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Abstract 
 

 

More than 30% of the final energy uses in the European Union are due to the building energy 

consumptions. In order to reduce their energy impact and improve their efficiency, the design 

activity has been given a large importance, both for new buildings or refurbishment projects. 

Moreover, besides these goals, during the last years the indoor comfort conditions have assumed 

a more and more relevant significance for professionals in the building design. That required the 

development of properly detailed instruments of analysis, such as building energy simulation 

tools (BES). Generally, the more complex a tool, the higher the number of required inputs but 

not all of them are always available in the early design stages. For this reason, BES codes have 

been used also to elaborate simpler models.  

This research analyses the possibilities given by an extensive use of the BES for the evaluation 

of the building envelope energy performance and some of the different issues related to BES.  

The first topic discussed is related to the external boundary conditions in BES, in particular the 

definition of a representative weather file for the description of the external environment and of 

the modelling of the heat transfer through the ground. The second topic analyses the problems 

of the validation of the results provided by BES tools and the relative accuracy introduced by 

the choice of a specific code. The comparison between BES software is carried out both 

considering the outputs of a whole thermal zone, such as heating and cooling energy needs and 

peak loads and the time of their occurrences, and the response of a single component (i.e., 

opaque walls and glazings). Finally, the coherence between the energy needs elaborated by 

means of BES tools and those by the quasi-steady state model presented in the technical 

Standard EN ISO 13790:2008 is studied and some correction factors are proposed for this 

simplified method. 
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Sommario 
 

 

Più del 30% degli impieghi finali di energia nell’Unione Europea è dovuto ai consumi 

energetici degli edifici. Al fine di ridurre il loro impatto energetico e migliorare la loro 

efficienza, è stata data una sempre maggiore importanza all’attività di progettazione, sia in 

merito ai nuovi edifici sia per gli interventi di riqualificazione. Inoltre, in aggiunta a questi 

obiettivi, durante gli ultimi anni le condizioni di comfort nell’ambiente confinato hanno assunto 

una sempre maggiore significatività per i progettisti edili. Ciò ha richiesto lo sviluppo di 

strumenti di analisi adeguatamente dettagliati, come i simulatori dinamici dell’edificio. In 

generale, più è complesso uno strumento, maggiore è il numero di input richiesti ma non tutti 

sono sempre disponibili nelle fasi iniziali della progettazione. Per questa ragione, i codici di 

simulazione dinamica sono stati impiegati anche per sviluppare modelli semplificati. 

Questa ricerca analizza le possibilità date da un uso estensivo della simulazione dinamica per la 

valutazione delle prestazioni energetiche dell’involucro edilizio e alcune problematiche relative 

ad essa. Il primo argomento discusso riguarda le condizioni al contorno nella simulazione 

dinamica, in particolare la definizione di un file climatico rappresentativo per la descrizione 

dell’ambiente esterno e la modellazione dello scambio di calore attraverso il terreno. Il secondo 

argomento analizza i problemi della validazione dei risultati forniti dagli strumenti di 

simulazione dinamica e l’accuratezza introdotta dalla scelta di uno specifico codice. Il confronto 

tra i software di simulazione dinamica è condotto sia a livello degli output di un’intera zona 

termica, quali i fabbisogni di riscaldamento e raffrescamento, i carichi di picco e l’istante in cui 

si verificano, e la risposta di un singolo componente (i.e., le pareti opache e quelle vetrate). 

Infine, viene studiata la coerenza tra i fabbisogni energetici elaborati dagli strumenti di 

simulazione dinamica e quelli ottenuti tramite il modello semi-stazionario presentato nella 

normativa EN ISO 13790:2008 e vengono proposti alcuni fattori correttivi per questo metodo 

semplificato. 
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H/ Ĥ  
solar radiation / peak of cumulative solar radiation (MJ m

-2
) 

or global heat transfer coefficient (W m
-2

 K
-1

) 

HDD equivalent Heating Degree Days (K d) 

J/K ranking orders 

k regression coefficient 



xxx 
 

i day 

I solar irradiance (W m
-2

) 

m month 

N/n total number (of days in the whole series of months/in a specific month) 

p weather parameter 

p  daily average value of a weather parameter p 

P perimeter (m) 

q q q̂ q~  
thermal flux / steady state thermal flux component / thermal flux peak / dynamic 

thermal flux component (W m
-2

 K
-1

) 

qi qe secondary internal/external radiative-convective heat transfer factors (-) 

Q 
quartile 

or energy (MJ) 

R thermal resistance (m
2
 K W

-1
) 

R
2 
R

2
adj index of determination 

s thickness (of a layer) (m) 

S 
dispersing surface (m

2
)  

or single glazing 

SHGC g Solar Heat Gain Coefficient / g-factor (-) 

SS Space State Method 

t time (s) 

T absolute temperature (K) 

TH triple glazing with high SHGC 

TL triple glazing with low SHGC 

TFM Transfer Function Methods 

TRY Test Reference Year 

U thermal transmittance (W m
-2

 K
-1

) 

V V  
thermal zone volume (m

3
)  

or volume rate (m
3
 s

-1
) 

w thickness the external walls (m) 

x envelope fraction (-) 

y year 

Y periodic thermal transmittance (W m
-2

 K
-1

) 

Z element of the heat transfer matrix 



xxxi 
 

 

Greeks 

 solar absorptance (-) 

cav cavity absorption coefficient (-) 

β 
time lag (month) (ch. 2) 

correction factor of radiative exchanges for tilted surfaces (-) (ch. 3, 4)  

γ heat balance ratio (-) 

δ periodic penetration depth (m) 

Δ difference/deviation 

Δg ground heat flow share (%) 

Δt time shift (h) 

 emissivity (-) 

 utilization factor (-) 

 ̂ 
~
 temperature / average temperature / peak temperature / temperature harmonics (K) 

κ area specific heat capacity (kJ m
-2

 K
-1

) 

λ thermal conductivity (W m
-1

 K
-1

) 

Λ thermal conductance (W m
-2

 K
-1

) 

ξ ratio between the thickness of a layer and the periodic penetration depth (-) 

ρ 
density (kg m

-3
) 

or reflection coefficient (-) 

 Stefan-Boltzmann constant (5.67 10
-8

 W m
-2

 K
-4

) 



month with the minimum annual temperature 

or solar transmission coefficient (-) 

or building time constant (h) 

d diffuse solar transmission coefficient (-) 

e,n beam solar transmission coefficient at normal incidence (-) 

Τ period (s) 

φ 
Specific heat flux (W m

-2
)  

or phase (rad) 

ϕ tilt angle (rad) 

Φ 
cumulative distribution function of weather parameters, months and days (ch. 1) 

or heat flow (W) 

Ψ 
linear thermal transmittance of a thermal bridge (W m

-1
 K

-1
) 

or ratio between the glazings area and the opaque area of the envelope (-) 

 angular frequency (rad s
-1

) 



xxxii 
 

 

Subscripts/Superscripts 

0 reference 

2dd referred to two consecutive days 

a referred to the internal air 

A referred to the internal appliances 

ad adiabatic 

air referred to the external air 

c convective 

C cooling 

calc calculated 

D referred to the thermal losses towards the external environment 

e referred to the external side/conditions 

eff effective 

EN according to the European Standards 

env referred to the wall opaque envelope exposed to the external air 

f referred to the floor 

FFT referred to FFT analysis 

fr referred to the window frame 

fsky referred to the reference temperature for external radiative exchanges in TRNSYS 

g/gnd referred to the ground 

gl referred to glazings 

gn referred to thermal gains 

H heating 

hor referred to horizontal surfaces 

ht referred to thermal losses 

HVAC referred to the HVAC system 

i referred to the internal side/conditions 

int referred to the internal gains correction 



xxxiii 
 

L 
referred to the thermal losses correction 

or to the lighting 

loc location (e.g., Denver) 

lwr internal longwave radiative gains 

m n 
monthly  

or thermal zones 

max maximum 

min minimum 

mr referred to the mean radiant temperature 

n 
thermal zone  

or normal incidence 

nd referred to the energy needs 

ob referred to the external obstructions 

Oc referred to the occupants 

op referred to the operative temperature 

p periodic or projected 

Proc referred to the internal processes 

r radiative 

range acceptability range 

s surface 

S referred to Finkelstein-Schafer’s statistics 

set setpoint 

sh shading 

slab referred to the slab-on-ground 

sol solar 

sol-air referred to the sol-air temperature 

sky referred to the sky vault 

st in steady state conditions 

star referred to the star network temperature in TRNSYS 

swr internal shortwave radiative gains 

sys referred to the conditioning system 

tr referred to the heat flow by transmission 



xxxiv 
 

tot referred to the total opaque envelope 

TRNSYS referred to TRNSYS code 

u unconditioned 

ve referred to the ventilation 

V virtual 

WA referred to the water mains 

win referred to windows 

 

  



xxxv 
 

 

  



xxxvi 
 

 



Chapter 1 

 

 

1 

 

 

Chapter 1:  

 

Introduction  

and literature review 
 

 

  



Introduction and literature review 

 

 

2 

 

 

  



Chapter 1 

 

 

3 

 

1.1 Introduction 

During the last two decades, the goals of building design have changed under a larger and 

larger awareness of the impact of the building energy consumption on the environment and the 

attention to the occupants’ hygrothermal comfort conditions. In order to pursue high levels of 

energy efficiency and indoor comfort quality in the design process, detailed instruments of 

analysis have been developed, such as building energy simulation (BES) tools.  

Generally, the more complex a tool, the larger the number of required inputs and providing 

all of them can represent a relevant issue. This led to use BES codes also to elaborate simpler 

models or correlations between the results and the envelope characteristics for helping, for 

instance, in exploring many alternatives in the early stages of the design process and assessing 

the performance of existing buildings. 

This research analyses the possibilities given by an extensive use of the BES for the 

evaluation of the building envelope energy performance and some of the different issues related 

to BES. In particular, the focus is on the following topics: 

 Weather data and external conditions in BES 

This part discusses the problem of the weather data file in BES. In particular, the 

representativeness of the simulation results is investigated by using both single 

reference years and original multi-year weather data. Moreover, the problem of the 

definition of the suitable boundary condition when the envelope is not directly exposed 

to the outside condition, such as for walls and floors in touch with the soil, is analysed. 

The aim of this section is to give an answer to the question: which external boundary 

conditions can be used in BES and how the heat transfer through the ground can be 

modelled? 

 BES validation and comparison 

Like all the modelling software, BES tools need validation. Even if two validated codes 

are considered, some discrepancies are still present because the different implemented 

models are characterized by different levels of approximation of real phenomena and 

this can affect the final results. In order to further investigate the elements of 

disagreement and the resulting effects on BES outputs, a comparative procedure is 

described in this part, considering energy needs and peak loads. 
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The aim of this section is represented by the question: which is the uncertainty 

introduced by the choice of the BES tool and in which way can the effect of 

disagreement elements be detected? 

 Characterization of the envelope components behaviours with BES 

BES tools can be used also for characterizing the dynamic behaviours of the building 

envelope components. Thus, in this part, the suject of the comparison is no more the 

whole building system but only a single element and the accuracy of some numerical 

methods implemented in BES tools is investigated under different boundary conditions. 

The question of this section is: how is the behaviour of the building envelope 

components characterized by BES tools? 

 BES and simplified models  

The objectives of this part are the study of the coherence between the results provided 

by BES tools and the simplified models proposed by the European technical Standards, 

the assessment of the sources of disagreement and the improvement of the considered 

simplified models. 

The question for this last part is: which is the level of agreement between the detailed 

and the simplified methods and how could it be improved? 

 

The discussed topics can involve an issue of general representativeness or absolute accuracy 

(such as the description of the weather or the reliability of the simplified methods results) or a 

problem of confidence or relative accuracy of the provided results, depending on some 

assumptions and hypothesis in the description of the physical phenomenon. In Table 1.1 a the 

investigated topics are distinguished according to this criterion and reported together with other 

topics discussed in literature about the problem of relative and absolute accuracy in BES. 

 

In the following paragraphs the different parts of the research work are introduced. For each 

one, a general description of the motivation for its study and a literature review are provided. 

 

 

 

 

 

 



Chapter 1 

 

 

5 

 

Table 1.1 - Contents Table. In italic and grey other topics present in literature related to the 

ones discussed in this research work and to the accuracy. 

 
Representativeness of the results 

(absolute accuracy) 

Confidence level of the results 

(relative accuracy) 

Boundary conditions: 

weather data 

Analysis of the representativeness 

of the hourly data used in BES 

(and so the corresponding 

averages in the simplified 

methods) with respect to the 

collected measurements over a 

multi-year period. 

Development of self-correlated 

weather data. Effects of the 

choice of the solar radiation 

models.  

Models for the external infrared 

exchanges. 

Boundary conditions: 

heat transfer through 

the soil 

Analysis of the method proposed 

by the technical Standard EN ISO 

13370:2007 to evaluate the 

boundary conditions and the heat 

flows for walls/floors in contact 

with the soil. 

Analysis of particular 

assumptions in the EN ISO 

13370:2007 method which can 

lead to discrepancies between 

simplified methods and detailed 

approaches, such as the 

modelling of non 1-dimensional 

heat flows and the determination 

of its time lag. 

Description of the 

thermo-physical, 

geometrical and 

operative 

characteristics 

Uncertainty on the 

thermophysical properties. 

Diagnosis and calibration for 

existing buildings. 

Study of the role of the detail 

level in the description of the 

thermo-physical properties of 

the envelope in the alignment 

between BES tools. In 

particular, focus on the constant 

parameters not under the user’s 

control. 

Modelling of the 

behaviour of the 

envelope 

Comparison with measurements. 

Numerical and simplified 

algorithms. 

Study of the relative differences 

between BES due to the 

implemented numerical heat 

transfer methods. 

Modelling of the 

internal heat 

exchanges and the 

heat balance 

Evaluation of the quasi-steady 

state method proposed by the 

technical Standard EN ISO 

13790:2008. 

Study of the influence on the 

final results of different models 

in the heat balance or thermal 

fluxes estimation between BES 

tools. 

Study of assumptions and 

hypotheses in the EN ISO 

13790:2008 model and 

comparison with BES. 
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1.2 Weather data and external conditions in BES 

The first advantage of BES tools is the possibility to consider dynamic boundary conditions 

and, so, the opportunity to evaluate the building-system behaviour under a transient regime. The 

boundary conditions are unsteady both on the internal and on the external side of the building 

envelope. 

Inside the thermal zone, different ventilation rates, setpoint conditions, occupancy levels 

and, in general, control strategies and occupants’ behaviours can be considered. Getting all 

information required for modelling the internal conditions is not easy: without detailed data and 

with design aims, many of these parameters are typically held constant in accordance with the 

average values prescribed by technical Standards. Designers and professionals can also study 

different scenarios by making hypotheses on the profiles of these variables. 

As regards the outdoor, the weather conditions have to be as representative as possibile of 

the real recordings. With this requisite, for istance for the elaboration of the beam and diffuse 

solar radiation on differently tilted and oriented surfaces, many mathematical and statistical 

models have been developed and implemented in BES software to try to simulate the weather 

condition as well as possible in different locations. Four parameters are generally required as 

hourly-discretized inputs for the description of the weather conditions: the dry bulb temperature, 

the global solar radiation on the horizontal, the relative humidity and, in some cases, also the 

wind speed and its direction. Even if some algorithms have been proposed to generate hourly 

data starting from the monthly averages, the BES preferably requires to have weather data 

profiles derived from measurements and representative of the locations chosen for the 

simulation. The use of the same type of weather data is also important for the assessment of the 

building energy performance by means of dynamic simulations, in the context of the building 

energy certification. 

A different problem is faced when defining the boundary conditions for those buildings with 

an extensive part of their envelope in touch with the ground, such as partially underground 

warehouses or shops or new innovative concepts of building. Differently from the weather data 

used for simulating buildings above the ground, the temperature of the soil adjacent to the 

envelope is generally unknown and it is a complex function of the external conditions, the 

properties of the ground, the indoor conditions and the insulation level of these parts of the 

building envelope. 

In chapter 2 the issue of the weather data for a year-long simulation is discussed, focusing, 

in particular, on the representativeness of the building energy needs and peak loads elaborated 
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by using a test reference year respect to the distribution of the results of a multi-year weather 

data series. In the last part of the chapter the prescriptions given by the technical Standard EN 

ISO 13370:2007 to calculate the boundary temperature for walls and floors in touch with the 

ground, have been assessed. 

 

1.2.1 Literature review: Weather data for BES 

In many design applications, the use of simplified calculation methods, such as the quasi-

steady state method proposed by the EN ISO 13790:2008 (CEN, 2008) for the evaluation of the 

building energy consumption, cannot provide results detailed enough to allow advanced 

investigations aimed at achieving both a high energy efficiency and an adequate occupants’ 

visual and thermal comfort. This fact is requiring the recourse to the detailed dynamic 

simulation tools by professionals more and more frequently. 

The higher capability in calculating detailed outputs by simulations codes requires more 

complex and detailed inputs. As regards the weather data, while in simplified methods the user 

needs only a dataset of monthly mean values of dry bulb temperature, solar radiation and 

relative humidity, as the ones in the Italian Standard UNI 10349:1994 (UNI, 1994) calculated 

starting from the data collected during the period 1951-1970, in simulation tools the weather 

data inputs generally require at least an hourly discretization. 

We can distinguish three kinds of data for dynamic simulation (Keeble, 1990): 

 the multi-year weather data;  

 the typical year; 

 the representative days. 

The multi-year weather data are the best solution, in case of trend and sensitivity analyses of 

the building performance to the variability of the weather solicitations, aimed at a design robust 

to the climatic changes (Struck et al., 2009). Complete multi-year series, with low measurement 

errors and a good representativeness, are available for a limited number of localities in Italy, 

since the regional environmental protection agencies (ARPAs) have started to collect weather 

data in the urban areas only around 20 years ago, in the best cases (Baggio et al., 2010). 

Typical weather data years are simply a single year of hourly data representative of the 

typical trend in a multi-year dataset. The representative days are hourly data for some average 

days chosen to describe typical climatic conditions (e.g., summer conditions). 

The use of a typical year (or representative days) instead of multi-year weather data leads to 

a loss of information but it is less time-consuming and it is preferred when the effects of missing 
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or wrong data in the collected series have to be mitigated. The use of typical year is also 

necessary in order to provide a single standard weather reference condition for assessing the 

energy performance of a building in a particular location. The typical reference years (TRY) 

were defined by Lund (1974 and 1991) and Lund and Eidorff (1980) and have to be 

characterized by: 

 true frequencies (i.e., the TRY should be a good approximation of the mean values 

derived from a long period of measurements); 

 true sequences (i.e., the weather situations must follow each other in a similar 

manner to the recorded data); 

 true correlations (i.e., the weather data are cross-correlated variables). 

 

The last feature is probably one of the most important, as remembered also by Guan (2009) 

in Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

In literature different approaches are available for the construction of a TRY but each one 

starts from the calculation of some primary parameters (e.g., daily solar radiation) and a 

secondary variable for the selection of the representative month from the collected data, as 

suggested by Hall et al. (1978). In accordance with Harriman et al. (1999), the choice of the 

primary variables should be done considering the perspective of the final use of the TRY, 

distinguishing the sizing and the energy assessment. Moreover, Hensen (1999) remarked that a 

proper statistical weighting for the primary parameters should be used, based on the type 

building which will be analysed. 

Gansler et al. (1994) compared different reference year weather files to the multi-year series 

for the calculation of the performance of a solar system. Similarly, Sorrentino et al. (2012) 

assessed different approaches for the calculation of the TRY, by studying the sensitivity of the 

Air Humidity 

Wind Speed 

and Direction 

Water evaporations 

and Air saturation 

Air Pressure 

difference 

Solar Radiation 
Air Temperature 

variations 

Figure 1.1 - Relations between the different variables according to Guan (2009) 
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energy production of a PV module and a building energy needs in Palermo to the chosen 

method. They found that, in particular for the building energy need evaluation, the best solution 

is to use weights for the selection of the TRY months. 

In Italy, for the revision of the technical standard UNI 10349, which is in progress, starting 

from ARPA’s data the procedure described in the European technical Standard EN ISO 15927-

4:2005 (CEN, 2005) was selected for developing the new test reference year (TRYEN). Its 

selection method is based on the dry bulb temperature, the solar radiation and the relative 

humidity as primary variables and the wind speed as secondary one and no weighting 

coefficients are considered for them. 

 

1.2.2 Literature review: Heat transfer by components in touch with the ground  

In the last decades, the pursuit of better building energy performance has led to an average 

increase of the thickness of the thermal insulation layer of the envelopes. Therefore, the ground 

heat losses – traditionally considered of minor importance – have become more and more 

significant for the building energy balance assessment. Walls and floors directly in touch with 

the ground are complex to model either by dynamic simulations or through analytical solutions. 

In particular, a difficult step in the analysis is the determination of the boundary conditions to be 

assigned to the surfaces in contact with soil, whose temperature cannot be considered as 

undisturbed. 

Hagentoft (1988), Claesson and Hagentoft (1991), Hagentoft and Claesson (1991) have 

developed accurate calculation methods for evenly insulated floors. In these studies the heat 

transfer through the floor in contact with the ground is modelled using a conformal mapping in 

the complex plane, assuming a semi-infinite ground layer and a floor with definite width. The 

solution is derived for steady-state, periodic and single-step boundary conditions in temperature. 

When the external wall itself is used as thermal protection (e.g., the edge insulation slab case), 

the same author derived an analytical solutions for the steady-state ground heat loss for 

buildings with only perimeter insulations (Hagentoft, 2002a and 2002b). Furthermore, the 

complexity of the underground structures has been analysed by Hagentoft (1996a, 1996b) also 

considering the presence of aquifers. Other authors (Delsante, 1988 and 1989; Anderson, 1991; 

Davies, 1993; Mihalakakou et al., 1995) studied models for evaluating the heat flux and the 

temperature of the interface between the slab-on-ground and the soil. Rantala (2005) proposed a 

semi-analytical model and compared it with measurements and FEM modeling.  

The technical standard EN ISO 13370:2007 (CEN, 2007c) provides methods for the 

calculation of heat transfer coefficients and heat flow rates for building components in thermal 
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contact with the ground, including slab-on-ground floors, suspended floors and basements. The 

Standard defines an equivalent thermal transmittance of a floor, which depends on its 

characteristic dimension (i.e., the ratio between the area of the floor and half its perimeter), on 

its total equivalent thickness (i.e., sum of the actual floor thickness and the product between the 

floor thermal resistance and the soil thermal conductivity) and on the thermal conductivity of 

the soil. This technical Standard gives also some indications about the conditions to be 

considered in the use of quasi steady-state methods and within the dynamic simulation. 

An interesting aim of the research in this field, is the test and implementation of reliable 

calculation procedures for the thermal dispersion through the building envelope towards the 

ground, in modelling the building with dynamic simulation software, such as TRNSYS and 

EnergyPlus, which will be analysed in chapter 3. 
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1.3 BES validation and comparison 

Many BES tools have been developed in the last decades and for a user it is not easy to 

select the one to adopt for his analyses. The user should identify which are the required outputs 

(e.g., only the estimation of energy needs or also thermal and  visual comfort indicators), what 

he wants to model (e.g., only the envelope or also each component of the HVAC system) and 

which is the possible level of detail for the modelling activity (e.g., a single zone or a multi-

zone model). In this way, a list of explicit user’s needs can be prepared for addressing the 

selection towards a specific tool. Whatever it is, the most important user’s expectation is that the 

results provided by the chosen BES are reliable. Moreover, the possibility to compare different 

BES tools is relevant, not only for the user but also for the addressee of his work. These last two 

aspects are generally not investigated by a user looking for the most convenient BES tool and 

they can be considered implicit needs.  

As indicated in Figure 1.2, the explicit user’s needs directly affect his selection of the BES 

tool. The non-explicit needs, instead, have to be already satisfied by the BES tool, as they are a 

minimum requirement. Thus, they have to be considered in the dynamic simulation tool 

development process as primary targets. To determine if the boundaries of reliabilities are 

achieved, the software has to be validated and, then, presented to the interested users for the 

selection. From one hand, the validation can be an important instrument to identify the errors 

and to improve the general quality of the BES code. From the other hand, also the users can 

evaluate the performance of the different software by comparing with reference cases and 

assessing their reliability and capability. 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.2 - Correlation between user's needs and availability of validate BES tools 

Explicit user’s needs: 

- Required outputs; 

- Modeling level; 

- Subject of the modelling activity; 

- …. 

Implicit user’s needs: 

- Reliability of the results; 

- Comparability between different 

BES tools; 

- … 

BES tool choice 

BES tool development 

Validated BES tools 
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From a researcher’s point of view, these BES tool characteristics are crucial for his work. 

The outcome of his research has to be independent of the used simulation software, in order to 

have a general worthiness and, for example, to find some correlations between the 

thermophysical properties of the building envelope components and the whole energy 

performance and to refine simplified methods, as in this thesis. 

 

1.3.1 Literature review 

Building simulation codes are more and more frequently supporting the evaluation of the 

energy performance of new and existing buildings and used to size and design the building 

systems by architects and engineers. Moreover their use allows researchers to define, tune and 

review different simplified methods (van Dijk and Arkesteijn, 1987), such as the quasi-steady 

state approach of the standard EN ISO 13790:2008 proposed in the calculation of energy 

performance of buildings for energy labelling and certification. 

Although some of the most well known, such as HVACSIM+, TRNSYS, EnergyPlus, 

BLAST and DOE2, implement quite similar approaches to solve the building thermal balance, 

in particular for the calculation of the dynamic behaviour of the opaque envelope, the provided 

results can significantly differ from one to another code within the wide range of configurations 

that characterizes the real applications. Even if the degrees of freedom and the options allowed 

to the user´s choices are correctly used, small details regarding the implemented components or 

algorithms or different approaches in the definition of the boundary conditions, of the buildings 

and plants configuration and in the management of the output can lead to different estimation of 

the energy needs or of the power peak loads for the same building. The most common causes of 

discrepancies, as an insufficient detail in the component and system models or even errors in the 

implementation of the algorithms, have been the main target of the investigation since the early 

works in the ´80s, which indicated the need for validation methodologies. 

Many efforts have been done since then in order to improve the agreement and accuracy of 

software tools through the definition of a validation procedure. Describing the results of 

validation activities at the Solar Energy Research Institute (now National Renewable Energy 

Laboratory), Judkoff (1988) introduced a three-step approach based on analytical verification 

(validation against simple analytical test cases), empirical verification (comparison to the 

available data of empirical cases) and code-to-code comparison (evaluation of several different 

codes with different thermal solution approaches in a variety of representative cases). Some 

indications on the empirical validation tests performed by the Solar Energy Research Institute in 

cooperation with the International Energy Agency and other partners were also provided. 
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Jensen (1995) analyzed the validation procedure defined within the PASSYS Project of the 

European Commission DGXII for Science Research and Development of the European 

Commission, emphasizing the importance of parametric sensitivity statistical analysis and 

residual statistical analysis when comparing results from different sources, such as the different 

statistical sensitivity analysis techniques considered by Lomas and Eppel (1992). The validation 

methodology described adds to a whole model validation approach (comprising the three steps 

of sensitivity analysis, empirical validation and comparative validation) a parallel validation of 

each single process or element of the model. 

Lomas et al. (1997) illustrated the results of a more recent extensive empirical validation 

program of the International Energy Agency (IEA) Annex 21 and Task 12, which produced five 

empirical validation benchmarks. The report by Moinard and Guyon (1999) refers to the IEA 

Task 22, aimed to test the ability of models to predict temperature and energy consumption of a 

test cell. Under the same IEA Task 22 Palomo del Barrio and Guyon (2003, 2004) developed 

mathematical data analysis techniques to identify and explain the differences between 

simulation and measurements. 

Neymark et al. (2005) developed a new data set and test specifications appropriate for the 

inclusion of empirical validation cases in the framework of the comparative test approach 

defined by the IEA Building Energy Simulation Test (BESTEST) method. As regards analytical 

approaches, they involve the comparison of the simulation results with analytical solution of 

particular processes or of specific cases (conduction, convection and long wave radiation 

models, solar gains, ground coupling, plant components, etc). Some of those solutions have also 

been included in the framework of the BESTEST method, as reported by Neymark and Judkoff 

(2009) for the ground coupled heat transfer or by Neymark et al. (2002) for HVAC components. 

As regards the comparative approaches, the U.S. Department of Energy (DOE), through the 

National Renewable Energy Laboratory (NREL), the IEA and the American Society of Heating, 

Refrigerating and Air-Conditioning Engineers (ASHRAE) have been cooperating in order to 

develop standard methods of test (validation and diagnosis) for computer software. 

Those procedures, the BESTEST, were developed under IEA Tasks 8, 12, 22 and 34. 

ASHRAE (ASHRAE, 2011) recently published the updated ANSI/ASHRAE Standard 140-

2011 Standard Method of Test for the Evaluation of Building Energy Analysis Computer 

Programs, which parallels many of the tests in the first IEA BESTEST. 

Besides the BESTEST configurations for the building envelope simulation, other ones have 

been developed to evaluate the ground contact cases and the HVAC plants, as synthesized by 

Judkoff and Neymark (2008). 
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A BES tool which successfully passes the BESTEST cases, is able to provide results in 

agreement with the ones of the reference codes, which are representative of what is commonly 

accepted as the current state of the art in BES (Judkoff and Neymark, 1995). In this context, 

further comparative investigations are of interest, not only to detect the elements of 

disagreement but also to quantify their influence. 
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1.4 Building envelope characterization with BES 

The BES tools can be used for advanced desing aims, which are beyond the simple 

estimation of the energy needs over a monthly or an yearly period. For instance, the BES codes 

can be used to design passive systems which minimize the energy needs and keep the indoor 

thermal comfort conditions setpoints by controlling the balance between the different thermal 

flows and, so, using the air-conditioning system as less as possible. Consequently, it is 

necessary to model accurately not only the dynamic behaviour of the whole building system but 

the one of the single components of the envelope. 

The characterization of the dynamics of the envelope gets a larger importance during the 

cooling season. From one hand, by studying properly the envelope thermal inertia, it is possible 

to shift part of the heat gain flows leading to cooling needs during the less critical time of the 

day (e.g., during the nighttime and applying a night ventilation strategy or, in case of non-

residential buindings, during the non-occupancy time). On the other hand, the dynamic 

properties of the envelope can strongly influence the indoor thermo hygrometric comfort 

sensation of the occupants: a proper design can limitate the need of future interventions and the 

use of the air-conditioning system. 

The BES tools can help in advanced building design but, again, the problem of the accuracy 

of the provided results has to be taken into account. In chapter 4, the dynamic properties of the 

opaque envelope defined in the technical Standard EN ISO 13786:2007 (CEN, 2007d) have 

been used as index variables to assess the different opaque envelope behaviour simulated with 

numerical methods. Also the trasparent components have been studied, by comparing the 

internal surface temperature simulated by EnergyPlus and TRNSYS in order to underline 

possible differences to take into account for an indoor comfort analysis, besides the evaluation 

of the energy needs. 

 

1.4.1 Literature review 

In addition to the general purpose of a more efficiency energy use in the buildings, one 

specific aim of the EPB Directive 2010/31/EU (formerly 2002/91/EC) is referred to the increase 

of the buildings energy performances in summer conditions. A reliable assessment of the 

cooling consumptions may be considered as a first useful step to understand how to improve the 

building thermal behaviour, which depends basically on complex correlations between gains, 

losses and storage of heat, which are described in the chapter 3 for what concerns the air heat 

balance models and in chapter 5 for the quasi-steady state model by EN ISO 13790:2008. 
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Moreover, the prediction of the cooling load allows to assess the impact of passive solar 

techniques in reducing the energy demand for cooling. 

The dynamic behaviour of the opaque components can be described, for instance, by means 

of the properties defined in the technical Standard EN ISO 13786:2007 (i.e., the periodic 

thermal transmittance, the decrement factor and the time shift), considering sinusoidal variations 

of temperature or heat flow. These dynamic thermal characteristics are used also in product 

specifications of building components, in the calculation of the internal temperature in a room - 

as proposed by the technical Standard EN ISO 13792:2005 in annex A.3 (CEN, 2005), in the 

assessment of the daily peak power and energy needs for heating or cooling, or even for 

estimating the effects of intermittent heating or cooling. 

The importance of those properties is widely discussed in the literature. Ulgen (2002) 

investigated both experimentally and theoretically the time lag and decrement factor for 

different wall compositions under sinusoidal sol-air temperature solicitation. Asan and 

Sancaktar (1998) and Asan (2006) numerically investigated time lags and decrement factors 

under sinusoidal sol-air temperature solicitation for 26 different building materials finding 

dependences on heat capacity, thermal diffusivity and thickness of the layer. Kontoleon and 

Bikas (2007) and Kontoleon and Eumorfopoulou (2008) imposed non sinusoidal periodical 

solicitation, for South-oriented walls or for differently oriented walls respectively, and analyzed 

the effect of the outdoor absorption coefficient on time lag, decrement factor and temperature 

variations. Luo et al. (2007) compared different definitions for the time lags and decrement 

factors for different wall compositions already described in literature. Yumrutas et al. (2007) 

developed a theoretical methodology to find total equivalent temperature differences for cooling 

loads calculation based on sol-air temperature, time lags and decrement factors. 

While the EN ISO 13786:2007 approach is based on analytical calculation under sinusoidal 

boundary conditions, there are several approaches for the assessment of the dynamic properties 

in transient (non sinusoidal) regime, usually based on numerical methods. Some of them, such 

as the Transfer Functions Methods (TFM) by Mitalas and Arseneault (1971) and the Finite 

Difference Methods (FDM) are also implemented in widely used software as TRNSYS – 

specifically the Direct Root Finding method, DRF (Solar Energy Laboratory, 2005) or 

EnergyPlus – the State-Space Method, SS (U.S. DoE, 2012), introduced in chapter 3. 

The implementation of EN ISO 13786:2007 procedure with a non sinusoidal forcing 

temperature can be a useful way to assess, by means of simple dynamic parameters, the 

behaviour of the opaque components predicted by numerical methods. 
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For what concerns the transparent components, the contribution of the windows physical 

properties to the building energy needs and the simultaneous influence of their characteristics on 

the thermal sensation of occupants have been studied by many authors from different points of 

view. Hwang and Shu (2011) investigated the effect of different envelope parameters on thermal 

comfort and in their analysis compared the cooling energy need of a space controlled by a 

thermostat with a PMV-based control, implementing the approach of Kang et al. (2010). As 

regards the importance of the glazing system in the optimization of energy need both during the 

heating and the cooling season, Gasparella et al. (2011) underlined the fact that energy 

optimization does not only depend on the use of insulating glasses, but also on the quantity of 

solar radiation admitted by the windows. Successively the same authors (Gasparella et al., 

2012) analysed the relation between long-term internal thermal comfort, energy performance, 

kind of glazing and window size, according to the classic definition of the PMV approach. The 

PMV are function of many parameters and, in particular, of the mean radiant temperature. 

While for the opaque components, when insulated, their internal surface temperature is 

generally closer to the setpoint conditions, for the transparent ones there is a larger influence of 

the external environment conditions because of their lower thermal resistance and the solar 

radiation absorbed. Moreover, the dynamic response of the glazings is faster than the one of the 

opaque walls and so, in particular for those configurations with large windows, the indoor 

thermal comfort is largely conditioned by the window characteristics. In this context, the 

accurate estimation of the surface temperature of these components assumes a significant 

importance. 

 

  



Introduction and literature review 

 

 

18 

 

1.5 BES and simplified models 

The European Union, aware of the fact that the building energy consumption is responsible 

for more than 1/3 of the finale energy uses of the Member States, proposed by means of the 

Directive 2002/91/EC and the EPB Directive 2010/31/EU to implement the energy labelling of 

buildings in order to drive the market towards the development of more sustainable buildings as 

common standard and to renovate the existing ones by improving their performances and 

making them interesting to the market itseft. In different contexts, such as for the household 

appliances, the energy labelling has revealed a good strategy to achieve the energy consumption 

targets. 

After the definition of the strategy, a crucial issue was the choice of the methodology to 

assess the energy performance. The EU Directives allow to use two approaches: enhanced 

dynamic simulation analyses or simplified methods defined in the European technical 

Standards. The two alternatives are characterized by different levels of complexity of the inputs, 

discretizations of the outputs and, generally speaking, by different possibilities of analysis with 

the provided outputs. The choice of allowing two approaches – one simplified and easy to use, 

another more complex and detailed, on one hand is facilitating the spread of the building energy 

evaluation from the early stages of the design activity and on the other hand it lets the more 

expert professionals to use detailed tools for advanced designing activities. In this way, the BES 

tools, which currently are only partially used by the architects and engineerings, could become a 

future designing standard accepted and encouraged in the EPB Directive framework. 

In order to achieve the goals of the EU Directives, whatever the method used for the 

evaluation, its reliability is crucial to ensure the EPB Directive effectiveness. Incoherent results 

could affect the confidence given by the market to the building energy certification as valid 

instrument to express the energy efficiency quality of a given building. Thus, the monthly quasi-

steady state method is supposed to give monthly or seasonal results in good agreement with the 

monthly or seasonal results by BES tools. 

In this last chapter of this research work, the problem of the agreement of the results by 

simplified or detailed simulation approaches is discussed, pointing out the entity of the 

discrepancies, their causes and proposing some correction factors in order to improve the 

coherencce between the quasi-steady state methods with respect to the more advanced ones. 
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1.5.1 Literature review 

According to the Energy Performance of Building (EPB) Directive 2010/31/EU and the 

former 2002/91/EC, in order to implement the energy labelling of buildings, the energy 

performance can be evaluated either with analytical approaches or with enhanced simulation 

tools. As observed by Tronchin and Fabbri (2008), the coherence of the methods is of crucial 

importance in order to give a perception of the reliability of this instrument to the market and to 

ensure the EPB Directive effectiveness. Moreover, the European Standard EN ISO 13790:2008 

suggests to use the dynamic simulation in improving and tuning the proposed quasi-steady state 

method, by refining the estimation of the utilization factor (i.e., the dynamic parameter that 

reduces the thermal gains for heating need calculation and the thermal losses for cooling). The 

utilization factor is a function of the ratio between the thermal losses and the thermal gains. 

Those are calculated through simplified expressions. Extending the method of studying the 

dynamic factor by van Dijk and Arkesteijn (1987), the Standard proposes the recourse to 

dynamic simulation also in determining the thermal losses and gains.  

Many authors have already made some efforts in calibrating the EN ISO 13790:2008 

approach, such as Jokisalo and Kurnitski (2007), Corrado and Fabrizio (2007), Orosa and 

Oliveira (2010) and Oliveira Panão et al. (2011). They proposed some changes to the 

correlations in order to adapt the method to the climatic conditions, especially for the cooling 

season, and the building stock characteristics in their respective countries but the general 

problem appears to be still unsolved, as large discrepancies have been found. In their study of 

the utilization factor, other authors, such as Yohanis and Norton (1999), considered the number 

of zones in a building, in addition to its time constant, focusing on one of the issues related to 

the simplified methods already identified by van Dijk and Arkesteijn. 

As indicated by van Dijk and Arkesteijn and remarked by Corrado and Fabrizio, the 

utilization factor considers the mismatch between heat losses and gains leading to heating or 

cooling energy needs. What is of crucial importance, then, is that the heat losses and gains are 

determined accurately. 

 

1.5.1.1 Thermal losses 

As done by Van der Veken et al. (2004), the comparison between the dynamic simulation 

results and the analytical approaches (detailed or simplified) can be helpful in looking for 

disagreements sources, which can lead to different evaluations of the buildign energy needs or 

mismatches and errors in the refinement of the quasi-steady state method. Referring to the 
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thermal losses, among the causes of error or discrepancies, the ones depending on the definition 

of the boundary conditions and on the calculation of the thermal losses appear to play a crucial 

role (Judkoff et al., 2008). One of them can be the reference temperture considered to describe 

the internal conditions. 

For the transmission losses, which represent the first component of thermal losses, the 

quasi-steady state model linearizes and considers the internal long wave radiation exchanges in 

parallel with the convection exchange with the air node, assuming an equivalent operative 

reference temperature (i.e., a weighted average of the air temperature of the conditioned zone 

and the mean radiant temperature of the envelope delimiting the zone itself). In contrast, many 

of the simulation codes perform a detailed analysis of the internal long wave radiation exchange 

and refer to an air heat balance approach with an air temperature as reference. 

As regards the ventilation losses, the actual driving gradient is given by the difference 

between the internal and external air temperatures. Using an operative reference temperature for 

the ventilation losses evaluation, as indicated by the quasi-steady state approach of the technical 

standard, leads to incorrect results, in particular with large ventilation rates (van Dijk and 

Arkesteijn, 1987). 

Previous studies in literature (Pietrzyk, 2010) have stressed the importance of distinguishing 

the total losses into those by transmission and the ones by ventilation, especially in defining 

statistical models. The evaluation of the link between the transmission heat losses and 

ventilation losses has also been investigated in relation to the reduction of the building energy 

needs (Zhou et al., 2008). Other authors (Soleimani-Mohseni et al., 2006) have studied the 

ventilation flow rate in order to derive some interactions with the operative temperature. 

Whatever the pursuit of these studies and the chosen approaches, the correct estimation of 

the thermal losses appears to be crucial for a correct energy assessment. 

 

1.5.1.2 Thermal gains 

According to the quasi-steady state method, the heat gains consist in all thermal fluxes to 

the internal air node - in their convective quote when they have become convective, not driven 

by the temperature difference between indoor and outdoor environment. Those can be 

distinguished in solar gains, internal gains and infrared extra flow towards the sky vault. 

In many applications, the solar heat flow entering through the transparent envelope is the 

most relevant thermal gain component. The control of the entering solar radiation is becoming 

more and more important in designing passive systems (Orosa and Oliveira, 2012). For 

instance, Gasparella et al. (2011) simulated a well-insulated building with different kind of 
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glazing systems, with or without fixed shading overhangs and fins for different windows sizes, 

orientations and European localities, showing the influence of the choice of the glazing on the 

heating and cooling energy needs and peak loads and underlining that the solar heat gains 

coefficient plays a role at least as large as the thermal transmittance. The correct estimation of 

the entering solar radiation is necessary since the early stages of the design process, in 

particular, when using the simplified quasi-steady methods. Moreover, as underlined by Oliveti 

et al. (2011), the black body cavity hypothesis, according to which the whole solar radiation 

entering into the thermal zone is absorbed, adopted by the EN ISO 13790:2008 method, is not 

representative of the real physical phenomena. In many cases a certain amount of the radiation 

is reflected by the walls and dispersed through the windows themselves. Some authors (Cucumo 

et al., 1995) proposed some corrections to the internal solar absorptance of the opaque surfaces. 

Oliveti et al. (2011) instead, preferred a correction to the solar transmittance of the glazings in 

order to take into account the radiation lost because of the reflections. Moreover, another quote 

is absorbed by the opaque envelope and partly lost toward the outside. 

In addition to the entering radiation, the solar gains by transmission through the opaque 

envelope have also been studied by many researchers in different contexts. Some of them 

(Oliveira Pañao et al., 2012; Oliveti et al., 2012a) focused on the sunspaces and analysed the 

EN ISO 13790:2008 calculation method. Other authors paid particular attention to the roofs, 

underling the importance of the solar absorption coefficient (Suehrcke et al., 2008), especially 

for the cooling energy needs.  

