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Summary

Diabetes is a disease that undermines the normal regulation of glucose levels in the

blood. In people with diabetes, the body does not secrete insulin (Type 1 diabetes)

or derangements occur in both insulin secretion and action (Type 2 diabetes). In

spite of the therapy, which is mainly based on controlled regimens of insulin and drug

administration, diet, and physical exercise, tuned according to self-monitoring of blood

glucose (SMBG) levels 3-4 times a day, blood glucose concentration often exceeds the

normal range thresholds of 70-180 mg/dL. While hyperglycaemia mostly affects long-term

complications (such as neuropathy, retinopathy, cardiovascular, and heart diseases),

hypoglycaemia can be very dangerous in the short-term and, in the worst-case scenario,

may bring the patient into hypoglycaemic coma. New scenarios in diabetes treatment

have been opened in the last 15 years, when continuous glucose monitoring (CGM) sensors,

able to monitor glucose concentration continuously (i.e. with a reading every 1 to 5 min)

over several days, entered clinical research. CGM sensors can be used both retrospectively,

e.g., to optimize the metabolic control, and in real-time applications, e.g., in the “smart”

CGM sensors, able to generate alerts when glucose concentrations are predicted to exceed

the normal range thresholds or in the so-called “artificial pancreas”. Most CGM sensors

exploit needles and are thus invasive, although minimally. In order to improve patients

comfort, Non-Invasive Continuous Glucose Monitoring (NI-CGM) technologies have been

widely investigated in the last years and their ability to monitor glucose changes in the

human body has been demonstrated under highly controlled (e.g. in-clinic) conditions.

As soon as these conditions become less favourable (e.g. in daily-life use) several problems

have been experienced that can be associated with physiological and environmental

perturbations. To tackle this issue, the multisensor concept received greater attention in

the last few years. A multisensor consists in the embedding of sensors of different nature

within the same device, allowing the measurement of endogenous (glucose, skin perfusion,

sweating, movement, etc.) as well as exogenous (temperature, humidity, etc.) factors.

The main glucose related signals and those measuring specific detrimental processes

have to be combined through a suitable mathematical model with the final goal of

estimating glucose non-invasively. White-box models, where differential equations are

used to describe the internal behavior of the system, can be rarely considered to combine

multisensor measurements because a physical/mechanistic model linking multisensor data

to glucose is not easily available. A more viable approach considers black-box models,

which do not describe the internal mechanisms of the system under study, but rather

depict how the inputs (channels from the non-invasive device) determine the output

(estimated glucose values) through a transfer function (which we restrict to the class
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of multivariate linear models). Unfortunately, numerical problems usually arise in the

identification of model parameters, since the multisensor channels are highly correlated

(especially for spectroscopy based devices) and for the potentially high dimension of the

measurement space.

The aim of the thesis is to investigate and evaluate different techniques usable for the

identification of the multivariate linear regression models parameters linking multisensor

data and glucose. In particular, the following methods are considered: Ordinary Least

Squares (OLS); Partial Least Squares (PLS); the Least Absolute Shrinkage and Selection

Operator (LASSO) based on `1 norm regularization; Ridge regression based on `2 norm

regularization; Elastic Net (EN), based on the combination of the two previous norms.

As a case study, we consider data from the Multisensor device mainly based on dielectric

and optical sensors developed by Solianis Monitoring AG (Zurich, Switzerland) which

partially sponsored the PhD scholarship. Solianis Monitoring AG IP portfolio is now

held by Biovotion AG (Zurich, Switzerland). Forty-five recording sessions provided by

Solianis Monitoring AG and collected in 6 diabetic human beings undertaken hypo and

hyperglycaemic protocols performed at the University Hospital Zurich are considered.

The models identified with the aforementioned techniques using a data subset are then

assessed against an independent test data subset. Results show that methods controlling

complexity outperform OLS during model test. In general, regularization techniques

outperform PLS, especially those embedding the `1 norm (LASSO end EN), because

they set many channel weights to zero thus resulting more robust to occasional spikes

occurring in the Multisensor channels. In particular, the EN model results the best one,

sharing both the properties of sparseness and the grouping effect induced by the `1 and

`2 norms respectively. In general, results indicate that, although the performance, in

terms of overall accuracy, is not yet comparable with that of SMBG enzyme-based needle

sensors, the Multisensor platform combined with the Elastic-Net (EN) models is a valid

tool for the real-time monitoring of glycaemic trends. An effective application concerns

the complement of sparse SMBG measures with glucose trend information within the

recently developed concept of dynamic risk for the correct judgment of dangerous events

such as hypoglycaemia.

The body of the thesis is organized into three main parts: Part I (including Chapters

1 to 4), first gives an introduction of the diabetes disease and of the current technologies

for NI-CGM (including the Multisensor device by Solianis) and then states the aims of

the thesis; Part II (which includes Chapters 5 to 9), first describes some of the issues to

be faced in high dimensional regression problems, and then presents OLS, PLS, LASSO,

Ridge and EN using a tutorial example to highlight their advantages and drawbacks;



v

Finally, Part III (including Chapters 10-12), presents the case study with the data set and

results. Some concluding remarks and possible future developments end the thesis. In

particular, a Monte Carlo procedure to evaluate robustness of the calibration procedure

for the Solianis Multisensor device is proposed, together with a new cost function to be

used for identifying models.
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Sommario

Il diabete è una malattia che compromette la normale regolazione dei livelli di

glucosio nel sangue. Nelle persone diabetiche, il corpo non secerne insulina (diabete di

tipo 1) o si verificano delle alterazioni sia nella secrezione che nell’azione dell’insulina

stessa (diabete di tipo 2). La terapia si basa principalmente su somministrazione di

insulina e farmaci, dieta ed esercizio fisico, modulati in base alla misurazione dei livelli di

glucosio nel sangue 3-4 volte al giorno attraverso metodo finger-prick. Nonostante ciò, la

concentrazione di glucosio nel sangue supera spesso le soglie di normalità di 70-180 mg/dL.

Mentre l’iperglicemia implica complicanze a lungo termine (come ad esempio neuropatia,

retinopatia, malattie cardiovascolari e cardiache), l’ipoglicemia può essere molto pericolosa

nel breve termine e, nel peggiore dei casi, portare il paziente in coma ipoglicemico. Nuovi

scenari nella cura del diabete si sono affacciati negli ultimi 10 anni, quando sensori

per il monitoraggio continuo della glucemia sono entrati nella fase di sperimentazione

clinica. Questi sensori sono in grado di monitorare le concentrazioni di glucosio nel

sangue con una lettura ogni 1-5 minuti per diversi giorni, permettendo un analisi sia

retrospettiva, ad esempio per ottimizzare il controllo metabolico, che in tempo reale, per

generare avvisi quando viene predetta l’uscita dalla normale banda euglicemica, e nel

cosiddetto pancreas artificiale. La maggior parte di questi sensori per il monitoraggio

continuo della glicemia sono minimatmente invasivi perchè sfruttano un piccolo ago

inserito sottocute. Gli ultimi anni hanno visto un crescente interesse verso tecnologie

non invasive per il monitoraggio continuo della glicemia, con l’obiettivo di migliorare il

comfort del paziente. La loro capacità di monitorare i cambiamenti di glucosio nel corpo

umano è stata dimostrata in condizioni altamente controllate tipiche di un’infrastruttura

clinica. Non appena queste condizioni diventano meno favorevoli (ad esempio durante un

uso quotidiano di queste tecnologie), sorgono diversi problemi associati a perturbazioni

fisiologiche ed ambientali. Per affrontare questo problema, negli ultimi anni il concetto

di “multisensore” ha ottenuto un crescente interesse. Esso consiste nell’integrazione di

sensori di diversa natura all’interno dello stesso dispositivo, permettendo la misurazione

di fattori endogeni (glucosio, perfusione del sangue, sudorazione, movimento, ecc) ed

esogeni (temperatura, umidità, ecc). I segnali maggiormente correlati con il glucosio e

quelli legati agli altri processi sono combinati con un opportuno modello matematico con

l’obiettivo finale di stimare la glicemia in modo non invasivo. Modelli di sistema (o a

“scatola bianca”), nei quali equazioni differenziali descrivono il comportamento interno del

sistema, possono essere considerati raramente. Infatti, un modello fisico/meccanicistico

legante i dati misurati dal multisensore con il glucosio non è facilmente disponibile. Un

differente approccio vede l’impiego di modelli di dati (o a “scatola nera”) che descrivono
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il sistema in esame in termini di ingressi (canali misurati dal dispositivo non invasivo),

uscita (valori stimati di glucosio) e funzione di trasferimento (che in questa tesi si limita

alla classe dei modelli di regressione lineari multivariati). In fase di identificazione dei

parametri del modello potrebbero insorgere problemi numerici legati alla collinearità tra

sottoinsiemi dei canali misurati dai multisensori (in particolare per i dispositivi basati su

spettroscopia) e per la dimensione potenzialmente elevata dello spazio delle misure.

L’obiettivo della tesi di dottorato è di investigare e valutare diverse tecniche per

l’identificazione del modello di regressione lineare multivariata con lo scopo di stimare i

livelli di glicemia non invasivamente. In particolare, i seguenti metodi sono considerati:

Ordinary Least Squares (OLS), Partial Least Squares (PLS), the Least Absolute Shrinkage

and Selection Operator (LASSO) basato sulla regolarizzazione con norma `1; Ridge basato

sulla regolarizzazione con norma `2; Elastic-Net (EN) basato sulla combinazione delle

due norme precedenti. Come caso di studio per l’applicazione delle metodologie proposte,

consideriamo i dati misurati dal dispositivo multisensore, principalmente basato su sensori

dielettrici ed ottici, sviluppato dall’azienda Solianis Monitoring AG (Zurigo, Svizzera),

che ha parzialmente sostenuto gli oneri finanziari legati al progetto di dottorato durante

il quale questa tesi è stata sviluppata. La tecnologia del multisensore e la proprietà

intellettuale di Solianis sono ora detenute da Biovotion AG (Zurigo, Svizzera). Solianis

Monitoring AG ha fornito quarantacinque sessioni sperimentali collezionate da 6 pazienti

soggetti a protocolli ipo ed iperglicemici presso l’University Hospital Zurich. I modelli

identificati con le tecniche di cui sopra, sono testati con un insieme di dati diverso

da quello utilizzato per l’identificazione dei modelli stessi. I risultati dimostrano che

i metodi di controllo della complessità hanno accuratezza maggiore rispetto ad OLS.

In generale, le tecniche basate su regolarizzazione sono migliori rispetto a PLS. In

particolare, quelle che sfruttano la norma `1 (LASSO ed EN), pongono molti coefficienti

del modello a zero rendendo i profili stimati di glucosio più robusti a rumore occasionale

che interessa alcuni canali del multi-sensore. In particolare, il modello EN risulta il

migliore, condividendo sia le proprietà di sparsità e l’effetto raggruppamento indotte

rispettivamente dalle norme `1 ed `2. In generale, i risultati indicano che, anche se le

prestazioni, in termini di accuratezza dei profili di glucosio stimati, non sono ancora

confrontabili con quelle dei sensori basati su aghi, la piattaforma multisensore combinata

con il modello EN è un valido strumento per il monitoraggio in tempo reale dei trend

glicemici. Una possibile applicazione si basa sull’utilizzo del’informazione dei trend

glicemici per completare misure rade effettuate con metodi finger-prick. Sfruttando

il concetto di rischio dinamico recentemente sviluppato, e’ possibile dare una corretta

valutazione di eventi potenzialmente pericolosi come l’ipoglicemia.
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La tesi si articola in tre parti principali: Parte I (che comprende i Capitoli 1-4),

fornisce inizialmente un’introduzione sul diabete, una recensione delle attuali tecnologie

per il monitoraggio non-invasivo della glicemia (incluso il dispositivo multisensore di

Solianis) e gli obiettivi della tesi; Parte II (che comprende i Capitoli 5-9), presenta alcune

delle difficoltà affrontate quando si lavora con problemi di regressione su dati di grandi

dimensioni, per poi presentare OLS, PLS, LASSO, Ridge e EN sfruttando un esempio

tutorial per evidenziarne vantaggi e svantaggi. Infine, Parte III, (Capitoli 10-12) presenta

il set di dati del caso di studio ed i risultati. Alcune note conclusive e possibili sviluppi

futuri terminano la tesi. In particolare, vengono brevemente illustrate una metodologia

basata su simulazioni Monte Carlo per valutare la robustezza della calibrazione del

modello e l’utilizzo di un nuova nuova funzione obiettivo per l’identificazione dei modelli.
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Part I

Background and Aim of the

Thesis





1
Diabetes and Continuous Glucose Monitoring

According to the World Health Organization (WHO), diabetes is estimated to currently

affect 347 million of people in the world and this number is expected to increase by

two third in 2030 [1]. Diabetes and its complications are considered major causes of

early death in most countries, with over four million deaths per year [2]. From an

economic point of view, the cost of diabetes ranges from 6 to 15 % of the budget of

national health systems in the EU, explaining why it is considered one of the most

challenging socio-health emergencies of the 3rd millennium [3]. This chapter gives an

overview of the diabetes disease and of its therapy. In this context, the importance of

Continuous Glucose Monitoring (CGM) sensors is highlighted, together with a proposal

of classification according to their degree of invasiveness.

1.1 The Diabetes Disease

1.1.1 The Glucose-Insulin Regulatory System

The glucose substrate represents the main source of fuel for the human body. Thanks to

a complex regulatory mechanism, glucose concentration in blood of healthy subjects is

tightly kept in a limited rage, i.e. 70-180 mg/dL, although it is subject to fluctuations

due to utilization and production processes. Different hormones are involved in this
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regulation. The most important one is insulin, which is produced by the beta-cells of

the pancreas, and is responsible for lowering the glucose concentrations. Insulin is also

the principal control signal for conversion of glucose to glycogen for internal storage in

liver [4].

As depicted in Figure 1.1, glucose is used by many organs, tissues and cells. Some,

like brain or red blood cells, consume glucose continuously and independently of insulin

and the interruption of this supplying may cause severe damages. For muscles, fatty

tissue and liver the absorption of glucose is proportional to insulin concentration.

Glucose in blood derives both from intestinal absorption of carbohydrates and from

internal production. In particular, the latter consists in the conversion to glucose of

glycogen stored in the liver or in the so-called gluconeogenesis (the “re-construction” of

glucose using substrate derived from glucose degradation).

Figure 1.1: Scheme of the glucose-insulin regulatory system. Continuous arrows represent
fluxes. In particular, brown ones are referred to glucose, while black ones to insulin. Dashed
arrows represent the positive and negative control, indicated with “+” and “-” respectively.

The green dotted arrows highlight the self-control employed by a substance, while red dotted
arrows indicate the control of a substance over the other one. The blue dotted line represents

the measurement site.

An increase in blood glucose concentration causes an increase in insulin secretion.

Glucose and insulin concentration have the same effect on the glucose production and

utilization: an increase in insulin (or glucose) concentration causes a decrease of glucose
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production and an increase of glucose utilization by muscle, while there is no influence

on glucose utilization by brain.

1.1.2 Types of Diabetes

In people with diabetes, either the pancreas produces little or no insulin (type 1 diabetes),

or the cells do not respond appropriately to the insulin that is produced (type 2 diabetes).

In particular, “Type 1 diabetes”, or Insulin Dependent Diabetes Mellitus (IDDM) is

characterized by loss of the insulin-producing beta cells or the islets of Langherhans in the

pancreas leading to insulin deficiency. In most cases, type 1 diabetes has an autoimmune

origin and affects children or young adults, and in fact it is also called “juvenile diabetes”.

Instead, “Type 2 diabetes”, or Non-Insulin Dependent Diabetes Mellitus (NIDDM), is

characterized by insulin resistance which may be combined with relatively reduced insulin

secretion. Insulin resistance corresponds to a loss of efficacy of insulin action, causing

a reduced transport of glucose from the bloodstream into the cells. It is frequently

associated with obesity and a sedentary lifestyle. Type 2 is the most common diabetes

type (90% of cases) and mostly affects adult people.

1.1.3 Diabetes-Related Complications

A failure of glucose counter-regulatory system causes Blood Glucose Levels (BGL) to

exceed the euglycaemic range. Hypoglycaemia and hyperglycaemia might lead to short

and long term complications, respectively.

Hyperglycaemia has no immediate damaging consequence on organism, but, if this

state is frequent and persist for long time, can lead to several invalidating complications.

These long term complications include micro-vascular complications (involving small

blood vessels) and macro-vascular complications (involving large blood vessels) [5]. The

former, like neuropathy, nephropathy and retinopathy can lead to nerves damage, renal

failure and blindness respectively, the latter to coronary heart disease, strokes and

peripheral vascular disease. In order to prevent the onset of these complications, diabetes

therapies attempt to keep BGL within the euglycemic range. This can usually be done

with close dietary management, physical activity and use of appropriate medications, like

insulin injections before meals. The association of faulty glucose regulatory system and

neglectfully therapy could cause, principally during sleep hours and physical activity, an

even more dangerous unfavorable effect, i.e. hypoglycemia (i.e. too low blood glucose

level).

Hypoglycemia affects mostly the brain, given its continuous glucose demand. There-

fore, when glucose levels fall, brain functions diminish and people may lose cognitive
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abilities and in the worst case scenario go into the so-called hypoglycaemic coma. Hypo-

glycemia, at the opposite of hyperglycemia, has mainly short-term effects [6] and could

be classified according to the level of awareness:

• mild hypoglycemia (blood glucose levels between 55 and 70 mg/dL) is characterized

by palpitations, extreme hunger, trembling, cold or excessive sweating and visual

paleness, due to blood redirection to the vital organs and minimization of the

peripheral blood circulation. In this case a small amount of carbohydrates eaten or

drunk could restore normal levels;

• moderate hypoglycemia (between 55 and 40 mg/dL), whose symptoms include mood

changes, irritability, confusion, blurred vision, weakness and drowsiness since it

affects the central nervous system;

• severe hypoglycemia (less than 40 mg/dL) is characterized by convulsions, loss of

consciousness, coma, and hypothermia. If this condition is prolonged in time could

cause irreversible brain damages and heart problems, or even death. In this case,

intravenous dextrose or an injection of glucagon is required.

1.1.4 Diabetes Therapies and Glucose Monitoring

In the near future, new technologies will play a crucial role in diabetes management to

contrast human and socio-economical costs of this disease [7].

For type 1 diabetes, conventional therapies consist in insulin injections for compen-

sating the lack of insulin secretion and have the goal to restore euglycaemic levels. A

suitable dosage is determined using information on food intakes and current BGL. In the

early stage of type 2 diabetes, a diet modification and physical exercise, associated with

medications improving insulin sensitivity, may be sufficient to control glycaemic levels. If

diabetes proceeds, exogenous insulin injections may be needed. In both cases, monitoring

BGL is important. Indeed, several clinical studies demonstrated that long and short term

complications can be reduced through a therapy based on diet, physical exercise, and

drug delivery (including subcutaneous injections of exogenous insulin), tuned according

to the monitoring of individual parameters [2]. The most used approach is based on

the measure of glycaemia 3-4 times per day. This is referred as Self-Monitoring Blood

Glucose (SMBG), i.e. the patients have to take a finger-prick blood sample on specific

strips and measure BGL with a dedicated device [8]. SMBG measures are collected by

the patient and then analyzed and interpreted retrospectively by the physician during

periodic visits where the current therapy is revised accordingly. SMBG traces can also

be analyzed retrospectively for assessing glucose variability [9]. However, a suitable time
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window of several months must be considered for having a reasonable number of data

points.

A SMBG measure can also be used in real-time by the patient to assess the current

glycaemic state. However, the sparseness of these measures does not give a complete

information about the glycaemic range excursion and dynamics, leading to potentially

dangerous hypo/hyper glycaemic events without any patient’s awareness [10].

Self Monitoring Blood Glucose

The most common test for measuring BGL involves pricking a finger with a lancet

device to obtain a small blood sample, applying a drop of blood onto a reagent test-strip,

and determining the glucose concentration by inserting the strip into a measurement

device. Different manufacturers use different technologies, but most systems measure an

electrical characteristic proportional to the amount of glucose in the blood sample [8].

Intermittent glucose sampling can be achieved also through other physiological fluids,

such as saliva, urine, sweat or tears [11]. However, in these cases, delay in the appearance

of glucose in these fluids must be taken into account.

SMBG systems make a direct measure, i.e. they measure a specific property of glucose.

This means that if the same property is investigated for another kind of substance, a

significantly different output is produced than the one obtained from glucose. Spectral,

chemical and competitive binding properties of glucose are considered to infer on blood

glucose concentrations.

Direct measurements tend to be more stable than indirect ones because the signal

being measured is usually unique and interferences more predictable. In fact, indirect

measurements are affected by the presence of other chemicals and substances within

the body that may produce the same signal, since they measure glucose effect on some

secondary process [12].

Continuous Glucose Monitoring

The main drawback of SMBG is the lack of glucose measures during sleeping or

daily-life activities, leading to time intervals with no informations on the glucose levels.

During these intervals, dangerous hypo-/hyper-glycaemic excursions may happen without

awareness for the patient. With the aim of preventing these episodes, in the last decade

many devices for CGM have been developed allowing to monitor glucose fluctuations

continuously with a minimum level of invasiveness.

The main advantage of CGM is the possibility to monitor BGL in a nearly continuous

way, i.e. every 1 to 5 minutes, for a long period of time, i.e. 7 consecutive days. CGM
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time-series have been studied retrospectively for analyzing glucose variability [13, 14].

Moreover, the clinical benefit of wearing CGM devices has been demonstrated in [15, 16],

showing an improvement of the glycaemic control with a decreasing of the glycated

hemoglobin HbA1c (a marker of the glycamic control predictive of diabetes related

complications).

More appealing are on-line applications of such technologies. In the last years, several

algorithms and signal processing techniques have been developed or adapted from other

fields to improve accuracy and reliability of CGM data, see [17, 18, 19]. An example

is the so-called “smart” CGM architecture [20]. It consists in a cascade of independent

software modules down line of the commercial CGM sensor which allow to de-noise,

enhance and predict glucose levels, see e.g. [21, 22, 23, 24, 25, 26, 27, 28, 29] for examples

of on-line algorithms developed for CGM. CGM are fundamental in the development of

artificial pancreas, which implements a closed-loop control that has the aim to infuse

the correct amount of insulin subcutaneously using a micro-infusor driven by a control

algorithm, which, in turn, exploits the measurements provided by a CGM sensor as its

input [30, 31, 32].

CGM are appealing for several reasons related to their degree of invasiveness and the

quasi continuous information they provide. However, given their current performance

they are still considered a complement and not a replacement of SMBG devices [33].

1.2 A Classification of Sensors for Continuous Glucose

Monitoring (CGM)

CGM sensors can be classified according to: a) the kind of measure (direct or indirect);

b) to the level of invasiveness; c) to the physical principle the sensor is based on. In

Figure 1.2 we propose a classification scheme of existing CGM sensors according to their

level of invasiveness, highlighting the physical principle or technology each sensor is based

on. The following review is far from being exhaustive and a complete descriptions and

reviews on the working principle, pros and cons, and future perspectives on CGM sensors

can be found in [34, 35, 36, 37, 38].

1.2.1 Invasive CGM Sensors

As shown in Figure 1.2, a direct measurement of BGL could be obtained invasively

by using sensors implanted into the body [39]. These sensors are extremely accurate,

but given their level of invasiveness they are particularly suited for Operating Rooms

and Intensive Care Units [40]. There are different technologies allowing to transduce
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Figure 1.2: A Proposed CGM sensors classification.

glucose concentration into an electrical signal, most of them are based on glucose-oxidase

principle. Other sensors are based on competitive binding of glucose with other molecules

or glucose spectral properties [12].

Intravenous Implantable

Glucose oxidase-based sensors technology depends on the reaction of glucose with

oxygen in presence of glucose oxidase to create gluconic acid. The limitation of using

this method is that the reaction requires one oxygen molecule for each glucose molecule.

Since glucose is more present in the body than oxygen, the limiting reagent results to be

the oxygen. For this reason, the sensor would measure oxygen levels instead of glucose

levels. To avoid this problem, sensors must give oxygen an advantage over glucose, using
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alternative electron donors, called mediators.

The competitive binding-based sensor measures fluorescence of a binding molecule:

the more glucose is bound to this molecule, the less intense is the fluorescent signal so

that if glucose levels increase the measure decreases. This technique has still problems

related to biocompatibility and to the risk inherent to surgical placement of these devices

in blood vessels, hence it is not widely applied [41]. An additional fluorescence-based

intravenous glucose sensor is presented in [42].

A new intravascular continuous glucose monitoring system is under development,

using a glucose-sensitive hydrogel. When this hydrogel is bound with glucose, it changes

in volume. The result is a measurable change in the hydrogel impedance that is correlated

to glucose concentration. Preliminary studies have been made on a prototype of the

sensor, integrated with stents as antennas for wireless data transfer from within the

body [43].

1.2.2 Minimally-Invasive CGM Sensors (with needle)

There is no unanimous agreement in the literature about which kind of CGM sensors

should be considered as minimally-invasive. According to the proposed sensor classification

scheme, we will refer to minimally-invasive sensors (with needle), those requiring a needle

inserted in the subcutis, such as subcutaneous and microdialysis (see Section 1.2.2). On

the other side, minimally-invasive sensors (without needle) will be those requiring the

creation of microscopic holes in the skin to perform the measurement without the need

to insert needles under the skin (see Section 1.2.3).

A common limitation of all these sensors is the delay between plasma and interstitial

glucose concentration. This phenomenon is due to the glucose transport from plasma

to interstitium that act as a low pass filter, see [44] for details of plasma-to-interstitium

glucose kinetics.

1.2.2.1 Subcutaneous Sensors

Instead of implanting the sensor into the body, a subcutaneous needle may be used to sense

glucose. Usually these systems are based on enzyme electrodes, most of time exploiting a

glucose-oxidase principle. Subcutaneous needles provide much more information about

dynamics and glucose excursions if they are compared to a finger-prick system, providing

readings every 1-5 minutes for up to 7 days. These sensors require frequent calibration

to compensate drifts due to protein and cell coating of the sensor, variable tissue oxygen

tension and wound response to the sensor, which alters local blood flow. From a signal

processing point of view, several algorithms have been developed to deal with these
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calibration issues, see [18, 19] for a review. To perform periodic calibrations of the sensor,

a measurement using traditional SMBG systems is usually required.

Examples of commercially available subcutaneous sensors include the FreeStyle

Navigator TM(Abbott Laboratories, Alameda, CA, USA), the MiniMed Guardian Real-

Time (Medtronic MiniMed, Northridge, CA, USA) and the the Dexcom R© Seven R© and

SevenPlus R© (DexCom Inc., San Diego, CA, USA) R©, to mention but a few.

Figure 1.3: FreeStyle Navigator CGM System[45]. Miniature electrochemical sensor placed
in the subcutaneous adipose tissue (bottom left), a disposable sensor delivery unit (top right),
a radiofrequency transmitter connected to the sensor (bottom right), and a hand-held receiver

to display continuous glucose values.

The FreeStyle Navigator TMCGM System consists of four components (see Figure

1.3): a miniature electrochemical sensor placed in the subcutaneous adipose tissue, a

disposable sensor delivery unit, a radiofrequency transmitter connected to the sensor, and

a hand-held receiver to display continuous glucose values [46]. The sensor can be used for

5 days, the glucose data on the receiver are updated once a minute and include a trend

arrow to indicate the direction and rate of change averaged over the preceding 15 min.

The user interface of the receiver allows the threshold alarms to be set at different glucose

levels. The receiver contains a built-in Free-Style blood glucose meter for calibration of

the sensor as well as for confirmatory blood glucose measurements. The sensor requires

four calibrations over the 5-day wearing period at 10, 12, 24, and 72 h after sensor

insertion. It was approved by FDA in 2008 [47].

The DexCom R© SevenPlus R© sensor consists of three parts (see Figure 1.4): a small

sensor placed in the subcutaneous adipose tissue, a wireless transmitter and a receiver [48].

It performs a new measure every 5 minutes for 7 days. The receiver displays the sensor

glucose value along with a graph showing glucose trend of the last 1, 3 or 9 hours.

The receiver contains memory up to 30 days of continuous glucose information and
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Figure 1.4: DexCom R© SevenPlusR© sensor. The receiver(left) and the and transmitter
(right). The subcutaneous sensor is not shown [48].

has programmable high and low glucose alerts and a non-changeable low glucose alarm

set at 55 mg/dL. It must be calibrated every 12 hours. It was approved by FDA in

2009 [49]. The same company recently produced the DexCom R© G4 PLATINUM, a

CGM sensor with improved performance with respect to the SevenPlus R©, according to

their website [48].

Figure 1.5: The Guardian REAL-Time [50]. REAL-Time CGM System monitor (left), the
MiniLink REAL-Time Transmitter together with the glucose sensor inserted in the subcutis

(right).

The Guardian Real-Time device consists of the Guardian R© REAL-Time CGM System

monitor (Figure 1.5, left), the MiniLink REAL-Time Transmitter (Figure 1.5, right) and

of the glucose sensor inserted in the subcutis. This sensor performs a new measure every

5 minutes for 3 days [50]. The receiver contains memory up to 21 days of continuous

glucose information and has alerts if a glucose level falls below or rises above preset values.

It must be calibrated every 12 hours either manually or automatically via telemetry.

