper ideal of C(Y), then A = Aj and I’ is a prime
ideal of C(Y).

(i) If I is a maximal ideal, I' is proper; and C(Y') is a semilocal ring, then I' is
a maximal ideal of C(Y).

Proof. (i) Since A;(Y) = I, the inclusion A; = A follows by Lemma 1.2. Let
us prove that if the inclusion is proper, then I’ = C(Y'), so that the first part of
(i) follows. Then suppose that there exist objects A and B of C and a morphism
ge C(A,B)suchthat ge A/ (A,B) but g ¢ A;(A4, B).

Without loss of generality, we assume that A = B = X. Indeed, there exist
morphisms o € C(X, A) and 8 € (B, X) such that Sga ¢ I = A;(X), while
Bga e Ap(X).

Let ¢ € C(X,Y) and ¢ € C(Y, X) be arbitrary morphisms. Then ¢{g)) <
Ap(Y) =TI = A[(Y), hence () g)Xvpp)y < Aj(X) = I. (Here {e) indicates
the ideal of C(X) generated by e, where e is any endomorphism of X.) Since
I is prime and {¢) & I, it follows that )¢ € I. Because ¢ and ¢ are arbitrary,
ly € A;(Y) = I’ and I’ is not proper, as required.

To prove that I’ is a prime ideal of C(Y'), suppose f, g € C(Y) are such that
fC(Y)g < I'and g ¢ I' = A;(Y). There exist morphisms ag: X — Y and
Bo: Y — X such that Sggag ¢ I. Let a: X — Y and 8: Y — X be arbitrary
morphisms. Then 8faC(X)Bogas < BfC(Y)gay < Ar(X) = I, from which
Bfael. Thus fe A;(Y) = I, as required.

(ii) Since I is maximal, J(X) < I, thus J € A; by Lemma 1.2. In particular,
J(Y) < A;(Y) =TI'. Thus C(Y)/I’ is isomorphic to a quotient of C(Y)/J(Y),
hence it is a semisimple ring. By the Artin-Wedderburn Theorem cited earlier,
C(Y)/I' = [],-,, Ma,(D;) where each d; is a positive integer and each D; is a
division ring. Suppose e + I’ is a central idempotent of C(Y")/I’. Then eCy (1 —
e)c I'ysothatee I’ or 1 — e € I, because I’ is a prime ideal by (i). Thus in
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the decomposition above n = 1 and C(Y))/I’ =~ My, (Dy) is a simple ring, hence
I’ is a maximal ideal of C(Y"). O

While preadditive categories need not have maximal ideals [FP10, Exam-
ple 4.1], the situation is much nicer for semilocal categories, as we show next.

Theorem 2.15. [FP10, Proposition 4.3 and Theorem 4.8] Let C be a semilocal
category.

() Every proper ideal of C is contained in a maximal ideal. In particular, max-
imal ideals exist in C.

(ii)) The maximal ideals of C are exactly the ideals of C associated to maximal
ideals of endomorphism rings of its objects, that is, the ideals in Prim(C).

(iii) The intersection of the maximal ideals of C is the Jacobson radical J of C.
(iv) Distinct maximal ideals of C are pairwise comaximal.

(v) For every object X of C, there are only finitely many maximal ideals I of C
such that I(X) is a proper ideal of C(X).

Proof. Notice that for a semilocal ring S, as it follows from the Wedderburn-
Artin decomposition of S/J(S) into matrix rings, an ideal is primitive if and
only if it is maximal, and there are finitely many maximal ideals. Thus the
family of ideals Prim(C) consists of those ideals of C that are associated to
maximal ideals of endomorphism rings of its objects.

Let us first prove that every I € Prim(C) is a maximal ideal. Let X be
a non-zero object of C and M a maximal ideal of C(X) such that I = A,.
Since A (X) = M, the ideal A, is proper. Suppose I’ is a proper ideal of
C containing A ;. There exists an object Y such that I'(Y’) is a proper ideal
of C(Y). Since Ay (Y) < I'(Y) is proper, we have that Ay, (Y) is actually
maximal by Theorem 2.14, hence A ;/(Y) = I'(Y'). Theorem 2.14 also tells us
that Ay; = Ay (y), so by Lemma 1.2, we have I' € Ajp,. Hence I’ = Ay, = 1.

Since C has a non-zero object, the above also proves that C has a maximal
ideal. More generally, suppose I is a proper ideal of C. Then there exists an
object X of C such that I(X) # C(X). Then I(X) < M for some maximal
ideal of C, and, by Lemma 1.2, we have I < A ;. Thus every proper ideal is
contained in a maximal ideal, and (i) is proved.

The above reasoning can be applied in particular to a maximal ideal I, ob-
taining I = A ;. This completes the proof of (ii).

Part (iii) is Proposition 1.4.

Let I; and I, be distinct ideals in Prim(C) and X an object of C. If both
M; = I;(X) and My = Iy(X) are proper ideals of C(X), then M; and M,
are maximal ideals and I; = A, by Theorem 2.14. Since I, # I, it follows
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that M; and M, are distinct maximal ideals of C(X), hence I (X) + I5(X) =
C(X). If either one of I;(X) is not proper, the same conclusion follows. Since
X is arbitrary, this proves (iv), i.e., that the ideals in Prim(C) are pairwise
comaximal.

Let X be an object of C and I € Prim(C). If I(X) is proper, then I = Ayx,
and I(X) is a maximal ideal of C(X) by Theorem 2.14. Since there are finitely
many, it follows that I(X) is proper for only finitely many I € Prim(C). Since
X is arbitrary, (v) holds. O

The previous result provides a class of invariants for a semilocal category, as
an application of the Chinese Remainder Theorem 1.24.

Notation 2.16. For a semilocal category C, we denote by V(C) the class of
maximal ideals of C. Thus V(C) = Prim(C) (Theorem 2.15(ii)). If M is a
non-zero object of C, we let V(C, M) be the subset of VV(C) consisting of those
maximal ideals of C associated to maximal ideals of the endomorphism ring
C(M), that is, those I such that I(M) # C(M). The set V(C, M) is finite,
because C(M) has finitely many maximal ideals (Lemma 2.8). We will write
V(M) for V(C, M) if the category is understood. Thus V(C) = |JV(C, M),
where the union is taken over all non-zero objects M of C.

Theorem 2.17. Let C be a semilocal category. The canonical additive functor

c— [] cn

1eV(C)
is full, and it reflects isomorphisms and retracts.

Proof. The previous result implies, together with Theorem 1.24, that the canon-
ical functor
c/J— [] cn
IeV(C)
is faithful, full, isomorphism- and retracts-reflecting. We claim that the canon-
ical functor F': C — C/J is isomorphism- and retracts-reflecting as well. The
statement then follows by composing the two functors.

To prove the claim, suppose «: F(X) — F(Y) is an isomorphism. Since
Fisfull, « = F(g) and ! = F(f) for some g: X — Y and f: Y — X.
Thus F(1x — fg) = 0 and F(ly —gf) = 0, thatis, 1x — fg and 1y — gf
are in the Jacobson radical, so that fg and gf are automorphisms, and both f
and g are isomorphisms. Finally, assume that 15 x factors through F(Y’), that
is, 1p(x) = Pa, for some a: F(X) — F(Y) and : F(Y) — F(X). Again,
a = F(g) and 8 = F(f). Thus F(1x — fg) = 0 and fg is an automorphism of
X. Hence 1x factors through Y, as required. O

Notice the following elementary fact:
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Lemma 2.18. Suppose X, Y, and X @Y are objects of a semilocal category C.
Then V(X @Y) = V(X) u V(Y).

A stronger version of the above lemma is Proposition 2.21, and it essentially
comes from [FPO9b, Corollary 3.5].

Proof. If1 € V(X), then I(X @ Y) is proper. For instance, tx7x ¢ I, otherwise
1x € I(X), which is false, because I(X) is a maximal ideal of C(X). Thus
I = Ay xey) by Theorem 2.14, hence Ie V(X ®Y).

Suppose I € V(X @Y). Then either I(X) or I(Y) is proper, for otherwise
lxgy = tx7mx + tymy € I, which is false. Say I(X) is proper. Then I = Ayx,
by Theorem 2.14, hence I € V(X). O

The lemma above shows that when writing V(C) as the union V(C) =
JV(X), such union can be taken over just the indecomposable objects of C.
If C is semilocal, also the additive closure Sums(C) of C is semilocal (Corol-
lary 2.11), and the lemma implies that V (Sums(C)) = (Jyec V(X). Let us
state a very simple consequence of these considerations and Theorem 2.17 for
later reference:

Lemma 2.19. Let C be a semilocal category. Let M and N be biproducts of
objects of C, i.e., M and N are supposed to be objects of Sums(C). The following
are equivalent:

(i) M and N are isomorphic.
(i) M and N are isomorphic in Sums(C)/P for each P € V (Sums(C)).

(iii) M and N are isomorphic in Sums(C)/P for each P € V(Sums(C), X) for
every object X of C.

2.2.1 Rings and objects of finite type

In this section, we explain some results from [FP09b] that will be used in Chap-
ter 5. They pertain a special type of semilocal categories.

Recall that a ring morphism f: R — S is said to be local if f(r) € U(S)
implies r € U(R), for every r € R.

Lemma-Definition 2.20. [FP09b, Proposition 2.1] Let n be a positive integer
and R a ring. The following are equivalent:

(D) R/J(R) is a product of n division rings.

(ii) R admits a local ring morphism into a product of m division rings, and n is
the smallest such positive integer m.

(iii) R has n maximal right ideals, and they are all two-sided.
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(iv) R has n maximal left ideals, and they are all two-sided.

(v) R has n primitive ideals I, ...,I,_1, and R/I; is a division ring for every

< n.

If these equivalent conditions hold, we say that R is a ring of type n. We also
declare that R is a ring of type 0 if |R| = 1. For an object X of a preadditive
category C, we say that X is of type n if its endomorphism ring C(X) is of type n.
For instance, an object of type 0 is a zero object and an object of type 1 is an object
with local endomorphism ring.

Proof. (i) = (ii). Suppose (i) holds. Then R/J(R) is isomorphic to a product of
n division rings. Since the canonical ring morphism R — R/J(R) is local, it fol-
lows that R has a local morphism into a product of n division rings. Also notice
that codim(R) = codim(R/J(R)) = n, by Lemma 2.7. Suppose there is another
local morphism of rings R — | [,_,,, D;, where each D; is a division ring. By The-
orem 2.9 and Lemma 2.7, we have that n = codim(R) < codim(] [,_,,, Di) = m.
Thus (ii) holds.

(ii) = (iii). Suppose (ii) holds. Let g: R — []
phism and D; be a division ring for every i < n. Let P, = ker(p;g) where

,<n Di be a local ring mor-
pi: |l;-, Di — D; is the canonical projection. Since R/P; is a subring of the
division ring D;, each P; is a completely prime ideal of R. In addition, because
the morphism g is local, | J,_,, P is the set of non-units of R. Thus if M is a
maximal right ideal of R, then M < P; for some i < n (Lemma 5.4), hence
M = P; and M is two-sided. Hence the set of maximal right ideals is a sub-
set of {P;}i<n, say {Pi, },<m, With m < n. Then there is a canonical injective
ring morphism R/J(R) — ||, _,, B/F;,, which is also surjective by the Chinese
Remainder Theorem 1.19, and each R/P;, is a division ring, because it has no

w?

non-trivial right ideals. By minimality of n, we have m = n, hence (iii) holds.

(iii) = (). Let {M;};,<, be the set of n maximal right ideals of R, and
assume each M; is actually two-sided. Then we have a canonical injective ring
morphism p: R/J(R) — [],_,, R/M;. Since R/M, has no non-trivial right ideal,
it is a division ring. By the Chinese Remainder Theorem 1.19, p is also surjective,
hence an isomorphism.

Condition (iv) is also equivalent to (i), (ii), and (iii), because (i) is left-right
symmetric.

Here is the only bit of the proof not contained in [FPO9b]. This last condition
(v) will be useful later.

(i) = (v). If (i) holds and I is a primitive ideal of R, then J(R) < I, and R/I
is a simple quotient of R/J(R) =~ Dy x --- x D,,_1, where each D; is a division
ring, hence R/I is also a division ring, and there are n choices for I. Hence (v)
holds.
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(v) = (i). Conversely, suppose Iy, ..., I,—; are the finitely many primitive
ideals of R, and that R/I; is a division ring for every i < n. The Chinese Remain-
I; = J(R). Thus (v) implies (i). O

<m ?

der Theorem 1.19 implies that the canonical ring morphism R — []
surjective, and its kernel is )

What follows was proved in [FP09b, Corollary 3.5] for categories of mod-
ules. Here we give a different and somewhat simpler proof, in the case of addi-
tive categories.

Proposition 2.21. Let C be an additive category and X,Y objects of C of finite
type m and n respectively.

(D If V(X) and V(Y') have non-empty intersection, then X ®Y is not an object
of finite type.

(i) If V(X) and V(Y) are disjoint, then X @Y is of finite type m + n, and
V(X @Y) is the disjoint union of V(X) and V(Y).

Proof. (i) Suppose that I is an ideal in the intersection V(X ) n V(Y'). We claim
that
A < C(X) c<Y,X>)

I(X,Y) IY)
is a maximal right ideal of C(X @Y’), containing I(X @ Y’), but not two-sided;
as a consequence, C(X @Y) is not a ring of finite type.

To show that M is a maximal right ideal, suppose that M’ is a right ideal
of C(X @Y) and that M < M’. There is an element g € M"\M. Then either
922 ¢ I(Y) or g21 ¢ I(X,Y).

In the first case, since C(Y)/I(Y) is a division ring, there is f € C(Y") such
that 1y — g2 of € I(Y'). Then

0 0 n 0 *9172.]" _ 0 0
v f 0 1y —g2of 0 1y

isin M’, and it easily follows that M’ is improper.

In the second case, suppose by contradiction that g2 1 C(Y, X) < I(Y'). Then
C(Y)g2,1C(Y, X) < I(Y) and g2 1 € I(X,Y), because I = Ayy. That is false,
hence there exists f € C(Y, X) such that g, 1 f ¢ I(Y).Thus g (§ /) € M’, and
its bottom-right entry is not in I(Y"), hence we conclude by the first case.

Let us finally show that M is not two-sided. Notice that I(X,Y") is a proper
subgroup of C(X,Y). If not, we would have 1x € Ayy)(X) = I(X), which is
false. Hence we can pick a morphism f € C(X,Y)\I(X,Y). Thus, to show that
M is not two-sided, just notice that M is not closed by left multiplication by
(76)-

(ii) Assume that V(X) and V(Y) are disjoint. Let I be a primitive ideal
of C(X ®@Y). Then A; is a proper ideal of C, so either A;(X) or A;(Y) is
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proper. Without loss of generality, suppose M = A;(X) is proper. Then M
is a maximal ideal of C(X) and A; = Aj,; by Theorem 2.14. It follows that
A(Y) = Ap(Y) is improper, otherwise A ;s would be common to V' (X) and
V(Y'), again by Theorem 2.14. Therefore,

= Ai(X®Y) - ( v C(Y’X)) ,
C(X,Y) C()

which implies that C(X ®Y)/I =~ C(X)/M is a division ring. The proof also
shows that I — A defines an injective mapping from the set of primitive ideals
of C(X@Y) into V(X) u V(Y), hence there are finitely many primitive ideals.
Thus Lemma 2.20(v) shows that C(X @ Y) is of finite type.

We already know that V(X ®@Y) = V(X) u V(Y), by Lemma 2.18. To
conclude that the type of X @Y is m + n, just notice that the type of an object

of finite type Z of C is simply the cardinality of V(C, Z). O

Lemma 2.22. The class of objects of finite type (in any preadditive category) is
closed by biproduct factors and the type is additive, i.e., if X =~ A @ A, is of finite
type, then both A; and A, are of finite type, and the type of X is the sum of the
type of Ay and that of As.

Proof. From the decomposition X =~ A; @ A, we obtain a local ring morphism
End(4;) — End(X) by sending g to ¢;g;, and by composing it with the canoni-
cal projection End(X) — End(X)/J(End(X)), we obtain a local ring morphism
of End(4;) into a finite product of division rings. Therefore A; and A, are
objects of finite type. Since X is of finite type, the rest follows from Proposi-
tion 2.21. O

Corollary 2.23. Every non-gero object X of finite type (in any preadditive cate-
gory) has a decomposition as a biproduct of indecomposable objects of finite type.

Proof. By induction on the type of X and Lemma 2.22. O

Lemma 2.24. Let B be a preadditive category whose objects have finite type. Let
X eBand P € V(B, X), and let F: B — B/P be the canonical functor. Then
B/P has only one non-gero object up to isomorphism, and for any object N of B,
the following are equivalent:

(i) PeV(B,N).
(i) P(N) is maximal.
(iii) P(N) is proper.

(i) F(X)= F(N).
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Proof. The implications (i) = (ii) = (iii) are trivial. Suppose (iii) is true,
that is, F(N) # 0. Then 1y ¢ P, so there are morphisms f: X — N and
g: N — X such that gf ¢ P(X). Thus gf + P is an automorphism in B/P,
because B(X)/P(X) is a division ring. It also follows that (gf)? ¢ P(X), that
is, g(fg)f ¢ P(X), so that fg ¢ P(IN). Since P(N) is proper, it is maximal
by Theorem 2.14, and B(V)/P(N) is a division ring. Therefore fg + P is also
an automorphism in B/P. Hence f + P and g + P are isomorphisms, and
F(X) =~ F(N). This shows that (iii) implies (iv), and also that B/P has only
one non-zero object up to isomorphism. Cf. [FP09b, Lemma 4.5]. If (iv) holds,
then B(X)/P(X) = B(N)/P(N), so that P(NN) is maximal. By Theorem 2.14,
P is associated to P(XV), hence (i) holds. O

The following result was proved in [FPO9b, Corollary 3.5] for modules of
finite type; here is a version for objects of finite type of preadditive categories.

Corollary 2.25. Let A be a preadditive category and X and Y objects of finite
type of A. Then X =~ Y if and only if V(C, X) = V(C,Y), where C is any full
semilocal subcategory of A containing X and Y. Moreover, X is a retract of Y if
andonly if V(C,X) < V(C,Y).

Proof. In both statements one implication is trivially true. Thus suppose that
V(C,X) = V(C,Y). Let B be the full subcategory of C whose only objects
are X and Y. By Remark 1.3, V(B, X) = V(B,Y). Then V(B) = V(B,X) =
V(B,Y). Therefore, if P is any maximal ideal of B, then X and Y are non-zero
objects of B/P, hence isomorphic. By Theorem 2.17, X ~ Y in B, hence in C.

If V(X) € V(Y), for P € V(X) we have that X and Y are isomorphic
modulo P, in particular the identity of X factors through Y in C/P. If P is
not in V(X), then X is zero modulo P, hence trivially the identity of X factors
through Y in C/P. By Theorem 2.17, the identity of X factors through Y in
C. O

Notice that Corollary 2.25 does not hold for objects of a semilocal category.
There is a trivial example. Let D be a division ring and C the category of
finite-dimensional right D-vector spaces. Since Endp(D™) =~ M, (D) is a simple
artinian ring, we have that C is a semilocal category. Of course, D™ and D™
are not isomorphic if n and m are distinct. Nevertheless, V(D") and V(D™)
coincide. Their only element is zero, and it is the Jacobson radical of C. This
example also shows that Lemma 2.24 does not hold if we replace B with an
arbitrary semilocal category.
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2.3 Categories of finite dual Goldie dimension

Besides ideals, a preadditive category C also has one-sided ideals. For instance,
a right ideal of C is a collection I of morphisms of C such that I(X,Y) :=
In C(X,Y) is a subgroup of C(X,Y), for every X and Y in C, and such that
for every f € I(Y, Z) and g € C(X,Y) we have fg € I(X, Z). The right ideals
of C form a (large) complete lattice, whose dual Goldie dimension we define to
be to be the codimension codim(C) of the preadditive category C. The prompt
objection that the reader will raise at this point is that this ought to be qualified
as a “right” codimension. We presently state that this notion of codimension is
left-right symmetric, as is the case for rings, and we will see this quite clearly at
the end of the section (Remark 2.35).

The main aim of this section is to prove that codim(C) is finite if and only
if C is a semilocal category with finitely many non-zero objects. This is not too
surprising as soon as one understands how right ideals can be partitioned, as
we next show, and what the maximal subfunctors of representable functors are.
The maximal subfunctors of C(—, X) are associated to maximal right ideals of
the endomorphism ring C(X), in a way that strongly resembles the situation
for the maximal ideals of semilocal categories.

Recall that a subfunctor of the representable functor C(—, X) can be seen as
a class of morphisms M of C into the object X, such that M(A) := MnC(4, X)
is a subgroup of C(A, X), and such that if ¢ € M(A) and f € C(B, A), then
gf € M(B), for every A and B in C. It is straightforward to see that:

Lemma 2.26. A class I of morphisms of C is a right ideal if and only if it is a
union I = | J . Ix of subfunctors Ix of C(—, X).

If I is a right ideal and X is an object of C, then Ix will denote the class of
morphisms in I whose codomain is X.

Corollary 2.27. A right ideal I is maximal if and only if there exists an object X
such that Ix is a maximal subfunctor of C(—, X) and Iy = C(-,Y) for every
other object Y.

Corollary 2.28. Every proper subfunctor of C(—, X) is contained in a maximal
subfunctor, and every proper right ideal of C is contained in a maximal right ideal.

Proof. Standard application of the Zorn Lemma, plus Lemma 2.26. O

It is interesting to notice that the maximal subfunctors of the representable
functor C(—, X)) are associated to the maximal right ideals of the endomor-
phism ring C(X), in much the same way that the maximal ideals of a semilocal
category are associated to the maximal ideals of the endomorphism rings of its
objects:
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Proposition 2.29. Let G be a maximal subfunctor of C(—, X). Then I := G(X)
is a maximal right ideal of the endomorphism ring C(X), and for every object A
and every morphism g: A — X, we have that

geG(A) — ¢gC(X,A)c L (2.30)

Moreover, given a maximal right ideal I of C(X), equation (2.30) defines a maxi-
mal subfunctor of C(—, X).

Proof. Suppose I < Iy < C(X) for some right ideal Iy. Then G + I[,C(—, X) =
C(—,X), in particulay, Iy = I + Iy = C(X). This shows that I is a maximal
right ideal of C(X).

Let us now prove equation (2.30). Suppose that g ¢ G(A). Then G +
gC(—, A) = C(—, X). In particulay, G(X) + gC(X,A) = C(X). Since G is a
proper subfunctor of C(—, X), we have that G(X) # C(X), thus gC(X, A) is
not contained in G(X). The other implication is trivial.

Now suppose that I is a maximal right ideal of C(X) and define G by means
of (2.30). It is clear that G is then a subfunctor of C(—, X). Suppose G < Gy <
C(—, X), for some subfunctor Go. Then I < Go(X) < C(X), hence either
Go(X) =1 or Gp(X) = C(X). In the first case, Gy = G by the already proved
part of the proposition, in the second case, Go = C(—, X). This proves that G
is in fact a maximal subfunctor. O

Lemma 2.31. A right ideal I of C is superfluous if and only if it is contained in
the Jacobson radical J.

Proof. First notice that I is a superfluous right ideal of C if and only if Iy is a
superfluous subfunctor of C(—, X) for every object X of C, because for right
ideals T and K we have (I + K)x = Ix + Kx, and because of Lemma 2.26.

Thus we are left to prove that a subfunctor G of C(—, X) is superfluous if
and only if G € J(—, X).

First suppose G is superfluous and consider g € G(A) € C(A4,X) for an
arbitrarily fixed object A of C. Let f € C(X, A) also be arbitrary. We have
that 1x — ¢gf is not in G(X), otherwise 1x € G(X) and G is not proper. If H
is the subfunctor of C(—, X) generated by (1x — gf), thatis, H(B) = (1x —
9f)C(B, X) for every B in C, we have that G + H = C(—,X). Thus H =
C(—, X), in particular, 1x € H(X), so that 1x — gf is right invertible. Since
f is arbitrary, we conclude that g € J(A, X), and because A is also arbitrary,
GcJ(—,X).

To prove the converse, let us show that J(—, X) is a superfluous subfunctor
of C(—,X). Consider a subfunctor G of C(—, X) such that G + J(—, X) =
C(—, X). In particular, 1y = g+ j for some g € G(X) and some j € J(X). Thus
g = 1x — j is an automorphism of X, hence G(X) = C(X), and it follows that
G = C(—, X). O
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Lemma 2.32. The Jacobson radical J of C is the intersection of all maximal right
ideals of C. (See also [Mit72, page 21].)

Proof. If g: A — Bisnotin M(A, B) for some maximal right ideal M of C, then
Mg + gC(—,A) = C(—, B). In particular 13 = m + gf for some f: B — A.
Thus 15 — gf € Mp. If this were invertible, M would contain g, which it does
not. Hence 15 — ¢ is not invertible, and this shows that g is not in J. Thus J is
contained in every maximal right ideal.

Conversely, suppose that g: A — B is contained in every maximal right
ideal, and let f: B — A be arbitrary. It follows that gf: B — B is contained in
every maximal right ideal of C.

This includes ideals M thus formed: Let I be a maximal right ideal of C(B),
and let Mg be a maximal subfunctor of C(—, B) containing the subfunctor
IC(—, B) (Corollary 2.28). Let My = C(—,Y) for every Y # B. Thus M is
a maximal right ideal of C (Corollary 2.27). Notice that M p(B) = I (Proposi-
tion 2.29). Therefore g € M implies gf € M, hence gf € I. Since [ is arbitrary,
gf € J(B), hence 15 — gf is an automorphism of B. Because f is arbitrary,
g € J(A, B). The reverse inclusion is thus proved. O

Proposition 2.33. The preadditive category C has finite codimension if and only
if its Jacobson radical J is the intersection of finitely many maximal right ideals.

Proof. If C has finite codimension then there is a bound n on the cardinality of a
family of coindependent right ideals of C. Let {M,},~,, be a coindependent fam-
ily of maximal right ideals of C of greatest cardinality. Since J is the intersection
of all maximal right ideals, J < (),_,, M;. Suppose the inclusion is proper. Then
there is a maximal right ideal M such that (), _,, M is not contained in M. Then
(™) {M,}i<n v {M} is a coindependent set of maximal right ideals of cardinality
n + 1, a contradiction, hence J is the intersection of n maximal right ideals. To
see (*), use the dual of the proof of [Fac98, Proposition 2.31]. Indeed, we have

Mi+<Mm n Mj>=Mi+<mMj+<Mﬂ N Mj>>=

i#Ej<n j<n i#Fj<n
=M, + ((ﬂMj—l—M) ~ N Mj> =M;+ (| M;=C
Jj<n i#j<n i#j<n
Conversely, suppose J = (,_,, M; is the finite intersection of the set of
maximal right ideals {M,};,. We can assume that n is minimal, so that the
family is coindependent. (Indeed, if M; + (), j<n
have that the intersection of n — 1 maximal right ideals )

M, were proper, we would
ij<n M; Is contained
in M;, hence it would equal J, against minimality of n.) Moreover, the interval
[M;, C] is obviously couniform, and the intersection of the family is J, which
is a superfluous right ideal (Lemma 2.31). Therefore the codimension of C is

finite and equal to n. O
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Proposition 2.34. Let C be a preadditive category with at least a non-zero object.
Then C has finite codimension if and only if C is a semilocal category with finitely
many non-zero objects.