Among the heat fluxes independent of the temperature difference there are not only actual 

gains but also some fluxes subtracking heat from the thermal zone. The most important of them 

is the infrared extra flow towards the sky vault. Oliveti et al. (2012b) assessed the methods 

proposed by the EN ISO 13790:2008 for the calculation of the infrared extra flow towards the 

sky dome, comparing the Standard with the empirical collected data and finding inaccuracies in 

the Standard estimations. 

As observed for the thermal losses and in literature, the correct estimation of the thermal 

gains is necessary for a correct energy assessment, in particular for the evaluation of the cooling 

energy needs. 
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1.6 Statistical approach 

Building Energy Simulation tools (BES) gave to designers and professionals the possibility 

to explore several alternatives in order to find the best or the most convenient one. BES is 

strictly correlated to the examinations of different boundary, operative or designing conditions 

and a deep analysis in the early stages of the design activity allows to avoid errors and so 

expensive correction measures. 

The investigation of a large number of cases has to face two main problems: how the 

different alternatives should be selected and by means of which techniques should be analysed. 

Statistics can help to get an answer for both the questions. In this research work, the Design of 

Experiments approach have been followed in order to define the samples to analyse and some 

inferential techniques, such as the ANOVA, the correlation indexes and the multiple regression 

models, have been used in order to determine which are the most significant variables and to 

define some models. In the Annex A, the considered techniques are described and their main 

advantages and limitations underlined, as well as the context of their application. 

1.6.1 Design of Experiments 

In order to investigate physical phenomena and to analyse the response of a system, both by 

means of measurements and by means of simulations, experiments can be performed. An 

experiment constists in a test or in a series of tests, whose aims is to let us learn how a system or 

a process work. They are used to characterize a behaviour or an answer, to optimize a system or 

to carry on a design activity. In this research work what has been investigated is not a real 

system, not an industrial equipment but a model which simulates the building envelope 

behaviour. 

In this study a BES or a simplified calculation are seen as real tools expected to complete 

specific tasks. Their targets are, for instance, a reliable prediction of the dynamic behaviour of 

the building envelope and estimation of the energy needs. In this context, the Design of 

Experiments (DoE) has been applied to assess the capability of these instruments (i.e., to 

characterize their capabilities). Once determined which are the limitations of the instruments, 

the DoE techniques can be also implemented to assess which are the best solution for a specific 

problem (i.e., to optimize). Whatever the target of the experimental activity, the validity of the 

conclusions mainly depends on how the experiments have been conducted – not only from the 

practical point of view but in the perspective of which cases have been selected and in which 

way their different combination have been assessed. For these reasons, a significant role has 

been given to statistics. 
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Chapter 2 

In this chapter the problem of the description and the use of weather and external boundary 

conditions in BES tools is discussed. The chapter is divided into two parts: the first one is about 

the weather data files which can be employed for performing dynamic simulations while in the 

second one the problem of the heat transfer through the soil according to the European Standard 

EN ISO 13370:2007 is described. 

The first part of the chapter describes the procedure proposed by EN ISO 15927-4:2005 to 

build a single reference year to use in BES. This approach has been implemented in order to 

develop reference years weather files for some localities in the North of Italy and in the 

Netherlands. For this data files, the representativeness respect to the averages of a multi-year 

analysis has been discussed, considering both the metheorological variables and the annual 

energy results (i.e., annual heating and cooling energy needs, annual heating and cooling hourly 

peak loads) over a sample of 48 buildings. Moreover, statistical correlation indexes have been 

calculated in order to investigate the relationship between the building envelope characteristics 

and the variability of the results in the multi-year analysis. 

In the second part of the chapter, the problem of the boundary conditions to be used in BES 

for walls and floors in touch with the ground is discussed. The EN ISO 13370:2007 methods for 

slab-on-ground cases have been assessed by comparison with detailed 3-dimensional finite 

elements models. Both steady-state and dynamic conditions have been analysed, in order to find 

out the accuracy of the Standard procedure and the proper discretization of the boundary 

temperatures in transient conditions. 
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Part a: Weather data files for BES 

2a.1 Method 

In this paragraph the procedure given by the technical Standard EN ISO 15927-4:2005 for 

the calculation of the TRYEN and the methodology followed for assessing the representativeness 

of the results, respect to a a multi-year analysis, have been presented. 

 

2a.1.1 TRY calculation in accordance with the EN ISO 15927-4:2005 

The procedure presented by the technical Standard EN ISO 15927-4:2005 to develop a test 

reference year is described in this section. 

The construction of a TRYEN requires both mean values of the meteorological variables and, 

in particular, the individual frequency distributions and the cross correlations between the 

parameters. In accordance with the EN ISO 15927-4:2005, at least ten years (not necessarily 

consecutive) should be used but the longer the period, the better. 

A TRYEN can be built in accordance with the steps described below: 

1. calculation of the daily averages p  for each primary climatic parameter p, month m and year 

y of the series; 

2. sorting of all the p  for a specific month m of all the available years in increasing order and 

calculation the cumulative distribution function Φ(p, m, i) for each parameter and i
th 

day as: 

 
1

)(
,,




N

iK
impΦ       (2a.1) 

where K(i) is the rank order of the i
th 

day and N is the total number of days for a month over 

all the available years; 

3. sorting of all the p  for a specific month m and year y in increasing order and calculating the 

cumulative distribution function F(p, y, m, i) for each parameter and i
th 

day, as 

 
1

)(
,,,




n

iJ
imypF       (2a.2) 

where J(i) is the rank order of the i
th 

day and n is the number of days for a specific month; 

An example of cumulative probabilities for the dry bulb temperature, the solar irradiance 

and the relative humidity is represented in Figure 2a.1 for the month of January and the first 
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three years of the data series of De Bilt in the Netherlands. In this example, the year 1960 seems 

to be the most representative among the three reported, respect to the cumulative probability 

over all the period 1958-2011. 

 

  

 

Figure 2a.1 – Cumulative probability for the first 3 years of the series of De Bilt for the dry 

bulb temperature (a), the solar irradiance (b) and the relative humidity (c) 

 

4. calculation of the statistics by Finkelstein-Schafer for each month m and year y as 

     



n

i
impimypFmypFS

1
,,,,,,,       (2a.3) 

5. sorting of the months for increasing values of FS for each parameter, calculating the ranks 

for each month and parameter and summing them in order to calculate the total ranking; 

6. for each month among the first 3 months with the lowest ranking sum, calculation the 

deviation between the mean wind speed of the month m of the year y and the mean multi-

year wind speed: the month with the lowest deviation can be chosen for a TRYEN. 

The final 8 hours of a month and the first 8 hours of the next one should be smoothed by 

means of a cubic spline interpolation in order to avoid discontinuities. Since the adjustment 
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involves nighttime hours and wind speed is generally not corrected, it applies only to the dry 

bulb temperature and the relative humidity. 

 

2a.1.2 Selection and analysis of the weather data of the multi-year series 

The collected weather data have generally to be first analysed in order to identify errors and 

outliers, to find if a certain year can be used or not in the TRYEN development and, in case, if 

the wrong data can be fixed by interpolation. In this work, the following criteria have been 

chosen for the analysis of the raw data: 

 dry bulb temperature: 

o the values exceeding the 50% of the 99
th
 percentile; 

o the data with a derivative larger than ± 4 K h
-1

; 

o periods with constant values for more than 5 h; 

 horizontal global solar radiation: 

o the values exceeding the solar constant or positive during the nighttime; 

 relative humidity: 

o the values exceeding 100% or null; 

o periods with constant values for more than 5 h (if lower than the 75
th
 

percentile); 

 wind velocity: 

o the values exceeding the 50% of the 99
th
 percentile or negative; 

o periods with constant values for more than 5 h (if the registered speed is larger 

than the anemometer minimum speed). 

Known bias errors have been corrected by shifting properly the data involved by this kind of 

problem. 

Since only 2 of the Italian analysed locations comply with the minimum prescription of 10 

years given by the EN ISO 15927-4:2005 for the development of a TRYEN, a slightly less 

restrictive criterion has been followed: only locations with at least 8 years in the data series and 

with less the 10% of wrong/missing data for each variable and each year were considered. 

Wrong and/or missing data have been replaced using the linear interpolation for the 

temperature, the relative humidity and the wind speed when the consecutive data to correct were 

less than 6 entries, otherwise a cyclic interpolation has been considered (Prada, 2012). 
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The monthly values of average dry bulb temperature, daily horizontal solar radiation and 

relative humidity of the different years and TRYEN have been calculated and compared with the 

distributions of monthly values of the multi-year series, as well as to the monthly values 

reported in the Italian technical standard UNI 10349:1994, currently used in the quasi-steady 

state methods by EN ISO 13790:2008 and UNI/TS 11300 parts 1 and 2 (UNI, 2008) for the 

energy certification of buildings. Moreover, some BES tools as TRNSYS provide some 

subroutines (as Type 54 in TRNSYS, assessed in the study by Gansler et al.) which can develop 

an hourly profile starting from the average monthly inputs, such as the ones by UNI 

10349:1994. 

 

2a.1.3 Analysis of the TRYEN weather files representativeness 

The representativeness of the test reference year has been studied by carrying on different 

dynamic simulations with both TRYEN and multi-year data series and analysing the annual 

energy needs and peak loads (both cooling and heating) of a set of reference buildings 

characterized by different insulation levels, thermal inertia, sizes and orientations of windows 

and kind of glazing. The choice of different buildings to assess the representativeness of the 

weather data allowed also to estimate the sensitivity of the building energy performance to the 

variability of five North Italy climates by changing the characteristics of the building itself. In 

this perspective, both buildings more sensitive to the heating energy demand (e.g., the poorly 

insulated buildings) and ones more sentive to the cooling energy demand (e.g., buildings with 

windows with high SHGC) have been considered. 

 

2a.1.3.1 Set of reference buildings 

A sample of 48 different simplified thermal zones has been developed in accordance with a 

full factorial plan. The base module consists in a single thermal zone with a 100 m
2
 squared 

floor, 3 m high and the façades facing the main cardinal directions. The thermal bridges have 

been neglected and the floor has been modelled as on a ventilated cave (i.e., without sun 

exposition and infrared thermal losses towards the sky dome), instead of in touch with the 

ground, whose sensitivity and response to the variability of the external conditions are very low 

considering a limited number of years because of its very high thermal inertia, as it will be 

discussed in the second part of this chapter. 
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All the opaque components have been modelled with a two-layer structure with insulation 

on the external side and a massive layer on the internal one, with a thermal resistance around 0.8 

m
2
 K W

-1
. The solar absorptance is 0.3 for both sides of the vertical walls and for the internal 

side of the roof, 0.6 for the external side of the roof and the internal side of the floor and 0 for 

the external side of the floor. The thermal properties of the considered materials are reported in 

Table 2a.1. 

Table 2a.1 - Materials thermal properties 

Property Timber Concrete Insulation 

Thermal conductivity  

λ [W m
-1

 K
-1

] 
0.13 0.37 0.04 

Specific Heat Capacity  

c [J kg
-1

 K
-1

] 
1880 840 1470 

Density 

ρ [kg m
-3

] 
399 1190 40 

Thickness 

s [m] 
0.1 0.3 0.05/0.15 

Thermal resistance 

R [m
2
 K W

-1
] 

0.77 0.81 1.25/3.75 

 

The windows are positioned all on the same façade and consist in a double-pane glazing 

(Ugl = 1.1 W m
-2

 K
-1

) and in a timber frame (Ufr = 1.2 W m
-2

 K
-1

), whose area is the 20% of the 

whole window area. The internal gains have been assumed equal to 4 W m
-2

, half radiative and 

half convective, as indicated by the EN ISO 13790:2008 for residential dwellings. The 

ventilation rate has a constant rate of 0.3 ach/h, as suggested by the Italian technical Standard 

UNI/TS 11300-1:2008. 

The considered variables are the most relevant building envelope parameters and, with the 

exception of the window orientation, each one presents a high and a low level: 

 the insulation level of the envelope components (5 cm or 15 cm of polystyrene) in order 

to have two levels of thermal transmittance (e.g., for the vertical walls, U = 0.45 W m
-2

 

K
-1

 and U = 0.21 W m
-2

 K
-1

); 

 the thermal inertia of the opaque elements (area specific heat capacity of the internal 

layer equal to 75 kJ m
-2

 K
-1

 for the timber structure and equal to 300 kJ m
-2

 K
-1

 for the 

concrete); 



Weather data files for BES 

 

 

34 

 

 the solar heat gain coefficient SHGC of the glazing (equal to 0.608 or 0.352); 

 size of the windows (Awin = 14.56 m
2
 or Awin = 29.12 m

2
); 

 the orientations of the windows (East, South or West). 

The different cases have been simulated with TRNSYS, considering the following 

assumptions: 

 the timestep is coherent with the hourly discretization of the weather data, in order to 

avoid interpolation strategy influencing, in particular, the peak load results; 

 constant convection coefficients have been selected, in accordance with the standard EN 

ISO 6946:2007 (CEN, 2007a); 

 the long wave radiation exchange are considered, according to the star network 

approach by TRNSYS; 

 the heating and the cooling set-point have been fixed to 20 °C and 26 °C in accordance 

with the UNI/TS 11300-1:2008 prescriptions for residential buildings, but they are 

applied all year long, i.e. no specific heating and cooling seasons have been defined. 

 

2a.1.4 Statistics analysis 

The variability of the energy results has been analysed, in order to find which building 

envelope parameters are significantly correlated with the dispersion of the results. 

In order to study the variability of the energy performance and its correlation with the 

building envelope characteristics, the results with the TRYEN weather files have been considered 

as a benchmark. The deviations between the energy needs and peak loads simulated in each year 

and the ones of the TRYEN have been calculated and analysed by means of Pearson’s correlation 

index and Spearman’s index. Positive and the negative differences have been distinguished 

because of the monotonic definition of the indexes. For a description of these correlation 

indexes, see Annex A. 

The considered variables have been distinguished into the ones describing the envelope 

characteristics and the ones describing the external conditions. 

For the energy need deviations, the variables considered in this analysis are: 

 the variables aimed at describing the dynamic behaviour of the opaque envelope, such 

as Yie,env [W m
-2

 K
-1

], the area-weighted average periodic thermal transmittance, Δtie,env 
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[h], the area-weighted average time shift, and ki∙Atot [kJ K
-1

], the total internal heat 

capacity, defined in the EN ISO 13786:2007 and described in chapter 4a; 

 Uenv [W m
-2

 K
-1

], the area-weighted average thermal transmittance of the opaque 

envelope; 

 SHGC [-], the solar heat gain coefficient of the glazing; 

 Agl [m
2
], the glazing area; 

In order to take into account of the variability of the weather conditions, the deviations of 

the area-weighted equivalent Heating/Cooling Degree Days [K d] have been calculated using a 

particular year and the ones of the TRYEN (both for the opaque envelope and for the transparent 

one). 

The HDDsol-air, env, CDDsol-air, env, HDDsol-air, gl and CDDsol-air, gl have been calculated for each 

orientation considering respectively the sol-air temperature for the opaque components and the 

equivalent sol-air temperature for the transparent components, according to the Eq. (2a.4) and 

(2a.5) (Gasparella et al., 2011): 

se

eskyr,sky

envsol-air, e
h

)θθhIα
θθ

( 
        (2a.4) 

se

eskyskyr,

gl
egl air,-sol

h

)θ(θh

U

ISHGC
θθ





       (2a.5) 

Area-weighted heating/cooling degree days have been then calculated for each year and used for 

determining the deviations ΔHDDsol-air, env, ΔCDDsol-air, env, ΔHDDsol-air, gl and ΔCDDsol-air, gl. 

For the peak loads deviations, the variables are the same, with the exception of the ones 

describing the variability of the external solicitation: 

 Δθmin [°C], the deviation between the minimal annual external temperature for a 

considered year and the one for the TRYEN, has been used instead of ΔHDDsol-air, env and 

ΔHDDsol-air, gl; 

 ΔHhor [MJ m
-2

], the deviation between the total horizontal solar radiation per square 

meter and ddH 2
ˆ  [MJ m

-2
], the deviation between the annual peak of the 2-days 

cumulated solar radiation incident on the windows for a considered year and the one for 

the TRYEN, instead of ΔCDDsol-air, env and ΔCDDsol-air, gl. 

  



Weather data files for BES 

 

 

36 

 

2a.2 Results 

The raw data were available for the capital cities of each province in 4 North Italy Regions: 

Emilia-Romagna, Lombardia, Trentino-Alto Adige/Südtirol and Valle d’Aosta. The selection 

procedure and the chosen criteria led to identify 5 cities: Aosta (with 8 years available), 

Bergamo (10 years), Monza (9 years), Trento (10 years) and Varese (9 years). 

Since it is of interest to assess the effect of a large number of years for the development of a 

TRYEN, also the Dutch location of De Bilt (Province of Utrecht) has been considered, with more 

than 50 available years with all the outliers and wrong data already checked and fixed by the 

Royal Netherlands Meteorological Institute (KNMI). A series of 54 years (1958-2011) has been 

used for the development of the TRYEN and for the evaluation of the energy performance of the 

same sample of buildings. 

 

2a.2.1 Average monthly data 

The monthly values of average dry bulb temperature, daily horizontal solar radiation and 

relative humidity of the different years and TRYEN have been calculated and compared, as in 

Figure 2a.2 for the location of Trento and in Figure 2a.3 for De Bilt. For the other Italian 

localities, see Annex B. 

The years considered for the development of the TRYEN, the selected months and their daily 

average values for the dry bulb temperature, the global solar radiation on the horizontal and the 

relative humidity have been reported in Table 2a.2 and in Table 2a.3, for the Italian localities, 

and in Table 2a.4 for the Dutch one. 

In Table 2a.2 the monthly average values of the TRYEN for the five Italian cities have been 

compared also to the data reported into the Italian technical Standard. In Table 2a.4, for De Bilt, 

the deviations with the median values of the complete weather data series have also been 

reported. 
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Figure 2a.2 - (a) Average monthly temperature (b) average daily horizontal global radiation 

and (c) average monthly relative humidity for Trento. The red dots represent the TRYEN monthly 

values, the external dotted lines represent the maximum and the minimum for the multi-year 

series, the internal dotted lines the first and the third quartile (Q1 and Q3), while the continuous 

line is the median 
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Figure 2a.3 - (a) Average monthly temperature (b) average daily horizontal global radiation 

and (c) average monthly relative humidity for De Bilt. The red dots represent the TRYEN monthly 

values, the external dotted lines represent the maximum and the minimum for the multi-year 

series, the internal dotted lines the first and the third quartile (Q1 and Q3), while the continuous 

line is the median 
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Table 2a.2 - Monthly average variables of the TRYEN (white columns) compared with the UNI 

10349:1994 ones (grey columns) 

[°C] 
Average Dry Bulb Temperature 

Aosta Bergamo Monza* Trento Varese 
January 1.80 -0.30 2.18 3.90 2.44 1.70 1.48 1.50 1.96 1.20 

February 3.82 2.60 4.82 4.90 5.86 4.20 2.72 4.50 4.81 1.90 

March 8.47 6.70 7.53 8.90 9.39 9.20 7.58 9.00 9.31 6.00 

April 12.20 11.00 11.41 13.30 11.96 14.00 12.65 13.70 12.46 10.40 

May 17.07 14.70 14.52 17.00 15.63 17.90 17.39 17.20 17.85 14.00 

June 20.12 18.70 20.55 21.30 23.08 22.50 20.84 21.20 21.07 17.70 

July 21.02 20.50 22.02 23.70 23.90 25.10 22.04 23.50 22.07 20.50 

August 21.39 19.40 21.97 23.30 23.28 24.10 21.14 22.70 23.55 19.60 

September 16.76 15.90 17.74 19.90 19.24 20.40 17.24 19.50 19.60 16.40 

October 11.35 10.30 10.84 14.20 13.84 14.00 12.45 13.60 12.96 11.20 

November 4.80 4.80 7.64 8.60 7.77 7.90 5.19 7.40 6.62 5.30 

December 2.26 0.80 2.21 4.50 4.14 3.10 1.70 2.90 1.77 1.90 

[MJ m
-2

] 
Daily Average Global Radiation on the Horizontal 

Aosta Bergamo Monza* Trento Varese 
January 3.65 5.30 4.18 4.20 3.74 3.80 4.54 4.90 4.10 5.00 

February 6.95 8.00 9.09 6.90 5.61 6.70 7.87 8.40 6.67 7.34 

March 12.76 12.10 12.08 11.30 11.12 11.60 11.71 13.70 10.95 11.40 

April 16.16 15.70 14.66 15.60 12.70 16.50 14.64 17.70 14.22 15.40 

May 17.64 18.20 19.04 19.10 15.88 20.00 17.85 20.90 17.25 19.10 

June 18.85 19.90 21.04 20.60 18.57 22.20 21.83 23.20 17.37 20.50 

July 18.75 21.00 20.73 22.40 17.98 24.00 21.72 24.60 16.73 22.00 

August 16.13 17.50 18.82 18.80 15.43 19.40 17.12 20.20 15.21 18.20 

September 12.49 13.20 14.75 14.00 12.02 14.00 14.75 15.50 12.28 13.70 

October 7.25 8.70 7.73 9.10 5.28 8.40 8.10 9.40 6.69 9.00 

November 3.63 6.10 5.32 4.70 3.60 4.40 5.91 5.50 3.28 5.60 

December 1.89 5.80 3.72 3.90 2.49 3.30 3.77 4.10 3.02 4.70 

[%] 
Average Relative Humidity 

Aosta Bergamo Monza* Trento Varese 
January 57.47 83.45 84.07 83.13 89.79 85.47 74.65 83.47 65.98 73.28 

February 59.52 79.33 73.25 73.11 53.84 78.24 53.86 79.46 76.92 71.12 

March 54.17 72.79 71.84 66.77 69.69 81.08 60.57 72.07 67.78 73.61 

April 50.68 70.96 78.97 59.61 71.38 72.79 62.81 71.80 81.79 70.60 

May 60.71 73.34 76.12 68.88 64.45 64.69 59.95 67.76 73.15 71.48 

June 57.94 70.52 71.29 62.68 51.42 67.55 60.15 69.31 80.07 83.49 

July 56.57 69.00 71.34 62.99 54.25 54.51 61.93 63.13 75.77 73.98 

August 61.41 73.59 73.51 63.38 56.58 67.06 62.02 64.45 78.41 71.46 

September 59.10 75.32 72.91 65.23 59.88 80.19 66.83 72.87 82.88 77.30 

October 64.37 81.30 85.36 71.79 73.72 88.38 81.91 76.44 85.44 79.80 

November 66.11 87.12 81.51 79.87 76.19 89.96 76.16 83.76 90.00 96.49 

December 70.96 85.01 83.81 79.94 81.56 87.97 80.72 84.31 86.99 89.11 

*Before 2004 the Monza was part of the Province of Milan and in UNI 10349:1994 the average values 

are reported only for the capital cities, so the data of Monza (now Province) are compared with those of 

Milan (around 15 km SW from Monza and in the same climatic zone). 
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Table 2a.3 – Selected months for the TRYEN 

 Aosta Bergamo Monza Trento Varese 

Number of 

years 
8 10 9 10 9 

Years 
2000-2005; 

2007-2008 

1998-2005; 

2007-2008 
1999-2007 

1996-1998; 

2002-2008 

1997-2000; 

2003;  

2005-2008 

      

January 2001 2004 2003 1998 2003 

February 2005 2008 2002 1996 2000 

March 2000 2005 2003 2004 2007 

April 2000 2004 2003 2004 2006 

May 2001 2004 2004 2006 2007 

June 2001 2004 2005 2004 1998 

July 2002 2004 2005 2004 1997 

August 2002 2004 2004 2005 1998 

September 2004 2003 2004 2008 2006 

October 2003 2003 2000 2005 1999 

November 2000 2004 2004 2005 1997 

December 2004 1999 2004 2008 2008 

 

Table 2a.4 - Monthly average variables, monthly deviations (in grey column) with the monthly 

median values of the weather data series and selected year of the TRYEN 

 
Average Dry Bulb 

Temperature [°C] 

Daily Average 

Global Horizontal 

Radiation [MJ m
-

2
] 

Relative Humidity 

[%] Selected Year 

 TRYEN Δ TRYEN Δ TRYEN Δ 

January 2.48 -0.32 2.14 -0.07 88.22 0.39 1965 

February 2.04 -0.93 4.30 -0.26 85.79 0.94 1984 

March 5.90 0.09 7.57 -0.50 81.37 0.72 2008 

April 9.98 1.39 12.64 -0.25 76.40 -0.01 2000 

May 11.95 -0.89 16.39 -0.26 75.63 0.11 1973 

June 15.10 -0.41 17.98 -0.03 76.26 -0.18 1964 

July 17.41 0.39 16.89 0.43 77.95 -0.07 1985 

August 17.50 0.52 14.06 -0.51 77.86 -1.62 1999 

September 13.60 -0.62 10.17 -0.04 83.38 0.21 2008 

October 10.41 -0.34 6.33 0.24 85.76 -0.66 2010 

November 6.84 0.43 2.55 -0.19 89.58 0.73 2008 

December 2.16 -1.61 1.63 -0.06 88.91 0.05 1964 

 

2a.2.2 Annual energy needs and peak loads 

In the next page, in Figures 2a.4 and 2a.5 the results for the energy needs and peak loads of 

the 48 thermal zones of the sample have been represented for the Italian localities. 
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Figure 2a.4 - Heating (left) and cooling (right) energy needs: average energy needs (dots) and 

annual results in the multi-year series respect to the TRYEN values 

 

+10% 

+10% 

+10% 

+10% +10% 

+10% 

+10% 

+10% 

-10% 

-10% 

-10% 

-10% -10% 

-10% 

-10% 

-10% 

+10% +10% 

-10% -10% 



Weather data files for BES 

 

 

42 

 

A
o

st
a
 

   

B
er

g
a

m
o
 

   

M
o
n

za
 

   

T
re

n
to

 

   

V
a

re
se

 

   

Figure 2a.5 - Heating (left) and cooling (right) peak loads: average peak loads (dots) and 

annual results in the multi-year series respect to the TRYEN values 
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In Figure 2a.6 the results for the energy needs of 48 thermal zones of the sample have been 

represented for the De Bilt. 

  

Figure 2a.6 - Heating (left) and cooling (right) energy needs: average energy needs (dots) and 

annual results in the multi-year series respect to the TRYEN values for De Bilt 

 

And in Figure 2a.7 the heating and cooling peak loads are represented. 

  

Figure 2a.7 - Heating (left) and cooling (right) peak loads: average peak loads (dots) and 

annual results in the multi-year series respect to the TRYEN values for De Bilt 
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2a.2.3 Statistics analysis 

The indexes for the energy needs deviation have been represented in Figure 2a.8 and the 

ones for the peak loads in Figure 2a.9. Only the Italian locations have been considered, since De 

Bilt, characterized by completely different climatic conditions but, in particular, by a very larger 

number of years respect to the other localities, could lead to misleading results.  

 

  

  

 

Figure 2a.8 - Correlations of the building envelope characteristics and the deviations of the 

annual heating energy needs (a) and annual cooling energy needs (b), evaluated by means of 

Pearson's index (left) and Spearman's index (right) 
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Figure 2a.9 - Correlations of the building envelope characteristics and the deviations of the 

annual heating peak loads (a) and annual cooling peak loads (b), evaluated by means of 

Pearson's index (left) and Spearman's index (right) 
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2a.3 Discussion 

2a.3.1 Average monthly data 

Looking at the Figures 2a.2, 2a.3 and those in Annex B, it can be noticed that the TRYEN 

monthly value is generally within the range between the first quartile Q1 and the third quartile 

Q3. Nevertheless, it is rarely close to the median for the three climatic parameters at the same 

time, especially for the Italian locations with a limited number of years in the starting collected 

data. Generally speaking, this is a consequence of the statistical method proposed by EN ISO 

15927-4:2005 for the selection of each month, which minimizes the sum of the differences of 

the three parameters together. 

In the perspective of the issue of the coherence between the BES tools and quasi-steady 

state method, analysed in depth in chapter 5, the average values have been evaluated. As regards 

the dry bulb temperature, in Aosta and in Varese the new TRYEN are higher than the UNI 

10349:1994 data (about +1.3 °C and +2.3 °C on an annual basis, respectively) while in Bergamo 

and Trento tend to be lower (about -1.7 °C and -1.2 °C, respectively). In Monza there are some 

months with lower values than the Standard and other higher but it has to be remarked that 

Monza is compared to the data of nearby city of Milan, since its mean values are not reported in 

UNI 10349:1994. 

For what concerns the global horizontal solar radiation there is a reduction of the annual 

values of -10.1%, -19.4%, -10.9% and -15.9%, respectively for Aosta, Monza, Trento and 

Varese. For Bergamo there is a good agreement (+ 0.4%) but some discrepancies are present for 

the months of February, July and October. 

The calculated relative humidity is lower in Aosta, Monza and Trento (-16.9%, -9.6% and -

7.3% the mean annual deviations) and higher in Bergamo (+7.2% the mean annual deviation). 

In Varese the agreement is good, considering the mean annual values (+1.1%) but there is a 

significant variability in the different months (e.g., the standard deviation is around +6.1%). 

Considering the location of De Bilt, the alignment between the TRYEN and the medians is 

better than in the analysed Italian climates but some deviations are still present. As regards the 

dry bulb temperature, for example, for the month of April and December the TRYEN values are 

outside the interquartile range (+1.39 °C and -1.69 °C, respect to the median). Referring to the 

solar radiation and to the humidity, both TRYEN values are well aligned to the medians. The 

average daily solar radiation is in the interquartile range (i.e., between the internal discontinuous 
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lines in the graphs) and it is within the 5% of the median value (with the exception of the 

months of February, March and November, where it is slightly exceeded). The relative humidity 

presents a good alignment and the maximum deviation respect to the median is -1.6% in 

August. 

Looking at Figure 2a.3, it is possible to notice the larger variability of the weather 

conditions in the 50 years of the series respect to the ones in the 5 North Italy locations, in 

particular considering the spread between the maximum and the minimum values of the weather 

variables. 

 

2a.3.2 Annual energy needs and peak loads 

In the discussion of the annual energy needs and peak loads results, the Italian locations are 

analysed together, since the number of years is more or less the same for each locality, and, after 

this part, De Bilt is considered. 

 

2a.3.2.1 Annual energy needs and peak loads: North Italy locations 

For the heating energy needs, the average values are generally within the ±10% range, 

which means that the error provided by the TRYEN weather data respect of the average of multi-

year real data is under the 10%. 

In the five Italian locations, the general trend of the deviation is not the same: 

 in Bergamo and in Trento the TRYEN weather files lead to overestimations of the 

heating energy needs with respect of the average over the multi-year series; 

 in Monza the TRYEN weather file shows an underestimation; 

 in Aosta and in Varese there is a good agreement between the results simulated with the 

TRYEN file and the average values on the multi-year series. 

Also for the cooling energy needs, the differences between the TRYEN results and the 

averages on the multi-year series are generally within ±10%: 

 by using the TRYEN weather data, in Trento there is an underestimation of the cooling 

needs while in Bergamo there is a light overestimation; 

 for the other localities a good agreement is registered. 
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For the heating peak loads represented in Figure 2a.5, the deviations between the TRYEN 

results and the averages over the multi-year series are within a range of 10%: 

 for all the locations except Bergamo the TRYEN weather file causes a light 

underestimation, which is more marked for Trento; 

 in Bergamo there is an overestimation by the TRYEN weather file. 

Also for the cooling peak loads, the results are generally within the ±10% range but the 

deviations present a larger variability. The TRYEN weather file causes an underestimation for 

Aosta while for the other locations there is a good agreement. 

Both for the energy needs and the peak loads, for the heating analysis the results are well 

aligned while for the cooling one a certain variability can be observed, demonstrating that the 

considered buildings present different responses to the use of a TRYEN weather file instead of 

the multi-years data. 

 

2a.3.2.2 Annual energy needs and peak loads: De Bilt 

In the previous paragraph some considerations about the representativeness of the TRYEN 

weather data have been done. Even if the deviations respect to the average energy needs and 

peak loads are within a range of 10%, in some case the TRYEN were not well representative, 

clearly overestimating or underestimating the average energy performance of the sample of 

considered buildings. 

The main limitation of the weather data developed according to the EN ISO 15927-4:2005 

for the Italian localities is related to a low number of years which makes not easy to find the 

properly representative month. Moreover, by using the same weights for each main primary 

parameter and giving the same importance to the three weather variables at the same time, the 

task becomes more difficult with this limited number of data. In this second part of the annual 

energy results analysis, a location with a large number of collected data is considered in order to 

see if the representativeness problem can be mitigated with more data. 

Respect to the results for the North Italy locations, a larger spread is encountered and it is 

due to the larger variability of climatic conditions during the considered period. The annual 

heating needs simulated by using the TRYEN are well representative of the long-term averages 

over the whole data series. For the annual cooling energy needs there is a light underestimation 

by the TRYEN respect to the long-term averages. 
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The heating peak loads are clearly overestimated by using the TRYEN but within the ±10% 

range. Similarly to what observed in the Italian localities, for the cooling peak loads there is a 

larger variability but the TRYEN is in good agreement with the long-term averages. 

As a whole, it can be stated that a large number of years allows to get better results in term 

of representativeness of the developed TRYEN, even if the problem doesn’t seem to be 

completely solved, since some discrepancies are still present. 

In order to optimize the representativeness of the weather data, in accordance with what 

found by some authors in literature and coherently with what prescribed by the EN ISO 15927-

4:2005, the TRYEN calculation procedure can be modified introducing weighting factors for the 

different primary variables to develop TRY for specific purposes (e.g., heating or cooling 

energy needs evaluation). This is partially already done for the design days according to the EN 

ISO 15927-2:2009 (CEN, 2009) and could be extended to the TRY calculations.  

 

2a.3.3 Statistics analysis 

Looking at Figure 2a.8, the parameter whose correlation with the variability of the heating 

energy needs is more easily found, is, as expected, the deviation of the equivalent heating 

degree days. In the reduction of the variability, an important role belongs to the characteristics 

of the opaque components (limiting Uenv, Yie,env and Δtie,env the variability of the energy needs is 

reduced) but it has be remarked that the correlation level is small, particularly if compared to the 

one of the equivalent heating degree days. For the cooling deviations, the most correlated 

parameter, besides the deviation of the cooling degree days, is the solar heat gain coefficient. 

Also the glazing area appears to have a light correlation for the positive deviations. 

Looking at Figure 2a.9, for the heating peak loads the most influencing parameter on the 

variability is the deviation of the minimum external temperature. The opaque components are 

the most correlated with the variability of the peak deviations, both on the steady and dynamic 

points of view. For the cooling peak loads, the variables chosen for describing the external 

forcing solicitation are not able to fully justify the variability by themselves. With the exception 

of the glazing area, the correlations appear very weak, suggesting that interactions between the 

different characteristics (dynamics of the opaque components and entering solar radiation 

through the glazings) could be pursued to reduce the variability of the cooling peak loads. 



Weather data files for BES 

 

 

50 

 

Generally, Pearson’s and Spearman’s indexes assume similar values, especially when the 

correlation is relevant, suggesting that the most relevant correlations can be approximated by 

linear trends in the monotonic domains. 
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2a.4 Main findings 

In this part of chapter 2, a comparison between the TRYEN weather files calculated in 

accordance with the EN ISO 15927-4:2005 procedure and the original multi-year series of the 

data has been carried on for different locations, analysing the annual energy needs and the peak 

loads of a set of reference buildings. 

Analysing the monthly average temperatures, solar radiation and humidity it has been 

noticed that the correspondence with the TRYEN values and the averages is not good for the 3 

parameters at the same time. About the building energy performance considered as 

representativeness index (i.e., annual heating and cooling energy needs and peak loads), the 

deviations of TRYEN results from the mean of the results of the multi-year series are within 10% 

but in some cases (as for Trento and Bergamo) the TRYEN overestimates/underestimates respect 

to the average values. In order to verify if the problem can be solved by using a larger number 

of years for the development of the test reference year, the location of De Bilt, with more than 

50 years available, has been analysed. The representativeness, respect to the North Italy 

localities with only 10 years, is improved but some discrepancies are still present. This suggests 

a possible change of the standard procedure by introducing weighting coefficients, in order to 

develop different TRYEN to use for specific purposes, as already underlined in literature and by 

the EN ISO 15927-4:2005 itself or done specifically for the design days (as in EN ISO 15927-

2:2009). 

In order to show how the multi-year series could be used for a design robust to the climatic 

variability, the correlations between the building envelope characteristics and the variability of 

the energy performances in a multi-year analysis have also been considered for the Italian 

locations. When a building characterized by low values of thermal transmittance and dynamic 

parameters of the opaque components is simulated, the variability of the heating energy needs 

and peak loads is more limited. The solar heat gain coefficients and the window size are 

correlated with the cooling energy needs and peak loads (and, so, generally speaking, the 

reduction of the entering solar radiation can limit the variability of the cooling energy 

performance). 
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Part b: Boundary conditions for walls and floors in touch with the 

ground in BES 

2b.1 Method 

In this paragraph, the cases and the methods considered for the analysis, those presented in 

EN ISO 13370:2007 and the finite element modelling (FEM), have been described. 

 

2b.1.1 Tested slab on ground cases and boundary conditions 

There are many configurations of walls and floors in touch with the ground. In this study, 

the simplest one (i.e., the slab-on-ground) has been selected for carrying on the analysis. 

As reference cases, slabs-on-ground with a 20 cm thick clay block floor slab and variable 

thickness of the insulation layer (0-5-10 cm) have been chosen. The clay block has a thermal 

conductivity of 0.25 W m
-1

 K
-1

, a density of 850 kg m
-3

 and a specific heat capacity of 840 J kg
-1

 

K
-1

 while the insulation layer has a thermal conductivity of 0.04 W m
-1

 K
-1

, a density of 40 kg 

m
-3

 and a specific heat capacity of 1470 J kg
-1

 K
-1

. Two positions of the insulation layer (internal 

or external side) and three different kinds of soil (clay, sand or rock) have been considered. The 

part of the building above the ground has a 3 m of internal height and it is entirely composed by 

the same opaque structure considered for the slab. 

The internal area of the floor is 100 m
2
 and its shape has been varied considering a square 

floor (i.e., 1:1 aspect ratio, defined as the ratio between the floor sides) and three different 

rectangular shapes (with 1:4, 2:4, 3:4 aspect ratios). In Table 2b.1 the thermal properties of the 

soil and the floor slab are reported and in Table 2b.2 the external dimensions of the sides for the 

different aspect ratios. 

 

Table 2b.1 - Thermal properties of the soil and thermal conductance of the considered 

floors 

 
Soil  Floor slab 

 
λ [W m

-1
 K

-1
] ρc [J m

-3
 K

-1
]  Λ [W m

-2
 K

-1
] 

clay 1.5 3.0 ∙ 10
6
 no insulation 1.25 

sand 2 2.0 ∙ 10
6
 5cm insulation 0.49 

rock 3.5 2.0 ∙ 10
6
 10cm insulation 0.30 
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Table 2b.2 - Size and external dimensions of the floor 

Dimensions 

Insulation (m) 
0.00 0.05 0.10 

4:4 
Side1 10.40 10.50 10.60 

Side2 10.40 10.50 10.60 

3:4 
Side1 9.06 9.16 9.26 

Side2 11.94 12.04 12.14 

2:4 
Side1 14.54 14.64 14.74 

Side2 7.47 7.57 7.67 

1:4 
Side1 5.40 5.50 5.60 

Side2 20.40 20.50 20.60 

 

The surface convective coefficients have been calculated in accordance with the technical 

Standard EN ISO 6946:2007 and they are 25 W m
-2

 K
-1

 for the external wall and ground 

surfaces, while for the internal ones, 7.69 W m
-2

 K
-1

, 10 W m
-2

 K
-1

 and 5.88 W m
-2

 K
-1

, for the 

vertical wall, the ceiling and the floor, respectively. Both steady state and transient analyses 

have been performed. 

In the steady state analysis, the boundary temperatures are a fixed at -5 °C for the external 

air, as prescribed in the design calculation for many locations in the Northern Italy by the UNI 

EN 12831:2006 (UNI, 2006), and at 20 °C for the internal air, while an equivalent convective 

thermal condition is imposed for all the internal and external walls surfaces. 

For the steady state conditions, the specific heat flux has been calculated in order to 

compare the different cases. It has been computed dividing up the heat flow through the ground 

- obtained by means of the finite elements model and evaluated at the internal floor surface - by 

the floor area and by the difference of temperature (i.e., |θi - θe| = 25°C) used for the simulations 

in steady state regime. 

ei
g

A 





          (2b.1) 

100
tot

g 



          (2b.2) 

The transient analysis is divided into a first part, in which a daily outdoor temperature 

variation is considered, and a second part where a yearly period is investigated. For both cases a 

fictive external forcing temperature with a mean value of -5 °C and an amplitude of 15 °C is 

considered but in the first case the period is 24 h while in the second one it is 1 year-long with a 
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daily discretization. The daily variation has been considered to evaluate the potential effects on 

the building dynamic response while the yearly one for the assessment of the time lag between 

the annual forcing signal and the heat flux through the ground. 

The first transient analysis has been performed for the cases with a square floor (4:4 aspect 

ratio) and the profiles of temperatures and flows of the 10
th
 day have been studied in order to 

have stabilized profiles. The case without insulation, with a 4:4 aspect ratio building and a clay 

soil, has been selected in order to perform a yearly simulation and it has been run till a stabilized 

regime is reached. 

 

2b.1.2 EN ISO 13370:2007 method 

The slab-on-ground floors are defined by the technical Standard as any kind of floor 

consisting of a slab in contact with the ground over its whole area, whether or not supported by 

the ground over the whole area, and situated at the level (or near the level) of the external 

ground surface. 

The floor slab may be without insulation layer, or evenly insulated (above, below or within 

the slab) over its whole area. A correction on the thermal transmittance is also foreseen by the 

technical Standard if the floor has horizontal or vertical edge insulation. The thermal 

transmittance depends on the characteristic dimension of the floor, B' (i.e., area of the floor 

divided by half of the perimeter) given by Eq. (2b.3), and on the total equivalent thickness, dt
 

given by Eq. (2b.4). 

P.

A
B́

50
           (2b.3) 

 sefsit RRRwd           (2b.4) 

The characteristic dimension B' assumes the following values for the tested cases: 5 m (4:4 

aspect ratio), 4.95 m (3:4 aspect ratio), 4.71 m (2:4 aspect ratio) and 4 m (1:4 aspect ratio). 

The thermal resistance of dense concrete slabs and thin floor coverings may be neglected. 

Hardcore filling below the slab is assumed to have the same thermal conductivity as the ground, 

and its thermal resistance should not be included. The thermal transmittance U is computed 

using Eq. (2b.5) for the case with dt < B′ (i.e., not insulated and moderately insulated floors), or 

Eq. (2b.6) for the case with dt > B′ (i.e., well-insulated floors). 



Boundary conditions for walls and floors in touch with the ground in BES 

 

 

56 

 

















 1

2

tt d

B́
ln

dB́
U






        (2b.5) 

tdB́.
U




4570


         (2b.6) 

The steady state ground heat transfer coefficient Hg between internal and external 

environments is then obtained using Eq. (2b.7). 

gg PAUH           (2b.7) 

In this analysis, the linear transmittance relevant to the thermal bridges (i.e., Ψg
 
relevant to 

the wall-floor junction) has been evaluated applying the finite element modelling procedure in 

agreement with EN ISO 10211:2007 (CEN, 2007b). 

