
University of Padova

Department of Information Engineering

Ph.D. School in Information Engineering

Information Science and Technology

XXVI Class

Compression vs Transmission Tradeoffs

for Energy Harvesting Sensor Networks

Ph.D. candidate:

Davide Zordan

Supervisor:

Prof. Michele Rossi

Course coordinator:

Prof. Carlo Ferrari

Ph.D. School director:

Prof. Matteo Bertocco

Academic Year 2013-2014





Abstract

The operation of Energy Harvesting Wireless Sensor Networks (EHWSNs) is a very lively

area of research. This is due to the increasing inclination toward green systems, in order to

reduce the energy consumption of human activities at large and to the desire of designing

networks that can last unattended indefinitely (see, e.g., the nodes employed in Wireless

Sensor Networks, WSNs). Notably, despite recent technological advances, batteries are ex-

pected to last for less than ten years for many applications and their replacement is often

prohibitively expensive. This problem is particularly severe for urban sensing applications,

think of, e.g., sensors placed below the street level to sense the presence of cars in parking

lots, where the installation of new power cables is impractical. Other examples include body

sensor networks or WSNs deployed in remote geographic areas. In contrast, EHWNs pow-

ered by energy scavenging devices (renewable power) provide potentially maintenance-free

perpetual network operation, which is particularly appealing, especially for highly pervasive

Internet of Things.

Lossy temporal compression has been widely recognized as key for Energy Constrained

Wireless Sensor Networks (WSN), where the imperfect reconstruction of the signal is often

acceptable at the data collector, subject to some maximum error tolerance. The first part of

this thesis deals with the evaluation of a number of lossy compression methods from the liter-

ature, and the analysis of their performance in terms of compression efficiency, computational

complexity and energy consumption. Specifically, as a first step, a performance evaluation of

existing and new compression schemes, considering linear, autoregressive, FFT-/DCT- and

Wavelet-based models is carried out, by looking at their performance as a function of relevant

signal statistics. After that, closed form expressions for their overall energy consumption and

signal representation accuracy are obtained through numerical fittings. Lastly, the benefits
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that lossy compression methods bring about in interference-limited multi-hop networks are

evaluated. In this scenario the channel access is a source of inefficiency due to collisions

and transmission scheduling. The results reveal that the DCT-based schemes are the best

option in terms of compression efficiency but are inefficient in terms of energy consumption.

Instead, linear methods lead to substantial savings in terms of energy expenditure by, at the

same time, leading to satisfactory compression ratios, reduced network delay and increased

reliability performance.

The subsequent part of the thesis copes with the problem of energy management for

EHWSNs where sensor batteries are recharged via the energy harvested through a solar

panel and sensors can choose to compress data before transmission. A scenario where a

single node communicates with a single receiver is considered. The task of the node is to

periodically sense some physical signal and report the measurements to the receiver (sink).

We assume that this task is delay tolerant, i.e., the sensor can store a certain number of

measurements in the memory buffer and send one or more packets of data after some time.

Since most physical signals exhibit strong temporal correlation, the data in the buffer can

often be compressed by means of a lossy compression method in order to reduce the amount

of data to be sent. Lossy compression schemes allow us to select the compression ratio and

trade some accuracy in the data reconstruction at the receiver for more energy savings at

the transmitter. Specifically, our objective is to obtain the policy, i.e., the set of decision

rules that describe the node behavior, that jointly maximizes throughput and reconstruction

fidelity at the sink while meeting some predefined energy constraints, e.g., the battery charge

level should never go below a guard threshold. To obtain this policy, the system is modeled as

a Constrained Markov Decision Process (CMDP), and solved through Lagrangian Relaxation

and Value Iteration Algorithm. The optimal policies are then compared with heuristic policies

in different energy budget scenarios. Moreover the impact of the delay on the knowledge of

the Channel State Information is investigated.

Two more parts of this thesis deal with the development of models for the generation

of space-time correlated signals and for the description of the energy harvested by outdoor

photovoltaic panels. The former are very useful to prove the effectiveness of the proposed

data gathering solutions as they can be used in the design of accurate simulation tools for

WSNs. In addition, they can also be considered as reference models to prove theoretical
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results for data gathering or compression algorithms. The latter are especially useful in the

investigation and in the optimization of EHWSNs. These models will be presented at the

beginning and then intensively used for the analysis and the performance evaluation of the

schemes that are treated in the remainder of the thesis.





Sommario

Quello delle Energy Harvesting Wireless Sensor Networks (EHWSNs) è attualmente un

campo di ricerca molto attivo. Ciò è principalmente dovuto al crescente interesse dimostrato

verso i sistemi ”green”, con l’obiettivo di ridurre il consumo energetico delle attività umane

in generale e il desiderio di progettare reti autosufficienti che possono durare indefinitamente

(si pensi, ad esempio , ai nodi impiegati in reti di sensori wireless , WSNs). In particolare,

nonostante i recenti progressi tecnologici, per molte applicazioni le batterie si dimostrano du-

rare meno di dieci anni e il costo per la loro sostituzione è spesso proibitivo. Questo problema

è particolarmente grave per le applicazioni di rilevamento urbano, si pensi ad esempio ad uno

scenario in cui dei sensori sono posizionati al di sotto del manto stradale per il rilevamento

della presenza di auto nei parcheggi, dove l’installazione di nuovi cavi di alimentazione o

la sostituizione delle batterie non sono praticabili . Altri esempi includono le ”body sensor

networks” o le reti di sensori distribuite in aree geografiche remote o inaccessibili. Al con-

trario, EHWSNs alimentate da dispositivi di energy scavenging (energia rinnovabile) possono

dare vita a reti perpetue e potenzialmente esenti da manutenzione, che sono particolarmente

attraenti, soprattutto per il nuovo concetto altamente pervasivo di Internet of Things.

La compressione temporale con perdite (lossy temporal compression) è ampiamente ri-

conosciuta come componente fondamentale per il funzionamento delle reti di sensori con

energia limitata, dove la ricostruzione imperfetta del segnale al punto di raccolta è spesso

accettabile, fino ad un certo limite massimo sulla tolleranza di errore. Una parte di questa

tesi tratta la valutazione prestazionale di un significativo numero di metodi di compressione

con perdita tratti dalla letteratura, e l’analisi delle loro prestazioni in termini di efficienza di

compressione, complessità computazionale e consumo energetico. In dettaglio, come primo

passo, viene proposta una valutazione delle prestazioni di sistemi di compressione esistenti e
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nuovi, tra cui: modelli lineari, autoregressivi, basati su FFT/DCT e Wavelet, individuando

le loro prestazioni in funzione delle statistiche dei segnali rilevanti. Dopo di che, attraverso

interpolazione numerica, verranno derivate delle espressioni in forma chiusa per il consumo

globale di energia e la precisione di rappresentazione del segnale. Infine, verranno valutati

i benefici che i metodi di compressione con perdita possono portare in reti multi-hop con

interferenze limitate. In questo scenario il canale di accesso diventa fonte di inefficienza at-

traverso collisioni e metodo di accesso al mezzo. I risultati rivelano che le tecniche basate

su DCT sono la scelta migliore in termini di efficienza di compressione, ma non risultano

efficienti in termini di consumo energetico. Al contrario, metodi lineari possono dar luce a

notevoli risparmi in termini di dispendio energetico, e al tempo stesso, portare a rapporti di

compressione soddisfacenti, ritardi di rete ridotti e migliore affidabilità.

La parte successiva di questa tesi affronta il problema della gestione energetica per

EHWSNs nelle quali le batterie dei nodi sensore vengono ricaricate attraverso l’energia rac-

colta da un pannello solare e sensori possono scegliere di comprimere i dati prima della

trasmissione. A tal fine viene considerato uno scenario in cui un singolo nodo comunica con

un singolo ricevitore. L’attività del nodo è quella di campionare periodicamente qualche

segnale fisico e riportare le misurazioni al ricevitore (sink). Tale attività viene assunta es-

sere tollerante al ritardo, ovvero, il sensore pu memorizzare un certo numero di misurazioni

nel buffer di memoria e inviare uno o più pacchetti di dati aggregati dopo un certo tempo.

Poiché la maggior parte dei segnali fisici manifestano una forte correlazione temporale, i dati

nel buffer possono eventualmente essere compressi mediante un metodo di compressione con

perdita al fine di ridurre la quantità di dati da inviare. Attraverso metodi di compressione con

perdita di dati che permettono di selezionare il rapporto di compressione è possibile scambiare

un po’ di accuratezza nella ricostruzione dei dati al ricevitore per ottenere maggiori risparmi

di energia al trasmettitore. In dettaglio, l’obiettivo di questa parte della tesi è quello di

ottenere la politica, cioè l’insieme di regole decisionali che descrivono il comportamento del

nodo sensore, che massimizza il throughput unitamente alla fedeltà di ricostruzione al punto

di raccolta soddisfacendo al tempo stesso alcuni vincoli energetici predefiniti, ad esempio, il

livello di carica della batteria non deve mai scendere al di sotto di una soglia di guardia.

Per ottenere la politica ottima, il sistema verrà modellato attraverso un Processo Decisonale

di Markov Vincolato (Constrained Markov Decision Process, CMDP), e risolto attraverso il
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rilassamento lagrangiano e l’algoritmo di Value Iteration. Le politiche ottimali verranno poi

confrontate con alcune politiche euristiche in diversi scenari di bilancio energetico. Verrà

inoltre studiato l’impatto del ritardo sulla conoscenza dello stato del canale.

Due ulteriori parti di questa tesi riguardano lo sviluppo di modelli per la generazione di

segnali correlati nello spazio e nel tempo, e per la descrizione statistica dell’energia raccolta

da pannelli fotovoltaici esterni. I primi sono utili per testare l’efficacia di algoritmi di raccolta

dati e possono venire impiegati nella progettazione di accurati strumenti di simulazione per

reti di sensori. Inoltre possono venire impiegati come modelli di riferimento per dimostrare

risultati teorici per algoritmi di raccolta dati o di compressione. Gli ultimi sono partico-

larmente utili per lo studio e l’ottimizzazione delle EHWSNs. Entrambi i modelli verranno

introdotti nella parte iniziale della tesi e successivamente utilizzati per tutto il corpo centrale

della stessa.
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1
Introduction

A Wireless Sensor Network (WSN) consists of sensor nodes deployed over a geographical

area to monitor physical phenomena like temperature, humidity, seismic events, polluting

agents concentration and so on. Typically, a sensor node is a small device that is composed

of three main parts: a sensing subsystem responsible for collecting data from the environ-

ment, a processing subsystem dedicated to data handling and local data processing and a

communication subsystem for data transmission. In addition to that, sensor nodes are usually

powered by small, and generally disposable, batteries. Therefore, protocols and applications

for WSNs must be carefully designed in order to make the most efficient use of the limited

resources available in terms of computation capabilities and energy consumption.

In recent years, researchers have focused on the design of energy efficient protocols for

data gathering [1], data aggregation and in–network compression [2], as well as Medium Ac-

cess Control (MAC) [3] and Routing protocols [4]. The main direction followed by most of the

works in the literature is that of trading off communications for computational complexity.

In particular, since usually local computation consumes significantly less energy than com-

munication, the proposed solutions often aimed at reducing the amount of data transmission

in order to save energy. To this end, various algorithms and protocols have been proposed,

claiming energy efficiency as the main objective but often neglecting the computational cost

in the performance evaluation and assuming it as a small fraction of the communication cost.

This however is not always the case, since the processing unit of the sensor nodes is also en-

ergy, memory and power constrained and the number of operations needed to perform some

signal processing may lead to non negligible energy consumptions.

In this thesis we focus on the study of lossy compression techniques for WSNs. In partic-

1
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ular, our aim is to carry out a thorough performance evaluation of new as well as previously

proposed compression algorithms in terms of compression capabilities and, most importantly,

computational complexity and energy consumption. This is done in Chapter 4, where we first

consider the scenario of a single hop communication link and evaluate the performance and

the energy efficiency of the selected lossy compression schemes. After that, we also analyze

the case of a multi hop scenario where a realistic MAC protocol is considered, and we verify

how the results obtained in the single hop case extend to the multi hop case.

The optimization objective drastically changes when we consider the possibility of har-

vesting energy from the environment through some energy scavenging device and use this

energy to replenish the nodes batteries. In this scenario, known as Energy Harvesting Wire-

less Sensor Network (EHWSN), the main objective is to redesign the protocols and algorithms

to properly manage the available energy preventing both the discharge of the batteries and

the waste of energy due to excessively conservative approaches. The energy production pro-

cess in EHWSN can be modeled as a random process, and the proposed networking / signal

processing solutions should adapt to the statistical characteristic of this process.

In this thesis, after characterizing the gain that data compression can offer in energy

constrained WSNs scenarios, and investigating the tradeoffs between compression and trans-

mission energy for several lossy compression methods (see Chapter 4), we look at the op-

timization of the compression policy for a solar powered sensor node. In an EHWSN, in

fact, the dynamics of the energy buffer provide additional challenges for the optimization of

compression policies.

1.1 Structure of the thesis and main contributions

In the following we detail the thesis organization and the main contributions of each

chapter.

Chapter 2 This chapter considers the problem of modeling space–time correlated signal

and reproducing them. The models arising from the work in this chapter are used

in Chapter 4 and Chapter 5 in order to obtain signals with desired characteristics

for the performance evaluation of data compression schemes. In particular, the main

contributions of the chapter are:
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• the description of a method to generate synthetic signals with tunable correlation

characteristics; with this method it is possible to extract the statistical character-

istics of a signal from real datasets and use them to generate statistically similar

signals;

• the validation of the proposed model through standard analytical techniques and

through comparison against real and large data sets;

Chapter 3 This chapter presents a methodology and a tool to derive simple but accurate

stochastic Markov processes for the description of the energy scavenged by outdoor

solar sources. In particular, the main contributions of this chapter are:

• the description of a methodology to translate solar radiation data into the input

energy process for a solar panel powered sensor node;

• the validation of the model against real datasets in terms of first– and second–order

statistics.

Chapter 4 This chapter deals with the evaluation of a number of selected lossy compression

methods from the literature, and the extensive analysis of their performance in terms

of compression efficiency, computational complexity and energy consumption. In detail

the main contributions of this chapter are:

• an in depth performance evaluation of selected lossy compression algorithms for

time series, accounting for linear, autoregressive models, Fourier and Wavelet

transforms. At first, we focus on interference-free single- and multi-hop networks,

where the Medium Access Control (MAC) layer is idealized, i.e., besides trans-

mission and reception, it does not introduce further energetic inefficiencies due to

collisions and idle times for floor acquisition. For this scenario, we assess whether

signal compression actually helps in the reduction of the overall energy consump-

tion, depending on the compression algorithm, the chosen reconstruction fidelity,

the signal statistics and the hardware characteristics;

• the derivation of formulas, obtained through numerical fittings and validated

against real datasets, to gauge the computational complexity, the overall energy

consumption and the signal representation accuracy of the best performing com-

pression algorithms as a function of the most relevant system parameters. These
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formulas can be used to generalize the results obtained here to other WSN ar-

chitectures and will also be used in the optimization framework of Chapter 5 to

describe the reward (related to the representation accuracy) and the cost (energy

consumption) functions;

• the analytical characterization of a multi hop scenario along with the assessment

of the performance improvements that are brought about by different lossy com-

pression schemes in the presence of collisions and idle times for floor acquisition

at the MAC.