Proof. Suppose C is a preadditive category with a non-zero object and finite
codimension, and write J = (),_,, M; with each M; a maximal right ideal.
Then for each non-zero object X we have J(X) = (),_,, M;(X). Each M;(X)
is either equal to C(X) or a maximal right ideal of C(X), by Corollary 2.27
and Proposition 2.29. Thus the Jacobson radical of the endomorphism ring
C(X) is the intersection of finitely many (at most n) maximal right ideals. The
injective morphism C(X)/J(X) — @ C(X)/M,(X) shows that C(X)/J(X)
is a semisimple C(X)/J(X)-module, that is, C(X)/J(X) is a semisimple ring,
hence that C(X) is semilocal. Thus C is a semilocal category.

Also, to each maximal right ideal M; we associate the unique object X;
such that the subfunctor (M;)x, of C(—, X;) is proper (Corollary 2.27). If X
is a non-zero object, we have J(X) # C(X), hence M,;(X) # C(X) for some
i < n. Thus the mapping M; — X is surjective and we have at most n non-zero
objects in C.

Conversely, suppose C is a semilocal category with finitely many objects, say
{X;}i<n. For each i < n there is a finite set {I(*7)} j<n; of maximal right ideals
of the endomorphism ring C(X;) whose intersection is J(X;), because C(X;) is
a semilocal ring.

For every i < n and every j < n;, using Lemma 2.26, Corollary 2.27, and
Proposition 2.29, let M(%7) be the maximal right ideal of C defined by

M7 (X;) = 109, and M§7 = C(—, X;,) if k # .

It suffices to prove that the intersection of the maximal right ideals M (/) is the
Jacobson radical J (Proposition 2.33). For every non-zero object X of C we

() MO0 = () (] M (x)

i<n j<n; i<n j<n;
_ (k.4)
= () M7 (X
Jj<ng

— ﬂ 7(k:3)

j<ng

= J(Xk),

have

thus said intersection and J agree on pairs (X, X;). Next notice that g €
J(X}, Xy) if and only if gC(Xy, X)) < J(X}), so that we conclude by Proposi-
tion 2.29. O

Remark 2.35 (Symmetry). The above proof actually shows more, it shows that
the notion of codimension for preadditive categories is left-right symmetric, that
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is, codim(C) is the same if we use the lattice of left ideals rather than that of
right ideals.

To show this, we note that the positive integer n; can be taken to be the
codimension codim(C(Xj;)) of the semilocal ring C(X;). Moreover, the N :=
3., ni maximal right ideals M (%) of C form a coindependent set whose inter-
section is superfluous (Lemma 2.31), and every interval [M(7) C] is trivially
couniform. Therefore, we have proved that the codimension codim(C) = N of
C is the sum of the codimensions of the endomorphism rings of its non-zero
objects. Since for a ring R we have codim(R) = codim(Rg) = codim(gR), the
conclusion follows.



Chapter 3

The Auslander-Bridger
transpose

3.1 The stable category

If C is a preadditive category and F is a class of objects of C, there is a canon-
ical factor category C/F where all objects in F become zero objects. This is
the factor category C/Ir where Ix is the ideal of C generated by the class of
identity morphisms {1x : X € F}.

If C is an additive category and F is a class of objects of C closed un-
der biproducts, I can be described as the class of morphisms of C that fac-
tor through an object in 7. Indeed, if g € Ix(X,Y), then g = > ._ a;b; for
suitable morphisms a;: F; — Y and b;: X — F;, with each F; in . Then
9= (2icnaim;) (Zj<n 1;b;) factors through @, _,, F;, which is in the family 7.
The converse is trivial.

<n

If, in addition, C is idempotent-complete and the class F is also closed under
biproduct factors, then no objects other than those in F become zero in the
quotient C/F, as we will prove shortly.

Remark 3.1. Suppose C is additive and g € C(X,Y) decomposes as a sum
g = -, 9i of morphisms g; € C(X,Y") such that each g, factors through some
object A; of C. Then g factors through the biproduct A = @, __ A,. To see this,
let ;: A; — A denote the canonical injections and 7;: A — A; the canonical

<n
projections of said biproduct. Write g; as g; = ¢;; with ¢;: X — A; and

57
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p;: A; = Y. Then we have

g= Z 9i = Z wi; = Z YTt =
=3 i = (Z %’7%') (Z Lj¢j> ,

<nj<n i<n j<n
hence g factors through A. In particular, if g is a morphism between two biprod-
ucts, we can write g as

9= D timigm; = > iigim,

,J 0,J
so that if each entry g, ; of g factors through some A4, ;, then g factors through

D, Aij-

Lemma 3.2. Suppose that C is an idempotent-complete additive category and that
F is a class of objects of C closed under biproducts and biproduct factors. If M and
N are objects of C, the following are equivalent:

(i) M and N are isomorphic in C/F.

(ii) There exist objects X and Y in F such that M@® X and N@®Y are isomorphic
in C.

In particular, F is the class of objects that become zero objects in C/F.

Proof. That (ii) implies (i) follows from the fact that the canonical functor C —
C/F is additive and sends the objects in F to zero objects. Thus assume (i)
that M and N are isomorphic in C/F. This means that there exist morphisms
f: M — Nandg: N — M in Csuch that 1,; — gf and 1 — fg factor through
objects in F. Write 1, — gf = ¢'f’ for some f' € C(M,Y) and ¢’ € C(Y, M),
and Y € F. Then we have

T

where e is an idempotent endomorphism of N @Y. Since idempotents split in
C, we have that
1x = uv, 1—e=vwvu (3.49)

for some object X of C and morphisms u € C(N@Y, X) andv e C(X,N@Y).
Equations 3.3 and 3.4 show that N@®Y is the biproduct of M and X in C. Thus
it is only left to show that X is in fact in F. Notice that 1 — e factors through an
object in F. Indeed, in matrix form,

TR ‘e A
-f'9 Iy —f4q
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and all entries factor through objects in F, hence by Remark 3.1 and the fact
that 7 is closed under biproducts, 1—e factors through an object in F. Therefore
we may write 1 — e = /v’ with X’ = dom(u’) = codom(v’) in the family F.
Then

1x = uw = u(vu)v = (uu')(v'v)

shows that 1x factors through an object X’ in F, hence X is a biproduct factor
of X’ (Lemma 1.11), thus X lies in F.

To verify the last assertion, if M becomes a zero object in C/F, by what has
already been proved, M @ X >~ Y for some X and Y in F. Since the class F is
closed by biproduct factors, it follows that M € F. O

Let us specialise the above construction to the category of right R-modules
and the class F of all projective right R-modules, which is closed under arbitrary
direct sums and under direct summands. The category (Mod-R)/.F is called the
stable category and is usually denoted by Mod-R. When two modules M and
N are isomorphic in the stable category, we also say that M and N are stably
isomorphic, and it follows from Lemma 3.2 that M and N are stably isomorphic
ifand only if M @ P ~ N @ Q for suitable projective modules P and Q.

The full subcategory of the stable category whose objects are the finitely
presented right R-modules is denoted mod-R. The analogous constructions for
left R-modules are denoted by R-Mod and R-mod.

3.2 The Auslander-Bridger transpose

The duality after which this subsection is named is a categorical duality from the
stable category of finitely presented right R-modules to the stable category of
finitely presented left R-modules. Before giving the definition, we recall some
general results, that will be useful also later on, and then study the category of
morphisms between projective modules.

Recall that if U is an S-R-bimodule, we can consider the U-dual, that is, the
pair of contravariant additive functors

sHomp(—,U): Mod-R — S-Mod,
Homg(—,U)g: S-Mod — Mod-R.

When the bimodule U is clear from the context, we will use (—)* to denote
either of these functors. Recall that M* is called the U-dual of M and M** the
U-double dual, and similarly for morphisms. For each right R-module or left
S-module M, we let

om(m)(y) = y(m),
for m € M and v € M*. This defines the evaluation map opr: M — M**,
which is a module morphism natural in M. A module M is called U-reflexive
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if ops is an isomorphism. The class of U-reflexive modules is closed by direct
summands and finite direct sums [AF92, Proposition 20.13]. Moreover, if M
is U-reflexive, then M* is also U-reflexive [AF92, Proposition 20.14(3)]. Of
particular importance is the following:

Proposition 3.5. [AF92, Proposition 23.1] The U-dual induces additive categor-
ical dualities between the full subcategory of U-reflexive right R-modules and the
full subcategory of U-reflexive left S-modules, indeed, (—)** =~ 1 via the evaluation
natural isomorphism o.

For the details we refer to [AF92, §20 and §23].

In this section, we will focus on the case U = grRp, i.e., the R-dual. The
module rR is readily checked to be reflexive, hence all finitely generated free
modules Rk R" (n < w) are reflexive, therefore finitely generated projective mod-
ules (= direct summands of R" for various n < w) are reflexive modules. More-
over, if P is a finitely generated projective module, then so is its dual P*. In-
deed, since P ® @ =~ gR" for some n < w, we have P* ® Q* =~ R},. Therefore
the categorical duality of Proposition 3.5 restricts to a duality from the category
of finitely generated projective right R-modules to that of finitely generated pro-
jective left R-modules, and (—)** is naturally isomorphic to the identity functor
(via the evaluation map o).

Let Pr be the class of finitely generated projective right R-modules, and
Morph(Pg) the morphism category of this class of modules. The objects of this
category are the R-module morphisms between objects in the class Pr. We will
denote by P the object up: Py — P;. A morphism u: P — @ in the morphism
category is a pair of R-module morphisms (ug, 1) such that ujup = pouo.

P P()Lpl

Q QOTQ>Q1

A morphism (ug, u1) in the morphism category is an isomorphism if and only if
both ug and u; are isomorphisms (of R-modules).

From the considerations in the previous paragraphs, it follows that the ad-
ditive contravariant functor (—)* = Hom(—, R) induces an additive duality

Morph(Pr) — Morph(gP), (3.6)

and (—)** is naturally isomorphic to the identity functor. Precisely, for any
object P of the morphism category, we have that op: P — P** is the pair
op = (JPO,O'pl).

The duality (3.6) is used to define the Auslander-Bridger transpose, a duality
between the stable module categories mod-R and R-mod. The reason is that
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these stable categories are equivalent to factors of the morphism categories of
Pr and g P respectively. There exists a canonical additive full and dense functor

C: Morph(Pr) — mod-R

which sends an object P to the right R-module coker(up) = Py/up(FPy). For
a morphism u: P — @, we let C(u) be the equivalence class in mod-R of the
morphism mapping = + pup(Fp) to ui(z) + po(Qo).

Py~ P, — P\ /up(Py) —0

uo l lﬂq \LC(u)

Qo —a” Q1 — Q1/pq(Qo) —=0

Every finitely presented module is (by definition) isomorphic to the cokernel of
a morphism between finitely generated projective modules, thus C is dense. By
the lifting property of projective modules, C is full.

Lemma 3.7. The kernel Ky, of the functor C consists of those morphisms u: P —
@ such that there is a morphism f: P — Qg such that uiup = po fup.

Proof. If C(u) factors through a projective module, then it also factors through
the epimorphism ng, say C(u) = mgg.

) Ny LY o § £ pm—

ug ui - C(u)
J/// f J/; g l

QOWQIW)C(Q)HO

Then the image of u; — gmp sits inside the kernel of 7, hence u; — gmp factors
through pg, say ui = gmp + pof. Then uipp = po frp.

Conversely, suppose there exists an f: P, — Qg such that uipup = pgfup.
Define g: C(P) — Q1 by g(x+ up(Po)) = (u1 — o f)(x). Then g is well-defined
and mgg = C(u). Since @) is projective, C(u) = 0. O

The property that allows one to define the Auslander-Bridger transpose is
the following:

Lemma 3.8. For every morphism u: P — @ in the morphism category we have
that u € Ky if and only if u* € grK.

Proof. One verifies directly that if u is in Kg then v* is in g K. In the same way,
if u* is in gK, then u** is in K. Using the “evaluation” natural isomorphism
o one sees that this is equivalent to u being in Kg. O
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Therefore we can define the Auslander-Bridger transpose to be a functor Tr
completing the following commutative square:

_\k
Morph(Pp)/K i ~—> Morph(sP)/nK (3.9)
ci ic
mod-R e G > R-mod

The duality Tr is not canonically defined, as it depends on the choice of a quasi-
inverse of the leftmost additive equivalence C. Also notice that Tr? is naturally
isomorphic to the identity functor, because (—)** is.

In practice, suppose that M is a finitely presented left R-module. Then we
have an exact sequence

RR™ A LRn M 0, (3.10)

where A is a suitable m x n matrix. Taking the dual yields the following exact
sequence of right R-modules:

_ *

|

R R™ Tro(M) ——0

The vertical arrows are canonical isomorphism, and Try(M) is defined to be
the cokernel of A x —, and is also often called the Auslander-Bridger transpose
of M. Then one lets Tr(M) = Tro(M), except for the fact that Tro(M) is a
module while Tr(M) is an object of mod-R. Notice that different choices of
the presentation (3.10) may yield non-isomorphic possible choices for Try (M),
although (3.9) assures that all possible choices for Tr(M) are isomorphic, i.e.,
the possible choices for Tro (M) are all stably isomorphic.

In some cases though, we have canonical representatives (up to isomor-
phism) for the stable-isomorphism classes of M and Trq(M), for instance, when
the ring R is semiperfect.

Recall that a ring R is semiperfect if every finitely generated right R-module
has a projective cover, if and only if every simple right R-module has a projective

cover, if and only if there is a decomposition R = @,_, e; R where each e; is a

<n
local idempotent, i.e., e? = e; and e; Re; is a local ring [Bas60, Theorem 2.1].

If the base ring is semiperfect, a finitely presented module M decomposes as
a direct sum M = My® P with P projective and M, without non-zero projective
summands, and if M = M; @ Q@ is another such decomposition, then P ~ @
and My ~ M; [War75, Theorem 1.4]. It follows that M is the canonical rep-

resentative (up to isomorphism) of the stable-isomorphism class of M [War75,
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Corollary 1.5]. Moreover, M, admits a minimal projective presentation, that is,
M is the cokernel of a morphism pup: Py — P; such that both ker(up) <5 Py
and pp(FPy) <s P1, and the dual morphism P* has the same properties, that is,
both its kernel and its image are superfluous submodules, and coker(y%) has no
non-zero projective summands, and is thus the canonical representative for the
stable-isomorphism class of Tro (M) [War75, Lemma 2.3].

All these results involving the Auslander-Bridger duality also hold for a more
general class of modules [FG11] that will be treated in Chapter 4.
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Chapter 4

Auslander-Bridger modules

The Auslander-Bridger duality finds its best applications in the study of finitely
presented modules over semiperfect rings, as we have seen at the end of Sec-
tion 3.2. We will prove that all those nice results about finitely presented
modules over a semiperfect ring also hold for the modules M that are coker-
nels of morphisms between projective modules whose endomorphism rings are
semiperfect, equivalently, between two finite direct sums of couniform projec-
tive modules (Proposition 4.7). In other words, we will drop all hypotheses on
the ring but require a bit more from the presentations, and the same results will
hold. Among the cokernels M mentioned above, we consider those that have
no non-zero projective summands. We call these modules Auslander-Bridger
modules. Besides extending the well-known theory of finitely presented mod-
ules over semiperfect rings, we will see that an Auslander-Bridger module M is
characterised up to isomorphism by two invariants, namely, its epi-isomorphism
class [M]~, and its lower-isomorphism class [M]~,. In addition, the Auslander-
Bridger transpose preserves Auslander-Bridger modules and exchanges the in-
variants, that is, [M]~, = [N]x, if and only if [Tro(M)]~, = [Tro(N)]~, and

=e e 14
[M]y, = [N]s, if and only if [Tro(M)]~, = [Tro(N)]~,. Via a suitable duality,
we also study the class of modules M that have no non-zero injective sum-
mands, have finite Goldie dimension, and such that F(M)/M also has finite

Goldie dimension. These will be called dual Auslander-Bridger modules.

Notation 4.1. conceptdual Auslander-Bridger modules

4.1 Couniform projective modules

In this section we set about to investigate the peculiar class of projective mod-
ules that are finite direct sums of couniform submodules.
Recall that a module M is called local if it has a largest proper submodule,

65
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that is, if M is a cyclic module with a unique maximal submodule. An idempo-
tent e of a ring R is called local if eRe is a local ring.

Couniform projective modules are characterised by many equivalent condi-
tions, cf. [AAF08, Lemma 8.7] and [FG10, Lemma 2.2].

Lemma 4.2. Let R be an arbitrary ring. For a projective right R-module P the
following are equivalent:

(i) P is couniform.
(ii) P is the projective cover of a simple module.
(iii) P is the projective cover of a couniform module.
(iv) P is local.
(v) Endg(P) is a local ring.
(vi) There exists a local idempotent e of R such that P =~ eR.

Moreover, if these equivalent conditions hold, then Hom(P, Rg) =~ Re is a couni-
form projective left R-module.

Proof. ((i) = (ii)) Suppose P is couniform. Since P is a non-zero projective
module, it has a maximal submodule M. Thus P/M is simple, and the canon-
ical epimorphism P — P/M is a projective cover, for M <, P because P is
couniform.

Since a simple module is trivially couniform, (ii) implies (iii).

((iii) = (i)) Let g: P — C be a projective cover with C couniform. Let K be
the kernel of g. Suppose A; and A, are submodules of P such that A; + A; = P.
Then (4; +K)/K+(A2+ K)/K = P/K, thus either (4;+ K)/K = P/K because
P/K =~ C is couniform. Then A; + K = P and A; = P because K <, P. This
proves that P is couniform.

((@) = (iv)) Suppose P is couniform. Since all proper submodules are su-
perfluous, they are all contained in Rad(P). The latter is a proper submodule
because P is a non-zero projective module. Thus Rad(P) is the largest proper
submodule of P. For the converse, notice that any local module is couniform.

(@) = (v)) Since P is couniform, P is indecomposable. Because P is inde-
composable and projective, an endomorphism of P is an automorphism if and
only if it is surjective. Since P is couniform, the set of non-surjective endomor-
phisms of P is an ideal of Endz(P). (Cf. page 105.) This proves that Endz(P)
is local.

((v) = (i) Suppose A+ B = P. Define a surjective morphismo: A®B — P
by (a,b) — a + b. Since P is projective, there exists 7: P — A @ B such that
lp = 07 = ouamaT + oupmpT. Because Endg(P) is a local ring, either term
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is an automorphism of P, say oitama7. Thus ous: A — P, which is the set
inclusion of A in P, is surjective, i.e., A = P. This proves that P is couniform.

((vi) = (W) If P ~ eR and e is a local idempotent of R, then eRe =~ End(P)
is local.

((ii) = (vi)) Suppose P is the projective cover of a simple module S. Recall
that S is also a homomorphic image of R, hence P is isomorphic to a direct
summand of R, by the fundamental lemma of projective covers. Thus P ~ eR
for some idempotent e of R, and eRe =~ Endg(P) is local by the already proved
equivalence of (ii) and (v). Thus e is a local idempotent.

Of course the conditions (i-v) plus the dual of (vi) are all equivalent for a
projective left R-module P. The last assertion of the statement then follows
from the fact that Hompg(eR, R) =~ Re for every idempotent e of R, by the
isomorphism g — g(e). O

Trivially, a projective module P satisfying the equivalent conditions of the
previous lemma has the property that every quotient of P has a projective cover.
We will see that the projective modules with this property are precisely the
projective lifting modules.

Lemma-Definition 4.3. A module M is a lifting module if, for every submodule
U of M, there exists a direct summand K of M contained in U such that U/K <,
M /K. This last condition is equivalent to U n H <, H for some (and for every)
complement H of K in M.

Proof. Suppose K is a direct summand of M below U. Let H be any com-
plement of K in M. In the following commutative square, all morphisms are
canonical.

U/K —— M/K

]

UnH—H

The vertical canonical epimorphisms are both isomorphisms, because M = H®
K, and, by the modular law, U = (U n H) @ K. Therefore, U/K <; M/K is
equivalentto U n H <, H. O

Remark 4.4. Notice that for a submodule U of a lifting module M, we have
U < M if and only if U contains no non-zero summands of M.

Suppose U <, M and that M = M'@®M" with M’ < U. Since U+ M" = M,
we have M"” = M and M’ = 0. Thus U contains no non-zero summands of M.
Conversely, suppose the latter holds. Since M is lifting, we can write M = K@H
with K < Uand UnH <, H. By hypothesis K = 0, hence H = M and U <, M.

Lemma 4.5. A projective module P is a lifting module if and only if every quotient
of P has a projective cover.
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Proof. Suppose that every quotient of P has a projective cover. Let U be any
submodule of P. Then there is a projective cover g: Q — P/U, and of course
we have the canonical epimorphism n: P — P/U. By the fundamental lemma
of projective covers [AF92, Lemma 17.17], P has a direct-sum decomposition
P = H® K with H =~ @, K < ker(m) = U, and such that the restriction
wlg: H — P/U of « is a projective cover for P/U. In particular, ker(n|g) =
U n H <, H. Thus P is lifting.

Conversely, suppose P is a projective lifting module. Let M be a quotient
of P, which means that M = P/U for some submodule U of P. Decompose P
as P=H® K with K < U and U n H <, H. Then the canonical morphism
H — P/U is a projective cover. O

A subclass of projective lifting modules is the class of projective modules that
are direct sums of finitely many couniform submodules. Before characterising
said class of projectives, let us include here a result from [Rou76], for the sake
of completeness.). We give a simpler proof using the dual Goldie dimension.

Lemma 4.6. [Rou76, Corollaire 1.2] Suppose P is a projective module that is the

direct sum of n couniform submodules, say P = ,__ P,, and suppose that L is a

i<n
couniform submodule of P not contained in Rad(P). Then L is a direct summand

of P.

Proof. For some i < n, the restriction 7;|1,: L — P; is surjective. If not, m;(L)
Rad(F;) for all ¢ < n, hence m;(L) < Rad(P) for all i < n, from which L
Rad(P), which is false. It follows that P = L + Y.j<n.j»i Iy hence that there
is a canonical epimorphism g: L& Py ® - ® P, ®--- @ P,,_1 — P. Since the
domain and the codomain of g have the same dual Goldie dimension and P is
projective, g is in fact an isomorphism (cf. discussion before Lemma 2.6). This
means that the sum L + ., ., P; is direct, therefore L is a direct summand
of P. O

<
<

Proposition 4.7. The following conditions are equivalent for a projective right
module P # 0 over an arbitrary ring R:

(i) P is a direct sum of finitely many couniform submodules.
(ii) P is a finitely generated lifting module and P/PJ(R) is semisimple.

(iii) P is the projective cover of a semisimple module T of finite length and every
direct summand of T has a projective cover.

(iv) Endg(P) is a semiperfect ring.

(M Also, it seems to the author that that paper is scarcely available.
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Proof. ((i) = (ii)) Suppose P is a finite direct sum P = @,__ P; of couniform
submodules. Since each P; is a couniform projective module, each P; is local
by Lemma 4.2((i) < (iv)), hence cyclic, therefore P is finitely generated. Since
P/PJ(R) = @®,_, P;/P;J(R) and each P;/P;J(R) is simple (because P;J(R) =
Rad(P;) is the unique maximal submodule of P;), we have that P/PJ(R) is a
semisimple module. It is left to prove that P is a lifting module, equivalently

<n

(Lemma 4.5) that every quotient of P has a projective cover. We do this by
induction on n > 1. The case n = 1 holds by Lemma 4.2, as it was remarked
before Definition 4.3. Assume n > 1 and fix a submodule M of P. Recall
that PJ(R) is superfluous in P because P is finitely generated, by Nakayama’s
Lemma. Therefore, if M < PJ(R), then M is superfluous in P, so that the
canonical epimorphism P — P/M is a projective cover. Hence we can assume
that M « PJ(R). It follows that (M + PJ(R))/PJ(R) =~ M/(M n PJ(R))
is a non-zero submodule of the semisimple module P/PJ(R). Thus M /(M n
PJ(R)) contains a simple submodule isomorphic to P;/P;J(R), for some i < n.
Hence there is a non-zero morphism P, — M /(M nPJ(R)), which lifts to a non-
zero morphism g: P, — M, because P; is projective. Since P; is local and g # 0,
the image of ¢ is a local submodule L of M, and L is not contained in PJ(R).
By Lemma 4.6, L is a direct summand of P. Thus P = L @ Q for some Q < P,
and M = L® (M n Q). Since Q is a direct sum of n — 1 couniform projective
modules by the Krull-Schmidt Theorem 1.14, the inductive hypothesis implies
that P/M ~ Q/(M n Q) has a projective cover, as required.

((i) = (iii)) If (ii) holds, simply let T" = P/PJ(R). Then T is semisimple
and the canonical epimorphism P — T is a projective cover, because P.J(R) is
superfluous in P by Nakayama’s Lemma. Moreover, a direct summand of T is
isomorphic to a quotient of P, hence every direct summand of T has a projective
cover.

((iii) = (i)) Decompose T as T' = P
each S; has a projective cover P;, therefore (P
T, hence we must have P ~ @), _,,
covers. To conclude, notice that each P; is couniform by Lemma 4.2((i) < (iii)).

i<n i with each §; simple. By (iii),
,<n Pi 1s a projective cover of

P; by the fundamental lemma of projective

(@) < (iv)) Let S = Endg(P). P is a finite direct sum of couniform projec-
tive modules if and only if, Lemma 4.2((i) < (ii)), P is a finite direct sum of
modules with local endomorphism ring, if and only if S has complete orthogo-
nal set of local idempotents (recall that Endg(eP) = eSe for e € S idempotent),
that is S is a semiperfect ring (cf. page 62). O

Recall the duality between the category of finitely generated projective right
R-modules and the category of finitely generated projective left R-modules in-
duced by (—)* = Hompg(—, R) in Section 3.2. Said duality restricts to one
between finite direct sums of couniform projective right R-modules and finite
direct sums of couniform projective left R-modules, as it follows from the iso-
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morphism (eR)* =~ Re and by additivity of (—)*. Here are some useful features
of this duality:

Lemma 4.8. Let g: () — P be a morphism between finite direct sums of couniform
projective modules. Then:

(D ¢(Q) is superfluous in P if and only if g*(P*) is superfluous in Q*.

(i) ker(g*) is superfluous in P* if and only if g(Q) is not contained in a proper
direct summand of P.

Proof. 1f ¢(Q) is not superfluous in P, there exists a non-zero direct summand
A of P such that A < g(Q) (Remark 4.4). Let 7: P — A be an epimorphism
that is the identity on A. Now A is projective and 7g:  — A is onto, so that
there exists a: A — Q with mga = 14. Then 14+ = a*g*n*, so that g*n*(A*)
is a non-zero direct summand of Q* contained in ¢*(P*). Therefore g*(P*) is
not superfluous in Q*.

Now suppose g* (P*) not superfluous in @Q*. (The modules P* and Q* are
also finite direct sums of couniform submodules, as remarked above.) By what
has just been shown, ¢**(Q**) is not superfluous in P**. By applying the
“evaluation” natural isomorphism o (Section 3.2), we see that this means that
9(Q) is not superfluous in P.