In accordance with the technical Standard, the monthly heat flow rate can be evaluated 

using an external yearly sinusoidal forcing temperature or monthly average temperatures. In the 

first case the Standard proposes a sinusoidal function which can be used for determining both 

the internal and the external temperatures θk,m for each month m of the year: 








 


12

m
2cosˆ

kkm,k


         (2b.8) 

where k stands for i,e (internal or external), k is the yearly average temperature, k̂  is the 

yearly amplitude and  indicates the month characterised by the minimal temperature. 

Considering a fixed internal temperature, as in this study, the heat flow for the month m is: 

  






 


12

m
2cosˆHH epeeigm


       (2b.9) 

where Hpe is the external periodic heat transfer coefficient which is defined differently for 

the various slabs. For the uninsulated slab-on-ground: 











 1370

t

pe
d

lnP.H


         (2b.10) 

with δ is the periodic penetration depth. Its value is 2.2 m for the clay, 3.2 m for the sand 

and 4.3 m for the rock soil. 

The β parameter is the time lag of the heat flow with the respect of the external temperature: 


















1d
ln42.05.1

t


         (2b.11) 
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A typical value of the time lag for the slab-on-ground without edge insulation is 1 month. 

Considering the monthly average external temperatures, the time shift is neglected and the 

heat flow for the month m becomes: 

   m,eepeeigm HH          (2b.12) 

The EN ISO 13370:2007 provides instructions to identify the boundary conditions for the 

dynamic simulation codes. A ground layer thick 0.5 m and a virtual layer have to be added to 

the floor. The virtual layer thermal resistance can be calculated as: 

gfsiV RRR
U

1
R          (2b.13) 

And Rg is the thermal resistance of the 0.5 m of soil. At the bottom of the virtual layer is 

applied a virtual temperature θv: 

AU

Φ
θθ m

mi,mv,           (2b.14) 

The accuracy in determining the virtual boundary temperature is so dependent on the heat 

flow calculation accuracy. 

 

2b.1.3 Finite elements modelling 

The slab on ground test case has been discretised using a 3-dimensional geometry. Taking 

advantage of the geometry symmetries, only a quarter of the building has been modelled in 

agreement with the standard procedure. The Partial Differential Equations (PDE’s) 

discretization and solution procedure has been carried out by means of finite elements approach 

(FEM). The temperature values of the external and internal air have been assumed as boundary 

conditions. Both steady state and time-variable conditions on the external air have been 

considered for the simulations. 

The total number of cells ranges between 6.5∙10
5
 and 1.4∙10

6
, depending on the building 

aspect ratio. The calculations have been performed in double precision (convergence parameter 

equal to 10
-10

), so that ensuring an accurate energy balance, independently from the materials 

and the boundary conditions. The 3-dimensional heat flux at the ground has been computed at 

the internal surface of the floor slab. 
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The procedure proposed in the Standard EN ISO 10211:2007 has been followed and the 

scheme in Figure 2b.1 has been assumed to carry out a detailed simulation of the whole 

building-ground system. 2D FEM simulations have been carried out in order to estimate the 

linear thermal transmittance associated with the wall-floor junction Ψg. 

 

 

Figure 2b.1 - 3-dimensional model (left) and 2-dimensional model (right) according to EN ISO 

10211:2007 

 

 

Figure 2b.2 – Example of FEM model geometry and mesh 
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2b.2 Results 

 

2b.2.1 Steady-state conditions: FEM and EN 13370:2007 models 

Figure 2b.3 shows the ground specific heat flux φg and the ground heat flow share Δg as 

functions of ground and floor slab thermal properties. 
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Figure 2b.3 – Specific equal heat flux curves [W m
-2

] (a, on the top) and ground heat flow share 

curves [%] (b, on the bottom) computed by the FEM model as a function of ground and floor 

slab thermal properties: thermal insulation layer either on the external (left) or on internal 

(right) side (continuous lines refer to 1:4 aspect ratio and dashed line to 4:4 aspect ratio) 
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The absolute and percentage deviations between the specific heat fluxes elaborated by 

means of the FEM approach and the ones by means of the EN ISO 13370:2007 procedure have 

been calculated and represented in Figure 2b.4 as functions of floor slab thermal conductance, 

aspect ratios and ground type. 

 

Figure 2b.4 - Absolute percentage deviations between the specific heat flux at the ground 

computed by means of the finite elements model (steady state regime) and by means of the EN 

ISO 13370:2007 procedure as a function of floor slab thermal conductance, aspect ratios (on 

the left) or ground type (on the right). Dashed lines represent the envelope curves relevant 

either to the maximum or the minimum values for the limit aspect ratios (4:4 and 1:4) 

 

2b.2.2 Periodic sinusoidal regime 

In the previous paragraph, the accuracy of the EN ISO 13370:2007 method has been 

assessed by means of a comparison with the FEM methods to pay attention, in particular, to the 

effects of the aspect ratio and of the kind of soil. In this section, the results of the FEM models, 

run in a periodic sinusoidal regime, have been reported. 

For the daily sinusoidal regime, the results, expressed in terms of the temperature on the 

bottom of the slab θslab and heat flow Φ at the floor internal surface - obtained through the FEM 

simulations in dynamic regime - have been compared with a steady state case θslab,st and Φst seen 

in the previous paragraph. An example of the results, for an uninsulated case, with rock soil, has 

been reported in Figure 2b.5. 
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As stated in the Paragraph 2b.1, also for the yearly regime the stabilization has been pursued 

and it has been achieved after a three periods run. The internal heat flow Φ and the temperature 

on the bottom of the slab-on-ground floor θslab have been represented in Figure 2b.6. 

The heat flow values have been used for the estimation of the monthly virtual temperatures 

in agreement with the technical Standard procedure, as in Figure 2b.7. 

 

Figure 2b.5 - Daily variation of the temperatures and heat flows: comparison of the FEM model 

in dynamic regime with the steady state approach (rock soil, uninsulated floor slab and 4:4 

aspect ratio) 
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Figure 2b.6 - Yearly variation of the external temperature θair (black dotted lines) for an 

uninsulated floor slab, 4:4 aspect ratio and clay soil: the temperature on the bottom of the slab-

on-ground floor θslab (red solid line) and internal heat flow Φ (blue solid line) calculated by the 

FEM simulation 

 

 

Figure 2b.7 - Virtual temperatures calculated starting from different monthly heat flow rate 

(rock soil, uninsulated floor slab and 4:4 aspect ratio) 
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2b.3 Discussion 

The results presented in the previous section are here presented, distinguishing the steady 

state and the dynamic problems. 

 

2b.3.1 Steady-state conditions: FEM and EN 13370:2007 models 

The effect of the shape can be analysed looking at Figure 2b.3, where the continuous lines 

refer to 1:4 aspect ratio and dashed line to 4:4 aspect ratio. Also the position of the insulation 

layer - either considered on the external or on internal side - has been here taken into account, in 

Figure 2b.3 (left) and (right), respectively. 

In particular, in the bottom of the Figure, the ground heat flow share, expressed as 

percentage, is indicated. It represents the ground heat flow on the total heat flow exchanged by 

the building through envelope as if it was homogeneously opaque. As expected, the contribution 

of the heat losses towards the ground becomes more significant as the thermal conductance of 

the envelope decreases (the thermal conductance of the whole envelope is equal to the floor slab 

one). Considering the same conditions, the share of the ground heat flow is lower for 4:4 aspect 

ratio than the ones relevant to the 1:4 ratio, confirming the higher performance of compact 

structures regarding the heat exchange through the ground. Moreover, assuming the same 

envelope thermal conductance, the use of an insulation layer on the internal side gives a slightly 

higher ground heat flow share than the one obtained using the same layer on the external side. 

The specific heat flux computed by means of the FEM model has been considered as a 

benchmark and an assessment of the deviations between the one computed by means of the 

finite elements model and the one calculated by means of the EN ISO 13370:2007 procedure 

has been carried out. Figure 2b.4 shows the computed deviations (as absolute values) as a 

function of floor slab thermal conductance and either aspect ratios (on the left) or ground type 

(on the right). Dashed lines represent the envelope curves relevant to the maximum and the 

minimum values for the limit aspect ratios (4:4 and 1:4 respectively). As a whole, the computed 

deviations are characterised by small values, always lower than 1%, with a decreasing trend as 

the floor slab thermal conductance decreases. Regarding the shape of the building, the higher 

the slab thermal conductance values, the higher the differences between buildings with low and 

high aspect ratios. Buildings structures with 4:4 ratio are subjected to higher errors when using 

the Standard procedure, resulting in values up to 0.98%. This residual discrepancy is due to the 
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modelling of the thermal bridges, whose linear coefficient has been derived in a 2-dimensional 

analysis. 

The variation in the thermal properties of the ground (i.e., varying the kind of soil) also 

affects the performance of the Standard computation if compared with the FEM modelling. In 

particular, the maximum deviations have been detected for the rocky and sandy grounds, which 

are characterised by the higher thermal conductivities. On the contrary, the values of the 

deviations relevant to the clay soil - which is characterised by the lowest thermal conductivity - 

are generally lower. 

 

2b.3.2 Periodic sinusoidal regime 

Considering the daily regime, the maximum deviations in terms of heat flow (5.36 W) have 

been computed in the uninsulated floor slab in case of rock having the highest thermal 

diffusivity (1.75×10
-6

 m
2
 s

-1
), followed by sand (5.04 W, thermal diffusivity 1.00×10

-6
 m

2
 s

-1
) 

and clay (4.92 W), whose thermal diffusivity value (5.00×10-7 m
2
 s

-1
) is the lowest. When the 

floor is insulated the deviations are approximately 1 W. Considering the percentage deviation of 

the peak respect to the steady state value, for the uninsulated cases the deviation is less than 

0.5% and for the insulated ones less than 0.2%. Consequently, steady state boundary conditions 

could be assumed in hourly dynamic simulation, especially when interested in evaluating short 

periods of few or just one design day. 

As concerns the yearly regime, the temperature on the bottom of the slab and the internal 

heat flow of the slab have a displacement with respect to the external air temperature. The time 

shift is equal to 32 days (approximately 1 month, coherently with the Standard suggestion). 

Analysing the results arising from the yearly analysis, the FEM daily-discretised results 

have been used for the computation of the monthly average heat flow rates which have been 

compared to the ones calculated in accordance with EN ISO 13370:2007. The heat flow 

evaluated considering the technical Standard sinusoidal forcing temperture and a time lag equal 

to a month presents deviations lower than the 3% with respect to the FEM analysis, for the 

studied case. Nevertheless, the deviations are within a larger range (-5% to 10%) if the FEM 

approach is compared to the EN ISO 13370:2007 monthly average values method. This 

suggests that the time shift has to be considered for an accurate estimation of the themal losses 

through the slab-on-ground floor. 
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In Figure 2b.7, the virtual temperature, to use as boundary condition in dynamic 

simulations, has been calculated with the three approaches (i.e., by means of the FEM monthly 

averages thermal fluxes, the EN ISO 13370:2007 method with the sinusoidal forcing 

temperature and the EN ISO 13370:2007 monthly method). The accuracy is again affected by 

the correct estimation of the time shift. Thus, the sinusoidal forcing temperature approach 

presents deviations lower than 1 °C on the temperatures while for the average monthly method 

the deviations are within a larger range of 2 °C. 
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2b.4 Main findings 

The calculation method provided by the technical Standard EN ISO 13370:2007 to define 

the boundary temperature to use for walls and floors in touch with the ground, both for quasi-

steady state and BES approaches, has been discussed. 

The Standard method has been compared to FEM simulations in steady state conditions in 

order to assess its accuracy and discrepancies less than 1% have been found for the tested cases. 

They can be ascribed to the 2-dimensional method used by the technical Standard to evaluate 

the thermal bridges: if the 3-dimensional approach described in the EN ISO 10211:2007 is 

followed, the residual difference between the two methods is expected to be negligible. 

In order to find the proper time-discretization for the BES ground boundary conditions, both 

few days-long FEM simulations with an hourly discretization and a year-long FEM simulation 

with a daily discretization have been performed and compared to the Standard procedures. The 

effects of the daily-period forcing temperature result negligible for the study of the heat transfer 

through the soil. Moreover, the comparison underlined the importance of the correct estimation 

of the time lag of the flux through the soil by the Standard in order to get an accurate evaluation 

both of the flux and the boundary temperature by the EN ISO 13370:2007 method. 

Further developments involve: 

1. the assessment of more realistic forcing solicitations, non-sinusoidal; 

2. the evaluation of the other configurations proposed by the technical Standard EN ISO 

13370:2007, as well as different aspect ratios in order to investigate the influence of the 

non 1-dimensional heat flows; 

3. the investigation of the external periodic heat transfer coefficient Hpe proposed by the 

technical Standard, in particular of the formulations taking into account of the cases 

with edge insulations (and so of their thermal bridges).  

According to the EN ISO 10211:2007, also this coefficient can be calculated considering 

the thermal fluxes elaborated by means of FEM analysis and in this way, the different formula 

proposed by the EN ISO 13370:2007 assessed. 
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Chapter 3 

The problem of the influence of the BES tool choice on the final results is discussed in this 

chapter. The state of the art of the validation of BES tools by means of the BESTEST approach 

is firstly presented. Then, the extensive comparative approach developed to extend the 

indications of the comparative validation procedure of the BESTEST approach, is described. 

Two well-known BES tools, TRNSYS 16.1 and EnergyPlus 7, have been considered for the 

application of both methodologies. 

The annual energy needs and hourly peak loads, both heating and cooling, have been 

determined for both simulation codes and compared with the limits of the acceptability ranges 

for the BESTEST qualification cases (i.e., the cases used for the comparative validations). 

Moreover, also the results of the BESTEST sensitivity cases (i.e., the deviations between two 

qualification cases) have been analysed. 

In the extensive comparison, monthly instead of annual energy needs and peak loads have 

been considered, analysing as well the time of occurrence of the peaks, for a large number of 

configurations developed in accordance with a factorial plan and aimed at assessing several 

combinations of alternatives for the building envelope characteristics and to evaluate the main 

sources of disagreement. Moreover, while in the BESTEST cases the so called most accurate 

models have been considered, for the extensive approach all inputs and assumptions under the 

user’s control have been aligned, in order to point out the impact of the different models and 

algorithm of these two BES codes. 

The resulting deviations between TRNSYS and EnergyPlus have been analysed with 

statistical techniques. 
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3.1 Methods 

In this first section of this chapter the methodologies followed to assess the deviations 

between BES tools have been presented. In the first part the ANSI/ASHRAE 140:2011 

BESTEST procedure is described and in the second one the developed extensive comparative 

approach. 

 

3.1.1 ANSI/ASHRAE 140:2011 - BESTEST 

The BESTEST is a whole model comparison validation method with a marked diagnostic 

profile. The BESTEST procedure requires to evaluate the simulation code on some building 

configurations of different and increasing detail and complexity by using the best algorithms 

among the ones available in the code, according to a stage-gate approach: before testing the 

(n+1) case, the BES tool should pass the n case. “Passing” a test means that the results provided 

by the BES tool are in agreement with the ones of the reference codes, which are not expexted 

to be necessarily representative of the “truth” but of what is commonly accepted as the current 

state of the art in BES (Judkoff and Neymark, 1995). When clearly failing a test (e.g., 

substantial disagreement with the acceptability ranges), additional diagnostic cases are available 

to identify the source of the disagreement problem. 

In Table 3.1 the characteristics of the qualification cases have been reported. In particular, 

the envelope BESTEST considers a specific reference climate (Denver) and is based on the 

evaluation of the annual energy requirement and peak loads, time of occurrence of the peak and 

hourly temperature profile for the free floating cases. 

In this section, two well known simulation codes, TRNSYS 16.1 and EnergyPlus 7, both 

already evaluated according to the BESTEST approach, although not in those versions, in 

particular as regards the envelope (Bradley et al., 2004; Henninger and Wittel, 2010), have been 

assessed. An older version of TRNSYS, as well as BLAST and DOE2, the codes used for 

developing EnergyPlus, belong to the group of reference BES tools.Version 16.1 and version 7 

have been considered respectively for TRNSYS and EnergyPlus as they do not differ 

significantly from those tested in the references and in the meantime are quite consolidated; the 

most significant difference between the considered version of TRNSYS and the last release 

(version 17) is that in the latter a 3D internal radiation model is also available as an option for 

the user. 
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Table 3.1 - BESTEST qualification cases 

Geometry characteristics  
Opaque envelope heat 

capacity 
 HVAC control strategies 

Cases 600/900:  

South-faced windows 

 

 Cases 6x0/960 

Lightweight cases: 

Walls: ki = 9.2 kJ m
-2 

K
-1

 

Floor: ki = 18.7 kJ m
-2

K
-1

 

Roof: ki = 8.4 kJ m
-2 

K
-1

 

 Base cases 

Heating setpoint of 20 °C  

Cooling setpoint of 27 °C 

Cases 610/910:  

South-faced windows with 

overhangs 

 

 Cases 9x0 

Massive cases: 

Walls: ki = 64.0 kJ m
-2

K
-1

 

Floor: ki = 72.1 kJ m
-2

K
-1

 

Roof: ki = 8.4 kJ m
-2 

K
-1

 

 Cases 640/940 

Nighttime setback: 

Heating setpoint of 10 °C  

(from 23:00 to 7:00) 

Heating setpoint of 20 °C 

(from 7:00 to 23:00) 

Cooling setpoint of 27 °C 

Cases 620/920:  

East and West oriented 

windows  

 

   Cases 650/950 

Night ventilation: 

Mechanical ventilation on 

and cooling system off  

(from 18:00 to 7:00) 

Mechanical ventilation off 

and cooling system on  

(from 7:00 to 18:00) 

Heating system always off 

Cases 630/930:  

East and West oriented 

windows with overhangs and 

fins  

 

    

Case 960: 

Multizone with a South-

faced sunspace 
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The qualification case 990, aimed at assessing the heat transfer via the ground, has not been 

considered, as a specific group of other BESTEST cases has been developed for studying this 

problem. 

To better evaluate the behaviour of the analysed simulation codes with respect to the 

acceptability ranges of the BESTEST cases, percentage deviations have been calculated as in 

Eq. (3.1) and compared. 

minmax

min






x
range          (3.1) 

If Δrange is negative, the result of a considered case is under the minimun limit and if it is 

larger than 1, over the upper limit. Both the results of the qualification cases and the ones of the 

sensitivity cases have been studied. 

 

3.1.2 Extensive comparison 

In order to generalize the BESTEST results, TRNSYS and EnergyPlus have been compared 

over a wide range of configurations of a building module composed by a single-storey thermal 

zone with 100 m
2
 floor area. The outputs analysed in the extensive comparison are the same of 

the BESTEST approach but with a different time-discretization: instead of annual values, 

monthly heating and cooling energy needs and hourly peak loads were compared, together with 

the hour of occurrence of the peaks. 

With the purpose to extend the range of configurations for the comparison, a parametric 

approach has been assumed. On one hand this complements the BESTEST validation process 

with a parametrical analysis over a larger number of conditions. On the other hand it gives very 

important information about the relative uncertainty (inaccuracy) and reliability of the results 

obtained with any of the considered simulation codes. This is particularly important when the 

simulation codes are directly used for energy certification of buildings or for tuning the 

simplified or quasi-steady state approaches such as the quasi-steady state method proposed by 

the technical Standards EN ISO 13790:2008. 

The way of selection of the set of building configurations allowed to investigate the effects 

of 7 variables (amount of surface exposed to the external conditions, opaque envelope base 

material, level of insulation, windows orientation, windows area, kind of glazing, presence of 

internal gains) in determining the differences between the two simulation codes. Other possible 

causes of difference, such as the thermal exchange of envelope elements in touch with the 

ground, were neglected as they are conceptually related more to the modelling approach of 
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some specific boundary conditions, as seen in chapter 2. Some alternative or optional control 

parameters under the user´s choice, as the one considered by the different models for managing 

the external long wave radiation exchange towards the sky vault, have been assumed in a 

coherent way. All the possible causes of disagreement have been investigated among those 

algorithms and models implemented by the two software for the solution of the building thermal 

balance, as well as those parameters not under the user´s control, such as the surface emissivity 

in TRNSYS. 

From the combination of the values of the above variables, 1620 different configurations 

have been obtained, each of which providing 12 monthly values for heating and cooling needs 

and for heating and cooling peaks for each of the two considered climatic conditions (Milan and 

Messina). Thanks to this large number, the results have been analysed with inferential statistical 

approaches, which allowed to evaluate the agreement between the outputs and to characterize 

the weight of the different variables on the found deviations. As a benchmark, the monthly 

results of BESTEST configurations 600, 610, 620, 630, 640 and 650, and 900, 910, 920, 930, 

940, 950 and 960 in the two considered climatic conditions and after the alignment were added 

in the comparison. 

 

3.1.2.1 Reference building module and set of configurations 

The set of configurations required in the comparative analysis is obtained as variations of a 

reference building, a single-storey module with 100 m
2
 of floor area, whose concept is 

represented in Figure 3.1. The whole opaque envelope is composed by a two layers structure. 

The internal layer is made of one of the 3 considered base materials (timber, clay block or 

concrete) with a thickness chosen to give a thermal resistance of about 0.8 m
2 
K W

-1
, as 0.2 m of 

clay block. 

An insulation layer, whose thickness has been varied to give different configurations as 

described below, is applied on the external side. The thermophysical characteristics of the 

materials used are reported in Table 3.2. 

The external solar absorption coefficients of the walls and for the roof (when not adiabatic) 

are respectively 0.3 and 0.6 while the internal one is 0.3 for both. The floor external absorptance 

is 0 when exposed to the external ambient (i.e., the solar radiation component on this surface is 

equal to zero) and the internal one is 0.6. 
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Figure 3.1 – Conceptual view of the base module 

 

Table 3.2 - Opaque Envelope thermal properties 

 Timber Clay block Concrete Insulation 

Thermal Conductivity 

[W m
-1

 K
-1

] 
0.13 0.25 0.37 0.04 

Density 

[kg m
-3

] 
399 893 1190 1470 

Specific heat 

[J kg
-1

 K
-1

] 
1880 840 840 40 

 

 

The windows are considered as positioned on a unique vertical wall and orientation, in order 

to emphasize the consequences of different entering solar radiation distributions during the day. 

They have been modelled with Window6 LBNL tool and used as input for both EnrgyPlus and 

TRNSYS. The wall opposed to the windows is assumed to be adiabatic. The window frame is a 

low performing timber frame (Ufr = 3.2 W m
-2

 K
-1

) with the single glass or an improved 

performance frame in the other cases (Ufr = 1.2 W m
-2

 K
-1

), always with a frame area covering 

about the 20 % of the whole window area. 

For the ventilation, a constant rate of 0.3 ach/h of outside air has been imposed, in 

accordance to the average value prescribed by the Italian standard UNI/TS 11300-1:2008 for 

residential buildings. 
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To define the different cases, the following variables of interest (also called factors in the 

following) have been selected: 

1. the amount of envelope surface exposed to the external environment (expressed by the ratio 

between the surface itself and the volume); 

2. the base material of the opaque envelope (the material of the internal layer); 

3. the level of insulation added to the internal layer; 

4. the percentage ratio of glazings Agl to floor area Af; 

5. the orientation of the windowed wall; 

6. the kind of glazings; 

7. the presence of internal gains; 

8. the climatic conditions. 

For each of the above factors, a certain number of alternatives (levels) were considered as 

reported in Table 3.3. The amount of exposed surface (factor 1) permits to consider buildings 

with different exposed surface but equal volumes and the presence of adiabatic envelope 

components (3 combinations). The base material and insulation level (variables 2 and 3) allow 

to consider the different thermal dynamic behaviour of the opaque envelope (9 combinations). 

The window percentage area, window orientation and kind of glazings (factors 4, 5 and 6) allow 

to examine the effect of window insulation and solar control properties under different solar 

radiation profiles (30 combinations). The internal gains (variable 7) permits to analyze the 

presence of internal partially radiant loads (2 combinations). Finally, the climate (variable 8) 

allows to evaluate the effect of different temperature and radiation conditions over two very 

different Italian climates (2 combinations). 
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Table 3.3 - Variables (factors) and alternatives (levels) in the simulation plan 

(1) 

Exposed surface 

ratio S/V [m
2
 m

-3
] 

a one wall, the floor and the ceiling adiabatic; S/V=0.30 m
-1

 

b one wall and the floor adiabatic; S/V=0.63 m
-1

 

c one wall adiabatic; S/V=0.97 m
-1

 

(2)  

Base material for 

the internal layer 

R [m
2
 K W

-1
] 

Area specific heat 

capacity 

ki [ kJ m
-2 

K
-1

] 

a 
Timber 0.10 m;  

area specific heat capacity 75 kJ m
-2 

K
-1

 

b 
Clay block 0.20 m;  

area specific heat capacity 150 kJ m
-2 

K
-1

 

c 
Concrete 0.30 m; 

area specific heat capacity 300 kJ m
-2 

K
-1

 

(3) 

Insulation 

thickness s [cm] 

(Thermal 

Transmittance 

Uenv [W m
-2

 K
-1

]) 

a 0 cm – Uenv = 1.03 W m
-2

 K
-1

 

b 5 cm – Uenv = 0.45 W m
-2

 K
-1

 

c 10 cm – Uenv = 0.29 W m
-2

 K
-1

 

(4) 

Ratio Agl/Af 

a 11.7% 

b 23.4% 

(5) 

Orientation of Agl 

a East 

b South 

c West 

(6) 

Kind of glazing 

Ugl [W m
-2

 K
-1

] 

 

a 
(S) single glass; 

Ugl = 5.68 W m
-2

 K
-1

, SHGC = 0.855 

b 
(DH) double glazing high solar transmittance; 

Ugl = 1.140 W m
-2

 K
-1

, SHGC = 0.608 

c 
(DL) double glazing low solar transmittance; 

Ugl = 1.099 W m
-2

 K
-1

, SHGC = 0.352 

d 
(TH) triple glazing high solar transmittance; 

Ugl = 0.613 W m
-2

 K
-1

, SHGC = 0.575 

e 
(TL) triple glazing low solar transmittance; 

Ugl = 0.602 W m
-2

 K
-1

, SHGC = 0.343 

(7) 

Internal gains iq
 

[W m
-2

] 

a iq
 
= 0 W m

-2
 of floor surface   

b 
iq = 4 W m

-2
 of floor surface (50% by convection and 50% by 

radiation) 

(8)  

Climatic 

conditions 

HDD20 [K d] 

a Messina – HDD20:    707 K d 

b Milan – HDD20: 2 404 K d 
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3.1.2.2 Assumptions for the simulation 

 

Differently from validation approach of the BESTEST procedure, which requires for 

diagnostic purpose to use the best and more detailed algorithms offered by each simulation 

code, for the aims of the present work the input data have been pre-processed and the 

calculation hypotheses aligned. This has been pursued with regard to the outside and inside 

surface exchanges and selecting the appropriate models for the conduction heat exchanges 

within the envelope components, as described below. 

The air heat balance approach implemented by both codes is expressed as: 

dt

dθ
CΦΦΦΦ a

asysci,veic,    (3.2) 

The convection term Фc,i exchange with the internal surfaces of the envelope is determined 

by imposing the surface heat balance equations on the external and on the internal surfaces, 

which per unit of area are expressed as: 

0qqqq etr,ec,er,esol,    (3.3) 

0qqqqqq itr,ic,lwri,ir,swri,isol, 
 

 (3.4) 

Some of the terms in the balances can be estimated in different ways. The main points are 

summarized in the following paragraphs. 

 

External surface exchanges 
 

Climatic conditions and solar radiation on the horizontal and on tilted surfaces 
 

In coherence with the aims of the last part of this study (the comparison with the simplified 

methods), it was decided to rebuild hourly profiles compatible with the mean monthly data 

reported in the Italian standard UNI 10349:1994  using the TRNSYS subroutine Type 54. 

The Type 54 allows to generate hourly weather data for a whole year in a chosen location 

from the monthly average values of global horizontal solar radiation, temperature, humidity and, 

in case, wind speed (neglected in this work since constant convective coefficients and 

ventilation rate have been considered). The subroutine allows also to split the horizontal 

radiation into the direct and diffuse components in accordance with Erbs´ algorithm (Erbs et al., 

1982). 

The Perez algorithm (Perez et al., 1990) implemented in EnergyPlus has been selected in 

this study to evaluate the radiation on tilted surfaces. An albedo coefficient of 0.2 has been 
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considered. The elaborated profiles of dry bulb and dew point temperature, relative humidity, 

global, direct and diffuse radiation on a horizontal surface and on the principal orientations for 

vertical surfaces have been used as input to EnergyPlus and TRNSYS. 

 

Long wave radiation exchanges 

The infrared exchange depends firstly on the characteristic emissivity of the considered 

surface. As TRNSYS imposes fixed values of 0.9 for all external opaque surfaces while 

EnergyPlus allows the user to select this parameter in the range between 0 and 1 either for the 

internal or the external ones, also in this second code the external surface emissivity has been 

set to 0.9. 

The different models used by the two software for calculating the long wave exchanges with 

the external environment should be commented. The external infrared exchange is calculated in 

EnergyPlus (Walton, 1983; McClellan and Pederson, 1997) dividing the flux into 3 

components: to the sky vault, to the ground and of air absorption (when the view factor of the 

sky is not 1): 

     4
air

4
es,air

4
sky

4
es,sky

4
gnd

4
es,gndairr,skyr,gndr,er, θθεσFθθεσFθεσFqqqq    (3.5) 

with 

 cos10.5Fgnd    (3.6) 

 cos10.5Fsky    (3.7) 

 cos10.5β    (3.8) 

To determine Fair for the different air absorption for non-horizontal tilt, the view factor of 

the sky is multuplied by 1β. 

The equation is then linearized: 

     aires,airr,skyes,skyr,gndes,r,gnder, θθhθθhθθhq   (3.9) 

with the three coefficients hr,n (n = gnd, sky, air): 

nos,

4
n

4
os,

nnr,
θθ

θθ
εσFh




   (3.10) 

Moreover the temperature θgnd is approximatively considered as equal to θair. 
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The model adopted in TRNSYS is based on the exchange between the surface temperature 

and a reference temperature θfsky, which is calculated as a mean of the air and of the sky vault 

temperatures, weighted by the respective view factors in compliance with the following 

equations: 

 4
fsky

4
es,skyer, θθεσFq    (3.11) 

  yskskyairskyfsky θFθF1θ    (3.12) 

In order to take into account of the air absorption effect also in TRNSYS, a value of 0.35, 

which corresponds to the product Fsky∙β, has been chosen instead of the usual 0.5 for vertical 

surfaces. 

The EnergyPlus value of the sky fictive temperature, obtained from the hourly profile for 

horizontal orientation long wave flux, was used also in TRNSYS in place of the output of the 

subroutine Type 69, calculated from external temperature and humidity and from the amount of 

horizontal diffuse radiation on the horizontal global one. 

 

Convective exchanges 

In EnergyPlus, different models of various levels of complexity and approximation are 

available to evaluate the convective flow: the convective coefficients can be fixed as a user´s 

input or can be determined dynamically from the roughness of the walls and the boundary 

conditions. In the considered release of TRNSYS, on the contrary, the convective coefficient 

needs to be provided by the user. 

A constant value of 20.0 W m
-2

 K
-1

 has been adopted, in accordance with the prescriptions 

of the technical standard EN ISO 6946:2007, annex A, for both the simulation codes. 

 

Internal surface exchanges 
 

Entering solar radiation  

Both codes distribute the diffuse component of the entering solar radiation equally on all the 

surfaces delimiting the zone. With respect to the direct component, in TRNSYS, it is distributed 

over the different surfaces by a proper fraction called geosurf which is defined by the user for 

each surface. In EnergyPlus, more detailed algorithms consider also the reflections of the direct 

radiation entering into the zone. 
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The compromise between these two approaches was to adopt in EnergyPlus the 

FullExterior choice, which establishes that all the direct radiation transmitted falls on the floor 

and possible reflections are added to the diffuse components, and, in TRNSYS to set the geosurf 

to 1 for the floor and to 0 for the remaining walls.  

Chatziangelidis and Bouris (2009) assessed the influence of using a detailed view factor 

algorithm for the distribution of the entering solar radiation on the different surfaces or the 

geosurf method in TRNSYS and observed that the variation in the surface temperature and 

thermal loads are negligible. 

 

Long wave radiation 

In TRNSYS 16.1 the calculation is based on Seem’s star-network algorithm (Seem, 1987), 

which puts in parallel the radiative and convective exchanges from each internal surface in a 

single heat flux towards a fictive temperature node θstar. In turn, through a suitable thermal 

resistance, the fictive node exchanges with the air of the zone a thermal power equivalent to the 

sum of the convective exchanges at the internal surfaces. As regards the long wave radiation, 

TRNSYS assumes the internal surfaces, both of the opaque and transparent envelope, as black.  

In contrast, EnergyPlus implements a detailed algorithm based on the view factor 

calculations between the surfaces, considered as grey (Hottel and Sarofim, 2007). An internal 

long wave radiation emissivity of 0.999 has been chosen for the opaque envelope to 

approximate TRNSYS. A value of 0.84 is the fixed choice for the transparent envelope surfaces. 

 

Convective exchanges 

Constant values were assumed also for the internal convection heat transfer coefficient. In 

accordance with the prescriptions of the EN ISO 6946:2007, appendix A, the selected values are 

5.0 W m
-2

 K
-1

 for vertical ascending flux, 0.7 W m
-2

 K
-1

 for vertical descending and 2.5 W m
-2

 

K
-1

 for horizontal flux. 

Conduction thermal flow in the opaque envelope components 

Among the 4 possible models offered by EnergyPlus to calculate the thermal flux 

transmitted through the opaque envelope, the transfer functions model TFM was selected to 

compare with the equivalent method used by TRNSYS. It should be said that the two TFM 

models implemented are different: TRNSYS refers to the Direct Root Finding (DRF) model 

while EnergyPlus applies the State-Space Method (SS). 
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As known, the TFM method is based on the evaluation of a time series of terms which 

depend on the boundary conditions and on the solution calculated for the previous period of 

time. The coefficients of the series are calculated on a reference period of time that is called 

wall timebase. Following the ASHRAE suggestions, for stability reasons, in TRNSYS a wall 

timebase of 1 hour has been selected for the kind of walls considered in this study.  

In EnergyPlus, instead, a wall timebase equal to the simulation timestep is always assumed 

(10 minutes is suggested). 

The simulation timestep proposed by EnergyPlus has been used for both simulation codes, 

except for the 640 and 940 BESTEST cases, for which a shorter timestep was required in order 

to evaluate the heating peak loads due to the startup after the temperature night setback, as 

described below. For a detailed comparison between the Space State Method, the Direct Root 

Finding and other numerical approaches, see chapter 4a. 

 

3.1.2.3 Statistical analysis 

A statistical analysis of the deviations between the two software has been performed. This 

technique allowed to confirm the findings of the descriptive statistics and to evaluate the weight 

of each variable in introducing the differences. The inferential statistical technique applied is the 

multivariate linear regression with a confidence level of 95% described in Annex A and the 

variables considered in the regression model have been selected through the stepwise algorithm. 

For the deviations of heating and cooling energy needs, the examined variables are the 

following: 

 The opaque envelope thermal properties: 

o the area weighted mean thermal transmittance of the opaque walls envU  [W 

m
-2

 K
-1

]; 

o the area weighted mean periodic thermal transmittance Yie,env [W m
-2

 K
-1

] 

and timeshift Δtie,env  [h], determined in accordance with the EN ISO 

13786:2007 detailed approach; 

o the product of the total opaque envelope area multiplied by its internal heat 

capacity κi∙Atot [kJ K
-1

], determined in accordance with the EN ISO 

13786:2007 detailed approach; 

 The transparent envelope thermal properties: 

o the thermal transmittance of the windows Uwin [W m
-2

 K
-1

]; 

o the solar heat gain coefficient SHGC [-]; 
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 The envelope areas: 

o the externally exposed opaque walls area Aenv [m
2
]; 

o the windows area Awin
 
[m

2
]; 

 The boundary conditions:  

o the total monthly solar radiation received by the opaque envelope Henv 

[MJ]; 

o the monthly radiation received by the windows Hwin [MJ]; 

o the mean monthly external temperature air [°C]; 

o the internal gains qi [W m
-2

]. 

For the deviations of heating and cooling hourly peaks, the considered variables are the 

same with the exception of the boundary conditions: 

 for the heating peaks deviations: 

o instead of the mean value, the outdoor temperature monthly minimum has 

been considered, air, min [°C]; 

o the solar gains have been completely neglected; 

 for the cooling peaks deviations, in place of the total radiation received, two 

variables have been selected:  

o the monthly horizontal solar radiation for the location examined Hhor [MJ 

m
-2

]; 

o the monthly peak of the 2-days rolling cumulated solar radiation incident on 

the windows ddH 2
ˆ  [MJ m

-2
]. 

In this analysis, only the listed main factors have been considered, neglecting the 

interactions between them. 
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3.2 Results 

The results are presented in this part, distinguishing the original BESTEST results, the 

BESTEST after the alignment described in the extensive comparative approach and the 

simulation plan results. 

 

3.2.1 BESTEST cases 

The results have been reported in Figure 3.2 (for the energy needs) and in Figure 3.3 (for the 

peak loads). As stated before, both the results of the qualification cases (blue) and the ones of 

the sensitivity cases (green) have been represented. 

 

  

    

Figure 3.2 - Percentage deviations in the annual heating (a) and cooling (b) energy needs 

calculations with respect to the normalized BESTEST ranges and percentage deviations in the 

heating (c) and cooling (d) energy needs sensitivity with respect to the normalized sensitivity 

BESTEST ranges for TRNSYS and EnergyPlus 
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Figure 3.3 - Percentage deviations in the annual heating (a) and cooling (b) peak loads 

calculations with respect to the normalized BESTEST ranges and percentage deviations in the 

heating (c) and cooling (d) energy needs sensitivity with respect to the normalized sensitivity 

BESTEST ranges for TRNSYS and EnergyPlus 

 

3.2.2 Alignment in the BESTEST cases 

The effects of the assumptions adopted to align the input data and the simulation hypotheses 

have been evaluated by comparing the BESTEST configurations 600, 610, 620, 630, 640 and 

650, and 900, 910, 920, 930, 940, 950 and 960 in the BESTEST climatic reference conditions of 

Denver. The differences between the monthly energy needs or monthly hourly peak loads 

obtained with EnergyPlus and with TRNSYS have been plotted against the energy needs or 

peak loads calculated with TRNSYS, respectively in the left and in the right part of Figure 3.4. 

The positions of the new results respect to the BESTEST acceptability ranges have been 

reported in Figure 3.5 for the heating and cooling annual energy needs and in Figure 3.6 for the 

heating and cooling peak loads. 
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Figure 3.4 - Monthly differences for the heating (a) and cooling (b) energy needs (on the left) 

and monthly hourly peak loads (on the right) between EnergyPlus and TRNSYS with respect to 

TRNSYS energy needs and peak loads results for the BESTEST cases in the reference climatic 

conditions of Denver 

 

  

  

Figure 3.5 - Percentage deviations in the annual heating (a) and cooling (b) energy needs 

calculations with respect to the normalized BESTEST ranges and percentage deviations in the 

heating (c) and cooling (d) energy needs sensitivity with respect to the normalized sensitivity 

BESTEST ranges for TRNSYS and EnergyPlus after the alignment 
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Figure 3.6 - Percentage deviations in the annual heating (a) and cooling (b) peak loads 

calculations with respect to the normalized BESTEST ranges and percentage deviations in the 

heating (c) and cooling (d) energy needs sensitivity with respect to the normalized sensitivity 

BESTEST ranges for TRNSYS and EnergyPlus after the alignment 
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3.2.3 Simulation plan results 

The differences between the monthly energy needs obtained with EnergyPlus and with 

TRNSYS have been plotted against the energy needs calculated with TRNSYS (Figure 3.7 for 

Milan and Figure 3.8 for Messina).  

 

 

Figure 3.7 - Monthly differences for the heating and cooling energy needs for Milan between 

the two simulation codes with respect to TRNSYS results for BESTEST cases (BT) and for 

different glazing type (S = single; DH = Double with high SHGC; DL = Double with low 

SHGC; TH = Triple with high SHGC; TL = Triple with low SHGC) and for different ratios S/V 

 

 

 

Milan Heating Milan Cooling 

TRNSYS Heating Energy Needs GJ TRNSYS Cooling Energy Needs GJ 



Chapter 3 

 

 

89 

 

 

Figure 3.8 - Monthly differences for the heating and cooling energy needs for Messina between 

the two simulation codes with respect to TRNSYS results for BESTEST cases (BT) and for 

different glazing type (S = single; DH = Double with high SHGC; DL = Double with low 

SHGC; TH = Triple with high SHGC; TL = Triple with low SHGC) and for different ratios S/V 
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The mean differences and standard deviation between EnergyPlus and TRNSYS results for 

both locations have been reported in percentage and absolute terms in Table 3.4 and 3.5 

respectively. 

 

Table 3.4 - Mean percentage differences and corresponding standard deviations between 

Energy Plus and TRNSYS with respect to TRNSYS results for different kind of glazing. Results 

with energy needs under 3.6 MJ or peak loads under 50 W are not considered 

 Heating Needs [%] Cooling Needs [%] Heating Peaks [%] Cooling Peaks [%] 

Kind of 

glazing 

Mean Standard 

Deviation 

Mean Standard 

Deviation 

Mean Standard 

Deviation 

Mean Standard 

Deviation 

S -29.63 ±6.82 21.69 ±7.57 -22.10 ±5.04 2.81 ±0.33 

DH -9.11 ±1.56 0.73 ±0.12 -7.40 ±1.41 -0.83 ±0.33 

DL 6.24 ±1.55 -25.49 ±6.76 -1.20 ±0.73 -22.94 ±5.65 

TH -6.91 ±1.21 -6.85 ±1.26 -7.48 ±1.41 -6.85 ±1.88 

TL 9.20 ±2.91 -26.08 ±7.12 -0.48 ±0.10 -21.81 ±5.80 

Total -6.63 ±1.83 -6.00 ±1.86 -8.13 ±2.76 -9.25 ±2.75 

         

BESTEST -11.18 ±1.32 8.85 ±1.10 -4.23 ±0.49 7.24 ±1.70 

 

Table 3.5 - Mean differences and corresponding standard deviations between Energy Plus and 

TRNSYS with respect to TRNSYS results for different kind of glazing. Results with energy needs 

under 3.6 MJ or peak loads under 50 W are not considered 

 Heating Needs [MJ] Cooling Needs [MJ] Heating Peaks [W] Cooling Peaks [W] 

Kind of 

glazing 

Mean Standard 

Deviation 

Mean Standard 

Deviation 

Mean Standard 

Deviation 

Mean Standard 

Deviation 

S -461.56 ±106.21 178.41 ±62.26 -489.52 ±111.69 53.55 ±6.28 

DH -15.71 ±2.70 25.69 ±4.37 -46.93 ±8.96 -26.31 ±10.56 

DL 49.25 ±12.26 -162.50 ±43.13 -6.26 ±3.82 -358.18 ±88.22 

TH -9.25 ±1.62 -40.93 ±7.51 -54.57 ±10.32 -143.87 ±39.45 

TL 58.60 ±18.50 -161.60 ±44.11 -8.15 ±1.67 -321.89 ±85.57 

Total 5.29 ±1.46 -6.61 ±2.05 -133.26 ±45.22 -149.81 ±44.60 

         

BESTEST -18.47 ±2.18 13.54 ±1.68 -12.12 ±1.39 100.76 ±23.64 
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In the next Figure, the behaviour of the deviations between the heating and cooling peak 

loads by TRNSYS and EnergyPlus for the location of Milan is reported, distinguished by kind 

of glazings and S/V ratio. 