It was approved by FDA in 2005. This sensor, integrated with an insulin delivery

device composes the MiniMed Paradigm REAL-Time system, that was launched in 2006.
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Recently, the CGM has been complemented with an insulin pump to provide the MiniMed

Paradigm Real-Time Insulin Pump and Glucose Monitoring System [51].

1.2.2.2 Microdialysis

Another type of minimally invasive subcutaneous CGM sensor exploiting a needle is

based on a microdialysis system, which uses a fine, hollow microdialysis fibre placed

subcutaneously. This probe is perfused with isotonic fluid from an external pool, while

glucose, present in the interstitial fluid, freely diffuses into the fibre, where it is pumped

out of body to a glucose-oxidase based sensor [52]. The main problem related to this kind

of sensor consists in modifications of chemical and physical properties of the membrane,

caused by modifications in tissues characteristics such as pressure, volume, temperature

and hydration. These modifications affect flow rate and composition of perfusate, which

may influence glucose concentration.

The GlucoDay R© by Menarini Diagnostics (Florence, Italy) is a microdialysis-based

glucose monitoring system [53]. It is based on enzymatic-amperometric measurement

analyzing the fluid coming from the subcutis of the abdominal region. The system

comprises a walkman-size apparatus, and a sensor fibre as well as two plastic bags (one

for the buffer solution, one for the waste products) as disposables. The apparatus contains

also a measurement cell and a peristaltic pump. The buffer solution is pumped from a

bag into the subcutaneous tissue through the microfibre and rinses the interstitial fluid,

from which the measurements are obtained every 3 min and stored in memory. Data are

downloaded after monitoring (maximum monitoring time, 48 h) via a serial or infrared

connection to a standard PC for further analysis. It incorporates safety alarms for hypo

or hyperglycaemia events and requires one daily calibration. Recently, the same company

launched the GlucoMen R©Day (currently waiting the CE mark), which overcomes various

shortcomings of its predecessor [54]. It is smaller and more compact, and has a longer

lifetime (100 hours), is more stable and embeds different algorithms for signal processing

and data management [55, 56].

The SCGM 1 sensor (Roche Diagnostics, Mannheim, Germany) is also based on a

microdialysis principle [57].

1.2.3 Minimally-Invasive CGM Sensors (without needle)

This section presents minimally-invasive sensors not presenting needles, but exploiting

technologies for creating microscopic holes allowing glucose molecules to pass through.

For this reason, this class of sensors is not regarded as fully non-invasive.
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1.2.3.1 Micropores and Microneedle

Micropores techniques perforate the stratum corneum without penetrating the full

thickness of the skin. A pulsed laser or the local application of heat are considered to

form micropores allowing the collection of interstitial fluid applying vacuum. A measure

of glucose concentration is then derived from this sample.

SpectRx is made mainly of two units. The first unit is a handheld laser, which creates

micropores (size of a hair) in the stratum corneum of the skin. The interstitial fluid,

containing glucose, flows through the micropores and is collected by a patch. Then, it

reaches a traditional glucose sensor, which is the second unit. The meter also includes

a transmitter that sends wirelessly the glucose measurements to a handheld display

device [37].

Similarly capillary blood could be sampled using a hollow microneedle, which is

almost sensation-less and analyses blood using an enzyme-based system.

1.2.3.2 Iontophoresis and Sonophoresis

Among minimally invasive sensors, we also include transdermal methods, which stimulate

the skin exploiting different interaction fenomena in order to extract glucose from the

skin micropores for its direct measures. This group comprises different techniques like

reverse iontophoresis and sonophoresis [37].

Iontophoresis Principle

The first method is based on the flow of a low electrical current applied across the

skin between an anode and a cathode positioned on the skin surface [38]. The application

of an electrical potential causes the migration of sodium and chloride ions from beneath

the skin towards the cathode and anode respectively, at rates significantly grater than

passive permeability. The convective flow induced by this technique carries out neutral

molecules, including glucose, along with sodium. Thus, interstitial glucose is transported

across the skin towards the cathode, where it is collected and measured by a glucose

oxidase-based electrode. The concentration of glucose is low so oxygen is not a limiting

factor to glucose oxidase. This technique tends to generate skin irritation and cannot

be used if the subject is sweating significantly; in addition it needs a long warm-up and

calibration. Skin irritation may be limited by shortening the time interval of the electrical

potential application. However, a minimum duration is required to get sufficient amount

of glucose for measurement.

Iontophoresis-Based Sensors
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The GlucoWatch R© by Cygnus Inc. (approved by FDA in 2002, but withdrawn from

the market in 2007) device is based on reverse iontophoresis technology [58]. It has a

wrist-watch format and measures glucose through the skin using a disposable pad, which

clips into the back of the meter. The pad uses an adhesive to stick to the skin allowing it

to come in contact with a small electrical current, which causes the reverse iontophoresis,

and then the glucose levels in the interstitial fluid can be estimated. Compared with

finger-stick readings, the meter measurements have a 15-min lag time. The meter is

intended for use to supplement, but not to replace, information obtained from a standard

blood glucose meter. The meter has 2-3 h warm-up period, to remove the glucose on the

superficial epidermis and to onset a continuous convective flow. A single-point calibration,

performed using a fingerstick blood glucose measurement, accounts for variability in both

biosensor sensitivity and skin permeability and is used to convert subsequent biosensor

measurements into glucose readings. Afterwards, the meter provides readings every

10 min: 3 min of electrical stimulation (glucose extraction), then 7 min of glucose

measurement. The meter has a memory that can store up to 8500 records and the

data can be download to a PC for a subsequent analysis. An alarm also occurs in the

case of a rapid change is seen in the blood sugar, in the case of sweating, and for any

measurements above or below the patient’s target levels. A trend indicator appears to

show the direction of the blood sugar when the current measurement is more than 18

mg/dl higher or lower than the previous measurements. Event markers can be recorded

for activities like meals, insulin intake and exercise. However, the meter had several

limitations. In fact, the measurements could fail or be inaccurate, if the patient was

sweating, or in cases of rapid temperature changes, excessive movement of the meter, or

strenuous exercise. Most users reported that the electrical discharge is quite noticeable

during the first use of the meter, although it becomes less noticeable on subsequent use.

Moreover the disposable pad must be replaced every 12-13 h of monitoring time to ensure

continued accuracy; the meter must then go through the warm-up period and calibration

again. In addition, it may take more than one try to calibrate the meter, thus requiring

additional finger-stick tests. Finally, the meter causes skin irritation to some extent,

which limits reuse of the same site to a week or two[59, 60].

A new Reverse Iontophoresis based Glucose Monitoring Device (RIGMD) has been

developed in Korea [61]. It measures a weak electric current that is dependent on glucose

concentration in the interstitial fluid, by using an electrochemical enzymatic sensor

located on the forearm skin. The sensor is made up of electrodes and a gelatinous

material which contains glucose oxidase. A current is produced between the electrodes

causing reverse iontophoresis [60].
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In [62], it is described the results of preliminary experiments for the development

of a mediated glucose biosensor incorporated with reverse iontophoresis function for

noninvasive glucose monitoring, using an optimum combination of glucose oxidase and

ferrocene.

Sonophoresis Principle

The sonophoresis based technologies use low-frequency ultrasounds to create an

array of microscopic holes on human skin which increase its permeability and allow the

migration of glucose contained in interstitial fluid through the skin to a glucose sensor

placed in contact with the skin. Thus a direct measure is feasible [38].

Sonophoresis-Based Sensors

Echo Therapeutics produces a device based on sonophoresis technique [63]. The

meter is made essentially of two units: an ultrasonic device (SonoPrep), coupled with

the skin through an aqueous medium, which increases skin permeation, and a glucose

sensor (Symphony), which measure glucose in the interstitial fluid reaching the sensor

through the micropathways generated on the skin.

SonoPrep is an ultrasonic skin preparation generator, controlled by a microprocessor.

This device delivers low-frequency ultrasound (53-56 kHz), which creates a cavitating

force at the point of contact with the skin surface. This force reduces transiently the

normally robust lipid barrier of normal intact skin, causing the outermost layer of

skin to become increasingly conductive and permeable. Since the relationship between

skin conductance and skin permeability, the active ultrasound is terminated when the

skin reaches the predetermined level of permeability by continuously measuring skin

conductance. This ensures that the site is properly prepared without pain, trauma (such

as burn), or irritation. It is claimed that the application of the ultrasonic device for 15 s

is enough to make the skin permeable for several hours (between 12 and 24 hours) [64].

Prelude SkinPrep System is a new skin preparation device under development (see

Figure 1.6, right), that can be used in alternative to SonoPrep. The system consists

of a disposable abrasive end driven by an electrical motor in a standalone hand piece.

Instead of ultrasounds,Prelude utilizes a mechanical mean to remove stratum corneum,

with the process controlled by the same conductance-based feedback mechanism used in

SonoPrep [65]. The Symphony is a fully functional prototype sensor instrument designed

to measure glucose through permeated skin (see Figure 1.6, left). The sensor is able

to maintain reliable fluid contact with the skin through a proprietary biocompatible

hydrogel, which utilizes glucose oxidase to measure glucose concentration. The sensor is
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Figure 1.6: Right:Prelude SkinPrep System. Left: Symphony [63].

housed in a wireless transmitter, which acquires, stores, and transmits coded data to the

receiver/monitor to display a reading every minute in addition to trends and alarms for

excessively high and low BGL [65].

1.2.4 Non-Invasive Continuous Glucose Monitoring NI-CGM Sensors

Non-invasive Continuous Glucose Monitoring NI-CGM sensors measure glucose concen-

tration through the skin without extracting blood or interstitial fluid or without a needle

penetrating the skin for reaching these fluids. Hence, these sensors are more comfortable

for the patient than the previously described sensors and do not cause displeasing phys-

iological reactions. However, the measure is affected by different confounding factors,

making more difficult to perform an accurate measurement.

NI-CGM sensors measure different physical properties of the skin and underlying

tissues (optical, thermal, acoustic and electrical) which are modulated by glucose concen-

tration changes. Given the special importance of these sensors in the present thesis, the

physical principles of these sensors will be described in detail in the next chapter. For

each technology, an example of its application for CGM will be presented. Particular

attention will be paid to the multisensor system proposed by Solianis Monitoring AG

(Zurich, Switzerland).
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2
Non-Invasive Continuous Glucose Monitoring

(NI-CGM) Sensors

Non Invasive Continuous Glucose Monitoring (NI-CGM) devices are appealing for obvious

reasons related to patient’s comfort. Even if they do not present accuracy comparable

with that of subcutaneous or microdialisys-based devices yet, in the last years there

has been an increasing attention concerning these non invasive technologies and several

new prototypes have been designed and developed [37, 60, 66, 38]. For each of these

technologies, physical principles and examples of application will be described in the

following.

2.1 Physical Principles beyond NI-CGM and Prototypes

NI-CGM sensors measure glucose concentration without extracting blood or interstitial

fluid or without a needle penetrating the skin for reaching these fluids. Thus, the

measure is performed through the skin that is a particular multi-layer biological tissue.

Consequently, to understand the characteristics of these sensors, it is convenient to have

a clue of skin morphology and the non-uniform blood distribution within the layers.
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2.1.1 Skin Properties

The skin is composed by several distinctive layers as illustrated in Figure 2.1. The

uppermost skin layer is the stratum corneum of epidermis, composed of dead keratinized

cells, followed by the living epidermis and the connective tissue of the dermis. The

subcutaneous tissue is composed by an underlying fat layer and muscle. The dermis can

be subdivided into three different layers: the upper vascular plexus, the reticular dermis

and the deep vascular plexus. The epidermis does not have its own vasculature. The

volume fraction occupied by blood vessels in the dermis is in the range of 1-20% and

is concentrated in the upper and deep vascular plexus. Most of NI-CGM sensors, e.g.

Figure 2.1: Representation of the skin layered structure highlighting the distribution of
blood vasculature (left) and description of the most representative skin layers (right) [67].

Diasensor [60], TANGTEST [68], OrSense [69], Sentris-100 [70] and other prototypes in

development, are optical transducers that use light in variable frequencies to track glucose.

They exploit different properties of light to interact with glucose molecules, returning a

measure of some optical property proportional to glucose concentration. These optical

sensors monitor glucose variations in the dermal blood; hence, the radiation needs to

penetrate at least through the epidermis to reach the vascularised compartments of the

dermis. Along with these optical sensors, other non-invasive approaches exploit thermal,

acoustic and electrical properties. This classification follows the scheme previously

proposed in Figure 1.2.
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2.1.2 Optical Techniques for NI-CGM

A beam of light interacts in different ways when it passes through a multilayer tissue

like skin. A portion of the beam is reflected by the stratum corneum, another part is

absorbed from the tissue and the remaining part is scattered (i.e. it is deviated from the

straight trajectory) and diffused into a number of different directions. Figure 2.2 shows a

general scheme that summarizes the different kinds of interaction of light with skin.

Light
source

Reflection

Scattering

Stratum
corneum

Absorption

Figure 2.2: Optical properties of light utilized in glucose detection [71]. The light source
(left) emits a beam of light which is partially reflected, scattered and absorbed.

Spectroscopy analyses the optical properties of light in relation to the wavelength

of the radiation. Spectroscopy also provides a precise analytical method for finding the

constituents (and their concentration) in materials having unknown chemical composition,

since each substance exhibits characteristic spectra, which may be interpreted as the

“fingerprint” of that substance. The different types of spectroscopy may be classified

according to which optical properties of the light is employed.

2.1.2.1 MIR/NIR Spectroscopy

Infrared absorption spectroscopy is based on absorption phenomena: changes in glucose

concentration can influence the absorption coefficient of tissues and thus the absorption

bands [37].

MIR/NIR Spectroscopy Principle

In particular, the so-called Near InfraRed (NIR) spectroscopy uses light in the near
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infrared range (750-2000 nm). Specific spectra are chosen in order to minimize background

absorption, in particular by water. The light in these wavelengths passes through the

stratum corneum and epidermis into the subcutaneous space, allowing to measure in the

deep tissues (in the range of 1 to 100 mm of depth). Perturbing factors that may interfere

with glucose measurement include all the variables that influence absorption coefficient,

like blood pressure, body temperature and skin hydration. Errors can also occur due to

environmental variations such as changes in temperature, humidity, carbon dioxide, and

atmospheric pressure. The absorption coefficient of glucose in the NIR band is low and is

much smaller than that of water given the large disparity in their respective concentrations.

Thus, in NIR measurements, the weak glucose spectral bands not only overlap with the

stronger bands of water, but also with those of molecules such as hemoglobin, proteins,

and fats [72]. Changes in glucose may affect the measurement process also in other

indirect ways: for example, hyperglycaemia causes increased perfusion, which influences

the spectrum and can be considered as a confounding factor. Furthermore, diabetic

subjects can exhibit “thick skin” and “yellow skin” [73]. Thus, light reflected from skin

of a diabetic patient may differ from that of a healthy subject at equal level of glycaemia.

In contrast to NIR, Mid InfraRed (MIR) spectroscopy utilizes light at a wavelength

between 2500-10000 nm. With respect to NIR, MIR exhibits less scattering phenomena

and greater absorption. Hence the tissue penetration of light in MIR can reach only the

stratum corneum, but the glucose spectra is less perturbed from interferences from other

molecules.

MIR/NIR Spectroscopy-Based Sensors

The TANGTEST Blood Glucose Meter seems to be based on NIR technology. This

prototype measures glycemia by analyzing intensity variations in the spectrum of a weak

light (about 0.1 W) transmitted through the tested hand finger (middle or index finger).

In [68], the developers of the device claim that the signal noise due to other tissues is

avoided by using the optical signal of pulsatile microcirculation: the signal obtained

by the meter is in fact divided into a pulsatile and a direct component. The pulsatile

component, which is synchronized with heart rate, is used to monitor blood glucose [74].

The Diasensor device is based on operates by placing the patient’s forearm on the

arm tray of the meter. The dimensions of the meter are relevant compared with other

meters, but it is still sufficiently compact to be used in a domiciliary environment for

intermittent glucose monitoring. The blood glucose test is obtained in less than 2 minutes.

However, it is not intended as a replacement for the traditional invasive blood glucose

meter. It seems that the distributor was EuroSurgical Ltd., UK. However, the web site
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of the company does not currently mention Diasensor, and hence it can be speculated

that it is not on sale anymore [60].

InLight Solutions is developing a device based on NIR spectroscopy and multi-variate

analysis to make quantitative and qualitative measurements. Appropriate optic and

software have been develop to clearly distinguish glucose molecules from water molecules.

The devices are made up of three components: a light source, an optical detector, and a

spectrometer. The measures are performed using the differences between the light that

was sent into the skin and the light that the detector collects [75].

Other companies developing NI-CGM devices are Pignolo Spa developing a NIR

based device, the Glycolaser R© [76] and MedOptixTM [77] developing a sensor based on

proprietary technology at the edge between NIR and MIR spectroscopy.

2.1.2.2 Raman Spectroscopy

Raman Spectroscopy Principle

Raman spectroscopy measures the small fraction of scattered light that shows wave-

lengths different from the one of the exciting beam. This fraction is dependent on

rotational or vibrational energy states within a molecule. Raman spectroscopy shows

highly specific absorption bands and, compared with MIR and NIR spectroscopy, it has

the benefit of suffering of lower interference from water. However, the Raman signal is

weaker than its counterpart in other technologies due to the fact that measured pho-

tons normally have lower intensity than the original light and thus requires powerful

detectors [66].

Recently, an improvement in traditional Raman spectroscopy has been proposed

(surface-enhanced Raman spectroscopy), which may increase the sensitivity of the acqui-

sition. However, it has only been tested in rats [78].

Raman Spectroscopy-Based Sensors

A prototype of sensor based on Raman spectroscopy has been described and tested

by Enejder and coworkers [79]. Raman spectra were collected by means of a specially

designed instrument, optimized to collect Raman light emitted from a scattering medium

(tissue) with high efficiency and a diode laser as the Raman excitation source.

C8 Medisensor has recently developed a device based on Raman spectroscopy and

is currently waiting for CE mark approval [80]. It implements three optical sources,

accessed through an optical switch, for obtaining information about glucose as well as

water and white light for normalization purposes.
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2.1.2.3 Occlusion Spectroscopy

Occlusion Spectroscopy Principle

Another technique that measures scattered light is occlusion spectroscopy [71], which

is based on the property of glucose to decrease the diffusion coefficient and on the

enhanced transmission of light due to erythrocyte aggregation that can be reproduced in

vivo by applying a pressure to the fingertip for 2-3 seconds, greater than the systolic one.

One signal is collected when no pressure is applied and it is combined with the occlusion

signal in order to calculate glucose concentration thanks to a specific algorithm. The

advantage of this method is that it measures arterial glucose level. However, intrinsic

erythrocyte aggregation and free fatty acid concentration may interfere with the measure.

Calibration is needed for glucose predicting parameters using four blood glucose reference

points in the first three hours, and an additional reading after 8 hours.

Occlusion Spectroscopy-Based Sensors

A Device based on this technology is the OrSense NBM-200G [81], which obtained

the European CE mark in 2007.

Figure 2.3: OrSense NBM-200G [82]. On the right are visible the annular probe linked to
the computation unit.

The measurement is performed using an annular probe, which is positioned on

the finger’s root and contains light sources, detectors and pneumatic cuffs producing

oversystolic pressure to occlude blood flow. The optimization of sensitivity and specificity

is achieved by the following:

• Transmission mode. In the transmission mode the light traverses the whole organ

(finger), and the photons typically encounter many more glucose molecules along

their paths than in the reflection mode. This strategy enhances the sensitivity

to glucose and reduces the influence of local factors such as skin morphology and

pigmentation.
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• Dynamic signal. Occlusion spectroscopy is based on the generation of an optical

signal that changes with time. The signal is induced by oversystolic occlusion at

the finger’s root, which causes cessation of blood flow throughout the finger. This

strategy allows us to collect not only one data point per wavelength, but rather a

whole function. It results in a better signal-to-noise ratio.

• Multispectral data. Multiple wavelengths of light sources are used. This is beneficial

for specificity/selectivity, as the different behaviour of the optical signal among

wavelengths allows cleaning the influence of unwanted interferences, such as the

absorption of hemoglobin and changes of oxygen saturation.

• Sophisticated algorithms. The data are processed with sophisticated algorithms,

which use only a small number of parameters, hence avoiding overfitting and false

correlations [69].

2.1.2.4 Optical Coherence Tomography

Other types of NI-CGM sensors are based on Optical Coherence Tomography (OCT)

that was originally developed to perform the tomographic imaging of the eye.

Optical Coherence Tomography Principle

An OCT system uses a low-power laser source, an interferometer with two arms

(reference and sample) and a photodetector to measure the interferometric signal [71, 83].

The skin is irradiated with a low coherence light (light in which the emitted photons

are synchronized in time and space). Backscattered radiations from tissues are combined

with light returned from reference arm and the resulting interferometric signal is detected

by the photodetector. Basically, it measures the delay correlation between the two original

signals. Using this technique, glucose concentration in the dermis can be determined,

since an increase of glucose concentration in the interstitial fluid causes an increase in

the refractive index, thus determining a decrease in the refractive index mismatch.

This technique is affected by motion artifacts. In addition, while small changes in

skin temperature have negligible effects, changes of several degrees have a significant

influence on the signal.

Optical Coherence Tomography-Based Sensors

The Sentris-100 device is based on optical coherence tomography technology , ex-

ploiting infrared light to scan a cylindrical volume of skin in several steps from the skin

surface down to the subcutaneous tissue. Acute changes in protein (collagen and myosin)
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conformation occur in response to glucose concentration changes and creates a high

sensitivity in the optical coherence tomography signal; localization of signal detection to

blood vessel walls minimizes any observed signal lag [60, 70].

Figure 2.4: The Sentris-100.

2.1.2.5 Fluorescence

Fluorescence technology has also been proposed for glucose monitoring and is based

on the generation of fluorescence by human tissue when excited by lights at specific

frequencies.

Fluorescence Principle

These sensors are able to measure glucose levels exploiting the dependence between

fluorescence intensity and glucose concentration in the solution. Other fluorescence-

based glucose sensors are based upon the affinity sensor principle, where glucose and a

fluorescein-labelled analogue bind competitively with a receptor site specific for both

ligands. Thus, an increase in glucose concentration causes a decrease in the binding of

receptor with fluorescein-labelled analogue resulting in a decreased light emission [71].

Fluorescence-Based Sensors

A glucose-sensing contact lens has been developed using boronic acid to measure

lachrymal glucose concentration [84]. The main drawback of this system is that it requires

a hand-held external light source/detector. Thus, even if theoretically the lens is able to
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monitor continuously the glucose concentration, the information is carried out only with

the detector usage.

Recently an injectable hydrogel microbeads has been developed for fluorescence-based

in vivo continuous glucose monitoring. A fluorescent monomer based on diboronic acid

has been developed. It enables reversible responsiveness to glucose without any reagents

and enzymes. The fluorescent monomer has long, hydrophilic spacers and polymerization

sites to bind flexible supports. The fluorescent monomer has sufficient intensity for in

vivo transdermal monitoring; even when it is immobilized in a solid support (microbeads).

Due to the virtue of their small size, the fluorescent microbeads are injectable, minimally

invasive, and rapidly respond to glucose change. The microbeads have been tested with

success in rats [85].

Another application of this technology is for sensing glucose from skin measurements,

presenting several limitations due to epidermal tickness, skin pigmentation and other

parameters [86, 87].

2.1.2.6 Polarimetry

Polarimetry is based on the optical properties of glucose, due to its chemical structure

that makes glucose a chiral molecule.

Polarimetry Principle

When polarized light (light with all waves oscillating in the same plane) passes through

a solution containing optically active solutes, such as chiral molecules, its polarization

plane is rotated by a certain angle, which depends on solutes concentration. Measuring

the rotation angle with a polarimeter allows calculating glucose concentration. This

technique is sensitive to scattering properties of tissues that depolarizes light. However,

skin cannot be investigated by polarimetry since it shows high scattering due in particular

to the stratum corneum. For this reason the preferred measurement site is the eye, in

particular the aqueous humor beneath the cornea, which has low scattering properties.

However, this particular measurement site raise a second problem: a time delay between

glucose concentration in aqueous humor and blood. Although polarimetry is unaffected

by temperature and pH fluctuations, it suffers from motion artifacts and optical noise of

other substances [66].

Polarimetry-Based Sensors

A new real-time optical polarimetric approach for glucose sensing utilizing two

wavelengths is presented in [88]. Only in vitro experiments have been reported. In fact an
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efficient eye coupling mechanism has not been developed yet, allowing in vivo experiments

on rabbits eyes.

2.1.3 Thermal Emission Spectroscopy

Thermal emission spectroscopy measures IR signals generated in the human body as a

result of glucose concentrations changes. The tympanic membrane is used as measuring

site, since this membrane shares the blood supply with the centre of temperature regulation

in the hypothalamus [89]. Body movements and ambient temperature, also induced by

pathophisiological factors, are the most significant sources of noise [90].

2.1.4 Photoacoustic Spectroscopy

Photoacoustic Spectroscopy Principle

Photoacoustic spectroscopy uses the principle that absorption of a laser light causes

consequent acoustic response. Tissue is illuminated by a short laser pulse, at a specific

wavelength, and the absorbed radiation causes localised heating. The small temperature

increase is dependent on the specific heat capacity of the tissue irradiated. Volumetric

expansion due to heating generates an ultrasound pulse, which can be detected by a

microphone. Increasing tissue glucose concentrations reduce the specific heat capacity

of tissue and thus increase the velocity of the generated pulse making photoacoustic

spectroscopy an indirect technique for glucose estimation [37].

Besides this, the photoacoustic spectrum considered as a function of laser light

wavelength mimics the absorption spectrum in clear media (i.e. optically thin) and has

the advantage to present higher sensitivity in the determination of glucose, thanks to the

poor photoacoustic response of water.

The main limitation of this technique is its sensitiveness to chemical interferences

from some biological compounds and to physical interferences from temperature and

pressure changes.

Photoacoustic Spectroscopy-Based Sensors

The Aprise device is based on photoacoustic technology. It exploits in fact the

photoacoustic properties of the blood and tissues to estimate the prevailing glucose levels.

The sensor is attached to the skin above a blood vessel, and it generates ultrasound waves

by illuminating the tissue with laser pulses. Analysis of the acoustic signals provides

information on the absorbance of light in the tissue at different depths, which is influenced

by glucose concentration. An ultrasonic image of the optical properties of tissue directly
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beneath the sensor is obtained. The ultrasonic image resolves the blood vessel from the

tissue layers around it, enabling separated analysis of changes in optical properties of

blood and surrounding tissues [91].

2.1.5 Electromagnetic

Electromagnetic Principle

Another technique for investigating dielectric parameters of blood utilizes the elec-

tromagnetic coupling between two inductors turned around the medium under study.

The coupling is influenced by variations in the dielectric parameters of the solution,

which are modified by glucose. This method is based on the application of a voltage

signal with proper frequency to the primary inductor and for electromagnetic coupling a

signal will be produced on the secondary inductor. There exists an optimal frequency,

where the sensitivity to glucose change is maximal, but it is significantly influenced by

temperature. The main problem of this technique is that several other components may

have an influence upon the blood dielectric parameters and not only upon glucose [37].

Electromagnetic-Based Sensors

A new electromagnetic sensor is described in [92]. Its in vitro ability to estimate

variations in glucose concentration of different solutions with similarities to blood (sodium

chloride and Ringer-lactate solutions) has been tested, differing though in the lack of any

cellular components. The sensor was able to detect the effect of glucose variations over a

wide range of concentrations.

The Glucoband is a non-invasive glucose monitor that uses bio-electromagnetic reso-

nance to measure the blood glucose levels of the human body. This device is worn like a

wrist watch and displays results of the test on an LCD screen. The initial measurement

process takes only a few minutes. However, in the monitoring mode, measurements

can be continuous. Since each concentration of glucose has its unique electromagnetic

molecular self-oscillation signature-wave, the Glucoband perform the measure matching

the self-oscillation frequencies of glucose molecules with those of hundreds of reference

solutions with different levels of glucose stored in an internal database of “signatures”.

2.1.6 Impedance Spectroscopy

Impedance Spectroscopy Principle

A different kind of spectroscopy investigates the dielectric properties of a tissue using

a current flow instead of a light beam. It is called Dielectric Spectroscopy (DS) or
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Impedance Spectroscopy (IS). The impedance of a tissue can be obtained applying

a current of known intensity and measuring the resulting current flowed through the

tissue [93]. The cell membrane is semipermeable to ions, thus certain ions can pass

thought it while others cannot. This makes the membrane behave like a leaky capacitor.

Moreover, the intra and extra-cellular environments consists of electrolyte showing

resistive properties. The impedance of a tissue can thus be decomposed into a resistive

and capacitive part Z = R + iX, being frequency dependent, formally described in

terms of a resistance R [ohm] and reactance X [ohm]. A different expression is obtained

considering polar coordinates using the magnitude |Z| [ohm] and phase θ [deg] according

to Z = |Z|eiθ. Repeating IS measurements for different frequencies of the initial electrical

current allows to obtain the so-called dielectric spectrum, describing the impedance

as a function of frequency. Section 2.1.1 highlighted how the complex multilayer skin
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Figure 2.5: Dispersions. Magnitude of the impedance Z [ohm] as a function of the
frequency of the exiting current. Adapted from [94].

structure influenced optical based technologies for glucose sensing. In the same way,

the tissue structure and chemical composition of a biological material in general, and

of the skin in particular, may correlate with its electrical properties, thus presenting

frequency dependent characteristics. In particular, low frequency and direct current

must pass around the cell, in the extracellular environment, given the high capacitance

of the cell membranes. On the other hand, high frequency currents penetrate through

cell membranes by polarization, charging and uncharging the barrier as a capacitor.