Assume that ¢(Q) is contained in a proper direct summand of P. Thus there
is a decomposition P = A @® B with B # 0 and ¢(Q) < A. Then ngg = 0,
from which g*n% = 0. Thus ker(¢g*) contains a non-zero direct summand of P*,
isomorphic to B*. Therefore, ker(g*) is not superfluous in P*.

Conversely, suppose that ker(g*) not superfluous in P*. Thus there is a de-
composition P* = A@® B with A # 0 and g*14 = 0. It follows that ¢** =
9™, hence that the image of ¢g** is contained in the direct summand
mH(B*) = B* of P**, and such direct summand is proper because A* # 0.
Hence ¢g**(Q**) is contained in a proper direct summand of P**. Applying the
“evaluation” natural isomorphism o, we see that g(Q) is contained in a proper
direct summand of P. O

4.1.1 Couniform projective objects

In this section we will show how several facts about couniform projective mod-
ules and their finite direct sums extend, curiously, to the context of preadditive
categories.

Throughout this section we will work inside a preadditive category. We will
occasionally expand our environment to the additive closure in order to consider
(formal) biproducts, as notation such as (X, Y") will suggest.
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Definition 4.9. We say that a morphism f: A — X has superfluous image if,
whenever (f,g): (A, B) — X is an epimorphism, then g: B — X is an epimor-
phism.

It is easy to see that if we assume that the objects are modules and the
morphisms are module morphisms, then this notion coincides with the usual
one.

Here is the analogue of [AF92, Proposition 17.11] for projective objects of
preadditive categories.

Proposition 4.10. Let P be a projective object and S its endomorphism ring. For
an endomorphism f of P, the following are equivalent:

(i) Forevery g: X — P, if (f,9): (P,X) — P is an epimorphism, then g is an
epimorphism; that is, f has superfluous image.

(ii) The endomorphism f is in the Jacobson radical of S.

Proof. Suppose (i) holds and suppose that fS + I = Sg. Then fs+ g = 1p
for some s € S and some g € I. Then (f,g): (P,P) — P is an epimorphism.
Indeed, h(f,g) = 0 if and only if hf = 0 and hg = 0, which implies h =
h(fs + g) = 0. Therefore g: P — P is an epimorphism. Since P is projective,
there is ¢’ € S such that g¢' = 1p, hence I = Sg. This shows that fS is a
superfluous submodule of Sg, hence contained in J(.59).

Assume that (ii) holds and let (f,g): (P, X) — P be an epimorphism. Let
(f',g)F': P — (P,X) be such that (f,g)(f",¢')T = 1p, thatis, g¢’ = 1p — ff'.
Since f € J(9), it follows that g¢’ is an invertible element of S, hence g is an
epimorphism. O

Definition 4.11. A non-zero object C' is called couniform if, whenever a mor-
phism of the form (f,g): (X,Y) — C is an epimorphism, either f: X — C or
g: Y — C is an epimorphism. In other words, all morphisms into C that are
not epimorphisms have superfluous image.

The definition is coherent with the usual notion of a couniform right R-
module, that is, a couniform right R-module is precisely a couniform object of
the category of right R-modules.

As in the case of modules (Lemma 4.2), we have that:
Proposition 4.12. For a projective object P, the following are equivalent:
(i) P is couniform.

(ii) P has local endomorphism ring.
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Proof. Suppose P has local endomorphism ring and (¢4, ¢5): (A, B) — Pisan
epimorphism. Since P is projective, there exists (¢4,v5)T: P — (A, B) such
that 1p = w14 + ¢pYp. Since the endomorphism ring of P is local, either of
the two terms is an automorphism of P, say ¢ 14, and from this it follows that
4 is an epimorphism. This shows that P is couniform.

Conversely, suppose P is couniform. Let f and g be endomorphisms of
P such that f + ¢ is an automorphism of P. We show that either f or g is
an automorphism of P, hence the sum of two non-automorphisms is a non-
automorphism and the endomorphism ring of P is local.

Since f + g is an automorphism of P, we have that (f,g): (P,P) — P is an
epimorphism, so that either f or g is an epimorphism. Without loss of generality,
assume that f is an epimorphism. Then there is an endomorphism f’ of P such
that ff’ = 1p, because P is projective. If, by contradiction, f’ is not an epimor-
phism, then f’f is also not an epimorphism. Since (f'f,1p — f'f): (P,P) » P
is an epimorphism and P is couniform, necessarily 1p — f’f is an epimorphism.
Then f(1p — f'f) = 0 implies f =0 and 1p = ff' = 0, a contradiction. There-
fore f’ is necessarily an epimorphism. Thus ff’ = 1p implies (f'f — 1p)f' =0
which implies also f’f = 1p, hence f is an automorphism of P, as required. [

The characterisation of superfluous submodules of a finite direct sum of
couniform projective modules (Proposition 4.7 and Remark 4.4) carries over
to biproducts of couniform projective objects.

Proposition 4.13. Suppose P = (P;);<n is a biproduct of couniform projective
objects. Then a morphism «: A — P has superfluous image if and only if no
non-zero splitting monomorphisms 3: B — P factor through «, that is, whenever
there is a commutative triangle

A—2=p (4.14)

with (8 a splitting monomorphism, we have § = 0.

Proof. Suppose the morphism « has superfluous image. Since f = ay is a
splitting monomorphism, there is 8’: P — B such that 8’3 = 1. It is easy to
see that (o,1p — 83'): (A, P) — P is an epimorphism. Then 1p — 3’ is an
epimorphism, because « has superfluous image. Now 3'(1p — 83’) = 0, hence
B =0, and then g = 5(8'8) = 0.

Next assume that « does not have superfluous image, so that there exists
B: B — P such that (o, 8): (A, B) — P is an epimorphism but § is not. Then
mo(a, B): (A, B) — P, is also an epimorphism, and since P, is projective, there
is (va,v5)T: Py — (A, B) such that 1p, = moatha + moBvp. Since Py has local



4.2. AUSLANDER-BRIDGER MODULES 73

endomorphism ring (Proposition 4.12), either term is an automorphism of P,.
Without loss of generality we assume that mya4 is an automorphism of Py,
with inverse, say, ©. Then we have the commutative triangle

A—2>p

¢j§\\\Ta¢Aﬁ

Py

where aw 49 is a non-zero splitting monomorphism factoring through «. O

4.2 Auslander-Bridger modules

We are ready to give the most important definitions of this chapter.

Definition 4.15. Over any ring R, let P¢ denote the class of projective right R-
modules that satisfy the equivalent conditions of Proposition 4.7. (The symbol
P has already been used earlier for finitely generated projective modules.) A
right R-module M is said to be P¢-finitely presented if there exists a short exact

sequence

g f

P Py M 0, (4.16)

with Py, P; € P¢, which we call a presentation of M. Such presentation is said
to be minimal if both ker(g) <; P; and ¢g(P1) <s FPy. An Auslander-Bridger
module is a P-finitely presented module with no non-zero projective direct sum-
mands. The full subcategory of Mod-R whose objects are the Auslander-Bridger
modules is denoted AB.

Of course we have analogous notions for left R-modules. We will use a left
or right index i to make the side clear when needed.

Let us first point out that we can assume that (4.16) is a minimal presenta-
tion:

Lemma 4.17. Every P¢-finitely presented module has a minimal presentation.

Proof. Start with a presentation (4.16). Since M is isomorphic to a quotient of
Py and P, is a projective lifting module (Proposition 4.7), M has a projective
cover. By the fundamental lemma of projective covers, there is a decomposition
Py = Qo @ C such that f|g,: Qo — M is a projective cover and C < ker(f).
Notice that Qg is in P¢, because P¢ is closed by direct summands. Also, we
have that g(P1) = ker(f) = C® (Qo n g(P1)) = C @ ker(f|q,) by the modular
law, hence ker(f|q,) is isomorphic to a quotient of P;. As above, we see that
ker(f|o,) has a projective cover Q1 — ker(f|g,) and that Q; is a direct sum-
mand of P;, hence in P¢. The composite Q1 — ker(f|g,) < Qo — M — 0 is the
minimal presentation required. O
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Lemma 4.18. Let X be a homomorphic image of a projective module in P€¢. Then
X decomposes as X = N @ P where P is in P¢ and N has no non-gero projective
summands. Moreover, if X = N' @ P’ is another such decomposition of X, then
Nx=N'and P~ P'.

Proof. Notice that the dual Goldie dimension codim(X) is finite. Indeed, since
X is isomorphic to a quotient of a projective ) in P¢, it has a projective cover
(', isomorphic to a direct summand of @, hence in P¢. Thus codim(X) =
codim(Q"), which exists and is finite (Proposition 2.5).

Then we can prove the existence of the decomposition by induction on
codim(X). If X has no non-zero projective summands, then we just let N = X
and P = 0. (This includes the base step of the induction.) Otherwise, X = P®Y
with P a non-zero projective. Notice that P is isomorphic to a direct summand
of Q', hence P lies in P¢. Moreover, Y is a homomorphic image of @’ and
codim(Y) < codim(X), so by the inductive hypothesis the required decomposi-
tion exists for Y, hence for X.

Again by induction on codim(X), we prove the essential uniqueness of the
above decomposition. Suppose X = N@® P = N' @ P'. If P = 0, then also
P’ = 0, because N has no non-zero projective summands, hence N = N’. (This
includes the base step of the induction.) If P # 0, it has a couniform direct
summand C, hence P = C @ (Q for some complement ) < P. Since C has
local endomorphism ring, it is isomorphic to a direct summand of either N’
or P’, hence necessarily of P’. Therefore P’ ~ C'® @Q’, and cancelling out C
(Theorem 2.13) yields N®Q =~ N'®Q’. The conclusion follows by the inductive
hypothesis. O

Lemma 4.19. Both the class of P°-finitely presented modules and the class of
Auslander-Bridger modules are closed by finite direct sums and direct summands.

Proof. It is clear that finite direct sums of P¢-finitely presented modules are
‘Pe-finitely presented. Suppose M is P¢-finitely presented with a minimal pre-
sentation (4.16), and suppose that M decomposes as M = A @ B. Since A and
B are isomorphic to quotients of Py and P, is a projective lifting module, both
A and B have a projective cover, say fa: P4+ — A and fp: Pg — B respec-
tively. By the fundamental lemma of projective covers, we have a commutative

diagram
Py < Py d M 0,
‘|
Pa®Pp fa®fB A®B

where ¢ is an isomorphism. It follows that P4 and Pp are in P°. Now ¢g(P;) =
ker(fa® fp) = ker(fa)@ker(fp), so that ker(f4) and ker(fp) are isomorphic to
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quotients of Pj, hence each of ker(f4) and ker(fp) has a projective cover, and
it lies in P¢. Thus A and B are P¢-finitely presented.

Now, if M is an Auslander-Bridger module and N is a direct summand of M,
then N is P¢-finitely presented. Since M has no non-zero projective summands,
neither has N, thus N is an Auslander-Bridger module.

Finally, if M and N are Auslander-Bridger modules, then the direct sum
M@N is P-finitely presented. It is left to prove that it has no non-zero projective
summand. Suppose P is a non-zero projective direct summand of M @ N. Then
P is isomorphic to a direct summand of Py; @ Py, where Py, is a projective
cover of M and Py is a projective cover of N. It follows that P is in P¢. Then
P, hence M @ N, has a direct summand C that is couniform, and as such C
has local endomorphism ring. The identity of C' factors through M & N, say
l¢ = fg for some g: C — M @ N and a suitable f/: M @ N — C. Then
lc = fimymmg+ finmng, and since the endomorphism ring of C is local, one of
the two terms is an automorphism of C. It follows that the identity of C factors
through either M or through N, hence that C is isomorphic to a couniform
projective direct summand of either M or N, which is not possible. O

Lemma 4.20. Let M and N be Auslander-Bridger modules. Then M and N are
stably isomorphic if and only if they are isomorphic.

Proof. If M and N are stably isomorphic, then M @ P >~ N @ Q for suitable
projective modules P and @, cf. Section 3.1. If we prove that we can assume
that P and @Q are in P¢, we conclude by Lemma 4.18.

It is easy to see that a morphism M — N between Auslander-Bridger mod-
ules factors through a projective if and only if it factors through a projective in
P¢, namely, through the projective cover of N. Thus M and N are isomorphic
in the stable category if and only of they are isomorphic in (Mod-R)/P¢. Thus
by Lemma 3.2 we can assume that P and () above are in fact in P¢. O

Let M be a P¢-finitely presented module. By Lemma 4.18 M = N @ P with
P in P¢ and N with no non-zero projective summands. Since N is P¢-finitely
presented by Lemma 4.19, it is an Auslander-Bridger module. Hence M is stably
isomorphic to N, that is, the stable isomorphism class of M is represented by the
Auslander-Bridger module N. Lemma 4.20 tells us that such N is unique up to
isomorphism. Hence Auslander-Bridger modules are canonical representatives
of stable isomorphism classes of P-finitely presented modules.

For every Auslander-Bridger module M fix a minimal presentation

Qur —2 Py s g 0. (4.21)

Applying Hom(—, R) to ¥, and taking the cokernel we get the exact sequence

9
Py —— Q% — Q3;/03(Py;) —=0. (4.22)
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Lemma 4.8 tells us that Q%,/9%,(P5;) is an Auslander-Bridger module and
(4.22) is a minimal presentation. (This generalises [War75, Lemma 2.3].) As
we have seen at the end of Section 3.2, the module Tro(M) := Q%,;/9%,(Px;)
is an eligible choice for the Auslander-Bridger transpose of M, and is actually
the best possible choice, since Tr( () is the canonical representative (up to iso-
morphism) of its stable isomorphism class, i.e., of the isomorphism class of the
object Tr(M) of the stable category. Cf. Section 3.2. (Here by Tro(M) we mean
the module Q3%,/9%,(P*), the Auslander-Bridger transpose of M, while Tr(M)
stands for the same module but seen as an object of the stable category, again
called the Auslander-Bridger transpose of M.)
We now have the following extension of [War75, Theorem 2.4].

Theorem 4.23. Let M and N be Auslander-Bridger right modules. Then:
(i) M ~ N ifand only if Tro(M) = Tro(N).
(i) Tro(Tro(M)) = M.

(iii) Tro(M @ N) = Tro(M) @ Tro(N).

Proof. (i) If M and N are Auslander-Bridger right modules, we have that M =~
N if and only if M and N are stably isomorphic (Lemma 4.20). This happens
if and only if Tr(M) =~ Tr(N), that is, if and only if Tro(M) and Tro(N) are
stably isomorphic, because Tr is a duality. As we have remarked above, both
Tro (M) and Tro(N) are Auslander-Bridger modules, hence Tro(M) and Tro (V)
are stably isomorphic if and only if Tro(M) =~ Tro(N) (again by Lemma 4.20).

(ii) Since Tr? is naturally isomorphic to the identity functor, we know that
Tro(Tro(M)) is stably isomorphic to M for every finitely presented module M.
If M is an Auslander-Bridger module, then so is Tro(Tro(M)), from which it
follows that Tro(Tro(M)) = M.

(iii) Since Tr is an additive functor, Tr(M @ N) =~ Tr(M) @ Tr(N), that is,
Tro(M @ N) and Tro(M) @ Tro(N) are stably isomorphic. Both of them are
Auslander-Bridger modules, so that Tro(M @ N) =~ Tro(M) @ Tro(N). O

The study of biproduct decompositions in an additive category is connected
with the study of factorisations in commutative monoids. Let us explain briefly
what this means. To every additive category C we can associate a commutative
monoid (possibly large) Mon(C)."Y The underlying class of Mon(C) is a full
class of representatives of objects of C up to isomorphism. For every object X,
we denote by (X)) its representative in Mon(C). The operation on the monoid
is induced by the construction of biproducts in C, viz., (X) +(Y) = (X @Y.
This addition is clearly well-defined, commutative, and there is the identity

(DIn the literature, this monoid is usually denoted V (C), but this clashes with the notation we
use (and is also typically adopted) for a certain set of ideals of the category C, cf. Section 2.2.
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element (0). Moreover, Mon(C) is reduced, that is, no element is invertible,
for (X) + (Y) = {0) means that X ® Y =~ 0, from which necessarily X =
Y = 0, ie., (X) = (Y) = (0). Biproduct decompositions of objects of C
translate into decompositions of elements into sums in Mon(C), or, if we use the
multiplicative notation on Mon(C), into factorisations of elements. For instance,
X is a biproduct factor of Y if and only if (X) < (Y), that is, there exists
(Z) such that (X) + (Z) = (Y). Thinking of the operation as multiplication,
we would say that (X) divides (Y'). Indecomposable objects correspond to
atoms, i.e., non-zero elements that cannot be written as a sum of two non-zero
elements. Hence a biproduct decomposition into indecomposables corresponds
to a factorisation into atoms.

For more information about the connection between commutative monoids
and direct-sum decompositions we refer to the survey paper [WWO09].

In terms of commutative monoids, Theorem 4.23 can be rephrased as fol-
lows:

Corollary 4.24. The mapping n: Mon(ABg) — Mon(zrAB) defined by the po-
sition n: (X )+ ( Tro(X)) is a monoid isomorphism, and n? = id.

To be precise, when we write ?> we mean the composition of the mapping
7n: Mon(ABRr) — Mon(zrAB) with the mapping Mon(rAB) — Mon(ABg)
defined analogously.

Proof. From the statement of Theorem 4.23 we glean that 7 is well-defined and
injective (property (i), and that > = id (property (ii)). In particular, n is
surjective. Finally, n respects the operation by property (iii). O

4.3 Epi-isomorphism and lower-isomorphism

Let us turn our attention to the morphism category of P¢ for a moment. Re-
call that here P¢ denotes the class of finite direct sums of couniform projec-
tive modules, i.e., the projective modules of Proposition 4.7. The zero module,
that is, the direct sum of the empty family, is a member of P¢. Our interest
in Morph(P¢) is justified by the fact that among its objects we find the mini-
mal presentations of Auslander-Bridger modules. We will tacitly assume that
P¢ contains some non-zero module, otherwise there is little to talk about, that
is, no non-zero Auslander-Bridger modules. Because of this assumption, the
category of morphisms in question has a non-zero object.

Lemma 4.25. The morphism category Morph(P¢) is semilocal.

Proof. By assumption, it has a non-zero object. Consider any non-zero object
P of Morph(P¢). By construction, its endomorphism ring F is a subring of the
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product ring S := Endg(P1) x Endg(Fp). It consists of those pairs (g1, go) such
that (*) goup = ppgi. Now (g1, go) is invertible in S if and only if g; and g, are
both invertible. When this is the case, we obtain from (*) that upg;* = g5 ' 1up,
hence (g, *, g, ) belongs to E. This shows that the inclusion of rings ¢: F — S is
a local ring morphism. Since both End i (P;) are semilocal rings, so is S. Because
¢ is a local ring morphism, F is also semilocal (Theorem 2.9), as required. [

Since Morph(P¢) is a semilocal category, all the machinery of Section 2.2 is
available to its study.

In the category of right R-modules, the class of morphisms with superfluous
image is an ideal, say K, because the sum of two superfluous submodules is
superfluous and superfluous submodules are preserved by module morphisms.
It is then clear that the class Kq (resp. K;) of morphisms u: P — @ in the
category Morph(P¢) such that ug: Py — Qg is in K (resp. u;: P, — @ is in K)
is an ideal. (Cf. page 14, preimages of ideals.)

Lemma 4.26. Every maximal ideal of the semilocal category Morph(P°¢) contains
either Ky or K.

Proof. Let A; be a maximal ideal of Morph(P°¢), where [ is a maximal ideal of
the endomorphism ring E of a non-zero object X of Morph(P¢).

We claim that K¢(X)nK;(X) < J(E). Suppose that f; is in the intersection,
and that f5 is an arbitrary endomorphism of X. Let g = f f2 and let us show
that 1 — g is invertible. For each ¢ < 2 we have

Xi=(1x)i(Xi) = (1 —g) +9)i(X;) =
=((1—9)i +9)(Xi) < (1 —9)i(Xi) + :(Xi) < Xy, (4.27)

hence (1 — ¢):(X;) + 9:(X;) = X;. Since g;(X;) <5 X;, it follows that (1 — g);
is surjective. Since P; is a projective module of finite dual Goldie dimension,
(1 — g); is actually an automorphism (Lemma 2.6). Therefore (1 — ¢)o and
(1 — g); are automorphisms, hence so is 1 — g. This proves our claim.

Recall that J(F) is the intersection of all maximal ideals of E, because E is
a semilocal ring (Lemma 2.8). Then J(E) < I. By the claim,

Since a maximal ideal is prime, we have that K;(X) < I for some ¢ < 2. Then
K, < A; by Lemma 1.2, and this completes the proof. O

Theorem 4.28. The canonical functor
Morph(P¢) — Morph(P€)/K¢o x Morph(P<)/K1

reflects isomorphisms.
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Proof. Suppose P and () are objects of the morphism category in question such
that P and @ are isomorphic modulo both K, and K;. Recall that, since
Morph(P¢€) is a semilocal category, Theorem 2.17 grants us a canonical iso-
morphism reflecting functor

Morph(P¢) — H Morph(P¢)/I.
IeV (Morph(P¢<))
By Lemma 4.26, the objects P and @ are isomorphic modulo every maximal

ideal I of Morph(P¢), hence P and () are isomorphic in the morphism category.
O

Although we do not need such generality, we note that Lemma 4.26 and
Theorem 4.28 hold when P¢ is replaced by the more inclusive class of projective
modules of finite dual Goldie dimension, with exactly the same proofs.

To an Auslander-Bridger module M we associate its fixed minimal presen-
tation (4.21), viewed as an object ¥5; of Morph(P¢). A morphism f: M — N
between Auslander-Bridger modules lifts to a morphism between their presen-
tations, (f1, fo): Ya — 9, thanks to the lifting property of projective modules.

QM Y M Py ™™ M 0 (4.29)
fll lfo lf
QN ——=Pn — >N 0

N

Conversely, a morphism (fi, fo): Yi — 9n induces a morphism f: M —
N. The rule M — ¥p and f — (f1, fo) does not define a functor AB —
Morph(P¢), because multiple choices are possible for the liftings f; and fo.
Nevertheless, (f1, fo) induce the zero morphism M — N if and only if there is
a morphism g: Py; — Qu such that fy = dyg, that is, if and only if f; factors
through ¥5. The collection of such morphisms is an ideal H of Morph(P¢),
and we obtain a well-defined additive functor AB — Morph(P¢)/H. The ideal
H is related to, but not quite the same as, the ideal of null-homotopic chain
mappings. Indeed, the presentation of M (resp. N) embeds in a projective
resolution of M (resp. N).
The important feature of diagram (4.29) is that

Lemma 4.30. The morphism f: M — N is an isomorphism if and only if both
fo: Py — Py and fi: Qa — Qn are isomorphisms. As a consequence, M and
N are isomorphic if and only if ¥ and ¥ are.

Proof. The lemma holds because the exact rows in (4.29) are the beginning
of minimal projective resolutions of M and N respectively. Let us prove it
for completeness. If (fy, f1) is an isomorphism, i.e., both f, and f; are iso-
morphisms, then fmy, = 7wy fo is surjective, hence f is surjective. A bit of
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diagram-chasing shows that f is also injective. (Alternatively, one can use the
Snake Lemma.) Conversely, if f is an isomorphism, then 7y fo = fmws is sur-
jective. Because wy has superfluous kernel, f; is surjective as well. Thus fj
is a splitting epimorphism, so that ker(fy) is a direct summand of P,;. Since
ker(fo) < ker(mps) is also superfluous in Py, it follows that ker(fy) = 0, so
that f; is an isomorphism. It also follows that f; restricts to an isomorphism
ker(mpr) = 9 (Qur) — ker(nmy) = Un(Qn), hence we conclude that f; is an
isomorphism by repeating the same argument. O

If M and N are Auslander-Bridger right R-modules, we say that M and
N are epi-isomorphic, or that they have the same epi-isomorphism class, and
write M =, N, if ¥y, and ¥ are isomorphic objects in Morph(P¢)/Kq. We
also say that M and N are lower-isomorphic, or that they have the same lower-
isomorphism class, and write M =~, N, if ¥, and )y are isomorphic objects of
the category Morph(P¢)/K;. Notice that these definitions do not depend on the
choice of the minimal presentations ¥,; and 9 because they are unique up to
isomorphism.

The notions of epi-isomorphism and lower-isomorphism just given are equiv-
alent to those introduced in [FG11], as is easily seen. For instance, M ~, N
if and only if, by definition, ¥, and ¥ are isomorphic in Morph(P¢)/Ko, i.e.,
if and only if there are morphisms (f1, fo): 9p — Yn and (g1,90): In — Y
such that (1g,, — g1 f1, 1py, —90f0) € Ko and (1g, — f191, 1py — fogo) € Ko, that
is, both 1p,, —go fo and 1p,, — fogo have superfluous image. Thus M ~. N if and
only if there are morphisms f: M — N and g: N — M such that 1p,, — gofo
and 1p, — fogo have superfluous image, which is the definition of M and N
being epi-isomorphic according to [FG11]. Similarly for the notion of lower-
isomorphism.

Epi-isomorphism class and lower-isomorphism class characterise Auslander-
Bridger modules up to isomorphism:

Proposition 4.31. If M and N are Auslander-Bridger modules, then M ~ N if
and only if M and N are both epi-isomorphic and lower-isomorphic.

Proof. By Lemma 4.30, M and N are isomorphic if and only if ¥,, and ¥, are
isomorphic, and Theorem 4.28 tells us that this happens if and only if they are
isomorphic both modulo Ky and modulo K;, which means that M and N are
both epi-isomorphic and lower-isomorphic. O

Although the positions M — ¥, and f — (f1, fo) do not define a functor,
we have that:

Proposition 4.32. There is an additive local and isomorphism-reflecting functor

G: AB — Morph(P¢)/Ky x Morph(P¢)/K; (4.33)
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defined by M — (Va,9n) and f — ((f1, fo) + Ko, (f1, fo) + K1), that is, the
reductions of (f1, fo) modulo Ky and K are well-defined. In particular, AB is a
semilocal category.

Proof. Suppose for the moment that the functor is well-defined. If G(M) =~
G(N), then ¥, and ¥ are isomorphic in Morph(P¢) by Theorem 4.28. If
(91,90): 9pr — Yy is an isomorphism, then the morphism M — N it induces
is an isomorphism (Lemma 4.30). To see that G is local, suppose g: M —
N is such that G(g) is an isomorphism. Hence there are morphisms (f1, fo)
and (h1, ho) such that 1 — (g1,90)(h1,ho) € Ki, 1 — (h1,h0)(g1,90) € Ki,
1 — (f1,f0)(91,90) € Ko, and 1 — (g1,90)(f1, fo) € Ko. These four conditions
imply that g1, h1, fo, and go are all surjective. (Otherwise, one can argue as
in (4.27) and reach a contradiction.) These surjective morphisms imply that
codim(Pys) = codim(Py) and codim(Q ;) = codim(Q ), and that the epimor-
phisms ¢g; and go are in fact isomorphisms. By the remarks before this proposi-
tion, g is an isomorphism.