Chapter 5 This chapter addresses the problem of optimizing the compression policy for an

Energy Harvesting sensor node. The aim is to obtain the compression/transmission

policy that jointly maximizes throughput and reconstruction fidelity at the data collec-

tion point, while meeting some predefined energy constraints, i.e., the battery charge

level should never go below a predefined guard threshold. In addition, the impact of

perfect vs delayed Channel State Information (CSI) at the transmitter and of power

control over a multi-path channel is studied. The contributions of this chapter are:

• the definition, through a Constrained Markov Decision Problem (CMDP), of a

model for the transmission and energy dynamics of a sensor node implementing

practical lossy compression methods;

• the design of an algorithm to numerically evaluate optimal compression/transmission

policies, using a Lagrangian relaxation approach combined with a dichotomic

search for the optimal Lagrangian;

• the derivation of theoretical results on the structure of the optimal policy, demon-

strating that under suitable but realistic assumptions it is non decreasing in each

of the system state components;

• a thorough numerical evaluation of optimal as well as heuristic policies for different

scenarios, gauging the impact of perfect vs delayed CSI and power control.

Chapter 6 This chapter concludes the thesis and discusses some avenues for future research

work.



2
Modeling and Generation of Space-Time Correlated Signals

for Sensor Network Fields

In the past few years, a large number of networking protocols for data gathering through

aggregation, compression and recovery in Wireless Sensor Networks (WSNs) have utilized

the spatio-temporal statistics of real world signals in order to achieve good performance in

terms of energy savings and improved signal reconstruction accuracy. However, very little has

been said in terms of suitable spatio-temporal models of the signals of interest. These models

are very useful to prove the effectiveness of the proposed data gathering solutions as they

can be used in the design of accurate simulation tools for WSNs. In addition, they can also

be considered as reference models to prove theoretical results for data gathering algorithms.

In this chapter, we present a mathematical model for real world signals that are correlated

in space and time. We thus describe a method to reproduce synthetic signals with tunable

correlation characteristics and we verify, through analysis and comparison against large data

sets from real world testbeds, that our model is accurate in reproducing the signal statistics

of interest. The model presented here will thus be exploited in Chapter 4 and Chapter 5 in

order to generate the signals used in the simulations.

2.1 Introduction and Related Work

The temporal and spatial correlations are key statistical features of real signals, which

are effectively exploited by many networking applications in the Wireless Sensor Network

(WSN) domain. The temporal correlation captures the time evolution of the signal, making

it possible to find appropriate sampling intervals for its accurate reconstruction. During

5
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these intervals, sensor nodes may go into a low power state, thus saving energy. The spatial

correlation can instead be exploited in the deployment phase of, e.g., WSNs for environmental

monitoring, to obtain suitable sensor densities as well as good deployment strategies [5].

Moreover, these features can be directly exploited in the design of networking protocols and

signal compression techniques that make use of signal statistics. As an example, the authors

of [6] design a distributed and collaborative Medium Access Control (MAC) protocol for

WSNs that utilizes the spatial correlation of the monitored signal and exploits the fact that

a sensor node can act as a representative node for other sensors in its neighborhood. [7] seeks

to minimize the energy consumption of WSNs through the use of suitable spatio-temporal

sampling rates. The objective of this work is to adapt the sleeping and spatial sampling

behavior of the sensor nodes (readings from closely located sensors are almost equivalent

when the signal is correlated in space) as a function of the signal statistics. The aim is to

reduce the number of sensors that sample the signal per unit of time, while still allowing

its accurate reconstruction. The problem of designing a data gathering tree over a WSN

is addressed, e.g., in [8], where the authors exploit the spatial correlation of the signal to

design a proper gathering tree. [9] presents a system for data handling in WSNs, which takes

into account the spatio-temporal statistics of the signal, incorporating long-term storage,

multi-resolution data access and spatio-temporal pattern mining.

In addition, recent techniques for in-network aggregation and distributed data compres-

sion in WSNs use theoretical tools such as Compressive Sensing (CS) [10,11]. In CS, convex

optimization techniques exploit the sparsity of the data to achieve distributed compression.

As shown in [1, 12], the spatio-temporal statistics of the signal can be used to design an ad

hoc sparsification basis that allows the effective use of CS for reconstruction through random

sampling.

Although many approaches in the WSN literature utilized the spatio-temporal character-

istics of real world signals, very little attention has been paid to the definition of simple yet

accurate models, including lightweight, fast and accurate tools for the reproduction of signals

with the desired spatio-temporal statistics. We believe that these models are instead very

much needed to prove performance limits of data gathering and distributed signal processing

solutions, as well as to carry out their performance evaluation systematically.

In this chapter, we address this gap by developing a framework to statistically characterize
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real world signals in space and time. This framework allows the accurate reproduction of the

spatio-temporal behavior of such signals, obtaining synthetic models that can be effectively

generated and subsequently used for protocol design and testing. These models are thus

extensively validated against real world data, gathered from our indoor testbed at DEI [13],

as well as climate data from [14]. The signal generation tool so obtained can be tuned to

generate spatially and temporally correlated signals, where temporal and spatial correlations

can be independently set. We remark that the usage of this tool is not limited to the field of

WSN protocol optimization. As an example, the shadowing that affects radio transmissions

can also be generated through our model. Note that in most previous works only the spatial

correlation has been kept into account, see [15].

Previous work to generate spatially correlated signals for WSNs [16] accounted for the

spatial correlation of real world signals through variogram functions, by however neglecting

the temporal correlation. Similar approaches can also be found in the field of geostatistics [17].

However, the studies within this field are mostly centered around finding optimal predictors

and interpolators for spatio-temporal varying signals, e.g., Kriged Kalman filtering [18], rather

than giving simple, fast and accurate models for their generation. A further and very recent

application is in cooperative cognitive radio sensing [19].

In this chapter, we describe a general approach that can be used in the aforementioned

applications. In detail, our main contributions are the following:

• we describe a method to generate synthetic signals with tunable correlation characteris-

tics; in this way it is possible to extract the statistical characteristics from real datasets

and use them to generate statistically similar signals;

• we verify with standard analytical techniques and through comparison against real and

large data sets that these characteristics are preserved;

• we provide a useful simulation tool that can be applied in all the above fields [20].

The rest of the chapter is organized as follows. In Section 2.2 we discuss the general correla-

tion models for real world signals and introduce their properties. The model for space-time

correlated signals is presented in detail in Section 2.3 and is validated against real world

measurements in Section 2.4. Section 2.5 concludes our work.
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2.2 Characterization of Signals from Sensor Network Fields

In this section we want to capture the relevant statistics from real environmental signals,

in order to exploit this information for the generation of new samples with similar features.

In the following, we present the details of our mathematical model for space-time correlated

signals, introducing our notation, reported in Tab. I, as well as our basic assumptions. We

focus on time varying two-dimensional (2D) fields of real-valued measurements; with x and y

we indicate the space coordinates, whereas D “ r´xD, xDs ˆ r´yD, yDs is the space domain.

We consider that time is slotted where the slot time has a fixed duration ∆T ą 0. Thus, the

time index is t “ i∆T with i “ 0, 1, 2, 3, . . . , and the corresponding time domain is denoted

by T . A point in space p P D is indicated by the pair p “ px, yq. With zpp, tq : D ˆ T Ñ R

we indicate the multidimensional random process that represents the space-time correlated

random field (which is the objective of our analysis). When we fix a specific point with

coordinates po in space and to in time, zppo, toq represents a random variable (r.v.) describing

the value of this field at the specific point considered, with mean µzppo, toq and variance

σ2
zppo, toq. We assume that z is a stationary random process (weak-sense stationarity) in

both space and time, so that µzppo, toq “ µz and σ2
zppo, toq “ σ2

z , @p P D and @ t P T .

Moreover, we assume that the correlation function of the considered signal is separable in the

temporal correlation and the spatial correlation:

ρpp1, t1,p2, t2q “ ρSpp1,p2qρT pt1, t2q . (2.1)

This is a general assumption used in the meteorology and geology fields, e.g., see [21, 22].

In detail, we consider the following models to study separately the temporal and spatial

characteristics of the real signals.

2.2.1 Spatial correlation

ρSpp1,p2q is the spatial correlation function between any two points p1,p2 P D. Formally,

@ t P T :

ρSpp1,p2q “ covpzpp1, tq, zpp2, tqq
σzpp1, tqσzpp2, tq

, (2.2)

where covp¨q is the covariance function. The weak-sense stationarity assumption made to

define our multidimensional process implies also the correlation stationarity, i.e., for the

spatial correlation, if the Euclidean distance d1,2 “ |p1 ´ p2| is equal to d3,4 “ |p3 ´ p4|,
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Symbol Meaning

D Spatial domain

T Time domain

F Frequency domain

p Point in space p “ px, yq P D

ω Point in frequency ω “ pu, vq P F

zpp, tq Space-time correlated field

ρT p∆T q Temporal correlation coefficient of z

d Euclidean distance between two points in D

ρSpdq Spatial correlation function of z between two points

p1 and p2 with distance d “ |p1 ´ p2|
RSpωq 2D Fourier transform of ρSppq
wpp, tq i.i.d. random Gaussian field at time t

W pω, tq 2D Fourier transform of wpp, tq
εpp, tq i.i.d. random Gaussian noise field

Table 2.1. Notation used in the analysis.

then ρSpp1,p2q “ ρSpp3,p4q. For this reason, the spatial correlation function can be defined

as a function of the distance between two points, that is a scalar d P r0, dM s, where dM “
a

p2xDq2 ` p2yDq2, i.e., the maximum distance between two points in D. In the following,

with an abuse of notation we can write ρSpp1,p2q “ ρSpd1,2q, without loss of generality.

Moreover, there are other issues to be considered when studying a real signal. Since the

signal is sensed only at specific locations, we can not evaluate the process zpp, tq at every

point p P D, but we can observe the process only at the points where the signal is sensed, i.e.,

pi P D. This translates to the fact that also ρSpdq may not be defined @ d P r0, dM s. Thus, in
the literature there exist many models to capture the spatial correlations for real signals [23].

We consider the following two models:

Power Exponential (PE) model: the spatial correlation ρSpdq is modeled with the func-

tion:

rρSPE
pdq “ expt´pd{ζqνu , for 0 ă ν ď 2 ; (2.3)
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wpp, tq rSppq zpp, tqŕŕőF
ŕŕőF

ŋŕŕF´1

W pω, tq ˆ RSpωq 1
2 “ Zpω, tq

Figure 2.1. Diagram for the 2D filtering procedure.

Rational Quadratic (RQ) model: the spatial correlation ρSpdq is modeled with the func-

tion:

rρSRQ
pdq “ 1

1 ` pd{ζqνSν

, for 0 ă ν ď 2 ; (2.4)

Both models above depend on the parameters ζ and ν, that are the correlation length

and the order of the function, respectively, while Sν “ 201{ν ´ 1 is a scaling factor. The two

algorithms set ζ and ν to best fit the correlation of the real signal considered, that is defined

only for a finite set of distances dj, with j “ 1, . . . , J . The best fit is obtained minimizing

the Root Mean Square Error (RMSE), i.e,

ξF “

gffe 1

J

Jÿ

j“1

prρSM
pdjq ´ ρSpdjqq2 , (2.5)

where F “ PE for the PE model and F “ RQ for the RQ model.

2.2.2 Temporal correlation

ρT pt1, t2q is the spatial correlation function between any two time samples t1, t2 P T .

Formally, @p P D:

ρT pt1, t2q “ covpzpp, t1q, zpp, t2qq
σzpp, t1qσzpp, t2q . (2.6)

Similar to the case of the spatial correlation, also in this case, as a consequence of the weak-

sense stationarity assumption, the stationarity in the temporal correlation holds, i.e., we can

write with an abuse of notation ρT pt1, t2q “ ρT pt2 ´ t1q “ ρT pi∆T q, where i∆T “ t2 ´ t1.

Since we aim at generating a synthetic signal with an autoregressive model, as will be detailed

in the next section, we only consider the one step time correlation, i.e., we are only interested

in calculating the coefficient ρT p∆T q.
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2.3 Model for Space-Time Correlated Signals

Our objective is to devise a suitable and tractable model for the generation of the colored

signal zpp, tq. Specifically, we want to obtain a dynamic model, evolving at discrete time

instants and thus allowing the generation of zpp, i∆T q for i “ 0, 1, 2, 3, . . . . This model

should retain, as much as possible, the correlation characteristics of the original signal that we

sample from the sensor network field. Next, we present a suitable method for the generation

of such signal, whereas its accuracy is demonstrated later on in Section 2.4 by comparing the

generated signals against real data measurements.

The correlated signal zpp, tq is attained through the following procedure:

S1 At time to “ 0, we generate an i.i.d. random Gaussian field wpp, toq : D ˆ T Ñ R,

which for any specific location is a Gaussian r.v. with zero mean and unit variance,

N p0, 1q. wpp, toq is a stationary process (strict sense) by construction.

S2 zpp, toq is obtained by coloring wpp, toq through a 2D filtering procedure. In detail, we

first obtain W pω, toq from wpp, toq using the 2D Fourier transform F r¨s, i.e., W pω, toq “
F rwpp, toqs, where ω “ pu, vq P F and F is the frequency domain. Given the reference

point po “ p0, 0q, for any point p P D we enforce the correlation ρSp|p ´ po|q and

compute its Fourier transform, RSpωq “ F rρSp|p ´ po|qs.

S3 Thus, we multiply W pω, toq by RSpωq1{2 and compute the inverse Fourier transform of

the result so obtained to attain the wanted colored random field zpp, toq. Note that z is

still Gaussian and stationary. This procedure is sketched in the diagram of Fig. 2.1. This

(S1–S3) is a known method for coloring a random Gaussian field, whose proof as well as

further mathematical details can be found in [24]. The field z so obtained is correlated

in space and its spatial correlation can be controlled through a valid correlation function

ρSp|p ´ po|q [23].

S4 In order to enforce a temporal correlation as well, we adopt an autoregressive filter as

follows:

wpp, to ` ∆T q “ ρT p∆T qwpp, toq

`
a

1 ´ ρT p∆T q2εpp, to ` ∆T q , (2.7)
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where εpp, to `∆T q is an i.i.d. random Gaussian noise, N p0, 1q. ρT p∆T q is a temporal

correlation coefficient that we enforce in the model. Thus, the procedure S1–S4 is

iterated for all future time steps to calculate wpp, to ` i∆T q from wpp, to ` pi ´ 1q∆T q,
for i “ 1, 2, 3, . . . . Note that ρT p∆T q is obtained from actual field measurements, as

further discussed in Section 2.4. Also, note that wpp, tq is still i.i.d. in the space domain,

whereas thanks to (2.7), it is time-correlated with correlation coefficient ρp∆T q. As we
demonstrate shortly, wpp, tq is again a stationary and Gaussian random process which

maintains the same mean and variance of the original process wpp, toq.