 

 

Figure 3.9 - Monthly differences for the heating  and cooling peak loads for Milan between the 

two simulation codes with respect to TRNSYS results for BESTEST cases (BT) and for different 

glazing type (S = single; DH = Double with high SHGC; DL = Double with low SHGC; TH = 

Triple with high SHGC; TL = Triple with low SHGC) and for different ratios S/V 
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In Figure 3.10, the behaviour of the deviations between the heating and cooling peak loads 

by TRNSYS and EnergyPlus for the location of Milan is reported, distinguished by kind of 

glazings and S/V ratio. 

 

 

Figure 3.10 - Monthly differences for the heating and cooling peak loads for Messina between 

the two simulation codes with respect to TRNSYS results for BESTEST cases (BT) and for 

different glazing type (S = single; DH = Double with high SHGC; DL = Double with low 

SHGC; TH = Triple with high SHGC; TL = Triple with low SHGC) and for different ratios S/V 
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Finally, the difference of the time of occurrence of the monthly hourly peak load has been 

considered. The frequency distribution of those differences has been reported in Figure 3.11. 

 

Figure 3.11 - Frequency distribution of the differences for the occurrence time of heating(on the 

top) and cooling (on the bottom) monthly peak loads between the two simulation codes for 

different glazing type (S = single; DH = Double with high SHGC; DL = Double with low 

SHGC; TH = Triple with high SHGC; TL = Triple with low SHGC) 
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3.2.3.1 Statistical analysis results 

 

The standardized coefficients of the regression models found after the statistical analysis 

have been reported in Figure 3.12 and Table 3.6 and, both for the heating and the cooling 

deviations. All the coefficients calculated in the regressions are characterized by a significant p-

value (lower than 1%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 - Standardized coefficients of the regression models for the energy 

need deviations (a) and the peak load deviations (b) 
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Table 3.6 - Regression models for the deviation of the heating and cooling monthly energy 

needs expressed and for heating and cooling monthly hourly peak loads 

Heating needs 

deviations 

Cooling needs 

deviations 

Heating peaks 

deviations 

Cooling peaks 

deviations 

R
2

adj=0.632 R
2
adj=0.568 R

2
adj=0.767 R

2
adj=0.555 

Uwin  -0.592 SHGC  0.589 Uwin -0.812 SHGC 0.743 

θair 0.195 Aenv -0.244 Awin -0.224 
ddH 2

ˆ  -0.341 

Aenv 0.214 envU  0.236 Aenv 0.197 Aenv -0.126 

Awin -0.219 θair -0.061 θair, min 0.060 Hhor -0.072 

SHGC -0.162 Uwin  0.122 iq  -0.034 envU  0.146 

Hwin  0.164 iq  0.061 Δtie,env -0.081 iq  0.083 

Henv -0.106 Yie,env -0.071 Yie,env 0.103 Awin 0.116 

κi∙Atot 0.035 Henv 0.071   Uwin -0.127 

envU  0.029 Hwin -0.117   Δtie,env -0.138 

iq  -0.016 Awin  0.106   θair -0.016 
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3.3 Discussion 
 

3.3.1 BESTEST cases 

As regards the heating energy needs, both simulation codes are within the ranges, with 

TRNSYS generally closer to the upper boundary than EnergyPlus. Considering the sensitivity, 

both TRNSYS and EnergyPlus are within the boundaries but they are characterized by different 

behaviours. For what concerns the cooling energy needs, both simulation codes are very close to 

the lower boundary and for the case 960 (multizone with a sunspace) TRNSYS 16.1 

underestimates of the 12% (-183 MJ respect to the limit of 1481 MJ). For the sensitivity, in 

EnergyPlus the case 650-600 (night ventilation for lightweight structures) underestimates and 

Δrange is -9% (but the predicted sensitivity is only -43 MJ under the lower limit of -5108 MJ). 

As regards the heating peak loads, the two simulation codes are always within the 

acceptability range and in good agreement with the exception of the case 640 (nighttime heating 

setback with lightweight structures). For the sensitivity evaluation, EnergyPlus is generally 

within the boundaries, with the exception of case 640-600 (nighttime heating setback respect to 

the base case, for lightweight structures), where there is an overestimation, with Δrange around 

126% (+270 W respect to the upper boundary of  2600 W) and case 910-900 (presence of 

overhangs on the South-oriented windows for massive cases), where there is an 

underestimation, with Δrange around -22% (but only -3.6 W respect to the lower boundary of 3 

W). TRNSYS is under the lower boundary in the cases 630-620 and 930-920 (presence of 

overhangs and fins for East/West oriented windows, both with lightweight and massive 

structures), 910-900 and 640-600 (sentivity to the nighttime heating setback for lightweight 

structures) of, respectively, -17% (-4 W respect to the lower boundary of  -21 W), -11% (-11 W 

respect to the lower boundary of  27 W), -42% (-6.7 W respect to the lower boundary of 3 W) 

and -24% (-252 W respect to the lower boundary of 1546 W). Since the heating peaks occur 

during the nighttime, the problems with the sensitivity to the presence of overhangs and fins 

suggest a correlation with the modelling of the thermal losses towards the sky vault. Referring 

to the cooling peak loads, both TRNSYS and EnergyPlus are in the acceptability ranges. For 

what concerns the sensitivity, only for the case 650-600 TRNSYS is under the lower limit of -

7.3% (-4 W respect to the lower boundary of -163 W). 

Generally, both TRNSYS and EnergyPlus are in a good agreement with the limits of the 

BESTEST qualification cases, even if TRNSYS understimates the cooling energy needs in the 

case with the sunspace. As regards the sensitivity cases, both codes are within the boundaries in 
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most of the cases, with some problems encountered in presence of discontinuous setpoint or 

with overhangs and fins for the heating peak loads. 

 

3.3.2 Alignment in the BESTEST cases 

Analysing Figure 3.4 it is possible to see that in all cases the deviations between EnergyPlus 

and TRNSYS are strongly reduced by adopting the alignement procedure described in the 

previous paragraphs. The average percentage differences (neglecting the points with less than 

3.6 MJ of energy needs and 50 W of peak loads) pass from -14.5% to -6.1% for heating needs, 

from 54.4% to 14.7% for cooling needs, from -4.2% to -1.1% for heating peak loads and from 

8.8% to 7.1% for cooling peak loads. Some points keep a high difference for the heating peak 

loads in the cases with night temperature setback (cases 640 and 940). Considering that heating 

peak loads always occur at the first hour of daytime setpoint, this is explained by the different 

approach of EnergyPlus that assumes the setpoint temperature as the average value to maintain 

during the calculation timestep and not the value to get at the end of the timestep, as in 

TRNSYS. As the cases examined in the extensive comparison do not consider night attenuation, 

this aspect is of marginal impact for the present work. 

For what concerns the annual results and the boundaries of the BESTEST represented in 

Figures 3.5 and 3.6, the results are within the acceptability ranges both for the energy needs and 

peak loads. Some problems are still present for the cases with overhangs and fins in the 

evaluation of the heating peak loads and for the cases with setback o discontinuous setpoints, 

both for the heating and cooling peak evaluation, in particular for the lightweight structures. 

With the exception of the cases with intermittent setpoints, the results for the sensitivity cases of 

the two simulation codes are closer than the ones in Figures 3.2 and 3.3. 
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3.3.3 Simulation plan results 

As it can be observed in Figures 3.7 and 3.8, the general trends are the same for both 

localities, even if for different values. In particular the maximum heating monthly energy need 

in Messina is only 7.2 GJ while in Milan it is 17.6 GJ, and the maximum cooling energy need in 

Milan is 6.6 GJ while in Messina it is 7.5 GJ. The aligned results for the BESTEST 

configurations are also presented in Figures 3.7 and 3.8, showing a reduced range of values and 

smaller differences when compared to the set of configurations proposed in the present work. 

The average percentage difference is around -11% for heating and 9% for cooling needs. 

As regards the heating energy needs, relevant differences are found between the cases with 

single glazing (S) and the others. As evidenced by the average percentages, the differences and 

the respective standard deviations reported in Tables 3.4 and 3.5 and by the trends reproduced in 

Figures 3.7 and 3.8, EnergyPlus tends to undervalue the needs (or TRNSYS tends to 

overestimate) for the single glazing, in many cases by more than 10%. The average percentage 

difference is around -30%. Increasing deviations are given for reducing ratio S/V. All double 

and triple glazings tend to behave almost the same way, even if the average percentage 

differences are negative (-9.1 % for double and -6.9% for triple) for high SHGC and positive for 

low SHGC (6.2% for double and 9.2% for triple). 

For all those glazings the deviations tend to stay well under ±10% for the larger heating 

needs. Low S/V ratios in those cases tend to lead to negative deviations for heating needs under 

6 GJ. Considering all the cases, EnergyPlus understimates the heating energy needs of the 6.6% 

with respect to TRNSYS. 

As regards the cooling energy needs, important differences (but closer to the ±10% range) 

are for the single glazing cases again, with EnergyPlus overestimating with respect to TRNSYS, 

especially for low S/V ratios. The average percentage difference (Table 3.4) is around 22%. As 

concerns the remaining kind of glazings, there is a good correspondence between the double and 

triple with high SHGC (in particular for DH, with an average percentage difference of 0.7%, 

while the TH has a relative deviation of -6.9%). Larger percentage differences are encountered 

for the double and triple glazings with low SHGC (DL and TL, with around -26%). With the 

higher SHGC, results are still sensitive to the ratio S/V, with EnergyPlus showing a slight 

underestimation for the highest S/V. With low SHGC glazings there is a uniform undervaluation 

by EnergyPlus with respect to TRNSYS, with deviations even under -10% for larger values of 

cooling needs. 
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The differences between the monthly hourly peak loads obtained with EnergyPlus and with 

TRNSYS have been plotted against the peak loads calculated with TRNSYS (Figure 3.9 for 

Milan and Figure 3.10 for Messina). Again, the general considerations are the same. In 

particular the maximum hourly heating peak load in Messina is only 7.6 kW while in Milan it is 

11 kW, and the maximum cooling peak load in Milan is 10.5 kW while in Messina it is 11.1 kW 

The aligned results for the BESTEST configurations are presented in Figures 3.9 and 3.10, 

as well. Both the range of values and the differences between the two codes are smaller than the 

ones for the set of configurations considered in the present work. The average percentage 

difference is around -4.2% for heating and 7.2% for cooling peak loads (Tables 3.4 and 3.5). 

Again, some more dispersed values are shown in heating for the BESTEST cases with night 

temperature setback. 

As regards the heating peak loads, the difference between the cases with single glazing (S) 

and the others persists. With single glazings EnergyPlus tends to estimate peak loads lower than 

the TRNSYS ones by more than 20%: in a large part of the cases, the average percentage 

difference is -22.1%. A modest increase of the deviation is visible for low S/V ratio. All double 

and triple glazings tend to behave almost the same way, with deviations generally well under 

±10%, especially for the larger heating peak loads and in average around -7.4% for high SHGC 

and -0.8% for low SHGC. No sensitivity to the S/V ratio is clearly visible. 

As regards the cooling peak loads, the single glazing cases again show larger differences, 

even if the average is very small (the average percentage deviation is 2.8%), with EnergyPlus 

overestimating with respect to TRNSYS for low S/V ratios. As concerns the remaining kind of 

glazings, there is a substantial correspondence between TRNSYS and EnergyPlus with the 

double and triple glazings with high SHGC (DH and TH, with average percentage differences of 

-0.8% and -6.8%). Double and triple with low SHGC (DL and TL) present the same behaviour 

and there is a diffuse undervaluation by EnergyPlus with respect to the results of TRNSYS, with 

deviations well under -10%, and in average around -22%. With the higher SHGC, a slight 

sensitivity to the S/V ratio persists. EnergyPlus shows a slight overestimation for the lower S/V 

but the deviations are generally small and balanced around zero. 

The peculiar behaviour, shown in particular for single glazings, can be explained by the 

different emissivity factor assumed for long wave radiation by the two codes for transparent 

surfaces. 

In winter, when considering high transmittance glazings, the effect of the temperature 

differences between the internal window surface and the other internal surfaces is influenced by 
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the lower emissivity assumed by EnergyPlus, which provides lower internal long wave radiation 

exchanges. This leads to lower heat losses and energy needs than TRNSYS, in particular for the 

smallest S/V ratio. 

In summer, the higher thermal transmittance glazings present lower internal temperatures 

than the other surfaces for a large part of time. Again, reduced long wave radiation reduces 

losses, giving higher energy needs. On the opposite, the surface temperature of lower thermal 

transmittance glazings often rises above that of the other opaque components. In that case the 

behaviour is controlled by a counterbalancing effect of lower long wave radiation exchange 

with the remaining part of the envelope and high or low solar gains entering into the building, 

depending on the SHGC. For a detailed analysis of the prediction of the surface temperature for 

the glazings and the adiabatic envelope, by EnergyPlus and TRNSYS, see chapter 4b. 

Finally, for what regards the time of occurence of the peak loads, analysed in Figure 3.11, 

TRNSYS is generally late in both heating and cooling cases, but the delay is under one hour in 

70% of cases (almost 80% for cooling peak loads) and under three hours in other 20 %. The 

single glazing shows a modest number of cases with the heating peak loads calculated by 

EnergyPlus delaying by more than 1 hour and in some cases by more than 1 week. 

 

3.3.3.1 Statistical Analysis 

The developed statistical models have been described in Figure 3.12 and in Table 3.6. Since 

there is not a predictive aim, getting the largest value of the determination coefficient R
2

adj was 

not the main goal. The weight of each variable can be related to the respective standardized 

coefficient, defined in Annex A as the product of the non standardized coefficient and the ratio 

between the standard deviations of the independent variable and that of the dependent one: the 

larger the standardized coefficient, the larger is the relative impact of both the variability and the 

correlation of the independent variable on the dependent one. 

As regards the heating needs deviations, the most influent factors are the windows thermal 

transmittance, whose standardized coefficient is negative (probably explaining the behaviour of 

the single glazing shown in Figures 3.7 and 3.8), the opaque envelope area (which is directly 

related to the S/V ratio) and the transparent envelope one. Other significant parameters are 

related to the environmental conditions (the incident radiation and the external temperature) and 

the SHGC. 

In the cooling needs deviations model the main variables are the SHGC, the opaque 

envelope area, its thermal transmittance and that of the windows. In general, the windows 
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properties and secondly the opaque areas (and so the S/V ratio) are significant for describing the 

deviations variability while the environmental conditions appear to be not so relevant. This 

confirms what was already seen in Figures 3.7 and 3.8. 

Referring to the peak loads analysis, in the heating context the main factor is again the 

windows thermal transmittance - the higher, the lower are the deviations (probably explaining 

the single glazings behaviour in Figures 3.9 and 3.10), followed by the windows and the opaque 

envelope area. The windows area has a negative correlation, similarly to the windows thermal 

transmittance while the opaque envelope area have a positive correlation (in agreement with the 

effect of the S/V in Figures 3.9 and 3.10).  

For the cooling peak loads, the main factor is the SHGC, with a strong positive correlation, 

followed by the 2-days rolling cumulated solar radiation incident on the windows, the opaque 

envelope thermal transmittance and area, the windows thermal transmittance and area. The peak 

loads regressions confirm what observed in Figures 3.9 and 3.10: the main variables affecting 

the deviations are those related to the windows behaviour, followed by the S/V ratio. 

In summary the statistical analysis confirms the relations observed in the description of the 

results, adding further details, and in particular the role of some specific quantities such as: 

 the window thermal transmittance and the window and opaque envelope area, for heating 

and cooling energy needs and peak loads differences 

 the SHGC and thermal transmittance of the opaque envelope and of the windows, for 

cooling needs and peak loads differences. 

This strengthens the hypothesis that the differences are mainly depending both on the internal 

radiation model and on the unsteady state conduction model through the opaque envelope. 
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3.4 Main findings 

In this chapter the problem of the validation by comparison between BES tools has been 

investigated. Two well known simulation codes, TRNSYS 16.1 and EnergyPlus 7, have been 

tested with the BESTEST cases and compared on a wider sample of building configurations. 

The monthly heating and cooling energy needs and hourly peak loads were considered, 

together with the hour of occurrence of the peaks over a wide range of configurations of a 

building module composed by a single-storey thermal zone with 100 m
2
 floor area with different 

opaque and transparent envelope composition, exposition and windows orientation. The 

alignmement done for the boundary conditions and the simulation hypotheses, which is not 

required by the BESTEST approach, permitted considering the relative performance of the two 

codes only related to the specific approaches adopted for the solution of the building thermal 

balance. 

The most important findings emerging from the comparison are:  

 the distribution of the difference related to both energy needs and peak load is larger than 

that presented by the BESTEST configurations. Considering that the results are obtained 

after the alignment phase, this allowed to investigate the influencing factors pertaining only 

or mainly to the building thermal balance solution approaches. 

 the kind of glazing and the S/V ratio are among the most important variables impacting both 

on energy needs and peak loads, and in particular: 

o with the single glazing the heating and the cooling needs and peak loads differences are 

emphasized, while with low SHGC particularly the cooling needs and peak loads 

differences are increased 

o with the double and triple glazings the same behaviour is observed both for heating 

energy needs and peak loads 

o the differences increases in almost all the situations as S/V decreases. 

 the inferential statistical analysis confirms the descriptive analysis results and strenghten the 

hypothesis that the deviations are mainly related to the internal radiation model and to the 

unsteady state conduction model through the opaque envelope. 

In general, the suggested approach permitted to improve the awareness on the relative 

uncertainty and inaccuracy arising from the assumptions and from the solution approaches 

adopted by each simulation program. This can be useful in particular when tuning simplified 

methods, or when using simulation codes for particular purposes such as energy diagnosis of 

new and existing buildings and when performing calibration of the simulation. 
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This method can be applied to other codes and also to different releases and improvement of 

a specific simulation code. The use or the comparison of different simulation codes to each 

other or with experimental data is confirmed to require a deep knowlegde of the physics of 

involved phenomena and a careful work of selection and treatment of the input data in order to 

enhance the accuracy of the results. 
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Chapter 4 

This chapter discusses the perfomance of BES tools to describe the thermal behaviour of the 

building envelope components under dynamic conditions. It is divided into two parts: the first 

one is related to the opaque dispersing envelope while the second one to the glazings 

components. 

In the first part of the chapter the dynamic behaviour of the opaque components is 

discussed. In particular, the focus is on the numerical methods which are generally implemented 

in BES tools, such as the Transfer Fuction Methods (TFM), like the Direct Root-Finding 

method of TRNSYS and the State-Space method of EnergyPlus, and Finite Differences 

Methods which are used to evaluate the dynamic heat transfer through the opaque envelope. 

These numerical approaches have been assessed considering the dynamic parameters defined in 

the technical Standard EN ISO 13786:2007, the periodic thermal transmittance, the decrement 

factor and the time shift, as index variables for the comparison. Since these dynamic parameters 

are obtained from the analytical solution under sinusoidal solicitations, the Fast Fourier 

Technique analysis and the superimposition of effects have been used  in order to perform the 

assessment under more realistic conditions. Different locations, orientations and walls have 

been studied. 

Moreover, in the second part of chapter 4, the internal surface temperature profiles for 

glazings, elaborated by EnergyPlus and TRNSYS, have been compared, considering also the 

effect of adiabatic surfaces. The deviations have been calculated and distinguished in different 

frequency classes. 
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Part a: Characterization of the building envelope behaviour by BES  

4a.1 Methods 

In order to assess different numerical approaches, the dynamic parameters described in the 

EN ISO 13786:2007 have been used as synthetic indexes to characterize the behaviours of a 

sample of walls, subjected to different periodic external solicitations. 

The EN ISO 13786:2007 analytical procedure has been implemented by considering simple 

sinusoidal solicitations. Therefore, the external periodic forcing equivalent temperatures have 

been decomposed by means of Fast Fourier Transform (FFT) analysis and then the responses 

have been superimposed, as suggested by other authors (Giaconia and Orioli, 2000; Ciulla et al., 

2010), who applied this technique to the analysis and validation of the TFM. The FFT analysis 

results have been taken as reference for the study of the numerical methods. The Transfer 

Function Method (TFM) – specfically the DRF (TRNSYS) and the SS (EnergyPlus) approaches, 

and the Finite Difference Method (FDM) have been assessed. 

 

4a.1.1 EN ISO 13786:2007 method 

The EN ISO 13786:2007 characterizes the transient response of a building component by 

means of three parameters: the periodic transmittance, the decrement factor and the phase 

displacement of the heat flux. The forcing term on the building component is a sinusoidal 

function of the temperature, applied either on the internal or on the external side of the 

component, and, consequently, the originated heat fluxes are also sinusoidal. The heat flux is 1-

dimensional and so thermal bridges and non-homogeneous layers are not considered in the 

calculations. 

The Standard defines the periodic thermal admittance Ymm and the periodic transmittance 

Ymn as the ratio between the complex amplitude of the heat flux density through the wall surface 

adjacent to the m-zone and the complex amplitude of the temperature of the same zone m or the 

one of the zone n respectively, when the other side temperature is constant. 

m

m
q

Ymm
̂

ˆ
           (4a.1) 
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n

m
q

Ymn
̂

ˆ
           (4a.2) 

Thanks to Eq. (4a.1) and (4a.2) it is possible to compute the decrement factor f as: 

U

mn
Y

f            (4a.3) 

where U is the thermal transmittance of the wall. 

The Standard defines also a heat transfer matrix Z of each layer, that correlates the complex 

amplitudes of the temperature and heat flux on one side of the component, for example the 

external side e, with the same physical quantities on the other side, for example the internal side 

i: 
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where: 

        sinsinhcoscosh2211  jZZ       (4a.5) 

                  



cossinhsincoshsincoshcossinh

2
12  jZ  (4a.6) 

                  



cossinhsincoshsincoshcossinh21  jZ  (4a.7) 

and δ is the periodic penetration depth and ξ the ratio between the thickness of the layer and 

the penetration depth: 

c







          (4a.8) 




s
           (4a.9) 

where Τ is the period of the variations. 

Since a building component usually consists of several layers, the whole transfer matrix is 

computed as the product of the single matrixes of each layer. By means of this matrix it is 

possible to calculate the periodic thermal transmittance Yie, the internal and external periodic 

admittances Yii and Yee, the time shift Δtie and the internal and external areal heat capacities κi 

and κe as: 
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4a.1.2 The Fourier series analysis and the EN ISO 13786:2007 method 

In order to simulate the response of a component subjected to an external real forcing 

condition, the temperature variation along a characteristic day has been calculated as sol-air 

temperature θsol-air and decomposed in different harmonics. The EN ISO 13786:2007 procedure 

has been applied to each harmonic to evaluate the respective periodic thermal transmittance and 

the system global response has been estimated according to the superimposition principle. 

To determine the forcing input, for each considered location and orientation, the sol-air 

temperature has been estimated from the external periodic conditions (i.e., the solar irradiance, 

the dry bulb temperature and the fictive sky temperature) elaborated by EnergyPlus for a single 

component. 

As seen in chapter 3, this BES software provides three linearized coefficients for the 

external infrared exchanges: hr,gnd, hr,air and hr,sky, respectively for ground, air and sky. 

Considering the ground temperature equal to the outdoor air temperature (as both in EnergyPlus 

and in TRNSYS approaches), the whole thermal exchange from the external surface can be 

expressed as: 

     skyairskyrairseskyrecairrgndrerc hhhhhq   ,,,,,,    (4a.14) 

defining: 

 skyrecairrgndrse hhhhh ,,,,         (4a.15) 

and adding the solar radiation absorbed, the total exchange from the external surface is: 

     Ihhq skyairskyrairseseesolrc  ,,      (4a.16) 

In accordance with the definition of the sol-air temperature θsol-air: 
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 airsolseseesolrc hq   ,        (4a.17) 

therefore: 

 
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




,
      (4a.18) 

The hr,sky values are functions of the surface temperatures and, generally, of the surface 

balances and of the wall properties. Considering periodic regimes and holding constant the solar 

absorption coefficient and the convective coefficient, they show small deviations according to 

the different wall typologies considered in this research. Nevertheless, they can be considered 

negligible: the maximum deviation on the θsol-air is less than 0.07 °C (i.e., the 0.175% of the 

computed value) while the mean deviation is less than 0.02 °C. Thus, it is possible to assume a 

unique θsol-air profile for each orientation. 

To decompose the forcing signal, the Fast Fourier Transform (FFT) algorithm (Press et al., 

2007) has been integrated in the developed model, computing the harmonics of the original 

solicitation. Truncating the series to the ninth harmonic the sol-air temperature approximation is 

given by: 

 
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The approximation given by the FFT procedure by means of nine harmonics allows to 

obtain mean deviations that are less than 1% with respect to the original solicitation of the sol-

air temperature. 

An example of the results obtained by performing the FFT analysis - and summing the 

results for the first nine harmonics - is shown in Figure 4a.1 for a West oriented vertical wall 

located in Rome. 
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Figure 4a.1 - Fast Fourier Transform (FFT) carried out on the sol-air temperature derived 

from the measured data of Rome (West oriented vertical wall) 

 

The internal flux was then calculated as: 

     tqqtqtq FFTiiFFTicalci ,,,
~        (4a.20) 

with: 

 airsolii Uq           (4a.21) 
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where θi is the internal air temperature and Yie,k is the periodic thermal transmittance 

calculated according to the EN ISO 13786:2007 for the k
th
 harmonic. For k=1, Yie,1 is the 

Standard periodic thermal transmittance Yie. 

The flux amplitude is then given by: 

   
min,max,,

~

2

1~

2

1
ˆ

FFTiFFTiFFTi qqq         (4a.23) 

The response computed by means of the FFT procedure has been assumed as the reference 

result (Giaconia and Orioli, 2000; Ciulla et al., 2010) for the comparison of the detailed 

simulation (FDM and TFM approaches). 

Following the approach by Corrado and Paduos (2009), the modulus of the calculated 

periodic thermal transmittance Yie,calc has been determined as in Eq. (4a.24) as the ratio between 

the amplitude of the calculated inlet thermal flux and the amplitude of the forcing sol-air 

temperature. 
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Eq. (4a.24) has been used also for the calculation of the periodic thermal transmittance for 

the numerical methods described in the next paragraphs. 
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4a.1.3 Transfer functions approach 

The TF Methods are based on a time series of temperature and heat flux terms, weighted 

with different coefficients and used to calculate the temperature and the heat flux on the internal 

and external surfaces or at the interfaces of two adjacent layers. 

There are different ways to define the solution series, such as a time-domain based or a Z 

transform-domain based. In particular, the methods implemented in the examined simulation 

codes belong to the second kind. The Direct Root Finding method (DRF) in TRNSYS has been 

developed by Mitalas and Arseneault (1971) while the State-Space method (SS) in EnergyPlus 

by Ceylan and Myers (1980), Seem (1987) and Ouyang and Haghighat (1991). The main 

differences between the DRF and the SS methods are related to the number of terms used and 

the methodology to elaborate their coefficients. 

The same external forcing conditions have bene used in both software. In particular for 

calculating the infrared extra flow, as observed in chapter 3, TRNSYS and EnergyPlus have two 

different methods and so, in order to align the boundary conditions, when a surface has a 

vertical tilt, the TRNSYS view factor of the sky has been changed and set equal to 0.35, instead 

of 0.5 and EnergyPlus fictive sky temperature has been used. 

The selected timestep for the simulations was 15 minutes. 

 

4a.1.4 The Finite Difference Method 

A specific simulation tool has been developed for the purposes of the present work, 

implementing a fully implicit finite difference scheme, in order to solve the heat equation in 

transient regime for homogeneous media, without heat source and using constant thermo 

physical properties. The advantage of using such implicit method relies in the fact that it is 

always stable, indipendently of the values of the timestep and of the Fourier number.  

The wall geometry (i.e., multi-layer wall) has been discretized in a 1-dimensional domain 

using an integration step of 1 cm, while the timestep has been assumed as 15 minutes, 

coherently with the one of the TFM. Discretization refinement and time step shortening were 

found to have a negligible effect on the solution. In order to obtain a reliable comparison 

between different approaches, the same sol-air temperature boundary conditions used for the 

FFT simulations have been applied here. 
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4a.1.5 Tested walls and boundary conditions 

The thermal dynamic transfer properties have been calculated for 15 types of wall, whose 

layers thicknesses and materials have been reported in Table 4a.1. The cases A and B are 

composed by two layers and, respectively, externally and internally insulated. The cases C and 

D have 3 layers with the insulating one between two massive layers: the thicker layer is inside 

in the group C and outside in the group D. The cases M, finally, consist in single-layer walls. 

The considered materials are a clay block with thermal conductivity 0.25 W m
-1

 K
-1

, density 850 

kg m
-3

 and specific heat 840 J kg
-1

 K
-1

 and an insulating layer with thermal conductivity 0.04 W 

m
-1

 K
-1

, density 40 kg m
-3

 and specific heat 1470 J kg
-1

 K
-1

. 

The thermal convection coefficient is 17.78 W m
-2

 K
-1

 for the external side and 3.07 W m
-2

 

K
-1

 for the internal one. The wall absorption coefficient is 0.6 and the emissivity is 0.9. In order 

to evaluate the behaviour of the wall independently of the rest of the building envelope, the 

internal radiative exchange has been imposed equal to zero. Thus, a single constant convective 

surface heat transfer coefficient has been considered in agreement with the Standard EN ISO 

13786:2007, assuming internal interactions modeled by means of an equivalent convective node 

at a fixed temperature of 26 °C. 

Table 4a.1 – Analysed walls 

 Component composition (internal to external side) 
Thermal transmittance 

[W m
-2

 K
-1

] 

A5 20 cm clay block; 5 cm insulation 0.413 

A10 20 cm clay block; 10 cm insulation 0.273 

A15 20 cm clay block; 15 cm insulation 0.203 

B5 5 cm insulation; 20 cm clay block 0.413 

B10 10 cm insulation; 20 cm clay block 0.273 

B15 15 cm insulation; 20 cm clay block 0.203 

C5 20 cm clay block; 5 cm insulation; 10 cm clay block 0.355 

C10 20 cm clay block; 10 cm insulation; 10 cm clay block 0.246 

C15 20 cm clay block; 15 cm insulation; 10 cm clay block 0.188 

D5 10 cm clay block; 5 cm insulation; 20 cm clay block 0.355 

D10 10 cm clay block; 10 cm insulation; 20 cm clay block 0.246 

D15 10 cm clay block; 15 cm insulation; 20 cm clay block 0.188 

M10 10 cm clay block 1.299 

M20 20 cm clay block 0.855 

M30 30 cm clay block 0.637 
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Three different summer climatic conditions relative to the month of July have been 

considered, in particular relevant to the North (Milan), to the centre (Rome) and to the South 

(Palermo) of Italy. Five orientations (North, East, South, West and horizontal) have been 

assumed in order to assess different solar radiation expositions. 

A wall side has been exposed to the typical internal summer condition, with the air 

temperature fixed to 26 °C, and the other one to a daily profile averaging the external conditions 

of the month of July. The external solicitation has been elaborated calculating the average 

profiles for the dry bulb temperature, the solar direct normal radiation, the solar diffuse 

horizontal radiation and the global horizontal infrared radiation. Any reflected solar component 

has been neglected, setting the ground reflection coefficient to zero. The mean hourly profiles of 

dry bulb temperature and global horizontal irradiance in the month of July for the three 

localities have been reported in Figure 4a.2. 

A weather file for EnergyPlus has been created with these profiles and this BES tool has 

been used for elaborating the fictious sky temperature, the radiation and the incidence solar 

beam angle on the different orientations with an hourly discretization. The elaborated data have 

been read as input directly by TRNSYS, while coherent sol-air profiles were calculated to be 

used with the other approaches. 

 

 

Figure 4a.2 – Average hourly profiles of the dry bulb temperature and the global horizontal 

solar irradiance of the chosen climates for the month of July 
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To determine the input solicitation for FFT and the FDM analysis, for each location and all 

the orientations considered,  sol-air temperature with a discretization of 15 minutes has been 

estimated from the external solicitations elaborated by EnergyPlus for a single component. 
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4a.2 Results 

The dynamic parameters calculated according to the numerical approaches have been 

compared to the results of the FFT and EN ISO 13786:2007 method. For the complex amplitude 

of the calculated thermal flux on the internal surface, the ones determined by means of the 

numerical methods have been employed to calculate the modulus of the periodic thermal 

transmittance in accordance with Eq. (4a.24). The time shift has been calculated simply 

subtracting the occurrence time of the forcing sol-air peak to the occurrence time of the internal 

flux peak. Time shifts have been reduced to the range of −24 to 0 h, in order to simplify the 

comparison between retarding (less than 12 h of absolute shift) and anticipating (more than 12 h 

of absolute shift) outputs. 

In Tables 4a.2, 4a.3, 4a.4, 4a.5, 4a.6 and 4a.7, the reference dynamic parameters calculated 

with the FFT approach have been reported for the considered walls in the location of Rome, as 

well as those elaborated with the numerical methods (respectively the DRF ones in Tables 4a.2 

and 4a.3, the SS ones in Tables 4a.4 and 4a.5 and finally the FDM ones in Tables 4a.6 and 4a.7). 

In Figures 4a.3 and 4a.4, the periodic thermal transmittances and the time shifts for the 

differently oriented walls in Rome have been represented for the considered approaches.  

Only the results obtained for Rome have been reported here: the results for the three 

locations are very similar but Rome presents slightly larger deviations and for this reason it has 

been considered in this Paragraph. For Palermo and Milan, see Annex C. 

 

 



Characterization of the building envelope behaviour by BES 

 

 

120 

 

Table 4a.2 - Periodic thermal transmittance according to the conventional EN ISO 13786:2007 

one, the FFT and the DRF approaches, with percentage differences between DRF and FFT 

values for the different orientations in the case of Rome. All values in [W m
-2

 K
-1

] 

 

Table 4a.3 - Time shift (in the range -24 to 0 hours) according to the conventional EN ISO 

13786:2007 one, the FFT and the DRF approaches, with absolute differences between DRF and 

FFT values for the different orientations in the case of Rome. All values in [h] 

 

 

 

 
EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT DRF Δ% FFT DRF Δ% FFT DRF Δ% FFT DRF Δ% FFT DRF Δ% 

A5 0.084 0.085 0.083 -1.77% 0.060 0.058 -3.73% 0.066 0.065 -1.81% 0.076 0.075 -2.17% 0.085 0.082 -2.81% 

A10 0.045 0.045 0.045 -1.07% 0.032 0.030 -4.93% 0.035 0.035 -0.96% 0.041 0.040 -1.19% 0.045 0.044 -2.29% 

A15 0.030 0.030 0.031 4.59% 0.021 0.020 -5.53% 0.023 0.024 3.56% 0.027 0.027 0.71% 0.030 0.030 0.24% 

B5 0.129 0.131 0.132 0.15% 0.091 0.088 -2.89% 0.104 0.104 -0.52% 0.118 0.117 -0.25% 0.130 0.130 -0.73% 

B10 0.074 0.075 0.076 1.72% 0.052 0.050 -3.47% 0.059 0.060 1.46% 0.067 0.068 0.62% 0.075 0.075 0.59% 

B15 0.050 0.050 0.053 5.00% 0.035 0.033 -4.41% 0.039 0.041 4.85% 0.045 0.047 4.61% 0.050 0.052 3.53% 

C5 0.049 0.049 0.050 3.66% 0.034 0.034 -0.52% 0.039 0.040 3.20% 0.044 0.045 3.18% 0.048 0.050 3.82% 

C10 0.028 0.027 0.029 7.07% 0.019 0.019 0.15% 0.022 0.023 6.05% 0.025 0.026 6.11% 0.027 0.029 7.81% 

C15 0.019 0.018 0.020 11.06% 0.013 0.013 0.26% 0.015 0.016 10.25% 0.016 0.018 10.29% 0.018 0.020 12.41% 

D5 0.050 0.049 0.051 3.53% 0.034 0.034 -1.28% 0.039 0.040 3.24% 0.045 0.046 2.69% 0.049 0.051 4.03% 

D10 0.028 0.027 0.029 6.57% 0.019 0.019 -0.75% 0.022 0.023 6.29% 0.025 0.026 5.79% 0.027 0.029 7.31% 

D15 0.018 0.018 0.020 11.45% 0.013 0.012 -1.12% 0.015 0.016 10.15% 0.016 0.018 10.18% 0.018 0.020 12.59% 

M10 1.126 1.140 1.130 -0.83% 0.965 0.947 -1.81% 1.038 1.007 -2.99% 1.080 1.058 -2.06% 1.126 1.107 -1.68% 

M20 0.419 0.429 0.421 -1.98% 0.296 0.279 -5.47% 0.351 0.338 -3.59% 0.384 0.375 -2.32% 0.425 0.412 -2.91% 

M30 0.150 0.150 0.149 -0.77% 0.104 0.119 13.90% 0.117 0.117 -0.51% 0.135 0.132 -2.48% 0.149 0.145 -2.96% 

 

 

EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT DRF Δ FFT DRF Δ FFT DRF Δ FFT DRF Δ FFT DRF Δ 

A5 -9.1 -6.0 -5.0 1.0 -11.0 -10.0 1.0 -7.0 -7.0 - -9.0 -8.0 1.0 -9.0 -8.0 1.0 

A10 -9.9 -6.0 -5.0 1.0 -12.0 -11.0 1.0 -8.0 -7.0 1.0 -10.0 -9.0 1.0 -9.0 -8.0 1.0 

A15 -10.9 -8.0 -7.0 1.0 -13.0 -11.0 2.0 -9.0 -9.0 - -11.0 -10.0 1.0 -10.0 -9.0 1.0 

B5 -8.1 -5.0 -4.0 1.0 -9.0 -8.0 1.0 -6.0 -5.0 1.0 -8.0 -7.0 1.0 -8.0 -7.0 1.0 

B10 -8.9 -5.0 -4.0 1.0 -10.0 -9.0 1.0 -7.0 -6.0 1.0 -9.0 -8.0 1.0 -8.0 -7.0 1.0 

B15 -9.9 -6.0 -5.0 1.0 -12.0 -10.0 2.0 -8.0 -7.0 1.0 -10.0 -8.0 2.0 -9.0 -8.0 1.0 

C5 -12.9 -10.0 -8.0 2.0 -15.0 -15.0 - -12.0 -11.0 1.0 -13.0 -12.0 1.0 -13.0 -12.0 1.0 

C10 -13.9 -11.0 -9.0 2.0 -16.0 -15.0 1.0 -13.0 -11.0 2.0 -14.0 -13.0 1.0 -14.0 -12.0 2.0 

C15 -14.9 -12.0 -10.0 2.0 -17.0 -15.0 2.0 -14.0 -12.0 2.0 -16.0 -14.0 2.0 -15.0 -13.0 2.0 

D5 -13.3 -10.0 -9.0 1.0 -15.0 -15.0 - -12.0 -11.0 1.0 -14.0 -13.0 1.0 -13.0 -12.0 1.0 

D10 -14.3 -11.0 -9.0 2.0 -17.0 -15.0 2.0 -13.0 -12.0 1.0 -15.0 -13.0 2.0 -14.0 -13.0 1.0 

D15 -15.3 -12.0 -10.0 2.0 -18.0 -16.0 2.0 -14.0 -12.0 2.0 -16.0 -14.0 2.0 -15.0 -13.0 2.0 

M10 -2.8 -1.0 0.0 1.0 -2.0 -1.0 1.0 -2.0 -1.0 1.0 -2.0 -2.0 - -3.0 -2.0 1.0 

M20 -6.8 -4.0 -3.0 1.0 -6.0 -6.0 - -5.0 -4.0 1.0 -6.0 -6.0 - -6.0 -6.0 - 

M30 -10.7 -7.0 -7.0 - -12.0 -12.0 - -9.0 -9.0 - -11.0 -10.0 1.0 -10.0 -9.0 1.0 
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Table 4a.4 - Periodic thermal transmittance according to the conventional EN ISO 13786:2007 

one, the FFT and the SS approaches, with percentage differences between SS and FFT values 

for the different orientations in the case of Rome. All values in [W m
-2

 K
-1

] 

 

Table 4a.5 - Time shift (in the range -24 to 0 hours) according to the conventional EN ISO 

13786:2007 one, the FFT and the SS approaches, with absolute differences between SS and 

FFT values for the different orientations in the case of Rome. All values in [h] 

 

 

 
EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT SS Δ% FFT SS Δ% FFT SS Δ% FFT SS Δ% FFT SS Δ% 

A5 0.084 0.085 0.081 -4.32% 0.060 0.058 -2.52% 0.066 0.064 -4.00% 0.076 0.076 -1.01% 0.085 0.080 -5.93% 

A10 0.045 0.045 0.045 -1.48% 0.032 0.031 -1.80% 0.035 0.035 -1.36% 0.041 0.040 -2.11% 0.045 0.042 -6.61% 

A15 0.030 0.030 0.029 -1.79% 0.021 0.021 1.29% 0.023 0.023 -0.62% 0.027 0.027 1.05% 0.030 0.028 -3.94% 

B5 0.129 0.131 0.127 -3.61% 0.091 0.090 -0.78% 0.104 0.100 -3.93% 0.118 0.117 -0.26% 0.130 0.125 -4.51% 

B10 0.074 0.075 0.072 -4.64% 0.052 0.052 0.44% 0.059 0.057 -4.65% 0.067 0.067 -0.71% 0.075 0.071 -5.07% 

B15 0.050 0.050 0.049 -3.35% 0.035 0.036 3.74% 0.039 0.038 -3.03% 0.045 0.044 -1.76% 0.050 0.047 -6.21% 

C5 0.049 0.049 0.048 -1.11% 0.034 0.034 0.86% 0.039 0.038 -0.51% 0.044 0.045 2.43% 0.048 0.048 -0.36% 

C10 0.028 0.027 0.027 -0.69% 0.019 0.020 5.02% 0.022 0.022 0.12% 0.025 0.026 3.18% 0.027 0.028 0.52% 

C15 0.019 0.018 0.018 -0.29% 0.013 0.014 10.12% 0.015 0.015 0.27% 0.016 0.017 3.27% 0.018 0.018 1.37% 

D5 0.050 0.049 0.048 -1.50% 0.034 0.035 1.96% 0.039 0.039 -1.28% 0.045 0.045 1.26% 0.049 0.049 -0.86% 

D10 0.028 0.027 0.027 -1.27% 0.019 0.020 5.93% 0.022 0.022 -0.56% 0.025 0.025 1.79% 0.027 0.027 0.53% 

D15 0.018 0.018 0.018 -0.77% 0.013 0.014 9.75% 0.015 0.014 -0.38% 0.016 0.017 2.09% 0.018 0.018 1.67% 

M10 1.126 1.140 1.120 -1.75% 0.965 0.921 -4.56% 1.038 1.022 -1.54% 1.080 1.093 1.17% 1.126 1.104 -1.96% 

M20 0.419 0.429 0.401 -6.58% 0.296 0.288 -2.63% 0.351 0.327 -6.83% 0.384 0.372 -3.02% 0.425 0.395 -6.98% 

M30 0.150 0.150 0.143 -4.61% 0.104 0.101 -2.85% 0.117 0.113 -3.86% 0.135 0.131 -2.83% 0.149 0.140 -6.31% 

 

 
EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT SS Δ FFT SS Δ FFT SS Δ FFT SS Δ FFT SS Δ 