The only thing that remains to prove is that if f = 0, necessarily (f1, fo)
is in both K, and Kj, that is, the images of both f; and f, are superfluous
submodules. The minimal projective presentation (4.21) of M yields the short
exact sequence

UaYs ™™

0 — Qu/ker(9ar) Py M 0.

Applying the functor — ® R = — ®g R/J(R), we get an exact sequence

IM®R

_ 5 =
0 — Torf (M, R) —> = ® R

9 1V1®R ™M ®R

Py®R

M®R—=0.

The arrow 9, ® R is the zero morphism, because the image of ¥,;, which is
equal to the image of 9, is superfluous in Py, hence contained in Py, J(R).
Thus the natural (connecting) morphisms d,; and 7y ® R are isomorphisms.
The naturality of these two isomorphisms implies that the morphism f: M — N
yields two commutative squares

_ k) —
Torf (M, R) s S @R

Torf*(f,R) ifl@R

— Q =
TOI‘F(]\L R) SN ker(gN) ®R
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and
_ T R _
Pu®@R—% . M oR
f0®Rl lf@R
Py ®R = N®R

Therefore, if f = 0, then fy ® R and f; ® R are both zero. Recall that — ®x
R/J(R) is naturally isomorphic to —/ — J(R), hence fo(Pa) < Py J(R) and
f1(Qnr/ker(Var)) < (Qar/ker(V9ar))J(R), which implies f1(Qn) < QumJ(R).
By Nakayama’s Lemma, (f1, fo) is in both K and Kj;.

The fact that AB is a semilocal category follows from the fact that the class
of semilocal rings is closed by quotients, finite products, and that the domain of
a local ring morphism into a semilocal ring is again semilocal (Section 2.1.5).

O

Recall that the functor (—)* induces an additive duality Morph(P§) —
Morph(gP¢). Lemma 4.8(i) tells us that, for a morphism g: Q — P in the
morphism category of P§,, we have that g € K if and only if g* € K; and that
g € K, if and only if g* € Ky. Therefore (—)* canonically induces additive
dualities

Morph(P5)/Ko — Morph(Pg) /K1,

Morph(P%)/K1 — Morph(Pg3)/Ko.
Also recall how we defined the transpose Tro(M ) for an Auslander-Bridger mod-
ule M: We applied (—)* = Homp(—, R) to the minimal presentation ¥»; of M
and let Tro (M) = coker(¢%,). In this way, Tro(M) is an Auslander-Bridger left
R-module and 93, is a minimal presentation of Tro (M) (also by Lemma 4.8).
It is then natural to stipulate that the fixed minimal presentation of Try(M) is
Uvo(ary = U},. From all these considerations it is pretty straightforward to see
that the Auslander-Bridger transpose between right and left Auslander-Bridger
modules swaps the invariants, i.e., that:

Proposition 4.34. For Auslander-Bridger modules M and N,
() M =, N ifand only if Tro(M) =, Tro(N), and
(ii) M =~y N if and only if Tro(M) =, Tro(N).

Proof. We have that M ~. N if and only if 9, and ¥y are isomorphic modulo
Ky, and this happens if and only if ¥%, and ¥%; are isomorphic modulo K;, that
is, if and only if Tro(M) =~ Tro(V). Similarly for the other equivalence. O

Theorem 4.35. [FG11, Theorem 5.6] Let M be a non-zero Auslander-Bridger
module and E = Endg(M). Let

(= {f e B Torli(f, B) = 0},
e={feF:f®R=0}
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Then [ and e are proper two-sided ideals of FE, the canonical morphism E —
E/tx E/eis a local morphism, [ ne < J(FE), and every maximal right ideal, every
maximal left ideal, every maximal two-sided ideal of E, contains either | or e.

Proof. Everything follows from Proposition 4.32. The local functor G induces a
local ring morphism

n: Endr(M) — Morph(P¢)(9rr)/Ko(9ar) x Morph(P)(9ar)/K1(Par)

In the course of the proof of Proposition 4.32 we have seen that Torf(f, R) = 0
if and only if f1(Qn) € QmJ(R), ie., if and only if (f1, fo) € K;, and that
f® R = 0if and only if fo(Py) S Py J(R), i.e., if and only if (f1, fo) € Ko.
Hence [ and ¢ are the kernels of the ring morphisms myn and 7, thus they are
proper two-sided ideals.

Also, n factors as n'm where 7: E — E/I x E/e is the canonical mapping.
Then if 7(g) is invertible, so is n(g), hence so is g, because 1 is a local mor-
phism. This proves that 7 is also a local morphism. From this it also follows
that ker(7) = [ n ¢ has to be contained in J(E). (If n(g) = 0, for every f € E,
we have (1 — fg) = 1, so that 1 — fg has to be invertible.)

Recall that E is semilocal (Proposition 4.32), hence J(E) is the intersection
of all its maximal ideals M. Thus le < [ne < J(F) < M implies that [ < M
or ¢ < M, because M is prime. If M is a maximal right (resp. left) ideal of
E, notice that M contains the maximal two-sided ideal r.anng(E/M) (resp.
l.anng(E/M)). O

It follows that we have exactly one of the following two conditions:

(i) The ideals I and ¢ are comparable. Suppose for instance [ < e¢. In this case,
every maximal right, left or two-sided ideal of E contains [, and J(E) is
the ideal of E containing [ such that J(E)/I = J(E/I). Similarly when

[De.

(i) The ideals | and ¢ are not comparable. In this case, if Jy 2 [and J, 2 ¢
are the ideals of E such that J;/l = J(E/I) and J./e = J(E/e), then
J(E) = Jyn J.. By Lemma 2.8, J| is the intersection of the maximal two-
sided ideals of E that contain [ and J, is the intersection of the maximal
two-sided ideals of E' that contain e.

We can then rephrase the notions of epi- and lower-isomorphism class as
follows. For M and N Auslander-Bridger modules, we have M ~, N if and
only if there are morphisms f: M — N and g: N — M suchthat 1,y —gf € ey
and 1y — fg € ey. Similarly, we have that M =~, N if and only if there are
morphisms f: M — Nand g: N — M suchthat1y,—gf € [py and 1y —fg € Iy.
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As the terminology suggests, there is a connection with the concepts of
epigeny class and lower part for couniformly presented modules, that we will
study thoroughly in Chapter 6.

Recall that two modules M and N are said to have the same epigeny class
if there exist two surjective morphisms M — N and N — M [Fac96]. Also, if
both M and N have a projective cover, then we have the notion of lower part.
Suppose pys: Py — M and py: Py — N are projective covers. Then we say
that M and N have the same lower part if there are morphisms f: M — N
and g: N — M such that any two liftings fy: Py — Py and go: Py — Py
satisfy fo(ker(par)) = ker(pn) and go(ker(pn)) = ker(pa). It is easy to see
that the notion is well-defined, that is, that it does not depend on the choice
of the liftings fy, and gy, or on the choice of projective covers. Indeed, this
stems from the fact that if hy is a morphism P,; — Py such that nyhy = 0,
then ho(Py) < ker(py) <s Pn. (The notion of lower part was introduced
for cyclically presented modules over a local ring [AAF08] and for couniformly
presented modules [FG10].)

If M and N are Auslander-Bridger modules, we see that M and N have
the same lower part if and only if there exist two morphisms f: M — N and
g: N — M such that f;: Q) — @Qn and g1 : Qn — Qys are surjective.

If M and N are Auslander-Bridger modules, then M =, N implies that M
and N have the same epigeny class. Indeed, suppose that f: M — N and
g: N —> M aresuchthat 1, —gf € epr and 1y — fg € ey. The image of 1, —gf
is equal to that of (15; — gf)ma = mar(1p,, — gofo) which is equal to 7wy (1p,, —
gofo)(Py) < mp(PuJ(R)) < MJ(R). Then we have that M = 1,(M) <
gf(M)+ MJ(R) < M from which g(N) = M, by Nakayama’s Lemma. In the
same way one shows that f(M) = N. Similarly, M =, N implies that M and N
have the same lower part. The following result gives a converse to this for the
modules of Chapter 6, studied in [FG10].

Lemma 4.36. Let M and N be non-zero Auslander-Bridger right R-modules.

() Suppose that Py, is couniform and e, is a maximal right ideal (equivalently,
a maximal left ideal) of Endg(M). Then M and N are epi-isomorphic if and
only if they have the same epigeny class.

(ii) Assume that Q) is couniform and [y, is a maximal right ideal (equivalently,
a maximal left ideal) of Endg(M). Then M and N are lower-isomorphic if
and only if they have the same lower part.

Proof. Both assertions are proved in the same way, hence we only prove (i).
Assume that M and N have the same epigeny class. Let f: M — Nandg: N —
M be epimorphisms, so that N and Py are also couniform modules. Then
gofo: Py — Py is also surjective, hence gf ¢ epr, which implies that gf + ¢,/ is
an invertible element of the division ring Endg(M)/ens, so there exists h: M —
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M such that 1;; — hgf € ey, thus 1), — hgf is not surjective. It follows that
f(yr—hgf) = (1ny—fhg)f is not surjective, hence 1 — fhg is not surjective. (It
is easy to see that a composition ab of morphisms between couniform modules
is surjective if and only if both a and b are, cf. [Fac98, Lemma 6.26].) Thus
(Ixy — fhg)o: Py — Py is not surjective, so that its image is contained in the
unique maximal submodule Py J(R) of Py, from which 15 — fhg € ey. Now
f: M — N and hg: N — M show that M and N are epi-isomorphic. O

4.4 Application: duals of Auslander-Bridger
modules

It is natural to ask if, upon replacing minimal projective presentations by min-
imal injective copresentations, we obtain similar results. Not only is this the
case, but there is a suitable categorical duality that acts as a bridge between
the two settings. Through the use of this duality we study what we call dual
Auslander-Bridger modules, which are defined as the kernels M of morphisms
between injective modules of finite Goldie dimension, and such that M has no
non-zero injective summands. The category of dual Auslander-Bridger right R-
modules will be denoted DABg, while RDAB denotes the category of dual
Auslander-Bridger left R-modules.

4.4.1 Duality between uniform injectives and
couniform projectives

Recall that a non-zero module is uniform if any two non-zero submodules have
non-zero intersection, and that a non-zero module is couniform if the sum of
two proper submodules is a proper submodule. In other words, in a uniform
module every non-zero submodule is essential, whereas in a couniform module
every proper submodule is superfluous.

Recall that an injective module is uniform if and only if it is the injective
envelope of a uniform module, if and only if it is indecomposable, if and only
if it has local endomorphism ring, cf. [Fac98, Lemmas 2.24 and 2.25]. No-
tice the imperfect symmetry with the notion of couniform projective module
(Lemma 4.2). We cannot say, for instance, that a uniform injective module is
the injective envelope of a simple module. This may or may not happen. On
the one hand, Q as a Z-module is a uniform divisible module and has no simple
submodules, because Q is torsion-free. On the other hand, the Priifer group
Z(p*) is a uniserial divisible Z-module and it is the injective envelope of Z/pZ.
Indeed, the socle of the Priifer p-group is the subgroup generated by 1/p + Z.
(Here we view Z(p®) as the p-primary part of Q/Z.) Another imperfection of the
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symmetry is that an indecomposable projective module may not be couniform
(e.g., Zz).

Couniform projective modules underpin much of the theory developed in
this chapter so far (and in Chapter 6). There is a very natural duality (in the
categorical sense) between uniform injective modules over a ring R and the
couniform projective modules over another suitable ring S. This provides a
bridge for translating our theorems in the context of couniform projective mod-
ules to the dual context involving uniform injective modules.

Consider a set of representatives up to isomorphism of uniform injective
right R-modules, say {E;};c;. Here R is a fixed arbitrary ring. (There in-
deed is a set of representatives of isomorphism classes of uniform injective right
R-modules, because to the uniform injective module U we can associate (not
canonically) a right ideal I(U) of R such that U = E(R/I(U)). For instance, let
I(U) be the right annihilator in R of any non-zero element of U. Then the col-
lection of uniform injective modules modulo isomorphism embeds in the lattice
of right ideals of R.)

Let E be the injective envelope of the direct sum P, ; F;, and let S =
End(ER), so that E is an S-R-bimodule. Then we can consider the E-dual,
cf. Section 3.2. For each index i € I, we have

il e T\{i} i e I\{i}
hence F; is isomorphic to a direct summand of Fr. Choose a monomorphism
ti: By — Ep and an epimorphism w;: Fr — E; such that m;.; = 1g,. Also let
e; := 1;m; € S be the corresponding idempotent endomorphism of Fx.

Proposition 4.37. The E-dual enjoys the following properties:
(i) Each E; is E-reflexive.

(ii) The dual of a uniform injective right R-module is a couniform projective
left S-module, and conversely, that is, the dual of couniform projective left
S-module is a uniform injective right R-module.

(iii) The dual of an injective module of finite Goldie dimension is a projective left
S-module with semiperfect endomorphism ring, and conversely.

(iv) Injective right R-modules of finite Goldie dimension and projective left S-
modules with semiperfect endomorphism ring are E-reflexive.

Proof. (i) Notice that ¢, € Hompg(E;, E) = E¥. Then if og,(z) = 0, it follows
that op, (2)(¢;) = t;(x) = 0, from which, z = m;,;(x) = 0. Therefore o), is
injective. Let g be any element of E}*, that is, any left S-module morphism
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g: E¥ =Hompg(E;,E) — E. For v € E¥, we have g(v) = g(ymt;) = ymig(e;) =
o, (mig(t;))(7). Therefore g = o, (mg(1;)), and o, is also surjective.

(ii) Since a uniform injective right R-module is isomorphic to E; for some
i € I, it suffices to prove that E is projective and couniform. We have Ef =
s Homp(FE;, Er) =~ Se; by the isomorphism g — gm;. Moreover, the local ring
Endg(E;) is isomorphic to e;Se;, by the isomorphism g — ¢;g7;, therefore ¢;
is a local idempotent of S. This shows that E} is a couniform projective left
S-module, by Lemma 4.2((i) < (vi)).

Suppose that P is a couniform projective left S-module. Then there is a
local idempotent e of S such that P =~ Se, by Lemma 4.2((i) < (vi)). There are
R-module morphisms ¢ and 7 such that «m = e and 7. = 14, where A is some
right R-module. Then P* >~ A, because of the R-isomorphism Homg(Se, E) —
A given by g — mg(e). Moreover, Endgr(A) =~ eSe by the ring isomorphism
g — wgm. Hence A is isomorphic to a direct summand of E and it has local
endomorphism ring, hence it is a uniform injective module.

(iii) An injective module of finite Goldie dimension is simply a finite direct
sum of uniform injective modules, and a projective module whose endomor-
phism ring is semiperfect is just a finite direct sum of couniform projective mod-
ules (Lemma 4.7), hence (iii) follows from (ii) by additivity.

(iv) By (i), every uniform injective right R-module F is E-reflexive. (Pre-
cisely, one has to consider an isomorphism F' — FE; and use the fact that o,
is natural in M.) As recalled at the beginning of Section 3.2, the class of F-
reflexive modules is closed by finite direct sums, hence injective right R-modules
of finite Goldie dimension are E-reflexive. Recall that if M is E-reflexive, then
M* is [AF92, Proposition 20.14]. Thus we get from (iii) that projective left S-
modules whose endomorphism rings are semiperfect are also E-reflexive. [

Remark 4.38. The correspondences in (ii) and (iii) can actually be viewed as
“mutually inverse” dualities between the corresponding full subcategories of
modules, by Proposition 3.5 and (iv).

It is well-known that an endomorphism ¢ of an injective (resp. projec-
tive) module is in the Jacobson radical (of its endomorphism ring) if and only
if its kernel is essential (its image is superfluous) [AF92, Propositions 17.11
and 18.20]. It is true also when domain and codomain differ, so long as the
projective modules involved are lifting:

Lemma 4.39. A morphism g: M — N between two injective (resp. lifting pro-
jective) modules is in the Jacobson radical if and only if ker(g) <. M (resp.

Proof. Let M and N be injective. Suppose that ker(g) <. M. Let f: N -> M
be an arbitrary morphism. Since ker(g) < ker(fg), we have ker(fg) <. M.
Thus fg € J(M), hence 1), — fg is invertible. This proves that g € J(M, N).
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Conversely, suppose that g € J(M, N). The module M has a decomposition
M = A ® B such that ker(g) <. A. (The submodule A is simply a copy of the
injective envelope of ker(g) contained in M.) Thus, ¢g|g: B — N is injective.
Therefore, it splits, i.e., there exists h: N — B such that hg|p = 15. Now B
is injective and 15 € J(B) forces 0 = ker(1p) <. B, hence B = 0. Therefore
ker(g) <. A = M, as required.

Let now M and N be lifting projective modules. (For instance, projective
modules whose endomorphism rings are semiperfect.) If g(M) <; N, then for
every f: N — M we have fg(M) <; M, hence fg € J(M). Thus 1 — fyg
is invertible. This proves that g € J(M, N). Conversely, assume g € J(M, N).
There exists a direct-sum decomposition N = A @ B such that A < g(M) and
B n g(M) <s B. There is a surjective morphism 7: N — A such that 7|4 = 14.
Thus 7g: M — A is also surjective, hence there exists «: A — M such that
14 = mga. Thus implies that 14 € J(A), which means that A <, A, which
happens if and only of A = 0. Hence N = B e g(M) < N, as required. O

Proposition 4.40. For a morphism g: M — N between injective right R-modules
of finite Goldie dimension, we have

(D ker(g) <. M if and only if g*(N*) <, M*.
(i) im(g) <. N if and only if ker(g*) <s N*.

Proof. (i) Thanks to the dualities of Remark 4.38, we have that g € J(M, N)
if and only if ¢g* € J(N* M*) (also see Lemma 1.1). Then (i) follows by
Lemma 4.39.

(ii) Suppose that g(M) <. N, equivalently, that ¢**(M**) <. N**. Since
N* is a lifting module, there is a decomposition N* = A @ B with A < ker(g*)
and B n ker(¢*) <, B. From g*.4 = 0 we obtain ¢** = n%.5¢**, so that
g**(M™**) is contained in the direct summand 735 (N**) = B* of N**. Since
im(g**) <. N**, necessarily 7%:% = 0, so that A* = 0, hence A = 0, B = N*¥,
and ker(g*) <; N*.

Assume now that ker(¢*) <; N*. There is a decomposition N = A® B with
g(M) <. A. Thus mpg = 0. It follows that g*7%:% = 0, so that ker(¢*) contains
a direct summand of N* isomorphic to B*. But ker(¢g*) <, N*, so that B* =0,
thus B = 0, hence A = N and g(M) <. N. O

4.4.2 Dual Auslander-Bridger modules

A right R-module M is a dual Auslander-Bridger module if it has no non-zero
injective summands and embeds in an exact sequence of the form

M

00— M —% Ey(M) > Ey (M) (4.41)
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where both ey, and pas: Eo(M)/ens(M) — E1(M) are injective envelopes and
both Ey(M) and E; (M) have finite Goldie dimension. As the notation suggests,
for every dual Auslander-Bridger module M we fix such an exact sequence, and
we call it its minimal copresentation. Such sequence is in fact unique up to
isomorphism, as it is the beginning of a minimal injective resolution of M.
Since FEy, is injective, the additive functor (—, Er) is exact, hence when we
take the dual of (4.41) we obtain an exact sequence of left S-modules, namely

Ey(M)* —— Ey(M)* —— M* —0. (4.42)

The additive functor (—, gE) is left exact, hence we have a commutative dia-

gram
0 M —2s Eo(M) —22 s Ey\(M)
l ek J/ pEE l’

where both rows are exact and the vertical arrows are given by the “evaluation”
natural morphism. Since we know that the second and third vertical arrows
are isomorphisms by Proposition 4.37(iv), it follows easily that op;: M — M**
is an isomorphism. Hence M is E-reflexive. In equation (4.42) we see that
M#* is the cokernel of a morphism between projective modules that are finite
direct sums of couniform submodules (Proposition 4.37(iii)). Thanks to Propo-
sition 4.40 we know much more, viz., that (4.42) is a minimal presentation of
M*. Moreover, M* has no non-zero projective summands. If it had one, such
summand would in turn have a couniform projective summand, and M ~ M**
would have a uniform injective summand (Proposition 4.37), which it has not.
This shows that M* is an Auslander-Bridger left S-module. To sum up:

Proposition 4.43. Dual Auslander-Bridger right R-modules are E-reflexive, and
the dual of a dual Auslander-Bridger right R-module is an Auslander-Bridger left
S-module. [

In a similar fashion one proves that:

Proposition 4.44. Auslander-Bridger left S-modules are E-reflexive, and the dual
of an Auslander-Bridger left S-module is a dual Auslander-Bridger right R-module.
O

Therefore, we have:

Theorem 4.45. The E-dual establishes an additive categorical duality between
Auslander-Bridger left S-modules and dual Auslander-Bridger right R-modules.

Using the above duality we can describe the endomorphism ring of a dual
Auslander-Bridger module. Notice that a morphism g: M — N between dual
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Auslander-Bridger right R-modules extends to a morphism (g0, 91): psr — PN,
and that g is an isomorphism if and only if (g, g1) is, that is, if and only if both
go and g; are isomorphisms. (The proof is analogous to that of Lemma 4.30.)

€M PM

0—— M — Eo(M) —— E1 (M)

f]i \Lgo lgl
0——> N —2% Ey(N) 22> By (N)
With this notation we state:

Theorem 4.46. Let M be a non-zero dual Auslander-Bridger right R-module and
T = Endg(M). Let

u={geT :ker(q1) <. E1 (M)},
m={geT:ker(gy) <. Eo(M)}.

Then u and m are proper two-sided ideals of T, the canonical morphism T© —
T/u x T/m is a local morphism, u n m < J(T'), and every maximal right ideal,
every maximal left ideal, every maximal two-sided ideal of T, contains either u or
m.

Proof. The duality gives us a ring anti-isomorphism 7' — Endg(M*). For
g € T we have that g € u if and only if ker(¢1) <. E1(M), if and only if
g (E1(M)*) <5 E1(M)* (Proposition 4.40). Since (4.42) is a minimal presen-
tation (as remarked earlier), this is equivalent to ¢* € [ (with the notation of
Theorem 4.35). (This, in particular, shows that the definition of u depends on
neither the choice of the minimal copresentation nor on the choice of the ex-
tensions fy and f;.) In the same way one sees that g € m if and only if g* € e.
Therefore we have a commutative square

T Endg(M*)

| |

T/ux T/m —— Endg(M*)/l x Endg(M*)/e

where the vertical ring morphisms are the canonical ones and the horizontal
ones are anti-isomorphisms induced by (—)* = (—, E). Everything now follows
from Theorem 4.35. O

If M and N are dual Auslander-Bridger right R-modules, we say that M and
N have the same upper-isomorphism class, or that they are upper-isomorphic, and
write M =, N, if there are morphisms f: M — N and g: N — M such that
1y —gf € upr and 1y — fg € upy. Similarly, we say that M and N have the same
mono-isomorphism class, or that they are mono-isomorphic, and write M =,, N,
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if there are morphisms f: M — N and g: N — M such that 1,; —gf € my; and

11\/ — fg eEmys.
It follows from the proof of the previous theorem and from Proposition 4.31

that:

Proposition 4.47. For dual Auslander-Bridger modules M and N,
(i) M =, Nifandonly if M* =, N*¥,
(i) M =,, N ifand only if M* =, N*, and

(iii) M =~ N ifandonly if M =, N and M =,, N.
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Chapter 5

The n-Krull Schmidt Theorem

We have seen in Theorem 2.17 that the objects of a semilocal category C have
a full class of invariants, namely, if X and Y are objects of C, we have that

X =Y if and only if Redp(X) = Redp(Y) for every P € V(C),

where Redp: C — C/P is the canonical functor. As a result, for biproducts
(switching to the additive closure of C if necessary), we have

@ X; = @Y if and only if ) Redp(X;) = @ Redp(Y7),
<<n <<n <<n <n
for every P € V(C), but does this imply that Redp (X;) = Redp (Y, (;
i < n, for a suitable reordering op of the terms? In some categories whose
objects are of finite type this is exactly what happens [Girlla]. This is the
central result of this section, Theorem 5.10.

y) for each

5.1 A criterion for the n-Krull-Schmidt Theorem to
hold

An additive functor F': A — B is local if whenever F'(f) is an isomorphism, then
so is f [Fac07]. This generalises the notion of local ring morphism (see page
47). Indeed, if F: A — B is a local functor, then the ring morphism A (X) —
B(F (X)) induced by F is local, for every object X of A. Thus F is simply a ring
morphism when A and B have one and only one object.

For instance, if A is a preadditive category and J is its Jacobson radical, then
A — A/J is a local functor. Indeed, suppose f is a morphism in A invertible
modulo J. Then there is a morphism ¢ such that 1 — fg and 1 — gf are in J.
It follows that fg and gf are automorphisms, hence f is both left and right
invertible, thus invertible.

For our purposes, a slightly weaker notion suffices.

93
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Lemma-Definition 5.1. Let A and B be preadditive categories and let F': A — B
be an additive functor. The following conditions are equivalent:

D If f: M - Nand g: N — M are morphisms in A such that F(f) and F(g)
are isomorphisms, then f and g are isomorphisms.

(ii) For each object M of A, the ring morphism A(M) — B(F(M)) is a local
morphism.

We say that F is almost local if it satisfies the above equivalent conditions.

Proof. It is trivial that (i) implies (ii). Assume (ii) holds and suppose the hy-
potheses of (i) hold. Then F(fg) and F(gf) are automorphisms of F(N) and
F(M) respectively. Thus fg and gf are automorphisms of N and M respec-
tively. It follows that f and g are both right and left invertible, hence isomor-
phisms. O

Recall that if A is a preadditive category, by Sums(A) we denote its additive
closure, cf. 1.2.1. Also notice that if A is a full subcategory of an additive
category C, then Sums(A) is equivalent to the full subcategory of C whose
objects are the biproducts of objects of A.

Setting 5.2. Let us describe the working environment for almost all that fol-
lows. Let A be a preadditive category with no zero objects. Let n be a positive
integer. We assume we have an additive functor 7': Sums(A) — [[,_, As,
where each A, is a preadditive category, such that:

(S1) For each ¢ < n and each object X of A, the object T;(X) of A; is of type
< 1, where T; = P,T and P;: ]
functor;

A, — A, is the canonical projection

<n

(S2) The restriction of 7' to A yields an almost local functor.

For each i < n, we let P; be the inverse image of the Jacobson radical J; of A;
along the additive functor T;.
In some cases, we will impose a condition stronger than (S1), namely

(S1") For each i < n and each object X of A, the object T;(X) of A; is of type
1, i.e., has local endomorphism ring.

We will always point out explicitly when we assume condition (S1’).

The restriction of P, to A fails to be a completely prime ideal (cf. page 15)
because it may happen for some object X of A that 7;(X) = 0, and in that case
P;(X) is not a proper ideal of A(X). Nevertheless, we have the following:
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Lemma 5.3. Condition (C2) on page 15 holds for the restriction of P; to A.

If (S1’) holds, then condition (C1) also holds, i.e., the restriction of P; to A is
a completely prime ideal.

(See page 15 for conditions (C1) and (C2).)