Thus, different frequency bands contain information, in terms of impedance, affected

by different properties of the tissue. Figure 2.5 shows an example of the impedance
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magnitude as a function of the frequency [94]. The regions presenting a variation of the

impedance corresponds to specific electrochemical processes, called dispersions. Four

main dispersions have been identified: α, β, δ, and γ. Different mechanisms account

for low frequency (α), radiofrequency (β), and microwave frequency (γ) dispersions [95].

The α-dispersion is generally considered to be associated with interfacial polarization

linked with electrical double layers and surface ionic conduction effects of electrolyte at

membrane boundaries. The β-dispersion has essentially two components arising from

two different mechanisms: the capacitive shorting out of membrane resistances and

rotational relaxations of biomolecules. Cell suspensions such as blood will typically

exhibit a significant β-dispersion in the radiofrequency range between 100 kHz and 10

MHz. In addition, reorientation of free water molecules causes γ-dispersion. Water bound

to protein and internal protein motion will also cause a subsidiary process, called the

δ-dispersion, that is observed in the frequency region between the β and γ-dispersion.

DISPERSION FREQUENCIES ORIGIN

α low(10-100Hz) electrical double layers and electrolytes

at membrane boundaries

β radio(100kHz-10MHz) cell suspension(blood)

δ radio(10MHz-1GHz) water bound to protein and internal

protein motion

γ microwave(1-100GHz) reorientation of free water molecules

Table 2.1: Relaxation processes of biological materials.

IS-based techniques cannot measure glucose concentrations directly, since changes in

glucose levels do not directly affect the dielectric properties of skin and the underlying

tissue in the kHz and MHz frequency band. However, variations in plasma glucose lead

to changes in the electrolyte balance in blood, cells and interstitial fluid. An increased

concentration of glucose in blood involves a cellular biochemical response, which leads to

changes of membrane components, nucleotide and ionic rearrangement. In particular,

as a consequence of water movement, there is a decrease of sodium and an increase of

potassium inside the erythrocyte. This variation of the electrolyte balance has an influence

over the erythrocyte membrane potential and capacitance, which causes changes in the

ac and dc conductivity and tissue permittivity that can be measured using IS [93, 96, 97].

A sensor based on IS uses electromagnetic waves in the selected frequency band that

interact with the skin and the underlying tissue for monitoring these electrical properties.

Impedance Spectroscopy-Based Sensors

Several studies have been carried out and prototypes have been developed to prove
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the feasibility of this technology for NI-CGM. In-vitro studies have been performed to

monitor glucose concentrations in different solutions [98], while recently a prototype has

been developed embedding fringing field capacitive electrodes working in the 1-160 MHz

frequency range [99].

2.2 Multisensor Approaches for NI-CGM

Multisensor Principle

NI-CGM provides reliable estimates of the glucose levels in highly restricted, i.e. in

clinic conditions [100, 101, 102]. As soon as these conditions become less favourable, i.e.

in daily life use, several disturbances can affect and interfere with the glucose sensing

technology under use and impair the estimate of BGL. To overcome this problem, in the

last years the multi-sensor approach gained larger attention [18]. It consists in the com-

bination of some of the aforementioned NI-CGM technologies for a broader bio-physical

characterization of the skin and underlying tissues. In practice, this concept translates

in the embedding within the same device of different technologies able to track either

properties of the skin related to glucose levels changes and environmental (temperature,

humidity) and physiological (blood perfusion, body temperature) perturbations that can

affect the main glucose related signals.

Multisensor-Based Sensors

An example of device based on a multi-sensor platform is the GlucoTrack R© developed

by Integrity Applications [103] and displayed in Figure 2.6. It resorts to a combination

of thermal, acoustic and electromagnetic technologies for performing intermittent glucose

monitoring, given its embedding within a ear clip that need to be wear each time

a measured is performed. Data from the different sensors are processed through an

algorithmic routine. Each one of the three technologies provide a signal that is converted

into a glucose level with a suitable model. If at least two of the three estimated glucose

levels agree then the device display the glucose value to the user, otherwise the measure

is repeated.

A second example of device, at a prototype stage, is developed by Amaral and

coworkers [105]. This device resorts to a combination of IS and MIR technologies

combined through a suitable combination of linear and non-linear models (see Section

4.1).

In the last years, a Swiss medical company, Solianis Monitoring AG (Zurich, Switzer-
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Figure 2.6: The GlucoTrackR© consisting of the main unit (bottom) and the ear clip (top)
featuring the thermal, acoustic and electromagnetic technologies [104].

land), developed a multisensor approach for NI-CGM mainly based on IS [102], whose

capabilities in monitoring glucose level changes in-vivo has been recently demonstrated

under clinical conditions [102]. Chapter 3 is devoted to the description of this particular

device, since it provides the data that will be used in Part II of this thesis to test the

proposed techniques for model identification.
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3
The Multisensor Approach to CGM by Solianis

Monitoring AG

This chapter will focus on the description of the multisensor approach pursued by Solianis

Monitoring AG (Zurich, Switzerland), whose IP and technology have been recently

acquired by Biovotion AG (Zurich, Switzerland), for providing an overview of the data

that will be used in the last part of this thesis. Solianis Monitoring AG has also been

partially funding the Ph.D. position during which this thesis has been developed. From

this point of the thesis, we will refer to “Multisensor” (with capital M) for indicating the

specific device developed by Solianis, and to “multisensor” to indicate the concept.

3.1 Description of the Solianis Multisensor

Earlier work in [106, 107] showed promising results in monitoring changes in blood

glucose levels in clinical experiments in highly controlled, i.e. in clinical conditions,

using IS. As soon as these conditions become less favourable, going towards a daily

life use, this technique exhibits its limitations, mainly related ti deleterious effects of

many perturbing factors, such as temperature fluctuations, variations of skin moisture

and sweat, changes in cutaneous blood perfusion and body movements affecting the

sensor-skin contact surface [108]. Consequently, all these perturbations affecting the
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main glucose related signals have to be identified, characterised and compensated for. As

better discussed in the following, this suggested in [102] the development of a Multisensor

Glucose Monitoring System, where the multisensor concept means a system that includes

several sensors embedded within the same sensor substrate in contact with skin, allowing a

broader bio-physical characterization of the skin and underlying tissues. The Multisensor

performs continuous glucose monitoring collecting a set of signals measured through the

Multisensor channels with a sampling time of 20 seconds. As shown in Figure 3.1 the

Multisensor is attached to the upper arm of the patient with a flexible band and it is

powered with a battery pack.

IS electrodes

As described in Section 2.1.6, changes in blood glucose levels cause dielectric changes

of skin and underlying tissues within the frequency range of 0.1-100 MHz, which is

measured utilizing particular capacitive fringing-field electrodes [102]. In order to achieve

different penetration depths of the electromagnetic field into the various tissue layers, three

electrodes with different characteristic geometries are used in the Solianis Multisensor.

The interaction between an applied electromagnetic field and the skin depends not only on

the frequency band, but also on the geometric properties of the electrode. The differences

between the three IS electrodes consist in the distance between the active electrode and

the ground potential. In particular, a distance of 0.3, 1.5 and 4 mm is associated with

shallow, mid and deep penetration respectively and the sensors are referred as short,

middle and long, respectively (see Figure 3.1) .

Figure 3.1: Left : Optical and dielectric sensors composing the Solianis Multisensor. Right :
Solianis Multisensor attached to the upper arm with a flexible band.
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The short electrode penetrates only the upper skin layers, thus it cannot yield

information about glucose levels, but it may still contain information about perturbing

effects related to the uppermost layers. Data from long and middle electrodes are

regarded as primary signals, since they penetrate also the lower skin layers that are well

micro-vascularised (see Figure 2.1) and hence particularly affected by glucose variations.

Optical sensors

As mentioned before, other sensors are used with the aim of obtaining useful informa-

tion to compensate the perturbing factors: two optical sensors are embedded within the

Multisensor substrate for the measurement of skin blood perfusion, which is a perturbing

factor for dielectric signals [67]. Each optical sensor features 3 LEDs, located closely to

each other, with the following wavelength: green (568 nm), red (660 nm) and infrared (798

nm). Light reflected back from the skin is detected by two photo-detectors (signal diodes),

while the variation of emitted LEDs intensity are monitoring by two reference diodes

(monitoring diodes) located near the LEDs. Simulation studies have been conducted to

design the optimal position of the optical sensors within the Multisensor substrate as

well as their relative distance for sampling the optimal measuring site [109].

Sweat sensors

An interdigitated electrode is used to measure the dielectric response at lower frequen-

cies in the range of 1-200 kHz for obtaining information about sweat events. Moreover,

its particular geometrical shape allow the sampling of the more superficial area of the

skin. Another sensor exploits the frequencies in the range of GHz to estimate hydration

levels of the underlying skin layers, since GHz excite free water molecules (see Table 2.1).

Acceleration sensors

An integrated accelerometer has the aim to monitor continuously the acceleration

and the position relative to the centre of gravity of the device.

Other sensors

Finally, others sensors monitor skin and housing temperature, and ambient humidity

close to the device. This is because IS data showed to be particularly sensitive to

temperature fluctuations [108].
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3.2 Examples of Solianis Multisensor Data

This section gives a clue of the different time-series measured from the Multisensor chan-

nels, highlighting in some cases features of the data that will influence the identification

of the model in Section 3.3. Each sensor embedded on the Multisensor substrate provides

its specific set of signals acquired with a sampling period of 20 seconds. To illustrate the

Multisensor data, we can take advantage from the availability of reference BGL acquired

in parallel with a sampling time of 10 minutes by a laboratory instruments.
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Figure 3.2: Normalized magnitude (top) and phase (bottom) impedance signals
(continuous lines) from the “long” fringing field capacitive electrode vs. normalized reference

BGL samples (magenta stars). Magnitude and phase at different frequencies (in the range
0.1-100 MHz) of the input current are collected with 20 sec time sampling and represented

with different colors.

In Figure 3.2, representative time series, collected from the same electrode (“long”

fringing field capacitive electrode) at different frequencies, are shown together with the

BGL time series. In particular, the impedance at different frequencies is represented

using a parametrization with magnitude (Figure 3.2, top) and phase (Figure 3.2, bottom).

As shown in the top panel the magnitude signals at different frequencies are similar

but not identical, thus presenting strong correlation. The same is for the phase signals,

which are also correlated with the magnitude signals. Since the impedance channels, as

mentioned in the previous section, contain glucose information, they are referred as the

primary “glucose signals” [102].
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Figure 3.3: Normalized magnitude (top) and phase (bottom) impedance signals
(continuous lines) from the interdigitated electrode vs. normalized reference BGL samples

(magenta stars). Magnitude and phase at different frequencies of the input current are
collected with 20 sec time sampling and represented with different colors.

Figure 3.3 shows the time series relative to the magnitude (top) and phase (bottom) of

the impedance measured by the interdigitated electrode which is particularly sensitive to

changes of the surface dielectric properties due to the creation of a saline layer after sweat

events occurred. It is particularly interesting to note how these channels are particularly

responsive to the on-set of the sweat event and of the following creation of the saline

layer.

Figure 3.4 shows channels associated with other sensors embedded within the Solianis

device. In the top panel the skin and the housing temperature are plotted together with

the time-series relative to the humidity sensor, along with ambient humidity. In the

bottom panel an example of optical channels is shown. Some of them seem correlated

with the BGL references. However, they are noisier than impedance channels.
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Figure 3.4: Normalized Multisensor housing temperature (green line), skin temperature
(red line) and humidity (blue line)(top) and some optical (bottom) channels (continuous lines)

vs. normalized reference BGL samples (magenta stars).

3.3 From Multisensor Data to Glucose: the Need of a

Model

The Multisensor data described in the previous section need to properly combined in order

to perform NI-CGM (see Figure 3.5). While some channels measure “glucose-related”

information, others are used to characterise the perturbations affecting the primary

signals, allowing for their compensation. Hence, the Multisensor signals have to be

combined through a relationship, i.e. a model, for linking the measured variables with

BGL.
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Figure 3.5: A model (middle) linking Multisensor data (left) to BGL (right).
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Supposing to collect the Multisensor signals at the t-th time instant whitin X(t), the

unknown relationship can mathematically be expressed as:

BGL(t) = f(X(t),θ) (3.1)

where f(·) represents a generic function used to convert the signals into BGL values and

θ is an unknown vector containing the parameters that characterise this conversion.

The same problem arises for the other multisensor approaches, such as for example

the one developed by Amaral and co-workers [105]. Remarkably, other research fields

have to face similar challenges, mainly those related to chemometrics and dealing with

spectroscopy data analysis [110, 111].

3.4 Concluding Remarks

In the last years, several NI-CGM technologies have been investigated. As also depicted

in Chapter 2, many sensors based on a wide range of technologies have been proposed to

the market, but none of them really achieved accuracy close to that of minimally invasive,

needle-based, sensors. This is because all the presented non-invasive technologies are

affected by many environmental and physiological interferences affecting glucose readings.

In order to measure and compensate for these detrimental effects, the multisensor

approach consists in the embedding of different sensors into the same device for a

complete bio-physical characterization of the skin and underlying tissues.
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4
Open Problems with Model Identification in

Multisensor Approaches and Aim of the Thesis

4.1 Problem Statement

A class of candidate models to be used in Figure 3.5 and described by eq. (3.1) is

tha of white-box models, where differential equations are used to describe the physical

relationships between measured channels and glucose variations. These kind of models

have been widely exploited for modeling physiological processes with the purpose of

improving physiological knowledge [112], extract clinical information [113] as well as

for control purposes [114, 31]. However, in our case, a mechanicistic description for

linking glucose variations with physical quantities measured with the Multisensor is not

yet available. For this reason, we resort to a black-box strategy, where the system is

described in terms of its inputs (Multisensor channels), outputs (glucose) and the type of

model/relationship linking the two. For this reason we must define the structure (e.g.

static or dynamic) and the form (e.g. linear or not) of the function f(·) of Figure 3.5

and eq. (3.1) [115].

The model considered throughout this thesis is a static multivariate linear regression

model, formally described as:
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y = Xβ + β0 (4.1)

where, y is the output variable, i.e. glucose, matrix X collects the data measured from the

Multisensor device and β is the parameter vector that linearly combines the Multisensor

channels in order to give an estimate of the glucose levels apart from an off-set pr basal

value given by β0. To better highlight the notation used, the unknown variable to be

predicted is called output or target, while the measured variables are called inputs, or

regressors (because they contain the information for the regression model) or predictors

(because they are used to predict the output). Thus, the aim of regression is to build and

identify a prediction model. This model can then be used for estimating glucose for, new,

“unseen” data. In the general case, the target variable consists of a multi-dimensional

vector. However, since our purpose is to estimate glucose, throughout this thesis, only the

case of a single output variable will be considered. Hence, the output will be represented

by a column vector y of dimension N × 1, where N is the number of available samples.

In symbols:

y = [y1 y2 . . . yN ]T (4.2)

where yi denotes the i-th sample of the reference.

The input variables are contained in the matrix X of dimension N × p, where the

element xij represents the i-th sample of the j-th variable.

X =




x11 x12 . . . x1p

x21 x21 . . . x2p
...

...
. . .

xN1 xN2 xNp




(4.3)

While each row of the matrix X contains the set of p variables corresponding to the

measured Multisensor channels relative to the same i-th time instant (represented by

the row vector Xip (1× p)), each column contains the N samples of the j-th variables

(symbolized using the column vector XjN (N ×1)). Hence, while subscript i ∈ [1, 2 . . . N ]

indicates the sample, subscript j ∈ [1, 2 . . . p] identifies the variable. To distinguish for

example, X1 the set of p variables at the first time instant from X1 the N samples of
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the first variable, a second subscript is added, indicating the dimension of the vector.

X =




x11 . . .|x1j |. . . x1p
... | ... | ...

xi1 . . .| xij |. . . xip
... | ... | ...

xN1 . . .|xNj |. . . xNp




⇒Xip

⇓
XjN

(4.4)

The aim of regression is to find an estimate β̂ of the unknown coefficients β, given

the knowledge of the reference vector y and of the coupled inputs collected in X from

the so called identification data set. After β̂ is determined, it can be used to calculate the

correspondent model prediction of the target ŷ prospectively also on different Multisensor

data than that used in the model identification stage (test data set).

4.1.1 Open Problems

The principal Multisensor signals are those that mostly contain the information about

glucose fluctuations. However, in the everyday life use of the device, these signals are

affected by different perturbing factors (temperature fluctuations, skin moisture, sweat,

blood perfusion, . . .). The multi-sensor concept derives from the necessity of compensating

these perturbations, measuring a high number of channels presenting correlation between

subsets of them. Indeed, spectroscopy data present very similar values at close frequencies.

Thus the difficulties in identifying β in eq. (4.1) are primarily due to:

• High dimension of the measurement space;

• Correlation between subset of Multisensor channels.

These two characteristics of the recorded data make the matrix X rank deficient with

numerical issues arising for the identification of β because the problem is ill-conditioned.

4.2 Aim of the Thesis and Outline

The aim of thesis concerns the investigation and assessment of different techniques for

the identification of a multivariate linear regression model for tracking glucose levels

changes non-invasively. We will consider Ordinary Least Squares (OLS), Partial Least
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Squares (PLS), the regularization technique based on `1 norm, namely Least Absolute

Shrinkage and Selection Operator (LASSO), and a technique based on the `2 norm, i.e.

Ridge regression, and a technique based on their combination, i.e. EN regression. While

our implementation will be focused on the particular Solianis Multisensor platform, the

considered methodologies can have a much wider field of applicability and can be used to

model other multisensor data for NI-CGM as well as for data analysis in chemometrics

and related disciplines where PLS represents the current state-of-art.

The remainder of the thesis is organized into two blocks. In Part II, we explain

rationale of each method, pros and cons, by exploiting a tutorial example. Part III

illustrates the results obtained from the application of the five considered model identifi-

cation techniques to data recorded through the Solianis Multisensor device. Finally, some

hints for future developments is given regarding a Monte Carlo based methodology for

assessing the robustness of the individual calibration parameter (calculated each time the

Multisensor is worn) against a very common source of disturbance in daily-life conditions,

i.e. sweat.



Part II

Techniques for Identification of

Multivariate Models





5
Criteria for Model Identification and Model Test

5.1 Issues of High-Dimensional Regression

This section describes, using the notation of the previous chapter, the issues typically

faced for regression problems when are used high dimensional datasets. Most of the

material originates from the book written by Hastie et al. [116] and is reported here for

sake of completeness.

It could seem reasonable that, if the identification set is large enough, it would be

easy to generalize data behaviour and identify a good prediction model. However this

it not true dealing with high-dimensional data because the large number of correlated

predictors exacerbate the need of available data for identification of the models. This

is exactly what happens in our case study where we will have to deal with more than

150 input variables (the Multisensor measured signals). In presence of high-dimensional

datasets, the algorithms for solving regression problems suffer from the so called curse of

dimensionality [117].

5.1.1 Curse of Dimensionality

Consider a p-dimensional unit hypercube and suppose the N regressors samples to be

uniformly distributed in it. The fraction of samples included in a hypercube with side
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r(< 1) is:

frac = rp

Extracting the side of the hypercube as a function of the desired fraction and the

dimension p, one gets:

r = frac1/p

Hence, for example, to include 10% of the samples, we need a hypercube with side 0.1

for p=1, and a hypercube with side 0.8 for p=10. The different curves plotted in Figure

5.1 show the side of the hypercube as a function of the fraction of included samples for

different values of dimension p.
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Figure 5.1: side of the cube as a function of the fraction of included samples for different
values of dimension p. Adapted from [116].

As shown in Figure 5.1, the hypercube side needed for a given fraction increases even

more as the dimension p increases. Hence, as the number of the regressors increases,

it becomes more difficult to generalize data behaviour. In fact, the samples are more

distant to each other and, in particular, they tend to be close to an edge of the sampling

area, because the prediction is much more difficult near the edges of the training sample.
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One can also formulate the problem considering that the sampling density is pro-

portional to N1/p. In high dimensional datasets, all feasible training samples sparsely

populate the input space. In fact, the density rapidly decreases to zero as p increases.

5.1.2 Overfitting

In addition, high-dimensional regression algorithms have to deal with overfitting, namely,

the risk of fitting a predictive model not only to the information yielded by identification

data but also to noise, with considerable limitations on the generalization properties of

the model. To overcome these problems, our attention will be focused on techniques

based on two strategies: a)dimensionality reduction, which uses M(≤ p) new regressors

calculated from a linear combination of the original ones, or b) regularisation, putting a

price on the values of the unknown coefficients β of model (4.1).

An example of regression technique using dimensionality reduction is Partial Least

Squares (PLS), which will be described in detail in Chapter 6, while an example of

regression technique using regularisation is Least Absolute Shrinkage and Selection

Operator (LASSO), which will be discussed in Chapter 7. Both these methods require

the setting of one parameter related to the model complexity (i.e. describing the new

dimensionality M in PLS and the amount of regularisation in LASSO) as illustrated

below.

5.2 Criteria for Selection of Model Complexity

Model complexity should be selected such that the best performance of the chosen

identification method is achieved when the target variable is estimated from “unseen”

data, i.e. data not used during the model identification stage. The main issue relies on

the right way to evaluate the performance for selection of the model complexity.

5.2.1 The Bias-Variance Dilemma

Considering the identification set, it seems reasonable to assume that if model complexity

increases the model will better describe the target. Hence, the Residual Sum of Squares

(RSS) on identification data (describing the distance between the reference y and its

model prediction ŷ will decrease as model complexity increases.

RSS =
N∑

i=1

(yi − ŷi)2 = ‖y − ŷ‖ (5.1)
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This is a key aspect of the so called “internal validation”. RSS of eq. (5.1) is expected to

have a monotonic decreasing behaviour as model complexity increases (see Figure 5.2).

This means that we cannot use RSS to determine model complexity, since we can always

obtain, for sufficiently complex models, null residuals. The so-determined model usually

fails in predicting new data, different from those of the identification set. In fact, a too

complex model normally fits the reference data but also the noise (overfitting) and is

thus not able to generalize the data behaviour properly.

As a consequence, the performance of the identification method has to be determined

using independent test data. Suppose the measurement y to be modeled as a combination

of a deterministic part f(X) (X is the matrix collecting the inputs or regressors) and a

random part ε due to the noise (zero mean, constant variance):

y = f(X) + ε ε ∼ N(0, σ2) (5.2)

The Mean Square Error (MSE) can be defined for measuring errors between the true

value ytrue and the model prediction ŷ :

MSE(ŷ) = E[‖ŷ − ytrue‖22] (5.3)

Equation (5.3) can be divided in two terms, one representing the estimation variance

and the other the bias (difference between the expected value of the estimation and the

true value ytrue):

MSE(ŷ) = trace(V ar(ŷ)) + ‖Bias(ŷ)‖22 (5.4)

The proof of (5.4) can be given in term of its scalar versions since MSE =
∑N

i=1E[(ŷi −
yi,true)

2].

E[(ŷi − yi,true)2] = E[(ŷi − E[ŷi]) + (E[ŷi]− yi,true)2]
= E[(ŷi − E[ŷi])

2 + (E[ŷi]− yi,true)2 + (ŷi − E[ŷi])(E[ŷi]− yi,true)]
= V ar(ŷi) +Bias(ŷi)

2 + E[(ŷi − E[ŷi])(E[ŷi]− yi,true)]
= V ar(ŷi) +Bias(ŷi)

2 + E[ŷiE[ŷi]− (E[ŷi])
2 − yi,trueŷi + E[ŷi]yi,true]

= V ar(ŷi) +Bias(ŷi)
2 + (E[ŷi])

2 − (E[ŷi])
2 + yi,trueE[ŷi]− yi,trueE[ŷi]

= V ar(ŷi) +Bias(ŷi)
2

Generally, the variance term increases as model complexity gets higher. This can be

explained observing that the more complex the model is, the more is the adherence to

the data and thus the sensitivity of the estimated model parameters to the particular
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realization used to identify them. On the other hand, the bias term decreases as model

complexity increases. As a consequence, even if estimates are influenced by noise,

the effects of the bias term tends to be eliminated by averaging different estimates.

Summarizing, the training error tends to decrease when model complexity is increased.
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Figure 5.2: Test and training error as a function of model complexity [116]. The training
error curve (blue line) and the test error curve (red line).

If the model overfits the data (too high complexity), it will not generalize well and the

estimates will have too high variance. On the other side, if the model is not complex

enough, it may underfit the data and have large bias. This brief discussion highlights

the dilemma of fixing the bias-variance tradeoff and suggests that model complexity

should be chosen in such a way to minimize the error on independent test data. As

shown in Figure 5.2, the prediction error has a monotonic decreasing behaviour as model

complexity increases, when calculated on the training set (blue curve). Hence, it can not

be used to select the correct amount of model complexity. In Figure 5.2 the prediction

error behaviour when calculated on the test set is also plotted (red curve). Usually, it has

concave behaviour, due to the bias-variance trade-off. In this case, the curve minimum

can be used to fix most reasonable model complexity. In the next subsection a method

to construct the test error curve is described.

5.2.2 The Cross-Validation Principle

As far as we observed that the identification data set is not useful to select the model

complexity, another set of data has to be considered (test set). As a consequence, before
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describing how to calculate the prediction error curve on the test set, we have to discuss

how to handle the available data.

In a data-rich situation, the best way to split the available dataset is in three parts:

a training set, a validation set and a test set. The training set is used to fit the model,

the validation set is used to select the complexity parameter and the test set is used for

assessing the generalization error of the final chosen model (Section 5.2). However, if the

data are scarce (as in our case), the previous approach is not applicable.

K-fold cross-validation is a method to estimate test error, using the training set. In

particular, K-fold cross-validation splits the data into K parts of approximately equal

size. Iteratively, one part is left aside to calculate the test error (using MSE), while the

other K − 1 parts are used to identify the coefficients of the model. In this way a test

error upon each K-th part is calculated and, averaging these values, an estimation of the

test error is obtained.

20 sample︷ ︸︸ ︷

Part 1 Part 2 Part 3 Part 4 Part 5

︸ ︷︷ ︸
100 samples

Figure 5.3: Example of dataset division for 5-fold cross-validation.

For example, suppose that a training set of 100 samples is available and that we want

to perform 5-fold cross-validation. The 100 samples are randomly and equally divided in

5 parts, each of about 20 samples as shown in Figure 5.3.

At the first iteration, part 2-3-4-5 of the training set are used to estimate the

coefficients of the model, obtaining β̂
−1

, where the superscript indicates the part that

was not used in the identification procedure. The estimated coefficients β̂
−1

are used to

predict the reference of part 1 (y1) from the inputs variable of part 1 (X1):

ŷ1 = X1β̂
−1

(5.5)

The RSS is then used to calculate the test error on part 1, where the residuals denote
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the distance between the model predictions ŷ1 and the available reference points y1:

RSS1 =

N1∑

i=1

(ŷi1 − yi1)2 = ‖ŷ1 − y1‖2 (5.6)

where N1 is the number of samples included in part 1.

At the second iteration, part 2 is left aside to calculate the RSS2, using the coefficients

estimated from part 1-3-4-5. Similarly, the procedure is iterated for other three times in

order to calculate RSS3, RSS4 and RSS5. These five values of RSS are then averaged in

order to estimate the test error.

Etest = RSS =

5∑

i=1

RSSi

5
(5.7)

The whole procedure is repeated for different values of the complexity parameter in

order to estimate the test error as a function of the model complexity (see Figure 5.2).

Usually, this function has a minimum corresponding to the most reasonable bias-variance

trade-off.

Cross-validation, averaging the RSS calculated on different datasets, allows also to

estimate the confidence interval for the estimated test error. Using the previous example,

considering a 5-fold cross-validation procedure, the confidence interval for a given model

complexity can be calculated as follows:

SD =

√√√√
5∑

i=1

(RSSi − RSS)2
/

5 (5.8)

As a consequence, instead of choosing the complexity parameter at the minimum of

the test error function, usually “one-standard error” rule is used to choose the model.

This criterion consists in choosing the most parsimonious model whose error is no more

than one standard error above the error of the best model. The model chosen according

to this rule is represented by the green dashed line in Figure 5.4, corresponding to model

complexity 7. A different strategy for choosing the complexity parameter is to identify

its value in correspondence of a significant change of slope of the error curve. In Figure

5.4 this point corresponds to 4, and, as frequently happen, it does not coincide with

the previous. This rule of thumb allows to obtain a more parsimonious model than the

“minimum of the test error plus its standard deviation”, with advantages in generalization

performance on new test data.



56 Criteria for Model Identification and Model Test

1 2 3 4 5 6 7 8
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Model Complexity

m
se

Figure 5.4: Example of test error curve in K-fold cross-validation, where the error s for
each model (with different complexity) are provided by its mean and standard deviation. Red
star is the minimum of the test error. Green dashed line represent the error of the best model.

5.3 Models Test

In this section, how to describe the performance of the selected model will be presented.

5.3.1 Principles for Model Test

In the previous section we described how the identification data set is used in cross-

validation to choose model complexity. Once model complexity is determined the coeffi-

cients of the model can be estimated from the whole identification data set using different

techniques. For instance, OLS (Chapter 6), PLS (Chapter 7) and the regularization based

techniques (Chapter 8), namely, LASSO, Ridge and EN, are considered. The further step

is to determine which identification method best suits for our particular problem. As a

consequence, some indicators have to be defined to evaluate model performance on a test

set of data. Since the error estimated from data used to identify the coefficients of the

model tends to underestimate the real error, the test set must be composed by unseen

data, i.e. data that are not used in cross-validation procedure nor in the identification

procedure. Hence, this procedure is often called “external validation”.