A5 -9.1 -6.0 -7.0 -1.0 -11.0 -11.0 - -7.0 -7.0 - -9.0 -9.0 - -9.0 -9.0 - 

A10 -9.9 -6.0 -7.0 -1.0 -12.0 -12.0 - -8.0 -9.0 -1.0 -10.0 -10.0 - -9.0 -9.0 - 

A15 -10.9 -8.0 -7.0 1.0 -13.0 -15.0 -2.0 -9.0 -9.0 - -11.0 -12.0 -1.0 -10.0 -12.0 -2.0 

B5 -8.1 -5.0 -5.0 - -9.0 -10.0 -1.0 -6.0 -7.0 -1.0 -8.0 -8.0 - -8.0 -8.0 - 

B10 -8.9 -5.0 -6.0 -1.0 -10.0 -11.0 -1.0 -7.0 -8.0 -1.0 -9.0 -9.0 - -8.0 -9.0 -1.0 

B15 -9.9 -6.0 -7.0 -1.0 -12.0 -12.0 - -8.0 -9.0 -1.0 -10.0 -10.0 - -9.0 -10.0 -1.0 

C5 -12.9 -10.0 -9.0 1.0 -15.0 -15.0 - -12.0 -12.0 - -13.0 -13.0 - -13.0 -12.0 1.0 

C10 -13.9 -11.0 -10.0 1.0 -16.0 -16.0 - -13.0 -13.0 - -14.0 -14.0 - -14.0 -13.0 1.0 

C15 -14.9 -12.0 -11.0 1.0 -17.0 -17.0 - -14.0 -14.0 - -16.0 -15.0 1.0 -15.0 -15.0 - 

D5 -13.3 -10.0 -10.0 - -15.0 -15.0 - -12.0 -12.0 - -14.0 -14.0 - -13.0 -13.0 - 

D10 -14.3 -11.0 -11.0 - -17.0 -16.0 1.0 -13.0 -13.0 - -15.0 -15.0 - -14.0 -14.0 - 

D15 -15.3 -12.0 -12.0 - -18.0 -17.0 1.0 -14.0 -14.0 - -16.0 -16.0 - -15.0 -15.0 - 

M10 -2.8 -1.0 -1.0 - -2.0 -2.0 - -2.0 -2.0 - -2.0 -3.0 -1.0 -3.0 -3.0 - 

M20 -6.8 -4.0 -3.0 1.0 -6.0 -7.0 -1.0 -5.0 -5.0 - -6.0 -6.0 - -6.0 -6.0 - 

M30 -10.7 -7.0 -7.0 - -12.0 -14.0 -2.0 -9.0 -9.0 - -11.0 -12.0 -1.0 -10.0 -12.0 -2.0 
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Table 4a.6 - Periodic thermal transmittance according to the conventional EN ISO 13786:2007 

one, the FFT and the FDM approaches, with percentage differences between FDM and FFT 

values for the different orientations in the case of Rome. All values in [W m
-2

 K
-1

] 

 

Table 4a.7 - Time shift (in the range -24 to 0 hours) according to the conventional EN ISO 

13786:2007 one, the FFT and the FDM approaches, with absolute differences between FDM 

and FFT values for the different orientations in the case of Rome. All values in [h] 

 

 

 

EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT FDM Δ% FFT FDM Δ% FFT FDM Δ% FFT FDM Δ% FFT FDM Δ% 

A5 0.084 0.085 0.082 -3.55% 0.060 0.058 -3.54% 0.066 0.064 -3.26% 0.076 0.076 -0.55% 0.085 0.081 -4.87% 

A10 0.045 0.045 0.044 -3.66% 0.032 0.031 -3.27% 0.035 0.034 -3.49% 0.041 0.041 -0.22% 0.045 0.043 -5.25% 

A15 0.030 0.030 0.028 -4.21% 0.021 0.020 -3.69% 0.023 0.022 -3.78% 0.027 0.026 -1.06% 0.030 0.028 -5.98% 

B5 0.129 0.131 0.126 -3.81% 0.091 0.088 -2.53% 0.104 0.100 -3.91% 0.118 0.117 -0.41% 0.130 0.125 -4.53% 

B10 0.074 0.075 0.072 -3.86% 0.052 0.050 -3.83% 0.059 0.057 -4.07% 0.067 0.067 -0.82% 0.075 0.071 -5.18% 

B15 0.050 0.050 0.048 -4.45% 0.035 0.033 -4.68% 0.039 0.038 -4.55% 0.045 0.044 -1.07% 0.050 0.047 -5.93% 

C5 0.049 0.049 0.046 -5.03% 0.034 0.032 -5.61% 0.039 0.037 -5.18% 0.044 0.043 -2.37% 0.048 0.045 -6.34% 

C10 0.028 0.027 0.026 -5.35% 0.019 0.018 -5.94% 0.022 0.021 -5.61% 0.025 0.024 -2.88% 0.027 0.025 -6.86% 

C15 0.019 0.018 0.017 -5.95% 0.013 0.012 -6.27% 0.015 0.014 -6.30% 0.016 0.016 -3.56% 0.018 0.017 -7.45% 

D5 0.050 0.049 0.047 -4.92% 0.034 0.033 -4.68% 0.039 0.037 -4.62% 0.045 0.044 -2.24% 0.049 0.046 -6.52% 

D10 0.028 0.027 0.026 -5.15% 0.019 0.018 -5.14% 0.022 0.021 -4.91% 0.025 0.024 -2.53% 0.027 0.026 -6.49% 

D15 0.018 0.018 0.017 -5.80% 0.013 0.012 -5.75% 0.015 0.014 -5.43% 0.016 0.016 -2.95% 0.018 0.017 -6.90% 

M10 1.126 1.140 1.115 -2.18% 0.965 0.938 -2.78% 1.038 1.013 -2.37% 1.080 1.086 0.52% 1.126 1.094 -2.87% 

M20 0.419 0.429 0.414 -3.57% 0.296 0.287 -2.75% 0.351 0.336 -4.07% 0.384 0.382 -0.37% 0.425 0.406 -4.37% 

M30 0.150 0.150 0.143 -4.87% 0.104 0.100 -4.03% 0.117 0.112 -4.31% 0.135 0.133 -1.84% 0.149 0.140 -5.92% 

 

 

EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT FDM Δ FFT FDM Δ FFT FDM Δ FFT FDM Δ FFT FDM Δ 

A5 -9.1 -6.0 -5.0 1.0 -11.0 -11.0 - -7.0 -7.0 - -9.0 -9.0 - -9.0 -9.0 - 

A10 -9.9 -6.0 -6.0 - -12.0 -12.0 - -8.0 -8.0 - -10.0 -10.0 - -9.0 -9.0 - 

A15 -10.9 -8.0 -7.0 1.0 -13.0 -13.0 - -9.0 -9.0 - -11.0 -11.0 - -10.0 -10.0 - 

B5 -8.1 -5.0 -4.0 1.0 -9.0 -9.0 - -6.0 -6.0 - -8.0 -8.0 - -8.0 -7.0 1.0 

B10 -8.9 -5.0 -5.0 - -10.0 -10.0 - -7.0 -7.0 - -9.0 -9.0 - -8.0 -8.0 - 

B15 -9.9 -6.0 -6.0 - -12.0 -11.0 1.0 -8.0 -8.0 - -10.0 -10.0 - -9.0 -9.0 - 

C5 -12.9 -10.0 -9.0 1.0 -15.0 -15.0 - -12.0 -11.0 1.0 -13.0 -13.0 - -13.0 -12.0 1.0 

C10 -13.9 -11.0 -10.0 1.0 -16.0 -16.0 - -13.0 -12.0 1.0 -14.0 -14.0 - -14.0 -13.0 1.0 

C15 -14.9 -12.0 -11.0 1.0 -17.0 -17.0 - -14.0 -14.0 - -16.0 -15.0 1.0 -15.0 -15.0 - 

D5 -13.3 -10.0 -10.0 - -15.0 -15.0 - -12.0 -12.0 - -14.0 -14.0 - -13.0 -13.0 - 

D10 -14.3 -11.0 -11.0 - -17.0 -16.0 1.0 -13.0 -13.0 - -15.0 -15.0 - -14.0 -14.0 - 

D15 -15.3 -12.0 -12.0 - -18.0 -17.0 1.0 -14.0 -14.0 - -16.0 -16.0 - -15.0 -15.0 - 

M10 -2.8 -1.0 -1.0 - -2.0 -2.0 - -2.0 -2.0 - -2.0 -2.0 - -3.0 -3.0 - 

M20 -6.8 -4.0 -3.0 1.0 -6.0 -7.0 -1.0 -5.0 -5.0 - -6.0 -6.0 - -6.0 -6.0 - 

M30 -10.7 -7.0 -7.0 - -12.0 -12.0 - -9.0 -9.0 - -11.0 -11.0 - -10.0 -10.0 - 
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Figure 4a.3 - Periodic thermal transmittances in [W m
-2

 K
-1

] (left) and time shifts in [h] (right) 

for the conditions of Rome for the South, North and Horizontal walls respect to the reference 

FFT parameters. Dotted lines represent the ±20% range 
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Figure 4a.4 - Periodic thermal transmittances in [W m
-2

 K
-1

] (left) and time shifts in [h] (right) 

for the conditions of Rome for the East and West-oriented walls respect to the reference FFT 

parameters. Dotted lines represent the ±20% range 
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4a.3 Discussion 

The Standard results significantly differ from the FFT results for many cases, both for the 

periodic thermal transmittance and for the time shift, as it can be seen in the Tables of the 

previous paragraph. This means that the Standard dynamic parameters are not representative of 

the real dynamic response under non-sinusoidal conditions, as observed by Gasparella et al. 

(2011b). 

As regards the wall components, as well as for the three climatic zones chosen in the present 

work, the deviations between the FDM, DRF and SS approaches can be considered negligible 

both for the periodic thermal transmittance and for the time shift, as it can be seen by comparing 

Figures 4a.3 and 4a.4 for Rome to the ones for Milan and Palermo in Annex C. Anyway, some 

differences are present and various levels of agreement can be distinguished. 

For what concerns the periodic thermal transmittance, about the DRF method, in Rome 

there is an average percentage overestimation for all the orientations except the East 

(respectively +3.23% for the North, +2.58% for the West, +2.25% for the South and +2.6% for 

the horizontal); for the East-faced walls there is an average percentage underestimation of -

1.44%. The DRF method generally underestimates for the walls of the groups A and M, while 

overestimates in the other cases. The largest overestimations (around +10%) are encountered for 

the cases C15 and M15. For Milan all the average percentages are positive but with lower 

absolute values respect to Rome: +0.64% for the North, +0.51% for the East, +0.96% for the 

West, +1.02% for the South and +0.81% for the horizontal orientation. The cases C15 and M15 

are still the most critical but with lower deviations respect to Rome (around 5%). For Palermo, 

the mean percentage deviations are +1.80%, -0.43%, +0.60%, -3.51% and +1.46% for the 

North, East, West, South and horizontal orientations, respectively. The deviations are generally 

negative for the South orientation. Also in this location, with the exception of the South oriented 

walls, cases C15 and M15 are those with the largest differences. 

As a whole, in Rome the SS method underestimates the periodic thermal transmittance, in 

particular for the North, West and horizontal orientations, whose average percentage deviations 

are, respectively, -2.52%, -2.14% and -2.98%. For the East and the South orientations there are 

slightly average overestimations (+1.60% and +0.30%, respectively). In Milan and Palermo the 

percentage averages underline a general underestimation respect to the FFT reference, which is 
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more marked in the second locality, where they are around -5%, independently of the 

orientation. 

The FDM always underestimates respect to the FFT results (-4.42% for the North, -4.30% 

for the East, -4.39% for the West, -1.49% for the South and 5.70% for the horizontal cases). 

Similar values are present for Milan and Palermo, with the exception of the South-faced walls in 

Palermo, whose percentage deviation is around -5%. 

About the time shift, the maximum differences are generally of 1 h respect to the FFT 

method. The DRF method is generally late while the SS presents a good agreement with the 

FFT results for many cases. The results obtained through the FDM are almost equal to the FFT 

reference. As a whole, the agreement between the numerical methods and the FFT reference is 

better in Milan and Palermo respect to Rome. 

As regards the different orientations, the computed periodic thermal transmittance values 

are lower for East and West-faced walls, with the minimum value reached for the East 

orientation, in agreement with the findings by Kontoleon and Eumorfopoulou (2008) for walls 

with a composition similar to the analysed ones. The maximum time shift value has been 

observed for the East orientation. 
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4a.4 Main findings 

In this first part of chapter 4 the problem of the characterization of the behaviour of some 

building envelope components has been discussed. In particular, the focus was on the dynamic 

behaviour of the opaque walls. 

About the analysis of the dynamic behaviour of opaque components exposed to the external 

conditions, the Transfer Function Methods implemented in TRNSYS and EnergyPlus, as well as 

an implicit finite difference scheme solution (FDM), have been assessed. As index variables for 

the assessment of the numerical methods, the dynamic parameters proposed by the technical 

Standard EN ISO 13786:2007 (i.e., the periodic thermal transmittance, the time shift and the 

decrement factor) have been used. Since these dynamic parameters are defined considering a 

sinusoidal forcing temperature, by means of the Fast Fourier Transform (FFT) analysis and the 

principle of superposition of the effects, some “real” forcing sol-air temperatures have been 

considered and the dynamic response of a sample of walls under those conditions evaluated. 

The numerical methods are in agreement with the FFT results, with some small deviations 

for what concerns the time shift. The Direct Root Finding method implemented in TRNSYS, for 

instance, is generally late respect to the State Space in EnergyPlus and the FDM.  

For the considered walls, especially the lightweight and uninsulated ones, the analysis 

allowed also to observe that under “real” forcing conditions, the dynamic parameters elaborated 

considering a fundamental harmonic as forcing signal – as those proposed by the EN ISO 

13786:2007 and generally used as index variables to characterize the walls dynamic behaviour, 

are not representative. 
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Part b: Glazings and adiabatic surface temperatures 

4b.1 Methods 

In chapter 3, different possible sources of discrepancy between EnergyPlus and TRNSYS 

have been analysed and, finally, the modelling of the internal infrared heat exchanges, in 

particular for the windows, appeared to be the main cause of difference between the monthly 

heating and cooling energy needs and peak loads elaborated by these two codes. 

The reason of the discrepancy has been attributed mainly to the different implemented 

models: while in EnergyPlus a detailed method based on the view factor calculation is 

implemented, in TRNSYS these heat exchanges are modelled with Seem’s star network and all 

surfaces are characterized by an emissivity equal to 1 (i.e., they are black surfaces). Especially 

this last hypothesis, which appears not particularly relevant for the opaque components, has 

been significant for the alignment of the results between the two codes because of its effect on 

the glazing surfaces. Indeed, since the internal emissivity of glazings is 0.84 but in TRNSYS it 

is unitary, a relative deviation of 16% is introduced between these two simulation codes in the 

calculation of infrared exchanges and it is enhanced by the large difference between the glazings 

surface temperature and the one of the rest of the envelope. Moreover, in this perspective the 

presence of adiabatic surfaces can slightly influence the deviations. 

In this part, in order to complete the comparative analysis, the hourly internal surface 

temperature profiles elaborated by TRNSYS and EnergyPlus have been analysed, both for the 

glazings and the adiabatic surfaces. The considered cases are extracted from the dataset 

simulated for the comparison between TRNSYS and EnergyPlus (see the previous chapter for 

more details).  

In particular, both for Messina and Milan, the represented cases have the following 

characteristics: 

 the windows are East-oriented and with the smaller size (Agl/Af = 11.67%); 

 the internal gains are null; 

 the insulation of the opaque components is null; 

 the massive layer is clay block. 

The East orientation has been chosen because it leads to a more interesting external 

solicitation: while, for instance, a South oriented surface is exposed to the solar radiation all 

daytime and so its surface temperature gradually reaches a maximum and then decreases, an 

East oriented window presents a peak of surface temperature in the morning and then quickly it 
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decreases. Thus, it is of interest to compare TRNSYS and EnergyPlus in the estimation of the 

surface peak temperature: indeed a relative error in the estimation of the peak temperature can 

affect the estimation of the mean radiant temperature and so the operative temperature of the 

thermal zone. Some preliminary analyses showed that the size of the windows is not so relevant 

in influencing the deviations between the glazing surface temperatures elaborated by the two 

simulation codes: the deviations changes between the cases with larger windows and those with 

smaller ones are within a range of ±0.2 °C for most of the hours. For this reason, the smaller 

windows have been chosen. Since the profile analysis is more focused on the dynamics of the 

surface heat balance and the internal gains are constant, they have been set to zero. The 

uninsulated walls have been considered, as more influenced by the external solicitations and so 

characterized by larger differences in their internal surface temperatures, which means larger 

variability in heat radiative exchanges. All the 5 different considered glazings have been tested, 

as well as the cases S/V = 0.3 and S/V = 0.97. In addition to the previous ratios, also a case 

without adiabatic surfaces (i.e., S/V = 1.07) has been simulated. 

In order to assess the possible improvement of the alignment between the glazings surface 

temperature considering the same internal unitary emissivity, the simulations have been 

repeated with specific windows with εgl=1 modelled in EnergyPlus IDF Editor. The 

characteristics of these windows are the same of the ones built with Window6 tool by LBNL 

and used in chapter 3 and in the first part of the present analysis, with the exception of the 

internal emissivity. 

A sample of weeks representative of the winter conditions and another representative of the 

summer ones, have been analysed. Moreover, the annual distributions of the deviations between 

the surface temperatures elaborated by EnergyPlus and TRNSYS for the chosen sample of cases 

have been studied. The deviations between the hourly surface temperatures have been calculated 

by subtracting the values by TRNSYS to each one by EnergyPlus. The deviations have been 

distinguished in 10 groups: from 0 to +0.5 °C, from +0.5 °C to +1 °C, from +1 °C to +2 °C. 

from +2 °C to +4 °C and more than +4 °C for the cases where EnergyPlus overestimates respect 

to TRNSYS and, similarly when it is TRNSYS to overestimates respect to EnergyPlus. 
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4b.2 Results 

4b.2.1 Sample of cases with the original glazings 

The hourly surface temperatures of the glazings and of the adiabatic vertical walls have 

been reported in Figures 4b.1 and 4b.2 for a sample of hours in winter conditions (from the 14
th

 

till the 21
st
 of January) of Milan and Messina and in Figures 4b.3 and 4b.4 for a sample of hours 

in summer conditions (from the 14
th
 till the 21

st
 of July), respectively of Milan and Messina. In 

Figures 4b.5 and 4b.6 the winter and the summer surface temperatures for the glazings in case 

of absence of adiabatic surfaces have been represented. 
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Figure 4b.1 – Winter (from 14/01 till 21/01) surface temperatures in Milan for the different 

glazings with S/V=0.3 and S/V =0.97 
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Figure 4b.2 – Winter (from 14/01 till 21/01) surface temperatures in Messina for the different 

glazings with S/V=0.3 and S/V =0.97 
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Figure 4b.3 – Summer (from 14/07 till 21/07) surface temperatures in Milan for the different 

glazings with S/V=0.3 and S/V =0.97 
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Figure 4b.4 – Summer (from 14/07 till 21/07) surface temperatures in Messina for the different 

glazings with S/V=0.3 and S/V =0.97 
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Figure 4b.5 – Winter (from 14/01 till 21/01) surface temperatures in Milan and Messina for the 

different glazings with S/V=1.07 
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Figure 4b.6 – Summer (from 14/07 till 21/07) surface temperatures in Milan and Messina for 

the different glazings with S/V=1.07 
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For what concerns the adiabatic surfaces, the distributions have been reported in Figures 

4b.7 and 4b.8, respectively for Milan and Messina. 

 

 

Figure 4b.7 - Distribution of the deviations between the surface temperatures of the adiabatic 

walls in EnergyPlus and TRNSYS in Milan 
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Figure 4b.8 - Distribution of the deviations between the surface temperatures of the adiabatic 

walls in EnergyPlus and TRNSYS in Messina 
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For the glazing surfaces, the distributions have been reported in Figures 4b.9 and 4b.10, 

respectively for Milan and Messina. 

 

 

Figure 4b.9 - Distribution of the deviations between the surface temperatures of the glazings in 

EnergyPlus and TRNSYS in Milan 
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Figure 4b.10 - Distribution of the deviations between the surface temperatures of the glazings in 

EnergyPlus and TRNSYS in Messina 
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4b.2.2 Sample of cases with glazings with unitary emissivity 

In Figures 4b.11 and 4b.12 the frequency analysis results for the second sample of cases 

have been reported 

. 

 

Figure 4b.11 - Distribution of the deviations between the surface temperatures of the glazings in 

EnergyPlus (εgl =1) and TRNSYS in Milan 
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Figure 4b.12 - Distribution of the deviations between the surface temperatures of the glazings in 

EnergyPlus (εgl =1) and TRNSYS in Messina 
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4b.3 Discussion 

 

4b.3.1 Sample of cases with the original glazings 

In Figures 4b.1-4b.6, several surface temperature profiles have been represented. 

About the adiabatic surfaces, for what concerns the two climates, the main difference is 

related to the elaborated temperature: the difference between the one by TRNSYS and the one 

by EnergyPlus is smaller in the climate of Messina. The general behaviour is the same for both 

locations. During the winter period, EnergyPlus always overestimates the temperature of the 

adiabatic surfaces (generally less than +1 °C respect to TRNSYS) and this is particularly 

evident for the case with single glazing. During the summer period, in the case with single 

glazing EnergyPlus tends slightly to overestimate the temperature of the adiabatic surfaces, 

while with the other glazings it underestimates. 

Increasing the S/V ratio, the discrepancy between the two simulation tools little increases. 

As regards the glazings, both in summer and in winter conditions, EnergyPlus underestimates 

the internal surface temperatures of the single pane glass respect to TRNSYS. For the other 

glazings, EnergyPlus generally overestimates, in particular when the windows are hit by the 

solar radiation and the difference between the simulated temperatures can become also between 

+2 °C and +4 °C. Generally, the peaks of surface temperature in TRNSYS seem more smoothed 

than in EnergyPlus. As confirmed in Figure 4b.5 and 4b.6, where the cases with S/V = 1.07 are 

reported, the deviations between the glazing surface temperatures elaborated by the two BES 

codes seem not particularly influenced by the presence of adiabatic surface (i.e., the 

discrepancies are not strongly correlated with the interaction between adiabatic and transparent 

surfaces). 

Most of the deviations have an absolute value lesser than 0.5 °C but different behaviours 

can be observed. In Messina the percentage of the deviations falling in the ranges ±0.5 °C is 

higher than in Milan, where the overestimation by EnergyPlus respect to TRNSYS is more 

marked. For the cases with S/V = 0.97, the deviations for insulating glazings have the same 

behaviours with balanced positive and negative deviations while for the single pane glass most 

of the temperatures elaborated by EnergyPlus are larger than the ones by TRNSYS. Passing to 

the lower S/V ratio, the behaviour of the insulating glazings changes: they seem almost 

independent on the SHGC only with a high S/V ratio. 
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4b.3.2 Sample of cases with glazings with unitary emissivity 

The main effect of the unitary emissivity for the glazings in EnergyPlus is to decrease the 

larger deviations, independently of which simulation code overestimate the glazings surface 

temperature respect to the other one. The decrement of the number of cases in the largest 

deviation categories led to an increase of the frequency in the central classes (e.g., the ones with 

deviations less than 0.5 °C and from 0.5 to 1 °C, considering the absolute values). The central 

positive and negative categories are not affected by the same variation and generally the first 

ones present an increase while the second ones a reduction. This leads to larger asymmetry 

between those cases characterized by an overestimation of the glazing surface temperatures in 

EnergyPlus respect to TRNSYS: basically the surface temperatures estimated by the latter are 

larger than the ones of the last one but the discrepancies are limited. EnergyPlus overestimations 

are particularly evident for the triple glazings in the simulations with emissivity equal to 1 and 

are more frequent when the S/V ratio is lower. For instance, in the climate of Milan, the number 

of hours whose deviation is between +0.5 °C and +1 °C is larger than the one between 0 and 0.5 

°C for the triple glazings when the S/V is 0.3. 

As a whole, even if for these last cases the emissivity is aligned, residual discrepancies are 

still present and are related to the different model of internal heat exchanges and other different 

models and algorithms directly or indirectly affecting the internal surface heat balance, such the 

TFM approaches discussed in the first part of this chapter. 
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4b.4 Main findings 

In order to complete the comparison between EnergyPlus and TRNSYS of chapter 3, the 

surface temperature profiles of glazings and adiabatic surfaces have been analysed. The 

discrepancies and the different behaviours for the studied kind of glazings have been discussed 

and it has been found that, for the peak surface temperatures, deviations of 2-4 °C between the 

two simulation codes are present, even if most of the cases the differences are lower than 1 °C 

and with a general overestimation of the surface temperatures calculated by EnergyPlus respect 

to TRNSYS values. 

In both the climates there is a clear overestimation of the surface temperature by EnergyPlus 

respect to TRNSYS for the insulating glazings while there is a general underestimation for the 

single pane glass. It can be noticed that most of the time the differences are within +0.5 and -0.5 

°C, especially for the most efficiency glazings. The agreement between the different insulating 

glazings is better in Messina than in Milan and the reduction of the S/V ratio by introduction of 

adiabatic in place of dispersing walls lead to a light increase of the variability of the responses. 
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Chapter 5 

In chapter 5 the issue of the coherence between the energy needs elaborated by means of 

BES tools and those by simplified models is discussed. In particular, as BES tool TRNYS has 

been chosen and as simplified method the one proposed by the technical Standard EN ISO 

13790:2008 (i.e., the quasi-steady state method). 

The annual energy needs calculated according to the EN ISO 13790:2008 monthly method 

have been firstly assessed by means of some BESTEST cases. Then, the analysis has been 

focused on the evaluation of the thermal flows rather than the final energy need results. Both 

heat losses and gains, calculated with the EN ISO 13790:2008 and simulated with TRNSYS 

according to the same Standard prescriptions, have been analysed. 

The main sources of disagreement have been investigated both for the thermal losses and 

the thermal gains. In particular, for the first ones the effect of the setpoint temperature (air 

temperature or operative temperature) and the ventilation rates have been studied. For the gains, 

instead, some assumptions of the EN ISO 13790:2008, such as the black body cavity hypothesis 

for the solar radiation transmitted through the transparent surfaces or the neglected fractions of 

gains dispersed by conduction through the envelope, have been discussed. Correction factors 

have been estimated by means of statistical techniques in order to provide a better agreement 

between the thermal flows estimated according to the quasi-steady state approach and by BES. 

Finally, the effect of the proposed corrections on the final energy needs has been assessed. 
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Part a: Assessment of the quasi-steady state method with the 

BESTEST cases 

5a.1 Method 

In order to carry on a preliminary analysis of the performances of the EN ISO 13790:2008 

method, the BESTEST approach has been implemented. Only 4 qualification cases have been 

studied (i.e., cases 600, 620, 900 and 920), because for those the base model proposed by the 

Standard can be assessed without being influenced by additional models or correction factors, 

such as the shading reduction factors for overhangs and fins (cases 610, 630, 910 and 930), the 

intermittent heating or cooling (cases 640, 650, 940 and 950) of the presence of a sunspace (case 

960). 

Since in literature some problems have been experienced in particular by using the quasi-

steady state method in cooling-dominated climate, as the Mediterranean ones, instead of using 

the climate of Denver, the assessment has been done for the climates of Messina and Milan. In 

order to define specific reference limits for these two climates, the method by Melo et al. (2012) 

has been followed. The BESTEST simulations carried on with TRNSYS for Denver climate in 

chapter 3 have been employed as reference to calculate the confidence intervals from the 

acceptability boundaries. 

DenverTRNSYS
Q

DenverTRNSYS
Q

Denver
Q

CI

,

,max,
max


       (5a.1) 

DenverTRNSYS
Q

DenverTRNSYS
Q

Denver
Q

CI

,

,min,
min


       (5a.2) 

The new limits have been calculated for each location loc by means of Eq. (5a.3) and (5a.4): 

  locTRNSYSloc QCIQ ,max, max
1         (5a.3) 

  locTRNSYSloc QCIQ ,min, min
1         (5a.4) 
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5a.2 Results and Discussion 

The results have been reported in Figure 5a.1 and 5a.2, for Milan and Messina, respectively. 

In Figure 5a.1 the results for Milan can be analysed. The heating energy needs are within the 

confidence intervals for all considered cases with the exception of case 600, where the heating 

need is slightly underestimated (around -7.5%). For the annual cooling energy needs, they are 

generally overestimated respect to the boundaries, with the exception of the case 600. 

 

 

Figure 5a.1 - Quasi-steady state method assessed with the BESTEST cases 600, 620, 900, 920 

for the location of Milan: annual heating (a) and cooling (b) energy needs. The dotted lines 

delimitate the confidence interval 

 

For the location of Messina, the annual heating energy needs are within the acceptance 

range only for the massive cases (900 and 920), characterized by a time constant of 20 h. For the 

lightweight cases (time constant around 5 h) the heating needs are largerly underestimated. As 
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regards the annual cooling energy needs, they are always overestimated by the Standard model, 

in particular for the massive cases. 

 

 

Figure 5a.2 – Quasi-steady state method assessed with the BESTEST cases 600, 620, 900, 920 

for the location of Messina: annual heating (a) and cooling (b) energy needs. The dotted lines 

delimitate the confidence interval 

 

Considering these four qualification cases, it can be noticed that the quasi-steady state 

method is generally not in agreement with the BESTEST confidence intervals for the annual 

cooling energy needs, which are generally overestimated. About the annual heating energy 

needs, there is more coherence with the BESTEST, especially for Milan, where the heating 

needs are more relevant. Larger discrepancies are encountered for the lightweight structures. 
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5a.3 Main findings 

A preliminary analysis has been carried on by considering some of the BESTEST 

qualification cases. In particular, those cases considering intermittent heating, cooling or 

ventilation setpoints have been neglected, since different approaches are presented by the EN 

ISO 13790:2008 to model these configurations in quasi-steady state conditions. Moreover, also 

the cases presenting overhangs and fins have not been considered, since the Standard proposes 

only shading factors to correct the window area exposed to the solar radiation and in this chapter 

the aim is to assess the base methodology. Thus, only the cases 600, 620, 900 and 920 have 

been studied here. As it is of interest to evaluate the performance of the quasi-steady state 

method in the South Europe climates, specific acceptance ranges have been considered for these 

locations. 

The annual energy needs estimated are not within the boundaries for most of the 

considered configurations. It can be observed that for the annual heating energy needs are in the 

acceptance ranges for the massive structures while they are under the lower boundary for the 

lightweight ones. For the annual cooling energy needs, the EN ISO 13790:2008 monthly 

method is almost always over the higher boundary, providing an overestimation of the energy 

demand.
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Part b: Comparison between the thermal losses by BES and by EN 

ISO 13790:2008 quasi-steady state method 

5b.1 Methods 

As seen in the discussion of the literature in chapter 1, the main difference between the air 

heat balance in BES and the quasi-steady state method, consists in the chosen reference 

temperature (i.e., air or operative temperature). In this part of the analysis, the main sources of 

discrepancies besides the air and the operative temperature, which are the presence of envelope 

insulation, the ventilation rate and the presence of different amount of adiabatic surfaces, have 

been discussed. 

A statistically derived correction factor has been introduced in order to improve the 

estimation of an operative equivalent temperature starting from the air temperature setpoint. 

This allows to improve the agreement of the quasi-steady state method with the results of 

simulation by BES tools – TRNSYS in this case, when considering an air temperature setpoint. 

For the multiple regression method used, see Annex A. 

In the following three sections, the method proposed by the technical Standard EN ISO 

13790:2008 is described, as well as the approach by TRNSYS and the simulation assumptions. 

A description of the followed simulation plan is also provided. 

 

5b.1.1 EN ISO 13790:2008 model 

In accordance with the standard EN ISO 13790:2008, the thermal losses Qht through the 

envelope and by ventilation can be calculated with the Eq. (5b.1). 

vetrht QQQ           (5b.1) 

The thermal transmission losses through the envelope directly exposed to the outdoors are: 

  tHQ esetitrtr    ,         (5b.2) 

Considering only dispersions of the heated zone towards the outside environment and 

neglecting the thermal bridges, the overall transmission heat transfer coefficient is: 

 


n

k kkDtr UAHH
1

        (5b.3) 
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The surface longwave radiation exchanges are linearized and superimposed to the 

convective ones and, because of these simplifications and in coherence with the definition of HD 

and of the thermal transmittance U, an operative temperature is considered as reference 

temperature. It can be assumed as a weighted average of the air and mean radiant temperatures, 

considering equal weights if complying with the EN ISO 13790:2008: 

mraop   5.05.0         (5b.4) 

The ventilation thermal losses are defined as: 

  tHQ esetiveve    ,         (5b.5) 

where: 














n

k

kkveaave VbH c
1

,
         (5b.6) 

In the considered cases the temperature adjustment factor bve,k is 1 because the supply air 

temperature is equal to the external air temperature. 

The use of an operative temperature reference also for the calculation of ventilation losses is 

not strictly correct. For that reason it is expected that some discrepancies arise between 

simulation and simplified calculation results even if the same operative temperature setpoint is 

used, and that those differences increase for increasing ventilation rates. The second issue is that 

generally the operative temperature is not known when using the method, in particular when air 

temperature setpoints are considered. 

 

5b.1.2 Thermal losses calculation procedure with the dynamic simulation approach 

In order to evaluate the thermal losses by means of dynamic simulation, the EN ISO 

13790:2008 prescribes to calculate the energy needs setting to zero the internal gains, the solar 

gains and the infrared extra flow to the sky vault. The simulation heating and cooling setpoints 

have to be the same (null regulation band). The thermal losses can be calculated from the 

heating energy need and the cooling energy need: 

ndCndHht QQQ ,,           (5b.7) 

To compare the simulated losses to the quasi steady state results, boundary conditions and 

calculation parameters for the simulation have to be coherent with the ones assumed in the 
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quasi-steady state approach. The simulations have been performed twice: the first time 

considering an air temperature setpoint, as commonly done in BES tools, and the second time 

imposing an operative temperature setpoint, coherently with the EN ISO 13790:2008. 

As regards the external conditions, the hourly weather data have been calculated by means 

of the subroutine Type 54 in TRNSYS starting from the monthly average values reported by the 

Italian technical standard UNI 10349:1994. 

As concerns the internal conditions, an iterative approach was adopted to perform the 

simulation with an operative temperature control, because in the subroutine Type 56 only an air 

temperature setpoint is allowed: 

 imposing the weighting factors to the internal air temperature and the mean radiative 

temperature calculated at each timestep, the resulting operative temperature was 

calculated; 

 the air temperature setpoint in Type 56 was then corrected given the target operative 

temperature setpoint, repeating the calculations again, till convergence. 

The balanced weights indicated in Eq. (5b.4) have been considered. For a detailed 

explanation of the air heat balance model implemented in Type 56 in TRNSYS, see chapter 3. 

According to the EN ISO 6946:2007 for quasi steady state methods, the global surface heat 

transfer coefficients are distinguished in convective and radiative coefficients. Due to the 

detailed long wave radiation models adopted by TRNSYS, only the convective coefficients 

could be set to the values prescribed by the standard also in the simulation: 20 W m
-2

 K
-1

 for the 

external side, and 5.0, 0.7 or 2.5 W m
-2

 K
-1

 respectively for upward, downward and horizontal 

flow on the internal side. 

As concerns the radiation exchanges, as observed in chapter 3, both internal (ε=1) and 

external emissivity values (ε=0.9) are non-modifiable in TRNSYS. In principle, attempting to 

improve the coherence between detailed simulation and quasi steady state calculation, the 

internal long wave radiation heat transfer coefficient used in the quasi steady state approach 

could be calculated according to: 

3
4

mr
r Th            (5b.8) 

The same unitary internal emissivity used in TRNSYS can be assumed, but the surfaces 

temperature is not known in advance and can only be approximated with the same value used in 

the BES as temperature setpoint, as suggested by the standard itself. Thus, different surface 

radiative heat transfer coefficients have been considered coherently with the chosen setpoints. 
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5b.1.3 Reference building model and set of configurations 

The difference between the air and the operative temperature, which impacts on the 

correspondence between the transmission losses calculated with quasi-steady state approach or 

detailed simulation, when using an air temperature setpoint, is largely affected by the insulation 

level of the envelope. Moreover, as is also pointed out by the standard EN ISO 13790:2008 

itself and van Dijk and Arkesteijn (1987), it is also expected that also large ventilation rates lead 

to relevant discrepancies with the quasi steady state methods, and not only when using air 

temperature setpoint for the simulation. Therefore, in this first part of the comparison between 

BES tools and simplified method the focus is on different ventilation rates and insulation levels 

of the envelope, as well as on the kind of temperature setpoint. The simulations were performed 

considering air temperature and operative temperature setpoints and then compared with the 

ones calculated with quasi steady-state method. As concerns the values of setpoint, a typical 

heating season setpoint temperature for residential applications (20 °C) and the second one with 

a typical cooling setpoint temperature (26 °C) have been assumed, in accordance with the 

prescriptions by the EN ISO 13790:2008. 

The simulation plan considered in chapter 3 has been properly adapted in order to study the 

thermal losses, even if some variables, such as the thermal capacity of the walls or the SHGC of 

the glazings, not related to the thermal losses but affecting the selection the components 

themselves, have been taken into account with the perspective of the thermal gains and the 

energy needs analysis. The same single base building module with 100 m
2
 of floor area and a 

horizontal roof has been considered and a selected group of parameters has been varied within a 

predefined set of values, obtaining a variety of configurations. 

The opaque envelope is composed by a two layers structure, whose thermo-physical 

characteristics are reported in Table 3.2 in chapter 3. An insulation layer, with a thickness 

depending on the simulation plan, is positioned on the external side. Three possible materials 

have been considered for the internal layer (timber, clay block or concrete) with a thickness 

chosen to have a thermal resistance around 0.8 m
2
 K W

-1
, as 0.2 m of clay block. The window 

frame is a timber frame with a low performance (Ufr = 3.2 W m
-2

 K
-1

) if coupled with the single 

glass and high performance (Ufr = 1.2 W m
-2

 K
-1

) in the other cases. The frame area covers 

about the 20 % of the whole window area. 
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The following geometrical and thermo-physical characteristics have been determined in 

accordance with the factorial plan: 

1. the amount of envelope surface exposed to the external conditions; 

2. the ventilation rate; 

3. the level of insulation added to the internal layer; 

4. the base material of the opaque envelope (taken into account in this part of the analysis 

because of the small differences of the three layers thermal resistances); 

5. the percentage ratio of glazings Agl to floor area Af; 

6. the kind of glazing; 

7. the climatic conditions. 

For each of the above factors, the considered levels are reported in Table 5b.1.  

Also in this part the presence of thermal bridges has been neglected but the motivation is 

slightly different:  

 to be coherent with the simplified method, they have to be implemented in 

TRNSYS as massless elements without area with a lineic thermal transmittance and 

so they are uneffective in the evaluation of the operative temperature, making their 

contribution null; 

 in case of air temperature setpoint, it can be considered to play a neutral role 

comparing the simulation and the quasi steady state approaches. 

As the aim was to evaluate the losses by thermal transmission through opaque and 

transparent elements directly exposed to the outdoor air (i.e. with external air convection 

boundary conditions), when the floor is not adiabatic, it has been assumed as directly in contact 

with the external air without any solar contribution, as if it was on a well-ventilated cavity. For 

the comparison between the approach followed by the quasi-steady state method and enhanced 

numerical methods for the heat transfer through the soil, see chapter 2b. 

The first factor allows to consider different ratios between the dispersing surface and the 

effect of different percentages of adiabatic surface in the total envelope. The second one 

analyses the ventilation rates, taking into account both its absence (e.g., thermal losses only by 

transmission) and other rates, in addition to the typical value for residential dwellings of 0.3 

ach/h in accordance with the Italian technical Standard UNI/TS 11300-1:2008. The variation of 

the thickness of the insulation layer from 0 to 10 cm (factor 3) and the kind of glazings (factor 

6), allow to evaluate configurations ranging from non-insulated buildings to well insulated ones. 

The factors 1, 5 and 6 allow to analyse the internal infrared exchanges between the glazings and 



Comparison between the thermal losses by BES and by EN ISO 13790:2008 quasi-steady state method 

 

 

160 

 

the adiabatic surface and their effects on the mean radiant temperature of the thermal zone. Two 

climates have been considered to calculate the thermal losses for different profiles of external 

temperatures. 

 

Table 5b.1 - Factors and levels in the simulation plan for thermal losses 

1 a one wall, floor and ceiling adiabatic; S/V=0.30 m
-1

 

b one wall and floor adiabatic; S/V=0.63 m
-1

 

c one wall adiabatic; S/V=0.97 m
-1

 

2 a 0 ach/h (no ventilation rate) 

b 0.3 ach/h (typical for residential dwellings) 

c 0.6 ach/h 

d 0.9 ach/h 

3 a 0 cm – Uenv = 1.03 W m
-2

 K
-1

 

b 5 cm – Uenv = 0.45 W m
-2

 K
-1

 

c 10 cm – Uenv = 0.29 W m
-2

 K
-1

 

4 a Timber 

b Clay-block 

c Concrete 

5 a 11.7% 

b 23.4% 

6 a (S) single glass - Ugl = 5.68 W m
-2

 K
-1

, SHGC = 0.855 

b (DH) double glazing high solar transmittance - Ugl = 1.140 W m
-2

 K
-1

, SHGC = 0.608 

c (DL) double glazing low solar transmittance - Ugl = 1.099 W m
-2

 K
-1

, SHGC = 0.352 

d (TH) triple glazing high solar transmittance - Ugl = 0.613 W m
-2

 K
-1

, SHGC = 0.575 

e (TL) triple glazing low solar transmittance - Ugl = 0.602 W m
-2

 K
-1

, SHGC = 0.343 

7 a Messina – HDD20: 707 K d 

b Milan – HDD20: 2 404 K d 

 

Considering 3 shape ratios, 4 ventilation rates, 3 possible insulation thicknesses, 3 base 

materials, 2 different ratios between the window surface and the floor and 5 types of glazings, 

1080 different configurations have been evaluated for each month of each climate. 25920 

monthly values have been elaborated for each of the each of the 4 setpoint conditions (air 

temperatures 20 °C and 26 °C, operative temperatures 20 °C and 26 °C). 
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5b.2 Results 

The different setpoint temperature strategies in TRNSYS have been considered, assuming 

the EN ISO 13790:2008 results as benchmark. Firstly the different setpoint strategies have been 

compared for a null ventilation rate, in order to investigate the deviation induced by choosing 

air temperature setpoint or operative setpoint in dynamic simulation. Then the effects of 

different the ventilation rates have been analysed. The comparative graphs have been reported 

only for the cases without ventilation: for the other cases, see Annex D. 

 

5b.2.1 Transmission heat losses and effects of the ventilation rate 

In Figure 5b.1, the transmission thermal losses simulated with the air temperature setpoints 

and with the operative temperature setpoints have been plotted against the quasi steady state 

results for the case of 20 °C. The cases with a 26 °C setpoint present similar trends and 

behaviours. 

For both setpoint strategies, the results have first distinguished by S/V ratio. The cases 

without insulation have been highlighted in darker colour and regression lines have been added 

to distinguish trends and deviations. 