Proof. Let f € A(X,Y) and g € A(Y,2). If T;(X), T;(Y), T;(Z) are all non-
zero, by Lemma 1.16, we have gf € P; if and only if T;(gf) € J;, if and only
if T;(gf) is not an isomorphism, if and only if either T;(g) or T;(f) is not an
isomorphism, if and only if either T;(g) € J; or T;(f) € J;, if and only if either
g € P; or f € P;. The case in which one of T;(X), T;(Y), T;(Z) is zero is trivial.

If (S1’) holds, then we have that 14 ¢ P; for every object A of A, hence
every P;(A) is proper and condition (C1) is satisfied. O

The following is a slight generalisation of [AM69, Proposition 1.11(i)], that
we include for the sake of completeness. Recall that a completely prime ideal 1
of a ring R is a proper ideal such that ab € I implies a € I or b € I, as it also
follows by specialising the definition on page 15 to preadditive categories with
one object.

Lemma 5.4. Let Rbearingand Py, ..., P, 1 completely prime ideals of R. Let A
be a multiplicatively closed additive subgroup of R. If A < | J,_,, P;, then A < P;
for some i < n.

Proof. Consider the set of natural numbers for which the statement is not true.
If, by contradiction, it is non-empty, then it has a least element n, and necessarily
n > 2. Choose completely prime ideals P, ..., P,—; and a subset A of R such
that A < | J,_,, P but A & P; for every i < n. By minimality of n, it follows
that A & (J;_,, 4, P for every i < n. Hence, for each i < n, there exists
a; € A such that a; € Pi\Uj<nj,+—in' Letx; = ag---Q;---an—1 € A. Then
i € (jopjwi D\ Letx = 3, 2, € A Now x ¢ P, for every i < n,
contradicting A & J,_,, Pi- O

Proposition 5.5. Let M be an object of A. Then:

(i) For each i < n, either P;(M) = A(M) or P;(M) is a completely prime
two-sided ideal of A(M).

(i) There exist indices ig, . ..,4;—1 < n such that {P;,(M)},<: is the set of max-
imal right ideals of A(M). Since they are all two-sided ideals, A(M) is a

ring of type t < n.

(iii) The canonical ring morphism p: A(M)/J(A(M)) — |[,., A(M)/P;,(M)
is an isomorphism.

Proof. (i) When P;(M) is proper, it is completely prime by Lemma 5.3.
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(ii) By (S2) we have a local morphism A (M) — [],_,, Ai((T;(M)) induced
by T, from which we obtain the local morphism

A~ [T ACTO0)/I(A(T (M)
ist Ti(M) #0

whose codomain is a product of division rings. Notice that the product is
non-empty, because M 0. Then the set of non-units of A(M) is the union
Ui s 72(ar) 2 o Pi(M). Insofar as every ideal of this union is completely prime
by (i), any proper right or left ideal of A(M) is contained in some P;(M), by
Lemma 5.4. This is in particular true for the maximal right ideals, thus (ii)
follows.

(iii) By the Chinese Remainder Theorem 1.19, p is an isomorphism. O

For each i < n and each object M of A, let Q; 5s be the ideal of Sums(A)
associated to P;(M).

We now define the equivalence relations that will control biproducts of ob-
jects in A. For each i < n we define a preorder <; on the class of objects of A.
For each pair of objects M and N we let M <; N if there exists f € A(M,N)
such that 7;(f) € A;(T;(M),T;(N)) is an isomorphism. In view of Lemma 1.16,
this amounts to f ¢ P, when T;(M) and T;(N) are non-zero. We let =, be the
equivalence relation defined by M =; N if and only if M <; N and N <; M.

Let us show the connection between these equivalence relations and the
ideals Q; ps-

Lemma 5.6. Let i < nand M,N € A. Then M =; N ifand only if Q; » = Qi nN-
When this is the case, P;(M) is maximal if and only if P;(N) is maximal.

Proof. Suppose M =; N. Thenlet f: M — N and g: N — M be morphisms
in A such that T;(f) and T;(g) are isomorphisms. If T;(M) = 0, then also
T;(N) = 0, hence P;(M) and P;(N) are both improper, and Q; » = Q; v is
the improper ideal of Sums(A). Thus we can assume that 7;(M) and T;(NV) are
non-zero. As a consequence, by Lemma 1.16, f and g are not in P;. Suppose
b: By — By is a morphism in Sums(A) such that b € Q; »/(B1, B2). To prove
that b € Q; v, we need to show that for each «: N — By and each 5: B, — N
we have Sba € P;(N). We have g(5ba)f € P;(M) because b € Q; ps. In view
of (C2) and of the fact that f, g ¢ P, it follows that Sba € P;(N), as required.
This proves that Q; ;s < Q; v and the reverse inclusion follows by symmetry.

Now assume that Q = Q;n = Q;n. If this is the improper ideal of
Sums(A), then P;(M) and P,;(N) are improper. This implies that T;(M) =
T;(N) = 0, so that T;(0: M — N) and T;(0: N — M) are isomorphisms, and
M =; N. We can now suppose that Q is proper. This implies that 1y ¢ P;(N) =
Q; r (), therefore there exist morphisms f: M — N and g: N — M in A such
that gf ¢ P;(M). Thus both ¢g and f are not in P; and, by Lemma 1.16, both
T;(f) and T;(g) are isomorphisms, so that M =; N.
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The last assertion follows from Theorem 2.14, because the endomorphism
rings of M and N are of finite type < n, hence semilocal. O

Lemma 5.7. Let X be an object of A such that P;(X) is maximal, and let F: A —
A/Q; x be the canonical functor. Let N be any object of A. If X =; N, then
F(X) = F(N), while if X #; N, then F(N) = 0.

Proof. If X =; N, we have that P;(N) = Q; x(N) is maximal, hence F(X) =~
F(N) by Lemma 2.24. Suppose now that X #; N. If T;(N) = 0, then P;(V)
is improper and, since it is contained in Q; x (), F'(N) = 0. Thus assume
T;(N) # 0. Note that also T;(X) # 0, so that we may apply Lemma 1.16 as
follows: For any pair of morphisms f: X — N and g: N — X, either T;(f) or
T;(g) is not an isomorphism, so that 7;(gf) is not an isomorphism, i.e., T;(gf) €
J;, hence gf € P;(X). This shows that 1y € Q; x (), thus F(N) = 0. O

Finally we give the main result of this chapter:

Theorem 5.8. Consider the objects X = @®,_, X, and Y = @, _, Y, of the
additive closure Sums(A), where Xy, ..., X,_1 and Yy, ..., Ys_ 1 are objects of the
preadditive category A. For each i < n, define X; = {u < r : T;(X,) # 0} and
Vi = {p <s:Ty(Y,) # 0}. Then X =Y if and only if there exist bijections
{oi: X; — Viticn such that X,, =; Y, () for each i < n and each p € X;.

Proof. Assume that the bijections exist. To show that X ~ Y, by Lemma 2.19,
we must show that X and Y are isomorphic in Sums(A)/Q for each Q €
V(Sums(A), M) for every M € A. By Theorem 5.5, we then have Q = Q; u/
for some i < n such that P,(M) maximal. The mapping o; induces a bijection

{,UEXZ': “E/L‘M}—’{Meyi5 ,LLEiM}‘

Let k = 0 be the common cardinality of the two sets. Note that if y < r is not
in &, ie., T;(X,) = 0, then P;(X,,) is the improper ideal. Since P;(X,) <
Qi,m(X,), it follows that F(X,) = 0. Therefore, F'(X) = @D e, F'(Xy) =
F(M)*, where the last isomorphism holds by Lemma 5.7. Since the same holds
for Y, it follows that F/(X) =~ F(Y).

For the converse implication, assume that f: X — Y and g: Y — X are mu-
tually inverse isomorphisms. Then T;(f): T;(X) — T;(Y) and T;(g): T;(Y) —
T;(X) are mutually inverse isomorphisms in A;. By Theorem 1.18, we ob-
tain a bijection 0;: &; — Y; such that T5(fo,(u),u) = (Ti(f))es(u)n: Ti(Xp) —
Ti(Y,, () is an isomorphism for all 4 € &;. Therefore X, <; Y, (,) for all
we X;.

Reasoning in the same way with g, we obtain a bijection 7;: ); — X; such
that Y, <; X, () forall pe ).

Therefore X, <; Y5, () <i X,

B) = oi(p)
Yo.(w) <i X(r,0,)%(u for all integers k > 1. Since there exists some k > 1

. Continuing inductively we have X, <;



98 CHAPTER 5. THE N-KRULL SCHMIDT THEOREM

such that (7;0;)¥ = 1 (the symmetric group of the finite set X; is finite, hence
all its elements have finite order), we have X, =; Y, (,) for each i € A, as
required. O

Corollary 5.9. Let X,Y € A. Then X > Y ifand only if X =; Y for all i < n.
It is easy to see that if (S1’) holds, the statement becomes more elegant:

Theorem 5.10. Suppose (S1') holds. In the notation of Theorem 5.8, we have
that @, _, X, = @, Y. if and only if, v = s and there exist permutations
{oi}i<n such that X,, =; Y, for each i < n and each p < r.

Definition 5.11. For a preadditive category C, we say that the n-Krull-Schmidt
Theorem holds for C if there are equivalence relations {c;};<, on the class of
objects of C such that Theorem 5.10 holds.

5.2 Examples

5.2.1 DCP modules over rings of finite type.

Let R be a ring. A DCP module is a direct summand of a cyclically presented
module, i.e., a direct summand of a module isomorphic to R/« R for some « € R.
The DCP modules over rings R of finite type have been studied in [AAF09]. Via
a suitable duality, the kernels of morphisms between heterogeneous injective
modules of finite Goldie dimension, i.e., between finite direct sums of pairwise
non-isomorphic indecomposable injective modules, were also studied in that
paper [AAF09, §6].

The setting of [AAF09] is a particular instance of Setting 5.2. Namely, let
R be a ring of finite type, with maximal ideals My,..., M,,. We denote R/M,;
by K, when we view it as a division ring, and by S; when we view it as a
simple right (or simple left) R-module. Inasmuch as S; is an R-K;-bimodule,
we have the additive functors Th;,_; := Torf‘ (—,S;) and Ty; := — ® S;, both
Mod-R — Mod-K;. Let T = T} x --- x Ty, and A be the full subcategory
of Mod-R whose objects are the non-zero DCP right R-modules. At the end
of [AAF09, §2], it is proved that T;(Ag) is of type < 1 for any DCP module
Ag, hence (S1) is satisfied. Moreover, (S2) is satisfied by the proof of [AAF09,
Theorem 3.2]. It is easy to see that the equivalence relations [—]g ; and [—]r
introduced in [AAF09, page 3] are specialisations of our equivalence relations
=,, and that [AAF09, Theorem 5.3] is a specialisation of Theorem 5.8.

5.2.2 Artinian modules with heterogeneous socle

An artinian module M whose socle is heterogeneous, i.e., is a finite direct sum
of pairwise non-isomorphic simple modules, is known to be a module of fi-
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nite type [FPO9b, Section 5]. Indeed, suppose M is artinian and Soc(M) =
@, -, Si, where the simple modules {S;};-,, are pairwise non-isomorphic. Then
End(Soc(M)) = [],-,, End(S;) is a finite direct product of division rings. The
canonical ring morphism p: End(M) — End(Soc(M)) given by restriction is
local, for if g: M — M is not an automorphism, then g is not injective [Fac98,
Lemma 2.16], hence ker(g) nSoc(M) # 0, because Soc(M) <. M. (The socle of
an artinian module M is an essential submodule, because every artinian mod-
ule contains a simple submodule, hence 0 # Soc(A) < Soc(M) n A for every
0 # A < M.) Therefore p(g) is not injective hence not invertible. Thus p shows
that M is of finite type < n. For a proof that uses the injective envelope of M,
see [FPO9b, Section 5].

If we restrict our attention to the category A of Artinian modules whose so-
cle is a fixed heterogeneous semisimple module P
of Theorem 5.10 holds for direct sums of modules in A.

i<n Si, we find that a version

Let us explain this in more detail. Notice that here Sums(A) is realised as a
full subcategory of Mod-R. For i < n and M in Sums(A), let T;(M) be the trace
of S; in M, i.e., the largest submodule of M generated by S; [AF92, p. 109].
For each module morphism f: M — N in A let T;(f): T;(M) — T;(N) be the
restriction and corestriction of f. (Recall that the trace is preserved by module
morphisms, ibid.) Consider the product functor

T: Sums(A) — H Mod-R.

i<n

As a matter of fact, if M is in A, then T;(M) =~ S, is the isomorphic copy of
S; in the socle of M, hence the endomorphism ring of T;(M) is a division ring.
This shows that the condition (S1) of Setting 5.2 holds. Suppose now that g
is an endomorphism of M and that T;(g) is an automorphism for each i < n.
Let K = ker(g) n Soc(M). Then K is isomorphic to a submodule of @,_,, S;.
If K is non-zero, it then contains a simple submodule isomorphic to S;, for
some ¢ < n. But this implies that T;(g) = 0, which is false. Hence K = 0
and, since Soc(M) <. M because M is artinian, we have that g is injective.
An injective endomorphism of an artinian module is an automorphism [Fac98,
Lemma 2.16(b)], therefore g is an automorphism. This proves that our functor
T also satisfies (S2).

Here is the form that the equivalence relations =; assume in this context: For
M and N in A, we have that M =; N if and only if there are module morphisms
f: M - Nandg: N - M suchthat f(T;(M)) = T;(N) and g(T;(N)) = T;(M).
With respect to the equivalence relations =;, the n-Krull-Schmidt Theorem holds
for A. In other words, we have an instance of Theorem 5.10 for the finite direct
sums of artinian modules with the prescribed heterogeneous socle @, _,, S;.
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5.2.3 Noetherian modules with heterogeneous top

This class of modules is dual to the previous one. Let {S;};, be a finite set
of pairwise non-isomorphic simple modules. Let N be the full subcategory of
Mod-R whose objects are the non-zero noetherian modules N such that the top
of N, i.e., N/Rad(N), is isomorphic to @, _,, S;.

Recall that, if ¢/ is a family of right R-modules, for each right R-module
X, the reject of U in X is the smallest submodule X’ of X such that X /X’ is
cogenerated by U, and it is denoted by Rejy (i) [AF92, p. 109]. Any morphism
f: X — Y preserves the reject, i.e., f(Rejx (U)) S Rejy (U).

For each i < n and X in N, define T;(X) = N/Rejx(S;). For a morphism
f: X > YletT;(f): X/Rejx(Si) = Y/Rejy(S;) be the morphism induced by
f. Thus T; is an additive functor into the category of right R-modules. Then we
consider the product functor

T: Sums(N) — H Mod-R.
i<n

Leti < nand N € N. Let us show that Rej, (5;) is a maximal submodule of N,
that is, that 7; (V) is a simple module, so that Endz(T;(N)) is a division ring and
(S17) is satisfied. Suppose Rejy(S;) is a proper submodule of N. On the one
hand, N/Rejy(S;) is isomorphic to a non-zero quotient of the heterogeneous
semisimple module @, _,, S¢, hence N/Rejy(5;) is isomorphic to P, Sy, for
some non-empty F < {¢ < n}. (The radical Rad(N) is the reject in N of
the class of all simple modules, hence Rad(N) < Rejy(S;).) On the other
hand, N/Rejy(S;) is cogenerated by S;, thus F' can only be the singleton {}.
Therefore, T;(N) = N/ Rejn(S;) = S;, as claimed.

Notice also that if M is a maximal submodule of N, it is necessarily equal to
Rejy(S;) for some ¢ < n. Indeed, N/M is a simple quotient of @, _,, S;, hence
N/M = S, for some i < n. (The radical Rad(XV) is the intersection of all max-
imal submodules, hence Rad(N) < M.) In particular, N/M is cogenerated by
S;, hence Rejy (S;) € M. We already know that Rej (.5;) is maximal, therefore
equality holds.

Suppose now that g is an endomorphism of N and that T;(g) is an isomor-
phism for each i < n. In particular, g(N) + Rejy(S;) = N for each i < n. Thus
g(N) = N, for if g(N) was proper, then it would be contained in some maximal
submodule Rejy (S;) of N. In view of the fact that a surjective endomorphism
of a noetherian module is an automorphism [Fac98, Lemma 2.17(b)], we con-
clude that g is an automorphism. We have therefore proved that the product
functor T satisfies also condition (S2).

If M and N are in N, we have that M =; N means that there exist mor-
phisms f: M — N and g: N — M such that f(M) & Rejn(S;) and g(N) &
Rejys(S;). With these equivalence relations =;, the n-Krull-Schmidt Theorem
holds for N.
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5.2.4 Representations of type 1 pointwise

The example that we now treat was the object of study of [Girl1b].

Let Q = (Qo, Q1) be a finite quiver; that is, a directed graph with a finite set
of vertices Qy and a finite set of arrows Q;. Each arrow « has a tail ¢(a) and a
head h(a), hence we write a: t(a) — h(a).

For a ring R, Repp(Q) is the category of representations of @) by right
R-modules and R-homomorphisms. An object of this category is a sequence
M = (M;);eq, of right R-modules indexed by the vertices of @), together with a
sequence (M,)qeq, of R-module morphisms indexed by the arrows of ), with
the requirement that dom(M,) = M;(,) and codom(M,) = M}(,). A morphism
g: M — N of representations, i.e., a morphism in the category Repy (@), is a
sequence of R-module morphisms g = (g;):cq, subject to the condition that for
every arrow a € (1 we have gj,,) Mo = Nagi(a)-

In other words, the category of representations is the category of functors
from @ to Mod-R, where we regard the quiver as a category with @, as objects
and the directed paths of () as the morphisms (plus the identities, or paths of
length zero), with composition given by juxtaposition of paths.

Another natural way of seeing Rep(Q) is as a subcategory (definitely not
full) of the product category [[, o Mod-R. Moreover, the faithful functor
Repp(Q) — [licg, Mod-R is local. (A morphism of representations g is in-
vertible if and only if each g; is invertible.)

The example we are going to present is now obvious: Let P be the full sub-
category of Rep, (@) whose objects are the representations X such that X; is a
module with local endomorphism ring for every vertex i € Qg. Then the restric-
tion 7' to Sums(P) of the above local faithful functor satisfies (S1’) and (S2), so
that an instance of Theorem 5.10 holds for finite direct sums of representations
in P.

Notice that in Theorem 5.10 the objects of which we consider direct sums
may not be indecomposable. In particular, the representations in the object class
of P may not be indecomposable. In this particular case, though, we will show
that they have a unique decomposition into indecomposable representations.

Let C be the class of representations M such that, for all i € Qq, either
M; = 0 or M; is indecomposable. Among these we have the objects of P.
Let M e C. Let G(M) = (V(M), E(M),) be the non-directed graph whose
vertices and edges are defined by
EM)={ae @ | M, #0} =@
and whose incidence function ¢ is defined by ¢(a) = {t(a),h(a)} for all a €
E(M). Notice that the incidence function ¢ does not depend on the representa-
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tion considered. Thus two representations in C have the same associated graph
if and only if they have the same sets of vertices and edges. Also notice that iso-
morphic representations have the same associated graph. In other words, the
graph G(M) is obtained from @ by deleting the vertices and arrows on which
M vanishes, and then forgetting the direction of the arrows.

Let us recall some notions from [BM76]. Let G = (V, E, v) be a non-directed
graph. If W < V, the subgraph of G induced by W is the subgraph G[IW] with
vertex set W and whose edges are all the edges of G whose endpoints are both
in W. A subgraph of G induced by some subset W of V is called an induced
subgraph. In other words, H is an induced subgraph of G if and only if, for
each edge e of G whose endpoints are vertices of H, ¢ is also an edge of H. By
a component of G we mean a subgraph induced by a maximal connected subset
ccV.

If V< V(M), we define a representation M (V) as follows. We let M (V); =
M; foralli € Vand M(V), = 0ifi € Qo\V. If a € @ is an arrow whose
endpoints are both in V, then we let M(V), = M,, while we let M(V), = 0
otherwise. It is easy to see that G(M (V")) coincides with the subgraph of G(M)
induced by V. Also notice that M(V (M)) = M.

We now characterise direct summands of a non-zero representation in C and
prove a Krull-Schmidt-type Theorem for such a representation. The information
on the decompositions of a representation M € C is completely determined by
the graph G(M).

Theorem 5.12. Let 0 # M € C. Let C1,...,C, be the maximal connected subsets
of V(M).

(i) Let N be a representation. Then N is a direct summand of M if and only if
N =~ M(C;, u---u C;,) for some subset {i1,...,i:} of {1,...,r}

(ii) M is indecomposable if and only if G(M) is connected.

(iii) M has a decomposition into indecomposable representations, unique up to
order and isomorphism of the factors, namely M ~ M(Cy)®---@® M(C,).

Proof. Step 1. We prove the “only if” part of (i). Suppose N is a direct summand
of M. Let V = V(N) for short. Let f: M — N @ N’ be an isomorphism. We
will construct from f an isomorphism g: M (V) — N.

For all i € Qo, let &;,¢} and m;, 7} denote the canonical injections and pro-
jections of the codomain N; @ N/ of f;. If i € V, then N; # 0. Therefore M;
is indecomposable, hence N/ = 0. It follows that m; f;: M(V); = M; — N;
is an isomorphism. We then let ¢; = m;f; for all i € V. If i ¢ V, both
M(V); and N; are zero, thus the zero morphism ¢g; = 0 is an isomorphism.
To show that g: M(V) — N is an isomorphism we are left to check that
Nai(a) = gra)yM (V)4 for all arrows a € Q. Leti = i(a) and j = t(a).
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If {i,j} € V, then M(V), = 0. Moreover, N, = 0 as well, so that the
condition is trivially satisfied. (Indeed, if N, # 0, then N; and N, are non-
zero modules, hence i,j € V.) Therefore we may suppose {i,j} < V. From
fiMa = (N@®N'),f; we obtain 7, f; M, = Ny, f;. The conclusion follows from
mifi = gi, mifi = g5 and M, = M(V),.

It is left to prove that V' is a union of maximal connected subsets. It suffices
to prove that if i € V and j is adjacent to ¢ in G(M), then j € V. To see this,
pick a € E(M) such that ¢(a) = {i, j}. Since i € V, then N; # 0, so that N/ = 0
and N/ = 0. Suppose by contradiction j ¢ V, i.e., N; = 0. Then N, = 0, so that
(N@®N'), =0, from which M, = 0, contradiction.

Step 2. We prove the “if” part of (ii). So assume G (M) is connected. Suppose
that M ~ N® N'. By Step 1, N = M (V) for some V which is a union of
maximal connected subsets of V' (M). But V(M) is the only maximal connected
subset because G(M) is connected, so V = g or V = V(M), i.e., N = 0 or
N = M(V(M)) = M, in which case N’ = 0, as it is required.

Step 3. Here we prove existence of the decomposition in (iii). By Step 2,
M (C,) is indecomposable for each v = 1, ..., r because G(M(C,)) is a compo-
nent of G(M).

Let us now write an isomorphism f: M — M(Cy) @ --- @ M(C,). Let
t1,...,tr and 7y, ..., m. denote the canonical injections and projections of the
codomain. If i € Qo\V (M), theni ¢ C, and M(C,); =O0forallv =1,...,r.
Therefore f; = 0 is an isomorphism. If i € V(M), then there exists a unique
v =1,...,rsuch that i € C,. Therefore, M (C,), = M; and M(C,); = 0 for all
i # v. Thus we may define the isomorphism f; by letting f; = ¢,.;.

Leta € Q1,7 = i(a) and j = t(a). It is left to check that f;M, = (M(C1) ®
@ M(Cp))ofi- U {i,j} ¢ C) forallv =1,...,r, then M(C,), = 0 for all
v=1,...,r thus (M(Cy)®---® M(C,)), = 0. Moreover, M, = 0 because
¢ and j are not adjacent. Thus the commutativity condition holds trivially in

this case. Therefore we may assume that there exists v = 1,...,r such that
i,j € C,. It is enough to check that 7, ; f; M, = 7, ;(M(C1) ®---® M(C;))afi
for p = 1,...,r. Since f; = ,,; and f; = ¢, ;, we must have 7, j¢, ;M, =

7T i (M(C1) @ -+ @ M(Cy))aty,i, which is true. Thus we have the required
commutativity and f is an isomorphism.

Step 4. By the previous step, the “if” part of (i) and the “only if” part of (ii)
follow, so that (i) and (ii) are proved.

Step 5. We now turn to uniqueness in (iii). Suppose M = N1 ®---® N; is an
arbitrary decomposition of M into indecomposable representations Ny, ..., Ny,
necessarily members of C. By (i), N, = M(V(N,)) and V(XV,) is a union of
maximal connected subsets. By (ii), N, indecomposable implies V(N,) is a
connected subset hence V(N,) = C,(,) for some o(v) = 1,...,7. Hence N, =
M(Cy(,)). It remains to show that ¢ is a bijection.
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Notice that V(M) = V(Ny) u--- 1 V(Vy). Indeed, let i € V(M). Since
M; = N1,@®---@® N, and M; is indecomposable, there exists a unique index
v =1,...,tsuch that N, ; # 0, i.e., such that i € V/(N,). Therefore C; L --- 1
Cr = V(M) = Cy1y u - u Cyqyy implies that o is onto. If 4 # v we have
V(Nu) nV(N,) = &, ie., Cyy N Coy = & so that o(u) # o(v) and o is also
injective. U

Note that the indecomposable representations which appear in the previous
decomposition theorem need not have local endomorphism ring. (So it does not
follow from Theorem 1.14.) Trivially, fix an indecomposable right R-module X
and a vertex i € Qo. Define M; = X and M; = 0ifi # j € Qp, and M, = 0 for
all a € Q. Then the endomorphism ring of M in Repy(Q) is isomorphic to that
of X in Mod-R.

5.3 A second look at old results

In his 1996 paper [Fac96] Facchini proved that the Krull-Schmidt Theorem fails
for the class of uniserial modules (their lattices of submodules are linearly or-
dered), that is, it may happen that @, _,, U; =~ @, _,,
for every i < n, but that no permutation o exists such that U; = V,; for ev-
ery i < n. (The number of direct factors has to be the same, as follows by
equalling the Goldie dimensions of the two isomorphic direct sums.) Neverthe-
less, he proved that the 2-Krull-Schmidt Theorem (Definition 5.11) holds for
the class of uniserial modules. In his book [Fac98], Facchini generalised the 2-
Krull-Schmidt Theorem to the class of biuniform modules. After ten years more
classes of modules exhibiting the same behaviour have been found: cyclically
presented modules over local rings [AAF08], couniformly presented modules

V;, with U; and V; uniserial

[FG10], kernels of morphisms between uniform injective modules [FEK10]. In
this section we briefly show how all these classes of modules satisfy the condi-
tions of Setting 5.2, hence how the known 2-Krull-Schmidt Theorems are essen-
tially special cases of Theorem 5.10.

5.3.1 Biuniform and uniserial modules

Recall that a module U is uniform if and only if the set of non-zero submodules
of U is closed by finite intersections. On the full subcategory of uniform modules
it is possible to define the completely prime ideal I of non-injective morphisms.
Uniform modules are non-zero, therefore zero morphisms are non-injective. If
f and g are non-injective, then

0 # ker(f) nker(g) < ker(f —g)
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shows that f — ¢ is non-injective. If fg¢ is injective, then ¢ is obviously injective,
and also f is injective, because ker(f) n im(g) = 0 and im(g) # 0 implies
ker(f) = 0. This shows that fg € I if and only if either f or g isin I.