Formally, in external validation, the coefficients of the linear model estimated from
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the identification data set β̂train are used to predict the target of the test data ytest:

ŷtest = Xtestβ̂id (5.9)

the subscript “id” denotes what is calculated from the identification data set, while the

subscript “test” is appended to test set quantities through the equations. Therefore,

Xtest is the matrix collecting test data.

To quantify the prediction quality, different indicators can be considered. In particular

we introduce two groups of indicators: the first aims at quantifying point accuracy of the

estimated glucose profiles; the second group includes two indicators widely used within

the diabetes community to judge the clinical accuracy of CGM devices. All these indexes

are formally defined in the following section.

5.3.2 Indicators for Point Accuracy

The indicators defined before can be used to evaluate the performance of the identified

model on unseen data (i.e. when the test data set is considered). Hence, they allow the

comparison between different models [10, 118].

MSE was defined as a stochastic quantity in (5.3). However, a realization can be

observed as normalized distance between prediction ŷ and reference data y :

MSE =
N∑

i=1

(yi − ŷi)2
/
N (5.10)

Root Mean Square Error (RMSE) is the square root of (5.10) and thus has the same

units as the quantity being estimated.

Mean Absolute Difference (MAD) is defined as follows:

MAD =
N∑

i=1

|yi − ŷi|
/
N (5.11)

which differs from (5.10) since, instead of summing the squares of the differences, their

absolute values are summed up.

Mean Absolute Relative Difference (MARD) is the same as (5.11), but it is an absolute

indicator, since every difference (yi − ŷi) is divided for the reference value yi:

MARD =
N∑

i=1

∣∣∣∣
yi − ŷi
ŷi

∣∣∣∣
/
N (5.12)
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While these three key indicators are based only upon the distance between the test

reference data y and its prediction ŷ , others like for example R2 measures how much

the prediction is a good approximation of the reference variation.

The Pearson correlation coefficient R measures the linear dependence between two

variables, representing the test reference y and prediction ŷ. The general formula for its

calculation is:

R =

N
N∑

i=1

ŷiyi −
N∑

i=1

ŷi

N∑

i=1

yi

√√√√N
N∑

i=1

ŷi
2 −

(
N∑

i=1

ŷi

)2
√√√√N

N∑

i=1

yi2 −
(

N∑

i=1

yi

)2
(5.13)

The correlation coefficient R ranges from -1 to +1 included. A value of +1 or -1 implies

a linear relationship between the two variables. In the case R equals +1 it means that if

y increases, ŷi increases too (correlation); in the case R equals -1 a decrease in ŷi will

correspond to an increase of y (anticorrelation). A value of 0 implies that there is no

correlation between the variables.

The square of correlation coefficient, R2, ranges from 0 to +1. Hence, it does not

distinguish negative from positive correlation. This indicator turns out to be useful when

interested to the connection between the variables and not to the sign of the relation.

A key mathematical property of the correlation coefficient is that it is invariant to

changes in location and scale, i.e. if one of the variables is transformed linearly as a+ bx

(with a and b constants) the correlation coefficient does not change its value. This can

be useful to determine if the prediction ŷ has the same fluctuations of the reference

y, without having the same scale. In this case R2 would assume a high value (good

correlation), even if the distance between the reference and test sample is high, causing

bad values for RMSE, MAD or MARD.

Finally, a measure to quantify the smoothness of the estimated glucose profiles

by the different models is considered. In analogy to idea exploited in the context of

regularization [119], the Energy of the Second Order Differences (ESOD) is considered,

which is defined here as the energy of the second order differences of the estimated glucose

profiles normalized by the energy of the second order differences of the reference BGL

values in the same experimental sessions:

ESOD =

∑N
i=1 ∆2(ŷi)

2

∑N
i=1 ∆2(yi)2

(5.14)
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5.3.3 Indicators for Clinical Accuracy

While the indicators defined in the previous section are suited to give an indication

about the point accuracy of the estimated glucose profiles, they lack in providing suitable

information about the clinical information carried by the CGM traces. In order to fulfill

this gap, the so called Clarke Error Grid has been extensively used among the diabetes

community, initially to measure accuracy of SMBG devices and then of CGM devices.

The Clarke Error Grid shows the scatter plot of reference BGL versus the BGL value

estimated by the device under test [120]. The plot area is broken down into five main

regions as it can be seen in Figure 5.5 (left):

• Region A includes values within 20% of the reference;

• Region B includes values outside the 20% but not leading to inappropriate treatment;

• Region C contains points leading to unnecessary treatment;

• Region D contains points indicating a potentially dangerous failure in detecting

hypo or hyper-glyceamia;

• Region E contains points that would lead to a hypo-treatment when the patient is

actually in hyper-glycaemia and viceversa.
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Figure 5.5: Clarke Error Grid (left), and Rate Error Grid (right).

Thus, a clinically accurate sensor should provide most of the points within the A+B zone

with few, or ideally none, in the C/D/E zones. Current accuracy of minimally-invasive

CGM devices show a range of values between 84.4 and 98.9 of points in the A+B zones,
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with point accuracy values for MARD in the range 10.3-21.5. CGM devices, measuring

BGL every 1 to 5 minutes, provide information also on the trend of the glucose signal,i.e.

stable, rising or falling glycaemia. To evaluate the accuracy in estimating glucose trends,

the so called Rate Error Grid has been developed [121]. This grid is based on the same

concept of the Clarke grid. The area is broken down into regions indicating clinically

relevant information about the glucose trends estimated from the device under test. The

Rate Error Grid focuses on the clinical implications of measurement errors by addressing

the question of what type of clinical outcome might occur if the patient took action based

on BGL rate of change.

5.4 Concluding Remarks

This chapter presented an introduction to the regression problem, with consideration that

algorithms dealing with high-dimensional data suffer from the curse of dimensionality

and overfitting. A general introduction to the methods trying to solve these problems

was presented. As these algorithms usually require the setting of a parameter to adjust

the model complexity, a commonly used procedure for such a scope was illustrated using

K-fold cross-validation.

Finally, at the end of the Chapter, some indicators for the performance comparison

of different models were presented. While, by visual inspection of the estimated profiles

versus reference data, one could only qualitatively guess which model has the best

performance, the indicators presented in Section 5.3.2 and Section 5.3.3 will allow a

quantitative assessment of how much a method works better than the others in identifying

linear models for regression. Further metrics are available in the literature, such as for

example for evaluating the accuracy of prediction algorithms [122], but we believe those

reported in this chapter are exhaustive for describing accuracy of estimated glucose

profiles.

These procedures will be used in this thesis to evaluate the performance of the

regression methods, presented in Chapters (6-8), when applied to the Solianis Multisensor

data (Chapters 10-11).



6
Ordinary Least Squares (OLS)

The most easy and well-known method for finding an estimate of the parameter vector

of the multivariate linear regression model defined in eq. (4.1) β = [β0, β1 . . . , βp], given

the reference vector y and the corresponding inputs X, is Ordinary Least Squares (OLS).

OLS makes no assumption about the validity of the model, but simply finds the best

set of parameters β by adjusting them in order to maximize the adhesion between the

model predictions and the reference data. This chapter will present the characterization

of the OLS identification procedure in a general framework. Then, with the support of a

simple tutorial example (Chapter 9), advantages and drawbacks of OLS will be shown.

Finally, in Chapter 11 the technique will be applied to model NI-CGM Multisensor data.

6.1 Mathematical Definition

OLS determines the estimate β̂ by minimizing the Residual Sum of Squares (RSS),

where the residuals denote the distance between the model predictions (4.1) and the

available reference points yi:

RSS(β) =

N∑

i=1


yi − β0 −

p∑

j=1

xijβj




2

(6.1)
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that can be written in matrix form as:

RSS(β) = (y −Xβ)T (y −Xβ) (6.2)

where X is the matrix collecting the input data. It is easy to see that RSS is a quadratic

function of the unknown parameter vector β. Minimizing RSS in (6.2) can thus be done

by setting to zero the first derivative of (6.2) with respect to β:

∂RSS

∂β
= −2XT (y −Xβ) (6.3)

XT (y −Xβ) = 0 (6.4)

The matrix equation (6.4) collects the so-called normal equations. If the matrix XTX

is not singular, a closed formula for the solution β̂ can be obtained as:

β̂ = (XTX)−1XTy (6.5)

The estimated parameter vector β̂ could then be placed into (4.1) to obtain an

estimate of the target ŷ, the so-called “model prediction”:

ŷ = Xβ̂ = X(XTX)−1XTy (6.6)

As shown in box Algorithm 1, once the model parameters β̂ are estimated from

the identification set, the linear model of eq. (4.1) can thus be used to predict unseen

data through a linear combination of the inputs. The derivation of the solution is

computed assuming a uniform precision of the reference data yi, thus no weighting matrix

is introduced.

load X, y {load data and standardize}

standardize X,y

β̂ ← inv(XTX)XT y;
(or using QR decomposition)
β̂ ← X\y;

ŷ ← Xβ̂

Algorithm 1: OLS pseudocode.
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6.2 Properties of OLS

A brief overview of the statistical and geometrical properties of the OLS estimator will

be given in this section.

6.2.1 Statistical Properties

Suppose the measurement model to be a combination of a deterministic part (linear

combination of regressors) and a random part (stationary, zero mean and constant

variance εi affecting each measure yi):

yi = Xiβ + εi ε ∼ N(0, σ2)

yi = yi,true + εi
(6.7)

The Mean Square Error (MSE) of the estimate ŷ of the true value ytrue is:

MSE(ŷ) = E[‖ŷ − ytrue‖22] (6.8)

Equation (6.8) can be divided in two terms, one representing the estimation error

variance and the other the bias (difference between the expected value of the estimate

and the true value ytrue):

MSE(ŷ) = trace(V ar(ŷ)) + ‖Bias(ŷ)‖22 (6.9)

(see Section 5.2.1. The Gauss-Markov theorem [116] tells us that the OLS estimator of β

has the smallest error variance among all linear unbiased estimators, namely it presents

the lowest possible MSE.

However, it may well exist a biased estimator with smaller MSE. Since this estimator

is biased it must have a very small variance in order to have smaller MSE than OLS (that

is unbiased) as we will show in Chapter 7 and 8. Methods that shrink (or set) to zero

some of the components of β may result in a biased estimate but with lower variance

than the OLS estimator.

6.2.2 Geometrical Properties

OLS has a geometrical interpretation which is illustrated by means of Figure 6.1, that

represents the simple case of two different input variables, X1 and X2.

The input vectors X1 and X2, define a vector space S (yellow) while the target

vector is represented by y. Using the linear model, the estimation ŷ could be any linear
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y

X2

X1

y

||y-Xβ||2

Figure 6.1: geometrical interpretation of OLS. Target vector y, estimation of target vector
ŷ, input vectors X1 and X2 and in yellow the vector space S generated by the two vector.

Adapted from [116].

combination of the inputs X1 and X2. For this reason the estimate could lie anywhere

in the bi-dimensional subspace S and the RSS represents the squared euclidean distance

between the reference y and its estimation ŷ. Since OLS adjusts the parameters β of

the linear model to minimize the RSS, the OLS model prediction ŷ is the particular

vector lying in the subspace S, which is the closest as possible to the reference y. For

this reason, ŷ corresponds to the orthogonal projection of y onto the subspace S, which

is described mathematically by:

XT (y − ŷ) = 0 (6.10)

Eq. (6.10) represents the orthogonality condition for the vector (y − ŷ) with respect

to the subspace S defined by X.

By substituting (6.6) into (6.10), one gets:

XT (y −Xβ̂) = 0 (6.11)

which corresponds to (6.4) and is solved by the OLS estimate.

6.2.3 Singularity Condition and Solution by QR Decomposition

If the regressors XjN are not linearly independent, XTX is singular and can not be

inverted to calculate the parameters in (6.5), yielding to a not uniquely defined β̂.

However, the multiple solutions are still the projection of y onto the column space of X,
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though there are more ways to express this projection, as there are more ways to define

the subspace S.

The linear dependency of the columns of X is a consequence that one or more inputs

XjN present redundant information. If a couple of columns are nearly to be linearly

dependent, the correlation between the two variables is high and the matrix X is not

full rank. The problem of inverting XTX is thus ill-conditioned, leading to low accuracy

of the estimated vector β̂. A typical solution for this problem is dropping redundant

columns in X. Other methods, as those described in the next chapters of the present

thesis, provide a regularization term to cope with this low rank issue.

The most common method to recode redundant columns is the QR decomposition of

X:

X = QR (6.12)

where Q is an orthogonal matrix (QTQ = I) of dimension (N × p), while R is an upper

triangular matrix of dimension (p× p). Without going into the details, these matrices are

obtained by recursive orthogonalisation of the inputs, leading to an orthonormal basis

for the column space of X.

The QR decomposition is used to transform model (4.1) in a simpler, more stable

triangular system. From (6.4) we have:

XTXβ = XTy (6.13)

then, substituting (6.12) in (6.13) we get:

RT QTQ︸ ︷︷ ︸
I

Rβ = RTQTy

Rβ = QTy

(6.14)

Using QR decomposition the OLS solution is given by:

β̂ = R−1QTy

ŷ = QQTy
(6.15)

The number of the estimated coefficients that are not zero is equal to the rank of

matrix X and the solution coincide to (6.5) and (6.6) if X has full column rank.
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6.3 Concluding Remarks

OLS is the most popular estimation method for linear regression models. The OLS

solution is mathematically achieved by minimizing the residual sum of squares. This loss

function has a quadratic form that allows to calculate the solution in a closed form in a

very efficient way.

All these advantages make OLS an attractive estimator for linear models. However,

it can lead to unsatisfactory results in several cases. First of all, the solution can

not be calculated, or could be calculated only with a small precision, when there is a

strong correlation between two, or more, inputs variables. In this case, the most common

solution is to remove the redundant variables. In addition, it may happen that a coefficient

associated with a variable results very large, while another coefficient (associated with

a variable correlated with the previous one) compensates it in the opposite direction

(canceling the first variable’s effect). As a consequence, the information carried by one

variable is deleted by the other.



7
Partial Least Squares (PLS)

As said in Chapter 4, algorithms for solving linear regression problems generally suffer

from overfitting when they deal with high-dimensional datasets. This is the case of the

OLS method described in Chapter 6.

In the following, we will present the PLS method and in Chapter 9, advantages and

drawbacks of PLS will be shown with a simple tutorial example. Finally, in Chapter 11,

PLS will be compared to the other identification techniques.

7.1 Mathematical Definition

In order to deal with overfitting, PLS regression technique discussed in this chapter

resorts to dimensionality reduction, i.e. it uses M (≤ p ) new regressors zk, calculated

from a linear combination of the p original ones, to model the target y (N × 1) as:

ŷ = Zθ + ε (7.1)

where Z is a (N ×M) matrix, whose columns contain the so-called “latent variables” zk,

θ is the M dimensional vector of the related coefficients (which have to be estimated

along with the new regressors zk( and ε is the error term (N × 1).
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7.1.1 Derivation of the PLS estimator

Part of this material can be referred to [116]. Consider an identification set consisting of

a reference vector y (N × 1), containing N samples of the target, and the corresponding

input matrix X (N×p), whose rows represent the input variables Xip, while each column

XjN contains all the samples referred to the j-th variable (see Section 4.1).

Since PLS is not scale invariant, i.e. the estimates depend on the scaling of the

inputs, before starting the construction of the M new regressors z1, z2,. . . , zM , the

input variables XjN have to be normalized, i.e. zero mean and unitary variance. To

avoid the introduction of a new symbol below, we assume that each input variable XjN

is normalized.

As mentioned before, PLS iteratively constructs a set of linear combinations of the

inputs, using both X and y. For this construction, the original inputs XjN are weighted

according to their univariate effect on y.

Since PLS is an iterative procedure in which the input variables XjN are updated at

every iteration, it is useful to add a superscript to the notation indicating the iteration

number. Hence, X
(k)
jN represent the j-th input variables at the k-th iteration and X

(0)
jN

correspond to the original input variables XjN . The same superscript is added to the

estimated target variable ŷ, as it is also updated at every iteration. In particular, at first,

ŷ equals the mean of the reference, represented using ȳ (ŷ(0) = ȳ). Then, the estimate ŷ

is adjusted during each iteration, in which a new direction zk is constructed.

PLS begins by computing the correlation ϕ̂1j between the current input variables

X
(0)
jN and the reference y:

ϕ̂1j = X
(0)
jNy (7.2)

where, in the left side, the first value of the subscript of ϕ̂ indicates the iteration, while

the second identifies the j-th variable.

Each current input variable X
(0)
jN is weighted by its corresponding correlation ϕ̂1j in

(7.2) to construct the first “derived” input z1 (N x 1):

z1 =

p∑

j=1

ϕ̂1jX
(0)
jN (7.3)

where z1 is called the first partial least squares direction. Subsequently, the reference y

is regressed on z1, obtaining the scalar coefficient θ̂1:

θ̂1 =
zT1 y

zT1 z1
(7.4)
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which is the OLS solution to the regression problem where y is the reference and z1 is

the (only) input variable (compare eq. (7.4) with eq. (6.5)).

The coefficient θ̂1 in (7.4) is used as the multiplier of z1 in (7.3) to update the

reference estimate ŷ:

ŷ(1) = ŷ(0) + θ̂1z1 (7.5)

Using the coefficient θ̂1, each current input variables x
(0)
jN is orthogonalized with

respect to z1, i.e. its contribution to z1 is subtracted from it:

X
(1)
jN = X

(0)
jN − γjz1 where γj =

zT1X
(0)
jN

zT1 z1
(7.6)

Then, the process continues until M ≤ p directions have been obtained.

Since the zk’s, with k = 1, 2, . . . ,M , are linear in the original inputs (see eq. (7.3)

and (7.6)), the reference estimate after M steps, ŷ(M), can be also computed as:

ŷ(M) = Xβ̂
PLS

(7.7)

recovering the coefficients β̂
PLS

from the sequence of PLS transformation.

As for OLS, once the coefficients β̂
PLS

are estimated from the training set, they can

be used in the linear model to predict unseen data through a linear combination of the

inputs. It is worth noting that, if M = p (i.e. the number of the PLS directions zk

equals the number of the original input XjN ), the PLS solution is equivalent to the that

of OLS.

7.1.2 Alternative implementation of PLS

Other algorithms have been developed allowing a direct estimation of the coefficients

β̂
PLS

. Without going into details, it is worth mentioning the SIMPLS algorithm [123],

whose pseudo code for its derivation is depicted within box Algorithm 2, based on the

input approximation using score and loading matrices:

X = ZXT
l +E (7.8)

In this case, Z is the (N ×M) matrix of the M extracted score vectors (PLS directions

zk), the (p ×M) matrix X l represents the matrix of loadings and E the matrix of

residuals. The approximation of the target is like in (7.1):

y = Zθ + e (7.9)
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load X, y {load data and standardize}

standardize X,y

ŷ(0) ← 0 {initialization}
X(0) ← X

for k = 1 to M do

ϕ̂kj ← X
(k−1)T
jN y

zk ←
p∑

j=1

ϕ̂kjX
(k−1)T
jN

θ̂k ←
zTk y

zTk zk

ŷ(k) ← ŷ(k−1) + θ̂kzk

γj ←
zTkX

(k−1)
jN

zTk zk

X
(k+1)
jN ← X

(k)
jN − γjzk

Algorithm 2: PLS pseudocode.

The key of this algorithm is that it directly estimates a matrix of weights W ,

representing the relationship between the PLS direction in Z with the original matrix X:

XW = Z (7.10)

Then, substituting (7.10) into (7.9), one gets:

y = XWθ + e (7.11)

the approximation of the reference y is directly related to the original inputs X. Hence,

ignoring the contribution of the residual matrix e, the PLS reference estimate ŷ is

obtained as:

ŷ = XWθ (7.12)

By comparing (7.12) with (7.7), one gets:

β̂
PLS

= Wθ (7.13)
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Hence, the matrix of weight W allows to calculate directly the estimation of the PLS

coefficients β̂
PLS

, without recovering them from the sequence of PLS transformation

by a back tracking. In fact, W describes how to combine the coefficients of the new

regressors zk, contained in the matrix θ.

7.2 Properties of PLS

7.2.1 Statistical Properties

It can be shown that PLS seeks directions that have high variance and high correlation

with the response variable. Hence, the k-th PLS direction solves the problem:

max
α

corr2(y,Xα)var(Xα) (7.14)

with the two constraints:

‖α‖ = 1 (7.15)

αSϕ̂l = 0 with l = 1, 2, . . . , k − 1 (7.16)

where S is the sample covariance matrix of XjN . The condition (7.16) ensures that the

next direction zk is uncorrelated with all the previous ones.

From (7.14), it can be observed that the first chosen PLS direction z1 coincides

with the particular vector that lies in the X space, represented using S, and makes a

compromise between its variation and its correlation with the response y. Similarly, from

(7.6) we can notice that the next space S(1), spanned by the updated input variables

X
(1)
jN , is the subspace of S orthogonal to the first PLS direction z1. As before, the

second PLS direction z2 is that maximising the (7.14) and lying in this subspace S(1).

Successive directions zk’s are calculated in a similar manner, with the residual subspace

S(k−1) determined by removing from the space S, the space defined by the previous PLS

directions.

7.2.2 Geometrical Properties

Figure 7.1 shows the geometry of PLS. As mentioned in Section 6.2.2, the OLS estimates

ŷols showed as red dashed line in Figure 7.1, is the one minimizing the RSS while the

first principal component indicating the direction of maximum variance of the data in

X1 and X2 is indicated by the green dashed line togheter with the ellipses indicating

directions of the variance of the data. The PLS solution is a trade-off between OLS and

the principal components, represented as the value on the ellipse upon which OLS has
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the longest projection.

y

x2

x1

yols

||yols-Xβ||
2

PC

ypls

Figure 7.1: Geometrical interpretation of PLS. Target vector y, estimation of target vector
by OLS ŷols (red dashed line), input vectors X1 and X2. The green dashed line represent

the first principal component and the magenta line the estimation by PLS.

7.3 Concluding Remarks

PLS is a regression technique based on dimensionality reduction, which uses M new

regressors, called PLS directions or latent variables, calculated from a linear combination

of the original input variables depending on their univariate influence on the target.

The PLS solution is iteratively obtained and at each iteration a new PLS direction is

estimated.

This technique for estimating linear models tries to avoid the OLS problem of

overfitting, building orthogonal PLS direction. A further feature of the PLS directions

is that they are estimated maximizing both their variance and the correlation with the

reference. In this way, the PLS directions try to include the informative components of

the original inputs, considering also their relationship with the reference. This may be an

advantage, since, as noticed from the examples, much less PLS directions are sufficient to

obtain similar or even better performance than OLS. PLS will be tested on the tutorial

example of Chapter 9 in order to give a general flavour of its features with respect to the

other techniques. Finally, PLS will be applied in Chapter 11 to NI-CGM Multisensor

data.
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Regularization-Based Techniques: LASSO, Ridge

Regression and Elastic-Net (EN)

After having presented OLS and PLS, in this chapter we will cover regression techniques

that estimate the parameters of the multivariate linear model exploiting regularization.

As shown below in detail, these methods add a further term to the RSS cost function in

order to penalize complex models and avoid overfitting.

8.1 General Mathematical Definition

According to eq. (6.5) of the OLS estimation, the unknown coefficients of the linear

regression model of eq. (4.1) can be identified minimizing the RSS(β). To reduce the

risk of overfitting and numerical problems for the estimation of β, regularization based

techniques add a further term F (β) to the cost function, tipically putting a price on β in

order to discourage coefficients to become, in absolute value, too large, as it may happen

with OLS (see tutorial example of Chapter 9). Hence, the function to minimize turns

into:

L(β, λ) = RSS(β) + F (β, λ) (8.1)
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Elastic-Net (EN)

and the estimated coefficients are obtained as:

β̂
REG

= arg min
β

(RSS(β) + F (β, λ)) (8.2)

As we will discuss in detail in the following sections, the term F (β, λ) can incorporate

`1 norm (Least Absolute Shrinkage and Selection Operator (LASSO), Section 8.2), `2

norm (Ridge regression, Section 8.3)) or a combination of the two (Elastic-Net, EN,

Section 8.4), whose effects are controlled by the scalar λ [116]. The parameter λ can be

thought as a parameter controlling the complexity of the model, since it prevents the

model coefficients from becoming too large. According to the regularization form of the

penalty term, different features will be induced on the estimated parameter vector β̂.

8.2 l1 Norm Regularization (LASSO Regression)

The LASSO solution is found as:

β̂
lasso

= arg min
β


RSS(β) + λ

p∑

j=1

|βj |


 (8.3)

where, in the cost function, the coefficients of the multivariate model are penalized by

considering the sum of their absolute values (λ ≥ 0). Using eq. (6.1), eq. (8.3) becomes:

β̂
lasso

= arg min
β




N∑

i=1


yi − β0 −

p∑

j=1

Xijβj




2

+ λ

p∑

j=1

|βj |


 (8.4)

By using Lagrangian multipliers [124], it can be shown that an equivalent way to

write problem (8.4) is as follows:

β̂
lasso

= arg min
β

N∑

i=1


yi − β0 −

p∑

j=1

Xijβj




2

subject to

p∑

j=1

|βj | ≤ t
(8.5)

where t is proportional to λ. Because of the nature of the constrains, making t sufficiently

small will cause some of the coefficients to be exactly zero, leading to a sparse solution.

Unfortunately, eq. (8.4) is not differentiable when β contains zero values. Hence,

a solution of (8.4) in closed form is not available and iterative methods are needed
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to compute an approximated solution. As a consequence, for computing the LASSO

solution, a wide variety of approaches have been proposed in the literature to solve such

a problem. In the next section, some algorithms for computing LASSO solution in an

efficient way will be briefly listed; in Section 8.2.2 particular attention will be given to the

Least Angle Regression (LAR) algorithm that will then be used to analyze the tutorial

example data in Chapter 9 and the Multisensor data in Chapter 11.

8.2.1 Numerical Methods for Computing LASSO Estimates

This subsection gives a brief overview of the numerical methods most currently used

in the literature for computing the LASSO solution. Then, in Section 8.2.2, we will

describe a modification of the LAR procedure for the LASSO implementation along with

its interpretation.

As mentioned above, a closed form solution for estimating the LASSO model is not

available, thus iterative techniques have to be considered based on Newton’s method [125].

These methods update the vector of coefficients β at each iteration using a descent

direction of the form:

βk+1 ← βk − α∇L(βk)/∇2L(βk) (8.6)

where the subscript k indicates the iteration.

Since the gradient ∇L(βk) does not exist if some coefficients βi are zero, different

strategies were proposed to solve this problem.

Sub-gradients based algorithms use sub-gradients of the function at non-differentiable

points [125] and can be classified in three different strategies, according to which variables

are optimized at every iteration: coordinate descent methods [126, 127], that optimize

over one variable at a time, active set methods [128, 129, 130], that optimize all the

non-zero variables at every iteration and orthant-wise descent methods [131], that are

similar to the previous but adds two projection operators.

Unconstrained approximation methods replace the minimization function L(β) with

a twice differentiable surrogate objective function, whose minimizer is sufficiently close to

the minimizer of L(β). The main advantage of this approach is that, since the replaced

function is twice differentiable, we can directly apply an unconstrained optimization

method to minimize the function. See for example [132, 133, 134] where the L1-norm

constrained is replaced with the multi-quadratic functions.

Constrained optimization methods re-formulate problem (8.4) as a differentiable one

with constraints. In this case, each variable βi is represented as the sum of two variables:

βi = β+i − β−i (8.7)
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where β+i ≥ 0 and β−i ≥ 0. In this formulation the absolute value function becomes:

|βi| = β+i + β−i (8.8)

An obvious drawback of this approach is that it doubles the number of variables in the

optimization problem. Different methods are based on this approach, for instance: log-

barrier [135], interior-point [136], projected Newton [137] and two-metric projection [138].

8.2.2 LAR Method for Computing LASSO Solution

LAR is an iterative method intimately connected with LASSO. In fact it provides an

extremely efficient algorithm for computing the entire LASSO path, i.e. the behaviour of

the coefficients β for different values of the complexity parameter.

8.2.2.1 The LAR procedure

The LAR algorithm has been developed as a model selection algorithm [139]. It is useful

to define the active set Ak (of dimension m) as the set of the non-zero coefficients at the

k-th step. When Ak is used as a subscript for a matrix or a vector, it selects the values

connected to the active variables at the k-th step. Hence, XAk
is the sub-matrix of X

composed by the active variables and βAk
is the coefficient vector for these variables. To

simplify the notation, the subscript k will be dropped, if it is clear that we are referring

to the k-th step.

The LAR solution is computed following these steps:

1. set all the coefficients βi to zero;

2. choose the variable XjN most correlated with the reference y;

3. move the correspondent coefficient βj from zero towards its OLS value βolsj (in this

way the correlation of the variable XjN with the current residual r = y −XjNβj

decreases);

4. continue the process until another variable X lN has as much correlation with the

current residual as XjN has;

5. add variable X lN to the active set Ak;

6. move the coefficients βAk
towards their OLS values, in such a way that their

correlation with the current residual r = y −XAk
βAk

continues to be the same;
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7. repeat steps 4-6 until Ak has reached the desired dimension or until all the variables

have been included to Ak (in this case the OLS solution is obtained).