In what follows, we show that the autoregressive model that we superimpose to the

spatially correlated signal preserves the statistical properties of the random field wpp, tq, i.e.,
the autoregressive filtering is stable and the signal that it generates is time-stationary. To

this end, we need to show that both mean and variance of wpp, tq are preserved using (2.7),

and we do it using standard statistical techniques for continuous time processes, e.g., see [25].

Conservation of the mean of wpp, tq. For the mean, we have that:

µwpp, t ` ∆T q “ Erwpp, t ` ∆T qs “ 0 , (2.8)

that is obtained using (2.7) and the linearity of the expectation. It is easy to verify (2.8) for

t “ to, then the result is proven inductively for all time steps. Finally, note that this result

holds @p P D.

Conservation of the variance of wpp, tq. For the variance, we have:

σ2
wpp, t ` ∆T q “

“ Erpwpp, t ` ∆T q ´ µwpp, t ` ∆T qq2s “ 1 , (2.9)

where we use the definition of autoregressive filter in (2.7) and a mathematical reasoning

similar to the one used in (2.8). Again, the result in (2.9) holds for t “ to, so we have that

σ2
wpp, to ` ∆T q “ 1 by construction, and the result @ t P T follows inductively.

Conservation of the temporal correlation of zpp, tq. In what follows, we prove that

the random process zpp, tq that we obtain through steps S1–S4 is also correlated in time and

that its correlation coefficient is ρp∆T q at all time instants and for all points p P D. Without

loss of generality (the result also holds in the continuous case), we consider our spatial signal

as being sampled from a rectangular sensor grid of N ˆM points evenly spaced in D. Owing
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to this assumption, let the space point p “ px, yq be defined with x P t1, 2, . . . , Nu and

y P t1, 2, . . . ,Mu. Also, let us define rSppq as:

rSppq “ F´1
”
F rρSp|p ´ po|qs 1

2

ı
“ F´1

”
RSpωq 1

2

ı
. (2.10)

From this definition and the diagram of Fig. 2.1, we see that zpp, tq is obtained in the domain

D as the spatial convolution between wpp, tq “ wpx, y, tq and rSppq “ rSpx, yq, i.e.,

zpp, tq “
Nÿ

i“1

Mÿ

j“1

w pi, j, tq rSpx ´ i, y ´ jq , (2.11)

where i P t1, 2, . . . , Nu and j P t1, 2, . . . ,Mu. We now compute the mean of process zpp, tq,
that is µzpp, tq “ Erzpp, tqs:

µzpp, tq “ E

«
Nÿ

i“1

Mÿ

j“1

wpi, j, tqrSpx ´ i, y ´ jq
ff

“
Nÿ

i“1

Mÿ

j“1

E rwpi, j, tqs rSpx ´ i, y ´ jq “ 0 , (2.12)

where the result follows from the linearity of the expectation, the fact that rSppq is a deter-

ministic function (as it is directly derived from the spatial correlation function, which is a

known quantity) and the result in (2.8).

We are now ready to calculate the numerator of (2.6), which is given by (2.13): in this

equation, equality (a) follows from (2.12), whereas (b) follows from (2.11) and (c) follows

from (2.7). Also, (d) follows as the temporal correlation coefficient ρT p∆T q and rSppq are a

constant and a deterministic function, respectively. For (e), note that Erwpi, j, tqεpk, q, t `
∆T qs “ 0, as process ε is independent of w by construction and its mean is zero. Moreover,

when indices i ‰ k or j ‰ q, we have Erwpi, j, tqwpk, q, tqs “ Erwpi, j, tqsErwpk, q, tqs “ 0,

since wpp, tq is i.i.d. in the space domain and Erwpp, tqs “ 0, @p P D. Thus, for the only non

zero case in which i “ k and j “ q, we have Erwpi, j, tqwpk, q, tqs “ Erwpi, j, tq2s “ σ2
w.

The denominator of (2.6) is computed in (2.14). From (2.11), it follows that the variance

of zpp, tq does not depend on t, since wpp, tq is stationary and rSppq is a deterministic mapping

function that only depends on the spatial correlation. Hence, equality (a) follows as σzpp,tq “
σzpp,t`∆T q and µzpp, tq “ 0, see (2.12). The remaining equalities follow using the same

reasonings as those done above for Eq. (2.13).

Taking the ratio of (2.13) and (2.14), we have proved the conservation of the temporal

correlation, @ t P T and @p P D.
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covpzpp, tq, zpp, t ` ∆T qq paq“ Erzpp, tqzpp, t ` ∆T qs
pbq“ E

«
Nÿ

i“1

Mÿ

j“1

wpi, j, tqrSpx ´ i, y ´ jq
Nÿ

k“1

Mÿ

q“1

wpk, q, t ` ∆T qrSpx ´ k, y ´ qq
ff

pcq“ E

«
Nÿ

i“1

Mÿ

j“1

wpi, j, tqrS px ´ i, y ´ jq
Nÿ

k“1

Mÿ

q“1

ˆ
ρT p∆T qwpk, q, tq `

a
1 ´ ρT p∆T q2εpk, q, t ` ∆T q

˙
rSpx ´ k, y ´ qq

ff

pdq“
Nÿ

i,k“1

Mÿ

j,q“1

ρT p∆T qE
„
wpi, j, tqwpk, q, tq


`

a
1 ´ ρT p∆T q2E

„
wpi, j, tqεpk, q, t ` ∆T q


rSpx ´ i, y ´ jqrSpx ´ k, y ´ qq

peq“ ρT p∆T qσ2
w

Nÿ

i“1

Mÿ

j“1

rSpx ´ i, y ´ jq2 (2.13)

σzpp, tqσzpp, t ` ∆T q paq“ Erzpp, tq2s

“ E

«
Nÿ

i“1

Mÿ

j“1

wpi, j, tqrS px ´ i, y ´ jq
Nÿ

k“1

Mÿ

q“1

wpk, q, tqrSpx ´ k, y ´ qq
ff

“
Nÿ

i“1

Mÿ

j“1

E
“
wpi, j, tq2

‰
rSpx ´ i, y ´ jq2

“ σ2
w

Nÿ

i“1

Mÿ

j“1

rSpx ´ i, y ´ jq2 (2.14)

Discussion. The method presented in S1–S4 above allows one to obtain a stationary

signal which is correlated in space and time according to an arbitrary spatial correlation

function ρSppq and a temporal correlation coefficient ρT p∆T q. These parameters are tunable

and can be fit to any real data set.

From (2.12) we see that the random process so obtained has zero mean; however, we

observe that any non-zero mean can be enforced and all the results obtained here still hold.

Finally, from (2.14) and recalling that σ2
w “ 1, we see that the variance of zpp, tq equals

σ2
zpp, tq “

řN
i“1

řM
j“1 rSpx ´ i, y ´ jq2. Thus, the variance follows directly from the spatial

correlation properties of the signal. However, we can tune the amplitude of this variance

through the multiplication of zpp, tq by a constant. Also in this case the properties discussed
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above remain unchanged.

In the model above we do not keep into account the mean and variance characteristics of

the signal. From our previous discussion, we see that these can be promptly accounted for

by our model in case the application is also influenced by them.

2.4 Results

In this section we present the real datasets that we have used to validate our model.

We want to show that the signal model of Section 2.3 can effectively capture the correlation

characteristics of real signals. To this end, we first compute the correlation characteristics of

the real data. These are thus used to tune the spatial correlation models of Section 2.2 and

obtain the temporal correlation coefficient, which are subsequently used with the procedure

of Section 2.3 to obtain the synthetic signals with the desired correlation properties. These

are finally examined to check how well they can reproduce the correlation characteristics of

the real data sets.

2.4.1 Real Signals analyzed

We hereby consider two types of real signals, both available online. The former is a

dataset of global climate data from the Center for Climatic Research (CCR), Department of

Geography, University of Delaware, available at [14]. This dataset is obtained interpolating

the observations from about 104 climatic stations, and sampling uniformly the sensed field into

a total of 85794 different points. The maximum distance between any two points is dM » 2¨104

km, while the time step is ∆T “ 1 month. Within the large set of data available in the website,

we selected eight representative signals, namely, Air Temperature (CT), Total Precipitation

(CP), EvapoTranspiration (CE), the Difference among Precipitation and EvapoTranspiration

(CD), Snow Cover (CC), Snow Melt (CM), Soil Moisture (CS) and Moisture Indices (CI).

For more information about these signals, see [14].

For the latter dataset, we considered a number of indoor signals gathered from the en-

vironmental monitoring WSN testbed deployed on the ground floor of the Department of

Information Engineering (DEI), University of Padova, Italy [13]. The data from this dataset

were sampled from N “ 68 IEEE 802.15.4–compliant TelosB wireless nodes deployed accord-

ing to an irregular topology, with maximum distance among any two sensors of dM » 36
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m. The time step in this case is ∆T “ 360 s. These sensors can measure five different

signals: temperature, humidity, luminosity in two different ranges (DL1 : 320´ 730 and DL2

: 320 ´ 1100 nm), and their battery voltage. For the performance analysis we considered

temperature (DT) and humidity (DH), which have high spatial and temporal correlation,

and luminosity in the two ranges (DL1 and DL2).

For each signal in both CCR and DEI databases, we considered about 500 time samples, we

calculated the spatial correlation function using (2.2) and the one step temporal correlation

coefficient using (2.6). Thus, we fit the spatial correlation of each signal through the PE

model of (2.3) and the RQ model of (2.4). In the columns of Tab. II we show: 1. all the

signals considered, 2-7. the parameters inferred and the values of the corresponding RMSE

for the two correlation models (PE and RQ), and 8. the value of the temporal correlation

ρT p∆T q estimated from the real data. Boldface text is used in the table to indicate the best

fitting model for each signal.

In order to calculate the spatial correlation (shown in Fig. 2.2 and discussed shortly),

we had to consider each pair of points in the dataset. Since this number for the CCR

dataset is very large, we picked at random only a subset of the total number of pairs (105

pairs, randomly selected, were considered for the results we present here), while for the DEI

dataset we considered all possible pairs. For each pair of points pi and pj, we calculated the

distance di,j and the spatial correlation ρSpdi,jq, using (2.2). For representation purposes, we

considered the maximum distance dM and we divided it into 20 intervals. For each interval

and for each pair of points whose distance falls within such interval, we calculated the average

spatial correlation. In this way, we obtained one spatial correlation value for each interval

(associating it with the center of the interval), similarly to the procedure adopted in [16] for

the variogram calculation.

2.4.2 Model Validation

In Fig. 2.2 we show on the y-axis the spatial correlation ρSpdq for three selected signals

vs the normalized distance d{dM P r0, 1s. For comparison, in this figure we plot the empirical

correlation obtained from the real data, the autocorrelation function obtained from the PE

(rρSPE
pdq) and RQ (rρSRQ

pdq) models, as well as the spatial correlation obtained from the

synthetic signal. Note that the synthetic signals are generated through the procedure of
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Signal

Spatial Correlation Temporal

PE Model RQ Model Corr.

ζ ν ξPE ζ ν ξRQ ρT p∆T q

CD 0,12 0,65 0,042 0,91 0,47 0,058 0,85

CP 0,11 0,68 0,034 0,71 0,52 0,050 0,90

CI 0,25 0,96 0,046 1,05 0,71 0,073 0,88

CM 0,06 0,53 0,040 0,49 0,51 0,034 0,27

CE 0,24 1,00 0,057 0,87 0,80 0,085 0,85

CT 0,42 2,00 0,073 0,94 2,00 0,103 0,98

CC 0,31 0,96 0,121 1,62 0,60 0,117 0,99

CS 0,05 0,62 0,022 0,33 0,60 0,019 0,94

DT 272 0,18 0,119 12916 0,13 0,146 0,99

DH 11640 0,31 0,008 9273 0,17 0,024 0,99

DL1 0,38 0,56 0,081 25,46 0,23 0,095 0,98

DL2 0,43 0,58 0,081 28,47 0,23 0,089 0,99

Table 2.2. Correlation of Real signals
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Figure 2.2. Spatial correlation for the real data, the two correlation fitting models (PE and

RQ), and the correlation of the synthetic data generated according to the best fitting model, for

the following signals: (a) global precipitation, CP; (b) global temperature, CT; and (c) indoor

luminosity, DL1.

Section 2.3, using the best fitting model among PE and RQ, in terms of ξF . As shown in this

figure, the chosen correlation models both nicely fit empirical correlation values. Moreover,

the spatial correlation obtained from the synthetic signal is also very close to the empirical

one.

In Figs. 2.2-(a) and 2.2-(b) we respectively show ρS for the Total Precipitation (CP) and

the Air Temperature (CT) signals from the CCR dataset. In Fig. 2.2-(c) we plot ρS for the

Luminosity signal (DL1) from the DEI dataset. From these figures we see that our model
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Signal Model ξF ξS ∆ρT

CD PE 0,042 0,021 3,92E-3

CP PE 0,034 0,021 2,71E-3

CI PE 0,046 0,030 1,18E-2

CM RQ 0,034 0,035 3,82E-3

CE PE 0,057 0,040 2,60E-3

CT PE 0,073 0,035 2,16E-3

CC RQ 0,117 0,069 2,14E-6

CS RQ 0,019 0,031 2,60E-4

DT PE 0,119 0,560 1,39E-4

DH PE 0,008 0,542 1,16E-5

DL1 PE 0,081 0,040 6,62E-4

DT2 PE 0,081 0,072 2,24E-4

Table 2.3. Correlation of Synthetic signals

can very nicely fit the spatial characteristics of the real signals for both PE and RQ models.

Furthermore, with the proposed method we are able to generate a synthetic signal that also

follows with good accuracy the real signal correlation. Tab. 2.3 shows the results of the fitting

of the synthetic signal for all the considered datasets. In particular, in the columns of this

table we represent: 1. the considered signal, 2. the best fitting model among PE and RQ, 3.

the corresponding RMSE ξF for the best model, 4. ξS , the RMSE between the chosen fitting

model and the spatial correlation of the synthetic signal, 5. the relative error ∆ρT among the

temporal correlation ρT p∆T q and rρT p∆T q, of the real and the synthetic signal, respectively.

∆ρT is calculated as follows:

∆ρT “ |ρT p∆T q ´ rρT p∆T q|
ρT p∆T q . (2.15)

From Tab. 2.3, we observe that for all signals: (a) ∆ρT is sufficiently small, so we represent

with high accuracy the temporal correlation, (b) both fitting models PE and RQ accurately

reproduce the spatial correlation of the real signals. Furthermore, (c) the synthetic data

very nicely follows the real spatial characteristics for all the CCR signals and for the DEI

luminosity signals DL1 and DL2, (d) we introduce some error while representing the spatial

characteristics for the DEI signals DT and DH. This is due to the fact that these two signals
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have a correlation length ζ, see Tab. 2.2, that is very large compared to the size of the network

dM . In this case, we are not able to reproduce with high accuracy the actual correlation of

the signal due to border effects.

2.5 Conclusions

In this chapter we have presented a model for the statistical characterization of real world

signals that are correlated in space and time. Our model allows the efficient generation of

synthetic signals with the desired correlation properties, where spatial and temporal correla-

tions can be independently set and fit to those of the real signals of interest. The accuracy of

the proposed model has been verified through comparison against real data sets from large

sensor testbeds. Future extensions of our work include the application of our statistical model

to other types of signals, such as sensor data from smart grids, e.g., to model the distributed

space and time dependent energy production and consumption process.