Recall that a module C' is couniform if and only if the set of proper sub-
modules of C' is closed by finite sums. In a dual manner, on the full subcate-
gory of couniform modules it is possible to define the completely prime ideal S
of non-surjective morphisms. Since couniform modules are non-zero, all zero
morphisms are non-surjective. If f and g are non-surjective, then

im(f — g) <im(f) + im(g)

and the right side is a proper submodule of the codomain of f and g, thus f — ¢
is non-surjective. If fg is surjective, then f is obviously surjective, and also g
is, because im(g) + ker(f) = dom(f) and ker(f) is proper, so im(g) = dom(f).
Therefore if fg e Sifand onlyif fe Sorge S.

In the category B of biuniform modules, i.e., those that are both uniform and
couniform, it is possible to define both completely prime ideals I and S. These
extend uniquely to ideals of Sums(B). (Cf. end of Section 1.2.1.) Consider the
canonical product functor

T: Sums(B) — Sums(B)/I x Sums(B)/S.

Let g be an endomorphism of a biuniform module X and suppose T'(g) is an au-
tomorphism. Then g is injective and surjective, hence an automorphism. There-
fore T satisfies the condition (S2) of Setting 5.2.

Since a non-invertible endomorphism either fails to be injective or fails to be
surjective, we have that I(X) US(X) is the set of non-invertible endomorphisms
of B(X). Moreover, as we noted, they are completely prime ideals. Then we
deduce from Lemma 5.4 that every proper ideal of B(X) is contained in either
I(X) or S(X). It follows that X is an object with local endomorphism ring in
both B/I and B/S. Therefore (S1') is also satisfied.

For X and Y biuniform, define X =; Y if X and Y are isomorphic modulo
Iand X =g Y if X and Y are isomorphic modulo S. Then Theorem 5.10 says
that, for {X;},<, and {Y;},<,, biuniform, we have ®,_, X; =~ P,_,, Y if and
only if » = m and X; =; Y,(;) and X; =g Y ;) for suitable permutations ¢ and
7. This is essentially [Fac98, Theorem 9.13] and [Fac96, Theorem 1.9], the first
results of this kind.

“Essentially,” because =; and =p do not correspond precisely to the no-
tions of monogeny class and epigeny class. Recall that X and Y have the same
monogeny class, denoted [X],, = [Y]nm, if they are isomorphic to submodules
of each other, while they have the same epigeny class, denoted [X]. = [Y]., if
they are isomorphic to quotients of each other. We have:

Lemma 5.13. Let X and Y be biuniform modules. Then:
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D) X=1Y = [X]n=[V]n

(i) X=sYV — [X].

Il
—

~
)
°

(iii) If X orY has type 2, then the reverse implications hold in (i) and (ii).

Proof. (i) Let f: X — Y and g: Y — X be such that 1x — gf € I(X) and
ly — fg € I(Y)) are non-injective. Then gf ¢ I(X), hence g and f are notin I,
that is, f and g are both injective. Thus [X],, = [Y].

(ii) Exactly as in (i).

(iii) Suppose that X has type 2. If f: X — Y and ¢g: Y — X are injective
morphisms, then gf is an injective endomorphism of X, that is, gf ¢ I(X).
Since B(X)/I(X) is a division ring, there is an endomorphism ¢ of X such that
1, — hgf € I(X). Hence f(1x — hgf) € I(Y), and then Now (1y — fhg)f € L.
Since I is completely prime and f ¢ I, we have 1y — fhg € I. Thus f and hg
show that X =; Y. The proof that the implication in (ii) can be reversed is
analogous. O

5.3.2 Couniformly presented modules

A module M is couniformly presented if it is isomorphic to P/K for some couni-
form projective module P and some non-trivial couniform submodule K of P.
These modules were the main object of study of [FG10], and will be treated in
Chapter 6. There is a subclass of couniformly presented modules, though, which
is also a subclass of Auslander-Bridger modules, that fits Setting 5.2. Let C be
the category of non-zero non-projective modules M with a (fixed) presentation

Y

Qum Py —> M 0 (5.14)

where both Q,; and Py, are couniform projective modules. (We are using the
same notation of Chapter 4.) The additive local and isomorphism-reflecting
functor G of Proposition 4.32 restricts to an additive local and isomorphism-
reflecting functor defined on Sums(C). Since it is local, it satisfies (S2) of
Setting 5.2. It also satisfies (S1’), because if M is as above, the endomor-
phism ring of Go(M) is Endr(Pys) (which is a local ring) modulo the ideal
of non-surjective endomorphisms (its Jacobson radical), and that of G (M) is
Endr(Qn)/J(Endr(Qur)), again a division ring. The equivalence relations
=; and = on the class of objects of C correspond respectively to “lower-
isomorphism” and “epi-isomorphism” as in Chapter 4. The correspondence with
the notions of “lower part” and “epigeny” of Chapter 6 is instead imperfect,
cf. Lemma 4.36.
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5.3.3 Kernels of morphisms between indecomposable injec-
tives

This class of modules is the class of dual Auslander-Bridger modules that are the
E-duals of the class of couniformly presented modules of the previous example.
The minimal projective presentation (5.14) is sent by Hom(—, F) to a minimal
injective copresentation 0 — M™* — Py, — Q%,, with P}; and @}, indecompos-
able injectives. The class F of modules of the type M*, or rather, its closure by
isomorphic copies, satisfies via Hom(—, E') and by the previous example, Set-
ting 5.2. The equivalence relations =, and =; are the “mono-isomorphism”
and “upper-isomorphism” we defined when we studied dual Auslander-Bridger
modules in Section 4.4.2. For the modules in F that do not have a local ring
of endomorphisms, the notion of “mono-isomorphism” coincides with the no-
tion of “monogeny” and the notion of “upper-isomorphism” coincides with the
notion of “upper part.” Therefore, for such modules, the specialisation of Theo-
rem 5.10 and [FEK10, Theorem 2.7] agree.

5.4 The associated hypergraph

The aim of this section is to establish when the n-Krull-Schmidt Theorem holds
for a preadditive category C (see Definition 5.11), in terms of a hypergraph asso-
ciated to C. The results of this section are thus a generalisation of some results
of [FP09c], and they provide a geometrical interpretation of Theorem 5.10.

Let us recall some combinatorial notions. By a hypergraph we mean a class
of vertices V together with a class E of non-empty finite subsets of V, which
are the edges of the hypergraph, such that the union of the class £ is V. The
original definition of hypergraph as given in [Ber89] is way too restrictive for
our purposes, in that it allows only finite sets of vertices and edges, although it
allows edges to be repeated.

We denote by H = (V, E) a hypergraph whose class of vertices is V' and
whose class of edges is £. We say that H is n-uniform if all its edges have n
elements, and it is called simple if there are no inclusion relations between its
edges. Also recall that a partial hypergraph is obtained from H by selecting a
subclass F' of the class of edges E, and is denoted H[F']. The class of vertices of
H[F] is (necessarily) the union of the class F'.

Let H = (V, F) be a hypergraph. Let N(Y) be the (large) free commutative
monoid with free basis V. (Notice that the fact that V' may be a proper class
implies that the construction of the above free commutative monoid cannot be
done in the usual manner, cf. Appendix A.) Thus the element v of V, when
seen as an element of N(V)| is the function V — N which maps v to 1 and
everything else to 0. If e € E, denote by x(e) the characteristic function of e,
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i.e., x(e) = X, v. To the hypergraph H we associate the submonoid Mon(H)
of N() generated by the characteristic functions of edges.

Definition 5.15. Let H = (V, E) be a hypergraph and n a positive integer. We
say that the n-Krull-Schmidt Theorem holds for H if there exist equivalence
relations {~,};<, on the class of edges E such that, given finite sets of edges
{ep}tu<r and {f,},<s, the equality

S x(e) = 3 ()

pu<r pn<s

holds in the monoid Mon(H) if, and only if, » = s and there exist permutations
{oi}i<n such thate, ~; f,, () foralli <nand p <r.

To a preadditive category C whose objects are of finite type we associate a
hypergraph H(C). This hypergraph has the class V(C) of maximal ideals of C
as its class of vertices and its edges are the finite sets V(X) = V(C, X) where
X is an object of the semilocal category C (cf. Section 2.2). The following
dictionary between C and its hypergraph H(C) justifies turning our attention
to hypergraphs and their associated monoids.

Lemma 5.16. The n-Krull-Schmidt Theorem holds for C if and only if it holds for
H(C).

Proof. Let {X,}, <, and {Y},}, <, be finite sets of objects of C. We claim that

D x(V(X) = D) x(V(Ya) (5.17)

pu<r n<s

holds in Mon(H(C)) if and only if we have an isomorphism of direct sums in

Sums(C)
P X, =PV, (5.18)
n<r n<s
Indeed, equation (5.17) holds if and only if, for each P € V(C), the num-
ber of indices ¢ such that P € V(X;) is equal to the corresponding number
of indices j such that P € V(Y;). By an application of Lemma 2.24, this is
X, and @
P € V(Sums(C), M) and for all non-zero objects M of C, which is equivalent
to equation (5.18) by Lemma 2.19. This proves the claim.

Suppose that the n-Krull-Schmidt Theorem holds for C relatively to the
equivalence relations {=;};~,, on the class of objects of C. Let V(X) and V(Y)
be edges of H(C), where X and Y are objects of C. Let V(X) ~; V(Y) if and
only if X =; Y. The definition of ~; does not depend on the choice of X and
Y, because X =~ Y if and only if V(X) = V(Y) (Corollary 2.25). It is easy
to see that the n-Krull-Schmidt Theorem holds for Mon(H (C)) relatively to the
relations {~;};<,. A similar argument shows the converse. O

equivalent to (B, _, u<s Yu being isomorphic in Sums(C)/P, for all
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From now on, let n > 2 be a fixed integer and let C be a preadditive category
whose non-zero objects are indecomposable and of finite type at most n. The
condition that the objects of C be indecomposable is equivalent to requiring that
there are no inclusion relations between the edges of H(C) (Corollary 2.25),
i.e., that H(C) is a simple hypergraph.

For each family of pairwise disjoint classes {X;};<,, we define the n-partite
complete hypergraph on | |,_, X; to be the hypergraph P(Xy,...,X,_;) with
class of vertices | |._ X; and whose class of edges E(Xy, ..., X,,—1) consists of
all n-element subsets of vertices which have exactly one vertex from each X;

<n

[Ber89, pg. 19]. Thus P(Xy, ..., X,—1) is simple and n-uniform.

A hypergraph H = (V, E) is n-partite if V is a disjoint union V' = | |,_, U;
such that each U; is not empty, and such that for each e € F and each i < n, the
set e n U; has at most one element. Clearly, a partial hypergraph of an n-partite
complete hypergraph is n-partite.

Recall that in a commutative monoid M, an element x is an atom if it is
non-zero and, for all a,b € M, the equality x = a + b implies a = 0 or b = 0.
The following generalises [FPO9c, Proposition 3.5]. (Also see page 76 for the
connection between biproduct decomposition in additive categories and factori-
sations in reduced commutative monoids.)

Theorem 5.19. Let H = (V, E) be a simple hypergraph. The following are equiv-
alent:

(1) The n-Krull Schmidt Theorem holds for H.

(ii) There exists an injective morphism ¢: Mon(H) — Mon(P(Xo,...,Xn-1))
of monoids which sends atoms to atoms, where Xy, ..., X, _1 are suitable
pairwise disjoint classes.

(iii) There exists an injective mapping n: E — E(Xo,...,Xn_1), where {X;}i<n
are suitable pairwise disjoint classes, such that

D x(en) = Y x(fu) (5.20)

pn<r n<s

holds in Mon(H) if and only if

D x(len) = D) x(n(fu) (5.21)

n<r n<s
holds in Mon(P (X, ..., Xn_1))-

Proof. Suppose (i) holds, with respect to a suitable choice of equivalence re-
lations {~;};<, on the class of edges E. Let m;: E — E/~; be the canonical
projection.

Let X; = (E/~;) x {i} and let p,: E — X, be defined by p;(e) = (m;(e), ).
This makes Xy, ..., X,,—1 pairwise disjoint classes. The mapping p; induces a
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monoid homomorphism p;: Mon(H) — N(X) as follows: If 2<r X(ey) s an
arbitrary element of Mon(H), let

Di (Z X(%)) = Z pi(eu)-
n<r pn<r

To show that p; is well-defined, suppose (5.20) holds in Mon(H). Then r = s

and there exists a permutation o € S, such that e, ~; f5(,) for all u < r.

Therefore,

Z pi(eu) = Z pi(fa(u)) = Z pi(fu),

pu<r pn<r pn<r
hence p; is well-defined. Furthermore, we have an injective monoid homomor-
phism
D= Hﬁl Mon(H) — H N(Xa),
i<n i<n

To show injectivity, suppose that

Z pilen) = 2 pi(fu)

pu<r n<s

holds in N(&X%) for each i < n. Then r = s and there exists a permutation o; € S,
such that p;(e,) = pi(fs, (), i-€., such that e, ~; f5,(,) for each y < r. This
implies (5.20), hence p is injective.

In the following diagram, « is the isomorphism defined by a: (¢;)i<n —
Y i<n 9i> while the bottom morphism is set inclusion.

p

Mon(H) I, NCXO

v

Mon(P(Xo, ..., Xn_1)) NUi< X2)

For each e € E, we have ap(x(e)) = >, _,, pi(e). Thus ¢ = {p;(e)}i<n is an edge
in E(Xo,...,X,-1), and x(e) = ap(x(e)) € Mon(P(Xj,...,X,—1)). Inasmuch
as Mon(H) is generated by {x(e) : e € E}, we conclude that the image of ap
is contained in Mon(P(Xy,...,X,_1)), thus we can complete the diagram to
a commutative square by adding , necessarily injective. Since the atoms of
Mon(H') are the characteristic functions of edges for every simple hypergraph
H', the equality ¢(x(e)) = x(g) also implies that ¢ sends atoms to atoms. We
have thus proved that (ii) holds.

Now assume (ii). For each e € E, x(e) is an atom of Mon(H), thus p(x(e))
is an atom of Mon(P(Xo,...,X,_1)), hence it is equal to x(n(e)) for some
n(e) € E(Xo,...,X,_1). Since n(e) is uniquely determined, we have a map-
ping n: E — E(Xo,...,X,_1). If (5.20) holds, applying ¢ to it we obtain
that (5.21) holds. If the latter holds, the former holds by injectivity of . In
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particular, n(e) = n(f) implies that x(n(e)) = x(n(f)), which is equivalent to
x(e) = x(f), which implies e = f. Hence 7 is injective, and this completes the
proof that (ii) implies (iii).

Eventually, assume (iii). For each i < n and each paire, f € FE, define e ~; f
if n(e) n X; = n(f) n X;. This is an equivalence relation on E. Assume (5.20)
holds, so that (5.21) holds. Inasmuch as P(Xy,...,X,—1) is n-uniform, we
must have r = s.

Write x(n(eu)) = i, €u,i> Where e, ; € X; for all i < n, and write x(n(f,))

accordingly. Thus
DDICTEED NI

p<Ti<n p<Ti<n
and in view of the fact that the classes Xj,..., X,,_1 are pairwise disjoint, it
follows that
Z €ui = Z S
p<r u<r

for each i < n. Thus there exist permutations {0;};<, < S, such thate,; =
Joi(u),i> i-€5 n(en) N Xi = n(fs,(u)) N Xy, uniformly in 4 < 7 and i < n. Hence
ey ~i fou(u), for i < nand p < r. Conversely, if 7 = s and such permutations
exist, then (5.21) holds, hence (5.20) also holds. This proves that (i) holds with
respect to the equivalence relations {~;};<y. O

Corollary 5.22. If the n-Krull-Schmidt Theorem holds for a simple hypergraph
H = (V, E), then it also holds for any partial hypergraph of H.

Proof. Let F be a subclass of E and consider the partial hypergraph H[F']. There
is a canonical injective monoid homomorphism ¢: Mon(H[F']) — Mon(H) that
sends atoms to atoms. Thus if ¢ is as in Theorem 5.19(ii), then ¢ shows that
the relations of Mon(H|[F]) are controlled by n permutations. O

Consider the intersection graph G of the edges E of H, i.e., the simple graph
having E as its class of vertices, and such that two elements of E are adjacent
in G whenever their intersection is non-empty. Partition £ as the disjoint union
E = U;es Ei of the maximal connected subclasses of vertices of G. For each
1€ l,let H, = H[E;], i.e., let H; be the partial hypergraph of H on the subclass
of edges E;, and denote by V; its class of vertices. Note that V' is the disjoint
union V' = | J,.; Vi. We refer to the hypergraphs H; as the connected components
of H.

iel

Lemma 5.23. The n-Krull-Schmidt Theorem holds for H = (V, E) if and only if
it holds for each connected component of H.

Proof. There is a canonical isomorphism of monoids @®,.; N("*) — N(V), more
precisely, the one which sends (g;: V; — N),c; to the function g: V' — N ob-
tained by g(z) = ¢;(x) for z € V;. It is easy to see that it induces an isomorphism
q: @,c; Mon(H;) — Mon(H).
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One implication of the lemma follows at once from the previous corollary.
For the other implication, assume that the n-Krull-Schmidt Theorem holds for
each H;, so that there is an injective monoid homomorphism ¢;: Mon(H;) —
Mon(P (X0, ..,X;n—1)) which sends atoms to atoms, for each i € I. Without
loss of generality, suppose that the classes X; ; are pairwise disjoint. There-
fore, once we define X; = [ J,.; X; ;, we obtain that X,,..., X,,_; are pairwise
disjoint. Let ;: Mon(P(Xi, ..., Xin_1)) — Mon(P(Xo,...,X,_1)) be the
canonical embedding of monoids, for each i € I. Define ¢: @, ; Mon(H;) —
Mon(P(Xo, ..., Xn-1)) by ©((9:)ier) = 2es tiwi(gi). It is easy to check that ¢
is injective and sends atoms to atoms, hence the n-Krull-Schmidt Theorem holds
for H. O

For integers  and n such that 1 < r < n, let K, denote the r-uniform com-
plete hypergraph of order n, i.e., the hypergraph whose vertices are the elements
of a set X of cardinality n and whose edges are all the r-element subsets of X
[Ber89, pg. 5]. Thus the number of edges of K/, is (7). Recall that in a hyper-
graph the degree of a vertex v, denoted by d(v), is the number of edges e such
that v € e.

The following extends [FP09c, Proposition 3.9].

Proposition 5.24. Let n > 2 be an integer. If a simple hypergraph H = (V, E)
admits K%, as a partial hypergraph, then the n-Krull-Schmidt Theorem does not
hold for H.

Proof. In view of Corollary 5.22, we may assume H = KZJ . Assume that
the n-Krull-Schmidt Theorem holds for K7, and let ¢, 1, Xo,...,X,—1 be
as in Theorem 5.19. We are going to show that the partial hypergraph C' =
P(Xo,...,Xn1)[n(F)] is a copy of K7 and that the latter is not n-partite,
which contradicts C being a partial hypergraph of an n-partite hypergraph.

By a construction by induction, it is possible to write £ as a disjoint union

E={e,...,emtu{V\er,....,V\em}

Necessarily, m = |E|/2. The element s = | _, v of Mon(K3,) can be written
as s = x(e;) + x(V\e;) foranyi =1,...,m.

Let u be a vertex of C. Then u € n(e;) or u € n(V\e;) for some i. Since
o(s) = x(n(e:))+x(n(V\e;)), it follows that the coefficient of  in (s) is strictly
positive. This implies that u € 7(e;) or u € n(V\e;), now for all indices i =
1,...,m. Since 7 is injective, it follows that the degree d¢(u) of u in C is at
least m. Let U be the set of vertices of C. Then

mlU] < 3 do(u) = nly(E)| = nE| = 2mn,
uelU

from which |U| < 2n. Since C is n-uniform on |U| vertices, we must have
In(E)| < (U). But 7 is injective, hence |n(E)| = |E| = (*"), so that |U| > 2n.
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Thus |U| = 2n, and it follows that C is the complete n-uniform hypergraph on
2n vertices.

To reach the required contradiction, let us finally show that C is not n-
partite. Suppose it is n-partite. Then write U as a disjoint union U = | |,_, U; in
such a way that for each ¢ € n(E), the set e n U, has at most one element. Insofar
as2n = Y., |U;|, there exists i < n such that U; has at least two elements. Pick
an n-element subset € of U with two elements from U;. Then this is an edge of
C by completeness, contradiction. O
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Chapter 6

Couniformly presented
modules and dualities

In Chapters 4 and 5 we have already mentioned a subclass of couniformly pre-
sented modules, namely, those modules of the form coker(p) where ¢ is a mor-
phism between couniform projective modules. In general a couniformly pre-
sented module is a module M 0 that embeds in a short exact sequence

L

0 c P M 0 (6.1)

where P is projective, and both P and C are couniform. We will assume with-
out loss of generality that ¢ is set inclusion. We say that (6.1) is a couniform
presentation of M. Notice that P — M is necessarily a projective cover, because
M +# 0 implies C' < P hence C <, P.

If C has a projective cover, then this is a module of the type already studied
in the previous chapters, but this may not be the case. For instance, if R is
a valuation domain that is not a principal ideal domain, R/I is couniformly
presented even when I is not finitely generated. A concrete example is the
domain R of Puiseux series R = J, _,,, K [#'/"], modulo the ideal I = J(R).

Cyclically presented modules over a local ring R [AAF08] are either couni-
formly presented or isomorphic to 0 or R. Over a right chain ring R, that is, a
ring R with Ry uniserial, a right module is couniformly presented if and only if
it is cyclic but not projective. In particular, couniformly presented right modules
over right chain rings are uniserial.

In this chapter we study couniformly presented modules in full generality
[FG10]. In particular we will prove a version of Theorem 5.10 (with n = 2) for
this class of modules.

It would be possible to study these modules using the general machinery of
Chapter 5, although the choice of ideals has to be done with care, cf. page 123.

115
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Here we prefer to give elementary proofs instead, thus illustrating the tech-
niques used in [Fac96] and then later in [AAF08, FG10, FEK10] to prove several
instances of the case n = 2 of Theorem 5.10.

Recall that a module M is said to be couniform (or hollow) if it has dual
Goldie dimension one, that is, if it is non-zero and the sum of any two proper
submodules of M is a proper submodule of M. Equivalently, a non-zero module
is couniform if and only if all its proper submodules are superfluous, if and only
if all its non-zero homomorphic images are indecomposable modules. For in-
stance, every non-zero uniserial module, that is, every non-zero module whose
lattice of submodules is linearly ordered under inclusion, is couniform.

Projective couniform modules have been characterised in several equivalent
ways (Lemma 4.2). In particular, a couniform projective right R-module is iso-
morphic to eR for some local idempotent r of R, “local” meaning that eRe is a
local ring, and eR is the projective cover of the simple module eR/eJ(R). Thus
there a injective mapping (eR) — (eR/eJ(R)) from the family of isomorphism
classes of couniform projective right R-modules into the family of simple right
R-modules. This mapping is a bijection if and only if the ring R is semiperfect
[Bas60, Theorem 2.1] [Fac98, Theorem 3.6(d)].

Given any couniformly presented module M with couniform presentation
(6.1), every endomorphism f of M lifts to an endomorphism f; of the projective
cover P, which in turn induces by restriction/corestriction an endomorphism f;
of C. Hence we have a commutative diagram

0 C—=p M 0 (6.2)
fl\L lfo if
0 C—=p M 0

The morphisms f, and f; that complete diagram (6.2) are not uniquely deter-
mined by f. Nevertheless, it is easily seen that f: M — M is an epimorphism if
and only if fo: P — P is an epimorphism, if and only if fj, is an automorphism.
It follows that if we substitute f, and f; with two other morphisms f} and f]
making the diagram analogous to diagram (6.2) commute, then fy: P — P is
an epimorphism if and only if f): P — P is an epimorphism. In this notation,
let us show that the same holds for C, i.e., that

Lemma 6.3. The endomorphism f;: C — C is surjective if and only if f{: C — C
is surjective.

Proof. The commutativity of the two diagrams (6.2), one relative to f, and fi,
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the other relative to f{ and f{, gives, by subtraction, a commutative diagram

L

0 C P M 0
flf{l ifofé io
0 C—=p M 0

Hence (fo— f})(P) < C. Since C is superfluous in P, it follows that ( fo — f{)(C)
is superfluous in (fo — f3)(P), so that (fo — f5)(C) = (f1 — f1)(C) is a proper
submodule of C. Thus f; — f} is not an epimorphism. This and the fact that C'
is couniform yield that f;: C — C is an epimorphism if and only if f;: C — C
is an epimorphism. Indeed, f1(C) < (f1 — f1)(C) + f{(C) < C, so if f; is onto
then so is fi. O

Our proof of Lemma 6.3 is essentially the same as the proof of [FHO6,
Lemma 7.1].

Notice that, in the proof of Lemma 6.3, we have seen that, for every mor-
phism g: P — C (where C' < P are couniform modules and P is projective),
g(C) is properly contained in C.

It is easy to see that for every couniform right R-module U, the endomor-
phism ring End(U) has a proper completely prime ideal Ky consisting of all
the non-surjective endomorphisms of U. Cf. [Fac98, Lemma 6.26]).

The ring Endg(U)/Ky is thus an integral domain, but it is not a division
ring in general. For instance, take as U the Priifer group Z(p™) viewed as a Z-
module. Since it is a uniserial divisible module, it is a uniform injective module,
hence its endomorphism ring S =~ Z, is local and its Jacobson radical consists
of those endomorphisms that are not injective. Multiplication by p induces a
non-injective endomorphism that is surjective, hence p € J(S)\Kz(,=), hence
E /K=y is a local ring but not a division ring.

Our proof of Lemma 6.3 also shows that for every couniformly presented
right R-module M with couniform presentation (6.1), there is a well-defined
ring morphism Endr (M) — Endgr(C)/K¢, defined by f — f1 + K¢.

Similarly to [FHO6, Section 7], by Lemma 6.3, we can consider the ring
morphism

®: Endg(M) — Endg(M)/Ky x Endg(C)/Ke

defined by ®(f) = (f + K, f1 + K¢ ) for every f € Endg(M). Recall that a ring
morphism ¢: S — S’ is said to be local if, for every s € S, ¢(s) € U(S’") implies
seU(9).

Lemma 6.4. Let M be a couniformly presented right R-module with a couniform
presentation (6.1). Then the ring morphism ® is local.

Proof. Let f € Endg(M) be an endomorphism with ®(f) invertible. Consider
the commutative diagram (6.2). Then f + K,; and f; + K¢ are invertible in
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Endg(M)/K) and Endg(C)/Kc respectively, so that, in particular, f ¢ Ky,
and f; ¢ K¢, that is, the morphisms f and f; are epimorphisms. Thus f; also is
an epimorphism, hence an automorphism of P because P is projective and in-
decomposable. By the Snake Lemma applied to diagram (6.2), f; isomorphism
and f; epimorphism imply f monomorphism. O

The next result describes the endomorphism ring of a couniformly presented
module.