The histograms in Figure 5b.2 and in Figure 5b.3 represent the percentage deviation of the 

linear trend line slopes from the unitary value for a setpoint of 20 °C and 26 °C, respectively. 
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Figure 5b.1 - Simulated thermal losses with air temperature setpoint (on the left) and operative 

setpoint (on the right), without ventilation for the different S/V. Insulated cases in lighter 

colours 
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Figure 5b.2 - Percentage deviation of the simulated thermal losses with air temperature 

setpoint (on the left) and operative setpoint (on the right) of 20 °C respect to the losses 

calculated with the quasi steady state approach for different air change rates and S/V ratios 
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Figure 5b.3 - Percentage deviation of the simulated thermal losses with air temperature 

setpoint (on the left) and operative setpoint (on the right) of 26 °C respect to the losses 

calculated with the quasi steady state approach for different air change rates and S/V ratios 

 

5b.2.2 Setpoint correction factor for the calculation of thermal losses by transmission 

As it can be observed in literature and in the results of the previous paragraph, the main 

source of discrepancy is the kind of temperature considered as reference. Assuming as a setpoint 

the operative temperature is not realistic in most of the applications and so a correction factor 

has been calculated for all cases and a regression analysis has been performed in order to find a 
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general equation for determining the correction starting from the envelope characteristics. The 

developed model is reported in Eq. (5b.9) and it is characterized by an adjusted determination 

index R
2
adj equal to 0.85. The 11 coefficients have been reported in Table 5b.2. 

   

  setiadewinwinwin

eenvenvenvwinenveL

kxkxkxkU

xkxkkUxkxkkkf

,10987

6543210








 (5b.9) 

The correction factor is a function of the monthly average external temperature, the mean 

thermal transmittance of the dispersing opaque components, the mean thermal transmittance of 

the windows, the setpoint value and the composition of the envelope. In particular, the last is 

described distinguishing the fraction of dispersing opaque components, the fraction of windows 

and the one of adiabatic surfaces: 

1 adwinenv xxx          (5b.10) 

The determined correction factor is coherent with the PASSYS project (1989), that suggests 

a correction function of the outdoor temperature and the overall thermal losses coefficient to 

correlate the air and the mean radiant temperatures. 

Table 5b.2 - Regression coefficients for the correction factor for the thermal losses 

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 

1.031 -1.456E-3 2.091E-3 2.451E-

3 

-

0.01465 

-0.2093 0.01022 -0.1044 4.518E-

3 

0.05882 -2.084E-3 

 

The sample used for the regression consists mainly in positive thermal losses (e.g., when the 

average external temperature is lower than the air temperature setpoint of 20 or 26 °C: negative 

values are, actually, thermal gains). In consequence of that, Eq. (5b.11) should be used only for 

setpoints close to the range 20 – 26 °C and when the average external temperature is lower than 

the setpoint. 
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5b.3 Discussion 

 

5b.3.1 Transmission heat losses 

Analysing the graphs in Figure 5b.1, it can be noticed that the linear regressions always 

show a very high index of determination R-squared in all the considered conditions, given that 

the results have been distinguished by shape ratio and presence of insulation. All other factors, 

such as windows size, kind of glazings, climate and also the thickness of insulation for the 

insulated cases, seem rather ineffective in spreading the results away from the trendlines. 

Apart from the coefficient of determination, the equations of the trendlines reported in the 

charts enable to quantify the deviation of the results of the simulation carried on with difference 

reference temperatures as setpoints from the ones of the quasi-steady state method: the more the 

slope coefficient is different from 1, the more will be the deviation of the simulation results 

respect to the Standard method. The largest deviations are shown when using an air temperature 

setpoint for the simulations, whose results underestimate the absolute value of thermal losses. 

As one could expect, the differences are particularly large for the non-insulated cases with a 

high S/V ratio, with an undervaluation around 22%, but also in the insulated cases, the use of air 

temperature setpoint leads to absolute simulated losses larger than 10% with respect of the ones 

of the quasi-steady state method. Reducing the S/V ratio (i.e., increasing the percentage of 

adiabatic surface), the mean radiant temperature becomes higher, together with the operative 

temperature, and so the deviations between the simulations and the EN ISO 13790:2008 method 

get lower. With a S/V equal to 0.3, the underestimation is around 7% for the uninsulated cases 

and less than 3% for the insulated ones. 

The operative temperature setpoint enlarges the difference between internal and external air 

temperature, giving higher absolute transmission and ventilation losses. For the high S/V, the 

underestimation is less than 7% for the uninsulated cases and around 1% for the insulated ones. 

For more compact structures (e.g., S/V=0.3), instead, there is a slight overestimation in the 

simulated results, around 2% for the uninsulated cases and more than 6% for the insulated ones. 

 

 



Chapter 5 – part b 

 

 

167 

 

5b.3.2 Effects of the ventilation rate 

Looking at the Figures 5b.2 and 5b.3, it is easy to see that, when considering an air 

temperature setpoint, increasing the ventilation rate reduces the difference with the estimation of 

the thermal losses by the simulation approach, whatever the amount of adiabatic surfaces. This 

is due to the fact that larger absolute ventilation losses tend to compensate more the difference 

between transmission losses. For S/V larger than 0.3, the air temperature setpoint still keeps 

critical for all the considered ventilation rates, in particular in the non-insulated cases whose 

deviations are always larger than 10%. 

When using an operative temperature setpoint, the trend is generally the same but in that 

case the effect does not compensate the already positive deviation of transmission losses. The 

ventilation losses are underestimated in absolute value by the quasi-steady state approach: larger 

ventilation rate increases less the absolute ventilation losses in the quasi-steady state method 

than in the simulations. The only exception to this behaviour is for the insulated cases with 

aspect ratio equal to 0.3 and 20 °C setpoint and the insulated ones with the same aspect ratio but 

a 26 °C setpoint and ventilation rate larger than 0.6 ach/h, for which increasing let the 

ventilation rate the deviations slightly decrease. Since the mean radiant temperature is 

independent from the ventilation rate and it is larger than the operative temperature setpoint in 

many of these last cases, the air temperature setpoint used by TRNSYS in the air-heat balance is 

lower than the setpoint of 20 or 26 °C (indeed, the thermal losses estimated by TRNSYS are 

lower than the ones calculated with the EN ISO 13790:2008 method). That also affects the 

ventilation thermal losses which are overestimated by the quasi-steady state approach and make 

the global percentage deviation decrease in absolute terms. 

With the operative temperature setpoint, the deviations are generally within a range of 5%, 

except for the uninsulated cases without ventilation and S/V=0.97 and for the insulated ones 

with S/V=0.3. 
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5b.3.3 Setpoint correction factor for the calculation of thermal losses by transmission 

In order to discuss the improvements given by the correction factor for the operative 

temperature setpoint in EN ISO 13790:2008 method, in Figure 5b.4 an example of its 

application for the calculation of the thermal losses by transmission on the same cases presented 

in paragraph 5b. 1.3 is represented, considering both the 20 °C and the 26 °C setpoints. The 

correspondence between the new thermal losses and the simulated ones is good (+0.3%), with 

larger errors for low values of the thermal losses. 

 

 

Figure 5b.4 - Comparison between the corrected EN ISO 13790 method and the air temperature 

setpoint simulations 

 

The correction factor and the agreement between simulated and modified EN ISO 

13790:2008 approach have been assessed also considering the BESTEST cases 600, 620, 900 

and 920. Differently from the original cases described in chapter 3 and considered in the part a 

of the present chapter, this time the floor in touch with the ground (with a thermal transmittance 

of 0.039 W m
-2

 K
-1

) has modeled directly as adiabatic. The thermal losses have been calculated 

and simulated both for the heating setpoint of 20 °C and the cooling setpoint of 27 °C 

considered in the BESTEST cases. 
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Figure 5b.5 – Thermal losses with a setpoint of 20 °C (a) and 27 °C (b), calculated by 

means of the EN ISO 13790:2008 method (dark colour) and with the correction factor (light 

colour) 

 

Since the dispersing opaque envelope is partially insulated for the vertical walls (U ~ 0.5 W 

m
-2

 K
-1

) and insulated for the roof (U = 0.318 W m
-2

 K
-1

), the agreement between BES and 

quasi-steady state method is good with an overestimation around 6% by this last approach. By 

using the correction factor for the operative temperature setpoint of the EN ISO 13790:2008 

method, the coherence is improved: considering the 20 °C setpoint there is an underestimation 

of -1.2% and considering the 27 °C setpoint an underestimation of -2.4%. 
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5b.4 Main findings 

The present part of chapter 5 is focused on the analysis of the thermal losses, paying 

attention to the effect of the main known sources of disagreement when comparing the thermal 

losses calculated by means of the EN ISO 13790:2008 quasi-steady state approach to the 

simulated ones. The role of the setpoint chosen for the simulation has been discussed, as well as 

the inaccuracy in the evaluation of the thermal losses by ventilation when an operative 

temperature setpoint is considered. 

The main source of discrepancy is given by the linearization of the radiative and 

convective heat exchanges in the quasi-steady state method and, consequently, the use of an 

operative temperature setpoint. It is particularly relevant when uninsulated opaque envelopes are 

considered and the simplified model results compared to the ones simulated considering an air 

temperature setpoint. 

In order to improve the alignment between the EN ISO 13790:2008 monthly method 

and the BES results with an air temperature setpoint, a correction factor has been proposed. The 

correction factor is a statistically derived function of the building envelope characteristics. It has 

been assessed both on the same sample of cases used for its development and on the BESTEST 

cases, revealing a significant improvement of the agreement between the thermal losses 

estimated according to the considered approaches. 
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Part c: Comparison between the thermal gains by BES and by EN ISO 

13790:2008 quasi-steady state method 

5c.1 Methods 

In this third part of the chapter about the extensive comparison between the quasi-steady 

state method and the BES, a large number of configurations has been simulated with TRNSYS 

in order to calculate the different components of the heat gains and to compare them with the 

EN ISO 13790:2008 monthly procedure. By means of different statistical analyses, some 

correction factors have been determined to identify the elements responsible of disagreement 

and to improve the accuracy of the technical Standard, estimating the actual amount of heat 

gains. 

In the following three sections, the calculation methods proposed by the technical Standard 

EN ISO 13790:2008, as well as the approach by TRNSYS and the simulation assumptions, are 

described. 

 

5c.1.1 EN ISO 13790:2008 model 

The technical standard EN ISO 13790:2008 considers as heat gains Qgn the term of the heat 

balance that is independent of the gradient of temperature between the indoor and the outdoor 

environments. Positive sign is assumed for heat added to the air node, while negative for 

subtracted. The thermal gains are defined as: 

solign QQQ           (5c.1) 

The internal heat gains are: 

   
l

lumniltr
k

kmnii bttQ ,,,,,, 1       (5c.2) 

where the effect of the heat sources from adjacent unconditioned thermal zones is 

considered with a contribution weighed by the reduction factor btr,l defined in the standard ISO 

13789:2007 (CEN, 2007). Different heat sources (occupants, appliances, lighting, hot and mains 

water, HVAC system, processes and goods) can be identified: 
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Proc,iHVACi,WA,iLi,Ai,Oci,i        (5c.3) 

Case by case, it is possible to estimate the heat gain due to each single sources, even if 

national typical values are generally proposed by national annexes or technical Standards. 

Whatever the entity of the internal gains, the EN ISO 13790:2008 states that they should be 

considered as half radiative and half convective gains in more detailed calculation methods such 

as BES. 

Similarly to the internal gains, the solar gains are estimated considering also the solar gains 

of the adjacent unconditioned thermal zones, properly weighed by the reduction factor btr,l: 

   
l

lumnsolltr
k

kmnsolsol bttQ ,,,,,, 1       (5c.4) 

In particular, the heat flow by solar gains consists in the heat flow by solar gains through a 

general element k of the building envelope, deducted the infrared extra flow towards the sky-

dome: 

kskykskyksolksolkobshksol FIAF ,,,,,,,         (5c.5) 

where Fsh,ob,k is the shading reduction factor for the external obstacles on Asol,k, the effective 

solar collecting area of the element k, with a view factor of the sky Fsky,k. Isol,k is the solar 

irradiance on the element k and Φsky,k its infrared extra flow. 

The effective solar collecting area is defined differently depending on the type of element. 

For the glazings, it is calculated as:  

 
pwinglglshsol AFgF

fr
A

,,
1        (5c.6) 

The overall projected window area Awin,p is reduced in order to take into account of the 

frame factor Ffr, the total solar transmittance of the glazing ggl and the shading reduction factor 

for movable shadings Fsh,gl, neglected in this work. The term ggl is calculated in accordance with 

Eq. (5c.7): 

nglwgl
gFg

,
          (5c.7) 

 

where ggl,n is the solar energy transmittance for radiation perpendicular to the glazing and Fw 

is the correction factor for non-scattering glazings which takes into account for the different 

incidence angles. The scattered glazings are not considered in this work and are treated 
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separately also by the Standard. An approximated value of Fw is 0.9 but, if available, the values 

indicated by the technical Standard of the EU Member States should be used. The values 

reported by the draft of the revUNI/TS 11300-1:2012 (UNI, 2012) have been considered. 

For the opaque surfaces: 

kenvkenvsekenvSsol AURA
,,.,

         (5c.8) 

where Aenv,k and Uenv,k are, respectively, the projected area and the thermal transmittance of 

the opaque component k, Rse its external surface resistance and αS,env,k its absorption coefficient. 

The infrared extra flow can be calculated by means of Eq. (5c.9): 

 
skyerekenvkenvsesky hAUR   

,,
      (5c.9) 

The average difference between the air temperature θe and the sky fictive temperature θsky 

can be approximated as 11 K at the latitudes of interest (e.g., around 45 °N). Assuming an 

external surface temperature equal to the air temperature, the surface radiative heat exchange 

coefficient hre can be calculated as: 

3

2
15.2734













 


skye
reh


        (5c.10) 

 

5c.1.2 Effective solar transmittance by Oliveti et al. 

Oliveti et al. (2011) proposed a change to the solar transmittance calculation, in order to 

take into account of the amount dispersed through the glazings because of the reflections by the 

internal surfaces (i.e., assuming a more realistic hypothesis than the black body cavity). In Eq. 

(5c.7), instead of ggl,n, the solar transmittance at normal incidence angle, they propose to 

calculate an effective solar heat gain coefficient at normal incidence, as: 

  ecavneicavneeffngl qqg   1..,,      (5c.11) 

Where τe,n is the beam solar transmission coefficient at normal incidence, αcav is the cavity 

absorption coefficient and qi and qe are secondary internal and external radiative-convective 

heat transfer factors, in accordance with EN 410:1998 (CEN, 1998): 
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qi can be calculated in accordance with EN 410:1998 coherently with the kind of glazing: 

Eq. (5c.13) for single pane glass, Eq. (5c.14) for double glazings and Eq. (5c.15) for triple 

glazings. 
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     (5c.15) 

where αe is the absorption factor of the glass (αe1 the external glass and αe2 the internal glass 

in the double glazings and αe1 the external glass and αe3 the internal glass in the triple glazings), 

hse and hsi the external and internal heat transfer coefficients, Λ the conductance of the layers 

between two glasses surfaces (Λ12 the conductance between the external surface and half of the 

intermediate glass pane and Λ23 the conductance between the internal surface and half of the 

intermediate glass pane, for the triple glazings). 

αcav is defined by Oliveti et al. (2011) as: 

       (5c.16) 

where the coefficients a, b, c are calculated in accordance with Eq. (5c.17) as functions of 

the transmission coefficient of the diffusion radiation of the glazings τd, αm is area-weighed 
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mean absorption coefficient for the cavity and Ψ is the ratio between the glazing area and the 

opaque area of the cavity. 

2

2

2

355.0545.0124.0

462.3388.5700.3

516.4453.5500.3

dd

dd

dd

c

b
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





      (5c.17) 

 

5c.1.3 Thermal gains calculation procedure with the dynamic simulation approach 

As observed several times in this work, TRNSYS implements and solves an air heat balance 

model as function of the convective thermal exchanges: 

dt

dθ
CΦΦΦΦ a

asysci,veic,         (5c.18) 

The convective part Φi,c of the internal gains is the only one directly involved in the balance 

of Eq. (5c.18). The other gains (i.e., the radiative part of the internal gains and the solar gains) 

indirectly affect the air heat balance through the radiation exchanges with the internal surface of 

the envelope. 

Per unit of surface: 

0,,,,,,  itrglwriirswriisolic qqqqqq        (5c.19) 

The radiative part of the internal gains (both shortwave swriq , , for instance from internal 

lighting, and longwave lwriq , ) and isolq , , the solar irradiance entering through the glazings are 

here considered. In particular, as seen in chapter 3, in TRNSYS the diffuse entering solar 

radiation is distributed homogenously on the various surfaces of the envelope while the beam 

entering component is controlled by a distribution parameter called geosurf. Following the 

suggestions of the BESTEST procedure (Judkoff and Neymark, 1995), the geosurf is imposed 

equal to 1 for the floor and 0 for the other surfaces, so that the entering beam solar radiation first 

falls entirely on this surface. A further development can involve the study of the correlation 

between the distribution of the beam solar radiation and the predicted energy needs. 

The solar radiation is then partially absorbed by each surface in accordance with its 

absorption coefficient and partially reflected as diffuse solar radiation. Due to the reflections, a 
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certain amount of the total entering solar radiation is lost through the transparent surfaces, as 

observed by Oliveti et al. (2011). It is also clear that not the whole heat gains involved in the 

internal surface heat balance are affecting the air heat balance because a fraction of the absorbed 

terms is lost by transmission. All these effects have been recognized by the EN ISO 13790:2008 

as sources of disagreement between the quasi-steady state approach and detailed simulations. 

Among the gains, also the thermal fluxes subtracting heat from the thermal zone but 

independent of the temperature difference are considered, such as the extra flow infrared 

radiation towards the sky vault. The temperatures of the external surfaces are defined by the 

following balance equation: 

0,,,,  etreresolec qqqq         (5c.20) 

The extra flow infrared radiation towards the sky vault is considered in the total external 

long wave radiation erq , and the part involving radiative exchanges with the external elements 

assumed at the air temperature has been already taken into account in the thermal losses 

calculation. Also in this case, the estimation of the effect on the indoor air heat balance of the 

solar heat gains for the opaque components and the infrared extra flow are affected by the heat 

transfer between the internal and the external surfaces of the envelope. 

In order to evaluate the thermal gains by means of dynamic simulation, the EN ISO 

13790:2008 prescribes first to calculate the thermal losses, as in the first part of the present 

chapter. This time the internal gains, the solar gains and the infrared extra flow to the sky vault 

are set as in a standard simulation but the heating and cooling setpoints have to assume the same 

value (as for the calculation of the thermal losses). The thermal gains can be calculated from the 

previously determined thermal losses and from the heating and cooling energy needs of this 

second set of simulations: 

 ndCndHhtgn QQQQ ,,          (5c.21) 

Since the heat gains are independent from the chosen simulation setpoint, using either air or 

operative temperatures is irrelevant, as well as considering a value of 20 °C or 26 °C. In this 

analysis an air temperature setpoint of 20 °C has been assumed and the results have been used in 

Eq. (5c.21), together with the correspondent set of thermal losses. 

As in the part b, in order to compare simulated and quasi-steady state results, boundary 

conditions and calculation parameters for the simulation have been selected coherently with the 

ones assumed in the quasi steady state approach. As regards the external conditions, the hourly 
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weather data have been calculated by means of the subroutine Type 54 starting from the 

monthly average values reported by the Italian technical standard UNI 10349:1994 and used in 

the simplified method. The horizontal global solar radiation is split into the beam and the 

diffuse components in accordance with the Erbs’ algorithm implemented in the Type 54. The 

diffuse components of the solar radiation on the vertical façades have been calculated in 

accordance with the algorithm by Perez et al. (1990). The mean daily solar radiation on a 

monthly base has been calculated for each orientation and used in the quasi-steady state method 

instead of the ones reported in the UNI 10349:1994. Starting from the horizontal infrared flux 

reported in the EPW weather files, the fictive sky temperature has been calculated for each 

timestep and used in TRNSYS simulations. As for the solar radiation, monthly averages have 

been calculated for the quasi-steady state method, in place of the gradient of 11 K suggested by 

the EN ISO 13790:2008. Constant internal heat gains equal to 4 W m
-2

 has set in TRNSYS, half 

convective and half radiative as the Standard prescribes. 

The same surface convective coefficients have been considered both in TRNSYS and in the 

quasi-steady state method and the long wave radiation heat transfer coefficients have been 

recalculated, as in the part b. 

5c.1.4 Reference building model and set of configurations 

The simulation plan has been modified in order to study the heat gain problem. For the 

general characteristics of the simulation plan, see part b. The following geometrical and thermo-

physical characteristics have been studied in accordance with the factorial plan: 

1. the amount of envelope surface exposed to the external conditions; 

2. the level of insulation added to the internal layer; 

3. the base material of the opaque envelope; 

4. the percentage ratio of glazings Agl to floor area Af; 

5. the orientation of the windows, all positioned in the same façade; 

6. the kind of glazings; 

7. the climatic conditions. 

For each of the above factors, a certain number of levels were considered, as reported in 

Table 5b.1 in the previous part. Since not pertinent with the topic of the third part, the 

ventilation rate has been neglected as variable and the simulations have been performed 

considering 0 ach/h. The orientation of the windows has been introduced in particular to assess 

more profiles of entering radiation and the possible levels for this variable are 3: East, South or 
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West-oriented windows, all in the same façade in order to simplify the statistical analysis of the 

results. 

As concerns the opaque components, the absorption coefficients of the sun-exposed walls 

are 0.3 for the vertical walls (both sides) and for the ceiling (internal side), 0.6 for the roof 

(external side) and for the internal floor. When a surface is exposed to the external environment 

but not to the sun, its coefficient is 0. It is the case of the non-adiabatic floors directly in contact 

with the external air, modelled as if they are on a well-ventilated cavity. The absorption 

coefficient of the window frame is 0.6. 

The first factor allows to consider different ratios between the dispersing surface and so can 

influence the amount of solar gains received by the opaque components and the infrared extra 

flow (from the external side) and the dispersion of the entering solar radiation absorbed (on the 

internal side). Similarly, the variation of the thickness of the insulation layer between 0 and 10 

cm (factor 2) affects the heat exchanges from the internal and external surfaces. The kind of 

glazings (factor 6), is probably the most important in this analysis because it strongly influences 

the entering solar radiation, which is generally the major heat gain source, together with the 

factors 4 and 5. Factor 5 is also important in affecting the profile of the entering solar radiation 

during the day. Two climates (Milan and Messina) have been considered. Since the comparison 

is on a thermal flow and on a monthly basis, as stated in the thermal losses part, the heat 

capacity of the opaque envelope (factor 3) is not supposed to be relevant for the monthly heat 

gain flow calculation and it has been considered as variable because of the small deviations in 

the thermal resistance of the 3 alternatives and with the perspective of further development on 

the calculation of the utilization factor and the energy needs in the last part of the chapter. 

Considering 3 shape ratios, 3 possible insulation thicknesses, 3 base materials, 2 different ratios 

between the window surface and the floor, 5 types of glazings and 3 orientations, 810 different 

configurations have been evaluated for each month of each climate. 19440 monthly values have 

been elaborated. 
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In order to implement the procedure by Oliveti et al., some additional information are 

required. For the glazings considered in this analysis, the different properties and the effective 

global solar heat gain coefficients are reported in Tables 5c.1 and 5c.2. 

Table 5c.1 - Properties of the considered glazing systems 

 (S) (DH) (DL) (TH) (TL) 

τe,n 0.771 0.513 0.256 0.477 0.256 

τd 0.689 0.439 0.205 0.391 0.191 

αe 0.173 0.294 0.448 0.276 0.425 

αe1 0.173 0.200 0.356 0.143 0.302 

αe2 - 0.094 0.092 0.082 0.067 

αe3 - - - 0.051 0.056 

Λ  

[W m
-2

 K
-1

] 
- 1.416 1.353 - - 

Λ12  

[W m
-2

 K
-1

] 
- - - 0.342 0.336 

Λ23  

[W m
-2

 K
-1

] 
- - - 0.342 0.336 

qi 0.0436 0.0903 0.0958 0.0914 0.0900 

qe 0.1294 0.2037 0.3522 0.1846 0.3350 

 

Table 5c.2 - Effective solar heat gain coefficients 

 
(S) (DH) (DL) (TH) (TL) 

Size1 Size2 Size1 Size2 Size1 Size2 Size1 Size2 Size1 Size2 

Ψ 3.8% 7.9% 3.8% 7.9% 3.8% 7.9% 3.8% 7.9% 3.8% 7.9% 

αm 0.400 0.407 0.400 0.407 0.400 0.407 0.400 0.407 0.400 0.407 

αcav 0.946 0.886 0.964 0.923 0.974 0.950 0.967 0.930 0.975 0.951 

ggl,n,eff 0.778 0.738 0.589 0.572 0.347 0.343 0.556 0.541 0.342 0.338 

ggl,n 0.855 0.608 0.352 0.575 0.343 

Δggl,n -9.0% -13.7% -3.1% -5.9% -1.4% -2.6% -3.3% -5.9% -0.3% -1.5% 

 

As it can be observed in Table 5c.2, the higher the solar heat gain coefficient and the larger 

the glazings area, the lower the effective solar heat gain coefficient. 
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5c.2 Results 

The thermal gains have been analysed considering separately their 4 main components 

(entering solar gains through the glazings, solar gains transmitted through the opaque elements, 

internal gains and infrared extra flow towards the sky vault) and some correction factors based 

on the envelope properties have been developed, with two main purposes: to find the source of 

discrepancy and to provide a statistically derived correction based on them. In Figures 5c.1, 5c.2 

and 5c.3 the thermal gains evaluated in accordance with the EN ISO 13790:2008 method and 

the simulated ones have been compared, as well as the corrected results and the simulated ones. 

The coefficients of the regressions to correlate the correction factors with the envelope 

characteristics are reported in Table 5c.3. For the entering solar radiation, also the model by 

Oliveti et al. (2011) has been implemented in alternative to the EN ISO 13790:2008 method to 

calculate the effective global solar transmittance of glazings. 

 

5c.2.1 Entering solar heat gains 

The solar gains entering through the transparent envelope have been represented in Figure 

5c.1 - a, on the top. For the analysed cases, a correction factor fsol,gl has been determined and a 

regression has been performed in order to correlate fsol,gl with the characteristics of the envelope: 

    adwinwinenvenvglsol xkUkkxxkkUkf  543210,   (5c.22) 

The regression, with an adjusted index of determination R
2

adj of 0.957, underlines also the 

importance of the interactions between the windowed fraction (calculated with respect of the 

whole envelope, including the adiabatic surfaces, as in part b) with the window thermal 

transmittance and the opaque dispersing fraction with the mean opaque thermal transmittance 

(with a standardized coefficient of -0.527 and -0.448, respectively). 

The results provided by using the ggl,n,eff according to the method by Oliveti et al. instead of 

ggl,n in the quasi-steady state approach are represented in Figure 5c.2. 

The correction factor has been recalculated starting from the effective solar transmittance: 

the model is similar to the previous one and it is presented in Eq. (5c.23) but with different 

regression coefficients, reported in table. The R
2

adj of the model is a little lower than the 

previous one (0.941 instead of 0.957). 
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    adwinwinenvenvglsol xkxkkUxkkUkf  543210, '   (5c.23) 

5c.2.2 Solar heat gains by transmission 

The solar heat gains by transmission through the opaque envelope have been represented in 

the graphs of the second line of Figure 5c.1. 

The correction factor fsol,env has been determined as in Eq. (5c.24): 

  winenveenvadenvenvenvsol UkUkkUkxkxAkkf  6543210,    (5c.24) 

The regression has an adjusted R
2

adj of 0.948 and the most influencing parameters are the 

opaque dispersing surface (with a standardized coefficient of 1.165) and the interaction between 

the opaque and the adiabatic fractions (0.609). 

 

5c.2.3 Internal gains 

The internal gains have been represented in the graphs on the bottom of Figure 5c.1. 

The correction factor fint has been determined as in Eq. (5c.25): 

  winwinenvenv xUkxkkUkf  3210int     (5c.25) 

The regression adjusted R
2
adj is 0.99 and the interaction between the fraction of opaque 

surface and its mean thermal transmittance and the one between the fraction of window surface 

and its thermal transmittance have the same standardized coefficients (around -0.5). 

 

5c.2.4 Infrared extra flow towards the sky vault 

Finally, the infrared extra flows towards the sky vault have been represented in Figure 5c.2 

and the correction factor fr,sky in Eq. (5c.26). 

   

envead

winwineenvadenvskyr

Ukkxk

xkkUkUkxkxkf





876

543210,





  

 (5c.26) 

The adjusted determination index is 0.878 and the most influencing parameters are the 

interaction between the thermal transmittance of the opaque envelope and its fraction 

(standardized coefficient equal to -0.418) and the fraction of adiabatic surface (0.665). 
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In the following Table the regression coefficients for the regressive models determined for 

the estimation of the correction factors are reported. 

Table 5c.3 - Regression coefficients for the determination of the correction factors for thermal 

gains 

 

 

Entering solar gains 

k0 k1 k2 k3 k4 k5    

0.9346 -0.1014 0.1531 -0.2889 -0.3248 2.487E-2    

Entering solar gains (with the model by Oliveti et al.) 

k0 k1 k2 k3 k4 k5    

0.9314 -0.1086 -0.1566 6.949E-3 -0.2266 2.821E-2    

Transmitted solar gains 

k0 k1 k2 k3 k4 k5 k6   

-0.3265 4.964E-3 3.780 -0.4017 6.765E-3 0.3228 -5.766E-2   

Internal gains 

k0 k1 k2 k3      

0.9885 -4.610E-2 -9.773E-2 -0.1709      

Infrared extra flow towards the sky vault 

k0 k1 k2 k3 k4 k5 k6 k7 k8 

1.044 -0.3144 -0.1433 2.217E-3 7.914E-3 -0.1562 0.2187 -3.738E-3 -5.795E-2 
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Figure 5c.1 - EN ISO 13790:2008 entering solar gains (a), transmitted solar gains (b) and 

internal gains (c), calculated according to the Standard (on the left) and using the correction 

coefficients (right) compared to the simulated gains. Insulated cases in lighter colours 

(a) (a) 

(b) (b) 

(c) (c) 
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Figure 5c.2 - EN ISO 13790:2008 entering solar gains, calculated according to the Standard 

considering the procedure by Oliveti et al. for the evaluation of the effective solar heat gain 

coefficient (on the left) and using the correction coefficients (right) compared to the simulated 

gains. Insulated cases in lighter colours 

 

 

Figure 5c.3 - EN ISO 13790:2008 infrared extra flow towards the sky vault, calculated 

according to the Standard (on the left) and using the correction coefficients (right) compared to 

the simulated gains. Insulated cases in lighter colours 
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5c.3 Discussion 

 

5c.3.1 Entering solar heat gains 

The entering solar radiation gains are clearly overestimated by the EN ISO 13790:2008. As 

observed before, this is consistent with the lack of consideration for the re-dispersion of these 

gains by transmission or by radiation through the windows. The deviations are strongly 

dependent on the amount of dispersing surface (i.e., the S/V ratio) and, in particular, on the 

insulation level, which is also the variable considered in Figure 5c.1 to distinguish the result in 

two groups: insulated one in light red and uninsulated one in dark red. The spread of the points 

of these two groups around the trend line is mainly due to S/V ratio. As it can be seen, the trend 

line of the uninsulated cases demonstrates a general overestimation of +51.2% given by the EN 

ISO 13790:2008 method. In case of insulation, it is reduced to +28.5%. By using the correction 

factor fsol,gl in Eq. (5c.22) the quasi-steady state results have been corrected, obtaining a 

percentage deviation within the 5% respect to the simulations. 

Analysing the results of the quasi-steady state with the effective solar transmittance by 

Oliveti et al., it can be noticed that, even with the agreement with the dynamic simulation is 

better, a large discrepancy is still present. The agreement is improved by the 10%: thus, the 

uninsulated cases present an overestimation of +39.2% and the insulated ones of +18.3% by the 

simplified method respect to the simulations. With the correction factor fsol,gl’ in Eq. (5c.23), 

also in this case the percentage deviation of the quasi-steady state results respect to the 

simulations is within the 5%. 

 

5c.3.2 Solar heat gains by transmission 

For the solar gains transmitted through the opaque envelope, the EN ISO 13790:2008 

underestimates the results respect of the simulations. The trend is the same both for insulated 

and uninsulated cases and it is around -25%. The spreads of the results around the trend lines 

are similar in both cases (a little larger for the insulated ones). 

By using Eq. (5c.24) and calculating the correction factor fsol,env the quasi-steady state results 

have been corrected, and brought close to the 5% range of deviation respect of the simulations. 
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5c.3.3 Internal gains 

The convective internal gains are the same in both calculation methods and the deviations 

are due to the radiative part of the internal gains. The variability in the EN ISO 13790:2008 

results is simply due to the different lengths of the months and a trend line cannot be defined. In 

simulation results, also the partially dispersion of the radiative part is considered. The 

overestimation provided by the Standard is between 10-20% for uninsulated cases and 5-10% 

for the insulated ones. Also the S/V ratios, as expected, are relevant. 

 

5c.3.4 Infrared extra flow towards the sky vault 

In the calculation of the infrared extra flow towards the sky dome, it can be noticed a 

different behaviour from the insulated to the uninsulated cases: while for the insulated cases a 

good agreement is registered, for the uninsulated ones the EN ISO 13790:2008 overestimates 

(+18%). The difference is probably due to the estimation of the surface temperature for the 

calculation of hre. Thus, the estimation of the extra flow for the insulated walls is quite good 

because the external surface temperature is close to the external environment temperature and, 

so, assuming this temperature for the estimation of the radiative heat transfer coefficient does 

not causes large errors as observed for the uninsulated walls. 

 

5c.3.5 Assessment of the proposed correction factor with some BESTEST cases 

In Figure 5c.1, 5c.2 and 5c.3 the thermal gains components evaluated by means of the EN 

ISO 13790:2008 approach have been corrected by using the proposed correction factors. As 

observed in the previous paragraphs, the agreement with the heat gains determined by 

simulation is significantly improved and the percentage deviations are within a 5% range for 

most of the cases. 

As done in part b, the proposed correction factors have been assessed with the BESTEST 

cases 600, 620, 900 and 920 with adiabatic floor. The results for the whole heat gains with the 

effective global solar heat gain coefficient by Oliveti et al. have been reported in Figure 5c.4. 

A good agreement is registered and the thermal gains calculated pass from an 

overestimation of +17.6% to a light underestimation of -2.7% with respect to the simulated 

thermal gains. 
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Figure 5c.4 - Thermal gains calculated by means of the EN ISO 13790:2008 method with the 

effective global solar heat gain coefficient (dark colour) and with the correction factor (light 

colour) 
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5c.4 Main findings 

In the present part of chapter 5, the problem of the agreement between the thermal gains 

evaluated by means of the quasi-steady state method and BES tools is considered. The four 

different components of the heat gains have been distinguished and analysed separately. 

For the entering solar radiation through the transparent envelope the quasi-steady state 

model completely neglects the amount of radiation reflected and dispersed through the windows 

(i.e., it assumes a black cavity hypothesis), as well as the amount absorbed by the opaque 

components but not involved in the air heat balance because redispersed by transmission. For 

the internal gains, the estimation of the contribution of the radiative component is affected by a 

similar problem and a fraction of it is lost by transmissions and does not participate in the air 

heat balance of the thermal zone. About the thermal gains components involving the external 

surface heat balance, the main problem is related to the determination of the surface heat 

transfer coefficient, which depends on the surface temperature that is not known in advance in 

the quasi-steady state methods and it is generally assumed equal to the external air temperature. 

For each component of the thermal gains a correction factor has been proposed in order 

to make them closer to the ones estimated by BES tools in accordance with the EN ISO 

13790:2008 prescriptions. In particular, these factors are statistically derived functions of the 

envelope characteristics (e.g., thermal transmittance or adiabatic surfaces amount). The 

improvements in the agreement between BES and simplified method have been assessed on the 

same cases used for their development and also on some BESTEST-based cases. In both ones, 

the percentage deviations have been reduced within a range of 5%. 
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Part d: Comparison between BES and EN ISO 13790:2008 quasi-

steady state method 

5d.1 Methods 

In this last part, the final results (i.e., the monthly heating and cooling energy needs) have 

been calculated (according to the quasi-steady state method and the simulation) and compared. 

The BESTEST cases presented in the first part of this chapter have been evaluated again 

with the use of the correction proposed. The simplified hypothesis about the floor, assumed 

adiabatic in the parts b and c, is not considered here, in order to have results comparable with 

the ones of part a. 

As regards the comparison for the extensive simulation plan, the chosen cases are not all 

those considered in the previous parts of this chapter: in order to focus on the performance of 

the thermal zones with a residential use, all the alternatives proposed in part c for the study of 

the heat gains have been selected but only a ventilation of 0.3 ach/h, typical for dwellings, have 

been taken into account. As stated before, the imposed setpoints for the thermal losses 

calculation are those prescribed for this cathergory. Both Messina and Milan have been 

considered in this last analysis. 

 

5d.1.1 Methods: EN ISO 13790:2008 utilization factors 

In order to calculate the energy needs starting from the heat losses and gains, the technical 

Standard recours to a dynamic coefficient, the utilization factor, which has to take into account 

of the dynamic effects occurring in the energy balance of the thermal zone. In particular, the aim 

of the utilization factor is to consider the effect of the building enevelope thermal inertia and of 

the mismatch between thermal losses and thermal gains: by performing the evaluation on a 

monthly (or seasonal) basis, the integrals of the flows during the period are considered and, 

even if timestep by timestep the required energy need is given by the difference between heat 

losses and heat gains, the same concept cannot be extended to the montly (or seasonal) integrals. 

Thus, because of the thermal inertia and, generally, of the different hourly profiles of the two 

thermal flows, there is a mismatch between their occurences that cannot be detected by 

considering a long time-discretization period. For instance, as orbserved by van Dijk and 

Arkesteijn (1987) for the heating energy needs, the occurrence of heat gains when the heat 
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losses are low tends to reduce the heating needs and to lead to an overheating respect to the 

considered setpoint. To take into account of these phenomena, the EN ISO 13790:2008 

proposes an utilization factor for the heating energy need calculation and another for the cooling 

one. 

Referring to the heating problem, the gain utilization factor is used to weight the heat gains 

and to calculate the heating energy needs. This dimensionless variable is a function of the heat 

balance ratio γH between the gains and the losses and the parameter aH which is statistically 

derived and considers the effect of the building inertia. 
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where aH,0 is a dimensionless reference numerical parameter, which is equal to 1 for the 

monthly calculation and 0.8 for the seasonal one, τ is the time constant of the building zone 

expressed in hours and τH,0 is the reference time constant, whose value is 15 h for the monthly 

calculation and 30 h for the seasonal ones. aH,0 and τH,0 can assume different values in the 

Member States, as consequence of specific empirical studies aim at better evaluating them. The 

time constant can be calculated with Eq. (5d.3): 
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where Cm is the internal heat capacity of the building, Htr and Hve are the overall heat 

transfer coefficients, respectively by transmission and ventilation, presented in part b. Cm can be 

evaluated as the sum of the products between the internal heat capacity per area κi of each 

element k and its area. The area specific heat capacity can be determined by means of one of the 

methods described in EN ISO 13786:2007; in this context, the detailed approach described in 

chapter 4 has been implemented. 

The gain utilization factor is defined as: 
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If γH = 1: 
1

,

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If γH < 0: 
H
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For the cooling problem, the loss utilization factor is used to weight the heat losses and to 

calculate the cooling energy needs. The definition and used parameter are similar to the ones 

presented for the heating energy calculation: the loss utilization factor is a function of the heat 

balance ratio evaluated in the cooling conditions γC between the gains and the losses and the 

parameter aC which, like aH, is statistically derived and considers the effect of the building 

inertia. 
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where aC,0 is a dimensionless reference numerical parameter and τC,0 is the reference time 

constant. Their values are the same of aH,0 and τH,0 but after specific empirical research, the 

Member States can decide to assume other reference values. 

The loss utilization factor is defined as: 

If γC > 0 and γC ≠ 1:  1,
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If γC = 1: 
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If γC < 0: 1, lsC  (5d.11) 

 

For the implementation of the EN ISO 13790:2008 method for the estimation of the 

monthly energy needs, different thermal flows have been used: the ones calculated in 

accordance with the EN ISO 13790:2008 method, the corrected ones and, finally, the thermal 

flows evaluated by means of dynamic simulations. In this ways it has been possible to assess not 

only the heat flows but also the capability of the equations provided by the Standard to calculate 

the utilization factor. 
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5d.2 Results 

5d.2.1 BESTEST cases 

The annual energy results evaluated by means of the EN ISO 13790:2008 method with the 

proposed correction factors have been reported in Figure 5d.1 and 5d.2, for Milan and Messina, 

respectively. 

 

Figure 5d.1 - Quasi-steady state method with correction factor assessed with the BESTEST 

cases 600, 620, 900, 920 for the location of Milan: annual heating (a) and cooling (b) energy 

needs. The dotted lines delimitate the confidence interval 
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Figure 5d.2 - Quasi-steady state method with correction factor assessed with the BESTEST 

cases 600, 620, 900, 920 for the location of Messina: annual heating (a) and cooling (b) energy 

needs. The dotted lines delimitate the confidence interval 
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5d.2.2 Extensive simulation plan 

The EN ISO 13790:2008 procedure has been implemented and the energy need results, both 

heating and cooling, have been compared with the ones provided by TRNSYS with air 

temperature setpoints (deadband 20 – 26 °C, for heating and cooling). The monthly heating 

energy needs have been compared in Figures 5d.3 and 5d.5 and the cooling ones in Figures 5d.4 

and 5d.6. 

 

 

Figure 5d.3- EN ISO 13790:2008 monthly heating energy needs and TRNSYS heating energy 

needs considering the thermal flows according to the Standard (case a) and the corrected ones 

(case b) 
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Figure 5d.4 - EN ISO 13790:2008 monthly cooling energy needs and TRNSYS cooling energy 

needs considering the thermal flows according to the Standard (case a) and the corrected ones 

(case b) 
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Figure 5d.5 -EN ISO 13790:2008 monthly heating energy needs and TRNSYS heating energy 

needs considering simulated heat gains and losses in the Standard calculation (case c) 

 

 

Figure 5d.6 - EN ISO 13790:2008 monthly cooling energy needs and TRNSYS cooling energy 

needs considering simulated heat gains and losses in the Standard calculation (case c) 
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5d.3 Discussion 

After the calculation and the application of the developed correction factors to the thermal 

losses and gains, significant improvements have been registered in the assessment of the EN 

ISO 13790:2008 method with the BESTEST cases. For the annual heating energy needs there 

are not relevant changes but for the annual cooling energy needs the results are within or very 

close to the boundaries of the acceptability range. 

As regards the monthly heating energy needs, without any correction to the heat losses and 

gains (case a in the Figures) there is an overestimation by the EN ISO 13790:2008 method of 

the 14.1%. Applying the correction coefficients elaborated in the previous paragraphs to the 

thermal losses and to the different components of the thermal gains (case b), the alignment 

between the simplified method and the dynamic simulation is improved and the overestimation 

by the first approach is reduced to 0.6%. 

In case c, instead of the calculated thermal flows, directly the ones simulated with TRNSYS 

in parts b and c have been used in the quasi-steady state method. The trend remains the same 

with respect to the case b (+0.4% instead of +0.6%) but the spread of the results is reduced. This 

means that the residual deviations are most correlated to the inaccuracy of the correction factors 

and the gain utilization factor is well estimating the balance between heat losses and gains. 