3
Modeling Photovoltaic Sources

through Stochastic Markov Processes

In this chapter, we present a methodology and a tool to derive simple yet accurate stochas-

tic Markov processes for the description of the energy scavenged by outdoor solar sources. In

particular, we target photovoltaic panels with small form factors, as those exploited by em-

bedded communication devices such as wireless sensor nodes or, concerning modern cellular

system technology, by small-cells. Our models are especially useful for the theoretical inves-

tigation and the simulation of energetically self-sufficient communication systems including

these devices.

The Markov models that we derive are obtained from extensive solar radiation databases,

that are widely available online. Basically, from hourly radiance patterns, we derive the

corresponding amount of energy (current and voltage) that is accumulated over time, and

we finally use it to represent the scavenged energy in terms of its relevant statistics. Toward

this end, two clustering approaches for the raw radiance data are described and the resulting

Markov models are compared against the empirical distributions.

Our results indicate that Markov models with just two states provide a rough characteriza-

tion of the real data traces. While these could be sufficiently accurate for certain applications,

slightly increasing the number of states to, e.g., eight, allows the representation of the real

energy inflow process with an excellent level of accuracy in terms of first and second order

statistics.

21
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3.1 Introduction

The use of renewable energy is very much desirable at every level of the society, from

industrial / manufacturing activities to smart cities, public buildings, etc. Being able to

capture any sort of renewable energy source is in fact very useful to power up, e.g., sensing

equipment and electric apparatuses that surround us in our daily life, from automatic doors,

to sensor systems for traffic control, intrusion detection, alarms, pollution reporting, etc.

According to the paradigm of Smart Cities and the Internet of Things [26,27], these “resource

constrained” small sensing devices are expected to be deployed massively. Of course, as an

immediate advantage, self-sufficient (also referred to as perpetual) networks that will live

unattended, just thanks to the energy they scavenge from the environment, would cut down

their maintenance cost. Moreover, these systems will contribute to the reduction of the energy

absorbed from the power grid (which is usually obtained from carbon fossil or nuclear power

plants), thus benefiting the environment.

Similarly, Cellular Networks are expecting a tremendous grow of the traffic demand in

the next years with a consequent increase in terms of cost and energy consumption. A

challenging but promising solution is represented by the deployment of Base Stations (BSs)

employing renewable energy sources [28]. Note, however, that the mere integration of a

solar panel into existing electrical apparatuses, such as macro BSs, is often not sufficient as

keeping these devices fully operational at all times would demand for unrealistically large

solar modules [29]. To overcome this, the energy coming from the renewable sources should

be wisely used, predicting future energy arrival and the energy consumption that is needed

by the system to remain operational when needed. This calls for complex optimization

approaches that will adapt the behavior of modern systems to the current application needs

as well as to their energy reserves and the (estimated) future energy inflow [30].

A large body of work has been published so far to mathematically analyze these facts,

especially in the field of wireless sensor networks. However, often researchers have tested their

ideas considering deterministic [31,32], iid distributed across time slots [33] or time-correlated

Markov models [34]. While these contributions are valuable for the establishment of the

theory of energetically self-sufficient networks; seldom, the actual energy production process

in these papers has been linked to that of real solar sources, to estimate the effectiveness of

the proposed strategies under realistic scenarios.
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The work presented in this chapter aims at filling this gap, by providing a methodology

and a tool to obtain simple yet accurate stochastic Markov processes for the description of the

energy scavenged by outdoor solar sources. In this study, we focus on solar modules as those

that are installed in wireless sensor networks or small-LTE cells, by devising suitable Markov

processes with first- and second-order statistics that closely match that of real data traces.

Our Markov models allow the statistical characterization of solar sources in simulation and

theoretical developments, leading to a higher degree of realism.

The rest of the chapter is organized as follows. In Section 3.2 we detail the system model

and in particular how the raw radiance data is processed to estimate the corresponding

instantaneous harvested power. This requires the combination of several building blocks,

including an astronomical model (Section 3.2.1) to estimate the actual irradiance that hits

the solar module, given the inclination of the sun during the day and the module placement,

an electrical model of photovoltaic cells (Section 3.2.2) and a model for the DC/DC power

processor (Section 3.2.3), which is utilized to maximize the amount of power that is collected.

Hence, in Section 3.2.4 we describe the Markov model that we use to statistically describe the

energy inflow, according to two clustering approaches for the raw data. The results from this

Markov model are shown in Section 3.3, whereas our conclusions are presented in Section 3.4.

3.2 System Model

In this section, we describe the source model that we have adopted to statistically de-

scribe the energy inflow for a solar powered embedded device, see also [35]. To facilitate our

description, we consider the diagram of Fig. 3.1 where we identify the key building blocks

for our study: the solar source (indicated as Isun), the photovoltaic panel (PV), the DC/DC

power processor and the energy buffer (i.e., a rechargeable battery). In Section 3.2.1 we start

with the characterization of the effective solar irradiance, Ieff , that in general depends on the

geographical coordinates of the installation site, the season of the year and the hour of the

day. Hence, Ieff is translated by the PV module into some electrical power and a DC/DC

power processor is used to ensure that the maximum power is extracted from it.
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3.2.1 Astronomical Model

The effective solar radiance that hits a photovoltaic module, Ieff , depends on physical

factors such as its location, the inclination of the solar module, the time of the year and the

hour of the day. Solar radiation databases are available for nearly all locations around the

Earth and their data can be used to obtain the statistics of interest. An astronomical model

is typically utilized to translate the instantaneous solar radiance Isun (expressed in W/m2)

into the effective sunlight that shines on the solar module. According to [36], the effective

solar radiance that hits the solar module, Ieff , is proportional to cosΘ, where Θ P r´900, 900s
is the angle between the sunlight and the normal to the solar module surface1. Astronomical

models can be found in, e.g., [36] and Chapter 8 of [37].

In short, Ieff depends on many factors such as the elliptic orbit of the Earth around the

sun (which causes a variation of the distance between Earth and sun across different seasons),

the fact that the Earth is itself tilted on its axis at an angle of 23.450. This gives rise to a

declination angle γ, which is the angular distance North or South of the Earth’s equator,

which is obtained as:

γpNq » sin´1
“
sinp23.450q sin pDpNqq

‰
, (3.1)

whereDpNq “ 360pN´81q{3650 andN is the day number in a year with first of January being

day 1. Other key parameters are the latitude La P r0, 900s (positive in either hemisphere), the

longitude Lo, the hour angle ωpt,Nq P r0, 3600s, that corresponds to the azimuth’s angle of the

sun’s rays due to the Earth’s rotation, the inclination β of the solar panel toward the sun on

the horizon and the azimuthal displacement α, which is different from zero if the normal to the

plane of the solar module is not aligned with the plane of the corresponding meridian, that is,

the solar panel faces West or East.2 ωpt,Nq is given by ωpt,Nq “ 15pAST pt,Nq´12q0 , where

AST pt,Nq P r0, 24s hours, is the apparent solar time, which is the time based on the rotation

of the Earth with respect to the sun and is obtained as a scaled version of the local standard

time t (we refer to t1 as t adjusted accounting for the daylight savings time) for the time zone

where the solar module is installed. AST pt,Nq is computed as follows. Briefly, we obtain the

Greenwich meridian angle, GMA “ UTCoff ˆ 150, which corresponds to the angle between

the Greenwich meridian and the meridian of the selected time zone: UTCoff is the time offset

1Θ “ 0 (Θ “ ˘900) if the sunlight arrives perpendicular (parallel) to the module.
2α ą 0 if the panel faces West and α ă 0 if it faces East.
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Figure 3.1. Diagram of a solar powered device. The power processor adapts its input impedance

so that it will match that of the source, Zopt. This allows the extraction of the maximum power

Pmax.

between Greenwich and the time zone and 15 is the rotation angle of the Earth per hour.

Thus, we compute ∆t “ pLo ´ GMAq{150, i.e., the time displacement between the selected

time zone and the time at the reference Greenwich meridian. At this point, AST pt,Nq is

obtained as AST pt,Nq “ t1 ` ∆t ` ET pNq (expressed in hours), where ET pNq is known as

the equation of time, with ET pNq » r9.87 sinp2DpNqq ´ 7.53 cospDpNqq ´ 1.5 sinpDpNqqs{60.

Finally, the power incident on the PV module depends on the angle Θ, for which we have:

cosΘpt,Nq “ sin γpNq sinLa cos β ´

´ sin γpNq cosLa sinβ cosα `

` cos γpNq cosLa cos β cosωpt,Nq `

` cos γpNq sinLa sin β cosα cosωpt,Nq

` cos γpNq sin β sinα sinωpt,Nq . (3.2)

Once an astronomical model is used to track Θ, the effective solar radiance as a function

of time t is given by: Ieffpt,Nq “ Isunpt,Nqmaxp0, cos Θpt,Nqq, where the maxp¨q accounts

for the cases where the solar radiation is above or below the horizon, as in these cases the

sunlight arrives from below the solar module and is therefore blocked by the Earth. The

sun radiance, Isunpt,Nq, for a given location, time t and day N , has been obtained from the

database at [38].
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3.2.2 PV Module

A PV module is composed of a number nsc of solar cells that are electrically connected

according to a certain configuration, whereby a number np of them are connected in parallel

and ns in series, with nsc “ npns. A given PV module is characterized by its I-V curve, which

emerges from the composition of the I-V curves of the constituting cells. Specifically, the I-V

curve of the single solar cell is given by the superposition of the current generated by the

solar cell diode in the dark with the so called light-generated current iℓ [39], where the latter

is the photo-generated current, due to the sunlight hitting the cell. The I-V curve of a solar

cell can be approximated as:

iout » iℓ ´ io

”
exp

´ qv

nkT

¯
´ 1

ı
, (3.3)

where q is the elementary charge, v is the cell voltage, k is the Boltzmann’s constant, T is the

temperature in degree Kelvin3, n ě 1 is the diode ideality factor and io is the dark saturation

current. io corresponds to the solar cell diode leakage current in the absence of light and

depends on the area of the cell as well as on the photovoltaic technology. The open circuit

voltage voc and the short circuit current isc are two fundamental parameters for a solar cell.

The former is the maximum voltage for the cell and occurs when the net current through

the device is zero. isc is instead the maximum current and occurs when the voltage across

the cell is zero (i.e., when the solar cell is short circuited). If vMoc and iMsc are the open circuit

voltage and short circuit current for a solar module M, the single solar cell parameters are

obtained as: isc “ iMsc{np and voc “ vMoc{ns (considering a module composed of homogeneous

cells).

The light-generated current for the single solar cell is a time varying quantity, iℓpt,Nq,
which depends on the amount of sunlight that hits the solar cell at time t, where N is the

day number. Here, we have used the following relation: iℓpt,Nq “ iscF pt,Nq, where the

radiation rate F pt,Nq P r0, 1s is obtained as F pt,Nq “ 0.001Ieff pt,Nq, i.e., normalizing the

effective irradiance hitting the solar cell with respect to the maximum radiation of 1 kW/m2

(referred to in the literature as “one sun” [40]). Hence, iℓpt,Nq is plugged into (3.3) to obtain

ioutpt,Nq for a single solar cell as a function of the time t for day N . The total current that

is extracted from the solar module is: iMoutpt,Nq “ npioutpt,Nq.
3T is given by the sum of the ambient temperature, which can be obtained from the dew point and relative

humidity, and of a further factor due to the solar power hitting the panel.
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3.2.3 Power Processor

Generally speaking, every voltage or current source has a maximum power point, at which

the average power delivered to its load is maximized. For example, a Thévenin voltage source

delivers its maximum power when operating on a resistive load whose value matches that of

its internal impedance. However, in general the load of a generic device does not match

the optimal one, which is required to extract the maximum power from the connected solar

source. To cope with this, in practice the optimal load is emulated through a suitable power

processor, whose function is that of “adjusting” the source voltage (section A of Fig. 3.1) until

the power extracted from it is maximized,4 which is also known as maximum power point

tracking (MPPT). Ideally, through MPPT, the maximum output power is extracted from the

solar panel under any given temperature and irradiance condition, adapting to changes in

the light intensity. Commercially available power processors use “hill climbing techniques”;

as an example, in [41] the authors propose advanced control schemes based on the downhill

simplex algorithm, whereby the voltage and the switching frequency are jointly adapted for

fast convergence to the maximum power point. See also [42] for further information on

MTTP algorithms and their comparative evaluation and [43] for a low-power design targeted

to wireless sensor nodes. In the present work, we have taken into account the DC/DC power

processor by computing the operating point piMout, vMq (see (3.3)) for which the extracted

power in section A, P “ iMoutv
M, is maximized. Note that, if iout and v are the output

current and the voltage of the single solar cell, we have iMout “ npiout and vM “ nsv. For this

procedure, we have considered the parameters of Section 3.2.1 and 3.2.2 (solar irradiance,

rotation of the Earth, etc.) and also the fact that isc and voc change as a function of the

environmental temperature, which affects the shape of the I-V curve (3.3) (see, e.g., the

dependence of iℓ on isc). Hence, we have computed the extracted power in two steps: step

1) we have obtained the (ideal) maximum power PMPP that would be extracted by the panel

at the MPP by an ideal tracking system:

PMPP “ max
v

tiMoutvMu “ npnsmax
v

tioutvu , (3.4)

where iout is given by (3.3). Step 2) the power available after the power processor (section B

in Fig. 3.1) is estimated as P 1
max “ ηPMPP, where η P p0, 1q is the power processor conversion

4This corresponds to adapting the input impedance of the power processor to Zopt “ Z˚
source, where ˚

indicates the complex conjiugate.
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efficiency, which is usually defined as the ratio P 1
max{PMPP and can be experimentally charac-

terized for a given MPP tracking circuitry [43]. P 1
max is the power that is finally transferred

to the energy buffer.

3.2.4 Semi-Markov Model for Stochastic Energy Harvesting

The dynamics of the energy harvested from the environment is captured by a continuous

time Markov chain with Ns ě 2 states. This model is general enough to accommodate

different clustering approaches for the empirical data, as we detail shortly.

Formally, we consider an energy source that, at any given time, can be in any of the

states xs P S “ t0, 1, . . . , Ns ´ 1u. We refer to tk, with k ě 0, as the time instants where the

source transitions between states, and we define τk “ tk`1 ´ tk as the time elapsed between

two subsequent transitions. In what follows, we say that the system between tk and tk`1 is

in cycle k.

Right after the k-th transition to state xspkq, occurring at time tk, the source remains

in this state for τk seconds, where τk is governed by the probability density function (pdf)

fpτ |xsq, with τ P rτminpxsq, τmaxpxsqs. At the next transition instant, tk`1, the source moves

to state xspk ` 1q P S according to the probabilities puv “ Probtxspk ` 1q “ v|xspkq “ uu,
with u, v P S. When the source is in state xspkq, an input current ik is fed to the rechargeable

battery, where ik is drawn from the pdf gpi|xsq, with i ě 0. That is, when a state is entered,

the input current i and the permanence time τ are respectively drawn from gpi|xsq and

fpτ |xsq. Then, the input current remains constant until the next transition, that occurs

after τ seconds. In this work, we assume that the voltage at the energy buffer (section B

of Fig. 3.1) is constant, as typically considered when a rechargeable battery is used. Given

that, there is a one-to-one mapping between instantaneous harvested power and harvested

current.

