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Summary

Two different topics are covered in the thesis.

Model Predictive Control applied to the Motion Cueing Problem

In the last years the interest about dynamic driving simulators is increasing and new

commercial solutions are arising. Driving simulators play an important role in the devel-

opment of new vehicles and advanced driver assistance devices: in fact, on the one hand,

having a human driver on a driving simulator allows automotive manufacturers to bridge

the gap between virtual prototyping and on-road testing during the vehicle development

phase; on the other hand, novel driver assistance systems (such as advanced accident

avoidance systems) can be safely tested by having the driver operating the vehicle in a

virtual, highly realistic environment, while being exposed to hazardous situations. In both

applications, it is crucial to faithfully reproduce in the simulator the driver’s perception of

forces acting on the vehicle and its acceleration. This has to be achieved while keeping

the platform within its limited operation space. Such strategies go under the name of

Motion Cueing Algorithms.

In this work, a particular implementation of a Motion Cueing algorithm is described,

that is based on Model Predictive Control technique. A distinctive feature of such approach

is that it exploits a detailed model of the human vestibular system, and consequently

differs from standard Motion Cueing strategies based on Washout Filters: such feature

allows for better implementation of tilt coordination and more efficient handling of the

platform limits.

The algorithm has been evaluated in practice on a small-size, innovative platform,

by performing tests with professional drivers. Results show that the MPC-based motion

cueing algorithm allows to effectively handle the platform working area, to limit the

presence of those platform movements that are typically associated with driver motion

sickness, and to devise simple and intuitive tuning procedures.

Moreover, the availability of an effective virtual driver allows the development of

effective predictive strategies, and first simulation results are reported in the thesis.
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Control Techniques for a Hybrid Sport Motorcycle

Reduction of the environmental impact of transportation systems is a world wide priority.

Hybrid propulsion vehicles have proved to have a strong potential to this regard, and

different four-wheels solutions have spread out in the market. Differently from cars, and

even if they are considered the ideal solution for urban mobility, motorbikes and mopeds

have not seen a wide application of hybrid propulsion yet, mostly due to the more strict

constraints on available space and driving feeling.

In the thesis, the problem of providing a commercial 125cc motorbike with a hybrid

propulsion system is considered, by adding an electric engine to its standard internal

combustion engine. The aim for the prototype is to use the electrical machine (directly

keyed on the drive shaft) to obtain a torque boost during accelerations, improving and

regularizing the supplied power while reducing the emissions.

Two different control algorithms are proposed

1. the first is based on a standard heuristic with adaptive features, simpler to implement

on the ECU for the prototype;

2. the second is a torque-split optimal-control strategy, managing the different contri-

butions from the two engines.

A crucial point is the implementation of a SIMULINK virtual environment, realized starting

from a commercial tool, VI-BIKEREALTIME, to test the algorithms. The hybrid engine

model has been implemented in the tool from scratch, as well as a simple battery model,

derived directly from data-sheet characteristics by using polynomial interpolation. The

simulation system is completed by a virtual rider and a tool for build test circuits.

Results of the simulations on a realistic track are included, to evaluate the different

performance of the two strategies in a closed loop environment (thanks to the virtual

rider). The results from on-track tests of the real prototype, using the first control strategy,

are reported too.



Sommario

Nella tesi vengono trattati due argomenti distinti.

Model Predictive Control applicato al Motion Cueing Problem

Gli ultimi anni hanno visto un’interesse sempre crescente nei confronti dei simulatori di

guida dinamici, con lo sviluppo e la diffusione nel mercato di nuovi soluzioni. I simulatori

di guida giocano infatti un ruolo fondamentale nello sviluppo di nuovi veicoli e dei

vari dispositivi di aiuto alla guida: infatti, da un lato la presenza di un guidatore in

un simulatore permette ai produttori in ambito automotive di colmare il divario fra la

prototipazione virtuale e i test su strada nella fase di sviluppo del veicolo; dall’altro, i

nuovi sistemi di assistenza alla guida (come ad esempio le procedure di advanced accident

avoidance attualmente in fase di sviluppo) posso essere testati in totale sicurezza ponendo

il pilota in un contesto virtuale altamente realistico, simulando le situazioni di pericolo.

In entrambe queste applicazioni risulta cruciale riprodurre fedelmente nella piattaforma

la percezione che l’essere umano avrebbe, all’interno del veicolo reale, delle forze agenti

sul mezzo e le conseguenti accelerazioni. Questo task deve essere compiuto tenendo

conto dei vincoli fisici del simulatore, all’interno dei quali deve avvenire il moto. Le

strategie utilizzate per perseguire questo obbiettivo vanno sotto il nome di Motion Cueing

Algorithms.

Il presente lavoro intende illustrare una particolare implementazione di un Motion

Cueing Algorithm, basato sulla tecnica di controllo nota come Model Predictive Control.

Una delle principali caratteristiche di questo approccio è lo sfruttamento di un modello del

sistema vestibolare umano, e questo (assieme ad altre features) lo rende differente dalle

strategie standard di Motion Cueing: esso permette infatti una migliore realizzazione

della tilt coordination e una più efficiente gestione dei limiti di piattaforma.

L’algoritmo è stato testato sperimentalmente su una piattaforma innovativa, dalle

dimensioni ridotte, con l’aiuto di piloti professionisti. I risultati dimostrano come l’algo-

ritmo basato su MPC permetta di gestire efficientemente l’area di lavoro del simulatore,

limitando la presenza di tutti quei comportamenti tipicamenti associati alla motion sick-
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ness, garantendo nel contempo un approccio molto più semplice e concreto alle procedure

di tuning, rispetto alle procedure classiche.

In più, la disponibilità di un efficace driver virtuale permette lo sviluppo di strategie

predittive affidabili: nella tesi sono riportati alcuni iniziali risultati simulativi in tal senso.

Tecniche di Controllo per un Motociclo Ibrido Sportivo

La riduzione dell’impatto ambientale dei sistemi di trasporto si sta affermando come una

priorità sentita a livello mondiale. I veicoli a propulsione ibrida hanno dimostrato avere un

grande potenziale a questo riguardo, e svariate soluzioni sono ormai diffuse sul mercato

per quanto riguarda i veicoli a quattro ruote. A differenza delle automobili, e pur essendo

considerati la soluzione ideale per la mobilità urbana, l’applicazione della propulsione

ibrida a motociclette e scooter non ha ancora avuto una diffusione significativa, e ciò è

dovuto in gran parte ai grossi vincoli di spazio e all’impatto della propulsione additiva sul

feeling alla guida.

In questa parte della tesi viene considerato il problema dell’applicazione della pro-

pulsione ibrida a una motocicletta 125cc in commercio, aggiungendo una macchina

elettrica al motore termico presente di serie. Lo scopo, per il particolare prototipo, è

sfruttare la macchina elettrica (installata in modo solidale all’albero motore) per fornire

un incremento alla coppia erogata durante le accelerazioni, migliorando e regolarizzando

la potenza della moto e riducendo nel contempo le emissioni di gas nocivi.

Due algoritmi di controllo sono proposti per la gestione del motore elettrico e degli

accumulatori

1. il primo è basato su una euristica standard con caratteristiche adattative, più

semplice da implementare nella ECU per la prototipazione;

2. il secondo è basato su una strategia di controllo ottimo con lo scopo di gestire in

maniera ottimale la coppia erogata da entrambi i motori.

Elemento cruciale è l’implementazione di un ambiente virtuale SIMULINK realizzato

integrando un tool in commercio, VI-BireRealTime, per la valutazione degli algoritmi.

Il modello del motore ibrido è stato implementato ex-novo, e così anche un (semplice)

modello di batteria, derivato con interpolazione polinomiale dalle caratteristiche riportate

nei data-sheet. Il sistema di simulazione è completato dalla presenza di un virtual rider e

di un tool per la realizzazione di circuiti di test.

Sono riportati i risultati delle simulazioni su un tracciato realistico per valutare le

differenti performance delle due strategie in catena chiusa (grazie al rider virtuale). Sono

riportati anche i risultalti su pista del prototipo realizzato.
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Part I

Model Predictive Control applied to
the Motion Cueing Problem





1
Introduction

In the recent years, dynamic driving simulators have been playing an important role in the

automotive world. The first applications were in the racing context, focused on driver’s

training and virtual vehicle set-up. Nowadays, applications of such systems are becoming

more and more numerous and diverse, involving field as security control systems (e.g.,

accident avoidance), medical rehabilitation, virtual prototyping. Automotive OEMs exploit

driving simulators to cut down the costs for prototyping, by anticipating the on road

vehicle behavior. Furthermore, such systems allow to ease the development process of

the various vehicle components, by testing different hardware and software solutions, by

resorting to sophisticated Hardware-In-the-Loop (HIL) tools, in a safe and realistic virtual

environment. In a different perspective, realistic dynamic simulators are crucial to develop

detailed driver behavior models to devise accident avoidance strategies, for example by

putting the driver in simulated dangerous condition and measuring his/her reactions.

Also, assessment of driver performance under stress conditions (i.e., adverse weather
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conditions, endurance driving, etc.) can be more effectively performed by using dynamic

simulators with a high degree of immersion into virtual environments. To this regard,

ever more effective Hazard Perception Test can be devised and used as requirements for

achieving a driver license. In this scenario, the effectiveness of a dynamic platform is

deeply related to the capability of reproducing in the most realistic way the feelings that

the driver would have inside a real vehicle: this is the role of the Motion Cueing (MC)

strategy.

Motion Cueing is the name of the algorithms designed for transforming vehicle ac-

celerations into motion commands to the platform, aiming at accurately replicating the

forces acting on the driver and guaranteeing that the machine stays inside its physical

limits. Clearly, this is a very complicated part of a dynamic simulator, due to the complex

nature of the human perception system, which involves different organs and senses. In

fact, it is not clear yet, from a physiological point of view, the role and priorities of stimula

of different nature to the overall perception of accelerations and force. It is however

well established that a coordinated visual-motion action is fundamental for achieving

satisfactory performance of a MC algorithm. Given the above motivations the necessity of

a perceptive model within the MC algorithm becomes evident.

Beside the improvements realized during the years, in most dynamic simulators the

Motion Cueing Algorithms are based on a sequence of passive filters Nahon and Reid

(1990) combined together. The standard procedure is implemented as to

• remove low frequency components of accelerations and velocities obtained from

the vehicle dynamic model. In this way, only fast variations are kept, which are

easier to be reproduced in a limited space environment;

• transfer part of the low frequency translational accelerations to the angular dynamic

using a low pass filter (tilt coordination). This is a common way of tricking the

human perception, with the help of visual cues, to exploit the gravity force to

reproduce at least a part of the low frequency accelerations;

• limit the platform motions with a further high pass filter to keep the platform in

a neutral position, i.e. eliminating low frequency components that could lead to

infeasible positions for the platform actuators. This is commonly called Washout
Action.

This simple strategy has seen a wide range of implementations over the years (Conrad

and Schmidt, 1971; Nahon and Reid, 1990). However, it has some shortcomings:

• being a filtering based approach, it is not possible to guarantee stimuli consistency

between the dynamic simulation environment and the real platform movements,
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i.e. it is hard to find a good compromise for complex vehicle maneuvers (e.g. a

complete track lap in racing applications);

• it cannot explicitly handle hard constraints on the platform movements and acceler-

ations (both regarding actuators limit and perceptive reliability);

• it is not possible to exploit any available information on the driver’s behavior in the

future;

• the tuning of the algorithm is in general difficult, since it is not easy to give phys-

ical interpretation to most of the parameters (principally filter gains and cut-off

frequencies).

These elements characterize the most commonly used procedures. Over the years, there

have been modifications and improvements, with the introduction of adaptive (Parrish,

Dieudonne, Bowles, and Martin, 1975) and optimal control (Sivan, Ish-Shalom, and

Huang, 1982) features, but without significantly modifying the main algorithm.

Recently, a novel approach to motion cueing has been proposed by Dagdelen, Reymond,

Kemeny, Bordier, and Māızi (2009) and Augusto and Loureiro (2009), based on a strategy

already consolidated in the field of industrial process control, namely, Model Predictive

Control (MPC). MPC is a model-based, constrained, optimal control methodology that

allows to effectively handle limits on the working space and to exploit information on

future reference signal. In the idea developed in those works the motion cueing strategy

integrates a model of the human perception systems and takes advantage of predictions

of the future trajectory to fully exploit the platform working area. In these early works,

the proposed solutions are not suitable for experimental application in real situations;

as they don’t take into account many of the aspects that characterize an effective and

reliable MC system (e.g., real time constraints, tuning procedures and so on). Moreover,

they focus on investigating the prediction capabilities rather than on taking advantage of

the optimization approach of MPC.

The MC algorithm described in this part of the thesis has to be considered one of the

first real time implementation of an MPC-based Motion Cueing strategy, developed from

scratch and eventually run on an experimental environment. The idea of the algorithm

comes from the previously cited works, but with a deeply different development and

rationale, with each step realized with the final aim of obtaining a procedure ready to

be applied in the real world. One of the key elements is the development of a reliable

vestibular model. Being a model-based approach, the availability of such information

about the dynamics of the human perception allows a great improvement on the reliability

of the signals that will be fed to the physical device, in terms of realistic motions. As
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already mentioned, in the work by Dagdelen et al. (2009) a first attempt of exploiting

such information has been presented, but the simplicity of the illustrated model and the

greater emphasis on the prediction phase reported in the paper seems not not provide

effective results. Moreover, other MPC approaches as the one by Augusto and Loureiro

(2009) seems to make use of reference signals that might result in undesired behaviours.

In the present study, a major review of the literature has been carried on, starting from

aerospace applications, to derive more detailed models which have been refined with

the help of practical tests by professional drivers and medical consultants. The overall

modelization is completed by the integration of a (simple) mechanical model of the

platform.

The prediction phase is quite a difficult task for this kind of application, involving a

human being in the loop (whose behaviour could be hard to anticipate): in this sense,

the main idea is to exploit most the optimal control aspect of the MPC methodology,

together with the natural integration of the constraints. The considered cost function,

although being quadratic to reduce the complexity of the problem, takes into account the

tracking error, the control signal and its derivative (Wang, 2009), aiming at maximizing

the performance while keeping the control signals as regular as possible. Constraints

are another fundamental feature of the MPC approach: they not only allow to take into

account in a rational way the constructive limits of the device, but also to avoid undesired

physical behaviours (e.g. different signs of the accelerations with respect to the visual

cues) that may lead to sickness and that are very hard lo manage with the traditional

methods.

The effectiveness of a MC algorithm is mostly determined by its tuning phase. The

proposed strategy introduces a newel approach to this crucial step: both the weights

in the cost functions and the constraint values become tunable parameters. In this way,

the parameters that are regulated have an immediate physical meaning, with a double

advantage

1. making the learning phase faster for the operator, since everything is much more

immediate to understand and intuitive to manipulate;

2. improving the feedback from the driver, whose suggestions can be immediately

applied.

In this sense, it will be shown how the length of the prediction window (i.e. the number

NP of future steps taken into account for tracking) becomes an important parameter to

be tuned. As common practice in applied MPC, the reference signal is considered to be

constant over the prediction window, because of the difficulty of obtaining a reliable
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future signal and, most of all, the increase in terms of resolution complexity.

The resolution of the constrained optimization problem is the hardest part of any MPC

application, in particular in the presence of strong real-time request, as in the case of MC

where fast dynamics are involved. Among the different possibilities given in literature

(Bemporad, Morari, Due, and Pistikopoulos, 2002; Boyd and Vandenberghe, 2004; Wang

and Boyd, 2010), the chosen approach is a particular implementation of the Active Set

strategy, qpOASES Ferreau, Bock, and Diehl (2008), which has a number of features well

suited for the considered problem.

As a final validation of the research, the algorithm is evaluated on the field by pro-

fessional test drivers using an innovative dynamic simulator, VI-DRIVESIM (VI-Grade,

2012), which has the advantage of being a small, low cost platform with a high number

of Degrees of Freedom (six, almost decoupled)

Some remarks on a possible implementation on FPGA are also given as topics for

future research.

The first part of the thesis is organized as follows.

In Chapter 2 the general Motion Cueing problem is described, with an overview of the

most common driving simulator architectures, and a detailed explanation of the

classic approach and its problems and limitations.

In Chapter 3 the proposed Model Predictive Control procedure is illustrated in details.

After an introduction on the general MPC framework, the derivation of the Vestibular

Model will be presented, and the overall model will be shown. The optimization

strategy will be examined as well, and in the end all the features that characterize

the tuning procedure and the rationale behind this methodology will be detailed.

In Chapter 4 the test platform will be presented and the results from simulations and

practical tests analysed and compared. Simulation results that take advantage of

prediction will be considered too, even if not tested on the real platform. More, a

possible hardware implementation will be introduced, based on Field Programmable

Gate Arrays (FPGA) devices.

In Chapter 6 concluding remarks will be given.





2
The Motion Cueing Problem

The aim of dynamic simulators is to provide the driver with motion feedbacks, called

Motion Cues, and thus to increase the realism of the simulation, whatever the purposes of

the simulation are. This is the goal of the Motion Cueing (MC) algorithm, the procedure

that defines the movements of the mechanical system based on the current physical

information (acceleration and angular rate) given by the software-simulated vehicle. The

geometrical structure of the motion system and its related motion envelope is a major

factor for the Motion Cueing, and defines both the ability to present certain motion

cues as well as their limitations. Motion Cueing has been implemented over the years

following the same main idea, and despite some modifications and integration of new

features the procedure has remained substantially unchanged. The development of new,

high-performance simulators, as well as their adoption for virtual prototyping, training,

rehabilitation and other purposes (Straus, 2005; Slob, 2008) call for new solutions that

overcome the limitations of the classic approach. In particular, simulator sickness is a
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critical drawback in simulators, that may strongly limit their adoption (Straus, 2005).

In this chapter, the classic approach to MC will be presented. First an overview on

simulators history and the different solutions adopted over the years will be given; then

the main idea behind the classical approach will be explained, analyzing the limitations

and problem still affecting these procedures.

2.1 Driving simulators

The idea of motion simulation find its origins at the beginning of the 20th century, and the

flight simulator by the French flight training school ANTOINETTE can be considered the first

rough example of dynamic simulator: it comprised a half-barrel mounted on a universal

joint, with flight controls, pulleys, and stub-wings to allow the pilot to maintain balance

while instructors applied external forces (Vincenzi, Wise, Mouloua, and Hancock (2008),

figure 2.1). The development of driving simulators in the early years of the century aimed

Figure 2.1: Antoinette Trainer, the first dynamic simulator.

to assess the skills and competence of public transit operators. Over the next four decades,

mockup automobiles were equipped with devices to test drivers’ responses to various

stimuli and in some cases, mechanical moving scenes or filmed road scenes were shown.

By the 1960s, a number of automobile manufacturers, automobile insurance companies,

military agencies, universities, and aerospace companies used film approach simulators

for studies involving a variety of visual displays. A major improvement in this period

was the introduction by Stewart (1965) of the parallel, six Degrees of Freedom (DOFs)
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system well known from then on as Stewart platform, reported in figure 2.2. This consists

Figure 2.2: The Stewart platform.

of a platform, one face of an octahedron. The base, the opposing face, connects to the

platforms by six struts of the octahedron. These struts allow for positioning the platform

in the six DOFs: platform orientation and position vary. This device quickly became the

core of the most part of driving simulators: the usual structure provides for an actual

motor vehicle linked to a computer for data collection and analyses, while various road

images are projected unto large screens within a dome-like structure. The evolution over

the decades saw the replacement of hydraulic actuation with electric servo technology.

Increasing their spread, driving simulators have found various areas of use, from

entertainment to research and advanced training. Following the classification by Slob

(2008), they are subdivided on the base of a “fidelity” criterion as follows

1. low-level simulator: the driver sits in a car seat, preferably inside a car, which is

fixed to the ground. This is called a fixed base (FB) simulator. The driver looks to a

screen, which is fixed too (FS). The screen is designed such that the view angle is as

large possible and this can be done using multiple screens, or (preferably) a large

convex screen. Steering wheels and pedals are often equipped with force feedback

and sound system takes care of the audio feedback.

2. mid-level simulator: it consists of a car accelerated in one degree of freedom. The

screen can be fixed (FS) or can move along with the car. Force feedback is applied

to the steering wheel and a sound system takes care of the audio feedback. The

actuated DOF at a 1-DOF simulator is often a y-sled, x-sled or a yaw-table.
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3. high-level simulator: it actuates the payload in at least six DOFs. The payload might

be accelerated in additional DOFs (introducing redundant DOFs), e.g. to allow

longer planar excursions. The payload often consists of a dome with a car (or its

interior) inside of it and graphics projected such that a view angle of at least 220

degrees is covered. The largest driving simulators consist of dome on a turntable,

mounted on a hexapod fixed to an x y-table.

Many works give insights of implemented simulator solutions (e.g. see reports by

Straus (2005) and Slob (2008), and paper by Wang, Zhang, Wu, and Guo (2007)): the

overview by Slob (2008) is adequate for the aim of this dissertation, focusing on high-level

simulators.

Volkswagen The first high-level driving simulator was built by Volkswagen in the early

’70s and consisted of a car on a 3-DOFs motion system. The motions were driven

by a turntable (yaw) and a roll and pitch mechanism. A single, flat screen was

mounted in front of the driver sitting on its seat at a platform, and no further car

interior was reproduced at the platform.

VTI The Swedish Road and Traffic Research Institute VTI is a long time active player in

the world of driving simulation, proposing y-sled in their designs. The first product

was (in 1984) the VTI-I, a four DOFs simulator. A half car with a screen fixed in

front of it on a motion platform was accelerated in roll, pitch and yaw, on a y-sled

(sway). At the end of the 1980s, VTI renewed the VTI-I to the VTI-II to implement a

truck simulator, which has a higher payload than the passenger car simulator. In

2004 this design was again upgraded to the VTI-III, increased in size and equipped

with a vibration table, allowing high frequent road rumbles to be experienced by

the driver.

Daimler-Benz The initial “Daimler-Benz” Driving Simulator was introduced in 1985 and

was the first driving simulator to be driven in six DOFs. An hydraulic hexapod,

which was a special design for this simulator, realized the largest motion envelope at

that time. A car or truck cabin was situated inside a dome on which 6 CRT projectors

displayed a 180 degrees field of view. In 1993 the simulator was upgraded to the

Advanced Driving Simulator. The main difference to the previous design was the

extension of the motion system in lateral direction, where a hydraulic cylinder

realized a 5.6 m excursion. This modification improved considerably the quality of

the simulator.

BMW BMW developed a 4 m high, hydraulic hexapod, with a small screen mounted

onto the motion platform, together with a full-size car. This system was completely
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rebuilt in 2003 and provided with a dome: now the driver enters the simulator

through a tunnel/catwalk, to give the driver the idea he enters a car and not a

simulator.

JARI, Nissan and WIVW Other 6-DOFs, hydraulic simulators were built in this period

by JARI (1996) and Nissan (1999). The hexapod of IZVW/WIVW, built in 1999 is

statically compensated using three additional cylinders. It is of interest that the

hexapod doesn’t seize the payload at the bottom, but at the height of the driver’s

head. The idea behind this concept is, that it is easier to tilt the payload around the

driver’s vestibular system, i.e. inside his head.

NADS-1 In 2002 the North American Driving Simulator (NADS-1) was presented at

the University of Iowa. At that time it was by far the most advanced driving

simulator. The NADS-1 is a 9-DOFs simulator, consisting of an x y-table on which a

hexapod travels. On top of the hexapod, a turntable is mounted, which provides

yaw-acceleration. A dome, with full-size car inside, rotates on top of the turntable.

Renault In 2004 Renault introduced ULTIMATE (Dagdelen et al., 2009) with a hexapod

on an x y-table, with a concept similar to NADS-1. The design of the motion system

is carried out by BOSCH–REXROTH.

UoLDS The University of Leeds owns its own simulator since 2006 and claims to be one of

the world’s most advanced driving simulators in research environment. The research

in which the simulator is currently employed, involves intelligent speed adaptation,

effects of automated systems on safety and improved driver comprehension on

traffic management signing.

Toyota In 2007 the NADS-1 simulator was exceeded in size by the Toyota Driving Sim-

ulator, built at Toyota’s Higashifuji Technical Center in Susono City. The design

is very similar to the NADS-1, but larger, and the main difference is found in the

turntable. At the Toyota Driving Simulator, the car yaws inside the dome, whereas

the NADS-1 yaws the entire dome, with the car inside of it. The simulator will be

used for driving tests that are too dangerous to conduct in the real world, such as

the effect of drowsiness, fatigue, inebriation, illness and inattentiveness.

In figure 2.3 pictures of some of the previously described simulator are reported.

There is still no consensus on which motion system design suits the demands of a

realistic driving simulator best.
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countryside and suddenly being confronted by a large animal leaping out in front of the car. Another
scenario could be in a city environment, with dense traffic, where cars unexpectedly cross the roadway.
A certain scenario can also be recreated under different preconditions, to study, for example, the
differences between driving with and without time pressure.

1.4.3 Training

Driving simulators are being increasingly used for training drivers all over the world. Research has
shown that driving simulators are proven to be excellent practical and effective educational tools to
impart safe driving training techniques for all drivers. They can be economical in cases where the
alternative (real object) is much more expensive. An advantage is the reduction of risk as the driver is
often put in a complex scenario [27], which might be hazardous when applied in non-virtual environ-
ment, i.e. real environment. Another advantage is the ability to monitor students and that they can
be advised as they practice [28]. There are various types of driving simulators that are being used as
training simulators, like train simulators, truck simulators, bus simulator, car simulator, etc. [21].