Larger percentage discrepancies are encountered when the heating energy needs are lower than 

2.5 GJ. 

For the cooling energy needs, the results are similar. For what concerns the case a, a large 

overestimation is provided by using the EN ISO 13790:2008 approach with respect to the 

simulations. The trend is +25.4% and a large variability is encountered. For the monthly cooling 

energy needs the overestimation is larger than for the heating needs. Applying the correction 

coefficients (case b), the alignment between the simplified method and the dynamic simulation 

is improved and the discrepancy is reduced to -1.3%, even if the percentage deviations are 

larger than 5% for a large number of configurations. 

In case c, the trend remains approximately the same with respect to the case b (-1.7%) but 

the spread of the results is reduced, as observed for the heating energy needs. 
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5d.4 Main findings 

In the last part of this chapter the quasi-steady state approach proposed by the technical 

Standard EN ISO 13790:2008 and detailed BES tools (TRNSYS in this case) have been 

compared. 

The comparison of the monthly energy needs revealed a clear overestimation provided 

by the quasi-steady state approach respect to the dynamic simulation, especially for the cooling 

energy needs. For the monthly heating energy needs the overestimation is +14.1% while for the 

monthly cooling energy needs it is +25.4%. 

Applying the correction factors to the thermal losses and gains, the results have been 

well aligned (+0.6% and -1.3% for the heating and the cooling needs, respectively). Moreover, 

this demonstrated that the utilization factor is well approximated by the Standard method and, in 

case, requires some further investigation for improving the estimation for those configurations 

and months with a low energy needs, both heating and cooling. 
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Conclusions 

This research work discussed both the possibilities and some issues related to the building 

energy simulation to characterize the building envelope energy performances. The research is 

focused on an extensive use of BES tools, aimed at investigating many alternatives according to 

the design of experiments approaches in the different topics discussed in the present work. 

A first conclusion is about the methodology to manage the alternatives and to find out 

relationships between the different variables from a large number of results. The adopted 

statistical techniques have been useful in both tasks. In particular, the approach of the design of 

experiment has revealed a proper solution for assessment problems and it could be used also by 

professionals in their design activities. In many contexts, statistics is essential when using BES 

tools to simulate the building envelope, in particular if the final aim is to detect correlations and 

to develop simplified models. Nevertheless, the statistical approaches exploited in the present 

research basically are not comprehensive of the whole possible alternatives and other solutions 

can be more convenient according to the aims. For instance, in optimization analyses a partial 

factorial plan can be preferred because less time-consuming, especially if the higher rank 

interactions are known to be negligible. Whatever the context, coupling BES and statistical 

techniques allows to better use the simulation instruments. 

 

Weather data and external conditions in BES 

As regards the weather files for BES, the TRYEN weather files have been developed in 

accordance with the EN ISO 15927-4:2005 procedure and compared to the original multi-year 

series of the data. The TRYEN monthly values for the climatic parameters (e.g., dry bulb 

temperature, solar radiation on horizontal surface, relative humidity) and the averages over the 

multi-year period are not in good agreement at the same time. 

About the building energy performance results (i.e., annual heating and cooling energy 

needs and peak loads), estimated with the two weather file approaches, the deviations of TRYEN 

results from the averaged results of the multi-year series are within 10% but in some locations 

an overestimating/underestimating TRYEN trend can be identified. By increasing the number of 

years considered for the development of the TRYEN, this phenomenon is mitigated. To improve 

the representativeness when limited series are available, it is possible to modify the Standard 

procedure by introducing weighting coefficients for the different weather parameters, in order to 

develop different TRYEN to use for specific purposes. 
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The calculation method provided by the technical Standard EN ISO 13370:2007 to define 

the boundary temperature for walls and floors in touch with the ground, both for quasi-steady 

state and BES approaches, has been discussed. The Standard method has been compared to 

FEM simulations both in steady-state and dynamic conditions. 

In the first ones, deviations lower than 1% have been registered. As concerns the dynamic 

problem, the forcing temperature period has been studied, finding that an annual-period forcing 

temperature should be considered in BES, as expected. Moreover, in order to evaluate 

accurately both flux and boundary temperature according to the EN ISO 13370:2007 method, 

the correct estimation of the time lag of the flux through the soil is crucial. In this case, the 

percentage deviation between FEM and Standard method are less than 3%. 

As observed in chapter 2, the main problem in the accuracy of the proposed methods is the 

evaluation of the multi-dimensional heat flows and the time lag. 

 

BES validation and comparison 

The problem of the comparative validation between BES tools has been investigated, testing 

two well known simulation codes, TRNSYS 16.1 and EnergyPlus 7, both with the BESTEST 

cases and with the developed extensive comparative approach. 

The monthly heating and cooling energy needs and hourly peak loads were considered, 

together with the hour of occurrence of the peaks. A building module composed by a single-

storey thermal zone with 100 m
2
 floor area has been used to develop a wide range of 

configurations, characterized by different opaque and transparent envelope compositions, 

expositions and windows orientations. The alignmement done for the boundary conditions and 

the simulation hypotheses allowed to consider the relative performance of the two codes, 

pointing out the effects of the different algorithms and assumptions. 

Beyond the comparative validation, the method can be useful when using simulation codes 

for particular aims, such as tuning simplified methods, doing energy diagnosis or performing 

calibration of the simulation. 
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Building envelope characterization with BES 

In this part the comparison between different simulation tools has been focused on the 

modelling of single components of the building envelope instead of the whole thermal zone.  

About the dynamic behaviour of opaque components exposed to the external air, the Transfer 

Function Methods implemented in BES tools, in particular the Direct Root Finding in TRNSYS 

and the State Space in EnergyPlus, as well as an implicit finite difference scheme solution, have 

been assessed. The dynamic parameters proposed by the technical Standard EN ISO 

13786:2007 (i.e., the periodic thermal transmittance, the time shift and the decrement factor) 

have been used for this purpose. Since these dynamic parameters are defined considering a 

sinusoidal forcing signal, the Fast Fourier Transform (FFT) analysis and the superposition of 

the effects have been used to evaluate the dynamic response of a sample of walls under more 

representative conditions. 

The numerical methods result in agreement with the FFT outputs, with some small 

deviations for what concerns the time shift. The analysis allowed also to point out that under 

“real” forcing conditions, the dynamic parameters proposed by the EN ISO 13786:2007 are not 

representative of the actual behaviour. 

In order to complete the comparison between EnergyPlus and TRNSYS, the surface 

temperature profiles of glazings and adiabatic surfaces have been analysed. For the peak surface 

temperatures, deviations of 2-4 °C between the two simulation codes are present, even if most 

of the cases the differences are lower than 1 °C and with a general overestimation of the surface 

temperatures calculated by EnergyPlus respect to TRNSYS values. 

 

BES and simplified models 

The quasi-steady state approach proposed by the technical Standard EN ISO 

13790:2008 and detailed BES tools (TRNSYS in this case) have been compared. The simplified 

approach has been first assessed by means of the BESTEST methodology, finding that it is not 

within the acceptability ranges in most of the considered cases. A detailed analysis has been 

performed on the thermal losses and thermal gains in order to find where the two approaches 

differ and which are the causes. 

As regards the thermal losses, the linearization of the radiative and convective heat 

exchanges and, consequently, the use of an operative temperature setpoint (due the modelling of 

the internal exchanges), are the main sources of discrepancy. 
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As concerns the thermal gains, the causes are different. For the entering solar radiation 

through the transparent envelope the quasi-steady state model assumes a black cavity hypothesis 

and so it completely neglects the amount of radiation reflected and dispersed through the 

windows, as well as the amount absorbed by the opaque components but not involved in the air 

heat balance because dispersed by transmission. For the internal gains, the estimation of the 

contribution of the radiative component is affected by a similar problem and it is partially lost 

by transmissions. About the thermal gains components involved in the external surface heat 

balance, the main problem is related to the determination of the surface heat transfer coefficient, 

which depends on the surface temperature that is not known in advance in the quasi-steady state 

methods and it is generally assumed equal to the external air temperature. 

Both for the thermal losses and the thermal gains correction factors have been proposed 

in order to make them closer to the ones estimated by BES tools in accordance with the EN ISO 

13790:2008 prescriptions. 

The monthly energy needs have been finally compared, underling the overestimation by 

the quasi-steady state approach respect to the dynamic simulation, especially for the cooling 

energy needs. Applying the correction factors to the thermal losses and gains, the results have 

been well aligned. This demonstrated the validity of the proposed corrections and, moreover, 

that the utilization factor is well approximated by the Standard method and requires some 

further investigation for improving the estimation for those configurations and months with a 

low energy needs. 
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Further developments 

For each topic developed in this research work, further developments have been considered. 

As regards the study of the reference year weather files for BES, weighting factors for the 

weather parameters will be investigated in the construction of TRYEN according to the EN ISO 

15927-4:2005 procedure. The aim is to improve the representativeness of the TRYEN with 

respect to the multi-year data series, especially when a limited number of complete years is 

available. 

The analysis of the EN ISO 13370:2007 method for the evaluation of the heat flow through 

the walls and floors in thermal contact with the ground will be examined in depth by 

considering real annual sol-air forcing solicitations instead of the sinusoidal one and different 

kinds of configurations (aimed at assessing the other cases presented in the technical Standard 

and other aspect ratios of the floor). In this way, also the effects of the thermal bridges and the 

accuracy in the estimation of the external periodic heat transfer coefficient will be assessed. 

The comparison between BES codes will be extended to other tools, analysing the latest 

release of TRNSYS (version 17) with 3-dimensional models for the distribution of the solar 

radiation entering through the glazings and the internal infrared exchanges. Moreover, also other 

widespread simulation software, such as ESP-r, could be tested. Particular attention will be paid 

to the internal infrared exchanges models implemented in the different BES tools and described 

in literature. 

As regards the correction factors proposed for the thermal losses and gains evaluated 

according to the EN ISO 13790:2008 method, some further developments involve the 

assessment of the developed corrections. In particular, they are related to: 

- the relationship between the surface temperature of the envelope and the correction of 

the thermal losses; 

- the study of different distributions of the entering solar radiation and solar absorption 

coefficients of the opaque components for the assessment of the corrections of solar 

heat gains; 

- the study of the correction for the internal gains in case of different ratio between the 

convective and the radiative parts. 

In order to correlate the topic of the comparison of BES tools with the quasi-steady state 

method, the same thermal flows will be evaluated by means of another simulation software, 

such as EnergyPlus. Finally, the definition of the utilization factors, both of the thermal gains in 

the heating needs calculation and of the thermal losses in the cooling needs calculation, will be 

analysed. 
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Annex A 

In this Annex, the statistical techniques considered in this work are described and their main 

advantages and limitations underlined, as well as the context of their application. 

 

A.1 Factorial Experiment 

In a factorial experimental design, the indipendent variables controlled are called factors 

and the values they can assume, levels. The main characteristic of a factorial experiment is that 

experimental trials (or runs) are performed at all combinations of factor levels. This is particular 

important because allows to investigate all the possible interaction effects among the 

investigated factors. The factorial approach can yield more information respect to other 

statistical methods, such as the Monte-Carlo method, as observed by Fürbringer and Roulet 

(1995). Many typologies of factorial designs are present in literature, as indicated for instance 

by Fang et al. (2008) and in this chapter only the ones implemented in this research have been 

discussed, according to the models presented by Montgomery and Runger (2003) and Levine et 

al. (2012). 

The effect of a factor (called main effect) is the change in response originated by a change in 

its level. For instance, if we want to assess the response of the numerical algorithms implement 

in BES tools for the heat trasfer by conduction through the opaque components, the thermal 

mass of the wall can be a factor and changing its value from low (e.g., timber structure) to high 

(e.g., concrete structure) its main effect can be assessed. In many situations, the only main 

effects are not able to characterize the response and also the interactions have to be taken into 

account. An interaction between two factors is present when the difference in response between 

the levels of one factor is not the same at all levels of the other factors, as can be easily seen in 

Figure A.1. 

In this example it is possible to see that there are not interactions between the internal 

convective gains and the average thermal transmittance of the envelope in the simulation of the 

heating energy needs while an interaction between the thermal transmittance and the amount of 

dispersing surface is obviously present. From this representations, it is possible to detect an 

interaction when the two lines are not parallel, as in Figure A.1 on the right.  
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Figure A.1 – Absence of interaction between the thermal transmittance of the envelope and the 

convective internal gains (left) and presence of interaction between the thermal transmittance of 

the envelope and its dispersing area (right) for the determination of the heating energy needs by 

BES 

 

The factorial experiments are the only way to detect and analyse the interactions between 

the assessed variables. Other techniques, such as the one factor at a time (OFAT), vary one 

single factor and not all the factors simultaneously. In many applications, in particular for those 

where the interaction between the variables is relevant, the OFAT is not able to recognize the 

interactions and it is generally inefficient because it requires more experiments than a factorial 

approach and there is no assurance of a correct estimation (Montgomery and Runger, 2003). 

 

A.1.2 Fixed-Effects Model 

In this research work, most of the considered variables are fixed factors (i.e., specific values 

have been chosen for them, without considering a probability function). In this paragraph the 

fixed model for 2 factors will be discussed. 

Considering two fixed factors F1 and F2 with f1 and f2 levels and n replicates for each ij 

combination, the main effects, β1,i and β2,j respectively, and interaction (β1β2)ij, are generally 

defined as deviations from the mean: 
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The total of the observations taken at the i
th
 level of F1 is indicated with yi∙∙, the total of the 

observations taken at the j
th
 level of F2 is y∙j∙, the observations at the i

th
 level of F1 and the j

th
 

level of F2 are yij∙ and y∙∙∙ is the total of all observations. y  indicates an average. 
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Each observation yijk is run in a random order so that the plan is completely randomized. A 

statistical model can be defined: 

  ijkijjiijkY   21,2,1        (A.6) 

Where μ is the overall mean effect and εijk is the random error component, whose 

distribution is normal with a mean equal to 0 and a variance of σ
2
.  
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As often in statistics, the adopted approach is the tests of the hypotheses: 

 the main effect for the factor F1: 

o H0: β1,1 = β1,2 = … = β1,f1 = 0 

o H1: at least one β1,i ≠ 0 

 the main effect for the factor F2: 

o H0: β2,1 = β2,2 = … = β2,f2 = 0 

o H1: at least one β2,j ≠ 0 

 the interaction between the factors: 

o H0: (β1β2)11 = (β1β2)12= … = (β1β2)ij= 0 

o H1: at least one (β1β2)ij ≠ 0 

The assessment of these hypotheses can be done by means of the ANOVA technique which 

requires that the total variability is decomposed: 

     

   



  



 











  







1

1

2

1 1

2
1

1

2

1

2

2

1

2
1

1

1

2
2

1

1

2

1 1

2

f

i

f

j

n

k

ijijk

f

i

f

j

jiij

f

j

j

f

i

i

f

i

f

j

n

k

ijk

yyyyyyn

yynfyynfyy

   (A.7) 

Or, in symbols: 

EFFFFT SSSSSSSSSS 
2121  

      (A.8) 

The total variability can be decomposed in the part due to the factors, the part due to the 

interactions and the errors. The degrees of freedom can be partitioned in the following way: 

        111111 21212121  nffffffnff     (A.9) 

The mean squares can be calculated dividing each variability component by its degrees of 

freedom. 
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Evaluating the expected values of the means squares are: 
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If the null hypotheses are true the expected values are all equal to σ
2
. For this reason the 

hypotheses are tested by means of the following ratios: 

E
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F 1
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degrees of freedom 
(A.13)
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(A.15)

 

Once decided the level of significance α, each F0 is compared to the correspondent F-

distribution value. When F0 is larger, the null hypothesis is rejected and the alternative 

hypothesis is assumed as true. A true null hypothesis means that a factor (or an interaction) has 

not influence at all while a true alternative hypothesis means that at least there is a level which 

is significant. When the ANOVA analysis is completed, the residuals, which are the deviations 

between the observations and their averages for each combination of levels of the different 

factors, have to be checked in order to assess the adequacy and the integrity of the model. 

The discussed model has only 2 factors but it can be easily extended for a general number of 

factors. In that case, also the interactions between more than 2 factors have to be considered. In 

some cases a factor has a large number of possible levels and in order to generalize the results, 

its levels are randomly extracted. In this case the factor is called random factor and the resulting 

model random-effects model. If some factors are fixed and other not, the model is called mixed-

model. 
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A.1.2 2
k
 plans 

Among the factorial plan, we have some special cases involving k factors, each one with 

just two possible levels (e.g., low and high levels or factor present or absent). This kind of 

factorial plan is particularly useful for starting screening analyses, when the number of factor to 

test is high. 

In this work, generally 2
k
 plans have not been followed because for some variables related 

to the buildings geometry or thermo physical properties are difficult to describe by means of 

binary factors (e.g., the orientation of the windows). Anyway, they have been the basis for the 

development of the factorial plans considered in this research and, when possible, some 

variables have been connoted with high and low values (e.g., the solar heat gain coefficient) or 

with the absence or presence of the factor itself (e.g., the internal gains).  

The simplest 2
k
 design plan has just 2 factors and it is called 2

2
 plan. It is generally 

represented with a square, whose sides represent the two factors and whose corners are the 

combinations of levels. The low level is indicated with a negative sign while the high level with 

a positive one. 

 

 

 

 

 

 

 

 

 

 

 

 
 

In this plan, the effects can be estimated as contrasts (e.g., calculating the difference 

between the results at the high and at the low levels): 
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A.2 Correlation indexes 

In some cases the correlation present between two variables is investigated. The simplest 

index which can be used for this aim is the correlation index r by Pearson. This index is useful 

in particular to detect the level of linear correlation between two variables and it is defined as 

the covariance of the two variables divided by the product of their standard deviations: 
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The index can vary from -1 to +1, according to its definition. A unitary value means a 

perfect linear correlation between the tested variables while a null value means that there is not 

a linear correlation but other kind of correlations, which this index cannot detect, could be 

identified. Thus, a very low or null r index does not indicate that there is no correlation at all but 

just that, in case, it is not linear. A positive value refers to a direct linear correlation, while a 

negative one to an inverse linear correlation. Generally absolute values lower than 0.1 means 

that there is no linear correlation, between 0.1 and 0.3 that the linear correlation is small, from 

0.3 to 0.5 medium and, only when larger than 0.5, strong. 

The index is not considered a robust statistical indicator and so it can easily lead to 

misleading results in presence of outliers. As it is defined to investigate a linear correlation, the 

relationship between the two studied variables has to be monotonic over the investigate domain. 

The main limitation of Pearson’s index is the focus on the linear correlations, which are 

generally the first kind of correlations researched between two variables in particular in a 

starting screening analysis. In order to deepen the relationship among variables, other indexes 

have been developed, such as the rank correlation index ρ by Spearman, that belongs to the non-

parametric measures of statistical dependence between variables. Like Pearson’s index, 

Spearman’s index is defined in the range between -1 and +1 and it able to assess the monotonic 

correlations in the studied domain but without the limitation of the linear relationship. 

This index can be calculated with different types of variables (e.g., ordinal numeric or 

continuous numeric ones) and the main requirement is that they are ranked variables. Starting 

from the raw scores (i.e., the original collected data for the two considered variables), Xi and Yi, 

the ranks xi and yi are calculated and then the index: 
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As it can be noticed, Eq. (A.20) is exactly the same as Eq. (A.19) but the ranks are 

considered instead of the original values. Differently from Pearson’s index, Spearman’s index is 

a robust statistical correlation index in case of outliers. 

In Figure A.3 an example of the different results provided by the two correlation indexes is 

reported. 

 

Figure A.3 - Pearson's and Spearman's indexes 
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A.3 Multiple linear regression 

The ANOVA reported in the paragraph A.1 for the analysis of the factorial experimental 

plans, as well as the correlation indexes described in A.2, have as main aims to identify if an 

effect is present (e.g., if there is at least one level of a considered factor which is statistically 

relevant in influencing a response variable) and if a correlation between two variables can be 

expressed, respectively. Even if in some particular factorial plans, the 2
k
 plans, it is possible to 

easily estimate the effects by contrast, generally we have to use other techniques to estimate the 

entity of correlation between one of the factors and the dependent variable. In this research, the 

chosen statistical technique is the multiple linear regression. 

This technique differs from the simple linear regression because of the number of 

independent variables (or regressors) considered, which are more than one both for the 

independent and the dependent ones. As in the simple regression model, the adjective “linear” is 

referred to the relationship between a regressor and a response variable and the independent one 

can be also a complex function far away to have a linear trend. For instance, Eq. (A.21) can be a 

linear regression but Eq. (1.22) not. 

  xY ln          (A.21) 

  xY          (A.22) 

In many cases, anyway, even if the relationship is not linear, it is possible to properly 

redefine the variables; for example Eq. (A.22) can be redefine as Eq. (A.23) and the regression 

coefficients estimated by means of this technique. 

  xYY III ln         (A.23) 

The general regression model with k independent variables can be written as: 

  kk xxxY ...2211       (A.24) 

The interactions seen in A.1.2 can be included in the model. For example, if the interaction 

x1x2 is called x3, the model in Eq. (A.25) can be rewritten as the one in Eq. (A.26). 

  2132211 xxxxY       (A.25) 

  332211 xxxY        (A.26) 

Since the independent variables have generally different units of measurements, it is 

difficult to see which is the most influent and so to perform a sensitivity analysis (Confalonieri 
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et al., 2010). For this reason, often standardized coefficients are represented, together with the 

common unstandardized ones. These regression coefficients are defined as the product between 

the unstandardized coefficient of a considered independent variable and the ratio between the 

standard deviation of the response variable and the one of the independent one. 

 

A.3.1 Least squares method 

The most frequently used method to estimate the regression coefficients βk is the method of 

least squares. n observations (xi1, xi2, …, xik, yi with i =1, 2, …, n) are required and they have to 

be larger than the number of the k regressors. The observations satisfy the Eq. (A.27): 
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        (A.27) 

The least square function L is: 
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And it has to be minimized respect to them, to obtain p = k+1 equations for the estimators 

j̂ of the regression coefficients: 
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The equations can be represented in a more compact way by means of matrixes and vectors. 

Eq. (A.27) becomes: 

εXβy            (A.30) 
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y is th (n x 1) vector of the observations, X the (n x p) matrix of the levels of the indipendent 

variables, β the (p x 1) vector of regression coefficients and ε the (n x 1) vector of the random 

errors. 

Eq. (A.28) can be written as: 

   Xβy'Xβyεε' 


n

i

iL
1

2
       (A.31) 

The estimators of the regression coefficients are: 

  yX'XX'β
1ˆ 

          (A.32) 

The estimated model is: 

Xβy ˆˆ            (A.33) 

The residuals (i.e., the difference between each observation and the one estimated by means 

of the regression model) can also be expressed by means of a matrix notation as a (n x 1) vector. 

y-ye ˆ           (A.34) 

The residuals have to be analysed to assess the adequacy of the estimated model, in 

particular for what concerns the hypothesis of constant variance and normal distribution. 

 

A.3.2 Hypotheses tests for the multiple regression model 

As seen in the section A.1, a statistical test can be adopted to assess the significance of the 

developed model: 

o H0: β1 = β2 = … = βk = 0 

o H1: at least one βj ≠ 0 
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The total variance can be decomposed into the part explained by the regressors and the part 

due to the errors: 

ERT SSSSSS 
 

        (A.35) 

And a statistical test F0 can be defined: 
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0  
       (A.36) 

After chosing a level of significance α, F0 is compared to the correspondent F-distribution 

value. When F0 is larger, the null hypothesis is rejected and the alternative hypothesis is 

assumed as true (i.e., at least one regression coefficient is different from zero). 

Similarly, each single regression coefficient can be tested: 

o H0: βj = 0 

o H1: βj ≠ 0 

 

A.3.3 Determination coefficient and selection of the regressors 

From the sums of squares, it is possible to evaluate a global statistic which assesses the fit 

of the model. Its name is determination coefficient R
2
 and its value can be between 0 and 1: 

when it is very low the model is not descriptive of the correlation between the variables while if 

it is close to 1 it is well representative and the model can also be used for forcasting aims. 

T

R

SS

SS
R 2

 
         (A.37) 

If the number of regressors increases, also the determination coefficient gets higher. This 

could lead to include in the model also variables not related in a significant way with the 

response. In order to avoid misleading indications by the determination coefficients, an adjusted 

R
2
 has been defined: 
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R
2
adj increases just if a variable added to the model reduces the error mean square. 

Different strategies are available to determine which regressors have to be included in the 

model. One of the most used is the stepwise algorithm, which has also been adopted in this 

study. According to this method, several regression models are built by adding or removing 

independent variables at each step. A variable is included or removed according to the variation 

of a partial F statistical test. The probabilities for the inclusion (alpha-to-enter) of the exclusion 

(alpha-to-remove) in this research have been set to 5% and 10%, respectively: if the probability 

of F is less or equal to 5% the variable is included and if it is larger of equal to 10% removed. 

The stepwise regression starts with a model with a single independent variable, which is the 

one with the highest correlation with the response. At the further steps, the other variables are 

examined and the one with the maximum value of F is compared to the limit selected to be 

included. 

 
 1

1

,

,

xxMS

SS
F

jE

jR

j




 
        (A.39) 

MSE is the error mean square for the model containing both x1 and xj. In the same step, the 

variables previously added are examined to find if one of them can be removed. The F values 

are calculated for each variable present in the model at the i
th
 step and the one with the highest 

value is compared to the limit for the exclusion. The procedure finishes when no other variables 

can be added or removed. 

 

In some cases there are correlations between the independent variables, such as when the 

interactions are assessed. Two or more regressors which are correlated should not be included in 

the model at the same time, in order to avoid multicollinearity problem: indeed, strong 

dependencies can affect the correct estimation of the regression coefficients. A specific 

statistical index has been derived for taking under control the multicollinearity problem, the 

variable inflation factor VIF. 

 
 2

j

j
R1

1
VIF


         (A.40) 

Where Rj
2 

is the determination coefficient of the regression model with βj as response 

variable and the other (k-1) regressors as independent variables. A value larger than 10 for the 
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VIF means that there is a multicollineary problem. In some cases a limit of 5 is considered, in 

order to be surer to avoid the problem. 
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Annex B 

In this Annex, the graphs with the monthly average dry bulb temperature, daily solar 

radiation on the horizontal surface and relative humidity have been reported for the locations 

examined in chapter 2a (Aosta, Bergamo, Monza, Trento, Varese, De Bilt). 
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Aosta 

 

Figure B.1 - (a) Average monthly temperature (b) average daily horizontal global radiation and 

(c) average monthly relative humidity for Aosta. The red dots represent the TRYEN monthly 

values, the external dotted lines represent the maximum and the minimum for the multi-year 

series, the internal dotted lines the first and the third quartile (Q1 and Q3), while the continuous 

line is the median 
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Bergamo 

 

Figure B.2 - (a) Average monthly temperature (b) average daily horizontal global radiation and 

(c) average monthly relative humidity for Bergamo. The red dots represent the TRYEN monthly 

values, the external dotted lines represent the maximum and the minimum for the multi-year 

series, the internal dotted lines the first and the third quartile (Q1 and Q3), while the continuous 

line is the median 
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Monza 

 

Figure B.3 - (a) Average monthly temperature (b) average daily horizontal global radiation and 

(c) average monthly relative humidity for Monza. The red dots represent the TRYEN monthly 

values, the external dotted lines represent the maximum and the minimum for the multi-year 

series, the internal dotted lines the first and the third quartile (Q1 and Q3), while the continuous 

line is the median 
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Trento 

 

Figure B.4 - (a) Average monthly temperature (b) average daily horizontal global radiation and 

(c) average monthly relative humidity for Trento. The red dots represent the TRYEN monthly 

values, the external dotted lines represent the maximum and the minimum for the multi-year 

series, the internal dotted lines the first and the third quartile (Q1 and Q3), while the continuous 

line is the median 
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Varese 

 

Figure B.5 - (a) Average monthly temperature (b) average daily horizontal global radiation and 

(c) average monthly relative humidity for Varese. The red dots represent the TRYEN monthly 

values, the external dotted lines represent the maximum and the minimum for the multi-year 

series, the internal dotted lines the first and the third quartile (Q1 and Q3), while the continuous 

line is the median 
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De Bilt 

 

Figure B.6 - (a) Average monthly temperature (b) average daily horizontal global radiation and 

(c) average monthly relative humidity for De Bilt. The red dots represent the TRYEN monthly 

values, the external dotted lines represent the maximum and the minimum for the multi-year 

series, the internal dotted lines the first and the third quartile (Q1 and Q3), while the continuous 

line is the median 
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Annex C 

In this Annex, the tables an the graphs with the periodic thermal transmittances and time 

shifts for the walls studied in chapter 4a have been reported for the locations of Milan, Rome 

and Palermo. 
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Milan 

Table C.1 - Periodic thermal transmittance according to the conventional EN ISO 13786, the 

FFT and the DRF approaches, with percentage differences between DRF and FFT values for 

the different orientations in the case of Milan. All values in [W m
-2

 K
-1

] 

 

 

Table C.2 - Time shift (in the range -24 to 0 hours) according to the conventional EN ISO 

13786, the FFT and the DRF approaches, with absolute differences between DRF and FFT 

values for the different orientations in the case of Milan. All values in [h] 

 

 

 
EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT DRF Δ% FFT DRF Δ% FFT DRF Δ% FFT DRF Δ% FFT DRF Δ% 

A5 0.084 0.086 0.085 -1.45% 0.066 0.065 -1.57% 0.070 0.069 -1.03% 0.079 0.078 -1.03% 0.086 0.085 -1.43% 

A10 0.045 0.046 0.046 -0.45% 0.035 0.035 -0.75% 0.037 0.037 -0.05% 0.042 0.042 -0.40% 0.046 0.046 -0.18% 

A15 0.030 0.030 0.031 2.16% 0.023 0.024 2.84% 0.025 0.025 2.78% 0.028 0.028 3.00% 0.030 0.031 1.81% 

B5 0.129 0.133 0.133 -0.29% 0.100 0.099 -0.51% 0.109 0.109 0.09% 0.120 0.120 0.26% 0.132 0.132 -0.07% 

B10 0.074 0.076 0.077 0.84% 0.058 0.058 0.90% 0.062 0.063 1.40% 0.069 0.070 1.51% 0.076 0.077 1.30% 

B15 0.050 0.051 0.053 4.25% 0.039 0.040 3.43% 0.042 0.044 4.81% 0.046 0.049 4.79% 0.051 0.053 4.25% 

C5 0.049 0.050 0.050 -0.69% 0.038 0.037 -0.89% 0.041 0.041 -0.41% 0.046 0.045 -0.62% 0.049 0.049 -0.45% 

C10 0.028 0.028 0.028 0.63% 0.021 0.021 0.88% 0.023 0.023 1.17% 0.026 0.026 1.12% 0.028 0.028 1.26% 

C15 0.019 0.019 0.020 4.25% 0.014 0.015 4.19% 0.015 0.016 3.82% 0.017 0.018 4.30% 0.018 0.019 4.86% 

D5 0.050 0.050 0.050 -0.43% 0.038 0.038 -0.48% 0.041 0.041 -0.23% 0.046 0.046 -0.25% 0.050 0.050 -0.27% 

D10 0.028 0.028 0.029 1.74% 0.021 0.021 2.01% 0.023 0.024 2.24% 0.026 0.026 2.12% 0.028 0.028 1.68% 

D15 0.018 0.019 0.019 4.96% 0.014 0.015 5.72% 0.015 0.016 5.62% 0.017 0.018 5.86% 0.018 0.019 4.85% 

M10 1.126 1.161 1.142 -1.67% 0.982 0.940 -4.26% 1.060 1.039 -1.96% 1.086 1.066 -1.84% 1.140 1.121 -1.63% 

M20 0.419 0.435 0.425 -2.44% 0.317 0.311 -2.10% 0.363 0.354 -2.34% 0.391 0.383 -2.04% 0.429 0.419 -2.17% 

M30 0.150 0.152 0.150 -1.84% 0.115 0.113 -1.73% 0.124 0.122 -1.53% 0.139 0.137 -1.49% 0.152 0.149 -1.67% 

 

 

EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT DRF Δ FFT DRF Δ FFT DRF Δ FFT DRF Δ FFT DRF Δ 

A5 -9.1 -6.0 -5.0 1.0 -12.0 -11.0 1.0 -8.0 -7.0 1.0 -10.0 -9.0 1.0 -9.0 -8.0 1.0 

A10 -9.9 -7.0 -6.0 1.0 -13.0 -12.0 1.0 -9.0 -8.0 1.0 -11.0 -10.0 1.0 -10.0 -9.0 1.0 

A15 -10.9 -8.0 -6.0 2.0 -14.0 -12.0 2.0 -10.0 -8.0 2.0 -12.0 -10.0 2.0 -11.0 -9.0 2.0 

B5 -8.1 -5.0 -4.0 1.0 -11.0 -10.0 1.0 -7.0 -6.0 1.0 -9.0 -8.0 1.0 -8.0 -7.0 1.0 

B10 -8.9 -6.0 -5.0 1.0 -12.0 -11.0 1.0 -8.0 -6.0 2.0 -9.0 -8.0 1.0 -9.0 -8.0 1.0 

B15 -9.9 -7.0 -5.0 2.0 -13.0 -11.0 2.0 -9.0 -7.0 2.0 -11.0 -9.0 2.0 -10.0 -8.0 2.0 

C5 -12.9 -10.0 -9.0 1.0 -16.0 -15.0 1.0 -12.0 -11.0 1.0 -14.0 -13.0 1.0 -13.0 -12.0 1.0 

C10 -13.9 -11.0 -10.0 1.0 -17.0 -16.0 1.0 -13.0 -12.0 1.0 -15.0 -14.0 1.0 -14.0 -13.0 1.0 

C15 -14.9 -12.0 -10.0 2.0 -18.0 -16.0 2.0 -14.0 -12.0 2.0 -16.0 -14.0 2.0 -15.0 -14.0 1.0 

D5 -13.3 -10.0 -9.0 1.0 -16.0 -15.0 1.0 -12.0 -11.0 1.0 -14.0 -13.0 1.0 -14.0 -13.0 1.0 

D10 -14.3 -11.0 -10.0 1.0 -17.0 -16.0 1.0 -13.0 -12.0 1.0 -15.0 -14.0 1.0 -15.0 -13.0 2.0 

D15 -15.3 -12.0 -11.0 1.0 -18.0 -17.0 1.0 -15.0 -13.0 2.0 -16.0 -15.0 1.0 -16.0 -14.0 2.0 

M10 -2.8 -1.0 0.0 1.0 -2.0 -2.0 - -3.0 -2.0 1.0 -3.0 -2.0 1.0 -3.0 -2.0 1.0 

M20 -6.8 -4.0 -3.0 1.0 -9.0 -8.0 1.0 -6.0 -5.0 1.0 -7.0 -6.0 1.0 -7.0 -6.0 1.0 

M30 -10.7 -8.0 -7.0 1.0 -14.0 -13.0 1.0 -10.0 -9.0 1.0 -11.0 -11.0 - -11.0 -10.0 1.0 
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Table C.3 - Periodic thermal transmittance according to the conventional EN ISO 13786, the 

FFT and the SS approaches, with percentage differences between SS and FFT values for the 

different orientations in the case of Milan. All values in [W m
-2

 K
-1

] 

 

 

Table C.4 - Time shift (in the range -24 to 0 hours) according to the conventional EN ISO 

13786, the FFT and the SS approaches, with absolute differences between SS and FFT values 

for the different orientations in the case of Milan. All values in [h] 

 

 

 
EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT SS Δ% FFT SS Δ% FFT SS Δ% FFT SS Δ% FFT SS Δ% 

A5 0.084 0.086 0.083 -3.89% 0.066 0.064 -2.58% 0.070 0.068 -3.13% 0.079 0.078 -0.56% 0.086 0.083 -2.71% 

A10 0.045 0.046 0.044 -4.38% 0.035 0.034 -3.41% 0.037 0.036 -3.70% 0.042 0.042 -1.10% 0.046 0.044 -4.41% 

A15 0.030 0.030 0.029 -5.10% 0.023 0.022 -4.03% 0.025 0.024 -4.31% 0.028 0.027 -2.09% 0.030 0.029 -5.15% 

B5 0.129 0.133 0.128 -4.37% 0.100 0.097 -2.89% 0.109 0.105 -3.39% 0.120 0.120 -0.32% 0.132 0.127 -3.85% 

B10 0.074 0.076 0.073 -4.72% 0.058 0.056 -3.55% 0.062 0.060 -3.46% 0.069 0.068 -0.90% 0.076 0.073 -4.02% 

B15 0.050 0.051 0.048 -5.68% 0.039 0.037 -4.30% 0.042 0.040 -4.56% 0.046 0.046 -1.57% 0.051 0.048 -5.52% 

C5 0.049 0.050 0.047 -5.00% 0.038 0.036 -4.10% 0.041 0.039 -4.14% 0.046 0.045 -2.05% 0.049 0.047 -4.83% 

C10 0.028 0.028 0.027 -5.49% 0.021 0.020 -4.35% 0.023 0.022 -4.59% 0.026 0.025 -1.40% 0.028 0.026 -5.25% 

C15 0.019 0.019 0.018 -6.31% 0.014 0.014 -2.17% 0.015 0.015 -4.87% 0.017 0.016 -4.47% 0.018 0.017 -5.57% 

D5 0.050 0.050 0.048 -5.71% 0.038 0.036 -4.37% 0.041 0.039 -4.44% 0.046 0.045 -2.38% 0.050 0.047 -5.06% 

D10 0.028 0.028 0.026 -6.38% 0.021 0.020 -5.07% 0.023 0.022 -4.82% 0.026 0.025 -1.72% 0.028 0.026 -5.56% 

D15 0.018 0.019 0.017 -7.97% 0.014 0.013 -2.45% 0.015 0.014 -5.26% 0.017 0.016 -4.75% 0.018 0.017 -6.00% 

M10 1.126 1.161 1.140 -1.80% 0.982 0.961 -2.09% 1.060 1.042 -1.62% 1.086 1.098 1.17% 1.140 1.131 -0.78% 

M20 0.419 0.435 0.406 -6.67% 0.317 0.300 -5.29% 0.363 0.339 -6.59% 0.391 0.379 -3.16% 0.429 0.406 -5.36% 

M30 0.150 0.152 0.143 -6.30% 0.115 0.109 -5.11% 0.124 0.117 -5.52% 0.139 0.135 -3.02% 0.152 0.144 -5.34% 

 

 
EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT SS Δ FFT SS Δ FFT SS Δ FFT SS Δ FFT SS Δ 

A5 -9.1 -6.0 -6.0 - -12.0 -12.0 - -8.0 -8.0 - -10.0 -10.0 - -9.0 -9.0 - 

A10 -9.9 -7.0 -7.0 - -13.0 -13.0 - -9.0 -9.0 - -11.0 -11.0 - -10.0 -10.0 - 

A15 -10.9 -8.0 -8.0 - -14.0 -14.0 - -10.0 -10.0 - -12.0 -12.0 - -11.0 -11.0 - 

B5 -8.1 -5.0 -5.0 - -11.0 -11.0 - -7.0 -7.0 - -9.0 -9.0 - -8.0 -8.0 - 

B10 -8.9 -6.0 -6.0 - -12.0 -12.0 - -8.0 -8.0 - -9.0 -10.0 -1.0 -9.0 -9.0 - 

B15 -9.9 -7.0 -7.0 - -13.0 -13.0 - -9.0 -9.0 - -11.0 -11.0 - -10.0 -10.0 - 

C5 -12.9 -10.0 -10.0 - -16.0 -16.0 - -12.0 -12.0 - -14.0 -14.0 - -13.0 -13.0 - 

C10 -13.9 -11.0 -11.0 - -17.0 -17.0 - -13.0 -13.0 - -15.0 -15.0 - -14.0 -14.0 - 

C15 -14.9 -12.0 -12.0 - -18.0 -18.0 - -14.0 -14.0 - -16.0 -16.0 - -15.0 -15.0 - 

D5 -13.3 -10.0 -10.0 - -16.0 -16.0 - -12.0 -12.0 - -14.0 -14.0 - -14.0 -14.0 - 

D10 -14.3 -11.0 -11.0 - -17.0 -17.0 - -13.0 -14.0 -1.0 -15.0 -16.0 -1.0 -15.0 -15.0 - 

D15 -15.3 -12.0 -12.0 - -18.0 -19.0 -1.0 -15.0 -15.0 - -16.0 -17.0 -1.0 -16.0 -16.0 - 

M10 -2.8 -1.0 -1.0 - -2.0 -2.0 - -3.0 -3.0 - -3.0 -3.0 - -3.0 -3.0 - 

M20 -6.8 -4.0 -4.0 - -9.0 -9.0 - -6.0 -6.0 - -7.0 -7.0 - -7.0 -7.0 - 

M30 -10.7 -8.0 -8.0 - -14.0 -14.0 - -10.0 -10.0 - -11.0 -11.0 - -11.0 -11.0 - 
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Table C.5 - Periodic thermal transmittance according to the conventional EN ISO 13786, the 

FFT and the FDM approaches, with percentage differences between FDM and FFT values for 

the different orientations in the case of Milan. All values in [W m
-2

 K
-1

] 

 

 

Table C.6 - Time shift (in the range -24 to 0 hours) according to the conventional EN ISO 

13786, the FFT and the FDM approaches, with absolute differences between FDM and FFT 

values for the different orientations in the case of Milan. All values in [h] 

 

 

 

 

EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT FDM Δ% FFT FDM Δ% FFT FDM Δ% FFT FDM Δ% FFT FDM Δ% 

A5 0.084 0.086 0.083 -3.76% 0.066 0.064 -3.09% 0.070 0.068 -3.19% 0.079 0.078 -0.96% 0.086 0.082 -4.07% 

A10 0.045 0.046 0.044 -4.31% 0.035 0.034 -4.27% 0.037 0.036 -3.57% 0.042 0.041 -1.74% 0.046 0.044 -4.72% 

A15 0.030 0.030 0.029 -4.93% 0.023 0.022 -4.28% 0.025 0.024 -4.06% 0.028 0.027 -2.14% 0.030 0.028 -5.40% 

B5 0.129 0.133 0.128 -3.94% 0.100 0.097 -2.39% 0.109 0.105 -3.78% 0.120 0.120 -0.44% 0.132 0.126 -4.04% 

B10 0.074 0.076 0.073 -4.52% 0.058 0.055 -3.73% 0.062 0.059 -4.06% 0.069 0.068 -1.19% 0.076 0.072 -4.76% 

B15 0.050 0.051 0.048 -5.12% 0.039 0.037 -4.69% 0.042 0.040 -4.62% 0.046 0.045 -2.02% 0.051 0.048 -5.44% 

C5 0.049 0.050 0.047 -6.03% 0.038 0.036 -5.14% 0.041 0.039 -5.10% 0.046 0.044 -2.92% 0.049 0.046 -6.45% 

C10 0.028 0.028 0.026 -6.44% 0.021 0.020 -5.73% 0.023 0.022 -5.60% 0.026 0.025 -3.45% 0.028 0.026 -6.52% 

C15 0.019 0.019 0.017 -6.91% 0.014 0.013 -6.22% 0.015 0.014 -6.16% 0.017 0.016 -3.97% 0.018 0.017 -6.99% 

D5 0.050 0.050 0.048 -5.16% 0.038 0.036 -4.14% 0.041 0.039 -4.31% 0.046 0.045 -2.36% 0.050 0.047 -5.81% 

D10 0.028 0.028 0.027 -5.35% 0.021 0.020 -4.51% 0.023 0.022 -4.49% 0.026 0.025 -2.36% 0.028 0.026 -6.26% 

D15 0.018 0.019 0.017 -5.73% 0.014 0.013 -4.89% 0.015 0.014 -5.15% 0.017 0.016 -2.81% 0.018 0.017 -6.96% 

M10 1.126 1.161 1.138 -1.98% 0.982 0.955 -2.73% 1.060 1.029 -2.92% 1.086 1.092 0.62% 1.140 1.112 -2.39% 

M20 0.419 0.435 0.417 -4.26% 0.317 0.309 -2.70% 0.363 0.347 -4.38% 0.391 0.389 -0.58% 0.429 0.411 -4.16% 

M30 0.150 0.152 0.144 -5.59% 0.115 0.110 -4.00% 0.124 0.118 -4.74% 0.139 0.136 -1.67% 0.152 0.142 -6.11% 

 