3.2.5 Estimation of Energy Harvesting Statistics

Based on our models of Sections 3.2.1-3.2.3, we have mapped the hourly irradiance pat-

terns obtained from [38] into the corresponding operating point, in terms of power P 1
max

and current i after the power processor (section B of Fig. 3.1). Thus, we have computed the

statistics fpτ |xsq and gpi|xsq of Section 3.2.4 from these data according to the two approaches
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that we describe next. These differ in the adopted clustering algorithm, in the number of

states Ns and in the structure of the transition probabilities puv, u, v P S.

Night-day clustering: we have collected all the data points in [38] from 1991 to 2010 and

grouping them by month. Thus, for each day in a given month we have classified the cor-

responding points into two states xs P t0, 1u, i.e., a low- (xs “ 1) and a high-energy state

(xs “ 0). To do this, we have used a current threshold ith, which is a parameter set by the

user, corresponding to a small fraction of the maximum current in the dataset. According to

the resulting value of ith, we have classified all the points that fall below that threshold as

belonging to state 0 (i.e., night) and those points above the threshold as belonging to state

1 (day). After doing this for all the days in the dataset, we have estimated the probability

density function (pdf) of the duration τ , fpτ |xsq, and that of the input current i (after the

power processor), gpi|xsq, for each state and for all months of the year. For the estimation

of the pdfs we have used the kernel smoothing technique see, e.g., [44]. The transition prob-

abilities of the resulting semi-Markov chain are p10 “ p01 “ 1 and p00 “ p11 “ 0 as a night is

always followed by a day and vice versa.

Slot-based clustering: as above, we have collected and classified the irradiance data by

month. Then, we subdivided the 24 hours in each day into a number Ns ě 2 of time slots

of constant duration, equal to Ti hours, i “ 1, . . . , Ns. Each slot is a state xs of our Markov

model. Hence, for each state xs we computed the pdf gpi|xsq for each month of the year,

considering the empirical data that has been measured in slot xs for all days in the dataset for

the month under consideration. Again, the kernel smoothing technique has been utilized to

estimate the pdf. For the statistics fpτ |xsq, being the slot duration constant by construction,

we have that: fpτ |xsq “ δpτ ´ Txsq, for all states xs P S, where δp¨q is the Dirac’s delta. The

transition probabilities of the resulting Markov chain are puv “ 1, when u P S and v “ pu`1q
mod Ns, and puv “ 0 otherwise. This reflects the temporal arrangement of the states.

3.3 Numerical Results

For the results in this section, we have used as reference the commercially available micro-

solar panels from Solarbotics, selecting the Solarbotics’s SCC-3733 Monocrystalline solar
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Figure 3.2. Result of the night-day clustering approach for the month of July considering the

radiance data from years 1999 ´ 2010.

technology [45]. For this product, the single cell area is about 1 square centimeters, the

solar cells have an efficiency of 21.1%, isc “ 5 mA and voc “ 1.8 V. For the DC/DC power

processor we have set η “ 0.5 and Vref “ 3 V, which are typical values for embedded sensor

nodes, see [43] and [46]. Next, we show some results on the stochastic model for the solar

energy source of Section 3.2. These are obtained considering a solar module with np “ 6

and ns “ 6 cells in parallel and in series, respectively. We have selected Los Angeles as the

installation site, considering β “ 450, α “ 300 and processing the data from [38] as described

in the previous section with a cluster threshold equal to 1{50´th of the maximum value of

the current in the dataset.

Night-day clustering: a first example for the night-day clustering approach is provided in

Fig. 3.2, which shows the result of the clustering process for the month of July. Two macro

states are evident: a low energy state (night), during which the power inflow is close to zero,

and a high energy state (day). As this figure shows, the harvested current during the day

follows a bell-shaped curve. However, contrarily to what one would expect, even for the

month of July the high-energy state shows a high degree of variability from day-to-day, as is
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Figure 3.3. gpi|xsq (solid line, xs “ 0) obtained through the Kernel Smoothing (KS) technique

for the month of February, for the night-day clustering method (2-state semi-Markov model), using

radiance data from years 1999 ´ 2010. The empirical pdf (emp) is also shown for comparison.

testified by the considerable dispersion of points across the y-axis. This reflects the variation

in the harvested current due to diverse weather conditions. In general we have a twofold

effect: (i) for different months the peak of the bell varies substantially, e.g., from winter to

summer and (ii) for a given month the variability across the y-axis remains among different

days. These facts justify the use of stochastic modeling, as we do in this work, to capture

such variability in a statistical sense.

Another example, regarding the accuracy of the Kernel Smoothing (KS) technique to fit

the empirical pdfs, is provided in Fig. 3.3, where we show the fitting result for the month of

February.

In Figs. 3.4 and 3.5 we show some example statistics for the months of February, July and

December. In Fig. 3.4, we plot the pdf gpi|xsq, which has been obtained through the Kernel

Smoothing (KS) technique for the high-energy state xs “ 0. As expected, the pdf for the

month of July has a larger support and has a peak around i “ 0.04 A, which means that is

likely to get a high amount of input current during that month. For the months of February

and December, we note that their supports shrink and the peaks move to the left to about

0.03 A and 0.022 A, respectively, meaning that during these months the energy scavenged is
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lower and is it more likely to get a small amount of harvested current during the day. Fig. 3.5

shows the cumulative distribution functions (cdf) obtained integrating gpi|xsq and also the

corresponding empirical cdfs. From this graph we see that the cdfs obtained through KS

closely match the empirical ones. In particular, all the cdfs that we have obtained through

KS have passed the Kolmogorov-Smirnov test when compared against the empirical ones, for

a confidence of 1%, which confirms that the obtained distributions represent a good model for

the statistical characterization of the empirical data. The pdf for state xs “ 1 is not shown

as it has a very simple shape, presenting a unique peak around i “ 0`. In fact, the harvested

current is almost always negligible during the night.5 Figs. 3.6 and 3.7 respectively show

the pdf fpτ |xsq obtained through KS and the corresponding cdf for the same location and

months of above, for xs “ 0. Again, Fig. 3.6 is consistent with the fact that in the summer

days are longer and Fig. 3.7 confirms the goodness of our KS estimation. Also in this case,

the statistics for all months have passed the Kolmogorov-Smirnov test for a confidence of 1%.

The pdfs for state xs “ 1 are not shown as these are specular to those of Fig. 3.6 and this

is also to be expected as the sum of the duration of the two states xs “ 0 (daytime) and

xs “ 1 (night) corresponds to the constant duration of a day. This means that the duration

statistics of one state is sufficient to derive that of the other.

5Note that our model does not account for the presence of external light sources such as light poles.
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Figure 3.4. Probability density function gpi|xsq, for xs “ 1, obtained through Kernel Smoothing

for the night-day clustering method (2-state Markov model).
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Figure 3.5. Cumulative distribution function of the harvested current for xs “ 1 (solid lines), ob-

tained through Kernel Smoothing (KS) for the night-day clustering method (2-state Markov model).

Empirical cdfs (emp) are also shown for comparison.
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Figure 3.6. Probability density function fpτ |xsq, for xs “ 1, obtained through Kernel Smoothing

for the night-day clustering method (2-state Markov model).
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tained through Kernel Smoothing (KS) for the night-day clustering method (2-state Markov model).

Empirical cdfs (emp) are also shown for comparison.
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Figure 3.8. Result of slot-based clustering considering 12 time slots (states) for the month of

July, years 1999 ´ 2010.

Slot-based clustering: the attractive property of the 2-state semi-Markov model obtained

from the night-day clustering approach is its simplicity, as two states and four distributions

suffice to statistically represent the energy inflow dynamics. Nevertheless, this model leads to

a coarse-grained characterization of the temporal variation of the harvested current, especially

in the high-energy state.

Slot-based clustering has been devised with the aim of capturing finer details. An example

of the clustering result for this case is given in Fig. 3.8, for the month of July. All slots in this

case have the same duration, which has been fixed a priori and corresponds to 24{Ns hours.

Fig. 3.9 shows the pdf gpi|xsq for the first three states of the day (slots 5, 6 and 7, see

Fig. 3.8) for the month of July, which have been obtained through KS. As expected, the peaks

(and the supports) of the pdfs move to higher values, until reaching the maximum of 0.04 A

for slot 7, which is around noon. Due to the symmetry in the solar distribution within the

day, the results for the other daytime states are similar and therefore have not been reported.

In Fig. 3.10 we compare the cdfs obtained through KS against the empirical ones. Also in

this case, all the cdfs have passed the Kolmogorov-Smirnov test for a confidence of 1%.

A last but important results is provided in Fig. 3.11, where we plot the autocorrelation
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Figure 3.9. Probability density function (pdf) gpi|xsq for xs “ 5, 6 and 7 for the slot-based

clustering method for the month of July.

function (ACF) for the empirical data and the Markov processes obtained by slot-based

clustering for a number of states Ns ranging from 2 to 24 for the month of January. With the

ACF we test how well the Markov generated processes match the empirical data in terms of

second-order statistics. As expected, a 2-state Markov model poorly resembles the empirical

ACF, whereas a Markov process with Ns “ 12 states performs quite satisfactorily. Note also

that 5 of these 12 states can be further grouped into a single macro-state, as basically no

current is scavenged in any of them (see Fig. 3.8). This leads to an equivalent Markov process

with just eight states.

We highlight that our Markov approach keeps track of the temporal correlation of the

harvested energy within the same day, though the Markovian energy generation process is

independent of the “day type” (e.g., sunny, cloudy, rainy, etc.) and also on the previous

day’s type. Given this, one may expect a good fit of the ACF within a single day but a poor

representation accuracy across multiple days. Instead, Fig. 3.11 reveals that the considered

Markov modeling approach is sufficient to accurately represent second-order statistics. This

has been observed for all months. On the other hand, one may be thinking of extending the

state space by additionally tracking good (g) and bad (b) days so as to also model the tem-

poral correlation associated with these qualities. This would amount to defining a Markov

chain with the two macro-states g and b, where pgb “ Probtday k is g| day k ´ 1 is bu, with
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Figure 3.10. Comparison between KS and the empirical cdfs (emp) of the scavenged current for

xs “ 5, 6 and 7 for the slot-based clustering method for the month of July.

k ě 1. Hence, in each state g or b, the energy process could still be tracked according to one

of the two clustering approaches of Section 3.2.4, where the involved statistics would be now

conditioned on being in the macro-state. The good approximation provided by our model,

see Fig. 3.11, show that this further level of sophistication is unnecessary.

Panel size and location: to conclude, we show some illustrative results for different solar

panel sizes and locations. Table 3.1 presents the main outcomes for different solar cells con-

figurations for the night-day clustering approach. Two representative months are considered:

the month with the highest energy harvested, August, and the one with the lowest, Decem-

ber. As expected, the current inflow strongly depends on the panel size (linearly). Also, note

that the day duration slightly increases for an increasing panel area as this value is obtained

by measuring when the energy is above a certain (clustering) threshold. Although we scaled

this threshold proportionally with an increasing harvested current, the longer duration of the

day is due to the exponential behavior introduced by the scaling factor in (3.3), see the RHS

of this equation.

Finally, in table 3.2 we show some energy harvesting figures for a solar panel with np “
ns “ 6 for some representative cities.
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Aug Dec

np ˆ ns Size ī maxpiq τ̄ minpτ q maxpτ q ī maxpiq τ̄ minpτ q maxpτ q

[cm2] [mA] [mA] [h] [h] [h] [mA] [mA] [h] [h] [h]

2 x 2 2.99 2.163 4.524 9.73 8.17 10.17 1.110 2.484 7.74 5.00 8.33

4 x 4 11.98 9.254 19.766 10.18 9.00 10.67 4.847 11.029 8.27 6.50 8.67

6 x 6 26.96 21.292 45.561 10.26 9.17 10.67 11.189 25.666 8.38 6.67 8.83

8 x 8 47.92 38.149 82.101 10.32 9.17 10.83 20.115 46.006 8.42 6.83 8.83

10 x 10 74.88 59.967 129.194 10.34 9.17 10.83 31.650 72.437 8.44 6.83 8.83

12 x 12 107.83 86.729 186.905 10.35 9.17 10.83 45.795 104.829 8.45 6.83 9.00

Table 3.1. Results for different solar panel configurations with night-day clustering in Los Angeles

3.4 Concluding Remarks

In this chapter we have considered micro-solar power sources, providing a methodology to

model the energy inflow as a function of time through stochastic Markov processes. The latter,

find application in energy self-sustainable systems, such as, for instance, in the simulation of

energy harvesting communication networks and are as well useful to extend current theoretical

work through more realistic energy models. Our approach has been validated against real
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Aug Dec

Location ī maxpiq τ̄ minpτ q maxpτ q ī maxpiq τ̄ minpτ q maxpτ q

[mA] [mA] [h] [h] [h] [mA] [mA] [h] [h] [h]

Chicago, IL 17.029 46.742 10.57 8.50 11.33 5.241 16.084 6.95 4.83 8.00

Los Angeles, CA 21.292 45.561 10.26 9.17 10.67 11.189 25.666 8.38 6.67 8.83

New York, NY 17.174 44.617 10.42 8.83 11.00 6.813 18.945 7.57 5.67 8.33

Reno, NV 22.912 48.525 10.72 9.16 11.00 8.247 21.128 7.85 6.00 8.50

Table 3.2. Results for different solar panel locations for np “ ns “ 6

energy traces, showing good accuracy in their statistical description in terms of first and

second order statistics.

Our tool has been developed using MatlabTMand is available under the GPL license

at [47].





4
On the Performance of Lossy Compression Schemes

for Energy Constrained Sensor Networking

In the past few years, temporal lossy compression has been widely applied in the field

of wireless sensor networks (WSN), where energy efficiency is a crucial consideration due to

the constrained nature of the sensor devices. Often, the common thinking among researchers

and implementers is that compression is always a good choice, because the major source of

energy consumption in a sensor node comes from the transmission of the data.

Lossy compression is deemed a viable solution as the imperfect reconstruction of the signal

is often acceptable in WSNs, subject to some (application dependent) maximum error toler-

ance. In this chapter, we evaluate a number of selected lossy compression methods from the

literature, and extensively analyze their performance in terms of compression efficiency, com-

putational complexity and energy consumption. Specifically, we first carry out a performance

evaluation of existing and new compression schemes, considering linear, autoregressive, FFT-

/DCT- and Wavelet-based models, by looking at their performance as a function of relevant

signal statistics. Second, we obtain formulas through numerical fittings, to gauge their overall

energy consumption and signal representation accuracy. Third, we evaluate the benefits that

lossy compression methods bring about in interference-limited multi-hop networks, where

the channel access is a source of inefficiency due to collisions and transmission scheduling.