Figure 1.8: UoLDS Figure 1.9: VTI-III
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(a) VTI-III

Figure 2.5: BMW (2003) Figure 2.6: WIVW 1999

bottom, but at the height of the driver’s head. The idea behind this concept is, that it is easier to
tilt the payload around the driver’s vestibular system, i.e. inside his head.

NADS-1 In 2002 the North American Driving Simulator (NADS-1) is presented at the University
of Iowa [11]. At that time it is by far the most advanced driving simulator. The NADS-1 2.7 is a
9DOF simulator, consisting of an xy-table on which a hexapod travels. On top of the hexapod, a
turntable is mounted, which provides yaw-acceleration. A dome, with full-size car inside, rotates
on top of the turntable.

SimuSYS SimuSYS, developed in 2003 [40], is a relatively small 4DOF simulator, yet it is also rel-
atively high. The stacking of the different subsystems, which actuate a different DOF each,
is constructed such that DOF can be actuated independently, but at the expense of simulator
height. Therefore an error in the first DOF can be seen again in each following DOF.

Renault In 2004 Renault replaced its 6DOF/FS system with a hexapod on an xy-table, called the
ULTIMATE [30]. The design of the motion system is carried out by Bosch–Rexroth.

Tutor TUTOR is a combined bus and truck simulator [41], for professional driver training. It is
developed by Lander Simulation & Training Solutions and Installed at INTA (Spain) in 2004.
A similar design is found at the truck simulator Mark III from Transim (2005), which is an
upgrade from the FB/FS Mark II. It is used for truck driver training at MPRI (US), to improve
driving behaviour and skill.

Figure 2.7: NADS-1 (2003) Figure 2.8: Toyota (2007)

Katech, SimCar In the year 2005 two advanced 6DOF driving simulators were built. Katech in-
troduced the Katech Advanced Automotive Simulator KAAS [42] and at the German Aerospace
Institute (DLR) an “inverted” hexapod was built by SimCar [43]. The inverted hexapod holds
on to the payload at its top side. This was done to have the rotation point of the simulator at
a higher level, as stated at MSC2007. The rotation point of a hexapod, however is virtual and
can be placed anywhere within the hexapod’s range by means of coordinate transformation in
motion software.

10

(b) NADS-1

IFAS In 1984 IFAS [35], former IKK, produced a 1DOF simulator with the visuals projected in a
box in front of the driver. The actuated DOF was a hydraulically driven y-sled (Figure 2.1). The
simulator is still used at the University of the German Armed Forces in Hamburg.

IFAS extended their simulator with 6DOF’s in 2004 with the MARS Driving Simulator [36] at
Helmut Schmidt University. A y-sled is present in the new design, but has a hexapod mounted
on top of it (Figure 2.2).

VTI The Swedish Road and Traffic Research Institute VTI is an active player in the world of driving
simulation and swear by a y-sled in their designs. They started in 1984 with the VTI-I [34],
a 4DOF simulator. A half car with a screen fixed in front of it on a motion platform is to be
accelerated in roll, pitch and yaw, on a y-sled (sway).

A the end of the 1980s VTI rebuilds their VTI-I to the VTI-II, by request of the Swedish insur-
ance company Trygg Hansa who requires a truck simulator, which has a higher payload than the
passenger car simulator [37].

In 2004 this design is upgraded to the VTI-III [6]. The VTI-III (Figure 1.9) is increased in size
and equipped with a vibration table, allowing high frequent road rumbles to be experienced by
the driver.

Daimler-Benz The initial “Daimler-Benz” Driving Simulator was first introduced at 1985 [8] and
was the first driving simulator to be driven in 6DOF. An hydraulic hexapod, which was a special
design for this simulator, realized the largest motion envelope at that time. A car or truck cabin
is situated inside a dome on which 6 CRT projectors display a 180◦ field of view.

In 1993 the simulator was upgraded to the “Advanced Driving Simulator” [22]. The main differ-
ence to the previous design was the extension of the motion system in lateral direction. Another
hydraulic cylinder realized a 5.6 m excursion in lateral direction (sway). This modification the
quality of the simulator was improved considerably [8].

Mazda Mazda introduced their 4DOF driving simulator in 1985 to decrease the number of traffic
accidents, which grew rapidly with the spread of motorization [7]. The design is very similar to
the VTI simulators.

Ford Ford introduces the Virttex [9] in 1994, a dome on a hydraulic hexapod. The Virttex is renewed
in 2001 [9] (Figure 2.4).

Figure 2.3: Ultimate (2004) Figure 2.4: Vitrtex (2001)

BMW BMW develops a 4 m high, hydraulic hexapod, with a small screen mounted onto the mo-
tion platform, together with a full-size car [38]. This system is completely rebuilt in 2003 [38].
The platform is now provided with a dome and the driver enters the simulator through a tun-
nel/catwalk, to give the driver the idea he enters a car and not a simulator (Figure 2.5).

JARI, Nissan and WIVW Other 6DOF, hydraulic simulators are built in this period by JARI
(1996) and Nissan (1999). The hexapod of IZVW/WIVW [39] built in 1999 is statically compen-
sated using three additional cylinders (Figure 2.6). The hexapod doesn’t seize the payload at the

9

(c) ULTIMATE simulator

countryside and suddenly being confronted by a large animal leaping out in front of the car. Another
scenario could be in a city environment, with dense traffic, where cars unexpectedly cross the roadway.
A certain scenario can also be recreated under different preconditions, to study, for example, the
differences between driving with and without time pressure.

1.4.3 Training

Driving simulators are being increasingly used for training drivers all over the world. Research has
shown that driving simulators are proven to be excellent practical and effective educational tools to
impart safe driving training techniques for all drivers. They can be economical in cases where the
alternative (real object) is much more expensive. An advantage is the reduction of risk as the driver is
often put in a complex scenario [27], which might be hazardous when applied in non-virtual environ-
ment, i.e. real environment. Another advantage is the ability to monitor students and that they can
be advised as they practice [28]. There are various types of driving simulators that are being used as
training simulators, like train simulators, truck simulators, bus simulator, car simulator, etc. [21].

Figure 1.8: UoLDS Figure 1.9: VTI-III

7

(d) UoLDS

(e) Toyota simulator.

Figure 2.3: Examples of existing simulators.
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2.2 Classical Motion Cueing

Perception is the core of motion simulation. The human body has many inputs for

motion perception: sight, hearing, vestibular and proprioceptive cues. While the first

two categories are common to fixed simulators, the dynamic ones have to deal with

the reproduction of the last ones too, in particular those acting on the vestibular system.

Located in the inner ear (left and right), it is the prominent organ that provides information

about linear and angular inertial accelerations of the body.

The Motion Cueing (MC) algorithm is the procedure that aims at best reproducing

inside the simulator the stimuli that the driver would have perceived in the real car. The

signals of the software-simulated vehicle are passed to the algorithm, and are elaborated

to produce a reliable command for the actuators (in terms of perception quality). The

algorithm is implemented keeping in mind that the platform is subject to physical limita-

tions, hence the control signals have to be able to keep the device in safe conditions too.

This last is called a Washout Action.

One of the first publications about Motion Cueing procedure is by Conrad and Schmidt

(1971), where the basic setup for the classical approach was explained: since there,

the main idea behind the algorithm is remained the same. A deeper description of a

modern application of the classical MC is given by Reymond and Kemeny (2000); the

logic block-scheme is in figure 2.4.

low-pass
filter

angular
accelerations

+

translations

tilt 
coordination

high-pass
filter

high-pass
filter

high-pass
filter

high-pass
filter

double
integration

double
integration

linear
accelerations

translations

Figure 2.4: Classical Motion Cueing scheme.

The fundamental steps are

1. the software model of the vehicle dynamics produces the linear and rotational

acceleration signals, that are fed to the algorithm;
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2. both the linear and angular accelerations are scaled, to make the amplitude of the

signals commensurate with the platform capabilities;

3. both the linear and angular accelerations are high-pass filtered (figure 2.5a). This op-

eration eliminates the low frequency components of these signals. This is necessary

because common simulators haven’t the capabilities to reproduce the correspondent

behaviours, for which a lot of space would be needed (with consequent difficulties

in installation and exponential increase in terms of cost). Thus, the traditional

approach is to keep only the high frequency behaviour, which is easier to reproduce

in a limited space;

4. the resulting signals are doubly integrated, to obtain the correspondent spatial

positions (figure 2.5b);

5. linear accelerations are low-pass filtered too. The correspondent part of the signal

is then multiplied by a coefficient (usually the inverse of the gravity acceleration

g) and summed to the angular position (figure 2.5c). This is the so-called tilt-
coordination: the inertial effect of gravity is exploited to reproduce a part of the low

frequency linear accelerations that the device wouldn’t be able to mimic by itself;

6. the resulting position signals are again high-pass filtered (figure 2.5d). This time

the task is to avoid undesired, divergent behaviours that may lead to infeasible

position of the platform: it is the Washout Action, that keeps the platform as close

as possible to the central, neutral position.

The procedure is based on a combination of passive filters, and the behaviour is regulated

for each particular case (track, simulated car, driver’s capabilities etc.) by tuning the

filters parameters, namely gains and cut-off frequencies.

It is trivial to understand that visual and audio cues have to be synchronized with the

inertial ones.
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2.3 Problems and limitations

The intrinsic structure of the classic approach shows many limitations and disadvantages

that translate in possible low fidelity of perception signals and poor exploitation of the

platform working space.

The high pass filters on accelerations (figure 2.5a) achieve the elimination of constant

and/or slowly variable components of the signals, aiming to catch and reproduce only the

fast variation, an affordable task in the limited space available. Despite being a reasonable

solution, it is likely to introduce problems in the reliability of the signals. Consider the

simulation of a turn: after the breaking event, the telemetry of longitudinal telemetry

would show a fast decrease to negative values, and a subsequent slow (with respect to

the breaking dynamics) increase to positive value when accelerating. The filtering effect

could eliminate the slow component and set all the high frequency variations to take

place around a mean value next to zero, hence the reproduced acceleration not only loses

some components, but introduces mismatches that can heavily compromise the overall

experience. An example of the situation is evident from figure 2.6. The inertial cues

come into conflict with the visual ones and this situation can lead to motion sickness, in

particular the so-called simulator sickness (Straus, 2005).

Figure 2.6: Classical Motion Cueing: motion inversion.

Simulator sickness, or cyber-sickness, defines possible maladies associated with simu-
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lator usage and consist of feelings of nausea or discomfort. Simulator sickness may be

triggered through vection, i.e. the perception of self-motion induced by visual stimuli, and

occurs as a result of a disparity between visual and vestibular perceptual clues (Kennedy,

Hettinger, and Lilienthal, 1988). Kennedy and Fowlkes (1992) characterize simulator

sickness as “polysymptomatic”, because several symptoms are at play, including blurred

vision, cold sweating, concentration difficulty, confusion, drowsiness, eye strain, head

fullness, nausea, pallor, and vomiting. Additional symptoms of cyber-sickness may in-

clude ataxia (postural disequilibrium or a lack of coordination), disorientation, dryness

of mouth, fullness of stomach, headache, and vertigo. Since there appear to be several

rather than one single source of these symptoms, Kennedy and Fowlkes (1992) define

simulator sickness as “polygenic” too. Simulator sickness is sometimes classified as a form

of motion sickness that may result from abrupt changes in movement or while the body’s

orientation is relatively fixed yet exposed to moving visual scenes. Note that this illness is

very subjective and each human being is sensible to the problem in his own way: this

problem has to be taken into account when dealing with the driver in the tuning phase.

Simulator sickness is therefore a problem to be avoided. On one hand, tilt coordination

can help by introducing some low frequency features, on the other it is by itself not that

easy to integrate: being obtained via low-pass filtering, it could introduce undesired

delays. Moreover, this feature has to be handled so that the driver doesn’t feel to be

rotated, hence by keeping the rotations speed under a perception threshold (set to ±3

degrees per second by Dagdelen, Reymond, Kemeny, Bordier, and Maïzi (2004)). By

means of regulating only cut-off frequencies and gains, this is quite a hard task, and for

this reason tilt coordination contribution is likely to be kept low.

Furthermore, after the double integration necessary to calculate the position of the

platform, there is another high-pass filter for the Washout Action (figure 2.5d) whose

aim is to assure the safety for the actuators. It may happen that the double integration

determine a control signal that saturates the actuators, and this is unacceptable: beside

the risks of damaging the device, a saturation will determine a non-natural behaviour

thus compromising perceptive reliability. The rule of thumb in motion reproduction is

that it is better not to have a certain cue, if there exists the risk that it will be a false

cue, and this motivates the choice of a strategy that aims to keep the platform as close as

possible to its neutral position, sacrificing working area exploitation.

All this elements make the tuning of the algorithm a challenging task: first of all,

acting on filter parameters doesn’t allow an easy physical correspondence between these

regulations and the consequent behaviours. Then, it is intrinsically a conservative ap-

proach: it is impossible to include information about the limitations of the device, hence
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the only reasonable choice is to impose a conservative behaviour.

During the years some modifications and improvements have been proposed. Parrish

et al. (1975) proposed an adaptive strategy where the frequency parameters of the filters

were modified after the minimization of a cost function of the kind

Vt = (rt − at)
2 +w1 · v2

t +w2 · p2
t (2.1)

which considers both the tracking error and the current positions and velocities; Sivan

et al. (1982) propose an optimal control approach, based on the minimization of a function

similar to (2.1). The last one is the first work which tries to integrate a perception model:
the need for model-based solution to overcome all the stated problems is evident.



3
MPC Algorithm for Motion Cueing

In this chapter the derivation of the proposed algorithm will be illustrated. As specified,

the chosen framework is Model Predictive Control. This methodology distinguished itself

by other approaches in classical control theory for four cardinal elements

1. it is model-based, which is a great improvement in the information provided to the

control algorithm;

2. it is an optimal control technique, where a cost function is minimized: in this sense,

the control input is calculated in the best way possible, given the details of the

problem, and can be easily adjusted to further variations;

3. it is a constrained optimal problem, so the constraints arising in the problem can be

explicitly specified and handled;

4. it is a predictive strategy, so if a reference is know, with the help of the model the

calculated input can be improved in term of control performance.
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It will be shown that this control paradigm can be usefully exploited in the MC context,

and even in the case when a reference signal is not available for prediction the other

features will be crucial for the improvement of the performance of the algorithm, both

for the final user (the driver) and the operator who will have to tune the algorithm to

match the driver’s requests

After an introduction of the generics about MPC and the chosen formulation, detailed

information about the vestibular model and its derivation will be given, because of the

great importance of this element in the procedure. Being a constrained optimal problem

to be solved in real-time, the optimizer plays a central role and will be deeply illustrated.

The tuning phase and the motivation behind the choices made will be analysed, showing

how the constraints on the variables of the problem and the weights in the cost function

have a central role.

3.1 Model Predictive Control

Model Predictive Control (MPC) is an advanced control technique widely used in industrial

applications (Wang (2009); Maciejowski (2002)) since the 1980s. In recent years, robust

and efficient implementations have been developed, as well as software tools in standard

computational environments that ease the design of MPC algorithms. The main advantages

of MPC can be summarized as follows:

• its underlying idea is simple and intuitive to understand;

• it’s the only generic control technique that efficiently deals with constraints;

• it can handle Multi-Input Multi-Output (MIMO) systems without formally increasing

the complexity of the problem;

• it can handle non linearities in both the model and the constraints.

3.1.1 MPC basics

In the MPC framework, it is common to consider a discrete-time problem; assume that at

time k ∈ Z a reference trajectory r(t|k), t ≥ k and a current measure of the output y(k),
are available. Note that the current input is not yet computed. Now, suppose to have a

model of the process to be controlled and that the state of the system (or an estimate) is

available. It is therefore possible to predict the future output

y(k+ i|k), i = 1, . . . , Np
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Figure 3.1: Representation of MPC principle.

corresponding to the input sequence

u(k+ i|k), i = 0, . . . , Np − 1

in a time-window of length Np, where Np is the prediction horizon length: figure 3.1

gives a graphical sketch of this (simple) principle.

The idea is to compute the input sequence û(k+ i|k) that minimizes a cost function,

which is typically related to the tracking error

ε(k+ i|k) = r(k+ i|k)− y(k+ i|k), i = 1, . . . , Np,

while respecting a set of constraints that can be on inputs, outputs, states (measured or

estimated) and other quantities related to the problem. Once the optimal sequence is

computed, the input to be applied at the current instant k is chosen as

u(k) = û(k|k).

At time k+ 1, a new output y(k+ 1) is measured and the algorithm is iterated applying

again only the first element of the computed optimal input sequence. This procedure is

known as receding horizon: at each time step, the prediction horizon is shifted in order to

look Np instants in the future, starting from the current time. In this way, iterating on the

same prediction window and considering only the firs computed control, the algorithm

can exploit the information coming from new measures and adapt its performance to

correct errors due to exogenous disturbances, errors in the model, system variations and
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so on, providing a certain degree of robustness: using the entire computed sequence

before computing the new one, despite being much more effective from a computational

point of view will clearly lead to a worse behaviour of the controller, and possibly to

instability. As last remark, it is intuitive to understand that the receding horizon principle

allows a “relaxation” of the predictive aspects of the MPC framework: even in absence of

a reliable reference trajectory, the performance can be satisfactory if the control frequency

is fast enough. This is a common case in industrial applications, where in absence of

information about future references, constant signals are used (Maciejowski (2002)).

3.1.2 Process model

In the literature, different implementations of the MPC principle have been proposed,

with different model structures. It is clear that the model is one of the crucial feature

of the algorithm, and even if the receding horizon doesn’t require a perfect model, the

effectiveness of the control directly depends on how accurate the system representation

is (particularly when reliable prediction is available).

Different kind of models have been proposed during the years

• FIR models

• step-response models

• impulse-response models

• transfer function models

• state-space models.

The first three classes are quite limited, complex and usable only for stable systems.

Transfer functions are a better tool, but hard to manage when dealing with MIMO systems.

State-space models adapt perfectly to the MPC paradigm: in linear form they have been

widely study in control system theory, they make immediately accessible state variables

and, if not directly available, are particularly well suited to design state estimators by

using well-established tools of statistical filtering theory; more, they are the best way

to represent MIMO systems. These reasons made this representation the most common

choice in literature and real applications, including the Motion Cueing application we are

considering in this dissertation.

Let’s consider a linear, discrete state space model (sampled version of the continuous
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process) of the form

xm(t + 1) = Amxm(t) + Bmu(t)

y(t) = Cmxm(t), t ∈ Z.

We assume that the input does not have an instantaneous effect on the output (strictly
proper system). In our case, the MPC approach proposed by Wang (2009) has been

adopted, hence we consider as the element to be optimized the input difference

∆u(t)¬ u(t)− u(t − 1).

This gives the advantage to explicitate and approximation of the derivative of the input

signals, useful to include in the cost function as will be illustrated in the next section.

Considering also the state difference

∆xm(t)¬ xm(t)− xm(t − 1),

a new state equation can be written

∆xm(t + 1) = Am∆xm(t) + Bm∆u(t).

Considering the output difference

y(t + 1)− y(t) = CmAm∆xm(t) + CmBm∆u(t)

and defining as augmented state

x(t)¬
�

∆xm(t)T y(t)T
�T

, (3.1)

we obtain a new model

x(t + 1) =

�

Am 0

CmAm I

�

x(t) +

�

Bm

CmBm

�

∆u(t) (3.2a)

y(t) =
�

0 I
�

x(t) (3.2b)

where the control input is ∆u(t).
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3.1.3 Cost function

The cost function J(t) chosen for the MC problem is quadratic, the most typical form in

this context to avoid excessive complexity in resolution, and takes into account the error

between the predicted trajectory and the future reference in the prediction window of

size Np, the future inputs and input difference in the control horizon Nc:

J(t) =
Np
∑

j=1

δ( j)‖y(t + j | t)− r(t + j)‖2+

+
Nc−1
∑

j=0

λ( j)‖u(t + j)‖2 +
Nc−1
∑

j=0

γ( j)‖∆u(t + j)‖2, (3.3)

J(t) has to be minimized over u(t) and ∆u(t). Observe that a term weighing ∆u(t)
is included in the cost function (3.3). In fact, as will be shown when describing the

vestibular model, among the system inputs there are longitudinal accelerations, that

are high-frequency, discontinuous signals. It is therefore convenient to act on their

(approximate) derivative, to achieve a certain degree of regularity in the control signal,

thus avoiding and excessive stress of the actuators, and possible unfeasibilities in the

optimal problem.

Remark 3.1.1. Note that the control horizon Nc is distinguished from the prediction

horizon Np. The control horizon corresponds to the length of the control sequence that

has to be calculated at each step, hence Nc ≤ Np holds. If Nc < Np, the last Np − Nc

elements of the control sequence are considered constant and equal to the last computed

element in the control horizon, i.e.

u(t + Nc − 1) = u(t + Nc) = u(t + Nc + 1) = · · ·= u(t + Np) (3.4)

which, expressed in terms of ∆u as in (3.2), becomes

∆u(t + Nc) =∆u(t + Nc + 1) = · · ·=∆u(t + Np) = 0. (3.5)

In this way, the size of the optimal sequence to be computed is smaller thus easing the

problem resolution. This is a common approach for the MPC framework, especially when

the control frequency requires fast computing. The values of Nc and Np have to be tuned

carefully to get satisfactory performance; in the present work this approach has been

adopted, with Nc < Np and it will be shown how the regulation of these parameters is an

important aspect of the tuning phase of the whole algorithm.
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3.1.4 Constraints

Constraints are very common in applied control. They could concern limits on actuators,

on available space, on permitted dynamics, and so on. Model Predictive Control considers

the presence of constraints: in this sense, it is a constrained optimal control procedure.

Taking into account constraints in the formulation of a control strategy is an evident

advantage, since it grants that if a solution for the optimisation problem exists, it will

me a reliable control sequence. This is done at the cost of an increased complexity in

finding the solution, since the introduction of constraints makes the problem impossible

to be solved in an analytical way, and heuristic solvers have to be used. Beside the harder

computational effort, the introduction of constraints leads to possible infeasibility of the

problem: there could be a particular state of the system that makes impossible to find a

solution, given a certain set of constraints. This aspect has to be taken in particular care

when dealing with MPC, and the solver should be able to handle this critical case, for

example by relaxing some of the constraints (the so called soft constraints, in opposition

to hard ones which cannot be violated: see the discussion about slack variables in the

book by Wang (2009)).

Constraints are usually set on inputs and outputs,

umin ≤ u(t)≤ umax , (3.6)

ymin ≤ y(t)≤ ymax ; (3.7)

given the formulation (3.2), it is appropriate to set constraints on input variations too

∆umin ≤∆u(t)≤∆umax . (3.8)

It is possible also to set constraints on state space variables, but this case is not that

common as the previous ones. This is due to the fact that in most problems, the value of

the state isn’t directly available and one has to rely on estimates: if the reliability of these

estimates is somehow assured, then they can be used to evaluate constraints, in other

cases it is better to avoid to introduce possible infeasibilities.

3.1.5 MPC as a Quadratic Programming problem

In the field of mathematical optimisation problems, Quadratic Programming (QP) prob-

lems have been widely studied. Different solving algorithm have been proposed, with

advantages and disadvantages which have different impacts according to the character-

istics of the problem involved. An optimisation problem can be defined a QP problem
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if

1. it has a quadratic function to be minimized;

2. the constraints are linear.

The classic formulation of a QP problem is

min
x

f (x) =
1

2
xT Hx+ xT c (3.9)

Ax≤ b (3.10)

with x, c, b ∈ Rn and H, A ∈ Rn×n. H is a symmetric matrix; if it is positive semidefinite,

function f is convex. In this case, if there exists a feasible solution x∗ and f has a lower

bound in the feasible region, there exists a global solution. If H is positive definite and

there exists a feasible solution x∗, then it is the unique global minimizer. For a more

details on QP problems, see the book by Boyd and Vandenberghe (2004).

The advantage of dealing with QP problem is clear: it is well known in literature, not

too difficult to solve and many optimizer are available (Wang and Boyd, 2010). Since the

function (3.3) is quadratic, and the constraints (3.6),(3.7) and (3.8) are linear, the idea

is to manipulate the MPC problem to convert it to a QP one. As proved in Wang (2009),

it is always possible (and convenient) to reformulate (3.3) in order to obtain a generic

Quadratic Programming problem where only ∆u has to be minimized.

Let’s consider system (3.2), the state evolution is

x(t + 1 | t) = Ax(t) + B∆u(t)

x(t + 2 | t) = Ax(t + 1 | t) + B∆u(t + 1) = A2x(t) + AB∆u(t) + B∆u(t + 1)
...

x(t + Np | t) = ANpx(t) + ANp−1B∆u(t) + ANp−2B∆u(t + 1) + · · ·+

+ ANp−Nc B∆u(t + Nc − 1), (3.11)
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considering Nc < Np hence (3.5). The corresponding outputs are

y(t + 1 | t) = CAx(t) + CB∆u(t)

y(t + 2 | t) = CAx(t + 1 | t) + CB∆u(t + 1) = CA2x(t) + CAB∆u(t)+

+ CB∆u(t + 1)
...

y(t + Np | t) = CANpx(t) + CANp−1B∆u(t) + CANp−2B∆u(t + 1) + · · ·+

+ CANp−Nc B∆u(t + Nc − 1). (3.12)

The outputs depends only on the current state x(t) and the input sequence ∆u(t + i),
i = 0, . . . , Nc − 1. If we rewrite (3.11) and (3.12) in vectorized form,

Y= vec{y(t + i | t)}i=1,...,Np
=











y(t + 1 | t)
y(t + 2 | t)

...

y(t + Np | t)











∈ R(Np·nout )×1 (3.13)

∆U= vec{∆u(t + i | t)}i=0,...,Nc−1 =











∆u(t)
∆u(t + 1)

...