Theorem 6.5. Let M be a couniformly presented module with a couniform pre-
sentation (6.1) and endomorphism ring S. Let ¢ := { f € S : f is not surjective }
and [:={feS: f1: C — Cisnot surjective }. Then ¢ and | are completely prime
two-sided ideals of S, the union e u [ is the set of all non-invertible elements of S,
and every proper right ideal of S and every proper left ideal of S is contained either
in ¢ or in . Moreover, one of the following two conditions holds:

(i) Either the ideals ¢ and [ are comparable, so that S is a local ring with maxi-
mal ideal the greatest ideal among ¢ and |, or

(i) ¢ and [ are not comparable, J(S) = e n |, and S/J(S) is canonically isomor-
phic to the product of the two division rings S/e and S/

Proof. Let m and 7o be the canonical projections of S/K; x Endg(C)/K¢ onto
S/Ky and Endg(C)/Kc, respectively. We already know that ¢ = K, is a
completely prime ideal of Endg(M). Notice that [ is the kernel of the composite
morphism m2®: S — Endg(C)/Kc. As Endg(C)/K¢ is an integral domain, it
follows that [ is a completely prime ideal of S.

As the ideals ¢ and [ are proper, it follows that e U [ € S\U(S). Conversely,
if f € S is non-invertible, it is not an automorphism, so that it is either non-
surjective or non-injective. If f is not surjective, then f € ¢. If f is surjective but
not injective, then in diagram (6.2) we have that fj is surjective, so that fj is
an automorphism of P. By the Snake Lemma applied to (6.2), we have that fj
automorphism of P and f non-injective imply f; non-surjective. Thus f € I.

Every proper right or left ideal L of S is contained in ¢ u [. If there exist
x € L\eand y € L\l, then x +y € L, z € [and y € ¢. Hence z + y ¢ ¢ and
x+y¢l. Thusz+y¢eul,sothat z +y € L and is an invertible element of S,
a contradiction. This proves that L is contained either in ¢ or in I. In particular,
the unique maximal right ideals of S are at most ¢ and [. Similarly, the unique
maximal left ideals of .S are at most ¢ and I.

If ¢ and [ are comparable, then (i) clearly holds. If ¢ and [ are not comparable,
the ring S has exactly two maximal right ideals ¢ and [, so that J(S) = en [, S/e
and S/! are division rings, and there is a canonical injective ring homomorphism
7w: S/J(S) — S/ex S/I. But e+ = S because ¢ and [ are incomparable maximal
right ideals of .S, hence 7 is surjective by the Chinese Remainder Theorem 1.19.

O
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Remark 6.6. The ideal [ in the statement of Theorem 6.5 does not depend on
the couniform presentation (6.1) of M. Suppose 0 - C — P — M — 0 and
0> C"— P - M — 0 are two couniform presentations of M. Let f be an
endomorphism of M, and consider a diagram (6.2) relative to f for each of the
two couniform presentations. We need to show that f; is an epimorphism if and
only if f] is an epimorphism. Construct another diagram (6.2) as follows. The
identity of M lifts to an isomorphism go: P — P’ between the two projective
covers of M, and g restricts to a morphism g;: C — C’, which is an isomor-
phism as well. By Lemma 6.3, we then have that f; is an epimorphism if and
only if g; ' f1¢1 is an epimorphism, and this is an epimorphism if and only if f]
is an epimorphism.

By Theorem 6.5, couniformly presented modules have semilocal endomor-
phism ring, hence cancel from direct sums (Theorem 2.13).

Remark 6.7. Choose a local idempotent e such that P >~ eR. When the base ring
R is commutative, the endomorphism ring of the cyclic R-module M =~ eR/C
is isomorphic to the ring eR/C = eRe/C, via the isomorphism g — g(e + C).
The endomorphism ring eR/C is a local ring with maximal ideal eJ(R)e/C =
eJ(R)/C. From the isomorphism above it is easy to see that the maximal ideal
eJ(R)/C corresponds to e, the ideal of non-surjective endomorphisms. There-
fore, in this case, [ < ¢. This inclusion can be proper. For instance, let R be
a commutative valuation domain of Krull dimension > 2, that is, a valuation
domain with at least three prime ideals 0 ¢ P < J(R), and consider the couni-
formly presented module R/P, whose endomorphism is isomorphic to R/P as
above. If r € J(R)\P, thenr + P € ¢ = J(R)/P, butr + P ¢ [ because rP = P.
(For every p € P, we have pR < P < rR, so that p = rs for some s € R. We
have that s € P because pe P and r ¢ P, and P is a prime ideal.)

6.1 Epigeny class and lower part

Recall that if A and B are two modules, we say that A and B have the same
epigeny class, and write [A]. = [B]., if there exist an epimorphism A — B
and an epimorphism B — A; cf. [Fac96]. If M and M’ are two couniformly
presented modules with couniform presentations 0 - C — P — M — 0 and
0> C"—> P — M — 0, we say that M and M’ have the same lower part,
and we write [M], = [M'],, if there are two homomorphisms f: P — P’ and
fo: P — P such that fy(C') = ¢’ and fj(C’) = C. In particular, if M and M’
have the same lower part, then C' and C’ have the same epigeny class.

Notice the duality between this notion of having the same lower part, and
the definition of having the same upper part given in [FEK10]. For any right R-
module A, let E(A) denote the injective envelope of A. Two modules A and B
are said to have the same upper part if there exist a homomorphism fy: E(A) —
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E(B) and a homomorphism f}: E(B) — E(A) such that f;*(B) = A and
\"'(A) = B. We write [A], = [B]. if A and B have the same upper part.

Also notice that if M and M’ are couniformly presented right R-modules
with couniform presentations 0 > C - P - M —» 0and 0 -» C' —» P’ —
M’ — 0, then there are local idempotents e,e¢’ € R with P ~ eR and P’ =~ ¢'R.
If we assume P = eR and P’ = ¢'R, C, C' right ideals of R contained in eR, 'R
respectively, and M = eR/C,M’ = ¢'R/C’, then M and M’ have the same
lower part if and only if there exist r,s € R such that rC = C’ and sC’ =
C'. Also notice that our definition of having the same lower part for arbitrary
couniformly presented modules over arbitrary rings extends the definition of
having the same lower part given in [AAF08] for cyclically presented modules
over local rings.

Remark 6.8. Let [ and ¢ be the completely prime ideals of Endg(M) defined in
the statement of Theorem 6.5.

Let M and M’ be couniformly presented modules. It is easily seen that M
and M’ have the same lower part if and only if there exists an endomorphism
f € Endg(M)\l of M that factors through M’. In particular, since the ideal [
does not depend on the couniform presentation of M (Remark 6.6), our notion
of having the same lower part is well defined.

Similarly, M and M’ have the same epigeny class if and only if there exists
an endomorphism f € Endg(M)\e of M that factors through M’.

Epigeny class and lower part characterise a couniformly presented module
up to isomorphism:

Lemma 6.9. Let M and N be couniformly presented modules. Then M =~ N if
and only if [M]; = [N]¢ and [M]. = [N]e.

Proof. For the non-trivial implication, let E := Endg(M) and let [ and ¢ be the
ideals of E as in Theorem 6.5. Assume that M and M’ have the same epigeny
class and the same lower part. If M has local endomorphism ring, then either
[M]. = [M']e or [M];, = [M’], implies that an automorphism of M factors
through M’ (Remark 6.8). In that case, M is isomorphic to a non-zero direct
summand of M’, and because M’ is indecomposable, M ~ M’. Hence we can
assume that M has non-local endomorphism ring, hence [ + ¢ = Endg(M) and
1 =4+kwithie N\eand k € ¢\l. Let f: M - M’ and f': M’ — M be
such that f(C) = C’ and f/(C’') = C,and let g: M — M’ and ¢': M’ - M
be epimorphisms. If any of these morphisms is an isomorphism, we are done.
Hence we can assume that none of them is an isomorphism. We claim that
n = (fk+ gi)(kf +ig") = fK*f' + fkig' + gikf' + gi®g’ is an automorphism
of M’. Then M is isomorphic to a non-zero direct summand of M’, hence
M =~ M’ as above. To prove the claim, suppose that 7 is not an automorphism
of M'. Thenn e l' or n € ¢’. Since i,(C) # C, we have that fkig’, gikf’, and
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gi%g’ all belong to I'. Hence fk2f’ € [, which is false. In the same way 1 € ¢
leads to a contradiction. O

6.2 2-Krull-Schmidt Theorem for couniformly pre-
sented modules

Lemma 6.10. Let M, Ny,..., N, _1 be couniformly presented modules. Suppose
that M is a direct summand of @,_,, N; and that M # N; for all i < n. Then
there are distinct indices i, j < n such that [M], = [N;]¢ and [M]. = [Nj]e.

Proof. Assume that M is a direct summand of @),_,, N; and that M is not iso-
morphic to N;, for every i < n. In particular, n > 2. With the obvious notation
for the canonical mappings, we have 1y, = warenr = X, Tmtemilar. Let
E = Endg(M) be the endomorphism ring of A and let [ and ¢ be the ideals
of E as in Theorem 6.5. There exist indices ¢ and j such that my¢;mier € E\l
and mase;mienr € E\e. This implies that [M], = [N;], and [M]. = [N;]. (Re-
mark 6.8). Moreover, ¢ # j, otherwise M would be isomorphic to N; = N;
(Lemma 6.9), which it is not. O

Lemma 6.11. Let M, M', M" be couniformly presented modules such that [M], =
[M']¢ and [M]. = [M"].. Then:

(i) M®D >~ M @®M" for some module D.

(ii) The module D in (i) is unique up to isomorphism and is couniformly pre-
sented.

(iii) [D], = [M"], and [D]. = [M]..

Proof. (i) Let E = Endg(M) and let [ and ¢ be the ideals of E as in Theorem 6.5.
There exist an endomorphism f € E\[ which factors through M’ and an endo-
morphism g € E\¢ which factors through M” (Remark 6.8). If either f or g is an
automorphism, then M =~ M’ or M =~ M”, thus (i) clearly holds with D = M”
and D = M’ respectively. We can thus assume f € ¢\l and g € [\e. It then
follows that f + g is an automorphism of M which factors through M’ @ M”,
thus (i) holds also in this case.

MIEfMeDxxMeM andMdD' =M M, then M®D =~ MDD,
so that D ~ D’ because the endomorphism ring of M is semilocal, hence M
cancels from direct sums (Theorem 2.13). This shows that the complement D
is unique up to isomorphism.

Taking the dual Goldie dimension of both sides of S := M @& D =~ M' @ M",
we get that D is a couniform module. Let 7p be the canonical projection of S
onto D. Then, D = np(S) =nmp(M' + M") < ip(M') + mp(M") < D, hence
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D =np(M")+mp(M"). Since D is couniform, either 7p(M’) = D or mp(M") =
D. Without loss of generality we can assume that D is a homomorphic image
of M’, thus it is a homomorphic image of the projective cover P’ of M’. We
then have a short exact sequence 0 - A — P’ — D — 0, which is a couniform
presentation of D provided that we prove that A is couniform. With the usual
notation for the couniform presentations of M, M’, M"”, consider the two short
exact sequences 0 >~ CPA—>PPP - MPD=~S—0and0 > C"®C" —
P'oP" - M'®M" ~ S — 0. By Schanuel’s Lemma [AF92, Ex. 18.9, page 214]
wehave CQADQP @P" =~ C'®C”" @ P@ P'. Taking the dual Goldie dimension
of both sides, we see that A is couniform.

(iii) If D ~ M’, then M =~ M" by cancellation, so that [D]. = [M’]. and
[D]e = [M']e = [M]¢ = [M"]e, as required. The case D =~ M” is exactly the
same. So we can assume that D % M’ and D 2 M”. By Proposition 6.10, either
[D]; = [M']; and | D], = [M"]. or [D], = [M"]; and [D], = [M'].. In the first
case, D =~ M so that D, M, M’  M" are all isomorphic, which they are not. Thus
the second case holds, as required. O

Here is the 2-Krull-Schmidt Theorem for couniformly presented modules.

Theorem 6.12. [FG10] Let My,...,M,_1, Ny, ..., Ny_1 be couniformly pre-
sented modules. Then the direct sums @,_,, M; and @
and only if n = m and there are two permutations o, T such that [M;]; = [Ny;]e
and [M;]e = [Nyl for all i < n.

<m INi are isomorphic if

Proof. Assume that the two direct sums are isomorphic. Thus they have the
same dual Goldie dimension, hence n = m.

We will prove by induction on n the existence of the permutations ¢ and 7,
the case n = 1 being trivial. Suppose M; =~ N; for suitable indices ¢, j < n. Since
the endomorphism ring of M; = N; is semilocal, we can cancel out M, and
N; (by the cancellation property, Theorem 2.13) and obtain B, _,, ., Mk =
D <n rzj N By the inductive hypothesis there are bijections o, 7: {k < n,k #
iy — {k < n,k # j} such that [My], = [Ny)le and [My]e = [Nyl for
k < n,k # i. To conclude, prolong these bijections to permutations of {k < n}
by o(i) = 7(i) = j. Therefore we may assume that M; % N; for all indices
i, <n.

Since M is isomorphic to a direct summand of @, _,, Ni, but to My % N,
for every k < n, Proposition 6.10 implies the existence of two distinct indices
i,j < nsuch that [My], = [V;]¢ and [My]. = [N;].. By Lemma 6.11 applied to
the three couniformly presented modules My, N;, N;, we can find a couniformly
presented module N,,, unique up to isomorphism, such that My ® N,, =~ N; &
Nj, [Nn]e = [Nj]e and [N,]e = [Nile. Thus @,_,, Mi = Py, N = Mo @
@Kn’k#’j Nj. Cancelling out My, we get that B, _,, My is isomorphic to
@r<n kri; Nk By the inductive hypothesis, there exist bijections o', 7": {1 <
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k< n} — {k <n,k # Z,]} such that [Mk]g = [Ngr(k)]g and [Mk]e = [N'r’(k)]e
for 1 < k < n. Let k¥’ be such that ¢/(k') = n and k” such that 7/(k”) = n. To
conclude, prolong and modify ¢ and 7 by ¢(0) = 4, o(k') = j, and 7(0) = j,
T(k") = 1.

The converse implication is trivial for n = m = 1 by Lemma 6.9, and we
proceed by induction again to prove the converse in general. Assume thus
that My, Ng, ..., M, _1, N,,_1 are couniformly presented and that there are two
permutations o, 7 such that [M;]; = [N,;)]e and [M;]. = [N;¢;]e for every
i < n. If 0(0) = 7(0), then My = N,). Thus ¢ and 7 induce two bijec-
tions {1,2,...,n — 1} — {0,1,...,n — 1}\{o(0)}, with the same properties as o
and 7, so that, by induction, M; @ - -- @ M,,_; is isomorphic to the direct sum
®k<n,k;&a(0) Ny, from which it clearly follows that @,_,, M; = @, _,, N;.

Thus we can suppose o(0) # 7(0). By Lemma 6.11, there exists a couni-
formly presented module M’, unique up to isomorphism, such that M’ @ My =~
No0) ® N7(0y, [M']e = [Nr(0y]e and [M']c = [Ny (g)]e. Therefore, the modules
M', My and the modules N, ), N (o) have the same lower parts and the same
epigeny classes, counting multiplicities. The modules M’, My, ..., M, 1 and
the modules M’, Ny, ..., N,_1 have the same lower parts and the same epigeny
classes as well, so that the modules M, M, ..., M,_; and the modules M’,

No, s No@ys +++» ]VT(T.), ..., N,_1 have the same lower parts and the same
epigeny classes. By the inductive hypothesis, M, @ My @ --- ® M,,_; and the
direct sum of the modules M’ and N; with j different from ¢(0) and 7(0) are
isomorphic. Thus M' @ No@--- @ Np 1 =M1 ®---® My, 1 ® Nyo) @ Ny =
M @®My® M, ®---@® M,_;. Cancelling the module M’, we obtain that
No®N D - - ®ONp_1 =2My®M; @D - D M,_1, as desired. O

As noted in the introduction of this chapter, our results on the category C
of couniformly presented modules could also be seen as an application of the
theory developed in Chapter 5. Let E be the ideal of C consisting of all mor-
phisms f such that the image of f is a superfluous submodule of the codomain
codom(f), cf. page 78. With reference to diagram 6.2, let L be the class of
all morphisms f between couniformly presented modules such that f; has su-
perfluous image. This class is indeed a well-defined ideal of C. The product
functor C — C/L x C/E satisfies the conditions (S1’) and (S2) of Setting 5.2.
Specialising the theorems of Chapter 5 gives many of the results of this chapter.
The equivalence relations involved in Theorem 5.10 are precisely the epigeny
class and the lower part involved in Theorem 6.12.
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6.3 Kernels of morphisms between
indecomposable injective modules

The main results of [FEK10] concern the category K of kernels of morphisms
between indecomposable injective modules, a full subcategory of the category
of right or left modules over some fixed ring. (An index on the right or on
the left of K will clarify whether we are considering right or left modules and
over which ring, e.g., Ki or gpK.) Namely, it is proved that the endomorphism
ring of a module in K has a structure analogous to that of the endomorphism
ring of a couniformly presented module [FEK10, Theorem 2.1]. Moreover, the
2-Krull-Schmidt Theorem holds for K [FEK10, Theorem 2.7]. In this section
we set about to deduce those results from our theory of couniformly presented
modules by means of the E-dual, that is, the duality (—)* = Hom(—, E) of
Section 4.4.1.

Notice that Kp is a full subcategory of the category of dual Auslander-
Bridger right R-modules (Section 4.4.2), as the indecomposable injective mod-
ules are exactly the uniform ones, i.e., those of Goldie dimension one.

The duality DABr — sAB induced by (—)* = (—, E) (Theorem 4.45) re-
stricts to a duality Kg — sC, where sC denotes the full subcategory of couni-
formly presented left S-modules with a minimal projective presentation, i.e.,
those that are cokernels of morphisms between couniform projective modules
(cf. Section 5.3.2). This follows from Proposition 4.37(ii).

The structure of the endomorphism ring of a module M in Kg follows from
Theorem 6.5 and the duality (—)*, in a manner similar to the proof of Theo-
rem 4.46. Indeed, recall that we have a commutative square

End(MR) End(sj\/[*)

| |

End(Mg)/u x End(Mg)/m —= End(sM*)/l x End(sM*)/e

where the vertical morphisms are canonical and the horizontal ones are canon-
ical anti-isomorphisms induced by (—)*. In this particular case, we have that
the right vertical morphism is surjective with kernel J(End(sM*)), because [
and ¢ are the ideals of Theorem 6.5. Indeed, for f € End(sM*), we have that
f € ¢if and only if the endomorphism fy: Eo(M)* — Eo(M)* of the couniform
projective left S-module Ey(M)* has superfluous image, if and only if f; is not
surjective, if and only if f is not surjective, if and only if f € K. Similarly, f € [
ifand only if f;: E1(M)* — E;(M)* has superfluous image, that is, if and only
if f1 is not surjective, if and only if fy(ker(e},)) < ker(e},), if and only if f € L.
The following theorem on End(Mp) now follows easily:
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Theorem 6.13. (Cf. [FEK10, Theorem 2.1].) The ideals u and m of End(Mg)
are completely prime proper ideals, their union is the set of all non-automorphisms
of Mg, and every proper right or left ideal of End(MEg) is contained either in u or
in m. Moreover, one of the following two conditions holds:

(i) Either the ideals u and m are comparable, so that End(Mg) is a local ring
with maximal ideal the greatest ideal between u and m, or

(ii) the ideals u and m are not comparable, their intersection is the Jacobson rad-
ical J(End(Mg)), and End(Mg)/J(End(Mg)) is canonically isomorphic to
the product of the two division rings End(Mpg)/u and End(Mpg)/m.

Exactly as couniformly presented modules are determined up to isomor-
phism by their lower part and epigeny class, modules in K are determined up
to isomorphism by upper part and monogeny class.

Recall that two arbitrary modules A and B have the same monogeny class
if they are isomorphic to submodules of each other, that is, there are injective
morphisms A — B and B — A. If A and B have the same monogeny class we
write [A],, = [B]m. We say that A and B have the same upper part, and write
[A], = [B]u, if there are morphisms fy: F(A) — E(B) and go: F(B) — E(A)
such that f,'(B) = Aand g, ' (A) = B. If A and B are modules in the category
K, it is easy to see that [A],, = [B] if and only if there is an endomorphism
of A not in m4 that factors through B, and [A], = [B], if and only if there
is an endomorphism of A not in u4 that factors through B. Cf. Remark 6.8.
Therefore we have:

Proposition 6.14. [FG10] For modules A and B in the category K, we have that
(D) [A]n = [B]m if and only if [A*]. = [B*]., and
(i) [l = [Bl. if and only if [A*], — [B*]..

The reader certainly noticed the similarity with Proposition 4.47. There is
a slight difference though between the notions “mono-isomorphic” and “in the
same monogeny class”, and between the notions “upper-isomorphic” and “with
the same lower part”. The two are equivalent for the modules M in K whose
endomorphism ring is not local, so that End(Mg)/my; and End(Mg)/up; are
division rings.

Finally, thanks to Proposition 6.14 and the duality (—)* = (-, E), we easily
obtain the 2-Krull-Schmidt Theorem for K:

Theorem 6.15. (Cf. [FEK10, Theorem 2.7].) Let My, ..., M, _1,No,...,Npm_1
be modules in K. Then the direct sums @, _, M; and @, _,,, N; are isomorphic if
and only if n = m and there are two permutations o, T such that [M;], = [Ny(;)]u
and [M;]m = [N;@)lm for all i < n.

<m
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6.4 A further duality between epigeny class and
monogeny class

In Section 6.3, we saw that monogeny class and epigeny class (and lower part
and upper part) are related by a duality between suitable categories of mod-
ules: the category of kernels of morphisms between uniform injective mod-
ules and the category of cokernels of morphisms between couniform projective
modules. In [AAF08, Proposition 7.1] it was shown that, for cyclically pre-
sented modules over local rings, lower part and epigeny class are related by the
Auslander-Bridger transpose, which also can be seen as a duality between suit-
able categories. More generally, the Auslander-Bridger transpose relates lower-
isomorphism and epi-isomorphism in the context of Auslander-Bridger modules
(Proposition 4.34). In this section, we will show that there is a similar relation
between monogeny class and epigeny class in the case of suitable categories of
uniserial modules.

Recall that if sA and ¢B are left modules over a ring S, sA is said to be
cogenerated by sB if gA is isomorphic to a submodule of a product of copies
of ¢B. Equivalently, if for every non-zero a € gA there exists a morphism
p: sA — gB such that p(a) # 0. If ¢ X generates every left S-module, then we
say that ¢ X is a cogenerator. Cf. [AF92, §18].

Let R be a ring. Fix a set {Qx}xca of representatives up to isomorphism of
all injective right R-modules that are injective envelopes of non-zero uniserial
R-modules. Let Qr be the injective envelope of @,., Q. It is easy to see
that an injective module is a generator if and only if it contains an isomorphic
copy of every simple module [AF92, Proposition 18.15]. Since simple modules
are uniserial, it follows that Qg is a cogenerator, i.e., it cogenerates all right
R-modules.

Let S := End(Qgr). Then ¢Qr is an S-R-bimodule and we can consider the
@-dual, that is, the pair of additive contravariant functors

s Hompg(—,Q): Mod-R — S-Mod,
Homg(—,Q)r: S-Mod — Mod-R,

as in Sections 3.2 and 4.4.1. For every uniserial module Ug, its injective enve-
lope is isomorphic to some Q, and is Q-reflexive.

Let Cpr denote the full subcategory of Mod-R whose objects are all serial
right R-modules of finite Goldie dimension. Let sC’ be the full subcategory of
S-Mod whose objects are all finite direct sums of uniserial left S-modules with
a projective cover and cogenerated by ¢@. Notice that if a non-zero uniserial
module U has a projective cover P, then P is a couniform module (Lemma 4.2),
so that, in particular, P, hence U, are cyclic modules.
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Proposition 6.16. The functor s Hompg(—, Q): Mod-R — S-Mod induces a cat-
egorical duality between Cg and sC'.

Proof. Thanks to Remark 1.9, it suffices to show that Hom(—, sQr) induces a
duality between the category of uniserial right R-modules and the category of
uniserial left S-modules with a projective cover and cogenerated by s@.

Suppose U is a non-zero uniserial right R-module. To prove that sU* is
uniserial it suffices to show that its cyclic submodules are comparable. Thus let
¢ and 1 be R-morphisms U — Q. Their kernels are submodules of U, hence
we may assume without loss of generality that ker(y) < ker(¢)). Because Q is
an injective right R-module, we have an endomorphism s of @ such that the
following diagram commutes:

0— U/ker(¢) =—Q

|

U/ker() s

)

Q

It follows that ¢ = sp. Thus S < S¢. This proves that sU* is uniserial.

The injective envelope of U can be chosen to be an injective R-morphism
g: U — @, into some @,. Since @ is an injective right R-module, the S-
morphism g*: ¢@Q% — sU™ is surjective. Notice that @), is isomorphic to a direct
summand of @, hence there are morphisms 7: Q@ — Q, and ¢: Q) — @ such
that ¢ = 1. Therefore Q% = St = Sur by ¢ — @m. Moreover, the idempotent
v of S is local, because Endr(Q») = twSim by ¢ — wprm and the former ring
is local as @5 is an indecomposable injective module. Thus 5Q% is a couniform
projective module and, consequently, the non-zero surjective morphism ¢* is a
projective cover.

Finally, suppose ¢ is a non-zero element of sU*, i.e., a non-zero R-morphism
U — Q. Then there is u € U such that ¢(u) is a non-zero element of Q. The
rule ¢ — ¢ (u) defines and S-morphism sU* — 5@, and it is non-zero on . In
other words, the mapping ¢ — (¢ (u))ucv defines an S-embedding of sU* into
the Cartesian power sQU. This proves that sU* is cogenerated by Q.

Conversely, let us prove that every uniserial left S-module with a projective
cover and cogenerated by g@ is isomorphic to sU* for some uniserial right
R-module U.

The projective cover of a uniserial module is a couniform projective module,
hence the left S-module in question can be assumed to be of the form Se/T with
e a local idempotent of S (Lemma 4.2). Now, define U = eQ nr.anng(7'). That
is, U is the set of elements of @ of the form e(z) for some z € ), and such that



128  CHAPTER 6. COUNIFORMLY PRESENTED MODULES AND DUALITIES

te(x) = 0 for every t € T. Thus U is an R-submodule of Q. Let us prove that it is
uniserial. Let z and y be any two elements of U. Then 1. anng(z) and 1. anng(y)
are two left ideals of S that contain 1 — e and 7. Thus l.anng(z)/(S(1 —e) ®
T) and 1. anng(y)/(S(1 — e) @ T) are two submodules of S/(S(1 —e) D T) =
Se/T, which is uniserial. It follows that the left ideals 1. anng(z) and 1. anng(y)
are comparable, say (*) l.anng(z) < l.anng(y). Let us prove that this implies
yR < xR. Assume by contradiction that (yR + xR)/zR is a non-zero right
R-module. Recall that Qg is a cogenerator (see the considerations before this
theorem). Therefore, there exists a morphism ¢: (yR + 2R)/xR — @ such that
o(y + zR) # 0. Thus there exists a morphism ¢: yR + R — @ such that
¥(y) # 0 and ¢(x) = 0. Because (@ is an injective right R-module, 1) extends to
an endomorphism s of ). Since sz = 0, we have sy = 0 by (*), and this is a
contradiction. Therefore yR < xR as required and U is uniserial.