Figure 8.1 shows an example of the progression of the absolute correlations during

each step of the LAR procedure. The labels at the top of the plot indicate which variable

enters the active set at each step.
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Figure 8.1: Progression of the absolute correlations during each step of the LAR
procedure [116].

By construction, the coefficients βjs in the LAR algorithm change in a piecewise linear

fashion. Note that we do not need to take small steps and re-check the correlation in

step 4. In fact, using the knowledge of the covariance of the predictors and the piecewise

linearity of the algorithm, the exact step length can be calculated at the beginning of

each step.

8.2.2.2 The LAR Implementation

Having introduced the guidelines of the LAR algorithm, we can now go into its mathe-

matical details. First of all, let us define some useful notation. XsA is the same as XAk
,

but each regressor is multiplied by the sign sj of its correlation with the current residual

r:

XsA =
[
. . . sjXjN . . .

]
(8.9)

where XjN ∈ Ak. For simplicity, let’s define GA (m×m) as:

GA = XT
sAXsA (8.10)
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and the scalar AA as:

AA =
(
1TAGA1A

)−1/2
(8.11)

where 1A (m x 1) is a column vector of ones.

Since the LAR procedure is not scale invariant, data have to be normalized before

starting the iterative procedure. Hence, the initial target estimation ŷ0 is set to zero.

Let ŷk the current target estimation at the k-th step, the current correlation c (m× 1)

of the predictors with the current residual can be written as:

c = XT (y − ŷk) (8.12)

The current active set Ak includes all the variables, whose absolute correlation correspond

to the maximum of all the absolute correlations Cmax:

Ak = {j : |cj | = Cmax} where Cmax = maxj {|cj |} (8.13)

The solution at the next step is updated as follows:

ŷk+1 = ŷk + γuA (8.14)

where uA is a versor (‖uA‖ = 1) defining the direction to which the current target

estimation ŷk is moved. This direction is calculated in such a way that the correlation of

each active variables with the current residual vector equals the correlation of the other

active variables. The versor uA is calculated as follows:

uA = XsAwA where wA = AAG
−1
A 1A (m x 1) (8.15)

and, since it is an equiangular vector, it enjoys this property:

XT
sAuA = AA1A (8.16)

Instead, the coefficients are updated as follows:

β̂k+1 = β̂k + γdA (8.17)

where dA (m x 1) is the vector equaling sjwAj for j ∈ Ak (note the connection with the

versor uA in (8.15) ) and zero elsewhere.

As said before, γ can be exactly computed as to update the variables to the point in
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which another variable enters the active set. In particular, γ is calculated as follows:

γ = min
j∈Ac

+

{
Cmax − cj
AA − aj

,
Cmax + cj
AA + aj

}
where aj = XT

jNuA (8.18)

where min + indicates the minimum between the positive values, being γ > 0.

The explanation of (8.18) is obtained by comparing the current correlation of a

variable that is not in the active set with the correlation of the active variables. In

particular, the current correlation of the j-th variable is:

cj(γ) = XT
jN (y − ŷk+1) (8.19)

then, substituting (8.14) in (8.19) one gets:

cj(γ) = XT
jN (y − ŷk − γuA) (8.20)

which using (8.12) and (8.18), becomes:

cj(γ) = cj − γaj (8.21)

If the absolute value of (8.21) is referred to an active set variable, using (8.13) and (8.16),

it becomes:

|cj(γ)| = Cmax − γAA (8.22)

then, equalling (8.21) with (8.22) one gets:

{
Cmax − γAA = cj − γaj
−Cmax + γAA = cj − γaj

(8.23)

Solving the set of equations in (8.23) for γ, one obtains the values of γ for which the

correlation of a variable that is not in the active set equals the correlation of the active

variables. Since we search the minimum positive value of γ, corresponding to the step of

the first non active variable equalling the correlation of the active ones, we finally get the

(8.18).

8.2.2.3 LAR vs. LASSO

In Figure 8.2 the coefficient profiles are plotted as model complexity increases for both

LAR (left) and LASSO (right). It can be noticed that the profiles are similar to each

other, except when a non-zero variable hits zero (highlighted by a red circle in Figure 8.2).
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In fact, a small modification in LAR procedure allows implementing the LASSO path.

The modification is the following: if a non-zero coefficient hits zero the corresponding

variable is dropped from the active set and the current joint least squares direction

recomputed. Below we explain why LAR and LASSO are so similar.
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Figure 8.2: Left : LAR coefficients profile as the model complexity increases. Right : LASSO
coefficients profile as the model complexity increases [116].

The correlation of an active set variable with the current residual can be expressed as:

XT
jp(y −Xβ) = γsj ∀j ∈ Ak (8.24)

where sj ∈ {−1, 1} indicates the sign of the correlation and γ is the absolute value of the

correlation.

Since the non-active variables are less correlated to the current residual than the

active variables, we can write:

∣∣XT
lp(y −Xβ)

∣∣ ≤ γ ∀k /∈ Ak (8.25)

The LASSO minimisation function:

L(β) =
1

2
‖y −Xβ‖2 + λ |β| (8.26)

is differentiable for the active variables. For these variables the stationarity conditions

(first derivative set to zero) are:

XT
jp(y −Xβ) = λsgn(βj) ∀j ∈ Ak (8.27)
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which corresponds to (8.24) if the sign of the correlation sj matches the sign of the

coefficients βj . That is why the LAR algorithm and the LASSO start to differ when an

active coefficient passes through zero. The LASSO condition (8.26) is violated for that

variable, which is, thus, kicked out of the active set.

Finally, the stationarity conditions for the non-active variables are:

∣∣XT
lp(y −Xβ)

∣∣ ≤ γ ∀k /∈ Ak (8.28)

which corresponds to the LAR equation (8.25).

8.2.2.4 LASSO Implementation by LAR modification

load X, y
normalize X, y

ŷ0 ← 0;
β̂0 ← 0;
c← XT y;
Cmax ← max(c);
j ← find(c = Cmax);
A← xj

while active variables< p do
a = XTuA

γ = min
l∈Ac

+

{
Cmax − cl
AA − al

,
Cmax + cl
AA + al

}

(associated with Xl)
γ̃ = minj(−β̂k/dA)

if γ̃ < γ then
γ = γ̃;

ŷk+1 = ŷk + γuA
β̂k+1 = β̂k + γdA
Cmax = Cmax − γAA

if γ̃ < γ then
drop Xj from A

A← Xl

update uA, dA and AA
c = XT (y − ŷk+1);

Algorithm 3: LASSO pseudocode.
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The only modification of the LAR procedure needed for implementing LASSO is a

check of the γ value calculated in (8.18) [139]. In fact, we have to make sure that during

the LAR step none of the coefficients β changes its sign. In particular, starting from the

updating of the coefficients in (8.18), here reported:

β̂k+1 = β̂k + γdA

a βj will change sign at:

γj = − β̂j
dj

(8.29)

The first change occurs at:

γ̃ = min
γj>0
{γj} (8.30)

corresponding to the j-th variable.

Hence, if γ̃ > γ calculated in (8.18), no sign change will occur and the LAR step does

not violate any LASSO condition. Contrarily, if in (8.18) γ̃ ≤ γ , the updated coefficients

β̂k+1 cannot be a LASSO solution. To avoid this, the LAR step is not completed, but it

is stopped at γ̃ = γ . Then, the j̃-th variable is removed from the active set and a new

equiangular direction in (8.15) is calculated.

The LASSO path can be estimated using the LAR modification. It can be implemented

by the pseudo-code in the box Algorithm 3 (the updates of uA, dA and AA have not

been reported).

8.2.3 Properties of LASSO

8.2.3.1 Geometrical Properties

As for OLS in Chapter 6, we now consider the case of two different input variables X1

and X2 [139], as can be seen from Figure 8.3. LAR builds up the estimates in successive

steps, each step adding one variable to the model, according to the value of its correlation

with the target variable. In the case of two input variables, the current correlations c

depend only on the projection ȳ of y into the plane spanned by X1 and X2:

c = XTy = XT ȳ (8.31)

As shown in Figure 8.3, ȳ makes a smaller angle with X1 than with X2, that corresponds

to a greater correlation with X1 than with X2. Hence, the variable X1 enters the active

set (step 2) and the solution moves in direction of X1, indicated in Figure 8.3 by the

equiangular unit vector u1 (step 3-eq. (8.15)). Representing the moving solution of this
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first iteration with ~y1, the current correlations c with the current residual becomes:

c = XT (ȳ − ~y1) (8.32)

From the Figure 8.3, we can see that the correlation of X1 with the current residual

decreases. This process stops when the current residual is equally correlated with X1 and

X2 (step 4), that happens when the residual vector (ȳ − ~y1) bisects the angle between

X1 and X2. Hence, the variable X2 is added to the active set (step 5). Now the solution

moves in such a direction as to keep equal the two correlations (step 6). This direction is

represented in Figure 8.3 by the equiangular unit vector u2 (eq. (8.15)), that corresponds

to the bisector of the two vectors X1 and X2. In this case all the variables were added

to the active set; hence, at the next iteration, the OLS solution is reached. Note that the

OLS solution corresponds to ȳ (Section 6.2.2). In the general case, subsequent iterations

are taken along equiangular vectors, generalizing the concept of the bisector u2.

X2 X2

0
u1

u2
y1 X1

y

Figure 8.3: Geometrical interpretation of LASSO solution using LAR modification.
Projection of the target vector ȳ, input vectors X1 and X2 . Versor u1 and u2 indicating

the equiangular vectors. Adapted from [139].

8.2.3.2 Sparse Solution

As said in the Section 8.2, the regularisation term added to RSS yielded to a sparse

solution. In this Section it will be described the reason why such a constraint lead to a

sparse solution, using, for simplicity, the same example of two input variables X1 and
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X2.

From (8.5) the constraint region defined by LASSO is:

|β1|+ |β2| ≤ t (8.33)

which is represented by a diamond area in the Cartesian space of the coefficients (blue

region in Figure 8.4). As a consequence, all the possible solutions of LASSO lie in this

region.

Plotting in the same Cartesian space the OLS solution (β̂ in Figure 8.4), we can see

how the OLS estimates, minimizing the RSS, fall in the center of the elliptical contours

which represent the RSS behaviour for different estimates of β.

β
^2β

β
1

Figure 8.4: Interpretation of the sparse solution of LASSO. β̂ represents the OLS solution,
the red ellipses are the contours of the residual sum of squares and the blue areas correspond

to the constraint region |β1|+ |β2| ≤ t (taken from [116]).

The LASSO solution is the first point where the elliptical contour hits the constraint

region. Since the diamond region presents corners, it is probable that the solution occurs

at a corner. In this case, one coefficient is exactly zero, in particular β1 in Figure 8.4. In

addition, when there are more predictors, the diamond becomes a rhomboid, and has

many more corners and flat edges. As a consequence, there are many more opportunities

for the estimated parameters to be zero.
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8.3 l2 Norm Regularization (Ridge Regression)

Ridge regression, from now on “Ridge”, is a technique for the estimation of the parameter

vector β̂
ridge

. It is defined as the value of β̂ that minimizes a cost function given by RSS

plus a regularization term given by the sum of the squares of the coefficients weighted by

a parameter λ controlling model complexity [116]:

β̂
ridge

= arg min
β




N∑

i=1


yi − β0 −

p∑

j=1

Xijβj




2

+ λ

p∑

j=1

β2j


 . (8.34)

Problem (8.34) can also be formulated as a constrained optimization problem, as

happened for LASSO:

β̂
ridge

= arg min
β

N∑

i=1


yi − β0 −

p∑

j=1

Xijβj




2

subject to

p∑

j=1

β2j ≤ t
(8.35)

where t is, as in eq. (8.5), inversely proportional to λ.

λ (≥ 0) is the complexity parameter that control the amount of shrinkage. The

larger its value, the greater the amount of shrinkage. The problem formulated as in

(8.35) makes explicit constraint on the size of the parameters. In the case of correlated

variables in the linear regression model, a large positive coefficient on one variable can be

canceled by a similar large negative coefficient on a correlated predictor. As happened for

LASSO, imposing a size constraint on the coefficients alleviates the problem. Since Ridge

regression is not equivariant under scaling of the inputs, the predictors are centered and

scaled (also to be uniform with the other identification methods).

8.3.1 Definition of Ridge Regression

Equation (8.34) is continuous and derivable thus the Ridge model, β̂
ridge

, has a closed

form solution that can be obtained by setting to zero the derivative of eq. (8.34). Recalling

the function L(λ,β) = RSS(β) + λβTβ, we have:

∂L(λ,β)

∂β
= −2XT (y −Xβ) + λβ (8.36)

−XT (y −Xβ) + λβ = 0 (8.37)
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By rearranging 8.37, we obtain the estimate of the model parameter vector:

β̂
ridge

= (XTX + λIp×p)
−1XTy (8.38)

where Ip×p is the p× p identity matrix. The solution adds a positive constant (λ) to

the diagonal of XTX before inversion. Thus, even if XTX is not full rank, the matrix

in eq. (8.38) is invertible.

To estimate the complexity parameter λ, the prediction error is plotted against the

degree of freedom (df), a quantity given by:

df(λ) = tr[X(XTX + λI)−1XT ] =

p∑

j=1

d2j
d2j + λ

(8.39)

representing the effective degrees of freedom of the ridge regression fit. Usually, the

degrees of freedom in a linear regression are given by the number of free parameters.

However, since all the p coefficients will be non-zero, a measure of the complexity is

given in term of λ through eq. (8.39), where dj (d1 ≥ d2 ≥ · · · ≥ dp ≥ 0) are the singular

values of X.

The Ridge estimator can be implemented by the pseudo-code depicted in box Algo-

rithm 4. In this case, a Cholesky factorization was used to invert the (XTX+λI) matrix,

creating an upper triangular matrix R, satisfying the equation RTR = XTX + λI.

load X, y
normalize X, y

β̂ridge ← inv(XTX + λI)XT y;
(or using a Cholesky decomposition)
R← chol(XTX + λI)
β̂ridge ← R\(RT \(XT y));

ŷ ← Xβ̂ridge

Algorithm 4: Ridge pseudocode.

8.3.2 Properties of Ridge Regression

A comparison between Ridge and LASSO constraints may help to understand the features

of the two methods. Referring to eq. (8.40), the constraint region defined by Ridge

Regression is a disk area in the Cartesian space of the coefficients (blue region in Figure
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8.5):

β21 + β22 ≤ t (8.40)

Since in this case the disk has no corners, there is a lower probability for one coefficient

collected within β̂
ridge

to be exactly zero. Thus, the `2 norm shrink the model coefficients

but does not induce sparseness properties as the `1 norm does for the LASSO.

β
^

1

β2

β

Figure 8.5: Ridge Regression regularised solution. As in 8.4, but here the blue area
corresponds to the constraint β2

1 + β2
2 ≤ t (taken from [116]).

8.4 `1 + `2 Norm Regularization: Elastic-Net (EN)

Regression

Considering the usual linear regression model in the form y = Xβ + v, the estimation of

the parameter vector can be obtained minimizing a cost function given by RSS plus a

regularization term given by the combination of the `1 and `2 norms [140].

8.4.1 Definition of Elastic-Net Regression

The term F (β, λ) of the cost function in (8.1) includes two terms [140]:
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F (λ1, λ2) = λ1

p∑

j=1

|βj |+ λ2

p∑

j=1

β2j (8.41)

where λ1 and λ2 represent the two complexity non-negative parameters weighting the

two norms. The Elastic-Net (EN) estimator is defined as:

β̂
en

= arg min
β




N∑

i=1


yi − β0 −

p∑

j=1

Xijβj




2

+ λ1

p∑

j=1

|βj |+ λ2

p∑

j=1

β2j


 (8.42)

An alternative representation of the EN cost function is given by:

L(β, λ, α) =
1

2

N∑

i=1


yi −

p∑

j=1

Xijβj




2

+ λ

p∑

j=1

(
α|βj |+

1

2
(1− α)β2j

)
(8.43)

The cost function (8.43) introduces some scaling factors (1/2) that will be useful in the

following ( see Section 8.4.3.2). With this new representation, α weighs the contribution

of the two norms, while λ measures the trade-off between adherence to the data and

model complexity.

8.4.2 Properties of EN

In order to understand some of the EN estimator properties, it is useful to consider the

geometrical interpretation of this estimator [116], as was done for LASSO and Ridge in

Section 8.2 and 8.3 respectively. The constraint region defined by the combination of

the `1 and `2 norms with the parameterization defined in 8.43 can be represented as a

contour area, presenting sharp, thus non-differentiable corners, given by the presence

of the `1 norm. This suggests a possible explanation for the properties related to the

EN estimator, that share both properties of sparseness induced by the `1 norm, and a

grouping effect among correlated variables given by the `2 norm.

The parameterization defined in eq. (8.43) states, even more clearly than eq. (8.42),

the trade-off between Ridge and LASSO. By anticipating some properties that will be

more clear analyzing the tutorial example and the application to the multi-sensor data,

EN tends to average input variables highly correlated and then entering the average

contribution into the model, providing a grouping effect.
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3.4 Shrinkage Methods 73

q = 1.2 α = 0.2

Lq Elastic Net

FIGURE 3.13. Contours of constant value of
P

j |βj |q for q = 1.2 (left plot),

and the elastic-net penalty
P

j(αβ
2
j +(1−α)|βj |) for α = 0.2 (right plot). Although

visually very similar, the elastic-net has sharp (non-differentiable) corners, while
the q = 1.2 penalty does not.

setting coefficients exactly to zero. Partly for this reason as well as for
computational tractability, Zou and Hastie (2005) introduced the elastic-
net penalty

λ

p∑

j=1

(
αβ2

j + (1− α)|βj |
)
, (3.54)

a different compromise between ridge and lasso. Figure 3.13 compares the
Lq penalty with q = 1.2 and the elastic-net penalty with α = 0.2; it is
hard to detect the difference by eye. The elastic-net selects variables like
the lasso, and shrinks together the coefficients of correlated predictors like
ridge. It also has considerable computational advantages over the Lq penal-
ties. We discuss the elastic-net further in Section 18.4.

3.4.4 Least Angle Regression

Least angle regression (LAR) is a relative newcomer (Efron et al., 2004),
and can be viewed as a kind of “democratic” version of forward stepwise
regression (Section 3.3.2). As we will see, LAR is intimately connected
with the lasso, and in fact provides an extremely efficient algorithm for
computing the entire lasso path as in Figure 3.10.
Forward stepwise regression builds a model sequentially, adding one vari-

able at a time. At each step, it identifies the best variable to include in the
active set, and then updates the least squares fit to include all the active
variables.
Least angle regression uses a similar strategy, but only enters “as much”

of a predictor as it deserves. At the first step it identifies the variable
most correlated with the response. Rather than fit this variable completely,
LAR moves the coefficient of this variable continuously toward its least-
squares value (causing its correlation with the evolving residual to decrease
in absolute value). As soon as another variable “catches up” in terms of
correlation with the residual, the process is paused. The second variable
then joins the active set, and their coefficients are moved together in a way
that keeps their correlations tied and decreasing. This process is continued

Figure 8.6: Contour of the EN penalty norm given by eq. (8.43) for α = 0.2, presenting
sharp non-differentiable corners (although not easily visible) (taken from [116]).

8.4.3 Numerical Methods for Computing EN Estimates

The EN solution can be obtained thought different approaches whose derivation depends

on the form of the cost function.

8.4.3.1 LAR-EN

The LAR-EN algorithm for computing the EN solution resorts to the same algorithm

proposed in Section 8.2.2 for solving the LASSO problem and is based on the cost function

defined as in eq. (8.42) where λ1 and λ2 independently weigh the two norms. More in

detail, the algorithm exploits the LAR procedure for solving the regularization problem

with the `1 norm (as for the LASSO), but considers an augmented data set in order to

artificially take into account the `2 norm effect. Let’s consider α = λ2/(λ1 + λ2), then

solving eq. (8.42) is equivalent to solve the following optimization problem:

β̂
en

= arg min
β

N∑

i=1


yi − β0 −

p∑

j=1

Xijβj




2

subject to α

p∑

j=1

β2j + (1− α)

p∑

j=1

|βj | ≤ t
(8.44)

Eq. (8.44) is the EN penalty which is a convex combination of the LASSO and ridge

penalties. For α ∈ [0, 1) the EN penalty is singular (without first derivative) at 0 and is

strictly convex for all α > 0. We define an artificial data set (y∗,X∗) from the original

one and the couple (λ1, λ2):

X∗
(N+p)×p = (1 + λ2)

−1/2
(
X√
λ2I

)
,y∗(N+p) =

(
y

0

)
(8.45)
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Let γ = λ1
√

1 + λ2 and β∗ =
√

1 + λ2β, the EN criterion can be written as:

L(γ,β∗) = L(γ,β∗) =

N+p∑

i=1


yi − β0 −

p∑

j=1

Xijβj




2

+ γ

p∑

j=1

|βj | (8.46)

In this way, we have transformed the EN problem into an equivalent LASSO problem on

augmented data:

β̂∗ = arg min
β∗

L(γ,β∗) (8.47)

with the solution to the original problem given by:

β̂
en

=
1√

(1 + λ2)
β̂∗ (8.48)

Empirical evidence [140] showed that the estimator (8.48) does not perform satisfac-

torily unless it is close to either ridge or the LASSO. Indeed, the β̂
en

in eq. (8.48) is

referred to as näıve EN because it performs a double shrinkage that does not help to

reduce the variance much and introduces extra bias compared with pure LASSO or Ridge.

This is because the näıve EN solution β̂ is a two stage procedure: the Ridge regression

coefficients are first obtained fixing λ2; then, the LASSO-type problem is solved. The EN

(corrected) estimate of the parameter vector β̂
en

is defined as β̂
en

=
√

1 + λ2β̂
∗ where

β̂∗ is defined in (8.47). Rearranging and substituting in eq. (8.48) we obtain:

β̂
en

= (1 + λ2)β̂
old−en

(8.49)

This scaling preserves the variable selection property of the näıve EN and is the simplest

way to undo the unnecessary shrinkage mentioned above.

To calculate the LASSO-step solution for the problem (8.46), the LAR algorithm used

in Section 8.2.2 can be used on an augmented data set for fixed λ2. In particular, the

step described in (8.10) now consists in calculating GAk
= X∗TAk

X∗Ak
that, substituted

with (8.45), becomes (at the k-th iteration):

GA =
1

1 + λ2

(
XT
AXA + λ2I

)
(8.50)

8.4.3.2 Cyclical Coordinate Descent

Cyclical coordinate descent methods have been proposed several times for solving the

LASSO problem [141, 125]. They belong to the family of sub-gradients strategies that use

sub-gradients of the objective function to minimize at non-differentiable points, namely
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load X, y
normalize X, y

β̂enold = 0

while true do
for k = 1, ..., p do
rik = yi −

∑p
j=1
j 6=k

Xij β̃j

β̃∗k =
∑N

i=1Xikrik

β̂k ← S(β̃∗
k ,λα)

1+λ(1−α)

if β̂ = β̂enold then

β̂en = β̂
break

else
β̂enold = β̂

ŷ ← Xβ̂en

Algorithm 5: Pseudo-code of the cyclical coordinate descent method for computing the EN
solution.

where there is a |βj | equal zero. The same strategy can be used to optimize the EN cost

function 8.42, given the presence of the `1 term. In particular, these methods are very

simple because they optimize over one variable βj at the time, applying a soft-thresholding

operator to deal with the non-differentiability points, as widely discussed by Friedman

at al. [142] and Van der Kooij [143]. In practice, the following steps are repeated for

j = 1, 2, k, ..., p, 1, ... until convergence is reached, i.e. coefficients stabilize:

1. a coefficient of the multivariate linear regression model is chosen, for example βk

2. the coefficient βk is updated, with the remaining coefficients fixed

Empirical evidence showed that starting with any values for βk, the sequence converge to

the true solution [141].

The coordinate descent step for solving (8.43) is obtained computing the gradient

at βk = β̃k for βk > 0, assuming to have estimates of β̃j for j 6= k. Thus, partially
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optimizing with respect to βk:

∂L(β, λ, α)

∂βk

∣∣∣∣
β=β̃

= −
N∑

i=1

Xik


yi −

p∑

j=1
j 6=k

Xij β̃j −Xikβk


+ λ(1− α)βk + λα (8.51)

where the sum has been broken down to isolate the contribution of the βk coefficient. The

quantity ỹ
(k)
i =

∑
j 6=kXij β̃j is the value fitted by the model excluding the contribution

of Xik, so:

yi − ỹ(k)i = yi − ŷi +Xikβ̃k

= rik +Xikβ̃k (8.52)

where ŷi is the current fit of the model for observation i, and rik the current residual.

The quantity yi − ỹ(k)i represents the partial residual for fitting βk. Moreover, because

of the standardization of the predictors, the first term on the right hand side of (8.51)

becomes:

N∑

i=1

Xik


yi −

p∑

j=1
j 6=k

Xij β̃j −Xikβk


 =

N∑

i=1

Xik(yi − ỹ(k)i ) =
N∑

i=1

Xikrik + β̃k (8.53)

thus, the update of the coefficient β̃k can be obtained setting the gradient of the cost

function to zero and rearranging:

β̃k ←
S
(∑N

i=1Xik(yi − ỹ(k)i ), λα
)

1 + λ(1− α)
(8.54)

where the operator S(·) indicates the soft-thresholding operator as pointed out in [144],

that showed how the solution of a problem involving `1 norm is a soft-thresholded version

of the least squares estimate:

sign(z)(|z| − γ)+ =





z − γ if z > 0 and γ < |z|
z + γ if z < 0 and γ < |z|

0 if γ ≥ |z|
(8.55)

In practice, from the k-th coefficient calculated by least-squares on the partial

residuals (β̃k), the operator S(·) subtracts λα and, if it hits zero, then β̃k = 0, otherwise
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the coefficient is shrunk by an amount λα.

The EN solution can be obtained implementing the algorithm described in the

previous section which is based on cyclical updates of single coefficients of the parameter

vector β till they stabilize or reach convergence. In the pseudo code of box Algorithm

5, the algorithmic procedure for deriving the EN solution is presented. Notice that the

coordinate descent algorithm can be used for computing the LASSO solution, in the

same way the LAR-EN can be used to identify the EN model. The only modification

consists in the scaling factor in eq. (8.54), as discussed in [141].

8.5 Concluding Remarks

This chapter presented different techniques for the estimation of multivariate linear

regression models based on regularization. In particular, the models are estimated

by minimizing a cost function given by the sum of the RSS plus a term controlling

complexity, penalizing complex models. This additional term can have different forms.

For example, considering the `2 norm, the sum of squares of the coefficients of the

parameter vector β will be penalized, while if the `1 norm is considered, the sum of the

coefficient absolute values will be penalized. A combination of the two norms can also be

used as regularization cost function, providing the so called EN model. Depending on

the form of the regularization term considered, the identified model will have different

features, as shown in the tutorial example of Chapter 9.

The sparseness properties of the LASSO model, identified with a modified LAR based

algorithm, avoid the cancellation effect of correlated predictors occurring with OLS, by

choosing only one important variable and discarding the others. Ridge regression has

a closed form solution, in the opposite of LASSO, and tends to keep all the predictors

but with smaller coefficients with respect to the LASSO model. Thus, similarly to what

happens with PLS, the Ridge model estimates the output taking information potentially

from the whole set of predictors. Finally, EN represents a trade-off between LASSO and

Ridge, obtained with a combination of the two norms. This feature allows to retain the

benefits derived from the use of both norms, shrinking many channel weights to zero and,

at the same time, averaging those predictors with non-zero weights inducing a grouping

effect.
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9
Tutorial Example

While the scope of the present thesis concerns the application of the 5 parameter

identification techniques discussed in Chapters 6-8 to NI-CGM Multisensor data, it is

useful to first present a “tutorial” literature example that will help us to gain some

confidence with the methods and highlight their and potential pros and cons.

9.1 Data Set

The data for this example is taken from a study concerning prostate cancer [145] by

Stamey et al., 1989. They examine the correlation between height clinical measures and

a target variable defined as the logarithm of the prostate-specific antigen (lpsa). The

height variables are: log(cancer volume) (lcavol), log(prostate weight)(lweight), age, the

logarithm of the amount of benign prostatic hyperplasia (lbph), seminal vescicle invasion

(svi), log(capsular penetration) (lcp), Gleason score (Gleason) and percentage Gleason

score 4 or 5 (pgg45). To model this connection, samples referred to 97 different subjects

are available.

The data have been split in two data subsets: one is the identification set consisting

of 67 subjects, which is used to identify the parameters of the model and the other is

used to estimate the prediction error, the so called test set, consisting of 30 subjects.

With reference to the linear model of eq. (4.1), here our target vector y is the measure



96 Tutorial Example

of “prostate-specific antigen”:

y =




lpsa(1)

lpsa(2)
...

lpsa(97)








dp

while the clinical measures, defined above represent our input variables XjN , which are

collected within the matrix X:

X =




lcavol(1) lweight(1) | age(1) | lbph(1) . . . pgg45(1)

lcavol(2) lweight(2) | age(2) | lbph(2) . . . pgg45(2)
...

... | ... | ...
...

lcavol(67) lweight(67)|age(67)|lbph(67) . . . pgg45(67)




⇒ subject 1

⇒ subject 2

⇒subject 67

⇓
age

Thus each column of the matrix X contains one of the height input variables, while

the rows correspond to 67 samples referred to different subjects.