∆u(t + Nc − 1)











∈ R(Nc ·nin)×1 (3.14)

with nout and nin the sizes of y and ∆u respectively, the input-output evolution of the

predictions can be represented as a single equation

Y= Fx(t) +Φ∆U (3.15)

with matrices

F =

















CA
CA2

CA3

...

CANp

















, Φ=

















CB 0 0 · · · 0

CAB CB 0 · · · 0

CA2B CAB CB · · · 0
...

...

CANp−1B CANp−2B CANp−3B · · · CANp−Nc B.

















(3.16)
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Considering a vectorization of the reference signal r(t + i), i = 1, . . . , Np the cost function

(3.3) becomes

J(∆U) = (Rs − Y)TQ(Rs − Y) +UT SU+∆UT R∆U (3.17)

where the matrices Q, S, R are block diagonals with elements corresponding to the weights

in (3.3), hence they are weight matrices. Note that in most cases, these matrices are

diagonal (the weights are typically constant, even if it possible without effort to specify

variable values). The input sequence u(t + i) can be expressed as a function of ∆u as











u(t)
u(t + 1)

...

u(t + Nc − 1)











︸ ︷︷ ︸

U

=

















I 0 0 · · · 0

I I 0 · · · 0

I I I · · · 0
...

...

I I I · · · I

















︸ ︷︷ ︸

T











∆u(t)
∆u(t + 1)

...

∆u(t + Nc − 1)











︸ ︷︷ ︸

∆U

+











u(t − 1)
u(t − 1)

...

u(t − 1)











︸ ︷︷ ︸

Ūi

. (3.18)

By substituting (3.18) and (3.15) in (3.17), we obtain

J(∆U) = (Rs − Fx(t)−Φ∆U)TQ(Rs − Fx(t)−Φ∆U)+

+∆UT R∆U+ (T∆U+ Ūi)
T S(T∆U+ Ūi); (3.19)

after some manipulations, and discarding the constant terms not dependent on ∆U (J is

a cost function, and these terms doesn’t affect the minimization result), we get

J(∆U) =∆UT (ΦTQΦ+ R+ T T ST )∆U+ 2∆UT (ΦTQ(Fx(t)−Rs) + T T SŪi) (3.20)

and calling

H ¬ 2(ΦTQΦ+ R+ T T ST ), (3.21)

c ¬ 2(ΦTQ(Fx(t)−Rs) + T T SŪi) (3.22)

equation (3.20) becomes

J(∆U) =
1

2
∆UT H∆U+∆UT c, (3.23)

the classical expression of the cost function of a QP problem, as seen in (3.9), where the

variable to minimize is ∆U.
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The constraints should now be expressed as a function of ∆U to obtain an analogous

formulation to (3.10). Limitations on ∆u(t) as in (3.8) are the easier to set, and become

(Wang (2009))































I 0 · · · 0

0 I · · · 0
...

. . .
...

0 0 · · · I
−I 0 · · · 0

0 −I · · · 0
...

. . .
...

0 0 · · · −I































︸ ︷︷ ︸

M1











∆u(t)
∆u(t + 1)

...

∆u(t + Nc)











︸ ︷︷ ︸

∆U

≤































∆umax

∆umax
...

∆umax

−∆umin

−∆umin
...

−∆umin































︸ ︷︷ ︸

n1

. (3.24)

The constraints on u(t) shown in (3.6) are recontucted to∆u(t) by using equation (3.18),































I 0 · · · 0

I I · · · 0
...

. . .
...

I I · · · I
−I 0 · · · 0

−I −I · · · 0
...

. . .
...

−I −I · · · −I































︸ ︷︷ ︸

M2











∆u(t)
∆u(t + 1)

...

∆u(t + Nc)











︸ ︷︷ ︸

∆U

≤































umax − u(t − 1)
umax − u(t − 1)

...

umax − u(t − 1)
−umin + u(t − 1)
−umin + u(t − 1)

...

−umin + u(t − 1)































︸ ︷︷ ︸

n2

(3.25)

considering again the fact that at time t, all the elements computed before are known and

assimilated to constant values. Nevertheless, the dependence on u(t − 1) makes matrix

n2 time-variant and has to be updated at each time step. The same holds true for the

constraints on y(t): in fact, to transform the limitations (3.7) into constraints on ∆u(t),
equation (3.15) is exploited, giving

�

Φ

−Φ

�

︸ ︷︷ ︸

M3

∆U≤

�

Ymax − Fx(t)
−Ymax + Fx(t)

�

︸ ︷︷ ︸

n3

(3.26)
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and here n3 depends on the state x(t). Ymin (Ymax) is the vectorization of the lower

(upper) bounds ymin (ymax) in (3.7), and is of size Np ·nout . By coupling equations (3.24),

(3.25) and (3.26) we obtain the constraints in the classic form (3.10) for a QP problem,







M1

M2

M3






∆U≤







n1

n2

n3






. (3.27)

The described passages summarize as an MPC problem with quadratic cost function and

linear constraints can be converted to a Quadratic Programming problem where the

sequence ∆u(t + i), i = 0, . . . , Nc − 1 has to be calculated via minimization, for which a

variety of solving algorithms are available in literature.

Remark 3.1.2. Constraints on state variables are less used, but sometimes can be useful:

e.g., a mechanical system could have acceleration as output and position and velocity as

state, and constraints on these latter quantities can be desirable. A simple and common

way to set state constraints and to transform them in constraints on ∆U as well, is to

modify the model (3.62) in order to have as outputs the elements of the state that have to

be constrained. In this way, (3.26) will automatically handle constraints on state variables,

which have to be included in the vectors Ymin and Ymax .

3.2 Vestibular Model

In the human being, the (perceptual system) is the set of biological systems and organs

which are responsible for the capability of taking and elaborating information about the

environment in order to recognize the physical situation and behave consequently. For

what concerns the motion perception, three main systems systems cooperates

1. the visual system;

2. the auditory system;

3. the vestibular system.

In this work, the focus has been concentrated on the latter one: the integration with

the first two will be investigated in further studies, and in particular for the visual cues,

where works start to arise in the psychology field as in Pretto (2008)

The main function of the vestibular system (also know as bony ear) is to control

motion and equilibrium by providing information about the transactional and rotational
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accelerations that are acting on the body at the moment, including the instantaneous

direction of the gravity force. It is located in the inner ear (figure 3.2 and is composed by

two subsystems, the semicircular canals and the otolithic organs.

Figure 3.2: Structure of the inner ear.

3.2.1 The semicircular canals

The semicircular canals (from now on, abbreviated as SCC) are the organs of the vestibular

system responsible for the perception of the rotations the body (in particular, the head) is

subject to: they can be thought of as angular accelerators with a strong damping effect.

Each ear has a set of three canals, as in figure 3.2:

1. the horizontal (or lateral) semicircular canal

2. the anterior (or superior) semicircular canal

3. the posterior semicircular canal.

Their spatial orientation is functional to their sensing purposes. For each ear, each of

the three canals (meaning the plane it belongs to) is orthogonal to the other two; the

horizontal canals form a 30 degree angle with the nasal-occipital plane, which may be

considered as the “horizontal” plane when the eyes are pointing straight. The anterior and
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posterior canals form angles of 45 degrees with the y-axis of the head, whose direction is

from the back to the front of the head: figure 3.3 graphically explain the typical situation

described. Note that, having to work together, there is a specific relative positioning of the

canals among the two ears: in fact, while both the horizontal canals are coplanar (having

to sense the yaw rotation), the left anterior canal is coplanar with the right posterior one

and vice-versa (pitch and roll rotations). The canals themselves are elliptical, hollow

16 CAPITOLO 2. IL SISTEMA VESTIBOLARE

Figura 2.1: Struttura dell'orecchio interno [30].

2.1.1 I canali semicircolari

I canali semicircolari (semicircular channels, SCC) sono gli organi preposti a perce-
pire le rotazioni applicate al corpo (possono essere considerati accelerometri angola-
ri fortemente smorzati) e, per ogni orecchio, sono in numero pari a tre: orizzontale,
anteriore (o superiore) e posteriore, ortogonali l'uno all'altro. I canali orizzontali
formano un angolo di 30◦ col piano naso-occipitale, mentre i piani dei canali vertica-
li formano angoli di 45◦ con l'asse y; i canali orizzontali delle due orecchie giacciono
nello stesso piano, mentre il canale anteriore dell'orecchio sinistro è complanare con
quello posteriore del destro e viceversa (si veda �gura 2.2).

Figura 2.2: Disposizioni dei canali semicircolari e relativa inclinazione [29].Figure 3.3: Spatial and relative positioning of the SCC.

arcs with about 240 degree of extension, filled with a fluid known as endolymph. The

three canals of each ear have a common base, the utricle (which is part of the otholitic

system); at one of the junctures of each canal with the utricle, the canal cavity swells

to form a bulbous expansion called the ampulla which contains the sensory ephithelium

or crista. The crista contains bundles of sensory hair cells that extend into a gelatinous

mass called the cupula. The cupula bridges the width of the ampulla cavity, forming a

seal through which endolymph cannot circulate. When the head turns in the plane of one

of the canals, the inertia of the endolymph produces a force across the cupula, deflecting

it in the opposite direction of head movement and causing a displacement of the hair

bundles in each hair cell. This hair is linked through the crista to the vestibular nerve,

which eventually transfers the information to the central nervous system. A graphical

explanation is depicted in figure 3.4.

3.2.1.1 Mathematical model

It is clear that a mathematical modelization of such a complex human system is a chal-

lenging task; researches has seen a great incentive during the ’60s and ’70s in the context

of the aero-spatial missions, and during the following years the aerospace field has been

the leader of such studies. Hence, the mathematical model derived for the MC problem
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Figure 3.4: Mechanism of the motion perception in the SCC.

at hand derives from a thorough review of all the literature.

The classic starting point is the work by Zacharias (1978), which is a summary of all

the major works until 1978. Zacharias reported that Steinhausen (1971) first developed

a linear, second-order model of canal dynamics to explain the observed characteristics of

vestibular-induced eye movements in fish (pike). This model was further refined by the

“torsion-pendulum” model of Van Egmond, Groen, and Jongkees (1949). The transfer

function for this overdamped system is the following

δ(s)
ω(s)

=
Ks

(1+ sτs)(1+ sτl)
, (3.28)

that relates the rotation of the head ω to the deflection δ of the cupula, which is then

supposed to be proportional to the perceived rotation, namely ω̂ (note that the hat
will indicate the perceived quantities from now on). Note that this model, where the

dynamics is substantially a band-pass filter similar to a classical Washout filter, has been

derived by evaluating the rotations around the z-axis only. Different values have been

proposed during those years for the time constants, and the difference can be attributed,

in general, to the different measurement method, which could be based on subjective

evaluation or on the measurement of the nystagmus, i.e. the involuntary eye movement.

This highlights once more the connection between the vestibular and visual perceptive

systems. Further studies showed that the torsion-pendulum model does not completely

represent rotational sensation, in particular step variations in the accelerations would be

seen by this model as constant, while in practice they decay to zero (these human sensors

are rather “differential” sensors than “absolute”). Young and Oman (1969) formulated

an adaptation operator and cascaded it with the torsion-pendulum model to resolve
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the conflicts between the response predicted by the torsion-pendulum model and the

perceptual responses measured in experiments, obtaining

δ(s)
ω(s)

=
Ks

(1+ sτs)(1+ sτl)
sτa

1+ sτa
. (3.29)

Zacharias (1978) reported several experiments suggesting an additional lead component,

that is substantially a first order high-pass term, 1+ sτL, that represents the phase lead

behaviour. With the addition of this component, Zacharias elaborated a new model which

assumed that the perceived angular velocity ω̂ is proportional to the afferent firing rate
(AFR) of the vestibular nerve, i.e. to the neural transduction dynamics, whose logic

scheme is reported in figure 3.5.

ω τLs
(τls+1)(τss+1)

τas
τas+1 τLs+ 1

∆f

f0

K
ω̂

f0

–

++

+
Torsion pendulum Adaptation

Adaptation operator

Adaptation operator

Adaptation operator

Adaptation operator

Lead

Sensation processor

Firing
model operator operator

rate

Figure 3.5: Block scheme considering the AFR dynamics of the vestibular nerve.

For what concerns the time constants, τs, based on the work by Steer (1967), has to

be chosen based on the theoretic, hydrodynamical properties of the semicircular canals

and in any case fast enough; τl (slow constant) is more clearly defined, based on the

nystagmus measurement, while τL is harder to define a priori and should need to be

adapted to the personal characteristics of the user.

In more recent years, the analysis has been reprised by Telban and Cardullo (Telban,

Wu, Cardullo, and Center (2000); Telban, Cardullo, and Houck (2005)), with the aim of

deriving more reliable values for the parameters, thanks to modern measurement methods.

The starting point is substantially the same transfer function as (3.29) (considering the

lead term), but relating the cupula deflection with the angular acceleration α

δc(s)
α(s)

= KSCC
sτa

1+ sτa

1+ sτL

(1+ sτ1)(1+ sτ2)
. (3.30)

The values of the constants have been calculated by different scientists, and the work of

Fernandez and Goldberg (1971) has great importance as a starting point for Telban and

Cardullo: by directly measuring the response to variations in amplitude and frequency

on the input acceleration signals of the afferent firing rate of the vestibular nerve for the
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squirrel monkey, they found the values in (3.31)

AFR(s)
α(s)

= 3.44
80s

1+ 80s

1+ 0.049s

(1+ 5.7s)(1+ 0.003s)
. (3.31)

Fernandez and Golderbg find out that a more accurate value of τ2 for man is 0.005.

Telban and Cardullo started from (3.31) and derived the model in (3.32)

ω̂(s)
α(s)

= 5.73
80s

1+ 80s

1+ 0.06s

(1+ 5.73s)(1+ 0.003s)
. (3.32)

For the purposes of this work, equation (3.32) is modified to have as input the real

rotational velocity, as in (3.33)

ω̂(s)
ω(s)

= 5.73
80s2

1+ 80s

1+ 0.06s

(1+ 5.73s)(1+ 0.003s)
. (3.33)

To avoid numerical problem, the term relative to the fast constant τ2 is eliminated, and

to maintain the realizability of the transfer function the lead term (1+0.06s) is discarded

too, having a dynamics near to the chosen control frequency (100 Hz). The final transfer

function used for each one of the canals is (3.34)

WSCC(s) =
ω̂(s)
ω(s)

= 5.73
80s2

(1+ 80s)(1+ 5.73s)
; (3.34)

figure 3.6 reports its frequency representation.

3.2.2 The otolith organs

The maculae (i.e. the otolithic systems) are the elements of the vestibular system that

provide linear motion sensation in humans for specific force, meaning the combination of

transactional acceleration and gravity force (whose interactions will be clarified when

explaining the tilt-coordination effect). Each inner ear has two maculae, the utricle

(common base for the canals) and the saccule (extension of the utricle). These organs are

composed by a slightly curved bony base where the sensory cells lie (sensory epithelium),

covered by a gelatinous membrane where the receptive cilia of the sensory cells are dunked.

Over this gelatinous layer there is the otoconial layer, a membrane made of a viscous gel

and covered by the otholits, which are basically calcium carbonate crystals. The whole

structure stick out from the macular cavity, filled with endolymph. The sensing process is

based on the different inertia between the otoliths and the gel: a linear movement makes

the otoliths move against the cilia, connected to the vestibular nerve sending the sensory
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Figure 3.6: Bode diagram of SCC transfer function.

signal. Figure 3.7 depicts the structure of the organ. According to their spatial disposition,

the utricle and the saccule sense the horizontal and vertical movement, respectively: this

organs are coplanar between the two ears.

Figure 3.7: Structure of the otoliths.

3.2.2.1 Mathematical model

At the time of Zacharias (1978) work there was not a large body of literature available

on the modelization of otoliths, since it was harder than in the semicircular canals case

to understand which were the stimuli they were responsible to perceive. In particular,

many test were carried on by focusing only on tilting the subject, hence considering only

static inclinations with respect to the vertical axis (gravity). Moreover, it wasn’t clear if
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the perceived transients were on accelerations or velocities. One of the first work was

by Meiry (1965), who first investigated subjective responses to linear motion by using a

cart to produce longitudinal sinusoidal motion. By measuring the subjective indication of

direction, he obtained a transfer function relating perceived velocity v̂ to stimulus velocity

v:
v̂(s)
v(s)

=
KsτL

(1+ sτL)(1+ sτS)
(3.35)

The basic structure is the torsional pendulum as for semicircular canals. Young and Meiry

(1968) noted that the model (3.35) failed to predict the otoliths’ response to sustained

tilt angle as indicated by behavioral and physiological data. They proposed a revised

model of specific force sensation (hence supposing that the acceleration, and not the

velocity is perceived) with a smaller long time constant and an additional lead term, thus

modeling both perceived tilt and acceleration in response to acceleration input. This

model presumes the equivalence of linear acceleration sensation with that of tilt. A block

scheme representation is in figure 3.8.

ω τLs
(τls+1)(τss+1)

τas
τas+1 τLs+ 1

∆f

f0

K
ω̂

f0

–

++

+
Torsion pendulum Adaptation

Adaptation operator

Adaptation operator

Adaptation operator

Adaptation operator

Lead

Sensation processor

Firing
model operator operator

rate

f 0.4(13.2s+1)
(5.33s+1)(0.66s+1)

1
s(or tilt)

Adaptation

â v̂

Figure 3.8: Block scheme for new Meiry and Young otolithic model.

After these first researches, Grant and Best obtained the transfer function (3.36)

relating the relative displacement of the otoconial layer with respect to the head, x ,

with the force input f , through the density of the endolymph ρe and the density of the

otoconial membrane ρ0

x(s)
f (s)

=

�

1−
ρe

ρ0

�

τ1τ2

(1+ sτ1)(1+ sτ2)
; (3.36)

they estimated τ2 during their experiments by measuring the maximum displacement

of the otoliths in response to step variation in linear velocity. The otolith mechanical

structure and the consequent dynamics of the afferent firing rate was proposed by Orsmby,

who introduced the system (3.37), using a Wiener-Hopf equation to find the correct

parameters
f̂ (s)
f (s)

=
Bs+ (B + C)A

s+ A
︸ ︷︷ ︸

Mechanics and AFR

·
K(s+ A)

(s+ F)(s+ G)
︸ ︷︷ ︸

Higher Centers Dynamics

; (3.37)

note that the higher centres correspond to the area of the cerebral cortex where the sensory
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information are elaborated. Fernandez and Goldberg (1976) studied the discharge of

peripheral otolith neurons in response to sinusoidal force variations in the squirrel monkey,

thus estimating parameters for their transfer function; their work has been later refined

by Hosman and Van der Vaart (1978), who proposed the transfer function

AFR(s)
f (s)

= 33.3
1+ s

(1+ 0.5s)(1+ 0.016s)
. (3.38)

Telban et al. (2005) refined the model (3.38) and proposed the model

WOTO(s) =
f̂ (s)
f (s)

= 0.4
1+ 10s

(1+ 5s)(1+ 0.016s)
, (3.39)

the chosen one in the present work. In figure 3.9 the Bode diagram is reported.
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Figure 3.9: Bode diagram of otoliths transfer function.

3.2.3 Tilt coordination

An important component of perception in a dynamic simulator is given by tilt coordination.

Otoliths are incapable to discriminate between gravitational and longitudinal forces

without the help of other cues (like the ones coming from visual system). Hence, by

using a non-zero pitch angle and without any other visual reference, it is possible to

provide the driver in the simulator with a “fake” longitudinal acceleration sensation. The

same holds true for roll and lateral acceleration. Such approach goes under the name of
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tilt coordination. Taking into account this effect is crucial to reproduce low frequency

behaviour with a reduced range working area. This effect is summarized in figure 3.10:

it’s easy to understand how the effect of the gravity component, in presence of a non-zero

pitch angle θ , contributes to a greater perception of longitudinal acceleration (in absence

of visual information). Tilt coordination is particularly relevant when predictions of the

Figure 3.10: Effect of tilt coordination on the otoliths.

future vehicle trajectories are available, since, differently from classical cueing strategies,

it can yield to less conservative strategies and thus to better exploitation of the platform

working space. In the perception model, because of the linearisation, tilt coordination is

nothing but a further contribution in the otoliths model WOT H (s) due to the pitch angle

in the longitudinal direction and to the roll angle in the lateral direction.

With a mathematical formalization, given a pitch angle θ and a roll angle φ, one can

apply a 2-DOFs rotation to the gravity vector g = [ 0 0 g ]T to obtain its components in the

platform’s coordinate system

gP LAT = Rx(θ )R y(φ)g=







−g sinθ

g cosθ sinφ

g cosθ cosφ






, (3.40)

where the subscript or the rotation matrix R indicates the axis around which the rotation

is applied. Now, if the driver should be provided an acceleration a= [ ax ay az ]T , given

(3.40) it suffices to generate the specific acceleration ã= a− gP LAT

ã=







ãx

ãy

ãz






=







ax + g sinθ

ay − g cosθ sinφ

az − g cosθ cosφ






≈







ax + gθ
ay − gφ
az − g






, (3.41)

using the small-angle linearisation, suitable for the application at hand.
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3.2.4 State space realization of the complete vestibular model

In order to use the perception models in the MPC approach, WOTO(s) and WSCC(s) need

to be converted in state space form and coupled with the tilt coordination contribution

for all the 6 DOFs.

Recalling the previously derived model, the transfer functions for semicircular canals

and otoliths are, respectively

WSCC ,i(s) =
ω̂i(s)
ωi(s)

= 5.73
80s2

(1+ 80s)(1+ 5.73s)
=

s2

s2 + s
�

1
Ta
+ 1

TL

�

+ 1
Ta TL

(3.42)

WOTO,i(s) =
f̂i(s)
fi(s)

= 0.4
1+ 10s

(1+ 5s)(1+ 0.016s)
=

Kτa

τlτs

s+ 1
τa

s2 + s
�

1
τs
+ 1
τL

�

+ 1
τsτL

(3.43)

with the parameters highlighted. The transfer functions are the same for all the 6 DOFs,

hence the subscript i stands for x , y, z. Following classic realisation theory results, the

corresponding matrices are

ASCC ,i =





−
�

1
Ta
+ 1

TL

�

1

− 1
Ta TL

0



 , BSCC ,i =





−
�

1
Ta
+ 1

TL

�

1
Ta TL



 , (3.44a)

CSCC ,i =
�

1 0
�

, DSCC ,i = 1 (3.44b)

for the semicircular canals with i = x , y, z indicating rotations around x-axis (roll angle

φ), y-axis (pitch angle θ) and z-axis (yaw angle ψ), respectively; and

AOTO,i =





−
�

1
τs
+ 1
τL

�

1

− 1
τsτL

0



 , BOTO,i =





Kτa

τlτs
K
τlτs



 , COTO,i =
�

1 0
�

, DOTO,i = 0

(3.45)

for the otolithic system, with i indicating the x , y , z axes.

By coupling (3.44) along the rotational DOFs,the complete model for the semicircular

canals is obtained

ASCC = blkdiag{ASCC ,x , ASCC ,y , ASCC ,z} (3.46a)

BSCC = blkdiag{BSCC ,x , BSCC ,y , BSCC ,z} (3.46b)

CSCC = blkdiag{CSCC ,x , CSCC ,y , CSCC ,z} (3.46c)

DSCC = blkdiag{DSCC ,x , DSCC ,y , DSCC ,z}, (3.46d)
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where the input signals are the chassis angular velocities uSCC = [φ̇ θ̇ ψ̇]T and the output

signals ySCC = [
ˆ̇φ ˆ̇θ ˆ̇ψ]T are the perceived angular velocities.

Similarly, by coupling (3.43) in the same way as (3.46) we obtain the complete

otholitic system matrices

AOTO = blkdiag{AOTO,x , AOTO,y , AOTO,z} (3.47a)

BOTO = blkdiag{BOTO,x , BOTO,y , BOTO,z} (3.47b)

COTO = blkdiag{COTO,x , COTO,y , COTO,z} (3.47c)

DOTO = blkdiag{DOTO,x , DOTO,y , DOTO,z}, (3.47d)

with the chassis longitudinal accelerations as inputs (uOTO = [ax ay az]T ) and the

perceived longitudinal forces as outputs (yOTO = [âx ây âz]T ). Note that in (3.43) inputs

and outputs are forces, but the transfer functions (and the consequent state space model)

are clearly identical for accelerations, which differ from forces by the (constant) value

of the mass m. To consider the effect of tilt-coordination, (3.41) can be rewritten in

matricial form as

ã= H ·

�

a

β

�

, H =







1 0 0 0 g 0

0 1 0 −g 0 0

0 0 1 0 0 0






(3.48)

with β = [φ θ ψ]T . To use the angular rates as inputs to the otholit system (as requested

by the final, complete vestibular model), the augmented state

xOTO =

�

xOTO

β

�

(3.49)

has to be introduced. The corresponding augmented system is

ΣOTO = {AOTO, BOTO, COTO, DOTO}, with

AOTO =

�

AOTO B̄

0 0

�

BOTO =

�

BOTO 0

0 I3

�

(3.50a)

COTO =
�

COTO 0
�

DOTO =
�

DOTO 0
�

, (3.50b)

with uOTO = [u
T
OTO uT

SCC]
T = [aT β̇

T
]T as inputs, yOTO = yOTO = [âx ây âz]T as outputs
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and from (3.41)

B̄ = BOTO ·







0 g 0

−g 0 0

0 0 0






. (3.51)

System (3.50) is an appropriate, linear representation of the vestibular system relating

real accelerations and rotational velocities to the corresponding perceived ones. For our

purposes it is convenient to make the positions and velocities of the eye-point1 explicit.