Our results reveal that the DCT-based schemes are the best option in terms of compres-

sion efficiency but are inefficient in terms of energy consumption. Instead, linear methods

lead to substantial savings in terms of energy expenditure by, at the same time, leading to

satisfactory compression ratios, reduced network delay and increased reliability performance.

41
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4.1 Introduction

In recent years, wireless sensors and mobile technologies have experienced a tremen-

dous upsurge. Advances in hardware design and micro-fabrication have made it possible to

potentially embed sensing and communication devices in every object, from banknotes to

bicycles [48].

Wireless Sensor Network (WSN) technology has now reached a good level of maturity, as

testified by the many emerging industrial standardization efforts [49]. Notable WSN applica-

tion examples include environmental monitoring [50], geology [51] structural monitoring [52],

smart grid and household energy metering [53,54]. These applications often require the col-

lection and the subsequent analysis of large amounts of data, which are to be sent through

suitable routing protocols to some data collection point(s). One of the main problems of this

is related to the large number of devices: if this number will keep increasing as predicted

in [55], and all signs point toward this direction, the amount of data to be managed by the

network will become prohibitive. Further issues are due to the constrained nature of sensor

nodes in terms of limited energy resources (devices are often battery operated) and to the

fact that radio activities are their main source of energy consumption. This, together with

the fact that sensor nodes are required to remain unattended and operational for long periods

of time, poses severe constrains.

Several strategies have been developed to prolong the lifetime of sensor nodes. These

comprise processing techniques such as data aggregation [56], distributed [57] or temporal [58]

compression as well as battery replenishment through energy harvesting [59]. The rationale

behind data compression is that we can trade some additional energy for compression for

some reduction in the energy spent for transmission. As we shall see in the remainder of this

chapter, this allows some important savings.

We focus on the energy saving opportunities offered by data processing and, in partic-

ular, on the lossy temporal compression of data. With lossy techniques, the original data

is compressed by however discarding some of the original information in it so that, at the

receiver side, the decompressor can reconstruct the original data up to a certain accuracy.

Lossy compression makes it possible to trade some reconstruction accuracy for some addi-

tional gains in terms of compression ratio with respect to lossless schemes. Note that these

gains correspond to further savings in terms of transmission needs and that, depending on
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the application, some small inaccuracy in the reconstructed signal may be acceptable. Thus,

lossy compression introduces some additional flexibility as one can tune the compression ratio

as a function of energy consumption criteria.

We note that much of the existing literature has been devoted to the systematic study of

lossless compression. [60] proposes a simple Lossless Entropy Compression (LEC) algorithm,

comparing LEC with standard techniques such as gzip, bzip2, rar and classical Huffman

and arithmetic encoders. A simple lossy compression scheme, called Lightweight Temporal

Compression (LTC) [61], was also considered. However, the main focus of this comparison has

been on the achievable compression ratio, whereas considerations on energy savings are only

given for LEC. [62] examines Huffman, Run Length Encoding (RLE) and Delta Encoding

(DE), comparing the energy spent for compression for these schemes. [63] treats lossy (LTC)

as well as lossless (LEC and Lempel-Ziv-Welch) compression methods, but only focusing on

their compression performance. Further work is carried out in [64], where the energy savings

from lossless compression algorithms are evaluated for different radio setups, in single- as

well as multi-hop networks. Along the same lines, [65] compares several lossless compression

schemes for a StrongArm CPU architecture, showing that data compression in some cases

may cause an increase in the overall energy expenditure. A comprehensive survey of practical

lossless compression schemes for WSN can be found in [66]. The lesson that we learn from

these papers is that lossless compression can provide some energy savings. These are however

smaller than one might expect because, for the sensor hardware in use nowadays, the energy

spent for the execution of the compression algorithms (CPU) may be of the same order of

magnitude of that spent for transmission (radio).

Further work has been carried out for what concerns lossy compression schemes. LTC [67],

PLAMLiS [68] and the algorithm of [69] are all based on Piecewise Linear Approximation

(PLA). Adaptive Auto-Regressive Moving Average (A-ARMA) [67] is based on ARMA mod-

els and RACE [70] exploits Wavelet-based compression. Also, [71] presents a lightweight

compression framework based on Differential Pulse Coding Modulation (DPCM) where dic-

tionaries are selected offline through multi-objective evolutionary optimization. Neverthe-

less, we remark that no systematic energy comparison has been carried out so far for lossy

schemes. In this case, it is not clear whether lossy compression can be advantageous in terms

of energy savings and what the involved tradeoffs are in terms of compression ratio vs rep-
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resentation accuracy and yet how these affect the overall energy expenditure. In addition,

it is unclear whether linear and autoregressive schemes can provide any advantages at all

compared to more sophisticated techniques such as Fourier- or Wavelet-based transforms,

which have been effectively used to compress audio and video signals and for which fast and

computationally efficient algorithms exist. In this chapter, we fill these gaps by systemati-

cally comparing selected lossy temporal compression methods from the literature including

polynomial, Fourier (FFT and DCT) and Wavelet compression schemes. We remark that

alternative approaches, such as data aggregation [56] are also possible. However, these are

out of the scope of our investigation, which focuses on the temporal and lossy compression

of time series.

The main contributions of this chapter are:

• We consider selected lossy compression algorithms for time series, accounting for lin-

ear (e.g., LTC [67]), autoregressive (e.g., A-ARMA [67]) models, Fourier and Wavelet

transforms. At first, we focus on interference-free single- and multi-hop networks, where

the Medium Access Control (MAC) layer is idealized, i.e., besides transmission and re-

ception, it does not introduce further energetic inefficiencies due to collisions and idle

times for floor acquisition. For this scenario, we assess whether signal compression

actually helps in the reduction of the overall energy consumption, depending on the

compression algorithm, the chosen reconstruction fidelity, the signal statistics and the

hardware characteristics.

• We provide formulas, obtained through numerical fittings and validated against real

datasets, to gauge the computational complexity, the overall energy consumption and

the signal representation accuracy of the best performing compression algorithms as

a function of the most relevant system parameters. These formulas can be used to

generalize the results obtained here to other WSN architectures.

• We consider interference-limited multi-hop networks where multiple nodes contend for

the channel and data traverses a data collection tree until it reaches a data collection

point located at its root (the WSN “sink”). Thus, we analytically characterize this

second scenario by evaluating the performance improvements that are brought about

by different lossy compression schemes in the presence of collisions and idle times for

floor acquisition at the MAC.
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Figure 4.1. General lossy compression diagram.

The rest of the chapter is organized as follows. In Section 4.2 we discuss selected lossy

compression algorithms from the literature, along with some other lossy compression schemes

that we introduce there. In Sections 4.3 and 4.4 we carry out our performance evaluation

of lossy compression for the interference-free and the interference-limited WSN scenarios,

respectively. We finally draw our conclusions in Section 4.5.

4.2 Lossy Compression for Constrained Sensor Nodes

To facilitate the description of the compression schemes we considered and to identify their

essential features, in Fig. 4.1 we show the diagram of a generic lossy compression algorithm,

see, e.g., [72]. The following three fundamental stages are identified:

A Transformation: this stage entails the representation of the input signal (time series

xpnq) into a convenient transformation domain. That is, the signal is decomposed into

a number N of coefficients tF1, . . . , FNu in the new domain. As an example, FFT, DCT

and Wavelet transforms represent time series into the frequency domain.

B Adaptive modeling: a number of coefficients S ď N is selected so that these will

be sufficient to represent the signal within a certain target accuracy. Moreover, a

further adaptive modeling phase (models tM1, . . . ,MSu) can be applied on the time



46 Chapter 4

series corresponding to each of the selected coefficients and, finally, a quantizer can be

employed to represent the data through a finite number of levels.

C Entropy coding: the quantized data can be encoded using an entropy coder (EC) to

obtain additional compression. Entropy represents the amount of information present

in the data, and an EC encodes the given set of symbols with the minimum number of

bits required to represent them.

As a popular example, JPG image compression [72] matches this model as follows: Stage-

A: DCT, Stage-B: DPCM modeling for the DC coefficients, quantization for all coefficients,

with run length encoding for null coefficients after quantization, Stage-C: huffman coding

(arithmetic coding is also supported).

We remark that a specific compression algorithm does not necessary have to implement all

the three stages above, but some of them can be omitted or only partially taken into account.

For example, for Stage-B we could use the selection and quantization blocks, without any

adaptive modeling. In WSNs, the exact combination of algorithms to use depends on the

reconstruction accuracy goal as well as on the affordable computational complexity.

In the following, we briefly review the lossy signal compression methods that will be

characterized later on in this chapter. Due to the contained nature of the sensor devices,

these schemes only use some of the above stages. In Section 4.2.1, we discuss techniques

based on Fourier and Wavelet transforms (Stage-A). In Section 4.2.2, we describe adaptive

modeling techniques (Stage-B). Finally, in Section 4.2.3 we discuss a lightweight scheme based

on quantization and entropy coding (Stage-C).

4.2.1 Compression Methods Based on Fourier and Wavelet Transforms

(Stage-A)

For these techniques, compression is achieved through sending subsets of the FFT, DCT

or Wavelet transformation coefficients. We came up with some possible methods, presented

below, that differ in how the transformation coefficients are picked. These algorithms first

transform the signal into a suitable domain (Stage-A) and subsequently use the information

selection block of Stage-B.
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4.2.1.1 Fast Fourier Transform (FFT)

The first method that we consider relies on the simplest way to use the Fourier transform

for compression. Specifically, the input time series xpnq is mapped to its frequency represen-

tation Xpfq P C through a Fast Fourier Transform (FFT). We define XRpfq fi RetXpfqu,
and XIpfq fi ImtXpfqu as the real and the imaginary part of Xpfq, respectively. Since

xpnq is a real-valued time series, Xpfq is Hermitian, i.e., Xp´fq “ Xpfq. This symmetry

allows the FFT to be stored using the same number of samples N of the original signal.

For N even we take f P tf1, . . . , fN{2u for both XRp¨q and XIp¨q, while if N is odd we take

f P tf1, . . . , ftN{2u`1u for the real part and f P tf1, . . . , ftN{2uu for the imaginary part.

The compressed representation X̂pfq fi X̂Rpfq ` jX̂Ipfq will also be in the frequency

domain and it is built (for the case of N even) as follows:

1. initialize X̂Rpfq “ 0 and X̂Ipfq “ 0, @ f P tf1, . . . , fN{2u;

2. select the coefficient with maximum absolute value from XR and XI , i.e., fmax fi

argmaxf maxt|XRpfq|, |XIpfq|u and M fi argmaxiPtR,Iut|Xipfmaxq|u;

3. set X̂M pfmaxq “ XM pfmaxq and then set XM pfmaxq “ 0;

4. if x̂pnq, the inverse FFT of X̂pfq, meets the error tolerance constraint continue, other-

wise repeat from step (2);

5. encode the values and the positions of the harmonics stored in X̂R and X̂I .

Hence, the decompressor at the receiver obtains X̂Rpfq and X̂Ipfq and exploits the Her-

mitian symmetry to reconstruct X̂pfq.
Note that the above coefficient selection method resembles a K non-linear approxima-

tion, as usually implemented by image processing techniques see, e.g., [73]. In our case, K

(the number of coefficients to be retained) is dynamically selected depending on the input

signal characteristics. We emphasize that alternative selection schemes are also possible. For

instance, one may select the FFT coefficients based on the maximum absolute magnitude

of their complex values and then retain both the real and imaginary part of the selected

coefficients. In our tests, the algorithm that we have described above has shown better per-

formance in terms of compression capabilities and computational complexity. For this reason,

further approaches are not evaluated in what follows.
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4.2.1.2 Low Pass Filter (FFT-LPF)

We implemented a second FFT-based lossy algorithm, which we have termed FFT-LPF.

Since the input time series xpnq is a slowly varying signal in many common cases (i.e.,

having strong temporal correlation) with some high frequency noise superimposed, most of

the significant coefficients of Xpfq reside in the low frequencies. For FFT-PLF, we start

setting X̂pfq “ 0 for all frequencies. Thus, Xpfq is evaluated from f1, incrementally moving

toward higher frequencies, f2, f3, . . . . At each iteration i, Xpfiq is copied onto X̂pfiq (both

real and imaginary part), the inverse FFT is computed taking X̂pfq as input and the error

tolerance constraint is checked on the so obtained x̂pnq. If the given tolerance is met the

algorithm stops, otherwise it is reiterated for the next frequency fi`1.

Note that this method resembles a K linear approximation scheme, where the selection

order is fixed (LPF), but the number of coefficients to be retained, K, is dynamically adjusted

in order to meet a given error tolerance.

4.2.1.3 Windowing

The two algorithms discussed above suffer from an edge discontinuity problem. In partic-

ular, when we take the FFT over a window of N samples, if xp1q and xpNq differ substantially
the information about this discontinuity is spread across the whole spectrum in the frequency

domain. Hence, in order to meet the tolerance constraint for all the samples in the window,

a high number of harmonics is selected by the previous algorithms, resulting in a poor com-

pression and in a high number of operations.

To solve this issue, we implemented a version of the FFT algorithm that considers over-

lapping windows of N ` 2W samples instead of disjoint windows of length N , where W is

the number of samples that overlap between subsequent windows. The first FFT is taken

over the entire window and the selection of the coefficients goes on depending on the selected

algorithm (either FFT or FFT-LPF), but the tolerance constraint is only checked on the

N samples in the central part of the window. With this workaround we can get rid of the

edge discontinuity problem and encode the information about the N samples of interest with

very few coefficients as it will be seen shortly in Section 4.3. As a drawback, the direct and

inverse transforms have to be taken on longer windows, which results in a higher number of

operations.
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4.2.1.4 Discrete Cosine Transform (DCT)

We also considered the Discrete Cosine Transform (type II), mainly for three reasons: 1)

its coefficients are real, so we did not have to cope with real and imaginary parts, thus saving

memory and number of operations; 2) it has a strong “energy compaction” property [74], i.e.,

most of the signal information tends to be concentrated in a few low-frequency components; 3)

the DCT of a signal with N samples is equivalent to a DFT on a real signal of even symmetry

with double length, so the DCT does not suffer from the edge discontinuity problem.

4.2.1.5 Wavelet Transform (WT)

As an alternative to Fourier schemes, several methods based upon multi-resolution anal-

ysis have been proposed in the literature. RACE [70] is a notable example: it features a

compression algorithm based on the Fast Wavelet Transform (FWT) of the signal (Stage-A)

followed by the selection of a number of coefficients (Stage-B) that are used to represent the

input signal within given error bounds. As for DCT schemes, the compression mainly takes

place in the selection step.

In [70], a Haar basis function is used for the wavelet decomposition step. The most

remarkable contribution of RACE is the way in which the wavelet coefficients are selected.

Most traditional compression algorithms, after the FWT, just pick the largest coefficients,

i.e., the selection step is based on a threshold value, whereby all the coefficients below this

threshold are discarded, whereas those above it are retained. Differently, in RACE, the

Haar wavelet coefficients are arranged into a tree structure. Then, thanks to some special

properties of the Haar functions, at each node of the tree, the error in the reconstruction of

the signal is estimated assuming that this node (i.e., the corresponding coefficient) and all

its children in the tree are omitted.