Our aim is to determine the coefficients vector β that describes the influence of the

clinical variables upon the “prostate-specific antigen” target. Since the identification

data have been standardised (mean=0 and standard deviation=1), the offset parameter

β0 can be dropped and the unknown vector β has dimension height:

β =




β1

β2
...

β8




First of all it can be useful to calculate the correlation between the different input

variables.

From Table 9.1 it can be seen that lcp and pgg45 are two of the most correlated

variables, which is also confirmed by a visual inspection of Figure 9.1.

Before using the data for model identification and model test, a pre-processing is

performed standardizing X and y. This is done for allowing a direct comparison of the

estimated coefficients for the different models, since the methods controlling complexity,

i.e. PLS, LASSO, Ridge and EN, are not scale invariant. This introduction of the data
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lweight age lbph svi lcp gleason pgg45

lcavol 0.3002 0.2863 0.0632 0.5929 0.6920 0.4264 0.4832

lweight - 0.3167 0.4370 0.1811 0.1568 0.236 0.0742

age - - 0.2873 0.1289 0.1730 0.3659 0.2758

lbph - - - -0.1391 -0.0885 0.033 -0.0304

svi - - - - 0.6712 0.3069 0.4814

lcp - - - - - 0.4764 0.6625

gleason - - - - - - 0.7571

Table 9.1: Correlation between the different input variables, with highlighted the most
elevated correlations.

set and of its features will turn out to be useful in the following sections to show pros

and cons of the different identification techniques.
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Figure 9.1: Plot of two of the most correlated variables lcp(blue) and pcc45 (green).

9.2 Cross-Validation for Model Complexity Estimation

The methods controlling complexity require the estimation of the complexity parameter(s)

before identifying the coefficients of the model on the identification data set. Figure

9.2 shows in each subplot the error curve for each method estimated by means of the

cross-validation procedure described in Chapter 5. The test error curve is estimated

using 8-fold cross-validation. The identification data are randomly split into 8 parts of

approximately equal size. Iteratively, one part is left aside to calculate the test error

(using MSE), while the other 7 parts are used to “estimate” the coefficients of the model.

In this way a test error upon each of the 8-th parts not used for identify the models

is calculated and, averaging these values, an estimation of the test error is obtained.
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The model complexity is selected using the “one-standard error” rule (Section 5.2.2),

which indicates the best model as the most parsimonious one, whose error is less then

the minimum plus one time its standard deviation.

For PLS, the selected model correspond to the minimum value of the test error curve

at seven directions. However, as mentioned in Section 5.2.2, the complexity parameter

can be chosen as the one where there is a clear drop in the error curve. In our case, the

value of M can be set to 3. Similar considerations can be done for LASSO, Ridge and

EN.
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Figure 9.2: 8-fold Cross-validation curves for the choice of the most reasonable complexity
parameters for PLS (a), LASSO (b), Ridge (c) and EN for α = 0.8 (d). The MSE (mean value
and one standard deviation) is represented as a function of the model complexity parameter
for each method. The green cross represents the value of the complexity parameter according
to the “one-standard error” rule (green dotted line), while the most reasonable complexity is

chosen in correspondence of the drop of the error curve and displayed as a red cross..

In particular, for LASSO, the test error curve is plotted as a function of the number
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of active variables, instead of λ. However, the number of the active variables is intuitively

connected to the model complexity, but also to the degrees of freedom of the model (see

[146] for more details). The test error curve has a minimum in correspondence of the

“one-standard error” rule, which also coincides with the point of drop of the test error

curve. Hence, the finally chosen model has 4 active variables.

In subplot (c) of Figure 9.2 the test error curve for the ridge model is reported as a

function of a quantity defined as the degree of freedom which is inversely related to λ.

The complexity parameter should be chosen in correspondence to a value close to 1.25 of

the degree of freedom on the logarithmic scale (corresponding to λ = 300), according to

the “one-standard error” rule. However, this value is too large, and a more reasonable

value to choose for λ is the one where the test error curve presents a drop in slope,

namely, at log(df(λ)) = 1.2 corresponding to λ = 60.

As already mentioned, EN has two parameters for controlling complexity: λ is the

regularization parameter weighting the trade-off between adhesion to the data (low RSS)

and model complexity (discouraging complex models), while α controls the contribution

of the two norms. The cross-validation procedure is used for choosing the complexity

parameters. In particular, a grid of 11 equally spaced αs is considered, in the interval

(0÷ 1). Then, a set of λs equally spaced on the log scale is evaluated for each value of α.

Thus, each cross-validation plot is inspected separately and λ will be chosen according

to the specific α with the one-standard-error rule (see red cross in Figure 9.2) or as an

alternative after the first drop in the error curve, namely when log(λ) ≈ −3 corresponding

to λ = 0.05. In this case, α = 0.8 was chosen, since it was the one giving the lower MSE

with reasonable complexity.

9.3 Model Identification

The models are identified over the same data set used for the cross-validation procedure.

Table 9.2 shows the coefficients for each variable estimated with the proposed identification

techniques. It can be noticed that for OLS, the contribution of the two correlated variables

lcp and pgg45 (see Figure 9.1) to the estimation of β̂ is not relevant, since their relative

coefficients tend to compensate their effects. This phenomenon occurs when OLS deals

with highly correlated variables: their relative coefficients tend to become large but with

opposite signs and thus they compensate each others.

After having fixed M = 3, the PLS estimates can be computed. It is interesting

to compare the estimated OLS coefficients β̂
ols

with the PLS ones β̂
pls

, as reported in

Table 9.2. The compensation effect occurring with the variables lcp and pgg45 for OLS
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is not happening using PLS, that weights the variable lcpless. From Table 9.2 and Figure

9.4, we can also notice that the estimated PLS coefficients have, on average, a smaller

absolute value than the OLS ones, indicating the a control of the complexity as been

achieved.

As described before, the LAR procedure allows to create the entire LASSO path (see

Figure 9.3), i.e. the behaviour of the coefficients β̂ as the model complexity increases.

At first all the parameters β are set to zero and enter in the active set according to their

correlation with the current residual. Notice that, at the end of the LASSO path, i.e.

when the selected number of active variables is equal to the number of predictors in the

matrix X, β̂
lasso

correspond to β̂
ols

.
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Figure 9.3: LASSO path for prostate cancer data of the “tutorial” example. The coefficients
weighting the different variables (expressed in different colors) are shown as a function of the

model complexity (expressed as the sum of the absolute value coefficients in the model).

Analyzing Figure 9.3 and Table 9.1 we can see the LASSO behaviour when dealing

with correlated variables, e.g. lcp and pgg45. pgg45 (blue dashed line in Figure 9.3)

enters the active set before lcp (yellow continuous line) showing the regularization and

variable selection performed by the `1 norm. As soon as the model complexity increases,

lcp enters the active set and its coefficient becomes large until compensation of the two

variables occurs.

Table 9.2 shows that Ridge estimated coefficients have sum of absolute values

clearly lower than that of the coefficients obtained with OLS (
∑ |β̂olsj | = 1.8716 against
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∑ |β̂ridgej | = 0.6686 respectively). This proves the regularization performed by the `2

norm that shrunk the model coefficients. However, the `2 norm does not induce sparsity

on the coefficients, thus allowing all the variables to enter the model. However, they are

individually much smaller that the coefficients of the other methods (see Figure 9.4).

As it can be seen from Table 9.2, the EN model still share the property of sparseness

with LASSO (induced by the `1 norm), but retains more variables (thanks to the `2

norm). Unfortunately, the grouping effect is not visible, probably because of the small

number of predictors and data available.

lcavol lweight age lbph svi lcp gleason pgg45

OLS 0.5931 0.2423 -0.1180 0.1755 0.2563 -0.2393 -0.173 0.2296

PLS 0.4948 0.2594 -0.1520 0.1696 0.2586 -0.0306 0.0053 0.1019

LASSO 0.48 0.2034 0 0.1188 0.1658 0 0 0.0746

Ridge 0.1669 0.1156 0.0195 0.0701 0.1122 0.0688 0.422 0.0713

EN 0.4778 0.2101 -0.0185 0.1309 0.1722 0 0 0.0863

Table 9.2: Estimated coefficients of the parameter vector β̂ for OLS, PLS, LASSO, Ridge
and EN.
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Figure 9.4: Coefficients of the multivariate linear regression model identified by the
different techniques.

9.4 Model Test

As described in Chapter 3, to evaluate the performance of the two different methods, it

is convenient to analyse their behaviour in predicting unseen data. Hence, the previously

estimated coefficients are applied on inputs of the test set and the results are compared

with the test reference. To quantify the performance of the models, the MSE indicator

was computed. Table 9.3 shows, as expected, that OLS is the model with lower accuracy

indicating the occurrence of overfitting.
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As said before, using the OLS estimator, the coefficients of highly correlated variables

tend to grow large in opposite directions compensating each others. It was the case of lcp

and pgg45 which are positively correlated. LASSO choses only one of the two variables,

discarding the other one by shrinking its coefficient to zero. To quantify the performance

of the three methods, the MSE indicator is considered, as shown in Table 9.3. Table 9.3

confirms that the estimators have similar performances.

Despite the regularization, the Ridge model is not able to generalize as well as the

other models do in predicting the target variable from the input data. However, results

remains comparable with those of the other models.

Although the grouping effect is not visible in this tutorial example, the combination

of the two norms allows the EN model to outperform the other two models identified with

a regularization technique (see Table 9.3). Probably due to the few data and predictors

available, performance is not as good as that of PLS, although very close.

MSE

OLS 0.5213
PLS 0.4284

LASSO 0.4593
Ridge 0.5257
EN 0.4583

Table 9.3: MSE indicator for OLS, PLS, LASSO, Ridge and EN on test data.

9.5 Concluding Remarks

This chapter illustrated a procedure for assessing accuracy of different identification

techniques. The same logic will be used in Part III of this thesis to test the same

techniques over the Multisensor data. From data pre-processing, to cross-validation for

setting the more reasonable complexity parameter for each techniques, the models are

finally identified and tested over an independent test data set. Of particular interest is

the effects on the model coefficients induced by those techniques controlling complexity

(see Figure 9.4). In particular, while retaining information from all the predictors, PLS

estimates a model with visually smaller coefficients than OLS, resulting in a less complex

model able of better generalization on test data (see Table 9.3). On the other side, LASSO

induces a sparse model, with 3 coefficients shrunk to zero in a total of 8, obtaining good

prediction performance on test data, not comparable with that of PLS, thought. The

reason could be that with few data available, PLS has better prediction capabilities

because it takes information from all the variables. The `2 norm induces a model (Ridge)
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where all the coefficients are non-zero, as can be easily seen from Figure 9.4. However,

they are individually much smaller that the coefficients of the other methods. Finally,

the EN model is a trade-off between the LASSO and Ridge ones, presenting 2 coefficients

shrunk to zero. Unfortunately, the grouping effect representing its main feature is not fully

visible in this tutorial example, but will be clear in Chapter 11 where the identification

techniques will be applied with the aim of performing NI-CGM.
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Part III

Case Study





10
Data Set

The present chapter illustrates the data set and the relative acquisition protocol that will

be used later in Chapter 11 to assess the performance of the identification techniques

in modeling multi-sensor data. Starting from this chapter, we will refer to a particular

multi-sensor device, namely the Solianis Multisensor, from now on, for sake of brevity,

called “Multisensor” (note the capital M).

10.1 Acquisition Protocol

Data, provided to us by Solianis Monitoring AG, were acquired during an experimental

clinical study conducted at the University Hospital Zurich that included six patients

with Type 1 Diabetes Mellitus (T1DM) (age 44 ± 16 years; body mass index BMI 24.1

± 1.3 kg m−2; duration of diabetes 27 ± 12 years; glycated hemoglobin HbA1c 7.3 ±
1.0), identified by the following labels: “AA02”, “AA03”, “AA04”, “AA05”, “AA06”,

and “AA09”. Each subject performed different recording sessions in different days. Each

recording session had an approximative duration of 8 hours during which plasma glucose

was induced to vary according to a desired profile. In particular, glucose was loaded

either orally or by intra-venous glucose administration to induce different hyper and

hypoglycaemic excursions. In total, four different desired profiles were considered. These

profiles are shown with different colors in Figure 10.1, where the black vertical dashed
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line represent the first 75 minutes of the experiment (that will be later removed from the

study). The rationale of forcing glucose to mimic such a variety of profiles is to assess

the ability of the “Multisensor hardware + model” system to discriminate among both

different glucose rates of change and levels of glucose concentrations.
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Figure 10.1: The four desired glucose profiles considered in the protocol. Time zero
corresponds to intravenous insulin infusion, and the black vertical line the first 75 minutes.

The study was performed in accordance with Good Clinical Practice and the Dec-

laration of Helsinki. All patients signed an informed consent agreement,performed the

screening visit and were then enrolled in the study. After a patient arrived in the clinical

study unit in the morning, blood glucose was measured and an intravenous insulin

infusion was performed. Glucose was administered after a 75 min equilibration time

needed for establishing euglycaemic level and to allow the skin of the subject to adjust

to the application of the sensor. Multisensor data were recorded by placing the device on

the right upper arm. Reference glucose values were acquired in parallel, every 10-20 min,

using a HemoCue Glucose 201 Analyzer (HemoCue AG, Switzerland). On average, seven

recording sessions were performed by each patient (min. 5 and max. 10). This provided

a data set of 45 recording sessions available for the analysis described in the following.

As mentioned in Chapter 3, the Multisensor provides a set of measurements of

different nature, mainly based on dielectric and optical sensors, for a total of more than

150 measured signals. Most of the signals come from the dielectric electrodes (see Figure

10.2), showing a high correlation and exhibiting similar but not identical behaviour.
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Figure 10.2: Example of IS Multisensor data. The first 75 mins (on the left of the dashed
vertical line) are removed for the presence of Multisensor-skin adaptation processes and for

allowing euglycaemic level to be established.

Hence, there are two important characteristics of this dataset: it is a high-dimensional

dataset and there are many correlated variables. Figure 10.2 also clarifies the reason

the first 75 minutes are removed: in this time interval there is a strong influence of

adaptation processes due to Multisensor-skin contact.

10.2 Data Partition Between Model Identification and

Model Test

As said in Chapter 3, it is a good choice to evaluate the performance of the different

models using unseen data. Hence, in order to evaluate the performance in estimating

glucose profiles from Multisensor data not used during the model identification stage,

the data set was split into two parts, in such a way that each subject in each data subset

underwent a similar number of days with a specific profile. Data subsets used in the

following are:

• data subset “part 1”, consisting of 23 recording sessions;

• data subset “part 2”, consisting of 22 recording sessions.
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These two data subsets will be used separately for model identification and model test,

namely, if data subset “part 1” is used for model identification, data subset “part 2” is

used for model test and viceversa. In Chapter 11 we will refer to “internal validation”

results if the model is applied to the same data subset used for its identification, and

“external validation” if the model is applied to a new data subset.

Notice that both the data subsets contain data recorded from different subjects, thus

the identified models will have a “global” or “population” validity since they are not

tailored to a specific subject. In a practical prospective this could be an appealing aspect

since it could allow to use a previously identified population model for estimating glucose

profiles also in subjects whose data did not participated to model building.

10.2.1 Preprocessing

Data for model identification

For each Multisensor channel, the first 75 min of each recording session are removed

since this interval is dominated by an adaptation process due to the Multisensor/skin

contact. Signal channels undergo a causal median filtering (window width of 5 samples)

for the removal of occasional spurious spikes. Signals used for model identification are

standardized to have zero mean and standard deviation one, namely, they are shifted

and scaled with their own sample mean and standard deviation.

Data for model test

The first 75 min of each recording session are removed and the same causal median

filtering above was applied. Then, each signal channel is shifted and scaled using sample

mean and sample standard deviation of its correspondent in the identification data set. In

such a way, the analysis can be considered consistent with a realistic on-line application

of the models. Indeed, in a prospective use of the device, sample mean and standard

deviation cannot be known in advance, and only the values estimated during the model

identification stage can be used.

10.2.2 Determination of Model Complexity

While for OLS the identification data subset is used to identify the model coefficients,

which are then applied on the test data subset to estimate BGL, for the techniques

controlling complexity an additional step is needed before estimating β̂. In particular,

the complexity parameter(s) need(s) to be fixed exploiting K-fold cross-validation over

the identification data subset (see Section 5.2.2). After having estimated the model
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complexity, PLS, LASSO, Ridge and EN models are identified from the same identification

data subset used for cross-validation and applied on the test data subset for predicting

the BGL values.

10.2.3 Model Calibration

While models obtained during the model identification stage will have a “global” validity

because they are obtained considering identification data subset containing data from

different subjects, during the model test phase an individualized calibration step is

required at the beginning of each experimental session to adjust the baseline of the

estimated glucose profile by the model. Formally, such a calibration is described by

equation:

ĝcal = Xβ̂ + b (10.1)

where ĝcal is the (N × 1) vector containing the calibrated glucose profile, from now on

only “glucose profile”, X is the (N×p) matrix collecting Multisensor data, β̂ is the (p×1)

identified parameter vector of the multivariate linear model (no matter which of the 5

parameter identification techniques is adopted) and b is the scalar value representing the

baseline glucose calibration parameter calculated exploiting a single RBG provided by a

“gold standard” technique based on finger prick. This additional parameter is obtained

as the difference between the estimated glucose value given by the multivariate linear

model Xiβ̂ and the RBG point at the same time instant ti:

b = Xiβ̂ −RBG(ti) (10.2)

In practice, the glucose profile is shifted to the first RBG value available. This initial

adjustment is usually performed after 75 minutes the Multisensor is placed in contact

with the skin, for allowing adaptation processes related to Multisensor-skin contact to

deplete, and then kept fixed for all the duration the Multisensor is worn.
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Results

As already mentioned in the previous chapter, the full dataset was split in “part 1” and

“part 2”. Hereafter, if “part 1” is used for model identification, “part 2” is used for model

test and viceversa. The identification data subset used to find the model parameter

vector is also previously used to find the most reasonable complexity parameters for PLS,

LASSO, Ridge and EN.

11.1 Determination of Model Complexity

The “optimal” complexity parameter values are shown in Table 11.1-11.4, for the different

techniques. Their values are determined according to reasonable empirical evidence, i.e.

where the cross-validation curve presents a clear drop in slope (values are reported as red

crosses in Figure 11.1), rather than with the “one-standard error” rule (whose values are

reported as green crosses in Figure 11.1). Figure 11.1 shows the cross-validation results

when data subset “part 1” is considered for model identification, and comparable results

(not shown) are obtained when data subset “part 2” is used.

The cross-validation curve in Figure 11.1 (a) shows the error curve as a function of the

number of latent variables for the PLS technique. The “optimal” complexity parameter

value suggested by the “one-standard error” rule, indicated with a green cross in subplot

(a) at the value of m = 50, is likely to lead to an unnecessary too complex model. Indeed,
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Figure 11.1: 10-fold Cross-validation curves for the choice of the “optimal” complexity
parameters for PLS (a), LASSO (b), Ridge (c) and EN for α = 0.4 (d). The MSE (mean value
and one standard deviation) is represented as a function of the model complexity parameter
for each method. The green cross represents the value of the complexity parameter according
to the one-standard-error rule (horizontal green dashed line), while the red crosses represent

the values according to the drop in the error curve.

visual inspection of the cross-validation plot shows a clear drop of the error curve around

10. The complexity parameter for the different identification techniques suggested by the

“one-standard error” rule is shown in the subplots of Figure 11.1 with green crosses, while

the red crosses is the chosen value according to the drop in the error curve. This empirical

consideration also drives the choice of the complexity parameter for the LASSO model,

indicating a drop of the cross-validation curve around 15 (see subplot (b) in Figure 11.1).

The choice of the complexity parameter for Ridge follows a similar approach. Indeed, the

cross-validation curve shown in subplot (b) of Figure 11.1 has a drop when the degree of
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freedom, defined by eq. (8.39), is approximately 50, corresponding to λ = 5. Similarly

for EN, the ending part of the drop in the error curve can be noticed for log(λ) ≈ −4.5

(subplot (d) of Figure 11.1), corresponding to λ = 0.01. For EN different cross-validation

curves for different values of α where examined. The most reasonable choice seemed

that obtained for α = 0.4. Indeed, this combination of complexity parameters is the one

providing a good trade-off between the `1 and `2 norms allowing a reasonable complexity

for the EN model to be achieved. A value of α = 0.4 can suggest that, although it is

important to shrink channel weights to zero in order to lower the probability of occasional

jumps or spikes entering the model, allowing a grouping effect over correlated predictors

is also important for a more robust estimation of glucose profiles.

11.2 Model Identification

RMSE R2 MAD MARD ESOD EGA [%] CEGA [%]

[mg/dL] [mg/dL] [%] A+B(A) AR +BR(AR)

C\D\E CR\DR\ER

OLS 20.5 0.94 17 13.8 2.1 96.2(78.3) 86.9(58.7)

(7.9) (0.02) (8) (6.1) (1.5) 0\3.8\0 3.5\6.2\3.4

PLS 39.5 0.84 33.3 28.9 1.8 88.9(39) 83.7(56.5)

(m=10) (12.3) (0.09) (12.1) (14.2) (1.7) 4.1\5.7\1.3 7.2\5.2\3.4

LASSO 49.8 0.78 41.8 36.8 0.8 89.9(40.8) 86.9(61.1)

(j=15) (16.7) (0.14) (16.5) (20.1) (0.7) 2.1\6.9\1.1 7.9\3.4\1.8

Ridge 32.7 0.89 27.7 24.4 1.5 91.9(41.6) 83.4(58)

(λ = 5) (11.9) (0.06) (11.4) (12) (1.1) 1.1\5.9\1.1 7.2\5.9\3.5

EN 31.2 0.89 26.4 22.6 1.4 93.0(39.4) 83.9(59.6)

(α = 0.4, λ = 0.01) (11.8) (0.06) (11.2) (10.7) (2.4) 0.7\5.1\1.2 7.9\5.2\3

Table 11.1: Indicators of model performance for internal validation, i.e. when glucose profiles
are estimated from the same data subset “part 1” used for identify the models. In brackets
is the complexity model parameter chosen by means of cross-validation. RMSE root mean
squared error, R2 Pearson coefficient of determination, MAD mean absolute difference, MARD
mean absolute relative difference, ESOD energy of second-order differences, EGA (Clarke)

error grid analysis, CEGA continuous error grid analysis.

In this section, Table 11.1 and Table 11.2 represent the results of the so-called “internal

validation”, namely when glucose profiles are estimated with the same data used to

identify the models. In particular, Table 11.1 shows internal validation results for and

data subset “part 1” and Table 11.2 data subset “part 2”.

Results in terms of accuracy of estimated glucose profiles are presented through

indicators widely discussed in Chapter 5. As expected, Table 11.1 and Table 11.2 indicate

that, in the model identification stage, OLS outperforms the other models. Indeed,
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Figure 11.2: Representative recording sessions of Subjects AA04 (left) and AA05 (right).
OLS, PLS, LASSO, Ridge and EN fit (continuous lines) vs. reference BGL (open bullets).
Bottom panels display two representative channels (#156 an #90 for subject on the left and
on the right respectively) entering the models, where occasional spikes and jumps are evident.

OLS identifies model parameters in such a way as to maximize the adherence to the

identification data without any constraint on the complexity. As we will see in Section

11.3, this will results in a clear overfitting in the model test phase. Figure 11.2 shows

a representative “internal validation” plot for data subsets “part 1” (left subplots) and

data subsets “part 2” (right subplots). By visual inspection, it is possible to note

how the (calibrated) glucose profiles fitted by the OLS model outperforms the other

models. Moreover, Figure 11.2 (right) shows that despite OLS reach better accuracy,

it is more sensitive than the other models to occasional jumps or spikes occurring on
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RMSE R2 MAD MARD ESOD EGA [%] CEGA [%]

[mg/dL] [mg/dL] [%] A+B(A) AR +BR(AR)

C\D\E CR\DR\ER

OLS 27.3 0.93 23.4 19.9 2.5 97.5(68.1) 84.1(58.3)

(11) (0.03) (11.2) (13.8) (2.1) 0\2.5\0 4\8.2\3.7

PLS 44.7 0.85 38.7 30 1.4 94.6(47.7) 88.8(62.7)

(m=15) (22.1) (0.1) (20.9) (18.1) (1.4) 0.9\4.4\0.1 5.3\3.5\2.4

LASSO 55.1 0.78 46.6 34.9 0.4 89.9(44.4) 93.6(69.8)

(j=16) (26.6) (0.19) (24.7) (21.8) (0.1) 2.6\6.4\1.1 4.1\1.5\0.8

Ridge 42.4 0.86 36.3 28 1.1 95.1(51.3) 88.9(65.4)

(λ = 14) (21) (0.11) (11.4) (19.7) (0.8) 0\4.8\0.1 5.2\3.9\2
EN 45.3 0.85 38.8 29.8 0.8 93.9(48.9) 91.6(66.5)

(α = 0.3, λ = 0.05) (24.4) (0.14) (22.8) (19.3) (0.4) 0.7\5.1\0.3 4.5\2.5\1.4

Table 11.2: Indicators of model performance for internal validation, i.e. when glucose profiles
are estimated from the same data subset “part 2” used for identify the models. In brackets is

the complexity model parameter chosen by means of cross-validation.

the Multisensor channels entering the model, as channel # 90 shown in the bottom

panel. This characteristic will be more clear when glucose profiles will be estimated from

Multisensor data not used during model identification. For sake of completeness, the full

“internal validation” plots with all the (22+23 of the two data subsets) recording sessions

are shown in Appendix A.

11.3 Model Test

This section presents the model test phase results, when the identified models in the

previous section over data subsets “part 1” and “part 2” are tested over data subsets

“part 2” and “part 1” respectively.

Indicators reported in Table 11.3 and Table 11.4 show that OLS model is the worst,

confirming the occurrence of overfitting previously speculated. This point is further

strengthened by visual inspection of the box-plots in Figure 11.4 and Figure 11.7. The

OLS model results in indicators more scattered with respect to those of the other models

the other models which limit their complexity. Moreover, as can be seen from the CEGA

analysis of Figure 11.5 and Figure 11.6, the cloud of points (given by the couples of

reference vs. estimated BGL) for OLS is the most scattered, with many points lying

within the dangerous zones C,D and E.

Regularization based methods, i.e. LASSO, Ridge and EN, seem to outperform PLS.

In particular, PLS shows that RMSE, R2, MAD, MARD and ESOD are worse than for

the other models controlling complexity. However, PLS shows EGA and CEGA only
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RMSE R2 MAD MARD ESOD EGA [%] CEGA [%]

[mg/dL] [mg/dL] [%] A+B(A) AR +BR(AR)

C\D\E CR\DR\ER

OLS 94 0.69 76.7 59 10.4 85.3(30) 82.6(53)

(125.2) (0.26) (87.2) (72.2) (36.5) 8\4\2.7 5\7.9\4.5

PLS 61.2 0.65 51.7 40.1 2.7 90.6(51.3) 85.9(60.5)

(m=10) (27.5) (0.25) (24.7) (21.2) (4.4) 0.4\9\0 4.4\6.1\3.6

LASSO 57.9 0.69 48.6 37.8 0.9 89.4(42.2) 89.2(62.1)

(j=15) (27.1) (0.25) (23.7) (20) (1.1) 0.9\9.6\0.1 6.3\2.5\2
Ridge 52.3 0.71 44.1 35 2 91(58.7) 88(63)

(λ = 5) (22.8) (0.21) (19.2) (17.7) (2.7) 0.1\8.9\0 4.9\4.8\2.3

EN 51.8 0.71 43.9 34.1 2 92.3(59.9) 88.6(65)

(α = 0.4, λ = 0.01) (24.3) (0.22) (20.5) (17.2) (2.4) 0.1\7.6\0 4.9\4.4\2.1

Table 11.3: Indicators of model performance when “part 1” of the data set is used for model
identification and “part 2” for model test. In brackets is the complexity model parameter
chosen by means of cross-validation. RMSE root mean squared error, R2 Pearson coefficient
of determination, MAD mean absolute difference, MARD mean absolute relative difference,
ESOD energy of second-order differences, EGA (Clarke) error grid analysis, CEGA continuous

error grid analysis.

slightly worse than the other models, indicating that although it can give good prediction

of glucose trends it is too sensitive to noisy channels (Figure 11.3 (right)). This happens

because the PLS model has all non-zero coefficients, resulting particularly sensitive to

occasional jumps or spikes present in the Multisensor channels, as channel # 167 shown

in the bottom panel of Figure 11.3. This is also confirmed from the higher ESOD values

for PLS in Table 11.3 and Table 11.4 with respect to the other models.

Regularization methods provide, in general, better accuracy performance with respect

to PLS. This point is confirmed when the models are tested in both the test data subsets

(see Table 11.3 and Table 11.4). In particular, the LASSO model is the one estimating

glucose profiles with the lowest ESOD. The reason is two-fold: first, the regularization

performed by the `1 norm prevents the model coefficients from assuming large values thus

predicting glucose profiles that are more ßat than the other models (see for example Figure

11.8 (right)); second, channels more sensitive to noise that contain also glucose-related

information are considered by PLS, and also by Ridge and EN exploiting the effect of

the `2 norm, but are less probable to be selected by LASSO, thus yielding to smoother

estimates (see also box-plots in Figure 11.4 and Figure 11.7). Indeed the `1 norm shrinks

many coefficients to zero according to the value of the parameter j controlling complexity.