This gives two advantages

1. typical motion controllers of driving simulators act on the position of the eye-point,

hence they have to be provided with those coordinates;

2. it is useful to have this physical values in the MPC algorithm to take advantage of

imposing constraints on velocities and positions as well as suitable weights in the

cost function.

This explicitation can be done by using a simple “integral system”,

ẋI =



















0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0



















xI +



















0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0



















uI = AIxI + BIuI , (3.52)

with state and input vectors

xI =
�

px vx py vy pz vz

�T
, uI = uOTO (3.53)

where pi and vi are positions and velocities along the i-th axis, respectively.

1The eye-point is intended to be the reference spatial point where the platform motion is applied; in this
dissertation, it corresponds to the position of the head of the driver, where the vestibular system is located.
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The complete vestibular system is then ΣV = {AV , BV , CV , DV }, where

AV =







ASCC 0 0

0 AOTO 0

0 0 AI






BV =







0 BSCC

BOTO

BI






(3.54a)

CV =











CSCC 0 0

0 COTO 0

0 0 I
0











DV =











0 DSCC

DOTO

0

0 I3











(3.54b)

and the state, input and output vectors are, respectively,

xV =
�

xT
SCC xT

OTO
xT

I

�T
∈ R21 (3.55)

uV =
�

ax ay az φ̇ θ̇ ψ̇
�T
∈ R6 (3.56)

yV =
�

yT
SCC yT

OTO
β T xT

I β̇ T
�T
∈ R18, (3.57)

ySCC =
�

ˆ̇φ ˆ̇θ ˆ̇ψ
�T

ySCC =
�

âx ây âz

�T
. (3.58)

Finally, the system is discretized with a zero-order old method, thus obtaining

xV EST (t + 1) = AV EST xV EST (t) + BV EST u(t)

yV EST (t) = CV EST xV EST (t) + DV EST u(t), t ∈ Z. (3.59)

3.3 Complete MPC model: mechanical and vestibular

systems series

The vestibular model (3.59) is a key feature for the MPC algorithm, but has to be integrated

with a mechanical model of the platform. As proposed by Dagdelen et al. (2009), it is

reasonable to consider as a complete model for the procedure the series between the

mechanical and vestibular model. The linear accelerations and angular velocities of the

real vehicle chassis are computed by a simulation software and then provided to the

platform motion controller; the simulator is then moved accordingly, and that is the

motion perceived by the on-board driver. A schematic is reported in figure 3.11. That

being, the mechanical system acts like a “pre-filter” for the signals that will then be

perceived by the pilot: in the ideal case, a precise model of the specific platform in use
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Figure 3.11: Vestibular and mechanical models cascade.

should be integrated with the vestibular model.

The present dissertation aims to an higher level of abstraction, hence the mechanical

model cannot be so specific. D’Ambrosio (2010) proposed a generic second-order, LTI

system as mechanical model for each DOF; with this approach, it is still necessary to set

a proper value for the damping factor ξ and the natural frequency ωn, increasing the

tuning overhead (it may not be that immediate to derive such parameters); more, it is

better to keep the model dimension as low as possible, to ease the task of the solver. For

these reasons, together with the robustness of the MPC framework to (not too large)

errors in the model, a one-step-delay model has been chosen as mechanical description

for each DOF, with matrices

Am,ai
= Am,ωi

=

�

1 0

0 0

�

, Bm,ai
= Bm,ωi

=

�

0

1

�

, (3.60a)

Cm,ai
= Cm,ωi

=
�

0 1
�

, Dm,ai
= Dm,ωi

= 0, i = x , y, z. (3.60b)

The complete model

Σm = {Am, Bm, Cm, Dm} (3.61)

has as state xm the direct sum of each of the states of systems in (3.60), so xm ∈ R12:

the inputs are the same of system (3.59), and the outputs are the inputs delayed by one

sample step.

3.3.1 Series system

The series connection of (3.61) and (3.59) yields to the system Σ with matrices

A=

�

Am 0

BV EST Cm AV EST

�

B =

�

Bm

BV EST Dm

�

(3.62a)

C =
�

DV EST Cm CV EST

�

D =
�

DV EST Dm

�

. (3.62b)

The resulting discrete system has thirty-three state variables, making the real-time MPC

application a challenging task: this has to be taken in consideration in choosing the QP

solver and in the implementation phase.
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3.4 Optimization strategy

In section 3.1.5, it has be shown how the considered MPC problem can be expressed as a

Quadratic Programming problem with constraints. The presence of the latter ones makes

impossible to find an analytical resolution of the problem, hence the use of appropriate

solvers is necessary: from the implementation point of view, the Quadratic Programming

solver becomes the core of the MPC algorithm. In the application at hand, there are

strict real-time requirements, since fast dynamics (control frequency of 100 Hz) call for

small computation times: a generic QP solver is too limited so specialized algorithms that

exploit the particular structure of QPs arising in MPC are needed. These can be divided

in two main categories, offline and online solvers.

The principle of offline optimizers is to precompute a solution for all the possible

instances arising in the problem. In this field, Explicit MPC is a widely used technique.

First proposed by Bemporad et al. (2002), the optimization step is computed offline before

applying the control algorithm to the process. The rationale is to use the constraints to

partition the state space in polyhedral critical regions in each of which the optimal control

law is an affine function of the state. In this approach, only the critical regions and the

parameters of the corresponding affine functions need to be stored, while the online

computational effort is limited to the evaluation of the region which the current state

belongs to and its correspondent affine function. The drawback of the method is that it

can only been applied to low-dimensional problems, since the offline computation burden

has exponential growth in the size of the problem and the number of regions increases

with the number of constraints, making the evaluation slower. Moreover, the offline

computation makes the online tuning very difficult, and this is an important disadvantage

for the specific application, since the presence of the human driver in the loop makes the

tuning phase crucial. Pannocchia, Rawlings, and Wright (2007) propose a suboptimal

solution to reduce the problem complexity, but in the same work it is remarked that

in practice, this offline approach is useful for SISO problems with small Np, but as the

problem dimensions increase in terms of states, inputs, outputs and prediction horizon,

other approaches should be preferred.

On the basis of such considerations and given the characteristics of the MC problem,

the use of online QP solvers has been preferred in the specific application at hand. On-

line, quadratic optimization for MPC can be successfully addressed by using algorithms

belonging to two main categories, namely

1. Interior Point (IP): these methods exploit the convexity of the cost function and

have polynomial complexity (Wright (1997)). IP methods are suitable for dealing
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with linear and quadratic programming problems and the bound on the complexity

is an ideal feature in the MPC case, however, they lack effective hot-start strategies,

i.e. the capability of exploiting the results from the QP solved at the previous step to

obtain a “smart” starting point for the current QP, hence reducing the computational

effort. Studies on this topic have been carried on (e.g. see Wang and Boyd (2010)

and Shahzad and Goulart (2011)), but a general, efficient solution has not yet

emerged;

2. Active Set (AS): inspired by the same idea at the base of the explicit approach, and

expressible both in primal (Gill, Gould, Murray, Saunders, and Wright (1984a); Gill,

Murray, Saunders, and Wright (1984b)) and dual (Goldfarb and Idnani (1983);

Bartlett and Biegler (2006)) form, these methods aim at finding the current critical

region without a pre-computation phase. Inside that region, the QP solution depends

affinely on the state of the problem. Despite the fact that polynomial complexity is

not always achieved (the worst case is exponential in the size of the problem, as

proved by Klee and Minty (1972)), AS methods provide a hot start strategy based on

the hypothesis that the active set does not change much from two subsequent QPs

during the MPC process. By moving along directions derived from the parameters

from the old problem to the new one, exploiting the convexity of the parameter

space and considering only a subset of constraints to reduce the complexity of the

problem, intermediate QPs are solved, until the solution of the global problem

is found. In case of boundary crossing of the current set, the new active set is

calculated online.

After having analyzed different solutions, an Active Set method has been chosen to deal

with the MPC problem described in this dissertation.

3.4.1 Online Active Set strategy: qpOASES

Going a bit more into the details of classic AS strategies, the idea is that at time t of

the MPC procedure, there exists an optimal solution ∆U∗ minimizing (3.23), to which

correspond specific values of vector c in (3.22) and constraints vector b in (3.27), both

dependent on the state x(t). Note that starting from an optimum point the feasibility

at the start of the iterations is assured. At the next time step, the “initial state” for the

problem is x(t + 1), the corresponding problem parameters c(x(t + 1)) and b(x(t + 1))
are calculated and the new solution ∆U∗,new has to be computed. At this point, to reduce

the complexity of the problem, only the set of constraints that are active, i.e. satisfied by

equalities are considered, and the corresponding QP problem is solved. The feasibility
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of this intermediate solution for the general problem has to be verified, as well as its

optimality; in case one of this two conditions doesn’t hold, new constraints are added

or removed, and the process iterated until an optimal solution is found. A large body

of literature on this method (derived from simplex) can be found, e.g. in the works by

Nocedal and Wright (2000) and Bartlett, Biegler, Backstrom, and Gopal (2002). However,

it is clear from this simple sketch how the complexity can grow exponentially when a

large number of constraints is present and only few (at worst one) are added or removed

at each iteration.

The chosen AS algorithm has been proposed by Ferreau et al. (2008), and has features

that exploit the structure of a QP problem derived from MPC. Here the main idea is to

introduce a smart recalculation way that grants to move on a “feasible” line from x(t) to

x(t + 1), estimating the progress through the new overall optimum when upgrading the

c and b vectors while keeping all the intermediate problems feasible: all the steps from

the old optimal solution to the new one are carried on along homotopic variations of the

parameters. KKT matrix and Lagrangian multipliers are implied in the procedure (see

Boyd and Vandenberghe (2004) for details on these fundamental elements of optimization

theory): at each iteration the homotopy has a maximum step length that can be calculated,

once the maximum step length is reached the new optimum is obtained. This interpretation

of the AS method is specifically thought for MPC purposes. In fact, in such kind of problems

it is reasonable to assume that the system behaviour does not have dramatic changes

during two successive time steps. Consequently, the corresponding solutions and active

sets are close, thus motivating an homotopy-based approach, that can provide a noticeable

improvement in the real-time performance.

The proposed method has a freeware C++ implementation by Joachim Ferreau and

the OPTEC group at University of Leuven, qpOASES (Optec, 2012), a ready-to-use pack-

age with real-time capabilities that offers some useful solutions for matching different

real-time requirements, as the tunable limitation of the maximum number of active set

recalculation per sample step and heuristics to assess the time required to complete the

current optimization calculation, while limiting the possibilities of infeasibility if the pro-

cedure is stopped before reaching the optimum. This last feature is particularly interesting

when hard real-time is requested, and is based on the idea that the iterating QPs are

granted to be feasible by themselves, even it is not sure if they could be feasible, despite

being sub-optimal, for the overall problem: by estimating the time that a change of active

set requires, it is possible to evaluate if the problem could be solved in the sampling time

or not, in this case the procedure is interrupted and a new search is started through a

new homotopy to the new starting point (i.e. the new provided or estimated state of the
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state space model) for the next time interval. If this new search is fast enough, previous

computation can be continued to find the optimal solution at present time and apply the

calculated input to the system, otherwise a recovery solution has to take place before the

procedure could resume with the new calculated input. Major analysis and details can be

found in Ferreau (2011).

3.5 Rationale and remarks

There are some important aspects of the MPC algorithm realized for the Motion Cueing

problem. As confirmed by the implementation that will be illustrated in the next chapter,

the majority of the driving simulator platforms come together with position controllers

that regulate their dynamic behaviour. Typical industrial PLC with ad-hoc implementation,

this devices have to be considered as black-box elements in the system: it is very rare

the case where explicit information are provided. The task of a general-purpose Motion

Cueing algorithm is then not to directly control the actuators, but to generate reliable

trajectories to be passed to this position controller. Our algorithm has been thought with

this aspect in mind, and model (3.62) has outputs and inputs coherent with this idea.

The conceptual scheme of the MC procedure is summarized by the block scheme in figure

3.12, and is composed by the following steps:

1. obtain the current useful vehicle states d, i.e. translational acceleration and angular

velocities calculated on the driver’s eye-point, from the simulation software;

2. obtain the perceived acceleration r by filtering d via the vestibular system model,

thus generating the reference signal for the MPC algorithm;

3. compute via MPC the displacement signal p to be passed to the platform control

system to achieve the desired behavior on the eye-point.

d Vestibular
model

Vestibular
model Cost Function

Optimization

MPC based Motion Cueing

rScaled traslational acceleration
and rotational velocities

from simulation

p Platform Control
System

Figure 3.12: Proposed MPC algorithm for Motion Cueing.

The proposed model is LTI. This is surely an approximation of the reality, and it is

trivial to deduce, even from the brief details given about its physiology, that the human
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vestibular system and the interactions between its elements are most likely non-linear.

Two main reasons lead to accept this approximation

1. nonlinear MPC is still a challenging task: research on the topic as been carried on

over the years (Mayne and Michalska, 1990; De Nicolao, Magni, and Scattolini, 2000;

Camacho and Bordons, 2007) and solution packages have been implemented, like

ACADO toolkit (ACADO Toolkit, 2012), considering nonlinearities in the model,

in the cost function and in the constraints. Nevertheless, this is still a great challenge

when applied to practical problems, especially when hard real-time is required. In

this sense, Quadratic Programming is a much more affordable task, and is by now

preferable, letting the robustness of receding horizon approach compensate for

imprecise models;

2. model identification of human organs is challenging, and the experiments by them-

selves can be tricky: for the vestibular system the complexity is increased by the

difficulty to derive reliable measurements and estimations. These drawbacks justify

the choice of simpler, linear models that can have a frequency behaviour compatible

with the reality.

To assure the reliability, the choice of the model has been made in collaboration with a

professional otolaryngologist.

As can be seen by analyzing the structure of (3.3), it is necessary to produce reference

trajectories for each of the output variables. This can be done by using the simulation
environment, where perceived transactional accelerations and angular rates are generated,

and then scaled prior to be used in the MPC algorihm: in this sense, state estimation is

not a problem since each physical quantity that may be of interest is directly available.

As far as the design of the MPC algorithm is concerned, it would clearly be convenient

to make use of the widest prediction/control window possible, if reliable information

on the future driver’s behavior is available. However, hard real-time constraints and

the possible lack of capability to predict the driver’s behavior may limit the length of

the prediction/control window in practical situations. For these reasons, to design a

general purpose Motion Cueing algorithm, it is preferable to first provide an effective

algorithm where information about the future driver’s behavior is not required and where

a small prediction window is used. In the proposed solution, the MPC is designed to

keep the reference trajectory constant along the prediction interval, and the length of the

window Np becomes a tunable parameter that can be varied to obtain the desired tracking

performance. This is a common strategy in MPC-based tracking problems for system with

slow dynamics (Maciejowski, 2002): this is not properly our case, but keeping Np small
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enough gives in any case good results, and the variations of that parameter becomes a

really useful element in the overall tuning procedure.

A valuable MC algorithm must include a Washout Action to keep the platform within its

operational limits. MPC provide an alternative to the classical, high-filtering procedure by

imposing constant zero references for the position of the all six DOFs and for the velocities

of the longitudinal ones are used. This is an effective realization of Washout, easy to

handle and to modify on the fly: in particular, playing on soft and hard spatial constraints

could lead to a platform exploitation impossible to reach with classical procedures.

By integrating the gravity effect inside the model as described by (3.50) and (3.54), the

low-frequency tilt coordination correction is automatically achieved giving an important

contribution to the tracking of the perceived simulation signals. This fact can be seen as

one of the major advantages of the MPC approach to the design of the motion cueing

algorithm, namely, a tilt coordination correction can be obtained as the result of a model

based optimization procedure and not a simple coupling of filters, whose frequency

behaviour could be harder to integrate. In such conditions the low-frequency component

of the desired perception signal is covered by tilt coordination and the high-frequency

component is reproduced by using the translational DOFs. Note that it is possible to add

constraints in the cost function to limit the rate of the tilt coordination and hence to limit

in a simple way the undesired rotation that occur when tilting.

Beside the already explained role of Np, the weights in (3.3) become the tuning pa-
rameters of the MC algorithm, and are manipulated to achieve a satisfactory reproduction

of the perceived accelerations and velocities in the simulated vehicle. Here the key fact

is that the user has a direct knowledge of which physical quantities will be affected by

the variation of a certain parameter, hence the overall procedure becomes way more fast

and reliable than the classical one. Moreover, acting on the weights of the cost function

in the tuning phase allows to modify a specific behaviour of the platform while letting

other characteristics barely unaffected (at least in presence of little variations). As an

example, consider the case in which one wants to limit the longitudinal displacement

while keeping unchanged the tilt coordination: an increase in the position weight will

cause lower displacements with almost the same pitch usage and a tracking of accelera-

tion very similar to the original. Tilt coordination is another feature that can be easily

regulated by acting on weights. Practical examples will be given in the next chapter. The

latter coefficients that complete the tuning capabilities are the scaling factors, useful to

allow an effective usage of the platform working area.

The problem formulation is robust and rarely leads to infeasibility (as proven by many

practical tests). In any case, a back-up strategy is provided, where at each step the first
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samples of the calculated optimal sequence are stored in a buffer and used in case of

infeasibility of the subsequent problems: in case of repeated infeasibility, the platform is

safely stopped.





4
Application: VI-DRIVESIM

The Model Predictive Control-based Motion Cueing algorithm has been desgned keeping

in mind the practical implementation. This has been made possible by the collaboration

with VI-GRADE S.R.L.(VI-Grade, 2012), renowned international company with a solid

and long-lasting experience in the field of software dynamic simulation. VI-GRADE is

one of the promoters of the entire project, and made available an innovative dynamic

simulator together with the expertise in vehicle simulation. The challenge was particularly

interesting, since the device has a pretty new concept and the basic MC algorithm it was

provided with showed major limitations. The MPC procedure previously exposed has

been fully implemented in high-level programming language (C++) and interfaced via a

GUI to tune online the parameters.

We will give now a in-depth presentation of the device, and some expedients adopted

to ease the implementation, taking advantage of the characteristics of the platform.

Results from test carried on by a professional driver on the testbed will be provided and
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analyzed, as well as simulation studies with the combination of effective reference signals

for exploit better the predictive capabilities. Finally, the possibility of and hardware,

FPGA-based implementation of the procedure will be discussed.

4.1 The VI-DRIVESIM platform

VI-DRIVESIM is a set of modern tools made available from VI-GRADE with the aim of

providing automotive OEMs with the instruments to simulate at best new products (both

brand-new vehicles and innovative components for the existing ones) without the need

of realizing a prototype and test it in a real track. This idea greatly improves flexibility in

the design phase, exploiting the potential of the Hardware-In-the-Loop paradigm (Raman,

Sivashankar, Milam, Stuart, and Nabi, 1999; Sung Chul, 2005; Taehun, Jihoon, Kihong,

Jeongho, Kyu, Kangwon, Soo-Jin, and Young-Jun, 2006) and reducing the expenses.

The package consists of softwares for simulate the vehicle dynamics physical engine

as VI-CARREALTIME, which provides a highly reliable representation of the real vehicle

behaviour, and driving simulators, one of which is dynamic. In figure 4.1 the platform

used as testbed in this dissertation is shown. Its peculiarity is in the mechanical structure:

by using electric linear actuators instead of the classic, hydraulic hexapodal structure, it

is able to achieve satisfactory results in physical simulation with a relatively small size

hardware (4m long, 5.5m wide, 3m high, considering maximum displacements), that

can fit standard laboratories environments whereas it has been seen that traditional,

large dimensional, hexapodal platform can require dedicated hangars for high-level

performances: table 4.1 reports a qualitative comparison with traditional devices.

VI-DRIVESIM Equivalent hexapod
Base area 1 2
Volume 1 4

Power consumption 1 2
Stroke 1 1
Rate 1 1

Weight 1 3

Table 4.1: Qualitative comparison between the testbed platform and a classic hexapod.

The architecture is based on an upper plate, where the car’s cockpit and seat is installed,

able to move in vertical direction and rotate along pitch and roll angles, linked to the base

of the device, which can move along longitudinal and lateral directions and perform yaw

rotations. A deeper observation of figure 4.1 can help the comprehension of the basic

structure. It is easy to understand that the base moves along three completely decoupled
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Figure 4.1: VI-DRIVESIM dynamic platform.

degrees of freedom, while the three DOFs of the upper plate are partially coupled. The

screen covers more than 180 deg and moves in agreement with the platform to guarantee

full immersion of the driver in the virtual environment, this aspect is detailed in figure

4.2. Finally, force feedback on the steering wheel and the braking system enhances the

“driver’s feeling” of the vehicle behaviour.

The platform dynamic performance reported in table 4.2 highlights the limitations of

the operational space, with maximal linear excursions of 1 m. This fact makes the role of

the MC algorithm crucial. Note how the three DOFs related to the base, and yaw more

than the other, have much wider working area. For what concerns the coordinate system,

x , y and z correspond to longitudinal, lateral and vertical directions; pitch θ is a rotation

around y axis, roll φ is around x and yaw ψ is around z. The MC strategy has to provide

the displacement references to the control system of the platform, which is assumed to

be able to perfectly track the reference signals, with a fixed time delay. In the specific

case, the position controller is an industrial PLC, GEO BRICK from DELTA TAU LTD (Delta

Tau Data Systems, 2012). It is a state-of-the-art controller for this kind of applications,

and is used in the field of simulators also for aerospace purposes. From our point of view,

this is a black-box controller, whose operating logic is unknown. The MPC algorithm will

provide the input for this component, whose task is to position its end-point (the spatial
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Figure 4.2: VI-DRIVESIM: driver positioning.

Range Position Velocity Acceleration
x 1m 1.3m/s 3.3m/s2

y 1m 1.3m/s 3.6m/s2

z 0.5m 0.9m/s 4.9m/s2

Roll 30deg 112deg/s 600deg/s2

Pitch 24deg 61deg/s 600deg/s2

Yaw 50deg 61deg/s 240deg/s2

Table 4.2: Platform performance.

point where the control is actuated) to the desired location. The end point is, in this case,

the eye-point, i.e. the position of a virtual “vestibular” sensor located in the center of the

head: the aim is clear, as if the control acted directly on the vestibular system so that the

produced perceived signals are as close as possible to the ones actually sensed.

4.2 Implementation

The test simulator requires a control frequency of 100 Hz, commensurate with the involved

dynamics. This is a challenging task indeed, from the implementation point of view. Model

(3.62) has a remarkable size by itself, and with a control horizon Nc it becomes a QP

problem of kind (3.23) and size Nc × nin; the correspondent number of constraints is,

from (3.27),

(2× Nc × nin) + (2× Nc × nin) + (2× Np × nout)
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hence the real time request is non-trivial. First of all, the model is reduced to four
sub-models, corresponding to four QP problems of smaller dimensions. In this way,

parallelizing the calculations (e.g. using different synchronized PCs) the overall elapsed

time is significantly reduced. As seen in the previous section, the architecture of the

considered platform is such that three of the DOFs are naturally decoupled. For what

concerns the z direction, we have that at its maximum excursion it is strongly coupled

to pitch θ and roll φ: the last 20 cm are obtained by extending together the actuators

responsible for those angular motions. But if we set a constraints on the maximum vertical

position to 0.3 m, we get that the motion is handled by the vertical actuator only, and

this DOF becomes decoupled. It is intuitive to understand that the vertical direction is

less incisive in a car-oriented dynamic simulator with respect to the other two linear

DOFs, and as results from table 4.2 it would be in any case 1/3 of x and y maximum

displacement, an admissible approximation. On the other hand, this is coherent with

the linear approximation (3.41) where the absence of angular influence on az is evident.