Finally, we prove that sU* >~ Se/T. Notice that U is contained in e, hence
we have a surjective morphism res: g(e@,Q) — s(U, Q) given by restriction. If
@: eQ — @ is an R-morphism, let s, be the element of S obtained prolonging
¢ with zero on (1 — e)Q. Thus ¢ — s, yields an isomorphism ¢(eQ, Q) = Se.
It is left to prove that res(y) = 0 if and only if s, € 7. Recall that U = eQ n
r.anng(7'), hence if s, € T, then s,U = 0, and since U < eQ, this means
that ¢(U) = 0, that is, res(¢) = 0. Conversely, suppose s, ¢ T. Then s, + T
is a non-zero element of Se/T. Because this left S-module is cogenerated by
sQ, there is an S-morphism f: Se/T — s@ such that f(s, + T) # 0. Thus
there is an S-morphism g: Se — @ such that g(s,) # 0 and g(7T") = 0. Notice
that g(e) = g(e?) = eg(e) hence g(e) € eQ. Moreover, g(z) = xg(e) for every
x € Se. Thus ¢(T') = 0 means T'g(e) = 0. Hence g(e) € U, by definition. Lastly,
g(s,) # 0 means p(g(e)) # 0. Thus res(p) # 0.

It is left to prove that the functor in question is full and faithful. Let ¢y : U; —
Q», and 13: Uz — @), be injective envelopes of the uniserial right R-modules
Ui and Us. Recall that Q¥ is a couniform projective module, hence the surjec-
tive morphism .} is a projective cover. Any S-morphism f: sU;* — sU; lifts to
an S-morphism g between the projective covers.

o
0—=U1 —>Qx, Q% sU¥ 0 (6.17)
Tk hT Q\L lf
0——=Us—>0Qx, Q3, > sUS 0

()

Since each @), is Q-reflexive, we have that g = h* for some h: @), — Qax,-
We claim that h(i2(Uz)) < ¢1(U1). Assume the contrary. Because Qp is a co-
generator, there exists a morphism ¢: @), — Qg such that ¢(¢1(U7)) = 0 and
©(h(t2(U))) # 0. Then we have t5h*p = @his # 0 and at the same time
h*e = f(¥(p)) = f(0) = 0. This contradiction shows that h(.2(Usz)) <
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t1(U1), hence that there is a morphism k: Us — U such that hey = k. It
follows that k* = f.

Eventually, to show faithfulness, suppose k£ # 0. Because )y is a cogenera-
tor, there is a morphism ¢: Uy — Qg such ¢k # 0, that is, k*(¢) # 0, so that
k* # 0. O

Proposition 6.18. For uniserial right R-modules U, and Us,, we have that:
(D) [Uilm = [Uz2]m if and only if [Uf]c = [Us]e, and
(i) [Ui]e = [U2]e if and only if [Uf]m = [Us ]

Proof. It suffices to prove that in the group isomorphism
s(—,Qr): Homg(Uy,Us) — Homg (U5, U)

given by Proposition 6.16, k is injective (resp. surjective) if and only if k* is
surjective (resp. injective).

It is true for every contravariant Hom-functor that surjective morphisms are
sent to injective ones. Since Q)r is an injective module, it also sends injective
R-morphisms to surjective S-morphisms.

Suppose k: U; — Us is not injective. Then there is 0 # w € U; such that
k(u) = 0. Since Qg is a cogenerator, there is p: U3 — Qp, thatis, ¢ € Uf, such
that p(u) # 0. It easily follows that ¢ is not in the image of £*, hence that k* is
not surjective.

Similarly, if & is not surjective, there is u € Us\k(U;). Again using the fact
that Qr is a cogenerator, there is an element ¢ of U such that pk = 0 and
©(u) # 0. Then ¢ # 0 but k*(¢) = 0, hence £* is not injective. O



130  CHAPTER 6. COUNIFORMLY PRESENTED MODULES AND DUALITIES



Chapter 7

A couple of examples

7.1 On a uniserial module that is not quasi-small

The class of uniserial modules (modules whose lattices of submodules are lin-
early ordered) was the first one for which a result like Theorem 6.12, called
“Weak Krull-Schmidt Theorem,” was proved [Fac96]. In [DF97], said result
was extended to infinite direct sums of quasi-small uniserial modules. Recall
that a module M is quasi-small if, whenever M is isomorphic to a direct sum-
mand of a direct sum @,_; M;, then M is isomorphic to a direct summand of
@, M; for some finite subset F' of I. In his book [Fac98], Facchini asked
whether a uniserial non-quasi small module existed. Of course, if all uniserial
modules were quasi-small, then the Weak Krull-Schmidt Theorem would hold
for infinite direct sums of uniserial modules. The question was answered by
Puninski in [Pun01], where he proves the existence of a uniserial module that
is not quasi-small. His proofs rely on model-theoretical methods and results. In
this brief final chapter our aim is to explain Puninski’s example giving purely
algebraic proofs wherever possible.

Pifhoda also studied uniserial modules that are not quasi-small, providing,
in particular, non-model-theoretical proofs of Puninski’s example, and following
a wholly different approach [Pt{06].

Lemma-Definition 7.1. For a surjective R-module morphism g: Bgr — Cg, the
following are equivalent:

(1) The module Agr := ker(g) is a pure submodule of Bg, i.e., every system of
equations
n
Z.’L‘ﬂ'i]‘ =aj,forallj = 1,...,m (S].)
=1
with each r;; € R and each a; € Ar, which has a solution in Bp, also has a
solution in Ag. Cf. [Fac98, Section 1.4].

131
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(ii) Given any system of equations

Diairij =0, forallj=1,...,m (52)
i=1
where each r;; € R, whenever the system has a solution (ci,...,cy,) in Cg,
it also has a solution (by,...,b,) in Bg such that g(b;) = ¢; for each i. In

other words, the solutions of (S2) lift along g.

A surjective morphism of R-modules g: B — C satisfying the above equiv-
alent conditions is called a pure epimorphism. A module M is called pure-
projective if it is projective with respect to pure epimorphisms, i.e., if Homg(M, g)
is an epimorphism whenever g is a pure epimorphism.

Proof. Suppose (1) holds. Consider a system of equations (S2) and suppose
that (c1,...,c,) is a tuple of elements from Cg satisfying (S2). First choose
b1,...,b, € B such that g(b;) = ¢; for each 4. For each j,

g (i bﬂ“ij) =0,
i=1

hence there are element ay, . .., a,, € Ag such that (by,...,b,) solves the system
(S1). Since Ap, is a pure submodule of By, we have that (S1) also has a solution,
say (a},...,al), in Ag. Thus the tuple (b; — ay,...,b, — a),) solves (S2) and is
mapped to the tuple (¢1,-- - ,¢,) by g. This proves that (2) holds.

Assume now that (2) holds. Consider a system of equations (S1) with a
solution (by,...,b,) in Bg. Therefore (g(b1),...,g(b,)) solves the system (S2).
By (2), there are elements b, ..., b, in Bg such that g(b,) = g(b;) for each i and
(b4, ...,0b,,) solves (S2). It follows that b; — b, € Ar and that (by —b},...,b, —b])
solves (S1). This proves that Ag is a pure submodule of Bg, that is, that (1)

holds. N

It is easy to see that finitely presented modules are pure-projective. Indeed, a
finitely presented module Ap is generated by finitely many elements a4, ..., a,
subject to a finite number of relations, say > ; a;r;; = 0, for 1 < j < m. A
morphism ¢: Arp — Cg is given by the elements p(ay),...,p(a,) of C, that
is, by a choice of elements cy,...,c, in C such that Z?Zl cirij; = 0, for all
1 < j < m. Isis now clear that if g: By — Cg is a pure epimorphism, there
are elements by, ...,b, in B such that Y\ , b;7;; = 0, for all j, and such that
g(b;) = ¢; for all i. Hence we can define a morphism v¢: Az — Bpg such that
¥(a;) = b; for all ¢, so that p = gi).

From the definition it also follows easily that the class of pure-projective
modules is closed under direct sums and direct summands. Therefore, direct
summands of direct sums of finitely presented modules are pure-projective.
It is possible to construct, for every given module X, a pure epimorphism
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g: @,.; M; — X, where each M is a finitely presented module [Fac98, Propo-
sition 1.23]. If X is pure-projective, such epimorphism splits, hence we deduce
that:

Proposition 7.2. [Fac98, Proposition 1.24] A module M is pure-projective if and
only if it is a direct summand of a direct sum of finitely presented modules, if and
only if every pure-epimorphism g such that codom(g) = M splits.

As a consequence, a quasi-small pure projective module is finitely generated,
or, which is the same, a projective module that is not finitely generated is not
quasi-small. We will see that Puninski’s non-quasi small uniserial module is a
non-finitely generated pure-projective module.

Definition 7.3. A uniserial domain R is called nearly simple if J(R) is the unique
non-zero proper two-sided ideal of R. In other words, R has exactly three two-
sided ideals.

Dubrovin proved that nearly simple uniserial domains do exist [Dub80].

What follows is the algebraic equivalent of [Pun01, Lemma 5.4]. The only
proof known at the time of writing employs methods from the model theory
of modules. In particular, it involves the classification of the indecomposable
pure-injective modules over a serial ring up to isomorphism [EH95].

Lemma 7.4. [Pun0l, Lemma 5.4] Let R be a nearly simple uniserial domain.
If a, b, and c are non-zero elements in the Jacobson radical J(R) of R, then a €
Rca + abR.

Let us proceed to the explanation of Puninski’s example, cf. [Pun01, Sec-
tion 8]. Let a be an arbitrary non-zero non-invertible element of the nearly
simple uniserial domain R. For 1 < i < j < w, let y; j: R/a’'R — R/a’R be
the morphism given by multiplication by a’~* on the left. Let U be the direct
limit of this system, and let y;: R/a’R — U, for 1 < i < w, be the canonical
injections.

Theorem 7.5. The module U is uniserial, not finitely generated, countably gener-
ated, and pure-projective. In particular, it is not quasi small.

Proof. The fact that U is uniserial follows from the fact that U is a direct limit
of uniserial modules. To see that U is uniserial, if suffices to show that cyclic
submodules of U are comparable. Thus let z; and z2 be two elements of U.
There is an index 1 < ¢ < w such that both z; and x5 are in the image of p;.
Such image is uniserial because the domain of ; is the uniserial module R/a‘R.
Hence z; R and x5 R are comparable, as required.

If U were finitely generated, it would be cyclic. There would then be an
index ¢ < w such that y; is surjective. Then there is an element r € R such that

piv1(1) = pi(F) = pigipiiv1 (F) = pis1(ar),



134 CHAPTER 7. A COUPLE OF EXAMPLES

from which p;,1(1 — ar) = 0. This means that, for some j < w, we have that
a’(1 — ar) € a’a’"' R, but this means that 1 — ar € a**'R < aR to begin with,
because R is a domain, which leads to 1 € aR < J(R), a contradiction. Hence
U is not finitely generated. It is, of course, countably generated though, e.g., by
the set {1 (1)} 1<i<w-

To show that U is pure-projective, let g: M — U be an arbitrary pure epi-
morphism, and let us show that g splits (then we apply Proposition 7.2). To
show that g splits, we define inductively morphisms f;: R/a’R — M such that
gfi = wi, and such that fi4 101,541 = fipi—1,4, for all 2 < i < w. Once this is
accomplished, the family of morphisms {;}1<i<w, defined by ¢; = fiy1p6i41,
is compatible with the direct system, hence it induces a morphism ¢: U — M
such that pu; = ;. It follows that gpu; = p; for all i < w, hence that gp = 1,
as we need.

Since j2(1)a? = 0 and g is a pure epimorphism, there is an element m € M
such that g(m) = p2(1) and ma? = 0. Thus fo: 1 — m gives a well-defined
morphism R/a?R — M such that gfo = po. This is the base step of the con-
struction.

Assume now that fs,..., f; have been constructed. By Lemma 7.4, we have
that @ € Ra® + a’R. Hence there exist s,t € R such that

ta?

=a+a's. (7.6)
From this it follows that

(ui (1)t — pir1(1))a* = 0.

Since g is a pure epimorphism, there is an element m € M such that:

= (pa(D)t = piga (1
{g(m) (i (1)t = piza (1)) . 7.7)
ma® =0
Define fi,1: R/a**'R — M by the rule
fi+1(i) = fi(i)t —m. (7.8)

The morphism is well-defined, because ma‘*! = 0 (since i > 2) and

fi(Dta'™ = fi(1)ta?a’?
= fi(l)(a+a's)a™" by (7.6)
= fi(1)(a’ + a'sa™ )
=0.

Moreover, we have that gf;+1 = w41, because gfir1(1) = g(fi(1)t —m)
wi(1)t — g(m) = pi+1(1), by (7.7). Lastly, we need to verify that f;i1/6i—1,i+1 =
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fitvi—1,;. We have the following chain of equalities:

firipio1ie1(1) = fix1(1)a?

= (f;(1)t —m)a® by (7.8)
= fi(D)ta® — ma®
= f;(1)(a +a's) by (7.6)
= fi(L)a
= fz‘lti—l,i(i),
and this completes the proof. O

7.2 An example showing that the Chinese
Remainder Theorem does not provide a
category equivalence

When discussing the Chinese Remainder Theorem for preadditive categories, or
rings with many objects, we pointed out that the canonical functor provided by
Theorem 1.22 is not in general an equivalence, owing to the fact that it may not
be dense. In this section we illustrate this with an example.

Fix a ring R and consider the full subcategory C of R-Mod whose objects are
the uniserial left R-modules pU that are not strongly indecomposable, that is,
such that End(gU) is not a local ring. Thus End(zU) has exactly two maximal
right ideals, which are necessarily two-sided, the ideal my of non-injective en-
domorphism and the ideal ¢;; of non-surjective endomorphisms. The category
C has two ideals M and E, consisting of non-injective morphisms and non-
surjective morphisms respectively, and clearly M(U) = my and E(U) = ¢y for
every U in C. (For all this we refer back to Section 5.3.1, where we discussed
biuniform modules.) Moreover, M and E are comaximal ideals, and their inter-
section is the Jacobson radical J of C. By the Chinese Remainder Theorem 1.22
we have a canonical faithful and full functor

C/J - C/M x CJE.

It is easy to see that a pair of uniserial modules in C are isomorphic in C/M if
and only if they have the same monogeny class, and that they are isomorphic
in C/E if and only if they have the same epigeny class. Therefore the above
canonical functor is dense if and only if, given any monogeny class [U],, and
any epigeny class [V]., with U and V left R-modules that are not strongly
indecomposable, there is a third uniserial left R-module W such that [U],, =
[W]m and [V], = [W]e. Let us show with an example that this may not be the
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case, thus showing as promised earlier (on page 31) that the Chinese Remainder
Theorem 1.22 does not necessarily grant us with a category equivalence.
Before giving the example, we need a special case of [Fac84, Theorem 1].
Recall that a lattice L is called complete if every subset of L has a supremum
and an infimum in L. In particular, L has a greatest element 1 = sup(L) and a
smallest element 0 = inf(L).

Theorem 7.9. (Cf. [Fac84, Theorem 1].) The following are equivalent for a
linearly ordered complete lattice L:

() There is a ring R and a uniserial left R-module M such that L(gM) is
isomorphic to L.

(ii) Forevery a < bin L, there are a; and by in L such that a < a; < by < band
no element of L is between a, and b;.

Proof. Suppose M is a uniserial module and that A < B are submodules of M,
and consider the non-zero quotient B/A. This has a non-zero cyclic submodule,
say By /A. Since By /A is in particular finitely generated, it has a maximal sub-
module, say A;/A. Now A < A; < B; < B and there are no submodules of M
between A; and B;. Thus it follows that condition (i) implies condition (ii).

Now let L be a linearly ordered complete lattice satisfying condition (ii).
Let C be the set of elements b; of L such that there exists a; € L such that
a1 < by and no element of L is between a; and b;. In other words, C is the set
of elements of L that have an “immediate predecessor,” or the set of “immediate
successors.” Thus 0 ¢ C, while 1 may or may not be in C.

Let k be any field, and M a k-vector space having C as a basis. For « € L, let
M. be the k-subspace of M generated by {a € C' : a < x}. Let now R be the set
of k-endomorphisms g of M such that g(M,) < M, for every « € L. Thus R is
a k-subalgebra of the endomorphism ring End, (M) and M is canonically a left
R-module, i.e., we let r.m = r(m) for r € R and m € M. Also, each M, is by
construction an R-submodule of p M.

We claim that (*) the cyclic submodules of g M are precisely the subspaces
M, with x € C, and (**) the submodules of g M are precisely the subspaces M,
with € L. Since M, < M, if and only if z < y, we then conclude that L is
isomorphic to the lattice of submodules of g M, thus proving (i). Hence let us
turn to proving the claim.

First notice that, for x € C, the R-submodule M, of gk M is the cyclic sub-
module generated by the basis element z. Indeed, x € M, hence Rx < M,. If
a € C and a < z, consider the k-endomorphism ¢ of M defined by g(z) = a and
g(y) = 0 for all other basis vectors y, i.e., for all y € C\{z}. It follows that g € R,
so that ¢ € Rx. Thus Rz contains a set of generators for M,, so that M, < Rz,
and ultimately M, = Rz.
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Let now m € M. Then m is a k-linear combination of finitely many elements
from C, say m = >, ; x;\; , with all z; € C and 0 # \; € k. We can choose
the indices in such a way that z; < --+ < x,. Thus Rm < M, . On the other
hand, there is a k-endomorphism g of M such that g(x,) = z,, and ¢g(y) = 0 for
y € C\{x,}. Clearly g € R and g(m)\;! = z,, € Rm, hence M, = Rz, < Rm,
which provides the missing inclusion. This proves (*).

If z is an arbitrary element of L, it follows from the definition that M, is
the union of the chain {M, : a € C, a < x} of k-vector spaces, hence of cyclic
submodules of Rk M, so that M, is also a submodule of g M. It is left to prove
that an arbitrary submodule N of g M is of this shape.

Suppose N is an arbitrary submodule of gk M. Let Cy < C be the set of a € C
such that M, < grN. The subset Cy of L has a supremum z in L, because L is
complete. We claim that M, = gpN.

First we prove the inclusion M, < rN. Suppose a € C is such that a < =z.
If a < x, then a is not an upper bound of Cy in L. Hence there exists b € Cj
such that a < b. Thus M, < M, < gN. On the other hand, suppose that a = x.
Since a € C, there is b € L such that b < a and no element of L is between b and
a. Since «a is the supremum of Cj, we have that b is not an upper bound of Cy
in L. Hence there is ¢ € Cj such that b < ¢. Since ¢ < a is not possible, we must
have a < ¢, and ¢ < a also holds, hence a = ¢ € Cy, and again M, < gN. Thus,
so far we have proved that M, < g N.

Let us turn to the reverse inclusion. Suppose n € gN. Since Rn is a cyclic
submodule of g M, we have that Rn = M, for some a € C. Since M, < rN
we have that a € Cy, hence a < z and n € M, < M,. Because n is arbitrary,
rN < M,, and this concludes the proof. O

With Theorem 7.9 at hand, we can proceed to the promised example. Sup-
pose U and V are uniserial modules such that the lattice of submodules £(U) is
countable and the lattice £(V') is uncountable. There does not exist a uniserial
module W such that [W],, = [U],, and [W]. = [V].. If this were the case,
W would be a submodule of U and V a quotient of W, thus V would be a
subquotient of U. Therefore £(V') would embed in £(U), which is impossible.

By Theorem 7.9, there is a ring R and a uniserial module rU such that
L(rU) is countable, say isomorphic to the linearly ordered complete sublattice
of thereal line {+1/n : 1 < n < w}u{0}, and a ring S and a uniserial module ¢V’
such that £(sV') is isomorphic to the linearly ordered complete lattice Ru{+oo}.
Then U and V are canonically left modules over T = R x S, L(rU) = L(gU)
and ﬁ(TV) = ,C(SV), and End(TU) = End(RU) and End(TV) = EIld(SV).

To complete the example, one has to show that U and V' are not strongly
indecomposable, in other words, that my and ¢y are not comparable, and sim-
ilarly that my and ¢y are not comparable. To see this we have to keep in mind
the structure of rU and gV as constructed in Theorem 7.9. As far as gU is
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concerned, the positions

CHAPTER 7. A COUPLE OF EXAMPLES

1 1
s >1
— = (n=1)
0—0
1 1
— 21
n n+1 (n )

define an injective non-surjective endomorphism of grU, while the positions

-

\

-1 -1

1 1

— - (n>2)
-n -n+1

0—0

1 1

Zs = >1
o (n=1)

define a surjective non-injective endomorphism of grU. Similar endomorphisms
are defined for sV, by mapping each remaining basis vector to itself. This

concludes the example.



Appendix A

Foundational issues

There are some mathematical constructions in this thesis that are not entirely
correct from the formal standpoint, but that admit equivalent and formally valid
alternatives, though sometimes a bit cumbersome or unusual. Because of this,
we preferred to avoid detours about foundational issues in the exposition and
postpone their discussion to this appendix.

Because different authors give slightly different definitions and choose dif-
ferent foundations for category theory, it is virtually impossible to justify all of
our constructions in a manner that rigorously fits all systems. It is the author’s
hope that while not all readers may completely agree on the formal correctness
of our constructions, most of them will concur on their reasonableness.

Let us consider first the collection V(C) of ideals of a semilocal category
C associated to maximal ideals of endomorphism rings of objects of C (Sec-
tion 2.2). An ideal is usually defined as a subclass of the class of all morphisms
of C, or as a doubly-indexed collection of subgroups I(X,Y") of C(X,Y), for
X and Y objects of C. In the first case, if C is not small, that is, if it has a
proper class of objects, then an ideal is a proper class, because of the injective
mapping X — Oc(x) from the proper class of objects of C into any ideal T
of C. In the second case, we have an injective mapping X — ((X,X),I(X)),
and again the ideal is a proper class. In either case I is a proper class, hence I
cannot be a member of any set or class V(C). It is possible to obviate this prob-
lem by replacing the (possibly proper) class I with a suitable set, as in [FP10].
Let S be the class of all pairs (X, P) where X is an object of C and P is a
maximal ideal of C(X). Introduce an equivalence relation on S by declaring
(X1, P) ~ (Xg, P,) if the ideal of C associated to P; is the same as the ideal of
C associated to P,. Thus we may identify V' (C) with a class of representatives
of S modulo the equivalence relation ~. (We note that to choose these represen-
tatives we need a strong version of the Axiom of Choice.) We may then identify
V(C, X)) with the subclass of V(C) consisting of those elements (X5, P») such
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that (X3, P») ~ (X, P) for some maximal ideal P of C(X). Thus V(D, X) is a
set.

Recall that we defined a hypergraph to be a pair (V, E) where V is a class
and F is a suitable class of finite subsets of V' (Section 5.4). The definition is
sound because it is possible to consider classes of subsets of a class, whereas it
is not possible to form the collection of all subclasses of a proper class.

Sometimes we have an equivalence relation ~ on a proper class C' and we
wish to consider the quotient C/~. Of course the equivalence classes of C
modulo ~ may be proper classes hence not members of a class C/~. In this
case, we let C/~ be a class of representatives of elements of C' modulo ~, using
a strong version of the Axiom of Choice. This was employed in Section 5.4 when
we considered quotients of a class of edges £ modulo the equivalence relations

In Section 5.4 we also considered monoids N(V) where V is allowed to be a
proper class. Traditionally N(V) is a (large) monoid whose underlying set (class)
is the set (class) of functions V' — N whose support is finite. When V' is a proper
class, this construction is not possible, because, for instance, the zero element
of N(V) is a proper class, thus it cannot be a member. Indeed, the zero element
of N(V) is the proper class {(v,0) : v € V}. Here is a slight modification of the
usual definition of N(V). Consider the class S of functions from finite subsets
of V to N\{0}. An element of S can be extended with zeroes to a function
V — N with finite support, and conversely, starting with a function g: V' — N
with finite support S, the restriction g|s is an element of S. These mutually
inverse correspondences allow us to identify the class S with the “collection”
N(), As for the operation, if fi, fo € S, say f;: S; — N\{0}, we define f; +
f2: 81 U Sy — N\{0} by letting (f1 + f2)(s) = f1(s) + f2(s) for s € S; n Sa, and
(f1 + f2)(s) = fi(s) when s belongs only to S;. Note in particular that the zero
element is the empty set.
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n-Krull-Schmidt Theorem, 98, 108

additive closure, 18
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biproduct
factor, 21
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Camps-Dicks Theorem, 40
cancellation property, 42
category
additive, 13, 17
factor, 14
idempotent-complete, 18
morphism, 60, 77
preadditive, 13
semilocal, 33, 43
stable, 57
Chinese Remainder Theorem, 28
closure
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coequaliser, 20
cogenerator, 126
coindependent subset, 37
cokernel (of a morphism), 20
component of a graph, 102
couniform object, 71

degree of a vertex, 112
domain

nearly simple, 133
dual Goldie dimension, 37
duality

E-dual, 86

Q-dual, 126

R-dual, 60

U-dual, 59

epi-isomorphism class, 80
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epigeny class, 84, 105, 119
epimorphism, 20
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evaluation (natural morphism), 59

factor
biproduct, 21
category, 14

functor
almost local, 44, 94
isomorphism-reflecting, 29
local, 93
retract-reflecting, 29

Goldie dimension, 35
dual, 37

graph, 101
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intersection graph, 111

Hall’s Theorem, 25
hypergraph, 107
n-partite complete, 109
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partial, 107
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associated, 16
comaximal ideals, 28
comaximal ideals, 29
completely prime, 15, 95
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improper, 14
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induced subgraph, 102
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isomorphism
modulo an ideal, 16
stable, 59

Jacobson radical, 15, 17
join-independent subset, 34
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of a functor, 14

of a morphism, 20
Krull-Schmidt Theorem, 24, 27

lattice
complete, 136
complete modular, 34
Goldie dimension of, 35
local ring morphism, 40, 47
lower part, 84, 119
lower-isomorphism class, 80

module
‘Pe-finitely presented, 73
Auslander-Bridger, 65, 73
biuniform, 105
couniform, 85, 105
couniform projective, 66

couniformly presented, 106, 115

DCP, 98
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heterogeneous, 98

lifting, 67
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projective lifting, 67

pure projective, 131

pure sub-, 131

quasi-small, 131

U-reflexive, 60

semisimple, 39

simple, 39

uniform, 35, 85, 104

uniform injective, 85

uniserial, 104
mono-isomorphism class, 90
monogeny class, 105
monoid

commutative reduced, 77
monomorphism, 20
morphism category, 60, 77

object
couniform, 71
of finite type, 47

presentation
couniform, 115
pure epimorphism, 131

quiver, 101
representation, 101

reject, 100

retract, 29

retraction, 29

ring
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