This allows an easier interpretation of the results with a reduced number of original

variables, representing the strongest effects, considered important for estimating glucose
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Figure 11.3: Representative recording sessions of Subjects AA03 (left) and AA06 (right).
OLS, PLS, LASSO, Ridge and EN model test over independent test data subset (continuous
lines) vs. reference BGL (open bullets). Bottom panels display two representative channels
(#2 an #167 for subject on the left and on the right respectively) entering the models, where

occasional spikes and jumps are evident.

profiles. This is a typical feature of the LASSO to act as a variable selection method.

Most of the time, a good agreement between glucose estimated profiles and reference

glucose measures is achieved. However, unpredictable events might sometime lead to

signals behaviour different from what is expected, yielding un-physiological glucose

estimated levels by the model. In these cases, a lower limit of 30 mg/dL for estimated

glucose levels is introduced [146]. For instance, Figure 11.3 (right) and Figure 11.8

(left) show two representative recording sessions where the estimated glucose profiles are
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Figure 11.4: Boxplots for 5 indicators in Table 11.3. RMSE (a), R2 (b), MAD (c), MARD
(d) and ESOD (e).
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Figure 11.5: Clarke error grid (top) and Rate error grid (bottom) for the different models
for test data subset “part 2”.

set to the above limit given the presence of a jump affecting some of the Multisensor

channels entering the model (see bottom panels of same figures, where the artifacts in
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Figure 11.6: Clarke error grid (top) and Rate error grid (bottom) for the different models
for test data subset “part 2”.

RMSE R2 MAD MARD ESOD EGA [%] CEGA [%]

[mg/dL] [mg/dL] [%] A+B(A) AR +BR(AR)

C\D\E CR\DR\ER

OLS 80.1 0.65 70.1 57.8 3 73.3(30.2) 79.9(52)

(38.3) (0.27) (35.2) (33.5) (2.4) 16.6\6.8\3.3 6.8\8.3\5
PLS 59.8 0.67 51.3 43.4 1.1 84.7(45.3) 88.3(65)

(m=15) (42.8) (0.24) (39.6) (38.5) (0.7) 9.2\3.6\2.5 5.8\3.9\2
LASSO 57.5 0.7 47.2 39.4 0.4 86.4(43) 92.5(68)

(j=16) (25.1) (0.2) (21.8) (20.1) (0.2) 3.8\8\1.8 5.8\0.9\0.8

Ridge 56.2 0.69 47.1 40.2 0.9 87.3(45.3) 91.1(66.4)

(λ = 14) (37.5) (0.22) (34) (30.6) (0.5) 5.8\5.1\1.8 4.6\2.8\1.5

EN 52.6 0.71 44.2 37.5 0.7 88.6(42.6) 91.7(69.4)

(α = 0.3, λ = 0.05) (31.6) (0.2) (27.3) (23.8) (0.3) 2.7\7.7\1 5\1.9\1.4

Table 11.4: Indicators of model performance when “part 1” of the data set is used for model
identification and “part 2” for model test. In brackets is the complexity model parameter

chosen by means of cross-validation.

the Multisensor channels are clearly visible). Interestingly, the LASSO model seems

more robust than the other models to these jumps in the data, not requiring the onset

of the lower limit cut off, and preserving glucose profile with elevated smoothness and

reasonably accurate trend. This behavior can be attributed to the shrinking properties

of the `1 norm. Finally, by looking at the last columns of Table 11.3 and Table 11.4, it

is interesting to note how the LASSO model is able to estimate glucose profiles with a

better trend accuracy than the other models.

The Ridge model is identified minimizing the RSS cost function subject to a bound on
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the `2 norm of the coefficients. This norm does not have the ability of inducing sparseness

on the coefficients of the multivariate linear regression model, thus a parsimonious model

is not identified and all the predictors are kept in the model. This might cause the

estimated glucose profiles by the Ridge model to be sensitive to occasional spikes or

jumps in the Multisensor channels, as happened for PLS. However, this influence seems

lower than in the PLS model as indicated by the lower ESOD for Ridge and by looking

at Figure 11.3 (right). It can be shown that Ridge is related to PLS, since PLS shrinks

low variance directions inflating the high variance ones, while Ridge shrinks more the

principal components of the predictor matrix X presenting low variance [116]. Estimated

glucose profiles by the Ridge model show accuracy indicators slightly better than those

of LASSO (see Table 11.3 and Table 11.4). This might indicate that channels discharged

by the `1 norm because sensitive to occasional spikes or jumps actually contain useful

glucose related information. Thus, it is reasonable that a combination of the `1 and `2

norms could identify a model sharing both properties of sparseness and grouping effect.

0

50

100

150

OLS PLS

LA
SSO

RIDGE EN

RMSE [mg/dL]

(a)

0

0.2

0.4

0.6

0.8

1

OL
S

PL
S

LA
SS
O

RID
GE EN

R2

(b)

0

50

100

150

OLS PLS

LA
SSO

RIDGE EN

MAD [mg/dL]

(c)

0

20

40

60

80

100

OLS PLS

LA
SSO

RIDGE EN

MARD [%]

(d)

0

5

10

15

OL
S

PL
S

LA
SS
O

RID
GE EN

ESOD

(e)

Figure 11.7: Boxplots for 5 indicators in Table 11.3. RMSE (a), R2 (b), MAD (c), MARD
(d) and ESOD (e).

From Table 11.3 and Table 11.4, one can note that the EN model outperforms the

others in terms of accuracy of estimated glucose profiles. In particular, EN is the model
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Figure 11.8: Representative recording sessions of Subjects AA04 (left) and AA05 (right).
OLS, PLS, LASSO, Ridge and EN model test over independent test data subset (continuous
lines) vs. reference BGL (open bullets). Bottom panels display two representative channels
(#156 an #3 for subject on the left and on the right respectively) entering the models, where

occasional spikes and jumps are evident.

presenting the best indicators and is only slightly worse than LASSO in accuracy for

glucose trends (see CEGA results). Moreover, its clinical accuracy results on the Clarke

Error Grid are substantially close to that of minimally invasive devices that present a

percentage of points within the A+B zone spanning from 84.4 to 98.9 [118].

The good results obtained by the EN model are likely due to the combination of the

`1 and `2 norms, giving to this model both the advantages of LASSO and Ridge. Indeed,

a limitation of the LASSO is that if there is a group of correlated variables, then it tends
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to select only one variable from the group and does not care which one is selected, thus

lacking in the ability of revealing grouping information. On the opposite, the `2 norm

allows all coefficients to enter the model, resulting more sensitive to noisy channels. Thus,

the `1 norm shrinks channel weights to zero (eliminating Multisensor channels not useful

for predicting glucose) while the `2 norm encourages a grouping effect (automatically

including whole groups into the model once one channel among them is selected). This

combination results in indicators outperforming those of the other models (see Figure

11.4 and Figure 11.7) and in estimated glucose profiles with a good trade-off between

sparseness of the model coefficients and robustness due to the grouping effect (see for

example Figure 11.3 (left)). For sake of completeness, all the model test plots for all the

22+23 available recording sessions are shown in the Appendix B.

11.4 Concluding Remarks

This chapter showed the application of the identification techniques illustrated in Part II

of the present thesis to a case study represented by the Solianis Multisensor data with

the aim of estimating glucose profiles. We showed that the OLS model outperforms the

others in “internal validation” conditions at the cost of overfitting. Indeed, OLS is the

worst during model test because the bias of the methods controlling complexity in model

identification leads to a better performance when glucose profiles are obtained from an

independent test data set. PLS performed better than OLS, but slightly worse than

regularization based methods. This is because PLS allows all the Multisensor channels

to enter the model, also those affected by occasional jumps or shifts. The same behavior

was shown by the Ridge model that allowed all the channels to enter the model. On the

opposite, the LASSO model seemed particularly robust to this particular noise, because

it shrunk many channel weights to zero [147]. Finally, we showed that EN is the best

performing model, representing a good trade-off between Ridge and LASSO. EN is robust

to occasional noise occurring in the Multisensor data, sharing the `1 norm properties

with LASSO, but at the same time averages channels with correlated predictors allowing

a more accurate estimation of the glucose profiles, exploiting the same `2 norm properties

of Ridge.



12
Conclusions and Further Developments

12.1 Discussion of the Thesis Main Achievements

In diabetes management, tight monitoring of glycaemic levels is important for avoiding

long and short term complications related to hypo- and hyper-glycaemia excursions. As

reviewed in Chapters 1 and Chapter 2 of the present thesis, many sensors have been

proposed for CGM. Most of them have a certain degree of invasiveness because they

exploit needle based electrodes. On the other side, non-invasive devices are potentially

more appealing, but their development is challenging for several reasons (see Chapter

4). In the last years, a new approach in the development of NI-CGM devices based on

the embedding of sensors of different nature within the same device in order to obtain a

better bio-physical characterization of the skin and underlying tissues gained particular

attention. As seen in Chapter 4, this multisensor concept has been shown to be more

robust in the daily-life use of these devices to possible environmental and physiological

processes that can deteriorate accuracy of estimated glucose profiles [146, 103].

However, a model linking the measured multisensor data to glucose is needed, together

with a set of techniques that can be used to identify the parameters of the multivariate

linear regression model, as OLS, PLS, LASSO, Ridge and EN described in Part II (from

Chapter 6 to 8), that are tested over the recently proposed Multisensor device by Solianis.

The main aim of the thesis was to focus on the problem of identification of suitable
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regression models for modeling multisensor data with the aim of estimating glucose levels

non-invasively (Chapter 11). Results indicate that: as expected, OLS results are superior

only in “internal validation” (see Section 11.2), while overfitting clearly appears when

models are tested on data previously unseen to the model; the PLS model estimates

glucose profiles with reasonable good trends although this model is too sensitive to noisy

channels, presenting an higher ESOD value with respect to the other models; the EN

model outperforms, in general, the other models thanks to the combination of the `1

and `2 norms that allow it to share both the advantages of the LASSO, shrinking many

model weights to zero being more robust to possible occasional jumps or spikes occurring

on the Multisensor data, and of the Ridge model, averaging the contribution of correlated

channels allowing a more robust estimation of glucose profiles.

With respect to the previous literature, this thesis demonstrated that while PLS

is the current state-of-art for regression problems involving spectroscopy data (see

[148, 149, 105] to mention just a few), EN can become very useful when dealing with

regression problem with multisensor data. While retaining information from a group

of variables (as PLS does), it also automatically selects those channels representing the

strongest effects, giving more insights into the specific problem at hand.

Results obtained in the thesis also demonstrated that, while accuracy indexes defined

in Section 5.3.2 are not yet comparable with those of current state of the art, enzyme-

based, needle sensors [118], glucose trends estimated by the considered NI-CGM device

plus a suitable model exhibit a good accuracy (see CEGA results in the last columns

of Table 11.3 and Table 11.4). This result is important in the treatment of diabetes

since the glucose trend can be a valid additional information to complement standard

SMBG devices that measure glucose by fingerprick. Knowing the glucose trend in real

time can greatly help the diabetic patient in preventing the occurrence of critical events,

such as hypoglycaemia. To better illustrate this point, consider the example in Figure

12.1. Top panel shows a portion of data (open bullets are SMBG samples, continuous

line is the glucose concentration estimated by the EN model in a representative subject

(20090806 S4WP4 AA04 in Appendix -see Appendix for label’s meaning-). Bottom panel

shows the estimate of the glucose concentration time-derivative, computable, also in real

time, through regularization algorithms (see [150] for details) starting from the glucose

profile returned by the EN model. By using the static risk (SR) concept introduced

in [151], the SMBG measures can be mapped into a symmetric risk space ranging from

0 (low risk) to 100 (high risk of hypo/hyperglycaemia, respectively). If only SMBG

samples were available, at time 15:00 and subsequent values (labelled as A and B in the

picture) similar SR values, equal to -16.8 and -18.4 respectively, would be estimated.
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Following the ideas presented in [150], a reliable glucose trend estimation can be used to

integrate SMBG information for calculating the dynamic risk (DR) in situations A and

B. DR values in A and B are equal to -39 and -0.4, respectively, and allow the patient to

interpret differently the situation of a glucose level near the hypoglycaemic threshold of

70 mg/dL with a negative (point A) rather than a positive (point B) trend: In situation

A, an alert can be generated to solicit the patient to take sugar to mitigate, or even

prevent, the hypoglycaemic event.
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Figure 12.1: Application of dynamic risk concept exploiting NI-CGM data in diabetes
management. Example of sparse SMBG values (A, B) (Top panel) complemented by

NI-CGM trend information (Bottom panel).

Thus, the NI-CGM multisensor system (Solianis device plus the EN model) can not

be considered yet a replacement of current needle-base glucose sensors. However, the

accuracy in estimating glucose trends makes the system suitable to be used in the current

diabetes therapy as a complement to standard SMBG devices. Promising results obtained

with the EN model makes the system even more appealing given the incremental accuracy

performance achieved.
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12.2 Future Developments: Monte Carlo MC

Methodology to Assess Robustness of Multisensor

Models

As far as possible future developments of the present thesis is concerned, we briefly

discuss a methodology for testing the robustness of the calibration parameter (see Section

10.2.3) against environmental and physiological processes that can occur during daily-life.

The methodology is general and can be used also for multisensor devices for NI-CGM

other than the Solianis Multisensor considered in this thesis.

12.2.1 Case Study: Effects of Sweat Events on Model Calibration

The parameter b in eq. (10.1) discussed in Section 10.2.3 is estimated by the calibration

procedure of eq. (10.2) at the beginning of each experimental session and is not updated

for the entire duration of an experiment, i.e. whilst the Multisensor device remains in

contact with the skin. While this does not necessarily introduce issues in very controlled,

i.e. hospital, conditions, in real life, uncontrollable events may occasionally disturb the

Multisensor monitoring. In particular, a sweat event involves the creation of a conductive

saline layer at the sensor-skin interface. As long as the sweat activity diminishes, the

signal is expected to return to a level close to its initial value. However, as shown in

Figure 12.2 (top), there still could be a large off-set in the signals measuring sweats

(interdigitated electrode in the frequency range 1-200 KHz, from now on identified as

channel #36, black line) that after the occurrence of sweat does not always return to

its value before the sweat event, a condition already observed in the literature [152].

This off-set, together with changes in the hydratation levels of the skin and underlying

tissues resulting from sweat, could also affect the DS electrodes measuring the main

glucose related signals (see Figure 12.2 (top), channel #115, grey line) despite the fact

that these electrodes are designed to sample the most microvascularized area (i.e. the

upper and deep vascular plexus). If effects of sweat events impaired the calibration

parameter calculated at the beginning of each experimental session, glucose levels after

the occurrence of sweats would be estimated with less accuracy.

It is useful to assess potential benefits obtained by recalculating b in eq. (10.2)

exploiting the first reference BGL samples collected after the occurrence of sweat events.

To perform such a study, the first problem is to identify a sweat event using the Multisensor

data that appear more sensitive to sweat. As shown in Figure 12.2, calculating the

derivative (middle panel) of channel #36 (black line in top panel), measured by the

interdigitated electrode with specific geometrical shape and at specific frequency for being
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sensitive to sweat, provides a rough but effective procedure for the on-line detection of

sweat events by setting a proper threshold TH (shown in grey in middle panel). Here the

threshold is chosen, in a pool of candidate values, as the one giving the better trade-off

between missed and identified sweat events. After a sweat event is detected, a new

calculation of the calibration parameter is performed according to eq. (10.2): the new b

is calculated at the time instant ti of the first available reference BGL after the detection

of the sweat event.

The multivariate linear regression model used by the Multisensor is expected to

properly combine the information contained in the Multisensor channels to compensate

non-glucose related physiological processes such as sweat events. However, the compensa-

tion of sweat effects on the main glucose related signals that is expected to occur on the

Multisensor channels # 36 (which contains information about the electrolyte balance

changes on the skin surface) is principally performed by channels exploiting frequencies

in the GHz range, that measure water balance variations in the tissue because sweating

also results in changes in hydratation. Assuming that the model is not able to properly

compensate these sweat related processes, a new calibration point would be needed for

re-adjusting the glucose baseline every time a sweat event is occurring. This need results

in the collection of a new reference BGL sample obtained by blood fingerprick, reducing,

in a practical perspective, the usefulness of NI-CGM.

12.2.2 Assessment of Model Calibration Robustness by Monte Carlo

Methodology

Generally speaking, a MC simulation is a stochastic technique widely used to explore

the distribution of a target outcome when its direct calculation from available inputs

is not feasible. More specifically, when performing a MC simulation, first a pool of

N repeated (and randomly sampled) input vectors from their domain or distribution,

usually with N ≥ 100, is generated. Then, for each input vector, the computation of

the outcome of the system under analysis is deterministically calculated (each of the N

iteration is called simulation). Finally, the distribution of the target outcome is derived

aggregating the result of each simulation. In our specific case, the domain over which the

inputs are sampled corresponds to the set of time instants where reference BGL values

for calibration are available, while the deterministic computation refers to the specific

calibration procedure adopted or under test. The number of iterations considered is

N=1000. At each iteration of the MC simulation, each glucose profile estimated by the

multivariate model in the test data set undergoes the initial calibration (as explained

in Section 10.2.3), which is fixed and does not change from simulation to simulation.
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Figure 12.2: Representative experimental session recalibrated after sweat events. Top: Two
of the 150 Multisensor channels recorded: channel sensitive to sweat events, i.e. channel #36,

(black line) and channel particularly sensitive to glucose changes, i.e. channel #115 (grey
line). Middle: derivative of the channel 36 signal (black line) with the chosen threshold TH

(thin grey line). Bottom: Glucose profiles estimated by using single baseline calibration (black
dashed line) and multiple calibrations (grey line). Reference BGL samples collected in parallel

are also shown to allow qualitative visual assessment of accuracy (black circles).

Then, the calibration parameter b is recalculated, according to (10.2), one or several

times over a grid of random time instants. Note that the number of recalculations of the

parameter b performed at each simulation is fixed and depends on the number of events

that characterizes the scenario under analysis. In the sweat events scenario, b will be

recalculated Ns times in random time instants within the experimental session, where Ns

is the average number of sweat events occurring in the test data experimental sessions.

At the end of each MC iteration, accuracy of glucose profiles is measured through a

subset of indicative indexes RMSE, MAD and MARD measuring point accuracy. Finally,

after all N MC iterations are performed, the sample distribution of the above indexes is

obtained, and compared with the result obtained with the specific calibration procedure

under evaluation.
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12.2.3 Robustness of Model Calibration to Sweat Events: Results

Table 12.1 shows average and standard deviation (in parentheses) of RMSE, MAD and

MARD obtained for the standard working case, i.e. the calibration parameter b is

calculated only once, as baseline value, at the beginning of the experiment (first line in

Table 12.1), and for the multiple calibration strategy under assessment, i.e. b is updated

using the first reference BGL available every time a sweat event is detected (second line

in Table 12.1). These preliminary results are obtained with the LASSO model, given its

earlier use for NI-CGM [147]. Both the test datasets are documented, i.e. test data subset

“part 2” when data subset “part 1” is used for model identification (1 → 2) and test

data subset “part 1” when data subset “part 2” is used for model identification (2→ 1).

Statistical significance of the differences (computed according to the Students t-test) is

also indicated by the p values. Though there is not a statistically significance difference

for all the considered key indicators in both the test sets, the multiple calibration strategy

for compensating sweat events seems to result in a reduction of the variability of the

indicators. To assess if this improvement could be related to the higher number of

reference BGL data points used rather than to a real benefit deriving from recalibrating

exactly after sweat events, the MC simulation described in the previous subsection is

performed.

RMSE [mg/dL] MAD [mg/dL] MARD [%]

1→ 2 2→ 1 1→ 2 2→ 1 1→ 2 2→ 1

p =0.07 p =0.7 p =0.06 p =0.6 p =0.09 p =0.7

Single Baseline Calibration 57.9 57.5 48.6 47.2 37.8 39.4

(27.1) (25.1) (23.7) (21.8) (20) (20.1)

Multiple Baseline Calibrations 50.9 52.8 42 42.2 33.9 34.4

(20.8) (19.5) (19.8) (15.5) (18.8) (10.9)

Table 12.1: Key indicators results for the single and multiple glucose calibration. Average
and standard deviation (in parenthesis) -over experimental sessions- of RMSE, MAD, MARD
obtained when database “part 1” and database “part 2” are used for model identification
and model test, respectively, (1 → 2), or viceversa (2 → 1). Single Baseline Calibration:
parameter b in eq. (10.2) is calculated only at the beginning of the experimental session;
Multiple Calibrations: b in eq. (10.2) is updated everytime a sweat event is detected. The p
value indicates the statistical difference between the two calibration strategies according to

the Student t-test.

For each of the 1000 MC simulations, the mean accuracy of the random multiple

calibrated glucose profiles was evaluated by the same key indicators used above. Then,

the distributions of the key indicators on the 1000 repetitions were compared with the

mean values results in Table 12.1 and showed in Figure 12.3 for RMSE, MAD and MARD,
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respectively, only for one test data subsets (comparable results are obtained switching

identification and test data sets see 2→ 1 in Table 12.1). In Figure 12.3, the distribution

of mean values of the key indexes calculated on the 1000 MC simulations is depicted with

grey bars, while mean value obtained recalculating the calibration parameter after each

sweat event is showed with a red arrow. Interestingly, the peaks of the distributions for

the three indicators are exactly comparable with the results obtained with the proposed

recalibration strategy. In addition, from the bottom panel of Figure 12.3 we can note

that a significant portion of the MC simulations produce a mean value lower than the

one represented by the red arrow (39%, 31% and 27.6% for RMSE, MAD and MARD,

respectively). Thus, the results of the MC simulation suggest that the improvements

(with respect to the single baseline calibration scenario) in terms of accuracy noticed in

Table 12.1 are due to the increased number of reference BGL points used for calibration

rather than to performing recalibration exactly after a sweat event to compensate for

changes in the baseline of the main glucose signals induced by the event.
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Figure 12.3: Histogram of RMSE, MAD and MARD obtained in the Monte Carlo simulation
when data subset “part 2” (top) and “part 1” (bottom) are used for model test respectively.
Green arrows report the value (also presents in Table 12.1 ) of the key indicator considered for

single baseline calibration, while the red arrow for the multiple baseline calibration.

The MC methodology showed that re-calculating the glucose baseline after the
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occurrence of sweat events is not necessary because the multisensor system (device plus

model) is able to compensate for this particular detrimental effect. This is particularly

useful in the therapy of diabetes and appealing for the ever-day use of the device because

a patient do not need to collect a SMBG measure every time a sweat occurs.

12.2.4 Other Possible uses of the MC Simulation Strategy

As we saw in this section, the MC methodology can be a valid tool for assessing the

robustness of model calibration by judging whether the improvement due to a proposed

calibration scheme is really useful or rather due to the increased quantity of information

considered (in previous case more reference BGL used for calibration). Within the same

framework, other possible uses of the proposed MC methodology is to assess the validity

of new strategies for calibration. For example, calibration scheduling are widely used

also by minimally-invasive devices for improving accuracy of estimated glucose profiles

by re-calculating the calibration parameters according to a temporal scheduling [153].

Calibration scheduling is also exploited by NI-CGM devices, such as for example by

Harman-Boehm et al. [103].

12.3 Future Developments: Other Possible Fields of

Investigations

Identification techniques considered in Part II minimize a cost function where the error

term measuring the adherence to the data is given as the sum of the distances between

the target (reference BGL) and model output. However, this cost function does not take

into consideration that errors in glucose estimates do not always have the same clinical

implications, as also depicted from the CGA and CEGA in Chapter 11. For example,

in [154] a new glucose specific metric is introduced that modifies the MSE as defined in

eq. (5.3) of Chapter 5 with a Clark error grid inspired penalty function, which penalizes

overestimation in hypoglycemia and underestimation in hyperglycemia, i.e., the most

harmful conditions on a clinical perspective. This new cost function is formally given by:

gMSE(y, ŷ) = MSE(y, ŷ)Pen(y, ŷ) (12.1)

where y and ŷ represent the reference BGL data and the estimated glucose by the model

respectively, while MSE(·, ·) is the euclidean distance and Pen(·, ·) is the Clarke inspired

loss function. For instance, this new cost function, which is graphically depicted in Figure

??, can replace the RSS used to identify, for example, the regularization based methods,



134 Conclusions and Further Developments

0 100 200 300 400 500

0

200

400

600
0

1

2

3

4

x 105

Reference BGL [mg/dL]
Estimated BGL [mg/dL]

gM
SE

Figure 12.4: Clarke error grid inspired cost function gMSE.

i.e. LASSO, Ridge and EN.

Future investigations may also be focused on the application of the methodologies

presented in this thesis to a wider data set possibly obtained in real-life situations, where

environmental conditions are not controllable as those of in-clinic studies. This could

be object of investigation for Biovotion AG (Zurich, Switzerland), the company that

recently acquired IP and technology of the Multisensor data used in this thesis.



A
Full Model Identification Glucose Profiles

This appendix collects the full model identification plots when data subset “part 1” and

“part 2” are used to identify the different models.



136 Full Model Identification Glucose Profiles

2
4

6
8

tim
e [hours]

2
4

6
8

tim
e [hours]

2
4

6
8

tim
e [hours]

2
4

6
8

10
0 70

180

300
400

20090406_S4W
P2_AA02

glucose level
   [mg/dL]   

2
4

6
8

10

20090427_S4W
P2_AA02

2
4

6
8

10

20090820_S4W
P4_AA02

2
4

6
8

10

20090826_S4W
P4_AA02

2
4

6
8

10

20090416_S4W
P2_AA03

2
4

6
8

10
0 70

180

300
400

20090430_S4W
P2_AA03

glucose level
   [mg/dL]   

2
4

6
8

10

20090610_S4W
P3_AA03

2
4

6
8

10

20090728_S4W
P4_AA03

2
4

6
8

10

20090409_S4W
P2_AA04

2
4

6
8

10

20090423_S4W
P2_AA04

2
4

6
8

10
0 70

180

300
400

20090609_S4W
P3_AA04

glucose level
   [mg/dL]   

2
4

6
8

10

20090730_S4W
P4_AA04

2
4

6
8

10

20090806_S4W
P4_AA04

2
4

6
8

10

20090408_S4W
P2_AA05

2
4

6
8

10

20090422_S4W
P2_AA05

2
4

6
8

10
0 70

180

300
400

20090624_S4W
P3_AA05

glucose level
   [mg/dL]   

2
4

6
8

10

20090722_S4W
P4_AA05

2
4

6
8

10

20090706_S4W
P3_AA06

2
4

6
8

10

20090727_S4W
P4_AA06

2
4

6
8

10

20090804_S4W
P4_AA06

2
4

6
8

10
0 70

180

300
400

20090723_S4W
P4_AA09

tim
e [hours]

glucose level
   [mg/dL]   

2
4

6
8

10

20090921_S4W
P3_AA09

tim
e [hours]

F
ig

u
re

A
.1

:
E

stim
a
ted

g
lu

co
se

p
ro

fi
les

b
y

O
L

S
(co

n
tin

u
o
u
s

b
la

ck
lin

e)
a
g
a
in

st
referen

ce
B

G
L

va
lu

es
(b

la
ck

circles)
w

h
en

th
e

sa
m

e
m

u
lti-sen

so
r

d
a
ta

u
sed

fo
r

m
o
d
el

id
en

tifi
ca

tio
n
,

i.e.
d
a
ta

su
b
set

“
p
a
rt

1
”
,

is
co

n
sid

ered
(

“
in

tern
a
l

va
lid

a
tio

n
”

).
T

h
e

fi
rst

p
a
rt

o
f

th
e

reco
rd

in
g

sessio
n
s’

la
b

els
in

d
ica

tes
th

e
d
a
ta

a
cq

u
isitio

n
d
ay,

th
e

seco
n
d

p
a
rt

is
a
n

in
tern

a
l

n
o
ta

tio
n
,

a
n
d

th
e

th
ird

p
a
rt

sta
tes

su
b

ject’s
id

n
u
m

b
er.