Nevertheless, it is necessary to consider a coupling between x and θ on one hand, y and

φ on the other to take into account the tilt coordination (evident from (3.41)): the first

one is of particular relevance in the four-wheels framework, hence it will now be given a

deeper insight of the realization of this subsystem, that we call Σxθ . The construction

of the model is similar to the one already described in the previous chapter. First of all,

the mechanical retard is considered the same in all the DOFs without interaction, as in

equation (3.61): from the model for the single DOF given in (3.60) we obtain

Σm,xθ = {Am,xθ , Bm,xθ , Cm,xθ , Dm,xθ} (4.1)

where

Am,xθ =

�

Am,ax
0

0 Am,ωy

�

Bm,xθ =

�

Bm,ax
0

0 Bm,ωy

�

(4.2a)

Cm,xθ =

�

Cm,ax
0

0 Cm,ωy

�

Dm,xθ = 0 (4.2b)

For what concerns the vestibular model, the procedure is similar and recalls what has

been previously presented. The model for the involved semicircular canals is (3.44) for

i = y (pitch corresponds to a rotation around the lateral axis), for the otoliths in the

longitudinal direction tilt coordination must be included. Following the reasoning in

equations (3.48)–(3.49)–(3.50)–(3.51) relative to only the two Degrees of Freedom of
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interest, we have

ax = Hx

�

ax

βy

�

=
�

1 g
�

�

ax

θ

�

. (4.3)

By augmenting the state as xOTO,xθ ¬ [x
T
OTO,x θ]

T and setting uOTO,xθ ¬ [ax θ̇]T , the

system matrices are

AOTO,xθ =

�

AOTO,x g

0 0

�

BOTO,xθ =

�

BOTO,x 0

0 1

�

(4.4a)

COTO,xθ =
�

COTO,x 0
�

DOTO,xθ =
�

DOTO,x 0
�

. (4.4b)

The output here is the perceived longitudinal acceleration with the tilt contribution

included, yOTO,xθ = âx . As before, integration is necessary to explicitate velocities and

positions and is obtained via the integral system

AI ,xθ =

�

0 1

0 0

�

BI ,xθ =

�

0 0

1 0

�

. (4.5)

Combining all together, the vestibular model related to the longitudinal direction is

AV,xθ =







ASCC ,y 0 0

0 AOTO,xθ 0

0 0 AI ,xθ






BV,xθ =







0 BSCC ,y

BOTO,xθ

BI ,xθ






(4.6a)

CV,xθ =











CSCC ,y 0 0

0 COTO,xθ 0

0 0 I
0











DV,xθ =











0 DSCC ,y

DOTO,xθ

0

0 1











(4.6b)

with state, input and output

xV,xθ =
�

xT
SCC ,y xT

OTO,xθ
px vx

�T
(4.7)

uV,xθ =
�

ax θ̇
�T

(4.8)

yV,xθ =
�

ω̂y âx θ px vx θ̇
�T

. (4.9)
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This latter model is then discretized to system ΣV EST,xθ and combined in series with (4.2)

to obtain the system Σxθ

Axθ =

�

Am,xθ 0

BV EST,xθCm,xθ AV EST,xθ

�

Bxθ =

�

Bm,xθ

BV EST,xθDm,xθ

�

(4.10a)

Cxθ =
�

DV EST,xθCm,xθ CV EST,xθ

�

Dxθ =
�

DV EST,xθ Dm,xθ

�

. (4.10b)

With the same procedure, system Σyφ can be obtained, while Σz and Σψ are straight-

forward. The two coupled systems have size 11, the vertical one has size 6 and the yaw

one 5 (the distinction between the latter is due to the number of integrators, z DOF

has to be integrated twice to get the position while ψ only once). The four consequent

subproblems have much smaller dimensions and allow for faster computation. Combined

with efficient multi-threading parallel solutions the computational burden is improved

with respect to the complete system, and the decoupling approximation becomes an

excellent compromise to get fast real-time performance.

For what concerns the realisation of the software, there has been a first implementation

with MATLAB to validate the procedure and to have a useful tool for simulation purposes,

which has then evolved to a more efficient and complete C++ implementation, but the

computational core, i.e. the QP solver qpOASES, has always been compiled from C++
sources, available online (Optec, 2012). In this way the critical step of the algorithm has

always worked at its best in term of computational time. Nevertheless the solver has to

be tuned as well as the MC parameters. In particular, the fundamental features to be

regulated are

1. the hot-start strategy. As stated, this particular solver has been chosen among others

because it is based on an active set strategy, which is capable of exploiting the

results of the previous optimization step to speed up the current step. Despite the

fact that disabling this feature would ease the tuning setup (solving a completely

new problem at each step would ideally make possible instantaneous change in

the weights and constraints), the fast system dynamics involved require it to be

enabled;

2. the maximum number of set recalculations. In subsection 3.4.1 it has been shown

how the idea at the base of the optimizer allows to move from the previous solution

to the new one via a path in the feasible space along which all the QPs are granted

to be feasible; each new QP requires the calculation of a new active set. This, in

the worst case, can be done an exponential number of times in the size of the

problem, so in the package it is possible to set explicitly the maximum number
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of recalculations allowed. This enables an heuristic that try to force the problem

to be solved respecting this parameter, possibly at the expenses of single iteration

time. Setting a reasonably small value for this number has proved to improve the

calculation time, with respect to the default, “high” value;

3. the maximum allowed CPU time. This is an interesting feature of qpOASES: from the

analysis of the previous iteration, the solver is able to derive an estimation of the

most likely time requested for a single, intermediate iteration (i.e. set recalculation)

and, together with an heuristic which estimate how “near” is the algorithm to the

correct active set, it is able to evaluate if the optimum calculation will require more

time than it is specified. The value has been set to a safety value that allows for the

recovery actions to take place.

The last two points are critical: together with the case of infeasibility of the problem,

these are the situations where the solver fails with consequent unsafe conditions. These

are handled according to the following rationale

1. at each iteration, even if only the first optimal input is applied, the first part of the

sequence is saved in a buffer. If the solver fails, the other predicted and saved inputs

are fed both to the platform and as starting point for a new QP problem, letting the

algorithm iterate to regain feasibility;

2. if the solver is not able to calculate a feasible solution, the platform is safely taken

back to the neutral position while a new QP problem is initialized from scratch.

This procedure has proved to be an affordable way of handling dangerous conditions.

The implementation of the tuning phase follows the same principle. The Motion

Cueing procedure is tuned by varying parameters as weights, the constraints, the control

and prediction horizons: all elements that modify the structure of the related QP problem.

First of all, as already highlighted, the reference in the prediction horizon is held constant

and equal to the current value: this simplifies the problem and imposes an initial phase

to find the correct size in order to have a satisfying tracking action as well as affordable

computation time (this parameter determines the dimension of the QP), while assuring

that the problem remains feasible. Moreover, the control horizon is set equal to the

prediction one, so that we have one less parameter to regulate: it would be easy, if

needed, to introduce this feature in the future. To overcome the criticalities of on-the-fly

modification of the structure, the procedure is realized in order not to directly apply the

new parameters to the device. Instead, when all the regulations are done and confirmed,

the platform is carried back to its neutral position while the parameters update, a new
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QP starts and regains full operativity. At this point, the control is applied again to the

platform in a safe way by varying a scale factor.

All this procedure would be very complicated if managed only by “console” commands,

so the realisation of a Graphical User Interface was the logical subsequent step. Once

again the first prototype has been realized in MATLAB to validate the procedure but the

final aim of producing a tool as close as possible to a professional one pushed to a full

implementation in high-level programming language. Having the core solver already

implemented in C++ and the great real-time capabilities of this language made its choice

obvious, so all the algorithm has been converted, and a new GUI produced.

To take advantage of the parallel structure of the problem, the implementation runs

on a LINUX-based operative system with features optimized for the parallel calculus

provided by CONCURRENT (Concurrent Real-Time, 2012). The interface with the platform

is achieved by tools from ANSIBLE MOTION (Ansible Motion, 2012).

4.3 Results

Experimental results obtained during a professional driver training session on the platform

are reported in this section. The simulated vehicle is a “hot hatch”-class car, namely a

Volkswagen Golf R “digitally” boosted to have a maximum power of 350 HP. The virtual

test track is a digital version of the Calabogie track in Canada; figure 4.3 shows a sketch

of the track. As previously stated, the test platform is almost decoupled for all the 6 DOFs,

so we analyze the dynamics of the subsystems separately. As an example of coupling

effects, particular attention will be given to longitudinal-pitch one, hence examining the

quality of longitudinal acceleration, that has to be reproduced as faithfully as possible

(in terms of driver sensations) by operating the platform with longitudinal and pitch

motions. The behaviour of the other subsystems will be shown as well, to give an idea of

the whole platform exploitation. Insights on of the effect of the tuning procedure will

be given, disclosing the effects of parameters variations. A simulation example will be

shown to verify the improvement achievable by applying the “look-ahead” (i.e. prediction)

technique.

4.3.1 MPC-based vs. classical Motion Cueing: motion inversion

Beside the tuning difficulties, one of the major problems for classic MC is the calibration of

the Washout Action. Having no possibility to specify a priori the physical limitations of the

device, the only available choice is to introduce a conservative action to keep the platform

as near as possible to the center, to assure safe conditions. This is traditionally achieved
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Figure 4.3: Calabogie track.

by a high pass filter set after double integration (i.e. on positions). Beside the fact that in

most cases the platform is poorly exploited, this filtering is likely to determine motion

sickness: by eliminating a slot of low frequencies, it may happen that the continuous

component of accelerations signals, even in presence of tilt coordination contribution

(traditionally set at low values as stated in Chapter 2), become close enough to zero to

determine an inversion of the sign of the actual acceleration with respect to the visual

cue. This is clearly a major problem of the classic approach. Model Predictive Control

greatly improves this situation by the introduction of constraints on position, that make

explicit the limitations the platform is subject to. In this way the reference trajectories

are generated by an algorithm that explicitly knows the current position of the eye point

and how far it is from the limits, and automatically determines the appropriate behaviour

to preserve both safety and perception reliability. More, it is possible to enable a simple

constraint directly on the sign of the acceleration, to double-check the coherence of the

motion. The effect of this feature is evident in figure 4.4, where the signal from a classic

algorithm is compared to the one produced by the MPC approach. The improvement is

evident, and the noticeable motion inversion is avoided with the optimal control algorithm.

4.3.2 MPC-based Motion Cueing: longitudinal - pitch coupling

Let’s now see in details the performance along the longitudinal direction. The motion

cueing algorithm is set-up so that the platform working area in the longitudinal direction

is exploited at best, while avoiding motion sickness due to the tilt coordination correction.



4.3 Results 65

Figure 4.4: Effect of MPC on motion inversion.

This latter statement cannot be proved by means of figures or measured data, nevertheless

the feedbacks from the professional drivers during practical tests have always been

satisfactory in this sense.

The specific values of the tuning parameters (weights) are not of primary importance,

but it is useful to specify the value of Np, that is Np = 30: at a control frequency of

100 Hz, it means a prediction horizon of 0.3 seconds. We recall that in the practical

implementation the future reference is kept constant in the prediction window.

In figures 4.5 and 4.6, tracking of the perceived accelerations and angular velocities is

illustrated, and the correspondent longitudinal and angular platform displacement are

shown in figures 4.7 and 4.8, respectively. It can be seen that the platform actually exploits

all of its operational area. It is worth remarking again that this is achieved without any

filtering action, as would be required in a classical, washout filters based approach. Also,

the perceived acceleration is tracked almost perfectly (figure 4.5) with a determining

contribution from tilt coordination. Focusing on the pitch displacement, tilt coordination

correction can clearly be seen and has a peak (absolute) value of 0.08 radians (ca. 5

degrees): this cannot be related to the suspensions dynamics, since the simulated car has

stiff components (comparable to a sport car). In this respect, it is of interest a frequency

analysis of pitch and longitudinal contributions to the global perception in the platform.

The comparison between the FFT of these two signals, reported in figure 4.9, shows that

the pitch action is responsible of the low frequency contributions only. The exploitation of

tilt coordination is another crucial feature of this MPC approach to Motion Cueing. As of

now, tilt coordination has been considered “a necessary evil” to reproduce low frequency

accelerations: basically obtained by a low-pass filtering action, the coupling with other
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motions has always been critical and very likely a cause of motion sickness, to the point

that drivers often ask for it to be disabled. The advantage of a safe introduction of this

feature is therefore evident: more, the presence of small-values perception thresholds
(the value of rotational velocities under which the motion is no more detectable by the

semicircular canals, and the same principle holds for the otoliths) contribute to set smart

constraints to improve the overall feeling.
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Figure 4.5: Perceived longitudinal acceleration tracking with the best tuning configuration.

The tuning procedure followed to achieve such results is very intuitive and it is based

on the “natural interpretation” of the weights in the cost function. As stated, the crucial

step of the tuning is handled mainly via manipulation of the weights in the cost function.

As an example, let’s suppose that it is requested to limit the displacement in longitudinal

direction. To this aim, the weights values in x position are increased by 20%: to keep the

cost function at a value as small as possible, the displacement is consequently reduced,

but the optimality of the solution yields only to minimal losses in tracking performance

for the perceived longitudinal acceleration (figures 4.11, 4.10). It is worth noticing that

such performance degradation doesn’t come at the expenses of “perception quality” (the

produced signal is quite close to the reference) and does not introduce any discernible

acceleration inversion, as it would typically be the case in washout-based MC, due to the

presence of high pass filters.

Another interesting case is when it is requested to limit the effect of tilt coordination.

The request is not uncommon, many drivers are sensitive to this feature and prefer

to have it excluded to prevent simulator sickness. The procedure is analogous to the
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Figure 4.6: Perceived pitch velocity tracking with the best tuning configuration.
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Figure 4.7: Longitudinal position displacement with the best tuning configuration.

previous stated one, and the weight on pitch position is varied (+20%). This case needs

a further regulation: to limit the tilting effect means a greater demand for longitudinal

displacement, to help compensating the loss of low frequencies. So, the scaling factors

of the vehicle accelerations are increased, otherwise there would be the risk to saturate

the longitudinal actuator and make the problem infeasible. Results are in figure 4.12:

the tracking is still satisfactory and the pitch usage reduced. Note that the longitudinal
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Figure 4.8: Pitch displacement with the best tuning configuration.
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Figure 4.9: Longitudinal displacement and pitch frequency contribution to longitudinal accelera-
tion: tilt coordination takes effect on low frequencies.

displacement is comparable to the one coming from the setup with tilt coordination active,

which have lower scaling factor: in proportion, the overall platform exploitation favours

the linear displacement.

It is of particular interest to study how the variation of prediction horizon length

affects performance. By considering constant reference values for outputs along this time



4.3 Results 69

55 56 57 58 59 60 61 62 63

−0.8

−0.6

−0.4

−0.2

0

0.2

[m
 /

 s
2
]

time [s]

Perceived Longitudinal Acceleration comparison

 

 

Ref. long. perceived acc.

long. perceived acc. reduced displ.

long. perceived acc. full displ.

Figure 4.10: Perceived acceleration tracking, reduced longitudinal displacement (tuning effect).
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Figure 4.11: Reduced longitudinal displacement (tuning effect).

slot, it is clear that an error is introduced, hence this parameter has to be carefully set,

depending on the particular track involved and the ability of the driver (a non professional

driver will have reduced dynamics and a lower prediction time could be more suitable,

and viceversa). The effect of a constant reference signals for prediction can be thought

as having a sort of “conservative” effect on the computed controls. With large Np, at

each step the algorithm is instructed to find a compromise to achieve tracking within



70 Application: VI-DRIVESIM

an interval long enough to allow a smarter exploitation of the platform. In this sense,

tilt coordination is better exploited and linear displacements are limited, so that more

working area will be available for possible future needs. If Np is too small, the signals

over the prediction time are very close to the real future value, hence a better tracking is

provided, but this comes at the cost of an increased probability of saturating the actuators,

especially the linear ones (having a more prompt time response, lower look-ahead time

will make the algorithm prefer this kind of actuation): the consequence is the infeasibility

of the problem. In figure 4.13 the effects of an increase and a reduction on that value

are shown. We can see that increasing Np (+50%), the tracking performance is not

significantly affected in terms of perceived acceleration but the platform exploitation is

quite different, with a more intensive use of pitch rotations. On the other hand, a small

prediction window (−50%) improves the tracking quality but at the cost of safety: at 11

s the problem becomes infeasible and the procedure is stopped. Note how in this latter

case tilt coordination is disregarded by the algorithm.

In any case, it is worth emphasize the fact that the value of Np directly affects the

resolution time, hence it has to be chosen as small as possible to this regard, while assuring

the convergence of the optimization.

Remark 4.3.1. Note that within the implemented setup, each subsystem requires approxi-

mately 500 µs to be solved, hence the real-time constraint is fulfilled.

4.3.3 Other motion subsystems

The analysis of the longitudinal-pitch subsystem is significant to understand the effective-

ness of the proposed MPC method; in any case, for the sake of completeness we present

here an overview about the performance of the other subsystems.

Lateral acceleration and roll rotation are coupled as well as longitudinal and pitch:

in figure 4.14 and 4.15 samples of these signals are shown. Note that for quality of the

simulation, lateral acceleration is important for reproducing the sensation of the “nervous”

and abrupt fast dynamics that characterize the category of cars considered during turns

insertions: the acceleration has quick variation from high positive values to negative

ones. To the contrary, in this case the tilt coordination contribution has less importance:

low frequency accelerations in the lateral direction are less frequent, and mainly due to

particular track features (e.g. parabolic curves). Moreover, introducing a remarkable tilt

coordination in this direction could can be dangerous, e.g. in the presence of fast chicanes

where the necessity of fast repositioning makes the platform behaviour incompatible with

the low-velocity perceptive thresholds and is likely to introduce considerable false cues

with respect to the visual system (motion sickness). The effect of this consideration can
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be seen in figures 4.16 (lateral displacement) and 4.17 (roll displacement), where the

angular position is kept at low values. Note the higher frequency in this latter signal,

due to the reproduction of the impact of the track on the car suspensions related to track

imperfections, kerbs crossing and so on. Note in particular that when φ reaches high

values, they are likely to be “held” for a little time (with small, high frequency signals

superimposed): the effect is due to the simulation of a kerb crossing, a manoeuver that

force the vehicle to remain tilted until completed. In this subsystem the rotational DOF is

then more important for reproducing real features of the motion rather than “apparent”

ones.

Performance in yaw and vertical DOFs are now analyzed. As seen, these subsystems

are completely decoupled and don’t affect, neither are affected by the behaviour along the

other DOFs. Figures 4.18 and 4.19 represent the perceived yaw velocity and the platform

displacement for a sample of the telemetry. Yaw is particularly significant in the considered

testbed having a great operational area. The results show the great exploitation of the

platform capabilities, useful to reproduce the perceptions along the track turns. Observing

the simulator in action, the yaw behaviour showed another interesting feature: in certain

points of the circuit, after fast turns it happened that the algorithm forced the platform

to stay in an “intermediate state” between the maximum displacement reached and the

zero-position. This was a clear example of the prediction effect: the algorithm naturally

handles the platform position to allow for better exploitations, in case there could be

another turn. After a while, the platform was forced to regain the central position with

slow and smooth movement along yaw direction, a clear effect of the Washout Action.

Hence, MPC permits a better Washout in this sense too, “smartly” delaying its effects.

The z direction shows the results in figures 4.20 (sensed acceleration) and 4.21 (physical

displacement). This degree of freedom has both low and high frequency components: the

former help the driver in perceiving the varying altitude of the track (useful to train drivers

to new tracks), the latter, combined with the aforementioned pitch effect, contribute

to reproduce the sensations tied to the track conditions and the consequent effects of

the chosen components of the car (this feature can be useful to perform virtual test on

new-designed components, as suspensions or break, as well as different set-ups, avoiding

expensive on-road tests). Note that to exploit at best this capabilities, the track has to be

carefully reproduced (e.g. with up-to-date laser detections).

4.3.4 Using the prediction: simulation results

We want now to test the possible improvement if a valid reference signal is provided for

the prediction, i.e. not constant references. Notice that this is a preliminary study done
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by resorting to simulations only, i.e., the algorithm has not been tested on the platform

yet. It is assumed that a telemetry reference signal is available, hypothesis that can not

hold true in the a context. In figure 4.22 a prediction over a time interval of 8 s is used.

The tracking of perceived acceleration gives very good results, with optimal performance

and no sign of wrong cues, e.g. motion inversion is absent. Of particular relevance is the

exploitation of the working area: the knowledge of a reliable reference together with a

“wide enough” prediction horizon allows the algorithm for a maximization of the platform

capabilities, and this is revealed by the reduced displacement both in longitudinal and

pitch DOFs. In fact, prediction lets the procedure know in advance the behaviour of the

signal, hence the movements can be reproduced in an optimal way and does not need for

large displacements: in this sense, by lowering the weights in a smart way it would be

possible to improve the dynamics of the device.

Beside the need of the reference to track, using a non-constant prediction has the

drawback of increasing drastically the computing time for the optimal problem: as an

example, the previous shown results took about 410 seconds to run on a 60 seconds

telemetry on an I7, 2.67 GHz PC using MATLAB and qpOASES for the longitudinal-pitch

subsystem only. Following the idea proposed by Longo, Kerrigan, Ling, and Constantinides

(2011), a blocking strategy is introduced. The mechanism is simple: a wide prediction

horizon requires a large number of samples, hence the increase of Np makes the problem

very hard to be handled in real time, because of its size. For the reported example, 8

seconds at 100 Hz means Np = 800, with respect to Np = 30 used for the constant

prediction case. To reduce the burden, the blocking philosophy proposes to divide the

prediction horizon in different segments, with increasing sampling time. In this way,

by considering for instance 2 s at 100 Hz and 6 s at 20 Hz, a 8 seconds prediction

windows corresponds to Np = 230, 3 ÷ 4 time smaller than with the usual predictive

strategy. Figure 4.23 depicts the results obtained by implementing this approach with

the reported blocking setup, compared to the classical predictive approach. The tracking

performance is almost identical, and the pitch displacement as well; only the longitudinal

displacement slightly differs, but doesn’t seem to have a negative impact on the working

area exploitation. In this case, the calculation time was about 35 seconds for the same 60

s telemetry, with a medium optimal resolution time of 5 ms, on the same machine: beside

being a single subsystem, this strategy already works in real-time. Note that the weights

have to be adapted when blocking takes place, since lower control frequency means a

proportional increase in the weights to preserve the consistency of the problem.

These results are promising, but a strategy to compute real-time computation of

reliable references has to be studied.
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Figure 4.12: Comparison with different setup of tilt coordination: the tilt coordination is reduced,
while longitudinal displacement is unaffected. Weights have to be adapted to preserve feasibility.
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Figure 4.13: Comparison with different Np values: an increase limits platform exploitation (more
conservative control signal), a decrease makes the system faster but less robust.
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Figure 4.14: Perceived lateral acceleration tracking with the best tuning configuration.

10 20 30 40 50 60 70 80
−0.3

−0.2

−0.1

0

0.1

0.2

time [s]

[r
ad

 / 
s]

 

 

Reference roll perceivd vel.
Actual roll perceived vel.

Figure 4.15: Perceived roll velocity tracking with the best tuning configuration.
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Figure 4.16: Lateral position displacement with the best tuning configuration.
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Figure 4.17: Roll displacement with the best tuning configuration.
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Figure 4.18: Perceived yaw velocity tracking with the best tuning configuration.
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Figure 4.19: Yaw displacement with the best tuning configuration.
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Figure 4.20: Perceived vertical acceleration tracking with the best tuning configuration.
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Figure 4.21: Vertical position displacement with the best tuning configuration.
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(a) Perceived acceleration tracking.
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(b) Longitudinal displacement.
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Figure 4.22: Prediction results: despite the larger computation time, the tracking performance is
optimal with minimal use of the working area, that could afford a less conservative setup.
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(a) Perceived acceleration tracking.
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(c) Pitch displacement.

Figure 4.23: Comparison of prediction performance with and without blocking: the results are
comparable and suggests this approach to be valuable if a reliable reference is available.
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4.4 MPC hardware implementation on FPGA

Up to now, the importance of real-time performance for the Motion Cueing algorithm has

been stressed several times, and this is the most critical point with MPC. The proposed

approach has been able to reach the desired behaviour with some intuitions, like model

decoupling, ad-hoc setup of the solver and so on. In any case, other devices may require

different approaches: as an example, classic hexapodal structures cannot take advantage

of model separation, and more accurate modelizations of the mechanical system could lead

to much more complicated models and constraints. On the other hand, the performance

of VI-DRIVESIM could be improved by increasing the control rate and/or the model

complexity, as well as introducing the prediction. These observations lead to consider a

hardware implementation of the MPC paradigm.

The ideal hardware technology for this stage should be reconfigurable, in order to

allow for easy modification and update. In this sense the Field-Programmable Gate Array
(FPGA, figure 4.24) stands as a perfectly suitable platform for scientific computation with

the aim of deploying MPC for fast dynamic systems. FPGAs are a good alternative to

Figure 4.24: Example of FPGA: XILINX Virtex 6.

Application Specific Integrated Circuits (ASICs) for embedded MPC applications having a

cheaper cost for small volumes hardware, greater flexibility, and a shorter design cycle,

reducing the risk while still maintaining a high-power efficiency. First works on FPGA

suitability for constrained MPC were by Ling, Yue, and Maciejowski (2006), and different

practical applications have been proposed over the years (e.g. by Hartley, Jerez, Suardi,
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Maciejowski, Kerrigan, and Constantinides (2012)). One of the essential points is the

choice of the optimizing method. Recalling the classification in section 3.4, the choice

should be between Active Set and Interior Point methods. Lau, Yue, Ling, and Maciejowski

(2009) give an insight on the topic, as well as Jerez, Ling, Constantinides, and Kerrigan

(2012): while Active Set can be appropriate for low-dimensional problems, in the situation

at hand the best choice is Interior Point. First, AS has a worst-case complexity increasing

exponentially with the problem size, and in a context (floating point, single precision)

where the complexity in terms of calculations and cost is proportional to the number

of arithmetic operations (multiplication and division), having a polynomial complexity

bound is preferable. Moreover, with AS the size of the linear systems that need to be

solved at each iteration changes depending on which constraints are active at any given

time and in a hardware implementation this is problematic, since all iterations need to be

executed on the same fixed architecture. IP maintains a constant predictable structure

and is more suitable in this field. It is important to emphasize the fact that if the solving

algorithm is not properly chosen (and implemented), leading to a greater number of

arithmetic operations, the only way to improve the performance is to buy more powerful

hardware devices, which are much more expensive (the cost grows exponentially with

the size , with an estimated factor between 2 and 4).

By exploiting the structure of the problem, the procedure can be parallelized, deter-

mining acceleration of QP solvers for linear MPC. First investigations has been made by

Ling, Yue, and Maciejowski (2008), and the pipelining capabilities of FPGAs has been

studied in later works (Jerez, Ling, Constantinides, and Kerrigan, 2011a; Jerez et al.,

2012).