This selection method has two important properties. First, the signal representation error

can be evaluated on-the-fly during the decomposition and the maximum error tolerance can

be maintained under control, without having to compute any inverse wavelet transform.1

Second, compression can be achieved in an incremental way, by descending the tree and

adding nodes until the desired precision is reached (of course, the higher the number of

1Note that in the FFT and DCT methods of above, the error tolerance check always entails the computation

of an inverse transformation at the source.
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coefficients, the lower the compression performance). These facts are very important for

energy constrained WSNs and, as we will see in Section 4.3, lead to a smaller energy for

compression with respect to DCT and FFT schemes.

4.2.2 Compression Methods Based on Adaptive Modeling (Stage-B)

In Adaptive Modeling schemes, some signal model is iteratively updated over time, ex-

ploiting the correlation structure of the signal through linear, polynomial or autoregressive

methods. Specifically, the input time series is collected and processed according to transmis-

sion windows of N samples each. At the end of each time window the selected compression

method is applied, obtaining a set of model parameters that are transmitted in place of the

original data. In the adaptive modeling schemes described below, information selection is not

used, as they do not employ any transformation stage.

4.2.2.1 Piecewise Linear Approximations (PLA)

The idea of PLA is to use a sequence of line segments to represent an input time series

xpnq over pre-determined time windows (of N samples) with a bounded approximation error.

For most time series consisting of environmental measures, linear approximations work well

enough over short time frames. Further, since a line segment can be determined by only two

end points, PLA leads to quite efficient implementations in terms of memory and transmission

requirements.

The approximated signal is hereafter referred to as x̂pnq, the error with respect to the

actual value is given by the Euclidean distance |x̂pnq ´ xpnq|. Most PLA algorithms use

standard least squares fitting to calculate the approximating line segments. Often, a further

simplification is introduced to reduce the computational complexity, which consists of forcing

the end points of each line segment to be points of the original time series xpnq. This makes

least squares fitting unnecessary as the line segments are fully identified by the extreme points

of xpnq in the considered time window. The following schemes exploit this approach.

Lightweight Temporal Compression (LTC) [61]: the LTC algorithm is a low complexity

PLA technique. Specifically, let xpnq be the points of a time series with n “ 1, 2, . . . , N . The

LTC algorithm starts with n “ 1 and fixes the first point of the approximating line segment
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to xp1q. The second point xp2q is transformed into a vertical line segment that determines the

set of all “acceptable” lines Ω1,2 with starting point xp1q. This vertical segment is centered at

xp2q and covers all values meeting a maximum tolerance ε ě 0, i.e., lying within the interval

rxp2q ´ ε, xp2q ` εs, see Fig. 4.2a. The set of acceptable lines for n “ 3, Ω1,2,3, is obtained by

the intersection of Ω1,2 and the set of lines with starting point xp1q that are acceptable for

xp3q, see Fig. 4.2b. If xp3q falls within Ω1,2,3 the algorithm continues with the next point xp4q
and the new set of acceptable lines Ω1,2,3,4 is obtained as the intersection of Ω1,2,3 and the

set of lines with starting point xp1q that are acceptable for xp4q. The procedure is iterated

adding one point at a time until, at a given step s, xpsq is not contained in Ω1,2,...,s. Thus,

the algorithm sets xp1q and xps ´ 1q as the starting and ending points of the approximating

line segment for n “ 1, 2, . . . , s ´ 1 and starts over with xps ´ 1q considering it as the first

point of the next approximating line segment. In our example, s “ 4, see Fig. 4.2b.

(a) (b)

Figure 4.2. Lightweight Temporal Compression example.

When the inclusion of a new sample does not comply with the allowed maximum toler-

ance, the algorithm starts over looking for a new line segment. Thus, it self-adapts to the

characteristics of xpnq without having to fix beforehand the lapse of time between subsequent

updates.

PLAMLiS [68]: as LTC, PLAMLiS represents the input data series xpnq through a sequence

of line segments. Here, the linear fitting problem is converted into a set-covering problem,

trying to find the minimum number of segments that cover the entire set of values over a

given time window. This problem is then solved through a greedy algorithm as explained

in [68]. This algorithm is outperformed in terms of complexity by its enhanced version, that

we discuss next.
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Enhanced PLAMLiS [69]: is a top-down recursive segmentation algorithm with smaller

computational cost with respect to PLAMLiS. Consider the input time series xpnq and a time

window n “ 1, 2, . . . , N . The algorithm starts by taking a first segment pxp1q, xpNqq, if the
maximum allowed tolerance ε is met for all points along this segment the algorithm ends.

Otherwise, the segment is split in two segments at the point xpiq, 1 ă i ă N , where the error

is maximum, obtaining the two segments pxp1q, xpiqq and pxpiq, xpNqq. The same procedure

is recursively applied on the resulting segments until the maximum error tolerance is met for

all points.

4.2.2.2 Polynomial Regression (PR)

The above methods can be modified by relaxing the constraint that the endpoints of the

segments xpiq and xpjq (j ą i) must be actual points of xpnq. In this case, polynomials

of given order p ě 1 are used as the approximating functions, whose coefficients are found

through standard regression methods based on least squares fitting [75]. Specifically, we

start with a window of p samples, since a p-order polynomial exactly interpolates p points,

for which we obtain the best fitting polynomial coefficients. Thus, we keep increasing the

window length of one sample at a time, computing the new coefficients, and stop when the

target error tolerance is no longer met.

We remark that, tracing a line between two fixed points as done by LTC and PLAMLiS

has a very low computational complexity, while least squares fitting can have a significant

cost. Polynomial regression obtains better results in terms of approximation at the cost of

higher computational complexity (which increases with the polynomial order).

4.2.2.3 Auto-Regressive (AR) Methods

Auto Regressive (AR) models in their multiple flavors (AR, ARMA, ARIMA, etc.) have

been widely used for time series modeling and forecasting in fields like macro-economics or

market analysis. The basic idea is to obtain a model based on the history of the sampled data,

i.e., on its correlation structure. When used for signal compression, AR obtains a model from

the input data and sends this model to the receiver in place of the actual time series. The

reconstructed model is thus used at the data collection point (the sink) for data prediction
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until it is updated by the encoder device. Specifically, each node locally verifies the accuracy

of the predicted data values with respect to the collected samples. If the accuracy is within a

prescribed error tolerance, the node assumes that the current model will be sufficient for the

sink to rebuild the data within the given error tolerance. Otherwise, the parameters from the

current model are encoded and a new model is built as a replacement for the old one. As said

above, the model parameters are sent to the sink at the end of each transmission window in

place of the original data.

Adaptive Auto-Regressive Moving Average (A-ARMA) [67]: the basic idea of A-

ARMA [67] is that of having each sensor node compute an ARMA model based on N 1 ă N

consecutive samples. In order to reduce the complexity in the model estimation process,

adaptive ARMA employs low-order models, whereby the validity of the model being used is

checked through a moving window technique. Specifically, a sensor node builds an ARMA

model M p0q “ ARMApp, q,N 1, 0q considering N 1 samples starting from the first sample (sam-

ple 0) of the current transmission window (p and q are the orders related to the auto-regressive

and moving average components of the ARMA filter). Hence, this model is updated consid-

ering N 1 subsequent samples at a time until the prescribed error tolerance is met, at which

point a new ARMA model is built and the update/check procedure is iterated for this one.

At the end of the transmission window of N samples, the parameters of all the ARMA mod-

els that have been obtained to describe the input time series (within the prescribed error

tolerance) are sent to the sink in place of the original data, as discussed above.

Modified Adaptive Auto-Regressive (MA-AR): according to A-ARMA the model is

updated over fixed-size windows of N 1 samples. A drawback of this is that, especially for

highly noisy environments, the estimation over fixed-size windows can lead to poor results

when used for forecasting. MA-AR allows the estimation to be performed on time windows

whose size is adapted according to the signal statistics. A more detailed discussion of ARMA

methods can be found in [76].

4.2.3 Compression Methods Based on Entropy Coding (Stage-C)

As a representative technique for Stage-C we consider the algorithm in [71], proposed by
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Marcelloni and Vecchio (MV). This algorithm works in three steps: (a) Differential Pulse-

Modulation Coding (DPCM), (b) quantization and (c) huffman entropy encoding. After

de-noising, step (a) employs a simple differential encoding model (DPCM), which operates

on the differences between consecutive input samples. The rationale behind this differential

scheme is that WSN signals are usually smooth and slow time-varying. Hence, the difference

between samples is expected to be small, leading to a small amount of information to be

encoded.

In the quantization block (b), the difference between subsequent samples is quantized.

This is the most important step of the algorithm and probably where most of the compression

performance is achieved. In fact, given the small expected value of the DPCM differences, a

quantizer with only a small number of levels can be used without impacting too much on the

signal representation accuracy.

In our performance evaluation, in order to carry out a fair comparison among the consid-

ered compression schemes, we bound the maximum error tolerance for each sample, setting it

as a constant input parameter equal for all the algorithms. As we did for the other compres-

sion schemes, the MV algorithm has been as well adapted to consider this. Specifically, a first

pass is performed to find the maximum difference at the output of the DPCM. Based on this,

the number of levels of the quantizer is selected so that the quantization error remains smaller

than a target error tolerance; this returns the quantizer for the given input signal. After this,

a second pass is executed, using the selected quantizer, to obtain the final encoded symbols.

Note that this is slightly different from [71], where optimal quantizers are calculated offline

through a dedicated optimization stage following different optimization criteria. While the

latter approach is also valuable, it does not allow for a precise control of the maximum error

tolerance and a fair comparison with the other compression schemes that we consider in this

chapter.

Finally, the entropy encoding step (c) exploits the fact that the quantization levels have

different probabilities. Once again, environmental signals are quite smooth and therefore

small differences are more likely. Hence, a Huffman encoder is designed to assign the shorter

binary codewords to the most probable levels. The set of binary codewords is selected so that

no member is a prefix of another member and, in turn, the corresponding code is uniquely

decodable. This dictionary can be sent together with the compressed data frame, or can be
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statistically precomputed and shared between the communicating entities.

4.3 Performance Comparison for Interference-free Networks

This section focuses on single- and multi-hop WSNs where the interference due to channel

access is negligible or absent. In this case, the energy expenditure at the MAC is only confined

to transmission and reception energy, by also keeping into account the protocol overhead at

the MAC in terms of packet headers. However, further energetic inefficiencies due to channel

contentions and waiting times due to floor acquisition are neglected (their impact will be

considered later on in Section 4.4). The objectives of this section are:

• to provide a thorough performance comparison of the compression methods of Sec-

tion 4.2. The selected performance metrics are: 1) compression ratio, 2) computational

and transmission energy and 3) reconstruction error at the receiver, which will be de-

fined below.

• To quantify the impact on the compression performance of the statistical properties of

the input signals.

• To investigate whether or not data compression leads to energy savings in single- and

multi-hop interference-free WSN scenarios, and obtain quantitative measurements of

possible benefits as a function of compression ratio and energy consumption of the

wireless end-nodes hardware (micro-controller and radio).

• To obtain, through numerical fitting, close-form equations which model the considered

performance metrics as a function of key parameters.

Toward the above objectives, we present simulation results obtained using synthetic sig-

nals with varying correlation length. These signals make it possible to give a fine grained

description of the performance of the selected techniques, so as to look comprehensively at

the entire range of variation of the temporal correlation statistics. Real datasets are then

used to validate the proposed empirical fitting formulas.

4.3.1 Preliminary Definitions

Before delving into the description of the results, in the following we give some definitions.
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Definition 4.3.1. Correlation length

Given a stationary discrete time series xpnq with n “ 1, 2, . . . , N , we define correlation

length of xpnq as the smallest value n‹ such that the autocorrelation function of xpnq is

smaller than a predetermined threshold ρth. The autocorrelation is:

ρxpnq “ E rpxpmq ´ µxqpxpm ` nq ´ µxqs
σ2
x

,

where µx and σ2
x are the mean and the variance of xpnq, respectively. Formally, n‹ is defined

as:

n‹ “ argmin
ną0

tρxpnq ă ρthu .

Below, we define the performance metrics that will be considered in the remainder of the

chapter.

Definition 4.3.2. Compression ratio

Given a finite time series xpnq and its compressed version x̂pnq, we define compression ratio

η the quantity:

η “ Nbpx̂q
Nbpxq ,

where Nbpx̂q and Nbpxq are the number of bits used to represent the compressed time series

x̂pnq and the original one xpnq, respectively.

Definition 4.3.3. Reconstruction error and error tolerance

Given a discrete time series xpnq and its compressed version x̂pnq, we define the reconstruction
error at time n ě 1 as epnq “ |xpnq ´ x̂pnq|, where | ¨ | is the Euclidean distance. The error

tolerance ε is the maximum permitted error at the receiver, i.e., it must be epnq ď ε for all

n.

Definition 4.3.4. Energy consumption for compression

Is the energy drained from the battery to accomplish the compression task. For every com-

pression method we have recorded the number of operations to process the original time

series xpnq accounting for the number of additions, multiplications, divisions and compar-

isons. Thus, depending on selected hardware architecture, we have mapped these figures into

the corresponding number of clock cycles and we have subsequently mapped the latter into

the corresponding energy expenditure.
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Definition 4.3.5. Transmission Energy

Is the energy consumed for transmission, obtained accounting for the radio chip character-

istics, channel attenuation effects and the protocol overhead due to physical (PHY) and

medium access (MAC) layers.

Definition 4.3.6. Total Energy Consumption

Is the sum of the energy consumption for compression and transmission and is expressed in

[Joule].

In the computation of the energy consumption for compression, we only accounted for the

operations performed by the CPU, without considering the possible additional costs related

to other peripherals of the micro-controller.

For the communication cost we have only taken into consideration the transmission energy,

neglecting the cost of switching the radio transceiver on and off and the energy spent at the

destination to receive the data. The former are fixed costs that would also be incurred without

compression, while the latter can be ignored if the receiver is not a power constrained device.

Moreover, we do not consider link-level retransmissions due to channel errors or multi-user

interference.

4.3.2 Generation of Synthetic Stationary Signals

The synthetic stationary signals have been obtained through a known method to enforce

the first and second moments to a white random process, see [77] [78]. Our objective is

to obtain a random time series xpnq with given mean µx, variance σ2
x and autocorrelation

function ρxpnq. The procedure works as follow:

1. A random Gaussian series Gpkq with k “ 1, 2, . . . , N is generated in the frequency

domain, where N is the length of the time series xpnq that we want to obtain. Every

element of Gpkq is an independent Gaussian random variable with mean µG “ 0 and

variance σ2
G “ 1.

2. The Discrete Fourier Transform (DFT) of the autocorrelation function ρxpnq is com-

puted, Sxpkq “ Frρxpnqs, where Fr¨s is the DFT operator.

3. We compute the entry-wise product Xpkq “ Gpkq ˝ Sxpkq 1
2 .



58 Chapter 4

4. We finally obtain the correlated and Gaussian time series xpnq as F´1rXpkqs.

This is equivalent to filter a white random process with a linear, time invariant filter, whose

transfer function is F´1rSxpkq 1
2 s. The stability of this procedure is ensured by a suitable

choice for the correlation function, which must be square integrable. For the simulations we

have used a Gaussian correlation function [79], i.e., ρxpnq “ expt´an2u, where a is chosen in

order to get the desired correlation length n‹ as follows:

a “ ´ logpρthq
pn‹q2 .