137

2
4

6
8

tim
e 

[h
ou

rs
]

2
4

6
8

tim
e 

[h
ou

rs
]

2
4

6
8

tim
e 

[h
ou

rs
]

2
4

6
8

10
07018
0

30
0

40
0
20
09
04
06
_S
4W

P2
_A
A0
2

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
04
27
_S
4W

P2
_A
A0
2

2
4

6
8

10

20
09
08
20
_S
4W

P4
_A
A0
2

2
4

6
8

10

20
09
08
26
_S
4W

P4
_A
A0
2

2
4

6
8

10

20
09
04
16
_S
4W

P2
_A
A0
3

2
4

6
8

10
07018
0

30
0

40
0
20
09
04
30
_S
4W

P2
_A
A0
3

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
06
10
_S
4W

P3
_A
A0
3

2
4

6
8

10

20
09
07
28
_S
4W

P4
_A
A0
3

2
4

6
8

10

20
09
04
09
_S
4W

P2
_A
A0
4

2
4

6
8

10

20
09
04
23
_S
4W

P2
_A
A0
4

2
4

6
8

10
07018
0

30
0

40
0
20
09
06
09
_S
4W

P3
_A
A0
4

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
07
30
_S
4W

P4
_A
A0
4

2
4

6
8

10

20
09
08
06
_S
4W

P4
_A
A0
4

2
4

6
8

10

20
09
04
08
_S
4W

P2
_A
A0
5

2
4

6
8

10

20
09
04
22
_S
4W

P2
_A
A0
5

2
4

6
8

10
07018
0

30
0

40
0
20
09
06
24
_S
4W

P3
_A
A0
5

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
07
22
_S
4W

P4
_A
A0
5

2
4

6
8

10

20
09
07
06
_S
4W

P3
_A
A0
6

2
4

6
8

10

20
09
07
27
_S
4W

P4
_A
A0
6

2
4

6
8

10

20
09
08
04
_S
4W

P4
_A
A0
6

2
4

6
8

10
07018
0

30
0

40
0
20
09
07
23
_S
4W

P4
_A
A0
9

tim
e 

[h
ou

rs
]

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
09
21
_S
4W

P3
_A
A0
9

tim
e 

[h
ou

rs
]

F
ig

u
re

A
.2

:
E

st
im

a
te

d
g
lu

co
se

p
ro

fi
le

s
b
y

P
L

S
(c

o
n
ti

n
u
o
u
s

b
la

ck
li
n
e)

a
g
a
in

st
re

fe
re

n
ce

B
G

L
va

lu
es

(b
la

ck
ci

rc
le

s)
w

h
en

th
e

sa
m

e
m

u
lt

i-
se

n
so

r
d
a
ta

u
se

d
fo

r
m

o
d
el

id
en

ti
fi
ca

ti
o
n
,

i.
e.

d
a
ta

su
b
se

t
“
p
a
rt

1
”
,

is
co

n
si

d
er

ed
(

“
in

te
rn

a
l

va
li
d
a
ti

o
n
”

).
T

h
e

fi
rs

t
p
a
rt

o
f

th
e

re
co

rd
in

g
se

ss
io

n
s’

la
b

el
s

in
d
ic

a
te

s
th

e
d
a
ta

a
cq

u
is

it
io

n
d
ay

,
th

e
se

co
n
d

p
a
rt

is
a
n

in
te

rn
a
l

n
o
ta

ti
o
n
,

a
n
d

th
e

th
ir

d
p
a
rt

st
a
te

s
su

b
je

ct
’s

id
n
u
m

b
er

.



138 Full Model Identification Glucose Profiles

2
4

6
8

tim
e [hours]

2
4

6
8

tim
e [hours]

2
4

6
8

tim
e [hours]

2
4

6
8

10
0 70

180

300
400

20090406_S4W
P2_AA02

glucose level
   [mg/dL]   

2
4

6
8

10

20090427_S4W
P2_AA02

2
4

6
8

10

20090820_S4W
P4_AA02

2
4

6
8

10

20090826_S4W
P4_AA02

2
4

6
8

10

20090416_S4W
P2_AA03

2
4

6
8

10
0 70

180

300
400

20090430_S4W
P2_AA03

glucose level
   [mg/dL]   

2
4

6
8

10

20090610_S4W
P3_AA03

2
4

6
8

10

20090728_S4W
P4_AA03

2
4

6
8

10

20090409_S4W
P2_AA04

2
4

6
8

10

20090423_S4W
P2_AA04

2
4

6
8

10
0 70

180

300
400

20090609_S4W
P3_AA04

glucose level
   [mg/dL]   

2
4

6
8

10

20090730_S4W
P4_AA04

2
4

6
8

10

20090806_S4W
P4_AA04

2
4

6
8

10

20090408_S4W
P2_AA05

2
4

6
8

10

20090422_S4W
P2_AA05

2
4

6
8

10
0 70

180

300
400

20090624_S4W
P3_AA05

glucose level
   [mg/dL]   

2
4

6
8

10

20090722_S4W
P4_AA05

2
4

6
8

10

20090706_S4W
P3_AA06

2
4

6
8

10

20090727_S4W
P4_AA06

2
4

6
8

10

20090804_S4W
P4_AA06

2
4

6
8

10
0 70

180

300
400

20090723_S4W
P4_AA09

tim
e [hours]

glucose level
   [mg/dL]   

2
4

6
8

10

20090921_S4W
P3_AA09

tim
e [hours]

F
ig

u
re

A
.3

:
E

stim
a
ted

g
lu

co
se

p
ro

fi
les

b
y

L
A

S
S
O

(co
n
tin

u
o
u
s

b
la

ck
lin

e)
a
g
a
in

st
referen

ce
B

G
L

va
lu

es
(b

la
ck

circles)
w

h
en

th
e

sa
m

e
m

u
lti-sen

so
r

d
a
ta

u
sed

fo
r

m
o
d
el

id
en

tifi
ca

tio
n
,

i.e.
d
a
ta

su
b
set

“
p
a
rt

1
”
,

is
co

n
sid

ered
(

“
in

tern
a
l

va
lid

a
tio

n
”

).
T

h
e

fi
rst

p
a
rt

o
f

th
e

reco
rd

in
g

sessio
n
s’

la
b

els
in

d
ica

tes
th

e
d
a
ta

a
cq

u
isitio

n
d
ay,

th
e

seco
n
d

p
a
rt

is
a
n

in
tern

a
l

n
o
ta

tio
n
,

a
n
d

th
e

th
ird

p
a
rt

sta
tes

su
b

ject’s
id

n
u
m

b
er.



139

2
4

6
8

tim
e 

[h
ou

rs
]

2
4

6
8

tim
e 

[h
ou

rs
]

2
4

6
8

tim
e 

[h
ou

rs
]

2
4

6
8

10
07018
0

30
0

40
0
20
09
04
06
_S
4W

P2
_A
A0
2

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
04
27
_S
4W

P2
_A
A0
2

2
4

6
8

10

20
09
08
20
_S
4W

P4
_A
A0
2

2
4

6
8

10

20
09
08
26
_S
4W

P4
_A
A0
2

2
4

6
8

10

20
09
04
16
_S
4W

P2
_A
A0
3

2
4

6
8

10
07018
0

30
0

40
0
20
09
04
30
_S
4W

P2
_A
A0
3

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
06
10
_S
4W

P3
_A
A0
3

2
4

6
8

10

20
09
07
28
_S
4W

P4
_A
A0
3

2
4

6
8

10

20
09
04
09
_S
4W

P2
_A
A0
4

2
4

6
8

10

20
09
04
23
_S
4W

P2
_A
A0
4

2
4

6
8

10
07018
0

30
0

40
0
20
09
06
09
_S
4W

P3
_A
A0
4

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
07
30
_S
4W

P4
_A
A0
4

2
4

6
8

10

20
09
08
06
_S
4W

P4
_A
A0
4

2
4

6
8

10

20
09
04
08
_S
4W

P2
_A
A0
5

2
4

6
8

10

20
09
04
22
_S
4W

P2
_A
A0
5

2
4

6
8

10
07018
0

30
0

40
0
20
09
06
24
_S
4W

P3
_A
A0
5

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
07
22
_S
4W

P4
_A
A0
5

2
4

6
8

10

20
09
07
06
_S
4W

P3
_A
A0
6

2
4

6
8

10

20
09
07
27
_S
4W

P4
_A
A0
6

2
4

6
8

10

20
09
08
04
_S
4W

P4
_A
A0
6

2
4

6
8

10
07018
0

30
0

40
0
20
09
07
23
_S
4W

P4
_A
A0
9

tim
e 

[h
ou

rs
]

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
09
21
_S
4W

P3
_A
A0
9

tim
e 

[h
ou

rs
]

F
ig

u
re

A
.4

:
E

st
im

a
te

d
g
lu

co
se

p
ro

fi
le

s
b
y

R
id

g
e

(c
o
n
ti

n
u
o
u
s

b
la

ck
li
n
e)

a
g
a
in

st
re

fe
re

n
ce

B
G

L
va

lu
es

(b
la

ck
ci

rc
le

s)
w

h
en

th
e

sa
m

e
m

u
lt

i-
se

n
so

r
d
a
ta

u
se

d
fo

r
m

o
d
el

id
en

ti
fi
ca

ti
o
n
,

i.
e.

d
a
ta

su
b
se

t
“
p
a
rt

1
”
,

is
co

n
si

d
er

ed
(

“
in

te
rn

a
l

va
li
d
a
ti

o
n
”

).
T

h
e

fi
rs

t
p
a
rt

o
f

th
e

re
co

rd
in

g
se

ss
io

n
s’

la
b

el
s

in
d
ic

a
te

s
th

e
d
a
ta

a
cq

u
is

it
io

n
d
ay

,
th

e
se

co
n
d

p
a
rt

is
a
n

in
te

rn
a
l

n
o
ta

ti
o
n
,

a
n
d

th
e

th
ir

d
p
a
rt

st
a
te

s
su

b
je

ct
’s

id
n
u
m

b
er

.



140 Full Model Identification Glucose Profiles

2
4

6
8

tim
e [hours]

2
4

6
8

tim
e [hours]

2
4

6
8

tim
e [hours]

2
4

6
8

10
0 70

180

300
400

20090406_S4W
P2_AA02

glucose level
   [mg/dL]   

2
4

6
8

10

20090427_S4W
P2_AA02

2
4

6
8

10

20090820_S4W
P4_AA02

2
4

6
8

10

20090826_S4W
P4_AA02

2
4

6
8

10

20090416_S4W
P2_AA03

2
4

6
8

10
0 70

180

300
400

20090430_S4W
P2_AA03

glucose level
   [mg/dL]   

2
4

6
8

10

20090610_S4W
P3_AA03

2
4

6
8

10

20090728_S4W
P4_AA03

2
4

6
8

10

20090409_S4W
P2_AA04

2
4

6
8

10

20090423_S4W
P2_AA04

2
4

6
8

10
0 70

180

300
400

20090609_S4W
P3_AA04

glucose level
   [mg/dL]   

2
4

6
8

10

20090730_S4W
P4_AA04

2
4

6
8

10

20090806_S4W
P4_AA04

2
4

6
8

10

20090408_S4W
P2_AA05

2
4

6
8

10

20090422_S4W
P2_AA05

2
4

6
8

10
0 70

180

300
400

20090624_S4W
P3_AA05

glucose level
   [mg/dL]   

2
4

6
8

10

20090722_S4W
P4_AA05

2
4

6
8

10

20090706_S4W
P3_AA06

2
4

6
8

10

20090727_S4W
P4_AA06

2
4

6
8

10

20090804_S4W
P4_AA06

2
4

6
8

10
0 70

180

300
400

20090723_S4W
P4_AA09

tim
e [hours]

glucose level
   [mg/dL]   

2
4

6
8

10

20090921_S4W
P3_AA09

tim
e [hours]

F
ig

u
re

A
.5

:
E

stim
a
ted

g
lu

co
se

p
ro

fi
les

b
y

E
N

(co
n
tin

u
o
u
s

b
la

ck
lin

e)
a
g
a
in

st
referen

ce
B

G
L

va
lu

es
(b

la
ck

circles)
w

h
en

th
e

sa
m

e
m

u
lti-sen

so
r

d
a
ta

u
sed

fo
r

m
o
d
el

id
en

tifi
ca

tio
n
,

i.e.
d
a
ta

su
b
set

“
p
a
rt

1
”
,

is
co

n
sid

ered
(

“
in

tern
a
l

va
lid

a
tio

n
”

).
T

h
e

fi
rst

p
a
rt

o
f

th
e

reco
rd

in
g

sessio
n
s’

la
b

els
in

d
ica

tes
th

e
d
a
ta

a
cq

u
isitio

n
d
ay,

th
e

seco
n
d

p
a
rt

is
a
n

in
tern

a
l

n
o
ta

tio
n
,

a
n
d

th
e

th
ird

p
a
rt

sta
tes

su
b

ject’s
id

n
u
m

b
er.



141

2
4

6
8

tim
e 

[h
ou

rs
]

2
4

6
8

tim
e 

[h
ou

rs
]

2
4

6
8

10
07018
0

30
0

40
0
20
09
05
04
_S
4W

P2
_A
A0
2

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
05
25
_S
4W

P2
_A
A0
2

2
4

6
8

10

20
09
09
01
_S
4W

P4
_A
A0
2

2
4

6
8

10

20
09
09
08
_S
4W

P4
_A
A0
2

2
4

6
8

10

20
09
05
12
_S
4W

P2
_A
A0
3

2
4

6
8

10
07018
0

30
0

40
0
20
09
05
18
_S
4W

P2
_A
A0
3

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
06
23
_S
4W

P3
_A
A0
3

2
4

6
8

10

20
09
08
17
_S
4W

P4
_A
A0
3

2
4

6
8

10

20
09
08
25
_S
4W

P4
_A
A0
3

2
4

6
8

10

20
09
05
07
_S
4W

P2
_A
A0
4

2
4

6
8

10
07018
0

30
0

40
0
20
09
05
28
_S
4W

P2
_A
A0
4

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
06
18
_S
4W

P3
_A
A0
4

2
4

6
8

10

20
09
08
13
_S
4W

P4
_A
A0
4

2
4

6
8

10

20
09
09
14
_S
4W

P4
_A
A0
4

2
4

6
8

10

20
09
05
13
_S
4W

P2
_A
A0
5

2
4

6
8

10
07018
0

30
0

40
0
20
09
06
03
_S
4W

P2
_A
A0
5

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
09
09
_S
4W

P3
_A
A0
5

2
4

6
8

10

20
09
08
12
_S
4W

P4
_A
A0
6

2
4

6
8

10

20
09
08
24
_S
4W

P4
_A
A0
6

2
4

6
8

10

20
09
09
23
_S
4W

P3
_A
A0
6

2
4

6
8

10
07018
0

30
0

40
0
20
09
08
10
_S
4W

P4
_A
A0
9

tim
e 

[h
ou

rs
]

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
09
04
_S
4W

P4
_A
A0
9

tim
e 

[h
ou

rs
]

2
4

6
8

10

20
09
09
28
_S
4W

P3
_A
A0
9

tim
e 

[h
ou

rs
]

F
ig

u
re

A
.6

:
E

st
im

a
te

d
g
lu

co
se

p
ro

fi
le

s
b
y

O
L

S
(c

o
n
ti

n
u
o
u
s

b
la

ck
li
n
e)

a
g
a
in

st
re

fe
re

n
ce

B
G

L
va

lu
es

(b
la

ck
ci

rc
le

s)
w

h
en

th
e

sa
m

e
m

u
lt

i-
se

n
so

r
d
a
ta

u
se

d
fo

r
m

o
d
el

id
en

ti
fi
ca

ti
o
n
,

i.
e.

d
a
ta

su
b
se

t
“
p
a
rt

2
”
,

is
co

n
si

d
er

ed
(

“
in

te
rn

a
l

va
li
d
a
ti

o
n
”

).
T

h
e

fi
rs

t
p
a
rt

o
f

th
e

re
co

rd
in

g
se

ss
io

n
s’

la
b

el
s

in
d
ic

a
te

s
th

e
d
a
ta

a
cq

u
is

it
io

n
d
ay

,
th

e
se

co
n
d

p
a
rt

is
a
n

in
te

rn
a
l

n
o
ta

ti
o
n
,

a
n
d

th
e

th
ir

d
p
a
rt

st
a
te

s
su

b
je

ct
’s

id
n
u
m

b
er

.



142 Full Model Identification Glucose Profiles

2
4

6
8

tim
e [hours]

2
4

6
8

tim
e [hours]

2
4

6
8

10
0 70

180

300
400

20090504_S4W
P2_AA02

glucose level
   [mg/dL]   

2
4

6
8

10

20090525_S4W
P2_AA02

2
4

6
8

10

20090901_S4W
P4_AA02

2
4

6
8

10

20090908_S4W
P4_AA02

2
4

6
8

10

20090512_S4W
P2_AA03

2
4

6
8

10
0 70

180

300
400

20090518_S4W
P2_AA03

glucose level
   [mg/dL]   

2
4

6
8

10

20090623_S4W
P3_AA03

2
4

6
8

10

20090817_S4W
P4_AA03

2
4

6
8

10

20090825_S4W
P4_AA03

2
4

6
8

10

20090507_S4W
P2_AA04

2
4

6
8

10
0 70

180

300
400

20090528_S4W
P2_AA04

glucose level
   [mg/dL]   

2
4

6
8

10

20090618_S4W
P3_AA04

2
4

6
8

10

20090813_S4W
P4_AA04

2
4

6
8

10

20090914_S4W
P4_AA04

2
4

6
8

10

20090513_S4W
P2_AA05

2
4

6
8

10
0 70

180

300
400

20090603_S4W
P2_AA05

glucose level
   [mg/dL]   

2
4

6
8

10

20090909_S4W
P3_AA05

2
4

6
8

10

20090812_S4W
P4_AA06

2
4

6
8

10

20090824_S4W
P4_AA06

2
4

6
8

10

20090923_S4W
P3_AA06

2
4

6
8

10
0 70

180

300
400

20090810_S4W
P4_AA09

tim
e [hours]

glucose level
   [mg/dL]   

2
4

6
8

10

20090904_S4W
P4_AA09

tim
e [hours]

2
4

6
8

10

20090928_S4W
P3_AA09

tim
e [hours]

F
ig

u
re

A
.7

:
E

stim
a
ted

g
lu

co
se

p
ro

fi
les

b
y

P
L

S
(co

n
tin

u
o
u
s

b
la

ck
lin

e)
a
g
a
in

st
referen

ce
B

G
L

va
lu

es
(b

la
ck

circles)
w

h
en

th
e

sa
m

e
m

u
lti-sen

so
r

d
a
ta

u
sed

fo
r

m
o
d
el

id
en

tifi
ca

tio
n
,

i.e.
d
a
ta

su
b
set

“
p
a
rt

2
”
,

is
co

n
sid

ered
(

“
in

tern
a
l

va
lid

a
tio

n
”

).
T

h
e

fi
rst

p
a
rt

o
f

th
e

reco
rd

in
g

sessio
n
s’

la
b

els
in

d
ica

tes
th

e
d
a
ta

a
cq

u
isitio

n
d
ay,

th
e

seco
n
d

p
a
rt

is
a
n

in
tern

a
l

n
o
ta

tio
n
,

a
n
d

th
e

th
ird

p
a
rt

sta
tes

su
b

ject’s
id

n
u
m

b
er.



143

2
4

6
8

tim
e 

[h
ou

rs
]

2
4

6
8

tim
e 

[h
ou

rs
]

2
4

6
8

10
07018
0

30
0

40
0
20
09
05
04
_S
4W

P2
_A
A0
2

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
05
25
_S
4W

P2
_A
A0
2

2
4

6
8

10

20
09
09
01
_S
4W

P4
_A
A0
2

2
4

6
8

10

20
09
09
08
_S
4W

P4
_A
A0
2

2
4

6
8

10

20
09
05
12
_S
4W

P2
_A
A0
3

2
4

6
8

10
07018
0

30
0

40
0
20
09
05
18
_S
4W

P2
_A
A0
3

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
06
23
_S
4W

P3
_A
A0
3

2
4

6
8

10

20
09
08
17
_S
4W

P4
_A
A0
3

2
4

6
8

10

20
09
08
25
_S
4W

P4
_A
A0
3

2
4

6
8

10

20
09
05
07
_S
4W

P2
_A
A0
4

2
4

6
8

10
07018
0

30
0

40
0
20
09
05
28
_S
4W

P2
_A
A0
4

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
06
18
_S
4W

P3
_A
A0
4

2
4

6
8

10

20
09
08
13
_S
4W

P4
_A
A0
4

2
4

6
8

10

20
09
09
14
_S
4W

P4
_A
A0
4

2
4

6
8

10

20
09
05
13
_S
4W

P2
_A
A0
5

2
4

6
8

10
07018
0

30
0

40
0
20
09
06
03
_S
4W

P2
_A
A0
5

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
09
09
_S
4W

P3
_A
A0
5

2
4

6
8

10

20
09
08
12
_S
4W

P4
_A
A0
6

2
4

6
8

10

20
09
08
24
_S
4W

P4
_A
A0
6

2
4

6
8

10

20
09
09
23
_S
4W

P3
_A
A0
6

2
4

6
8

10
07018
0

30
0

40
0
20
09
08
10
_S
4W

P4
_A
A0
9

tim
e 

[h
ou

rs
]

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
09
04
_S
4W

P4
_A
A0
9

tim
e 

[h
ou

rs
]

2
4

6
8

10

20
09
09
28
_S
4W

P3
_A
A0
9

tim
e 

[h
ou

rs
]

F
ig

u
re

A
.8

:
E

st
im

a
te

d
g
lu

co
se

p
ro

fi
le

s
b
y

L
A

S
S
O

(c
o
n
ti

n
u
o
u
s

b
la

ck
li
n
e)

a
g
a
in

st
re

fe
re

n
ce

B
G

L
va

lu
es

(b
la

ck
ci

rc
le

s)
w

h
en

th
e

sa
m

e
m

u
lt

i-
se

n
so

r
d
a
ta

u
se

d
fo

r
m

o
d
el

id
en

ti
fi
ca

ti
o
n
,

i.
e.

d
a
ta

su
b
se

t
“
p
a
rt

2
”
,

is
co

n
si

d
er

ed
(

“
in

te
rn

a
l

va
li
d
a
ti

o
n
”

).
T

h
e

fi
rs

t
p
a
rt

o
f

th
e

re
co

rd
in

g
se

ss
io

n
s’

la
b

el
s

in
d
ic

a
te

s
th

e
d
a
ta

a
cq

u
is

it
io

n
d
ay

,
th

e
se

co
n
d

p
a
rt

is
a
n

in
te

rn
a
l

n
o
ta

ti
o
n
,

a
n
d

th
e

th
ir

d
p
a
rt

st
a
te

s
su

b
je

ct
’s

id
n
u
m

b
er

.



144 Full Model Identification Glucose Profiles

2
4

6
8

tim
e [hours]

2
4

6
8

tim
e [hours]

2
4

6
8

10
0 70

180

300
400

20090504_S4W
P2_AA02

glucose level
   [mg/dL]   

2
4

6
8

10

20090525_S4W
P2_AA02

2
4

6
8

10

20090901_S4W
P4_AA02

2
4

6
8

10

20090908_S4W
P4_AA02

2
4

6
8

10

20090512_S4W
P2_AA03

2
4

6
8

10
0 70

180

300
400

20090518_S4W
P2_AA03

glucose level
   [mg/dL]   

2
4

6
8

10

20090623_S4W
P3_AA03

2
4

6
8

10

20090817_S4W
P4_AA03

2
4

6
8

10

20090825_S4W
P4_AA03

2
4

6
8

10

20090507_S4W
P2_AA04

2
4

6
8

10
0 70

180

300
400

20090528_S4W
P2_AA04

glucose level
   [mg/dL]   

2
4

6
8

10

20090618_S4W
P3_AA04

2
4

6
8

10

20090813_S4W
P4_AA04

2
4

6
8

10

20090914_S4W
P4_AA04

2
4

6
8

10

20090513_S4W
P2_AA05

2
4

6
8

10
0 70

180

300
400

20090603_S4W
P2_AA05

glucose level
   [mg/dL]   

2
4

6
8

10

20090909_S4W
P3_AA05

2
4

6
8

10

20090812_S4W
P4_AA06

2
4

6
8

10

20090824_S4W
P4_AA06

2
4

6
8

10

20090923_S4W
P3_AA06

2
4

6
8

10
0 70

180

300
400

20090810_S4W
P4_AA09

tim
e [hours]

glucose level
   [mg/dL]   

2
4

6
8

10

20090904_S4W
P4_AA09

tim
e [hours]

2
4

6
8

10

20090928_S4W
P3_AA09

tim
e [hours]

F
ig

u
re

A
.9

:
E

stim
a
ted

g
lu

co
se

p
ro

fi
les

b
y

R
id

g
e

a
g
a
in

st
referen

ce
B

G
L

va
lu

es
(b

la
ck

circles)
w

h
en

th
e

sa
m

e
m

u
lti-sen

so
r

d
a
ta

u
sed

fo
r

m
o
d

el
id

en
tifi

ca
tio

n
,

i.e.
d

a
ta

su
b

set
“
p

a
rt

2
”
,

is
co

n
sid

ered
(

“
in

tern
a
l

va
lid

a
tio

n
”

).
T

h
e

fi
rst

p
a
rt

o
f

th
e

reco
rd

in
g

sessio
n

s’
la

b
els

in
d

ica
tes

th
e

d
a
ta

a
cq

u
isitio

n
d
ay,

th
e

seco
n
d

p
a
rt

is
a
n

in
tern

a
l

n
o
ta

tio
n
,

a
n
d

th
e

th
ird

p
a
rt

sta
tes

su
b

ject’s
id

n
u
m

b
er.



145

2
4

6
8

tim
e 

[h
ou

rs
]

2
4

6
8

tim
e 

[h
ou

rs
]

2
4

6
8

10
07018
0

30
0

40
0
20
09
05
04
_S
4W

P2
_A
A0
2

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
05
25
_S
4W

P2
_A
A0
2

2
4

6
8

10

20
09
09
01
_S
4W

P4
_A
A0
2

2
4

6
8

10

20
09
09
08
_S
4W

P4
_A
A0
2

2
4

6
8

10

20
09
05
12
_S
4W

P2
_A
A0
3

2
4

6
8

10
07018
0

30
0

40
0
20
09
05
18
_S
4W

P2
_A
A0
3

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
06
23
_S
4W

P3
_A
A0
3

2
4

6
8

10

20
09
08
17
_S
4W

P4
_A
A0
3

2
4

6
8

10

20
09
08
25
_S
4W

P4
_A
A0
3

2
4

6
8

10

20
09
05
07
_S
4W

P2
_A
A0
4

2
4

6
8

10
07018
0

30
0

40
0
20
09
05
28
_S
4W

P2
_A
A0
4

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
06
18
_S
4W

P3
_A
A0
4

2
4

6
8

10

20
09
08
13
_S
4W

P4
_A
A0
4

2
4

6
8

10

20
09
09
14
_S
4W

P4
_A
A0
4

2
4

6
8

10

20
09
05
13
_S
4W

P2
_A
A0
5

2
4

6
8

10
07018
0

30
0

40
0
20
09
06
03
_S
4W

P2
_A
A0
5

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
09
09
_S
4W

P3
_A
A0
5

2
4

6
8

10

20
09
08
12
_S
4W

P4
_A
A0
6

2
4

6
8

10

20
09
08
24
_S
4W

P4
_A
A0
6

2
4

6
8

10

20
09
09
23
_S
4W

P3
_A
A0
6

2
4

6
8

10
07018
0

30
0

40
0
20
09
08
10
_S
4W

P4
_A
A0
9

tim
e 

[h
ou

rs
]

glucose level
   [mg/dL]   

2
4

6
8

10

20
09
09
04
_S
4W

P4
_A
A0
9

tim
e 

[h
ou

rs
]

2
4

6
8

10

20
09
09
28
_S
4W

P3
_A
A0
9

tim
e 

[h
ou

rs
]

F
ig

u
re

A
.1

0
:

E
st

im
a
te

d
g
lu

co
se

p
ro

fi
le

s
b
y

E
N

(c
o
n
ti

n
u
o
u
s

b
la

ck
li
n
e)

a
g
a
in

st
re

fe
re

n
ce

B
G

L
va

lu
es

(b
la

ck
ci

rc
le

s)
w

h
en

th
e

sa
m

e
m

u
lt

i-
se

n
so

r
d
a
ta

u
se

d
fo

r
m

o
d
el

id
en

ti
fi
ca

ti
o
n
,

i.
e.

d
a
ta

su
b
se

t
“
p
a
rt

2
”
,

is
co

n
si

d
er

ed
(

“
in

te
rn

a
l

va
li
d
a
ti

o
n
”

).
T

h
e

fi
rs

t
p
a
rt

o
f

th
e

re
co

rd
in

g
se

ss
io

n
s’

la
b

el
s

in
d
ic

a
te

s
th

e
d
a
ta

a
cq

u
is

it
io

n
d
ay

,
th

e
se

co
n
d

p
a
rt

is
a
n

in
te

rn
a
l

n
o
ta

ti
o
n
,

a
n
d

th
e

th
ir

d
p
a
rt

st
a
te

s
su

b
je

ct
’s

id
n
u
m

b
er

.



146 Full Model Identification Glucose Profiles



B
Full Model Test Glucose Profiles

This section collects the full model test plots when data subset “part 2” and “part 1” are

used to test the different models.
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Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural Information

Processing Systems 17, pages 1153–1160. 2005.

[131] A. Galen and G. Jianfeng. Scalable training of L1-regularized log-linear models.

In Proceedings of the 24th International Conference on Machine learning, pages

33–40, 2007.

[132] S.I. Lee, H. Lee, P. Abbeel, and A.Y. Ng. Efficient L1-regularized logistic regression.

In Proceedings of the National Conference on Artificial Intelligence, volume 21,

page 401, 2006.

[133] M.A.T. Figueiredo. Adaptive sparseness for supervised learning. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 25(9):1050–1159, 2003.

[134] B. Krishnapuram, L. Carin, M.A.T. Figueiredo, and A.J. Hartemink. Sparse

multinomial logistic regression: Fast algorithms and generalization bounds. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 27(6):957–968, 2005.



172 Bibliography

[135] Y.J. Lee and O.L. Mangasarian. SSVM: A smooth support vector machine for

classification. Computational Optimization and Applications, 20(1):5–22, 2001.

[136] S.J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An Interior-Point

Method for Large-Scale L1-Regularized Least Squares. Selected Topics in Signal

Processing, IEEE Journal of, 1(4):606–617, 2007.

[137] S.P. Boyd and L. Vandenberghe. Convex optimization. Cambridge Univ Pr, 2004.

[138] E.M. Gafni and D.P. Bertsekas. Two-metric projection methods for constrained

optimization. SIAM Journal on Control and Optimization, 22(6):936–964, 1984.

[139] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The

Annals of Statistics, 32(2):pp. 407–451, 2004.

[140] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Jour-

nal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–

320, 2005.
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