Given the characteristics of the present work about MPC for Motion Cueing, and in

particular the features of the testbed, this field of research has been seen with deep interest:

an hardware implementation would be an improvement per se, and the possibilities of

parallelizing the problem fit perfectly the practical needs. This part of the research has

seen the collaboration of the Control and Power Group of the Department of Electric and

Electronic Engineering from Imperial College London, in particular Dr. Eric Kerrigan1

an Juan L. Jerez2. The idea of the converting our implementation to FPGA follows

what shown in Jerez, Constantinides, and Kerrigan (2011b). Based on primal/dual IP

method (Boyd and Vandenberghe, 2004), the insight is the reorganization of the matrices

coefficients to achieve a particular sparse structure, the banded structure: this allows for

minimum residual method (Bernd, 2011) to be applied for the resolution of the consequent

linear systems, which has a solid, parallelized implementation in FPGAs. Another block

1e.kerrigan@imperial.ac.uk
2juan.jerez-fullana@imperial.ac.uk
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on the same device will handle at the same time the problem reformulation to enhance

performance and exploit all the capabilities of the FPGA: note that this hardware gives

the best performance when all its components are used at the same moment (in terms

of computational/power consumption ratio). Memorization is an issue on the FPGA,

since upgrades can be expensive. Dealing carefully with the input/output latency and

throughput (which can be calculated a priori in a full-operational FPGA), this aspect can

be improved by interfacing the device with an external source where the data can be

picked at each iteration. In this way the cost can be limited without losing too much speed.

Note that in any case the sparsity of the matrices allows for efficient data compression.

More, with different problems of sufficiently small size, the components for solving each

of them can be implemented on the same board and run independently at the same time.

At the time of writing, there doesn’t exist a proper FPGA implementation of the

problem, but studies about the supposed computing time have been made. If we consider

a board with 3000 “units” of resource, the timing would be ca. 250 µs per iteration of

one QP problem for the complete model (33 states) and ca. 30-40 µs per iteration for

each of the four subproblems. Such FPGA would be quite expensive (as an example,

the XC6VLX240T FPGA, for which there exist 1500$ development boards, would have

around 750 of “resource”, and the cost increase -as well as decrease- nonlinearly with

this quantity). As a rough approximation, the computation time is expected to double by

halving the resources and viceversa. The research is in progress and first steps for the

hardware implementation have been executed.





5
Conclusions

In this first part of the dissertation, the design of an innovative Motion Cueing algorithm

based on MPC techniques has been presented. The use of the MPC has three fundamental

motivations:

1. to exploit a model of the human vestibular system to compare the in-vehicle and

the in-platform perception;

2. to adopt a suitable technique to efficiently handle hard constraints;

3. to take advantage of a time-domain control that ease the comprehension of the

problem and the consequent regulations.

The proposed algorithm represents a novel approach to motion cueing that completely

changes the classic paradigms of washout filters: tilt coordination and working area

constraints are handled through an optimization procedure without the employment of

any filter.
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The integration of the perceptive models strongly improves the Motion Cueing effects,

helping to prevent incoherent behaviours and allowing to reproduce effective signals to

track for the motion controller. The presence of constraints improves the exploitation of

the working area without losing physical reliability, enhancing the overall robustness of

the problem.

A distinctive point is the ease of tuning procedure. This is a fundamental improvement

with respect to the standards in this field, where the lack of “physical connection” between

the parameters and the motion behaviour, as well as the complicated integration of the

passive filters and the lack of capabilities to deal a-priori with the limitations on the

working area made the MC hard to tune and required specialized (and expensive) experts

to handle the problems, making the adoption of dynamic simulators difficult in various

field. In particular, this approach makes possible the direct interaction with the drivers,

in the sense that their feedbacks during the tests can be immediately translated into

parameters modification, with a clear improvement in the regulation time. This feature is

crucial, as it is been verified that one of the major problems in driving simulators is the

adaptation: after a certain time on the device, the driver adapts it style and perception

to the virtual environment even if it does not reflect the reality (Straus, 2005). This is a

problem indeed, hence a fast regulation of the system is necessary.

It is worth noting that, given the high system dimension, although implementing a real

time MPC procedure is not a trivial task, the algorithm works at 100 Hz control frequency.

This real time capabilities, improved by the explained approximation, made possible

the implementation on a small size dynamic driving simulator, namely VI-DRIVESIM,

validating the tuning methodology and the performance improvement in a practical

environment. Feedbacks from professional test drivers have been encouraging.

The natural development will be the introduction of prediction. As seen, the difficulties

in terms of computational time can be overcome by using a blocking strategy, but the

need for reliable references is an issue. One possible idea is to exploit the availability of

a virtual driver (Frezza, Saccon, and Bacchet, 2003; Frezza and Beghi, 2006) to obtain

a reliable future trajectory. This information can be integrated in a stochastic variant

of MPC, and one possible approach could the tube-based MPC (Langson, Chryssochoos,

Raković, and Mayne, 2004), where uncertainties are taken into account in the problem

resolution. A possible improvement can be the introduction of a learning procedure,

where the algorithm starts by relying its predictive information on the virtual driver, and

then adapts itself to the specific user and to its driving style. The first insight about

prediction, whose simulation results have been reported, showed encouraging results.
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The need for fast optimization would be critical in presence of prediction, and the

development of FPGA solutions comes at hand. The first simulation tests are being carried

on at the time of writing, and possible improvement in term of speed and cost are being

examined. In particular, the newly approach on first order methods seems promising

(Jerez, Goulart, Richter, Constantinides, Kerrigan, and Morari, 2013): if the constraints

on the original problem can be reformulated as to depend only on states x, inputs u and

their (approximate) derivative ∆u, it is estimated that this approach would require about

1350 resource units, and the time per iteration would be 3− 4 µs for the complete model

and 1− 2 µs for the subproblems, a significant improvement.





Part II

Control Techniques for a Hybrid
Sport Motorcycle





1
Introduction

Transportation systems and efficient energy utilization are two of the most relevant

research topics on a world-wide scale, for their economical and environmental impact.

In the European context European Union (2011), fossil fuels, despite their high levels of

pollution, are still extensively used for energy production and transportation. To assure

sustainability and more confidence on energy supply, the European Union has studied

a careful energetic policy for the next ten years, whose aim is to reduce greenhouse gas
levels and energy consumption by 20% and increase the share of renewables by 20%, all

these three targets by 2020.

However, the analysis of current trends show that the second target will not be

reached. One of the main causes of such phenomenon is associated with the intense use

of energy for transportation. Consequently, there is an increasing level of attention on

the development of hybrid vehicles, that can help in addressing both the reduction of

greenhouse gas levels and the increase of energy efficiency of transportation systems,
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hence capturing the interest of international research and vehicles manufacturers.

In general, a hybrid vehicle couples two different propulsion systems, which are

made to coexist mainly to improve performance and reduce emissions. Although various

typologies have been studied, the most widespread is the electric hybrid, which couples

an internal combustion engine to an electric machine powered by the energy stored in

dedicated systems (accumulators). Depending on the implemented architecture, hybrid

electric vehicles are divided into three main categories (Chan, 2007; Chan, Bouscayrol,

and Chen, 2010; Ehsani, Gao, and Miller, 2007; Emadi, Rajashekara, Williamson, and

Lukic, 2005)

Series Hybrid Hybrid electric vehicles (HEV) of type series, or Range Extended Vehicle
(REV), exploit a combustion engine to generate the energy needed to recharge the

batteries and to power the electric machine that provides all the motion power

(schematics in figure 1.1). The Internal Combustion Engine (ICE), which is not

responsible for traction, is forced to operate around the point of maximum efficiency

in all driving conditions, by starting it in the case where the state of charge of the

battery reaches the established minimum value, and turning it off to the achievement

of the maximum charge level. As made clear by the architectural scheme, there is

Figure 1.1: Series Hybrid schematics.

not a mechanical connection between the ICE and the wheels: in this way it can

operate in optimum conditions of speed and torque to provide only charging power,

limiting consumption of fuel and increasing the efficiency. The weak point of this

type of hybrid vehicles is the presence of two dissipative energy conversion, from
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combustion engine to generator and from generator to electric motor. A further

disadvantage is the need to size both electrical machines (generator and motor)

with respect to the maximum power of the vehicle, which is useful only in rare

circumstances, hence making the dimensioning a challenging task. This architecture

can be useful in all those contexts in which the driving conditions are clearly defined,

such as the urban environment, or if applied to vehicles whose dimensions allow the

positioning of the electrical machines which, by acting as a sole source of traction,

are very massive (locomotives, buses, trucks, etc.).

Parallel Hybrid HEV in parallel configuration are equipped with an internal combustion

engine and an electric machine, both connected to the drive shaft, which can operate

simultaneously or individually depending on driving conditions (figure 1.2). Usually

while driving at low speeds, such as in urban environments, the more efficient electric

motor is used, while at high speeds ICE is preferred, using the electric machine

as a generator to recharge the batteries (with the help of regenerative braking) or

to provide boost contributions. To improve efficiency, the parallel HEV are often

Figure 1.2: Parallel Hybrid schematics.

equipped with continuously variable transmissions (CVTs), that allow to optimize the

operating point of the internal combustion engine for every possible torque request,

hence improving the efficiency and the fuel consumption. The main advantages of

the parallel configuration are

1. the presence of a single energy conversion, which allows to reduce the dissipa-

tion;

2. the use of a single electric machine of small size, which allows to reduce costs

and space needed for its positioning.

Since it is not the main source of traction, the electric motor is dimensioned to
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provide a lower power than the maximum for the vehicle, in this sense this class

can be further divided into three categories:

1. micro hybrid: equipped with an electric machine of limited voltage and power

(V < 60 V, P < 5 kW), it replaces the alternator, while the propulsion is

guaranteed by the internal combustion engine. The electric motor is used for

the start and stop system, which shuts down the engine when it is not used (as

for example at traffic lights) allowing a saving of fuel between 2% to 10%, in

the urban cycle. The electrical machine allows a smoother start compared to

normal starters and a limited regenerative braking, since it is connected to the

motor shaft by means of belts (Belted Starter Alternator – BAS).

2. mild hybrid: these are an evolution of micro hybrid vehicles, using medium

voltage and power devices (V > 100÷ 200 V and P > 10÷ 20 kW). The goal

is to get a boost effect using the electric machine to provide an additional

torque to the endothermic propulsion during acceleration or braking. This

type of vehicle allows to enhance the regenerative braking and, if possible, the

operation of the vehicle in “pure-electric” mode at low speeds and loads, with

a fuel saving between 10% to 20% in the urban cycle.

3. full hybrid: they are equipped with high voltage and power devices (V > 300 V

and P > 50 kW), which can provide the power required to propel the vehicle.

In this way it can travel in purely electric mode (zero emission vehicle), limited

only by the capacity of the batteries, as well as with the internal combustion

engine only or a combination of the two. This particular type of vehicles

ensures a fuel saving between 20% and 50% in the urban cycle.

Series – Parallel Hybrid HEV of type series-parallel (figure 1.1) are a combination of the

two previous architectures obtained using a planetary transmission that allows to

decouple the vehicle speed ωV from the electric machine and the internal combus-

tion engine ones, respectively ωE and ωI . The electric motor can then be used to

perform simultaneously the propulsion of the vehicle and the charging of the batter-

ies (power split) if ωE < 0, or the optimization of the working point of the internal

combustion engine if ωE > 0, thus decreasing fuel consumption. In addition, by

exploiting a particular locking system, it is possible to disable the electrical machine

to obtain a parallel configuration or, by absorbing all the torque provided by the

ICE, to operate in series configuration. It is easy to understand that the growing

architectural complexity requires sophisticated control systems, making this type of

vehicles considerably more expensive than previous ones.



95

Figure 1.3: Series-Parallel Hybrid schematics.

While many models of hybrid cars have been developed and put on the market in the

last few years, hybrid scooters and motorcycles have not seen a large scale production

yet, despite their promising peculiarities in terms of fuel economy and environmental

impact, and mobility capability. One of the main obstacles to their spreading is the limited

autonomy of batteries, an even greater problem for two-wheeled vehicles given the

limited available space. The presence of the electric engine and the battery pack makes

the problem particularly challenging with motorcycles, since it may affect the rider’s

driving feeling with respect to an equivalent model provided with an internal combustion

engine only. In this sense, an appropriate design of the Power Management System is

crucial to deal with the requirements of acceptable autonomy of the electric engine and

preservation of satisfactory driving feelings, which depends most on the strategy that

regulates the instantaneous coupling of the two propulsions.

To this respect, it is important to have a means of evaluating the dynamic behaviour of

the motorcycle when it undergoes the hybridization step. It’s easy to understand that the

presence of an electric machine on the motorcycle can highly modify the vehicle behaviour,

e.g. due to the increase in weight and the effects of the additional torque provided by the

electric engine. In this context, a virtual environment capable of accurately describing

the vehicle dynamics is a key feature for testing different engine and power systems

management algorithms and their impact on the vehicle manoeuvrability. Moreover, one

of the crucial design steps, namely the sizing of the batteries, is usually carried out with

static simulations. A standard telemetry is processed off-line, boost and charge steps are

identified and point-wise energy consumption/recovery values are calculated. Reliability
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for this kind of analysis is not assured, since the effects of the boost phase on the vehicle

stability and performance is not investigated. A dynamical simulation environment can

therefore be effective also in this design stage.

In this part of the thesis, we report the activities of a research project aimed at studying

the electrification of a commercial 125cc motorcycle. The main focus of is the development

of the controller of the Power Management System. Two strategies are proposed, a simpler

one based on the evaluation of RPM derivative to select the boost/charge phase for the

electric machine, and a more sophisticated optimal control strategy studied to obtain the

best performance (in terms of available torque) while keeping the battery pack around

its optimal operating point. Since the considered vehicle is a sports vehicle, the target is

the utilization of the electric engine as a torque-boost supplier. Starting from an exiting

software tool for simulation provided by VI-GRADE, VI-BIKEREALTIME (VI-Grade, 2012), a

flexible SIMULINK environment has been developed. An easily customizable model for the

accumulators has been derived, together with a map-based model for the electric engine.

Simulations have been carried out using different configuration for the virtual rider tested

on different tracks, elaborated with a dedicated tool to evaluate the performance of the

control strategies among different driving conditions. The results show that satisfying

performance can be obtained, in terms of both available torque utilization and battery

management. Finally, the simpler of the two strategies have been implemented in the

Electronic Control Unit (ECU) of a prototype and tested on track.

This part of the dissertation is organized as follows.

In Chapter 2 the different elements of the prototype is described, namely the chosen

motorbike, accumulators and electric machine. The work by Ferrari (2010) reports

a dimensioning study that defines the selected components.

In Chapter 3 the proposed control strategies are depicted. In particular, a modelization

of the accumulators, based on the information from datasheets is provided, that will

be useful for the control strategies proposed. Both the algorithms will be described

in details.

In Chapter 4 some results are illustrated. The SIMULINK -based virtual environment is

described and simulations on a digital version of Silverstone (UK) racing track,

as well as on a track with urban features are provided. The simulations takes

advantage of the presence of a virtual rider, whose importance is crucial to close the

loop and validate the proposed control strategies. On road tests are also reported,

compared to simulations on the same test track (PIAGGIO test track in Pontedera,

Italy). Greater importance will be given on the boost phase, since instruments for
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measuring the charge of the batteries in real time were not available at the time of

the test.

In Chapter 5 final remarks will be given.





2
The Prototype

In this section the hybrid motorbike is presented, characterizing the basic vehicle and the

components of the electric propulsion system.

As seen in the introduction, several configurations for coupling internal combustion

and electric engines are available in the literature. The chosen configuration for the

considered prototype is the parallel one, i.e. the two engines can run separately or

together. The electric machine replaces the alternator and is keyed on the drive shaft,

resulting in the constraint that both engines run at the same rounds per minute.

In the present study, the prototype is considered to be composed of three parts, the

motorcycle, the electric engine, and the batteries.
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2.1 Motorbike: Aprilia RS4 125

The commercial vehicle considered for the prototype is the RS4 125 (figure 2.1) produced

by the motorcycle manufacturer Aprilia Aprilia S.p.A. (2012). The vehicle is powered by a

new 125cc single-cylinder, 4-stroke, 4-valve, liquid cooled engine with electronic injection,

adopting a double overhead camshaft (DOHC). This engine provides the maximum power

allowed for its category, i.e. 11 kW. To ensure maximum exploitation of the power and

a wide range of use, the engine is associated to a six-speed gearbox. Table 2.1 lists the

specifications for the engine and transmission. The chassis is in aluminum, intended to

support at best the engine performance while ensuring maximum driveability. Table 2.2

shows the main characteristics of the chassis.

Figure 2.1: Aprilia RS4 125.

Engine Four stroke liquid cooled single cylinder with elec-
tronic injection and 4 valves

Bore t imes Stroke 58 × 47 mm
Total displacement 124.8 cc
Compression ratio 12,5 ± 0,5:1
Gearbox 6 ratios

Drive
Primary: gears, 69/29
Final: chain, 60/13

Emissions Euro 3

Table 2.1: Technical sheet RS4 125: engine and transmission.
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Chassis Aluminium perimeter frame

Front suspension
41 mm upside down fork
Wheel excursion 110 mm

Rear suspension
Asymmetric swingarm with monoshock
Wheel travel 130 mm

Brakes
Front: 300 mm stainless steel disc with radial 4 piston
calliper
Rear: 218 mm stainless steel disc and calliper with single
30 mm piston

Wheels
In light alloy with 6 split spokes
Ant.: 2.75 × 1′′

Post.: 3.50 × 17′′

Dimensions

Maximum length 1953 mm
Maximum width 740 mm
Maximum height at top fairing 1.138 mm
Saddle height 820 mm
Wheelbase 1.350 mm

Table 2.2: Technical sheet RS4 125: chiassis and sizes.

The exhaust system, fully integrated in the bottom hull, improves the dynamic behavior

due to the centralization of the masses of the vehicle.

The characterization of the motorcycle is defined by torque and power curves, obtained

on the test bench with maximum throttle opening condition: numeric measurements are

in table 2.3, while figures 2.2 and 2.3 report the graphical representations as functions of

RPM (Revolutions Per Minute)
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RPM Torque [Nm] Power [kW] Power [HP]
1000 1.52 0.16 0.22
1500 2.28 0.36 0.49
2000 3.04 0.64 0.87
2500 3.80 0.99 1.35
3000 4.56 1.43 1.95
3500 5.32 1.95 2.65
4000 6.08 2.55 3.46
4500 7.06 3.33 4.52
5000 7.50 3.93 5.34
5500 8.05 4.64 6.31
6000 8.31 5.22 7.10
6500 8.75 5.96 8.10
7000 10.05 7.37 10.02
7500 10.68 8.39 11.41
8000 10.73 8.99 12.23
8500 10.33 9.20 12.51
9000 10.44 9.84 13.38
9250 10.33 10.01 13.61
9500 10.15 10.10 13.73
9750 9.91 10.12 13.76
10000 9.68 10.14 13.79
10250 9.42 10.11 13.75
10500 8.96 9.85 13.40
10750 8.53 9.60 13.06
11000 8.04 9.26 12.60

Table 2.3: RS4 125 torque and power characterization.
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Figure 2.2: Torque characteristic of Aprilia RS4 125.
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Figure 2.3: Power characteristic of Aprilia RS4 125.
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2.2 Hybrid system

The electrical part of the hybrid system has been designed by the Department of Electrical

Engineering of the University of Padova. Details on the design can be found in the work

by Ferrari (2010) where the sizing of the batteries and the inverter, as well as the project

of the electric motor has been carried out from scratch.

2.2.1 Batteries

The battery pack chosen for the application at hand has been designed considering

Lithium-Polymer cells made by KOKAM (Kokam). The chosen model for the single cell is

SLPB100216216H. Lithium - Polymer (Li-Po) technology offers many advantages over

traditional Lithium-ion (Li-ion) cell including:

• elimination of the risk of fire, since the cells consist of non-flammable polymers;

• the flexible structure allows for a lighter case for the battery pack, thereby obtaining

a considerable saving of weight. Their prismatic structure also permits a very

dense packing, resulting in an increase of the energy density of approximately 20%

compared to traditional Li-ion cells having a cylindrical shape. Figure 2.4 sketches

the dimensions of a single cell.

Figure 2.4: Accumulators KOKAM SLPB100216216H: sizing.

Each cell has the features reported in table 2.4. Of particular interest are the conditions

of charge and discharge, which describe the voltage and maximum current in the two
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phases, and the cut-off voltage of discharge. This value indicates the minimum voltage

allowed for the discharging phase, in order to avoid permanent damage or remarkable

reduction of the lifetime of the accumulator.

Capacity 40 Ah

Nominal voltage 3.7 V

Charge conditions
Max. current 80 A

Voltage 4.2 ± 0.03 V

DC current 200 A

Discharge conditions Max. current 400 A

Cut-off voltage 2.7 V

Working temperature
Charge 0 ∼ 40◦ C

Discharge -20 ∼ 60◦ C

Thickness 10.7 ± 0.5 mm

Dimensions Width 210 ± 2.0 mm

Height 220 ± 2.0 mm

Weight 1100 ± 40 g

Table 2.4: Accumulators KOKAM SLPB100216216H: charac-
teristics.

A preliminary analysis performed on the basis of static simulations suggests the use of

a four cell battery pack (De Simoi, 2011); in figures 2.5 and 2.6 the charge and discharge

curves from data-sheet are shown, for a single cell. These curves are fundamental

to evaluate the performance of the accumulator during charging and discharging. In

particular, exploiting these curves it is possible to obtain an estimate of the values of

voltage as a function of the charging time and the State Of Charge (SOC) of the cell: the

battery model integrated in the proposed control algorithms is based on the information

derived from these curves.

For the application at hand, a crucial information about the batteries is the specification

of the current value as a function of the battery capacity. In fact, as evident in figures 2.5–

2.6, different curves are reported depending on a value, indicated as iC with i = 0.5, 1, 2

and so on. This corresponds to a constant charge/discharge current (in Ampere) of value

equals to i times the nominal maximum capacity of the battery (expressed in Ampere

per hour): i.e., if we consider the charging curve at 2C for the specific cells, it means a

constant current value of 80 A, twice the capacity (that is 40 Ah). In the same way, a

0.5C discharge curve represents the behaviour in the discharge phase when the current

is constant at a value of 20 A, half the capacity. This is a common convention in this
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Figure 2.5: Accumulators KOKAM SLPB100216216H: charge curve.

Figure 2.6: Accumulators KOKAM SLPB100216216H: discharge curve.

field, and it is important since the specification of the problem requires to consider this

parameter.
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It is worth noticing that, while the discharge curve represents the voltage as a function

of the discharge capacity, i.e. of the residual stored energy, the charge one is a function of

time and, for each value of the charging current, two phases are distinguished

1. constant current (equal to the imposed value, multiple of the capacity) and increas-

ing voltage;

2. constant voltage (equal to its maximum value for the cell) and decreasing current

to zero.

This will be another critical aspect to be considered in the modeling of the batteries.

2.2.2 Electric motor

Most of the alternators that equip commercial motorbikes are Surface Permanent Magnet

(SPM) synchronous electrical machines: this solution is usually adopted to exploit the

high torque density within the reduced weight and space requirements.

Following this idea, to make the best use of the available space the electric machine

has an internal stator and a permanent magnet external rotor of type SPM: the device

substitutes the native alternator (Ferrari, 2010), and is located in the same place as

highlighted in figure 2.7. The maximum useful length is 62.2 mm, with a diameter of 135

mm; the weight is approximately 4.8 kilos. The chosen hybrid configuration is the parallel
one, hence the electric motor is keyed on the same shaft as the internal combustion

engine: it can be considered a mild hybrid with a BAS-like configuration.

Figure 2.7: Electric machine location in the motorbike.

The designed motor is capable to supply torque such that the overall engine torque

profile for the hybrid vehicle is the one shown in figure 2.8. Note that the highest torque

requested from the electric motor is approximately 5 Nm. Table 2.5 shows the boost value

provided for increasing RPM, evaluated at maximum throttle opening.
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RPM Electric torque [Nm] Endothermic torque [Nm] Hybrid torque [Nm]
1000 5.0 1.52 6.52
1500 4.8 2.28 7.08
2000 4.6 3.04 7.64
2500 4.4 3.80 8.1
3000 3.9 4.56 8.46
3500 3.4 5.32 8.72
4000 3.0 6.08 9.08
4500 2.3 7.06 9.36
5000 2.1 7.50 9.6
5500 1.9 8.05 9.95
6000 1.9 8.31 10.21
6500 1.7 8.75 10.45
7000 0.5 10.05 10.55
7500 0.0 10.68 10.68
8000 0.0 10.73 10.73
8500 0.0 10.33 10.33
9000 0.0 10.44 10.44
9250 0.0 10.33 10.33
9500 0.0 10.15 10.15
9750 0.0 9.91 9.91
10000 0.0 9.68 9.68
10250 0.0 9.42 9.42
10500 0.0 8.96 8.96
10750 0.0 8.53 8.53
11000 0.0 8.04 8.04

Table 2.5: Torque performance of the electric machine, the endothermic engine and the hybrid
motor.
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Figure 2.8: Torque characteristic of the hybrid engine.