 

EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT FDM Δ FFT FDM Δ FFT FDM Δ FFT FDM Δ FFT FDM Δ 

A5 -9.1 -6.0 -6.0 - -12.0 -12.0 - -8.0 -8.0 - -10.0 -10.0 - -9.0 -9.0 - 

A10 -9.9 -7.0 -7.0 - -13.0 -13.0 - -9.0 -9.0 - -11.0 -10.0 1.0 -10.0 -10.0 - 

A15 -10.9 -8.0 -8.0 - -14.0 -14.0 - -10.0 -10.0 - -12.0 -11.0 1.0 -11.0 -11.0 - 

B5 -8.1 -5.0 -5.0 - -11.0 -11.0 - -7.0 -7.0 - -9.0 -8.0 1.0 -8.0 -8.0 - 

B10 -8.9 -6.0 -6.0 - -12.0 -12.0 - -8.0 -8.0 - -9.0 -9.0 - -9.0 -9.0 - 

B15 -9.9 -7.0 -7.0 - -13.0 -13.0 - -9.0 -9.0 - -11.0 -10.0 1.0 -10.0 -10.0 - 

C5 -12.9 -10.0 -10.0 - -16.0 -16.0 - -12.0 -12.0 - -14.0 -14.0 - -13.0 -13.0 - 

C10 -13.9 -11.0 -11.0 - -17.0 -16.0 1.0 -13.0 -13.0 - -15.0 -15.0 - -14.0 -14.0 - 

C15 -14.9 -12.0 -12.0 - -18.0 -18.0 - -14.0 -14.0 - -16.0 -16.0 - -15.0 -15.0 - 

D5 -13.3 -10.0 -10.0 - -16.0 -16.0 - -12.0 -12.0 - -14.0 -14.0 - -14.0 -13.0 1.0 

D10 -14.3 -11.0 -11.0 - -17.0 -17.0 - -13.0 -13.0 - -15.0 -15.0 - -15.0 -14.0 1.0 

D15 -15.3 -12.0 -12.0 - -18.0 -18.0 - -15.0 -14.0 1.0 -16.0 -16.0 - -16.0 -15.0 1.0 

M10 -2.8 -1.0 -1.0 - -2.0 -2.0 - -3.0 -3.0 - -3.0 -3.0 - -3.0 -3.0 - 

M20 -6.8 -4.0 -4.0 - -9.0 -9.0 - -6.0 -6.0 - -7.0 -7.0 - -7.0 -7.0 - 

M30 -10.7 -8.0 -8.0 - -14.0 -13.0 1.0 -10.0 -9.0 1.0 -11.0 -11.0 - -11.0 -11.0 - 
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Figure C.1 - Periodic thermal transmittances in [W m
-2

 K
-1

] (left) and time shifts in [h] (right) 

for the conditions of Milan for the South, North and Horizontal walls respect to the reference 

FFT parameters. Dotted lines represent the ±20% range 
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Figure C.2 - Periodic thermal transmittances in [W m
-2

 K
-1

] (left) and time shifts in [h] (right) 

for the conditions of Milan for the East and West-oriented walls respect to the reference FFT 

parameters. Dotted lines represent the ±20% range 
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Rome 

Table C.7 - Periodic thermal transmittance according to the conventional EN ISO 13786, the 

FFT and the DRF approaches, with percentage differences between DRF and FFT values for 

the different orientations in the case of Rome. All values in [W m
-2

 K
-1

] 

 

 

Table C.8 - Time shift (in the range -24 to 0 hours) according to the conventional EN ISO 

13786, the FFT and the DRF approaches, with absolute differences between DRF and FFT 

values for the different orientations in the case of Rome. All values in [h] 

 

 

 
EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT DRF Δ% FFT DRF Δ% FFT DRF Δ% FFT DRF Δ% FFT DRF Δ% 

A5 0.084 0.085 0.083 -1.77% 0.060 0.058 -3.73% 0.066 0.065 -1.81% 0.076 0.075 -2.17% 0.085 0.082 -2.81% 

A10 0.045 0.045 0.045 -1.07% 0.032 0.030 -4.93% 0.035 0.035 -0.96% 0.041 0.040 -1.19% 0.045 0.044 -2.29% 

A15 0.030 0.030 0.031 4.59% 0.021 0.020 -5.53% 0.023 0.024 3.56% 0.027 0.027 0.71% 0.030 0.030 0.24% 

B5 0.129 0.131 0.132 0.15% 0.091 0.088 -2.89% 0.104 0.104 -0.52% 0.118 0.117 -0.25% 0.130 0.130 -0.73% 

B10 0.074 0.075 0.076 1.72% 0.052 0.050 -3.47% 0.059 0.060 1.46% 0.067 0.068 0.62% 0.075 0.075 0.59% 

B15 0.050 0.050 0.053 5.00% 0.035 0.033 -4.41% 0.039 0.041 4.85% 0.045 0.047 4.61% 0.050 0.052 3.53% 

C5 0.049 0.049 0.050 3.66% 0.034 0.034 -0.52% 0.039 0.040 3.20% 0.044 0.045 3.18% 0.048 0.050 3.82% 

C10 0.028 0.027 0.029 7.07% 0.019 0.019 0.15% 0.022 0.023 6.05% 0.025 0.026 6.11% 0.027 0.029 7.81% 

C15 0.019 0.018 0.020 11.06% 0.013 0.013 0.26% 0.015 0.016 10.25% 0.016 0.018 10.29% 0.018 0.020 12.41% 

D5 0.050 0.049 0.051 3.53% 0.034 0.034 -1.28% 0.039 0.040 3.24% 0.045 0.046 2.69% 0.049 0.051 4.03% 

D10 0.028 0.027 0.029 6.57% 0.019 0.019 -0.75% 0.022 0.023 6.29% 0.025 0.026 5.79% 0.027 0.029 7.31% 

D15 0.018 0.018 0.020 11.45% 0.013 0.012 -1.12% 0.015 0.016 10.15% 0.016 0.018 10.18% 0.018 0.020 12.59% 

M10 1.126 1.140 1.130 -0.83% 0.965 0.947 -1.81% 1.038 1.007 -2.99% 1.080 1.058 -2.06% 1.126 1.107 -1.68% 

M20 0.419 0.429 0.421 -1.98% 0.296 0.279 -5.47% 0.351 0.338 -3.59% 0.384 0.375 -2.32% 0.425 0.412 -2.91% 

M30 0.150 0.150 0.149 -0.77% 0.104 0.119 13.90% 0.117 0.117 -0.51% 0.135 0.132 -2.48% 0.149 0.145 -2.96% 

 

 

EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT DRF Δ FFT DRF Δ FFT DRF Δ FFT DRF Δ FFT DRF Δ 

A5 -9.1 -6.0 -5.0 1.0 -11.0 -10.0 1.0 -7.0 -7.0 - -9.0 -8.0 1.0 -9.0 -8.0 1.0 

A10 -9.9 -6.0 -5.0 1.0 -12.0 -11.0 1.0 -8.0 -7.0 1.0 -10.0 -9.0 1.0 -9.0 -8.0 1.0 

A15 -10.9 -8.0 -7.0 1.0 -13.0 -11.0 2.0 -9.0 -9.0 - -11.0 -10.0 1.0 -10.0 -9.0 1.0 

B5 -8.1 -5.0 -4.0 1.0 -9.0 -8.0 1.0 -6.0 -5.0 1.0 -8.0 -7.0 1.0 -8.0 -7.0 1.0 

B10 -8.9 -5.0 -4.0 1.0 -10.0 -9.0 1.0 -7.0 -6.0 1.0 -9.0 -8.0 1.0 -8.0 -7.0 1.0 

B15 -9.9 -6.0 -5.0 1.0 -12.0 -10.0 2.0 -8.0 -7.0 1.0 -10.0 -8.0 2.0 -9.0 -8.0 1.0 

C5 -12.9 -10.0 -8.0 2.0 -15.0 -15.0 - -12.0 -11.0 1.0 -13.0 -12.0 1.0 -13.0 -12.0 1.0 

C10 -13.9 -11.0 -9.0 2.0 -16.0 -15.0 1.0 -13.0 -11.0 2.0 -14.0 -13.0 1.0 -14.0 -12.0 2.0 

C15 -14.9 -12.0 -10.0 2.0 -17.0 -15.0 2.0 -14.0 -12.0 2.0 -16.0 -14.0 2.0 -15.0 -13.0 2.0 

D5 -13.3 -10.0 -9.0 1.0 -15.0 -15.0 - -12.0 -11.0 1.0 -14.0 -13.0 1.0 -13.0 -12.0 1.0 

D10 -14.3 -11.0 -9.0 2.0 -17.0 -15.0 2.0 -13.0 -12.0 1.0 -15.0 -13.0 2.0 -14.0 -13.0 1.0 

D15 -15.3 -12.0 -10.0 2.0 -18.0 -16.0 2.0 -14.0 -12.0 2.0 -16.0 -14.0 2.0 -15.0 -13.0 2.0 

M10 -2.8 -1.0 0.0 1.0 -2.0 -1.0 1.0 -2.0 -1.0 1.0 -2.0 -2.0 - -3.0 -2.0 1.0 

M20 -6.8 -4.0 -3.0 1.0 -6.0 -6.0 - -5.0 -4.0 1.0 -6.0 -6.0 - -6.0 -6.0 - 

M30 -10.7 -7.0 -7.0 - -12.0 -12.0 - -9.0 -9.0 - -11.0 -10.0 1.0 -10.0 -9.0 1.0 

 



Periodic thermal transmittance and time shift 
 

 

252 

 

Table C.9 - Periodic thermal transmittance according to the conventional EN ISO 13786, the 

FFT and the SS approaches, with percentage differences between SS and FFT values for the 

different orientations in the case of Rome. All values in [W m
-2

 K
-1

] 

 

 

Table C.10 - Time shift (in the range -24 to 0 hours) according to the conventional EN ISO 

13786, the FFT and the SS approaches, with absolute differences between SS and FFT values 

for the different orientations in the case of Rome. All values in [h] 

 

 

 
EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT SS Δ% FFT SS Δ% FFT SS Δ% FFT SS Δ% FFT SS Δ% 

A5 0.084 0.085 0.081 -4.32% 0.060 0.058 -2.52% 0.066 0.064 -4.00% 0.076 0.076 -1.01% 0.085 0.080 -5.93% 

A10 0.045 0.045 0.045 -1.48% 0.032 0.031 -1.80% 0.035 0.035 -1.36% 0.041 0.040 -2.11% 0.045 0.042 -6.61% 

A15 0.030 0.030 0.029 -1.79% 0.021 0.021 1.29% 0.023 0.023 -0.62% 0.027 0.027 1.05% 0.030 0.028 -3.94% 

B5 0.129 0.131 0.127 -3.61% 0.091 0.090 -0.78% 0.104 0.100 -3.93% 0.118 0.117 -0.26% 0.130 0.125 -4.51% 

B10 0.074 0.075 0.072 -4.64% 0.052 0.052 0.44% 0.059 0.057 -4.65% 0.067 0.067 -0.71% 0.075 0.071 -5.07% 

B15 0.050 0.050 0.049 -3.35% 0.035 0.036 3.74% 0.039 0.038 -3.03% 0.045 0.044 -1.76% 0.050 0.047 -6.21% 

C5 0.049 0.049 0.048 -1.11% 0.034 0.034 0.86% 0.039 0.038 -0.51% 0.044 0.045 2.43% 0.048 0.048 -0.36% 

C10 0.028 0.027 0.027 -0.69% 0.019 0.020 5.02% 0.022 0.022 0.12% 0.025 0.026 3.18% 0.027 0.028 0.52% 

C15 0.019 0.018 0.018 -0.29% 0.013 0.014 10.12% 0.015 0.015 0.27% 0.016 0.017 3.27% 0.018 0.018 1.37% 

D5 0.050 0.049 0.048 -1.50% 0.034 0.035 1.96% 0.039 0.039 -1.28% 0.045 0.045 1.26% 0.049 0.049 -0.86% 

D10 0.028 0.027 0.027 -1.27% 0.019 0.020 5.93% 0.022 0.022 -0.56% 0.025 0.025 1.79% 0.027 0.027 0.53% 

D15 0.018 0.018 0.018 -0.77% 0.013 0.014 9.75% 0.015 0.014 -0.38% 0.016 0.017 2.09% 0.018 0.018 1.67% 

M10 1.126 1.140 1.120 -1.75% 0.965 0.921 -4.56% 1.038 1.022 -1.54% 1.080 1.093 1.17% 1.126 1.104 -1.96% 

M20 0.419 0.429 0.401 -6.58% 0.296 0.288 -2.63% 0.351 0.327 -6.83% 0.384 0.372 -3.02% 0.425 0.395 -6.98% 

M30 0.150 0.150 0.143 -4.61% 0.104 0.101 -2.85% 0.117 0.113 -3.86% 0.135 0.131 -2.83% 0.149 0.140 -6.31% 

 

 
EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT SS Δ FFT SS Δ FFT SS Δ FFT SS Δ FFT SS Δ 

A5 -9.1 -6.0 -7.0 -1.0 -11.0 -11.0 - -7.0 -7.0 - -9.0 -9.0 - -9.0 -9.0 - 

A10 -9.9 -6.0 -7.0 -1.0 -12.0 -12.0 - -8.0 -9.0 -1.0 -10.0 -10.0 - -9.0 -9.0 - 

A15 -10.9 -8.0 -7.0 1.0 -13.0 -15.0 -2.0 -9.0 -9.0 - -11.0 -12.0 -1.0 -10.0 -12.0 -2.0 

B5 -8.1 -5.0 -5.0 - -9.0 -10.0 -1.0 -6.0 -7.0 -1.0 -8.0 -8.0 - -8.0 -8.0 - 

B10 -8.9 -5.0 -6.0 -1.0 -10.0 -11.0 -1.0 -7.0 -8.0 -1.0 -9.0 -9.0 - -8.0 -9.0 -1.0 

B15 -9.9 -6.0 -7.0 -1.0 -12.0 -12.0 - -8.0 -9.0 -1.0 -10.0 -10.0 - -9.0 -10.0 -1.0 

C5 -12.9 -10.0 -9.0 1.0 -15.0 -15.0 - -12.0 -12.0 - -13.0 -13.0 - -13.0 -12.0 1.0 

C10 -13.9 -11.0 -10.0 1.0 -16.0 -16.0 - -13.0 -13.0 - -14.0 -14.0 - -14.0 -13.0 1.0 

C15 -14.9 -12.0 -11.0 1.0 -17.0 -17.0 - -14.0 -14.0 - -16.0 -15.0 1.0 -15.0 -15.0 - 

D5 -13.3 -10.0 -10.0 - -15.0 -15.0 - -12.0 -12.0 - -14.0 -14.0 - -13.0 -13.0 - 

D10 -14.3 -11.0 -11.0 - -17.0 -16.0 1.0 -13.0 -13.0 - -15.0 -15.0 - -14.0 -14.0 - 

D15 -15.3 -12.0 -12.0 - -18.0 -17.0 1.0 -14.0 -14.0 - -16.0 -16.0 - -15.0 -15.0 - 

M10 -2.8 -1.0 -1.0 - -2.0 -2.0 - -2.0 -2.0 - -2.0 -3.0 -1.0 -3.0 -3.0 - 

M20 -6.8 -4.0 -3.0 1.0 -6.0 -7.0 -1.0 -5.0 -5.0 - -6.0 -6.0 - -6.0 -6.0 - 

M30 -10.7 -7.0 -7.0 - -12.0 -14.0 -2.0 -9.0 -9.0 - -11.0 -12.0 -1.0 -10.0 -12.0 -2.0 
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Table C.11 - Periodic thermal transmittance according to the conventional EN ISO 13786, the 

FFT and the FDM approaches, with percentage differences between FDM and FFT values for 

the different orientations in the case of Rome. All values in [W m
-2

 K
-1

] 

 

 

Table C.12 - Time shift (in the range -24 to 0 hours) according to the conventional EN ISO 

13786, the FFT and the FDM approaches, with absolute differences between FDM and FFT 

values for the different orientations in the case of Rome. All values in [h] 

 

 

 

EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT FDM Δ% FFT FDM Δ% FFT FDM Δ% FFT FDM Δ% FFT FDM Δ% 

A5 0.084 0.085 0.082 -3.55% 0.060 0.058 -3.54% 0.066 0.064 -3.26% 0.076 0.076 -0.55% 0.085 0.081 -4.87% 

A10 0.045 0.045 0.044 -3.66% 0.032 0.031 -3.27% 0.035 0.034 -3.49% 0.041 0.041 -0.22% 0.045 0.043 -5.25% 

A15 0.030 0.030 0.028 -4.21% 0.021 0.020 -3.69% 0.023 0.022 -3.78% 0.027 0.026 -1.06% 0.030 0.028 -5.98% 

B5 0.129 0.131 0.126 -3.81% 0.091 0.088 -2.53% 0.104 0.100 -3.91% 0.118 0.117 -0.41% 0.130 0.125 -4.53% 

B10 0.074 0.075 0.072 -3.86% 0.052 0.050 -3.83% 0.059 0.057 -4.07% 0.067 0.067 -0.82% 0.075 0.071 -5.18% 

B15 0.050 0.050 0.048 -4.45% 0.035 0.033 -4.68% 0.039 0.038 -4.55% 0.045 0.044 -1.07% 0.050 0.047 -5.93% 

C5 0.049 0.049 0.046 -5.03% 0.034 0.032 -5.61% 0.039 0.037 -5.18% 0.044 0.043 -2.37% 0.048 0.045 -6.34% 

C10 0.028 0.027 0.026 -5.35% 0.019 0.018 -5.94% 0.022 0.021 -5.61% 0.025 0.024 -2.88% 0.027 0.025 -6.86% 

C15 0.019 0.018 0.017 -5.95% 0.013 0.012 -6.27% 0.015 0.014 -6.30% 0.016 0.016 -3.56% 0.018 0.017 -7.45% 

D5 0.050 0.049 0.047 -4.92% 0.034 0.033 -4.68% 0.039 0.037 -4.62% 0.045 0.044 -2.24% 0.049 0.046 -6.52% 

D10 0.028 0.027 0.026 -5.15% 0.019 0.018 -5.14% 0.022 0.021 -4.91% 0.025 0.024 -2.53% 0.027 0.026 -6.49% 

D15 0.018 0.018 0.017 -5.80% 0.013 0.012 -5.75% 0.015 0.014 -5.43% 0.016 0.016 -2.95% 0.018 0.017 -6.90% 

M10 1.126 1.140 1.115 -2.18% 0.965 0.938 -2.78% 1.038 1.013 -2.37% 1.080 1.086 0.52% 1.126 1.094 -2.87% 

M20 0.419 0.429 0.414 -3.57% 0.296 0.287 -2.75% 0.351 0.336 -4.07% 0.384 0.382 -0.37% 0.425 0.406 -4.37% 

M30 0.150 0.150 0.143 -4.87% 0.104 0.100 -4.03% 0.117 0.112 -4.31% 0.135 0.133 -1.84% 0.149 0.140 -5.92% 

 

 

EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT FDM Δ FFT FDM Δ FFT FDM Δ FFT FDM Δ FFT FDM Δ 

A5 -9.1 -6.0 -5.0 1.0 -11.0 -11.0 - -7.0 -7.0 - -9.0 -9.0 - -9.0 -9.0 - 

A10 -9.9 -6.0 -6.0 - -12.0 -12.0 - -8.0 -8.0 - -10.0 -10.0 - -9.0 -9.0 - 

A15 -10.9 -8.0 -7.0 1.0 -13.0 -13.0 - -9.0 -9.0 - -11.0 -11.0 - -10.0 -10.0 - 

B5 -8.1 -5.0 -4.0 1.0 -9.0 -9.0 - -6.0 -6.0 - -8.0 -8.0 - -8.0 -7.0 1.0 

B10 -8.9 -5.0 -5.0 - -10.0 -10.0 - -7.0 -7.0 - -9.0 -9.0 - -8.0 -8.0 - 

B15 -9.9 -6.0 -6.0 - -12.0 -11.0 1.0 -8.0 -8.0 - -10.0 -10.0 - -9.0 -9.0 - 

C5 -12.9 -10.0 -9.0 1.0 -15.0 -15.0 - -12.0 -11.0 1.0 -13.0 -13.0 - -13.0 -12.0 1.0 

C10 -13.9 -11.0 -10.0 1.0 -16.0 -16.0 - -13.0 -12.0 1.0 -14.0 -14.0 - -14.0 -13.0 1.0 

C15 -14.9 -12.0 -11.0 1.0 -17.0 -17.0 - -14.0 -14.0 - -16.0 -15.0 1.0 -15.0 -15.0 - 

D5 -13.3 -10.0 -10.0 - -15.0 -15.0 - -12.0 -12.0 - -14.0 -14.0 - -13.0 -13.0 - 

D10 -14.3 -11.0 -11.0 - -17.0 -16.0 1.0 -13.0 -13.0 - -15.0 -15.0 - -14.0 -14.0 - 

D15 -15.3 -12.0 -12.0 - -18.0 -17.0 1.0 -14.0 -14.0 - -16.0 -16.0 - -15.0 -15.0 - 

M10 -2.8 -1.0 -1.0 - -2.0 -2.0 - -2.0 -2.0 - -2.0 -2.0 - -3.0 -3.0 - 

M20 -6.8 -4.0 -3.0 1.0 -6.0 -7.0 -1.0 -5.0 -5.0 - -6.0 -6.0 - -6.0 -6.0 - 

M30 -10.7 -7.0 -7.0 - -12.0 -12.0 - -9.0 -9.0 - -11.0 -11.0 - -10.0 -10.0 - 
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Figure C.3 - Periodic thermal transmittances in [W m
-2

 K
-1

] (left) and time shifts in [h] (right) 

for the conditions of Rome for the South, North and Horizontal walls respect to the reference 

FFT parameters. Dotted lines represent the ±20% range 
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Figure C.4 - Periodic thermal transmittances in [W m
-2

 K
-1

] (left) and time shifts in [h] (right) 

for the conditions of Rome for the East and West-oriented walls respect to the reference FFT 

parameters. Dotted lines represent the ±20% range 
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Palermo 

Table C.13 - Periodic thermal transmittance according to the conventional EN ISO 13786, the 

FFT and the DRF approaches, with percentage differences between DRF and FFT values for 

the different orientations in the case of Palermo. All values in [W m
-2

 K
-1

] 

 

 

Table C.14 - Time shift (in the range -24 to 0 hours) according to the conventional EN ISO 

13786, the FFT and the DRF approaches, with absolute differences between DRF and FFT 

values for the different orientations in the case of Palermo. All values in [h] 

 

 

 
EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT DRF Δ% FFT DRF Δ% FFT DRF Δ% FFT DRF Δ% FFT DRF Δ% 

A5 0.084 0.083 0.082 -0.69% 0.058 0.057 -2.30% 0.063 0.062 -1.43% 0.076 0.072 -5.47% 0.087 0.086 -1.01% 

A10 0.045 0.044 0.044 0.68% 0.031 0.031 -1.33% 0.034 0.034 0.01% 0.041 0.039 -4.41% 0.046 0.046 0.39% 

A15 0.030 0.029 0.030 3.67% 0.021 0.021 0.65% 0.022 0.023 1.95% 0.027 0.026 -2.03% 0.030 0.031 3.34% 

B5 0.129 0.130 0.131 0.43% 0.090 0.089 -1.51% 0.099 0.099 -0.36% 0.116 0.111 -4.28% 0.134 0.134 0.19% 

B10 0.074 0.074 0.075 2.41% 0.051 0.051 0.22% 0.056 0.057 1.46% 0.067 0.065 -2.86% 0.077 0.078 1.63% 

B15 0.050 0.049 0.052 6.12% 0.034 0.036 3.71% 0.037 0.039 4.69% 0.045 0.045 0.15% 0.051 0.054 5.03% 

C5 0.049 0.047 0.047 0.43% 0.034 0.033 -1.92% 0.037 0.037 -0.46% 0.044 0.042 -4.79% 0.050 0.050 0.12% 

C10 0.028 0.026 0.027 2.05% 0.019 0.019 0.10% 0.021 0.021 1.28% 0.025 0.024 -3.00% 0.028 0.029 2.17% 

C15 0.019 0.018 0.019 5.52% 0.013 0.013 3.08% 0.014 0.014 4.89% 0.016 0.016 0.39% 0.019 0.019 5.19% 

D5 0.050 0.047 0.048 0.60% 0.034 0.034 -1.49% 0.037 0.037 -0.17% 0.044 0.042 -4.69% 0.050 0.050 0.42% 

D10 0.028 0.026 0.027 2.74% 0.019 0.019 0.99% 0.021 0.021 1.51% 0.025 0.024 -2.80% 0.028 0.028 2.48% 

D15 0.018 0.017 0.018 5.95% 0.012 0.013 4.67% 0.014 0.014 4.45% 0.016 0.016 0.74% 0.018 0.019 6.19% 

M10 1.126 1.137 1.144 0.58% 0.960 0.920 -4.15% 1.023 0.986 -3.63% 1.076 1.005 -6.61% 1.138 1.127 -0.96% 

M20 0.419 0.430 0.420 -2.25% 0.301 0.289 -3.96% 0.336 0.324 -3.68% 0.382 0.356 -6.85% 0.435 0.427 -1.90% 

M30 0.150 0.145 0.144 -1.24% 0.104 0.100 -3.15% 0.112 0.110 -1.55% 0.134 0.126 -6.11% 0.153 0.150 -1.44% 

 

 

EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT DRF Δ FFT DRF Δ FFT DRF Δ FFT DRF Δ FFT DRF Δ 

A5 -9.1 -6.0 -5.0 1.0 -11.0 -10.0 1.0 -7.0 -6.0 1.0 -9.0 -8.0 1.0 -8.0 -7.0 1.0 

A10 -9.9 -7.0 -6.0 1.0 -12.0 -11.0 1.0 -8.0 -7.0 1.0 -9.0 -8.0 1.0 -9.0 -8.0 1.0 

A15 -10.9 -8.0 -6.0 2.0 -13.0 -11.0 2.0 -9.0 -8.0 1.0 -10.0 -9.0 1.0 -10.0 -9.0 1.0 

B5 -8.1 -5.0 -4.0 1.0 -8.0 -8.0 - -6.0 -5.0 1.0 -7.0 -7.0 - -7.0 -6.0 1.0 

B10 -8.9 -6.0 -5.0 1.0 -10.0 -8.0 2.0 -7.0 -6.0 1.0 -8.0 -7.0 1.0 -8.0 -7.0 1.0 

B15 -9.9 -7.0 -5.0 2.0 -11.0 -9.0 2.0 -8.0 -6.0 2.0 -9.0 -8.0 1.0 -9.0 -7.0 2.0 

C5 -12.9 -10.0 -9.0 1.0 -15.0 -14.0 1.0 -11.0 -10.0 1.0 -13.0 -12.0 1.0 -12.0 -11.0 1.0 

C10 -13.9 -11.0 -10.0 1.0 -16.0 -15.0 1.0 -12.0 -11.0 1.0 -14.0 -13.0 1.0 -13.0 -12.0 1.0 

C15 -14.9 -12.0 -10.0 2.0 -17.0 -15.0 2.0 -13.0 -12.0 1.0 -15.0 -13.0 2.0 -14.0 -13.0 1.0 

D5 -13.3 -10.0 -9.0 1.0 -15.0 -14.0 1.0 -12.0 -11.0 1.0 -13.0 -12.0 1.0 -13.0 -12.0 1.0 

D10 -14.3 -11.0 -10.0 1.0 -16.0 -15.0 1.0 -13.0 -12.0 1.0 -14.0 -13.0 1.0 -14.0 -13.0 1.0 

D15 -15.3 -12.0 -11.0 1.0 -18.0 -16.0 2.0 -14.0 -12.0 2.0 -16.0 -14.0 2.0 -15.0 -13.0 2.0 

M10 -2.8 -2.0 -1.0 1.0 -3.0 -2.0 1.0 -2.0 -1.0 1.0 -2.0 -1.0 1.0 -2.0 -2.0 - 

M20 -6.8 -4.0 -3.0 1.0 -6.0 -6.0 - -5.0 -4.0 1.0 -6.0 -5.0 1.0 -6.0 -5.0 1.0 

M30 -10.7 -8.0 -7.0 1.0 -12.0 -12.0 - -9.0 -8.0 1.0 -10.0 -10.0 - -10.0 -9.0 1.0 
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Table C.15 - Periodic thermal transmittance according to the conventional EN ISO 13786, the 

FFT and the SS approaches, with percentage differences between SS and FFT values for the 

different orientations in the case of Palermo. All values in [W m
-2

 K
-1

] 

 

 

Table C.16 - Time shift (in the range -24 to 0 hours) according to the conventional EN ISO 

13786, the FFT and the SS approaches, with absolute differences between SS and FFT values 

for the different orientations in the case of Palermo. All values in [h] 

 

 

 
EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT SS Δ% FFT SS Δ% FFT SS Δ% FFT SS Δ% FFT SS Δ% 

A5 0.084 0.083 0.080 -4.13% 0.058 0.057 -2.92% 0.063 0.061 -3.53% 0.076 0.073 -3.29% 0.087 0.085 -2.48% 

A10 0.045 0.044 0.042 -4.42% 0.031 0.030 -3.90% 0.034 0.032 -3.90% 0.041 0.039 -3.73% 0.046 0.044 -3.82% 

A15 0.030 0.029 0.028 -2.84% 0.021 0.020 -4.68% 0.022 0.021 -4.68% 0.027 0.025 -5.63% 0.030 0.029 -4.59% 

B5 0.129 0.130 0.124 -4.79% 0.090 0.087 -3.60% 0.099 0.095 -4.06% 0.116 0.113 -2.92% 0.134 0.129 -3.62% 

B10 0.074 0.074 0.070 -4.68% 0.051 0.049 -3.53% 0.056 0.053 -5.35% 0.067 0.064 -4.08% 0.077 0.074 -3.31% 

B15 0.050 0.049 0.046 -5.63% 0.034 0.032 -6.55% 0.037 0.036 -5.14% 0.045 0.043 -4.88% 0.051 0.049 -4.61% 

C5 0.049 0.047 0.045 -4.69% 0.034 0.032 -4.63% 0.037 0.035 -4.33% 0.044 0.041 -6.09% 0.050 0.048 -4.14% 

C10 0.028 0.026 0.025 -6.07% 0.019 0.018 -5.35% 0.021 0.020 -4.84% 0.025 0.023 -5.16% 0.028 0.027 -4.62% 

C15 0.019 0.018 0.016 -11.0% 0.013 0.012 -6.11% 0.014 0.013 -5.14% 0.016 0.015 -6.09% 0.019 0.018 -4.90% 

D5 0.050 0.047 0.045 -5.69% 0.034 0.032 -5.08% 0.037 0.035 -4.69% 0.044 0.042 -6.28% 0.050 0.048 -4.32% 

D10 0.028 0.026 0.025 -7.21% 0.019 0.018 -5.70% 0.021 0.020 -5.23% 0.025 0.023 -5.71% 0.028 0.026 -4.98% 

D15 0.018 0.017 0.015 -13.0% 0.012 0.012 -6.87% 0.014 0.013 -6.04% 0.016 0.015 -6.64% 0.018 0.017 -5.34% 

M10 1.126 1.137 1.122 -1.33% 0.960 0.938 -2.26% 1.023 1.000 -2.25% 1.076 1.057 -1.84% 1.138 1.133 -0.41% 

M20 0.419 0.430 0.400 -7.02% 0.301 0.280 -6.70% 0.336 0.311 -7.33% 0.382 0.358 -6.31% 0.435 0.413 -4.99% 

M30 0.150 0.145 0.136 -6.52% 0.104 0.097 -6.11% 0.112 0.105 -5.61% 0.134 0.126 -6.06% 0.153 0.145 -4.71% 

 

 
EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT SS Δ FFT SS Δ FFT SS Δ FFT SS Δ FFT SS Δ 

A5 -9.1 -6.0 -6.0 - -11.0 -11.0 - -7.0 -7.0 - -9.0 -9.0 - -8.0 -8.0 - 

A10 -9.9 -7.0 -7.0 - -12.0 -12.0 - -8.0 -8.0 - -9.0 -10.0 -1.0 -9.0 -9.0 - 

A15 -10.9 -8.0 -8.0 - -13.0 -13.0 - -9.0 -9.0 - -10.0 -11.0 -1.0 -10.0 -10.0 - 

B5 -8.1 -5.0 -5.0 - -8.0 -9.0 -1.0 -6.0 -6.0 - -7.0 -8.0 -1.0 -7.0 -7.0 - 

B10 -8.9 -6.0 -6.0 - -10.0 -10.0 - -7.0 -7.0 - -8.0 -9.0 -1.0 -8.0 -8.0 - 

B15 -9.9 -7.0 -7.0 - -11.0 -12.0 -1.0 -8.0 -8.0 - -9.0 -10.0 -1.0 -9.0 -9.0 - 

C5 -12.9 -10.0 -10.0 - -15.0 -15.0 - -11.0 -11.0 - -13.0 -13.0 - -12.0 -12.0 - 

C10 -13.9 -11.0 -11.0 - -16.0 -16.0 - -12.0 -12.0 - -14.0 -14.0 - -13.0 -13.0 - 

C15 -14.9 -12.0 -12.0 - -17.0 -17.0 - -13.0 -14.0 -1.0 -15.0 -15.0 - -14.0 -14.0 - 

D5 -13.3 -10.0 -10.0 - -15.0 -15.0 - -12.0 -12.0 - -13.0 -13.0 - -13.0 -13.0 - 

D10 -14.3 -11.0 -12.0 -1.0 -16.0 -17.0 -1.0 -13.0 -13.0 - -14.0 -15.0 -1.0 -14.0 -14.0 - 

D15 -15.3 -12.0 -13.0 -1.0 -18.0 -18.0 - -14.0 -14.0 - -16.0 -16.0 - -15.0 -15.0 - 

M10 -2.8 -2.0 -2.0 - -3.0 -3.0 - -2.0 -2.0 - -2.0 -2.0 - -2.0 -2.0 - 

M20 -6.8 -4.0 -4.0 - -6.0 -7.0 -1.0 -5.0 -5.0 - -6.0 -6.0 - -6.0 -6.0 - 

M30 -10.7 -8.0 -8.0 - -12.0 -12.0 - -9.0 -9.0 - -10.0 -10.0 - -10.0 -10.0 - 
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Table C.17 - Periodic thermal transmittance according to the conventional EN ISO 13786, the 

FFT and the FDM approaches, with percentage differences between FDM and FFT values for 

the different orientations in the case of Palermo. All values in [W m
-2

 K
-1

] 

 

 

Table C.18 - Time shift (in the range -24 to 0 hours) according to the conventional EN ISO 

13786, the FFT and the FDM approaches, with absolute differences between FDM and FFT 

values for the different orientations in the case of Palermo. All values in [h] 

 

 

 

EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT FDM Δ% FFT FDM Δ% FFT FDM Δ% FFT FDM Δ% FFT FDM Δ% 

A5 0.084 0.083 0.080 -4.01% 0.058 0.057 -3.03% 0.063 0.061 -3.53% 0.076 0.073 -3.32% 0.087 0.083 -3.96% 

A10 0.045 0.044 0.042 -4.21% 0.031 0.030 -4.31% 0.034 0.032 -3.66% 0.041 0.039 -3.89% 0.046 0.044 -4.10% 

A15 0.030 0.029 0.027 -4.82% 0.021 0.020 -5.38% 0.022 0.021 -4.17% 0.027 0.025 -4.65% 0.030 0.029 -4.46% 

B5 0.129 0.130 0.124 -4.48% 0.090 0.086 -4.53% 0.099 0.095 -4.23% 0.116 0.112 -3.45% 0.134 0.129 -3.89% 

B10 0.074 0.074 0.070 -4.65% 0.051 0.049 -3.74% 0.056 0.054 -4.45% 0.067 0.064 -3.86% 0.077 0.073 -4.64% 

B15 0.050 0.049 0.046 -5.25% 0.034 0.033 -4.44% 0.037 0.036 -4.78% 0.045 0.043 -4.60% 0.051 0.049 -5.10% 

C5 0.049 0.047 0.044 -5.58% 0.034 0.032 -5.59% 0.037 0.035 -5.22% 0.044 0.041 -5.69% 0.050 0.047 -5.49% 

C10 0.028 0.026 0.025 -5.88% 0.019 0.018 -6.37% 0.021 0.020 -5.77% 0.025 0.023 -5.63% 0.028 0.026 -5.92% 

C15 0.019 0.018 0.016 -6.55% 0.013 0.012 -6.96% 0.014 0.013 -6.21% 0.016 0.015 -6.09% 0.019 0.017 -6.39% 

D5 0.050 0.047 0.045 -5.01% 0.034 0.032 -5.30% 0.037 0.035 -5.04% 0.044 0.042 -5.41% 0.050 0.047 -5.04% 

D10 0.028 0.026 0.025 -5.13% 0.019 0.018 -5.37% 0.021 0.020 -5.41% 0.025 0.023 -5.68% 0.028 0.026 -5.51% 

D15 0.018 0.017 0.016 -5.50% 0.012 0.012 -6.09% 0.014 0.013 -5.99% 0.016 0.015 -6.18% 0.018 0.017 -5.92% 

M10 1.126 1.137 1.112 -2.20% 0.960 0.925 -3.61% 1.023 0.991 -3.16% 1.076 1.052 -2.25% 1.138 1.117 -1.84% 

M20 0.419 0.430 0.409 -4.76% 0.301 0.287 -4.47% 0.336 0.320 -4.89% 0.382 0.368 -3.59% 0.435 0.418 -3.83% 

M30 0.150 0.145 0.138 -5.32% 0.104 0.098 -5.86% 0.112 0.106 -4.91% 0.134 0.127 -5.28% 0.153 0.145 -5.08% 

 

 

EN 

13786 

NORTH EAST WEST SOUTH HORIZONTAL 

FFT FDM Δ FFT FDM Δ FFT FDM Δ FFT FDM Δ FFT FDM Δ 

A5 -9.1 -6.0 -6.0 - -11.0 -11.0 - -7.0 -7.0 - -9.0 -9.0 - -8.0 -8.0 - 

A10 -9.9 -7.0 -7.0 - -12.0 -12.0 - -8.0 -8.0 - -9.0 -9.0 - -9.0 -9.0 - 

A15 -10.9 -8.0 -8.0 - -13.0 -13.0 - -9.0 -9.0 - -10.0 -10.0 - -10.0 -10.0 - 

B5 -8.1 -5.0 -5.0 - -8.0 -9.0 -1.0 -6.0 -6.0 - -7.0 -7.0 - -7.0 -7.0 - 

B10 -8.9 -6.0 -6.0 - -10.0 -10.0 - -7.0 -7.0 - -8.0 -8.0 - -8.0 -8.0 - 

B15 -9.9 -7.0 -7.0 - -11.0 -11.0 - -8.0 -8.0 - -9.0 -9.0 - -9.0 -9.0 - 

C5 -12.9 -10.0 -10.0 - -15.0 -15.0 - -11.0 -11.0 - -13.0 -13.0 - -12.0 -12.0 - 

C10 -13.9 -11.0 -11.0 - -16.0 -16.0 - -12.0 -12.0 - -14.0 -14.0 - -13.0 -13.0 - 

C15 -14.9 -12.0 -12.0 - -17.0 -17.0 - -13.0 -13.0 - -15.0 -15.0 - -14.0 -14.0 - 

D5 -13.3 -10.0 -10.0 - -15.0 -15.0 - -12.0 -12.0 - -13.0 -13.0 - -13.0 -12.0 1.0 

D10 -14.3 -11.0 -11.0 - -16.0 -16.0 - -13.0 -13.0 - -14.0 -14.0 - -14.0 -14.0 - 

D15 -15.3 -12.0 -12.0 - -18.0 -17.0 1.0 -14.0 -14.0 - -16.0 -15.0 1.0 -15.0 -15.0 - 

M10 -2.8 -2.0 -2.0 - -3.0 -3.0 - -2.0 -2.0 - -2.0 -2.0 - -2.0 -2.0 - 

M20 -6.8 -4.0 -4.0 - -6.0 -7.0 -1.0 -5.0 -5.0 - -6.0 -6.0 - -6.0 -6.0 - 

M30 -10.7 -8.0 -8.0 - -12.0 -12.0 - -9.0 -9.0 - -10.0 -10.0 - -10.0 -10.0 - 
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Figure C.5 - Periodic thermal transmittances in [W m
-2

 K
-1

] (left) and time shifts in [h] (right) 

for the conditions of Palermo for the South, North and Horizontal walls respect to the reference 

FFT parameters. Dotted lines represent the ±20% range 



Periodic thermal transmittance and time shift 
 

 

260 

 

 

Figure C.6 - Periodic thermal transmittances in [W m
-2

 K
-1

] (left) and time shifts in [h] (right) 

for the conditions of Palermo for the East and West-oriented walls respect to the reference FFT 

parameters. Dotted lines represent the ±20% range 
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Annex D 

In this Annex, the graphs with the comparison between the thermal losses calculated in 

accordance with the EN ISO 13790:2008 method and the simulated ones are represented. 
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20 °C temperature setpoints 

 

Figure D.1 - Simulated thermal losses with 20 °C air temperature setpoint (on the left) and 20 

°C operative setpoint (on the right), without ventilation for the different S/V. Insulated cases in 

lighter colours 
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Figure D.2 - Simulated thermal losses with 20 °C air temperature setpoint (on the left) and 20 

°C operative setpoint (on the right), with 0.3 ach/h of ventilation rate for the different S/V. 

Insulated cases in lighter colours 
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Figure D.3 - Simulated thermal losses with 20 °C air temperature setpoint (on the left) and 20 

°C operative setpoint (on the right), with 0.6 ach/h of ventilation rate for the different S/V. 

Insulated cases in lighter colours 
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Figure D.4 - Simulated thermal losses with 20 °C air temperature setpoint (on the left) and 20 

°C operative setpoint (on the right), with 0.9 ach/h of ventilation rate for the different S/V. 

Insulated cases in lighter colours 
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26 °C temperature setpoints 

 

Figure D.5 - Simulated thermal losses with 26 °C air temperature setpoint (on the left) and 26 

°C operative setpoint (on the right), without ventilation for the different S/V. Insulated cases in 

lighter colours 
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Figure D.6 - Simulated thermal losses with 26 °C air temperature setpoint (on the left) and 26 

°C operative setpoint (on the right), with 0.3 ach/h of ventilation rate for the different S/V. 

Insulated cases in lighter colours 
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Figure D.7 - Simulated thermal losses with 26 °C air temperature setpoint (on the left) and 26 

°C operative setpoint (on the right), with 0.6 ach/h of ventilation rate for the different S/V. 

Insulated cases in lighter colours 
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Figure D.8 - Simulated thermal losses with 26 °C air temperature setpoint (on the left) and 26 

°C operative setpoint (on the right), with 0.9 ach/h of ventilation rate for the different S/V. 

Insulated cases in lighter colours 
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