Remark 2.2.1. The electric machine requires a power electronics system too, to interface

with the battery pack. This system is set between the motor and the accumulators, and is

constituted by the cascade of two components, namely

1. a power inverter, whose aim is to convert the DC current from the accumulators into

AC current for the engine, when it is providing propulsion, and viceversa when it

works as a generator and needs to transfer energy to the batteries via DC current;

2. a DC/DC converter, interposed between the inverter and the battery pack, to regu-

larize the continuous current from the inverter to a proper value for the batteries.

A scheme is reported in figure 2.9. These components are necessary to the practical

operation of the electric machine, but from a control point of view it is not important to

include them in the model, at least for the purpose of this dissertation: in fact, the goal is

the management of the power system in order to obtain a proper integration of the boost

from the rider point of view, and not to control each single component of the loop. In

this sense, the power electronics group will not be considered in the development, and

will supposed only to provide the commands from and to the electric motor, with respect
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to the accumulators; the only parameter that to be considered is its efficiency η, that is

estimated as to have and approximate value of 0.9 (Ferrari, 2010).
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Control Strategies

The hybridisation of a vehicle is a challenging task, first of all for its physical design.

Combining a brand new propulsion system with all its parts including engine, source

of power, stabilizing controllers and other regulators together with an already existing

vehicle is not immediate, and require a thorough analysis to exploit the available space

and integrate the new elements without undermining the physical characteristics, e.g.

masses distribution, gravity center position etc. that can have an impact on the usability

of the vehicle. Moreover, the realization of an electric machine combined with a battery

pack system is per se a challenging task, and requires a careful control system design. The

Power Management System (PMS) is a critical point of such devices, since the batteries

management is not trivial and requires the analysis of the features of the accumulators,

their behaviour at varying voltage and current, temperature and other physical quantities

that have to be taken care of. This aspect affects the overall performance of the hybrid

system, in term safety, reusability (a bad management is likely to damage the capacity of
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the batteries), and further expensive maintenance. This management has to be integrated

in the overall control framework for the hybrid vehicle, that has the task to couple the two

source of motion in order to obtain the final, desired goal, namely emission reduction,

torque and speed improvement, money saving or a combination of such (and possibly

other) aspects. All of this has obviously to be realised in such a way to be transparent to

the final user, so that the coupling of the two system results in a safe and pleasant driving

experience rather than in the necessity of learning a new way to handle the vehicle.

It is trivial to figure out as this challenge is way harder for two-wheels vehicles: the

available space is reduced with respect to cars, an increase in the weight and volumes is a

more delicate issue (given the higher degrees of freedom such vehicles are subject to) and

the impact on the driver is much more relevant, related to safety and driveability issues.

This is even more critical when dealing with sport motorbikes, as the one considered

in the design, rather than with mopeds: the expectations from the user is different and

requires more attention from the performance point of view.

In this chapter, a control system that combines a PMS and the regulation of torque

coupling is proposed. In particular, two different strategies will be shown, with different

degrees of complexity. The first one looks to a fast implementation and is based on

a simpler idea, more conservative with regard to battery exploitation; nevertheless, it

integrates adaptive features for a smarter usage of power. The second one is an optimal

control strategy which aims at the regulation of stored power by managing in a more

effective way the integration between the two powertrains.

Upstream, a common element is the selection of the operating mode of the electric

machine, as a motor or a a generator: the algorithm that performs this operation is based

on a model of the accumulators, that will be illustrated in the following section.

3.1 Battery model

Deriving a model for a battery is a challenging issue, since its behaviour depends on a

wide variety of internal and external variables, e.g. internal temperature, ageing (number

of charge and discharge cycles), operational conditions, and many more. Variations in

these quantities result in modified internal resistance, capacity reduction and, more in

general, accumulator damage. Some kinds of batteries (e.g. nickel-cadmium, nickel-metal

hydride) suffer of the memory effect, that occurs in the event that they are repeatedly

recharged before the complete exhaustion of the available energy, causing alterations

of the internal crystal structures that reduce the storage capacity of a quantity equal to

the residual (“memorized”) energy at the beginning of the cycle charge. In the hybrid
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vehicles context, having a careful model for batteries is crucial, not only in the design

stage but also for control purposes, in order to estimate meaningful information on the

battery state (as State Of Charge, i.e. the normalized quantity of available energy, or

temperature) from easily measurable quantities (as voltage or current). On the other

hand, a complete modeling of the battery is too burdensome, so the representations are

adapted to capture relevant aspects for this kind of studies.

The most common models for batteries are

• electrochemical models, which exploit the physical laws that regulate the electro-

chemical phenomena inside the battery (Debert, Colin, Mensler, Chamaillard, and

Guzzella, 2008; Smith, 2010; Smith, Rahn, and Wang, 2010; Speltino, Di Domenico,

Fiengo, and Stefanopoulou, 2009). Such models are very precise, but complex and

the knowledge of a great number of parameters as well as availability of sophis-

ticated analysis tools are needed for their implementation. Moreover, they have

heavy computational burden and make real-time simulation and application quite

difficult. An insight on this approach can be found in the work by Marangon (2010),

where an Extended Kalman Filter-based algorithm is proposed;

• electric models, which exploit the equivalent circuit and its laws to represent the

electrical behaviour of the battery (Chen and Rincon-Mora, 2006). Despite being

quite an empirical approach, it allows a simple modeling of the accumulators

dynamics that can be improved if needed, starting from the measurements of

interest, by increasing or decreasing the order of the system and highlighting the

trends of voltage and current. The reference circuit diagram is the classic RC circuit.

To improve the accuracy, the values of resistors and capacitors can be expressed as

a function of temperature, State Of Charge (SOC) and current value.

The power management system has to provide the status of the batteries (temperature,

state of charge, voltage at the poles) while ensuring that they are used properly, avoiding

damage. Taking advantage of a correct modeling of the battery PMS performs the following

activities:

1. direct measurement of the main physical features of the battery pack as temperature,

voltage and current of the single cell or the entire pack;

2. estimation of the information not directly available, as State Of Charge (SOC) (Li,

Anderson, Song, Phillips, and Wang, 2011);

3. communication of the values obtained from previous steps;
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4. control of charge and discharge current as well as the cooling system of the battery,

to avoid damage and unstable conditions;

5. balance of the state of charge of each cell in order to increase the lifetime of the

battery. The SOC of individual cells may in fact differ between each other due to

small construction differences, resulting in a reduction of the total capacity.

All these factors have been considered in the development of the model of the accu-

mulators for the application at hand. The real-time purposes ask for a model capable to

catch all the fundamental dynamics in order to obtain reliable estimations of the values

of interest (SOC , voltage V , current I); on the other hand, a test bench for measuring

the parameters of the real battery pack has not been made available. For this reasons,

a simple electric circuit as been adopted (Figure 3.1), considering the battery as a real
voltage source controlled by SOC , hence the supplied voltage is a function Vbat t(SOC);
the same holds for the current Ibat t(SOC). The proposed modeling method is inspired by
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Figure 3.1: Equivalent electric circuit considered for the battery modeling.

Yurkovich, Guezennec, and Bornatico (2008) and relies on information directly available

from the battery pack data-sheet. Point-wise charge and discharge maps are derived

from the characteristic curves included in the previous chapter, in figures 2.5 – 2.6, and

applying polynomial fitting, analytical representations for Vbat t(SOC), Ibat t(SOC) are

calculated. Note that

1. characteristic curves are not directly given as function of SOC , hence preliminary

calculations have to be performed to obtain the functions of interest;

2. the model assumes negligible temperature variations (which can be included if

information from the data-sheet are available (Dougal, 2002)) and charge losses due

to chemical reactions. For the purpose of prototyping control design and simulation,

and without a better characterization of the accumulators, these hypotheses are

acceptable.
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Once Vbat t and Ibat t are available in such fashion, the power (and energy) supplied by

the accumulators are easily computable.

It is worth remarking again the fact that in these datasheets, both charge and discharge

currents are considered constant at values multiple of the nominal capacity, i.e. Ibat t = kC
A, with k = 0.5,1,2, . . . and C = 40. The project specifications require to consider this

value as a constant, hence this modeling procedure is coherent.

3.1.1 Charge functions

In figure 2.5, charge voltage and current are given as functions of time, vC
bat t(t) and

iC
bat t(t), for different charging strategies (namely, different constant value for the charge

current during the voltage transient). After the calculation of vC
bat t(t) and iC

bat t(t) as

polynomial fitting of sampled values of the plot, to make these functions function of SOC ,

the charge power function PC
bat t(t) is calculated as

PC
bat t(t) = vC

bat t(t) · i
C
bat t(t) (3.1)

and then integrated to obtain the available energy

EC
bat t(t) =

∫ t

0

(PC
bat t(t)− V0 · iC

bat t(t))dt, (3.2)

where V0 is the cut-off voltage value (i.e. the voltage lower bound to avoid damages,

given in the data-sheet). By normalizing EC
bat t(t) with respect to its maximum value,

SOC(t) is computed. Finally, having described each quantity as a function of time, it’s

easy to compose the functions to obtain V C
bat t(SOC) and IC

bat t(SOC).
Note from figure 2.5 that the charge characteristic is divided in two phases. At first, for

SOC → 0, IC
bat t(SOC) is constant and equal to IkC , while V C

bat t(SOC) increases starting

the minimum value V0. When the voltage reaches its maximum value Vmax, the current

has a decreasing transient and becomes null when SOC = 100%.

This last transient is not automatically achieved by the cells: the current comes from

the electric machine, and if it is not limited when the voltage has reached its maximum,

the accumulators will keep on storing the energy until the maximum capacity is reached.

If the current continues to be provided, the consequent generated energy will be converted

into heat and dissipated, increasing the temperature and risking a permanent damage for

the pack, as well as safety issues for the user. For this reasons, the accumulators usually

come with a charge controller that has the capabilities of limit the absorbed current when

the SOC crosses a specific value. If the batteries are not provided with such system, it
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has to be integrated within the PMS. The proposed modelization takes into account this

feature, hence V C
bat t(SOC) and IC

bat t(SOC) are defined as

V C
bat t(SOC) =







fV C
bat t
(SOC) if SOC < SOClim

Vmax if SOC ≥ SOClim

(3.3)

IC
bat t(SOC) =







IkC if SOC < SOClim

fIC
bat t
(SOC) if SOC ≥ SOClim

(3.4)

where fV C
bat t
(SOC), fIC

bat t
(SOC) are polynomial functions of appropriate degree obtained

by fitting the transient data (Dougal, 2002),

fV C
bat t
(SOC) =

n
∑

k=0

vk · SOCk, (3.5)

fIC
bat t
(SOC) =

m
∑

k=0

ik · SOCk. (3.6)

3.1.2 Discharge functions

The discharge law is much easier to derive in our case, since it is directly obtained from

the characteristic curve (figure 2.6): provided that constant current IkC is applied to the

load (in this case, the electric motor), the voltage is given as a function of the discharge
capacity, hence by polynomial fitting we obtain the function

fV D
bat t
(SOD) =

n
∑

k=0

vk · SODk, (3.7)

where SOD is the State Of Discharge, related to SOC as SOD = 1− SOC . Hence, we

obtain

V D
bat t(SOC) = fV D

bat t
(1− SOC) (3.8)

I D
bat t(SOC) = IkC . (3.9)

3.1.3 Power estimation

For the control and simulation purposes, the value of the SOC needs to be known at each

time. Since it directly depends on the energy E, hence on the power P, it is useful to
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introduce an estimation of the power supplied by and to the accumulators, depending on

the operational state of the electric machine (as powertrain or generator, respectively).

In the boosting phase this estimation is simple, and is given by

PD
bat t(t) =

τem(t) ·RPM(t)
ηem

, (3.10)

where t is the present instant, RPM(t) is the actual speed of the hybrid engine, and

τem(t) the corresponding provided boost torque (that depends both on RPM(t) and the

throttle opening). ηem is the total efficiency of the electric machine, comprising the motor,

inverter and converter: to achieve the desired boost, the power from the accumulators

have to compensate also for the physical losses. The spent energy (hence SOC(t)) is then

computed by integrating PD
bat t(t).

When the electric machine operates as a generator, it is necessary to have a real-time

estimate of the instantaneous power absorbed by the batteries, PC
bat t(t), so that SOC(t)

can be calculated and it is possible to model the charge controller described in section

3.1.1. Based on an approach similar to the one described in that section, the model

describes PC
bat t(t) as a polynomial function calculated with (3.1): for different values of

t, correspondent points vC
bat t(t) and iC

bat t(t) are extrapolated from the data-sheets, giving

a set of points for PC
bat t(t) and the corresponding function is calculated via polynomial

fitting as

PC
bat t(t) =

n
∑

k=0

pk · tk. (3.11)

Now, the energy of the battery E(t) is an increasing monotonic function, being the integral

of the power which assumes only non-negative values, hence SOC(t) = E(t)/Emax is

monotonic as well. If we define SOClim as the value after which the current transient

starts, we have that for SOC(t) < SOClim the function is monotonic, as well as for

SOC(t)≥ SOClim, hence it is possible to look at the inverse map to get the time instant

t̄ relative to a value of PC
bat t : being Ts the sample time, the estimation of the charging

power is computed from the polynomial model as PC
bat t( t̄ + Ts). The estimate is then

integrated to obtain E(t) and the correspondent SOC(t).

3.2 Electric machine: selection of the operation mode

The control system for the hybrid motorcycle has to assure the best use of the electrical

machine in terms of supplied torque boost, while avoiding an excessive consumption of the

battery in order to prevent damages and possible safety issues. The electric motor works
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as a generator during charge steps and as an engine during boost: the controller has to

select which is correct operation mode, depending on the actual telemetry information.

As said in section 3.1.1, when the battery voltage is less than Vmax, the current

supplied by the generator is constant, and can be set as a multiple of the nominal capacity.

To each value of IkC corresponds a lower bound on RPM(t), RPMkC , below which the

generator cannot supply enough power to provide the requested current. Since charging

batteries is a slower but safer task than discharging, this operation mode must be activated

whenever it’s possible, i.e. when the motorcycle is at constant or decreasing speed and

RPM(t)≥ RPMkC : hence, the key point is to decide whether the present vehicle set-up

allows the motor to operate as a generator. Defined the motorcycle speed as v(t), the

gear signal as g(t) and the energy level as E(t), four conditions must hold:

1. v̇(t)≤ δv0, where δv0 > 0 is a threshold below which the speed can be considered

constant or decreasing. It is set as greater than zero to avoid inconsistencies due to

the numerical calculation of the derivative;

2. RPM(t)≥ RPMkC ;

3. ġ(t) ≤ 0, to avoid problems on negative v̇(t) values due to gear-shift and not to

real speed variations;

4. E(t)≤ Emax: the motor acts as generator only if accumulators are not full-charged.

Note that the third condition has to be temporized, since the variations on g(t) are clearly

faster than the correspondent variations on v(t).

The set of conditions that allow the electrical machine to act as an engine, providing

torque contribution, are derived in a very similar fashion to those presented for the charge

phase, in particular

1. v̇(t)> δv0: boost is applied during accelerations;

2. RPML < RPM(t) < RPMH : the boost acts within a RPM range specified at design

stage byt setting the two thresholds;

3. ġ(t)< 0: the condition on gear shift holds in the same way;

4. E(t)> Emin: boost is applied only if energy is available in the accumulators.
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3.3 Charge control

The charging phase is, in some way, an easier task for the control system: in fact when

the electric machine acts as a generator, thanks to the parallel architecture considered it

does not affect the driving behaviour of the vehicle, hence the controller has to operate

as PMS only. Nevertheless, in this stage the criticalities are related to the slow dynamics

of the accumulators: charge is always a slower task than discharge, and this can be seen

by their characteristics in table 2.4 in chapter 2, where the maximum current provided

during discharge is five times larger than the maximum charge current. In this sense,

it is crucial to elaborate a strategy that exploits at best the periods when the charge is

allowed.

The strategy in section 3.2 highlights the fact that the charge has to take place whenever

possible if the motorbike is not accelerating, with the limitation of a minimum RPM value.

Below this threshold, the electric machine is not able to generate enough power to provide

the desired current. As already stated, this current is constant until the voltage of each

cell of the battery pack has reached its maximum value Vmax, than the charge regulator

forces it to decrease: hence, the critical phase is for voltage lower than Vmax, when the

highest value for the current has to be provided. The chosen cells allow charge currents

up to 2C, and reasonable values for the application are 1C and 2C. In the design of the

motor, Ferrari (2010) computes the values of the two thresholds as

RPM1C = 2500 (3.12)

RPM2C = 5000 (3.13)

The higher is the charging mode, one the one hand the faster is energy accumulation, on

the other hand the higher is RPMkC . Depending on the driving context (route, driver’s

behaviour, traffic), the RPM2C constraint might be too high to allow a satisfactory recharge.

The proposed charge control algorithm aims to extend the exploitation of the charging

time by operating an automatic switch of charging modes between 1C and 2C, based

on recent driving conditions. In this way the generator capabilities can be used at best,

allowing to provide the most affordable current value during the wider possible time.

Once a time observation window Tobs has been set, the time intervals with RPM(t)>
RPM2C and RPM1C < RPM(t) < RPM2C , t2C and t1C respectively, are computed and

compared, and the corresponding charging mode is then applied. An hysteresis-based

strategy on the difference between the two time values is applied to avoid chattering

of the switching action. The procedure is summarized in algorithm 1. This strategy is

effective under the hypothesis that the driving style is kept similar during a certain amount
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of time, as it usually happens; note that the behaviour can be regulated by adjusting the

threshold ε for the hysteresis as well as the observation window Tobs.

Algorithm 1 Charge management - charge current switching

1: Obtain current time t and RPM(t)
2: if charge conditions hold then
3: tobs← tobs + Ts {tobs: time elapsed during the current evaluation; Ts: sampling step}
4: if RPM1C < RPM(t)< RPM2C then
5: t1C ← t1C + Ts
6: else
7: if RPM(t)≥ RPM2C then
8: t2C ← t2C + Ts
9: end if

10: end if
11: if tobs = Tobs then
12: if t1C > t2C and |(t1C − t2C)|> ε then
13: set 1C charging mode
14: else
15: set 2C charging mode
16: end if
17: end if
18: end if

3.4 Boost control: Adaptive Boost

The boost stage is more critical than the charge stage, from the point of view of both

vehicle stability and battery management. In fact, when the batteries are required to

supply energy, the discharge dynamics are way faster than charge ones: in table 2.4

the specifications show that a single cell is capable of providing a current up to 400 A,

five times higher than the maximum absorbable one. More, during boost the electrical

machine behaves as an engine, and contributes to the motion with and additive torque

which directly affects the dynamic behaviour of the motorbike. This last aspect has to be

regarded with particular care, since an unusual feedback from the vehicle can result in a

major safety issue for the rider.

The proposed strategy is based on a quite simple heuristics, elaborated to be quickly

implemented in the Electronic Control Unit (ECU) of the prototype, although it con-

templates useful adaptive features. The reference torque map of the electrical engine

(reported in the previous chapter, table 2.5) is a full-boost map: for each RPM value, it

includes the maximum torque values that the motor can provide, meaning the highest
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electrical power request to the accumulators. For the same RPM value, a lower torque

request leads to lower power consumption. Hence, the idea is to introduce a scaling factor
σ to reduce the request of electric torque, proportional to the current SOC . With this

respect, the adaptation is performed on the residual energy of the battery pack, aiming to

avoid excessive stress when it reaches low value.

The control variable for this strategy is the SOC itself. Two thresholds are set for the

SOC , an upper one, SOCU and a lower one, SOC L . If SOC ≥ SOCU , full-boost is applied,

if SOC ≤ SOC L boost is not allowed. For intermediate values of SOC , the scaling factor

σ is computed as

σ =
SOC − SOC L

SOCU − SOC L

. (3.14)

Note that σ varies linearly, but this behaviour can be easily modified for a more sophisti-

cated one.

The described algorithm may suffer of chattering around the thresholds. Suppose

that SOC is near the lower threshold and the route or traffic conditions force the rider

to behave in a way that does not allow for durable charge: the SOC is likely to vary its

value by repeatedly increasing and decreasing. The strategy described so far will enter

and exit the boost state as well, a stressful behaviour for both the electric machine and

the mechanical components of the powertrain. To prevent this condition, an hysteresis is

introduce on the thresholds, based on the evaluation of the SOC trend. If the derivative

show and increase, both the thresholds are increased by a factor ε, viceversa with negative

derivative they are decreased by the same factor. ε has to be tuned according to the

expected usage of the motorbike. The procedure is summarized in algorithm 2.

On the same fashion, to avoid safety issues for an abrupt addition of torque to the

vehicle that can make the rider lose control, there is an upper layer that forces a linear

increase of the scaling factor from zero to the computed value, when the boost conditions

hold and the contribution is provided, so to assure continuity in the torque supply.
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Algorithm 2 Adaptive Boost Control: battery management

1: Obtain current SOC(t) and RPM(t)
2: if boost conditions hold then
3: obtain τmax

ice from electric torque map {τmax
ice : maximum electric torque that can be supplied

with RPM(t)}
4: compute ˙SOC(t)
5: if ˙SOC(t)> 0 then
6: SOCU ← SOCU + ε {hysteresis update}
7: SOCL ← SOC L + ε
8: else
9: SOCU ← SOCU − ε

10: SOCL ← SOC L − ε
11: end if
12: if SOC(t)> SOCU then
13: σ← 1
14: else
15: if SOCL < SOC(t)< SOCU then
16: σ← SOC(t)−SOCL

SOCU−SOCL

17: end if
18: else
19: σ← 0
20: end if
21: τice(t)← σ ·τmax

ice {τice(t): electric torque provided}
22: end if

3.5 Boost control: Adaptive Torque Splitter

This approach is based on an optimal control algorithm. This class of controllers are

observed with increasing interest in the hybrid vehicles field. However, most of the

approaches based on optimization methods, whether being static, numeric (dynamic

programming) or analytical, requires a-priori knowledge of the driving cycle (speed profile,

rider requests, etc.) to calculate the instantaneous values needed to achieve the objective

of optimality at the end of the path. In the everyday use this is not realistic, hence the

development of real-time optimization strategies is required so that, by analyzing the

behaviour of the vehicle, at least sub-optimal performance are assured. To our purposes,

of particular interest are the strategies whose aim is to calculate the split of power or

torque that each engine must provide in order to minimize fuel consumption at the end

of the driving cycle. By operating in real-time, the only available information are the

data acquired from the analysis of recent telemetries, the current state of the vehicle and

(possibly) a static set of values: then, by appropriate processing, the values of the best
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energy flows are computed and applied.

Some of the approaches that are looked at with interest in the scientific community

are

• Adaptive Equivalent Consumption Strategies (A-ECMS) (Musardo, Rizzoni, and Stac-

cia, 2005) that extends the general ECMS framework by introducing an update

of the parameters dependent on driving conditions. The general methodology,

exploiting a particular function which allows to calculate an equivalence factor

between the fuel and electric energy, computes at each instant the power values

that both powertrains must supply in order to minimize the cost function, which

represents the equivalent fuel consumption of a single, endothermic engine having

the same torque and power profile of the real, hybrid one. The main weakness of

this approach is the strong dependence of the equivalence factor from the partic-

ular driving cycle. A-ECMS tries to overcome this problematic through the use of

a particular algorithm that, exploiting data from appropriate instruments (GPS),

periodically adapts the equivalence factor according to the estimated load required

by the path;

• Model Predictive Control can be applied considering the model of the system, with

constraints imposed on the energy level of the battery. The prediction is limited to a

reasonable interval for estimation of quantities of interest. The formulation by Koot,

Kessels, DeJager, Heemels, VandenBosch, and Steinbuch (2005) minimizes a cost

function representing the fuel consumed by the combustion engine; by exploiting a

particular reformulation of the optimum problem, the prediction window is reduced

to a single sampling instant, directly computable using the system model. Kessels,

Koot, de Jager, van den Bosch, Aneke, and Kok (2007) extend the optimization

to the entire power network of the vehicle, by means of a complex cost function

which considers the efficiency of the battery and the electric drive. A recent strategy,

presented by Fu, Ozguner, Tulpule, and Marano (2011), makes use of MPC to

calculate the values of the energy flows that allow to minimize the consumption of

fuel in the interval of prediction, by introducing constraints regarding the efficiency

of the engine and the equality (within a tolerance range) of the SOC at the beginning

and end of the time interval. In this case the prediction of the speed values required

for the calculation of the cost function is carried out by exploiting different portions

of existing telemetry;

• Optimal Stochastic Control exploits the stochastic modeling of one or more variables

of interest to design the estimators that, based on current measurements, allow to
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calculate the values at the next step and to apply the appropriate optimal control.

This approach is proposed by Moura, Fathy, Callaway, and Stein (2011), with a

stochastic modeling of the driving cycle that allows estimation of the required power;

an optimization procedure is applied to obtain the power split that minimizes a cost

function based on equivalent cost of fuel consumed by the combustion engine and

the electric machine.

Following the “splitting” philosophy, we propose an algorithm based on the idea of

torque split. This approach has been chosen because of the technical features of the

prototype, that is, having the constraint that the two engines run at the same RPM value,

it is convenient to regulate the torque provided by each engine. Considering that the

final state of charge has to be maintained as close as possible to its maximum value, the

algorithm focuses on the minimization of the use of the Internal Combustion Engine (ICE)

during acceleration, while ensuring the autonomy of the battery to be preserved. To assure

real time performance, the strategy has a greedy approach, and exploits an optimization

based on a simple, torque-map-based model; the cost function is continuously adapted to

the driving conditions.

3.5.1 Constraints and cost function

From the torque-maps, for each value of RPM(t) a correspondent minimum and maximum

value for the endothermic torque τice(t) and the electric one τem(t) are available, hence it

is possible to derive the torque profile for the hybrid powertrain τr(t) = τice(t) +τem(t).
The problem is formulated so that, given the total torque request, the optimal splitting
between the torque that can be provided by the electric motor and the internal combustion

engine is computed, thus obtaining the best trade-off between battery consumption and

fuel economy.

The constraints for the system are



























SOCmin ≤ SOC(t)≤ SOCmax

τr(t) = τem(t) +τice(t)

τmin
em (RPM(t))≤ τem(t)≤ τmax

em (RPM(t))

τmin
ice (RPM(t))≤ τice(t)≤ τmax

ice (RPM(t))

(3.15)

where the bounds on SOC(t) are given to prevent battery damage (and usually SOCmax =
1, while SOCmax > 0 to avoid problems due to an excess of discharge), and the bounds

on τem(t) and τice(t) reflect the minimum and maximum torque supplied by the two
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engines at a fixed RPM value (depending on the absorbed current and the throttle opening,

respectively). Note that the constraints, depending on RPM(t), are time-varying.

The chosen cost function is quite simple, being a weighted sum of τem(t) and τice(t),

J(τem(t),τice(t)) = wem(SOC(t), SOCref)·τem(t)+wice(SOC(t), SOCref)·τice(t). (3.16)

The weights are function of the current SOC(t) and a reference value, SOCref, below

which the use of the electric motor has to be penalized. The adaptive aspect of the

control algorithm proposed involves the dynamic adaptation of wem and wice depending

on the state of the batteries (equation (3.17)), and of SOCref depending on recent driving

conditions: the first are regulated to keep SOC(t) around its optimal operating point

SOCref, the latter varies according to the recent trend of batteries utilization (i.e. if boost

has not been much provided SOCref is lowered and vice versa).















wem(SOC , SOCref) = wice(SOC , SOCref) if SOC = SOCref

wem(SOC , SOCref)< wice(SOC , SOCref) if SOC > SOCref

wem(SOC , SOCref)> wice(SOC , SOCref) if SOC < SOCref

(3.17)

A smoothing constraint on the derivative ˙SOC(t) has been introduced to avoid sudden

variations on τice request, which can lead to bad driving feelings and issues on driver’s

safety. Hence we have
˙SOC(t)< ϕ(SOC(t), SOCref) (3.18)

with φ(·, ·) a function such that

lim
SOC→SOCref

ϕ(SOC(t), SOCref) = 0. (3.19)

3.5.2 Optimization

J(τem(t),τice(t)) can be rewritten as a function of just τice(t), hence becoming a single-

variable optimization problem; the constraints can also be reformulated to depend on

τice(t) only and incorporated in J(τice(t)), as shown by De Simoi (2011). The control

problem becomes a single variable, unconstrained optimization problem, whose resolution

can be obtained via different methods. In our case, the cost function depends on time

varying quantities, and this can yield to the presence of cusps with consequent numerical

issues in the case the solver requires to derive that function. The chosen solver, based

on the golden-ratio method (Press, Teukolsky, Vetterling, and Flannery, 2007), has been

preferred for its resolution speed and the capability of dealing with non continuous cost
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function. Being the controlled variable τice, the actuator is the throttle, a viable solution

since ride-by-wire technology is now popular on motorbikes (see for instance the work by

Beghi, Nardo, and Stevanato (2006)) and is integrated within the prototype.



4
Simulation and On-Track Results

The research described in this part of the dissertation has been carried on in the framework

of a project in partnership with motorbikes manufacturer APRILIA S.P.A., the Department

of Electrical Engineering of the University of Padova and other industrial partners, and

it has already been stated that the final goal was the realization of a working hybrid

prototype of the 125cc motorcycle RS4 125. To this respect, the validation of the proposed

control and battery management strategies has been set as a necessary step. While a

satisfactory and reliable dimensioning has been achieved via static simulations (first by

Ferrari (2010), then refined by De Simoi (2011)), these are not suitable for testing the

effectiveness of the controller. First, the control system acts on the dynamics of the vehicle,

and a static simulation is not able to faithfully reproduce its behaviour; secondly, this kind

of application has a critical impact on the final user, hence a model of the rider has to be

considered to avoid safety issues whit the human driver. Hence it is clear the importance

of implementing a virtual environment where dynamical models of both the vehicle and
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the rider are included, so that reliable feedbacks can be obtained and analyzed to tune at

best the algorithms before the “real-world” applications.

In the next sections, the virtual environment implemented for testing the control

strategies will be presented (Beghi, Maran, and De Simoi, 2012c,d), highlighting some of

the crucial features and motivating the implementative choices. Simulation results with

both the proposed control algorithms will be analyzed and discussed. Finally, we will

report the results of an on-track test with the real prototype, held on the PIAGGIO track in

Pontedera (Italy). These results will regard only the heuristic control solution, that has

been easier and faster to implement within the due date of the project.

4.1 Virtual environment

The implemented virtual environment has two main goals:

1. provide a flexible, easily integrable tool for dynamic simulation of a (simplified)

model of the hybrid motorbike;

2. test the proposed control algorithms on a realistic scenario.

The core of the simulation tool is VI-BIKEREALTIME, a professional modeling, post process-

ing and real-time analysis environment for motorcycle models. One of its main features

is the SIMULINK interface, which allows to perform software-in-the-loop and hardware-

in-the-loop activities: together with the availability of a great number of customizable

parameters and output channels (more than 350 outputs), the tool is able to provide all

the quantities needed to evaluate the dynamic behaviour of the vehicle.

The key feature of the SIMULINK interface is the presence of a virtual rider, which

emulates the behaviour of a real driver and allows to close the loop of the dynamic

simulation, giving a reliable feedback on the performance of the control strategies in

a realistic scenario, before the “real-world” tests. In this sense, it is important for our

purposes to limit the performance of the virtual driver, implemented as a maximum
performance driver, to emulate situations of city-driving, as to build ad-hoc tracks to

replicate realistic paths; a SIMULINK model of the electrical machine has been implemented

to get a complete dynamic system representing the hybrid vehicle, with particular efforts

on the representation of the power management system. In figure 4.1 the complete

SIMULINK scheme is reported.
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4.1.1 Virtual rider

The virtual rider is able to “ride” a virtual vehicle model through a number of different

manoeuvres in order to allow users to accurately evaluate the dynamic behaviour. The

main advantage is the capability of dealing with closed-loop manoeuvres, which allows

to test the effectiveness of control algorithms from the point of view of the final user (the

rider): this is achieved by a combination of a static and an accurate dynamic solver (Frezza

et al., 2003) that, given the model parameters of the motorbike and the track, is able to

solve in real-time a set of equations which emulate a real-driver behaviour (Frezza and

Beghi, 2006, 2003; Frezza, Beghi, and Saccon, 2004; Saccon, Hauser, and Beghi, 2008),

in terms of applied longitudinal and lateral forces, driveline following and management

of crucial elements as steering, throttle, brake and many more.

The virtual rider must be provided with speed and gear-shifting references for a specific

track: since it is implemented to give the maximum performance during the ride, the two

references have to be manipulated in order to limit the driver capabilities and emulate a

city-ride route.

4.1.2 Tracks

A fundamental aspect of a reliable vehicle simulation is the choice of the track: the driver’s

and vehicle behaviour are deeply affected by the features of the route. For the target of

interest, the track has to be able to catch the main features of urban and extra-urban

mobility, typical for this kind application. The provided tool has the capability of building

a reliable road model, made up of single small blocks that can be characterized in terms

of orientation, regularity, grip and other parameters, and when combined, the principal

features of the track are specified, e.g. curves position and inclination angles, overpasses,

chicanes and many more. In the design stage, a weighted combination of curvature and

tension (local measure of the total path length) determines the trajectory that the virtual

driver will follow along the circuit: this is clearly another crucial parameter to specify the

virtual rider’s behaviour.

4.1.3 Hybrid engine

The hybrid engine, with both the endothermic engine and electric motor, is implemented

as an external SIMULINK system with respect to the core block representing the motor-

bike/rider dynamics (figure 4.2). In fact, simply adding the torque supplied by the electric

motor to the one given by the integrated model of the internal-combustion engine leads

to a wrong calculation of the throttle signal and an increasing error in tracking the speed
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reference: as stated before, the speed reference must be given in advance to the solver,

which at each time step calculates the throttle signal w.r.t. the torque that has to be

supplied in the next step to match the desired speed (feed-forward action). From the

solver point of view, the whole input torque is supplied by the endothermic engine, hence

leading to a wrong computation of the throttle signal that reflects on a bad tracking of

the speed reference that the internal PID controller is not able to prevent and on wrong

behaviour of the virtual rider (e.g. using brake instead of engine braking, or following

the wrong trajectory). Implementing the hybrid engine as an external system allows to

provide the right torque value to the solver in the feed-forward step, obtaining correct

results for throttle and speed signals.

Another remarkable advantage of our implementation is the throttle partialization
management. Both the engine models are map-based, i.e. their dynamics is represented

by a collection of look-up tables which relate the main quantities (e.g. RPM to supplied

torque). Each engine is provided with maps relating the maximum and minimum suppli-

able torque to the current RPM value (for the electrical machine, the minimum torque

is null, since it doesn’t contribute to engine braking): from the throttle value applied

on the previous step and the current RPM value, the endothermic torque and the new

throttle value are calculated, and the last one is used to scale the electric torque to get

the correct value. To compute the partialized torque, a linear interpolation is used, but

the implemented model gives the possibility to use more accurate partialization maps, if

available.

The subsystem includes a block to select the charge and boost intervals, as described

in section 3.2.

4.1.4 Battery pack

The system implemented to model the accumulators follows what has been shown in

section 3.1: the polynomial models are integrated and parameterized by specifying the

number of cells and their characteristics. The power estimation is implemented too, to

integrate this element with the rest of the virtual environment. Note that thanks to the

chosen approach it is easy to customize this block to different accumulators model, by

updating the correspondent charge and discharge curves.

4.1.5 Graphical User Interface

A GUI has been implemented to set the principal parameters for our test purposes: number

of battery cells, track and rider profiles, control strategies, rider’s driving style. The GUI



132 Simulation and On-Track Results

Figu
re

4.2:
D

etailofthe
S

IM
U

LIN
K

schem
e

ofthe
hybrid

engine.
The

orange
block

is
the

endotherm
ic

engine,the
green

one
the

electric
m

otor;
on

the
right,the

blocks
m

odelthe
activation

strategy
and

the
optim

alcontroller.



4.2 Simulation results 133

Figure 4.3: Graphical User Interface screenshot.

allows to modify the control strategy and driving behaviour in real-time, while a user

friendly representation of the hybrid motorcycle current operation mode and set-up is

provided through a dashboard (Figure 4.3).

4.2 Simulation results

The proposed control strategies have been tested on the previously described virtual

environment. The goal of the simulation is twofold:

1. to test the management of the chosen battery battery-pack, made up of 4 KOKAM

Li-Poly cells, on a realistic track;

2. to test the improvements in driving performance due to the electric boost contribu-

tion.

The last point cannot be directly verified: as previously stated, the solver of the virtual

rider needs a speed reference to track. Hence, in order for the comparisons to be reliable,

the rider has to be provided with the same speed reference, whatever the chosen motorbike

(pure endothermic or hybrid) and control strategy are. In this sense, the comparison will
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be carried out on the throttle demand rather than the applied boost: given the same speed

profile, a smaller throttle demand corresponds to an improvement due to the boost action,

so the target becomes emissions reduction.

The first simulation sees a gear-shift map realized to limit the virtual rider’s perfor-

mance as to emulate the typical RPM profile of urban driving paths, favouring up-shifts

to keep low running speeds. The designed track, 1793 meters long, contains both urban

and extra-urban features, with close brakings and accelerations phases together with

long straights and fast bends: in figure 4.4 the track is shown. The boost and charge

intervals are highlighted in red and green respectively, in order to give an idea of the

operation-mode selection strategy with respect to the spatial location of the motorbike

on the track. In figure 4.5 the same information are reported on the RPM telemetry,

where the action of the strategy is more clearly visible in terms of speed variation. Note

the behaviour of the gear-shift control that suspends the boost supply during up-shifts,

preventing useless energy consumption. In figure 4.6 the two proposed control strategies

−400 −300 −200 −100 0 100 200
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Figure 4.4: Simulation test track: in red the boost intervals, in green the charge ones.

are compared on the same speed reference, together with the behaviour of the pure

endothermic motorbike. By observing the throttle request, the demand of the hybrid

vehicle is smaller than that of the endothermic one during almost all the accelerations,

as can be expected, and this correspond to different applied boost torque values. It is

interesting to notice the different behaviour of the two compared control strategies, in

term of electrical machine exploitation and consequent contribution to the total torque.
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Figure 4.5: RPM telemetry on test track: in red the boost intervals, in green the charge ones.

The advantages of the adaptive torque splitter are evident: the electrical machine is

much more exploited, with remarkable throttle demand, and consequently emission,

reduction, in particular during long accelerations. The exploitation of the electric motor

in terms of boost supply is also more regular using the optimal control strategy, thanks

to the effectiveness of the cost function. For what concerns the effect on the accumula-

tors management, the State Of Charge of the battery in figure 4.7b shows the battery

usage with the two different strategies. At the start of the simulation the batteries are

full-charged; the optimal control has an imposed SOCref value of 0.95. It is evident how

the two different strategies allow for different usage of the batteries, as expected due to

the different torque supply behaviour. The reason can be found in the different control

philosophy: adaptive boost only acts on the electric motor independently of operation

of the endothermic engine. In particular, the latter operates at its maximum capabilities

before the intervention of the electric one, that supplies the remaining torque contribution

to meet the overall hybrid torque profile. On the other hand the optimal strategy also

considers the throttle command, so it is able to split the contribution so that to exploit at

best the electric motor, with consequent fuel and emission savings. All this is carried on

while keeping the SOC at satisfactory and safe values, even if it is less conservative than

the adaptive boost case. In both cases the low exploitation is evident, with a SOC kept

always over 95%. This is due to the fact that the electric engine is designed to provide a

strong contribution at low RPM (1000÷ 4000) values as reported in the hybrid torque

profile (figure 2.8), while the virtual driver is conceived for racing purposes, and even

with a gear-map that favors lower rotational speeds it is hard to keep the vehicle at such

low RPM. To this aim it is interesting to observe the initial phases of the telemetry, where
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the lap starts and RPM< 5000 (figure 4.7): in this phases the contribution of the electric

machine is more effective, and it is clear how the optimal strategy is able to manage the

batteries and the throttle partialization to obtain the best performance. Hence, the SOC
remains high because the conditions where the electric machine acts as a generator are

much more likely to be verified, so if the charge dynamics is slower, the stored energy

results to be much higher than the elapsed one.

To understand the different battery exploitation, a test on the same track has been

carried out by performing 10 consecutive laps, with a starting SOC equal to 80% and an

initial SOCref = 72%: results are in figure 4.8. The adaptive boost has an almost constant

trend (with a sudden increase at about 420 s that is probably due to imperfection on the

linking of different speed references for the virtual vehicle), and this highlights how this

strategy is more suitable for slower driving style. The optimal split is able to exploits the

battery in these conditions too, and the state of charge is in any case kept at a safer level

with respect to the imposed limitation. Note that the telemetry does not make necessary

the SOCref value to be adapted.

Finally, a test has been performed on a digital version of a real racing circuit, namely

the Silverstone (UK) track (figure 4.9). In this case the rider has been let free to behave

with maximum performance, to analyze a case when the hybrid vehicle is used in a racing

context. The RPM trend on two laps is depicted in figure 4.10, and its large values (always

in the range 6000÷ 12000) will probably make hard to exploit the electric motor. The

results in terms of throttle, torque and SOC are reported in figure 4.11. As expected, in

this case the difference in throttle request between the two strategies is reduced, since

such high rotational speeds are outside the operational range of the electric motor. In

any case, the comparison of torque contribution and residual state of charge highlights

the fact that the optimal control strategy keeps exploiting the electrical machine as much

as possible, with respect of the batteries constraints. In particular, also in this case it

is interesting to analyze the behaviour of the SOC dynamics: while the splitter tries to

exploit the electrical machine even in this hard conditions, using the stored energy, the

adaptive boost strategy is only able to charge the accumulators (an initial SOC value

equal to 95% has been set to examinate this behaviour). This confirm the fact that this

controller, even if simpler to implement, performs in a more conservative way in terms of

electrical machine exploitation.

Remark 4.2.1. Note that all the simulations have been carried out in real-time, or even

faster, thus demonstrating the applicability of these power management system strategies

on real vehicles, with ECU-optimized implementation.
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These tests have proved that the proposed control strategies are reliable, even if they

can have a conservative behaviour. In particular, they grant the stability of the vehicle

even with a rider in the loop, hence they can be safely tested in practice.
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Figure 4.6: Comparison of throttle, boost and SOC telemetries on one lap on the test track: the
torque split strategies shows better exploitation of the electric machine.
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Figure 4.7: Comparison of boost, SOC and RPM telemetries on one lap on the test track: the
detail on the first part of the telemetry, with a wider range of RPM, gives and advice of the less

conservative exploitation of the electric machine provided by the optimal strategy.
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Figure 4.9: Silverstone racing circuit: in red the boost intervals, in green the charge ones.
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Figure 4.10: rpm telemetry on 2 laps performed on Silverstone track in racing conditions: high
RPM values limit the usage of the electric motor.
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Figure 4.11: Comparison of throttle, boost and SOC telemetries on two laps on Silverstone track:
the racing conditions result in a lower usage of the electric machine. The behaviour of the split

strategy helps its exploitation while adaptive boost is almost inactive.
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4.3 On-track results

After the validation with the previously depicted simulations, the first of the two control

strategies has been implemented in the ECU of the real prototype, thanks to its relative

simplicity that makes it more suitable for a fast realisation and application.

The prototype has been realized by integrating the designed electric machine in place

of the alternator, that has been removed: the electric engine will fulfill its tasks. The

inverter has been installed on the back of the motorbike, inside a box. This is acceptable for

prototyping purposes, but it will have to be relocated (and redesigned) in the prospective

engineering. The accumulators pack has been located under the seat, together with the

electrical filters and the ECU. Figure 4.12 shows a picture of the modified RS4 125.

Figure 4.12: Hybrid RS4 125 prototype.

In the first instance, the behaviour of the hybrid engine has been characterized on

the test bench, hence the results are briefly reported. Figure 4.13 shows the results of

the measurements of supplied torque and power. The inertial bench test measures the

acceleration imparted to the mass of the roller, without activating the brake. This kind

of test is very fast, but does not guarantee the correctness of the measured profile, since

the inertia of the roller hides the uncertainties. However, given that the objective of the

measure was not to characterize the real torque curve of the motor but only to evaluate

the contribution of the electric motor, this uncertainty can be neglected. The comparison

of the performance of the hybrid engine with the endothermic one confirms how the most

significative contribution is at low RPM values and decreases while the rotational speed
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Figure 4.13: Inertial test bench characterization: in red, the hybrid torque and power profiles, in
blue the endothermic ones.

increases. The power curve is of particular interest, since it shows how the peak value is

reached almost 2500 RPM before the case with the endothermic engine alone, providing

a noticeable performance improvement.

The charge phase has been tested too, by verifying that during charging phase the

voltage at the battery pack terminals increases: this was confirmed by measurements

with a voltmeter.

4.3.1 PIAGGIO test track

The prototype has finally been tested on a the test track in Pontedera: a sketch can be

seen in figure 4.14. Three different setups were used: endothermic only, charge only

and hybrid. For what concerns the batteries, there has not been the possibility of directly

measuring the behaviour of the voltage of the accumulators, so it is not possible to

evaluate the performance of the battery management and the SOC variations. In any

case the control signal applied to the electric motor by the inverter is available, hence it

is possible to distinguish when the different phases took place.

On the other hand, it is interesting to compare the speed performance of the endother-

mic setup with respect to the hybrid one: in this case the difference can be more easily

interpreted than in the virtual environment framework, where the need for fixed speed

reference forced to look at the throttle signal. To the contrary, the analysis of throttle
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Figure 4.14: PIAGGIO test track.

opening is not significant, given that the vehicle achieved different speed profiles. The

comparison is reported in figure 4.15. The improvement provided by the hybridisation

is evident: the peak speeds are slightly higher when the electric contribution is active,

but the main result is the great increase in acceleration performance, that highlights the

effect of boost. In particular, the first part of the telemetries shows the most noticeable

difference in terms of acceleration, and this is the consequence of the boost contribution

at low RPM value: the depicted trend highlights in fact how only at the start of the test

the rotational speed is low enough (less than 5000 RPM) to take full advantage of the

electric motor contribution, and the correspondent first acceleration shows its benefits.

The overall lap time is sensibly reduced: 160.5 s versus 224.2 of the endothermic vehicle.

Hence, the goal of increasing the ride performance has to be considered achieved.
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Figure 4.15: Endothermic and hybrid systems: on-track performance comparison. Note the great
contribution in acceleration in the first part of the signal, thanks to RPM values that allow for

exploitation of the electric motor.





5
Conclusions

In the second part of this dissertation, the problem of designing and validating a controller

for a hybrid sport motorbike has been discussed. Different parts of the hybrid system

have been modelized, in particular the accumulators. Their physical characteristics have

not been directly measured, due to the lack of a test bench, so a modelization based on

the information from datasheet has been proposed. Through this, an estimation strategy

for the provided and absorbed power has been implemented.

Two control algorithms have been proposed: the first is an heuristic based on the direct

control of the sole electric machine. This strategy sees the intervention of the electric

motor only if the endothermic is not able to provide the full torque needed by itself. In

this sense it is a conservative controller, from the point of view of electric machine and

batteries exploitation. The second one is an optimal control strategy based on the idea of

torque split: the algorithm acts on the endothermic engine too with the aim of enhancing

the use of the electric machine while assuring that the accumulators are not too much
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stressed. Both the controllers have adaptive features that help the management with

different path profiles.

A virtual, dynamical environment for the test of the hybrid motorcycle has been

implemented. The battery model and control strategies have been included in a flexible

SIMULINK interface and integrated with a virtual rider tool for testing purpose: simulations

have been carried out to validate the battery sizing and the effectiveness of the control,

both on stability and power management, with satisfactory results in particular with the

optimal control strategy.

Finally, the first of the two control algorithm, easier to realize, has been implemented

on the real prototype and tested on a track, with clear improvement in the dynamical

performance of the vehicle, in particular at low RPM values.

Next steps will be the improvement of electrical machine and battery models to help

improving the reliability of the virtual environment, in order to test different vehicles and

different tracks an driving styles. The development of different boost mappings is already

on the way, in order to check the performance obtained from the vehicle with more or less

conservative exploitation of the electrical powertrain. This feature is already implemented

on the virtual environment. Furthermore, studies will be carried on to realize algorithm

for the identification of the driving conditions, e.g. using machine learning techniques,

with the goal of adapting the boost supply to the features of the route and the driving style

by automatically selecting the most suitable torque map. Finally, the approach of torque

split, which has shown promising results will be refined by introducing more refined

system model and cost functions. Model Predictive Control will be discussed as well to

manage the electric motor, as proposed by Bolognani, Bolognani, Peretti, and Zigliotto

(2009).



Final Remarks





In this dissertation, two innovative control applications in the automotive field have been

considered.

The MPC-based Motion Cueing Algorithm was inspired by the need of more effec-

tive procedures to exploit dynamic simulator platforms, with respect to more classical

approaches. After a review of the existing literature about similar ideas, a thorough

analysis of the existing studies on vestibular system has been carried out, with the aim

of deriving reliable models to be integrated in the MPC framework (Beghi, Bruschetta,

Maran, Minen, Baseggio, and Pozzi, 2011). The complete system for the algorithm has

seen the coupling with a simple mechanical model, in order to be as general as possible,

easy to be integrated in existing devices by generating references for the motion controller

(usually PLCs), rather than control the actuators themselves (Baseggio, Beghi, Bruschetta,

Maran, and Minen, 2011). If further information on these components are available, the

model can be revised and customised. The problem has been formulated as a Quadratic

Programming problem, for which many solvers are available. The chosen one is based

on Active Set strategy, and is able to work in real-time. The overall procedure introduces

a new concept for the tuning phase, where constraints and weights of a cost function

are manipulated to get the desired behaviour. This methodology has the advantage of

being intuitive and fast to adapt to the needs of the specific driver (Beghi, Bruschetta, and

Maran, 2012a). Finally, the proposed MC algorithm has been implemented and tested on

a real platform, with satisfactory results (Beghi, Bruschetta, Maran, Minen, Baseggio, and

Pozzi, 2012b).

The control strategies for the hybrid motorbike have been elaborated with the goal

of obtain an increase in terms of low-RPM torque performance, avoiding safety issues

and excessive battery consumption. To this aim, after a study of the specific components

of the prototype, a model for the accumulators has been derived, that makes use of the
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information from the data-sheets. Two controllers have been proposed, a simpler, heuristic

one that uses the electrical machine when the endothermic engine can not provide the

requested torque, and a more sophisticated one based on a optimal torque split control

strategy, that manages both the powertrains to achieve the best combination possible in

terms of performance and fuel savings, while preserving the battery pack from excessive

stress (Beghi et al., 2012c). A simulation environment has been implemented to test the

proposed strategies: it integrates the battery model and a virtual rider that closes the loop

in order to validate the algorithms (Beghi et al., 2012d). Finally, the heuristic strategy has

been implemented in the Electronics Control Unit of the prototype and tested on track,

with satisfactory results.

Both the topics have studied from scratch, innovative algorithms have been designed

and after being validated via simulation, implemented and tested on the field.
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