Without loss of generality, we generate synthetic signals with µx “ 0 and σ2
x “ 1. In fact,

applying an offset to the generated signals and a scale factor does not change the resulting

correlation. For an in depth characterization of the Gaussian correlation function see [79].

Also, to emulate the behavior of real WSN signals, we superimpose noise to the synthetic

signals, so as to mimic random perturbations due to limited precision of the sensing hardware

and random fluctuations of the observed physical phenomenon. The noise is modeled as a

zero mean white Gaussian process with standard deviation σnoise.

4.3.3 Hardware Architecture

We selected the TI MSP430 [80] micro-controller using the corresponding 16 bit floating

point package for the calculations and for the data representation. In the active state, the

MSP430 is powered by a current of 330 µA at 2.2 V and it has a clock rate of 1 MHz. The

resulting energy consumption per CPU cycle is E0 “ 0.726 nJ. The number of clock cycles

needed for the floating point operations are given in Table 5.8 of [80].

For radio, we selected the TI CC2420 RF transceiver [81], an IEEE 802.15.4 [82] compli-

ant radio. For commercial radio transceivers, the current consumption associated with the

transmission activity is typically selected from a finite set of values, that for the CC2420 are

8, varying from a minimum of 8.5 mA to a maximum of 17.4 mA, with a supply voltage of

3.3 V for an effective data rate of 250 kbps, see [81]. Thus, the energy cost associated with

the transmission of a bit, E1
Txrℓs, given the current power level ℓ P t1, . . . , 8u ranges from

112 nJ to 230 nJ, which correspond to the energy spent by the micro-processor during 154

and 316 clock cycles, respectively. The current level, and consequently the output power of

the radio transceiver, has to be chosen according to the considered scenario, which includes
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the transmission distance, the channel noise level, the type of environment (e.g., free space,

indoor, presence of obstacles), etc.

We remark that the results that we obtain for this specific architecture can be promptly

generalized to different CPUs and radios. As we show later in Section 4.3.8, this is possible

by separating algorithm-dependent and hardware-dependent terms in the calculation of the

overall energy consumption. In particular, the compression performance of all algorithm

is evaluated using 16 bits arithmetics, the natural choice for the MSP430, a 16-bit word

processor.

4.3.4 Theoretical Bound for Signal Compression

Given the discrete and Gaussian time series of Section 4.3.2, from the theory in [83] we

can derive the theoretical lower bound on the transmission rate Rmin (bits/sample):

Rminpn‹, N, εq “ 1

N

Nÿ

i“1

max

"
0,

1

2
log2

ˆ
ζ2i
ε

˙*
,

where ε is the maximum permitted distortion at the receiver, N is the number of input

samples and ζi are the eigenvalues of the covariance matrix Σpn‹q of xpnq for n “ 1, . . . , N .

Hence, for given pn‹, N, εq we can bound the compression ratio achievable by any practical

scheme as:

η ě Rminpn‹, N, εq
R0

, (4.1)

where R0 “ 16 is the rate expressed in bits/sample in the uncompressed case for our

hardware.

4.3.5 Simulation Setup

For the results that we discuss in what follows, we used synthetic signals with correlation

length n‹ varying in t1, 10, 20, 50, . . . , 500u samples, where after 20, n‹ varies in steps of 30

(we have picked ρth “ 0.05 for all the results shown in this chapter). We consider time series

of N “ 500 samples (time slots) at a time, progressively taken from a longer realization of the

signal, so as to avoid artifacts related to the generation technique. We recall that the signals

are correlated Gaussian with zero-mean and unit variance. Moreover, a Gaussian noise with

standard deviation σnoise “ 0.04 has been added to the signal, as per the signal generation
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method of Section 4.3.2. For the reconstruction accuracy, the absolute error tolerance has

been set to ε “ ξσnoise, with ξ ě 0. In the following graphs, each point is obtained by

averaging the outcomes of 104 simulation runs. For a fair comparison, the same realization

of the input time series xpnq has been used for all the compression methods considered, for

each simulation run and value of n‹. Moreover, all the compression algorithms have been

configured with the same error tolerance, so that the energy compression and consumption

figures that we obtain are for the same reconstruction fidelity at the receiver.

4.3.6 Compression Ratio vs Processing Energy

In the following, we analyze the performance in terms of compression effectiveness and

computational complexity (energy) for the lossy compression methods of Section 4.2.

Adaptive Modeling Methods: in this first set of results we compare the performance of

the following compression methods: 1) Modified Adaptive Autoregressive (M-AAR); 2) Poly-

nomial Regression (PR); 3) Piecewise Linear Approximation (PLAMLiS); 4) Enhanced Piece-

wise Linear Approximation (E-PLAMLiS); 5) Lightweight Temporal Compression (LTC) and

6) Marcelloni and Vecchio’s algorithm (MV) . For the M-AAR autoregressive filter and the

polynomial regression (PR) we show results for the two orders, p “ t2, 4u. The lower bound

on the compression ratio η is also plotted for comparison, see (4.1).

Fig. 4.3a shows the Compression Ratio achieved by the six compression methods as a

function of the correlation length n‹. These results reveal that for small values of n‹ the com-

pression performance is poor for all compression schemes, whereas it improves for increasing

correlation length, by reaching a floor value for sufficiently large n‹. This confirms that n‹

is a key parameter for the performance of all schemes. Also, the compression performance

differs among the different methods, with PR giving the best results. This reflects the fact

that, differently from all the other methods, PR approximates xpnq without requiring its

fitting curves to pass through the points of the given input signal. This entails some inherent

filtering, that is embedded in this scheme and makes it more robust against small and random

perturbations.

Fig. 4.3b shows the energy consumption for compression. For increasing values of n‹ the

compression ratio becomes smaller for all schemes, but their energy expenditure substantially
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Figure 4.3. (a) η vs Correlation Length n‹ and (b) η vs Energy consumption for compression

for the Adaptive Modeling methods for fixed ε “ 4σnoise.

differs. Notably, the excellent compression capabilities of PR are counterbalanced by its

demanding requirements in terms of energy. M-AAR and PLAMLiS also require a quite

large amount of processing energy, although this is almost one order of magnitude smaller

than that of PR. LTC, E-PLAMLiS and MV have the smallest energy consumption among
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all schemes.

We now discuss the dependence of the computational complexity (which is strictly related

to the energy spent for compression) on n‹. LTC encodes the input signal xpnq incrementally,

starting from the first sample and adding one sample at a time. Thus, the number of opera-

tions that it performs only weakly depends on the correlation length and, in turn, the energy

that it spends for compression is almost constant with varying n‹. E-PLAMLiS takes advan-

tage of the increasing correlation length: as the temporal correlation increases, this method

has to perform fewer “divide and reiterate” steps, so the number of operations required gets

smaller and, consequently, also the energy spent for compression is reduced. MV performs

almost the same number of operations for different correlation lengths, except for very small

values of n‹. This occurs because, in order to meet the error constraint for uncorrelated

signals (n‹ « 1), the quantization step has to use a high number of levels (DPCM signals

have wider ranges), and with an increasing number of levels the entropy encoder assigns an

exponentially increasing number of bits to some symbols. As a consequence, also the number

of operations related to the assignment of these codewords increases. We recall that, in order

to fairly compare MV with the other methods that we analyze, we adapted it as explained in

Section 4.2.3. Specifically, in the evaluation of the energy consumption associated with the

compression operation at the transmitter, we also consider the operations performed for the

online selection of the quantizer, so as to meet a target error tolerance. In our case, the results

differ from those in [71] where optimal quantizers are computed offline, and only the final

encoding stage is performed on the nodes, which entails a lower energy consumption. For

the remaining methods the complexity grows with n‹. For PLAMLiS, this is due to the first

step of the algorithm, where for each point the longest segment that meets the given error

tolerance has to be found, see Section 4.2. When xpnq is highly correlated, these segments

become longer and PLAMLiS has to check a large number of times the tolerance constraint

for each of the N samples of xpnq. For M-AAR and PR every time a new sample is added

to a model (autoregressive for the former and polynomial for the latter), this model must be

updated and the error tolerance constraint has to be checked. These tasks have a complexity

that grows with the square of the length of the current model. Increasing the correlation

length of the input time series also increases the length of the models, leading to smaller

compression ratios and, in turn, a higher energy consumption.
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Fourier- and Wavelet-based Methods: we now analyze the performance of the Fourier-

and Wavelet-based compression schemes of Section 4.2. We consider the same simulation

setup as above. Fig. 4.4a shows that the compression performance of Fourier-based methods

still improves with increasing n‹. The methods that perform best are FFT Windowed, FFT-

LPF Windowed and DCT-LPF, which achieve very small compression ratios, e.g., η is around

10´2 for n‹ ě 300. Conversely, FFT and FFT-LPF, due to their edge discontinuity problem

(see Section 4.2), need to encode more coefficients to meet the prescribed error tolerance

constraint and thus their compression ratio is higher, i.e., around 1. RACE is outperformed

by other DCT-based solutions in terms of compression performance, at all correlation lengths.

As will be discussed shortly, this scheme may be interesting for its lightweight character in

terms of energy consumption requirements. The energy cost for compression is reported

in Fig. 4.4b, where n‹ is varied as an independent parameter. The compression cost for all

the FFT/DCT schemes is given by a first contribution, which represents the energy needed

to evaluate the FFT/DCT of the input signal xpnq. Thus, there is a second contribution

which depends on the number of transformation coefficients that are picked. Specifically,

a decreasing n‹ means that the signal is less correlated and, in this case, more coefficients

are to be considered to meet a given error tolerance. Further, for each of them, an inverse

transform has to be evaluated to check whether an additional coefficient is required. This

leads to an increasing computational cost for decreasing n‹.

RACE instead, as described in Section 4.2.1.5, only performs an initial Wavelet decom-

position and subsequently checks the reconstruction error thanks to the coefficient selection

phase along the constructed tree, without having to compute an inverse transform at each

step. Hence, its energy consumption remains nearly constant while varying the correlation

length n‹ and is lower than that of FFT and DCT schemes. Finally, we note that FFT-

based methods achieve the best performance in terms of compression ratio among all schemes

of Figs. 4.3b and 4.4b (DCT-LPF is the best performing algorithm), whereas PLA schemes

give the best performance in terms of energy consumption for compression (LTC is the best

among them).

Applicability to real-world signals: in Table 4.1, we show the typical sampling rate and
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Figure 4.4. (a) η vs Correlation Length n‹ and (b) η vs Energy consumption for compression

for the Fourier-based methods for fixed ε “ 4σnoise.

the correlation length for selected real-world signals. Luminosity and temperature data are

taken from the database used in [84], readings from load sensors are taken from a struc-

tural monitoring WSN installed by WorldSensing in the Palau Sant Jordi of Barcelona (ES),

whereas seismic data is obtained from the measurements in [85]. The high quality (HQ)
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Signal type Sampling rate [Hz] Typical n‹ [samples]

Indoor temperature 1{60 563

Humidity 1{600 355

Load sensors 1{5 402

Outdoor temperature 10 135

Luminosity 1{300 100

Music (HQ) 44.1 k 33

Music (LQ) 8192 4

Speech 8192 8

Seismic 150 3

Table 4.1. Typical correlation length n‹ for selected real-world signals.

musical sample and the speech data are respectively from an excerpt of classical music by

Mozart and from a sample of speech from an adult female, these datasets are available at [86].

The low quality (LQ) musical sample is from the Händel Messiah’s Hallelujah Chorus.

We focus on compression schemes for WSNs that are signal-agnostic and, as such, try

to approximate the signals on the fly through some modeling technique. These, are how-

ever effective for slowly varying signals, say, with correlation length larger than 50 samples.

Typically, these kinds of signals are monitored by WSNs gathering climatic/environmental

data or structural health. Audio signals, such as music and voice, seismic signals, or sig-

nals related to online traffic monitoring show abrupt variations, are highly non-stationarity

and are characterized by very short correlation lengths (usually smaller than 10 samples).

While the techniques presented here can be used for the compression of these signals, dedi-

cated algorithms, which are outside the scope of this chapter, are expected to lead to better

results.

4.3.7 Application Scenario

In this section, we evaluate the selected compression methods considering the energy con-

sumed for transmission of typical radios in Wireless Sensor Networks (WSN) for a single-

and a multi-hop network, where there is no multiple-user interference at the channel access.
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Figure 4.5. Compression Ratio η vs Total Energy Consumption: comparison among lossy com-

pression schemes.

These results will be extended in Section 4.4 to Multi-hop networks with interference.

Single-hop Performance: Fig. 4.5 shows the performance in terms of Compression Ra-

tio η vs Total Energy Consumption for a set of compression methods when applied to an

interference-free single-hop WSN scenario. PLAMLiS was not considered as its performance

is always dominated by E-PLAMLiS and we only show the performance of the best Fourier-

based schemes. In both graphs the large white dot represent the case where no compression

is applied to the signal, which is entirely sent to the gathering node. Note that energy sav-

ings can only be obtained for those cases where the total energy lies to the left of the no

compression case. For the following results, we have set the transmission power of the radio

transceiver to the maximum level, in order to show the best achievable performance when

data compression is applied.

Notably, in spite of the adoption of the maximum power level, the computational energy

is comparable to that spent for transmission, thus, only LTC and Enhanced PLAMLiS can

achieve some energy savings (see Fig. 4.5). All the other compression methods entail a high

number of operations and, in turn, perform worse than the no compression case in terms of

overall energy expenditure. This remarkable result is a consequence of that, as mentioned
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Figure 4.6. Maximum Energy Gain vs Correlation Length n‹ for a single-hop scenario.

in Section 4.3.3, using current technologies, only a few hundred CPU instructions can be

executed to compress a single bit of information and be energy efficient.

The total energy gain, defined as the ratio between the energy spent for transmission in

the case with no compression and the total energy spent for compression and transmission

using the selected compression techniques, is shown in Fig. 4.6. The method that offers the

highest energy gain is LTC, although other methods such as DCT-LPF can achieve better

compression performance (see Fig. 4.5). Note that in this scenario the total energy is highly

influenced by the computational cost. Thus, the most lightweight methods, such as LTC and

enhanced PLAMLiS, perform best.

Multi-hop Performance: in Fig. 4.7 we focus on multi-hop networks, and evaluate whether

further gains are possible when the compressed information has to travel multiple hops to

reach the data gathering point. In this case, both transmission and reception energy are

accounted for at each intermediate relay node. In the following, only LTC and DCT-LPF are

shown, as these are the two methods that respectively perform best in terms of complexity

and compression efficiency.

In Fig. 4.7a, we set the error tolerance ε “ 4σnoise, the correlation length of the input

signal n‹ P t300, 500u and we evaluate the possible gains for the maximum and the minimum
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Figure 4.7. (a) Energy gain vs number of hops for ε “ 4σnoise. Solid lines are used to indicate

maximum transmission power, dashed lines to indicate minimum transmission power. Results for

DCT-LPF are shown with black filled markers, whereas white filled markers are used for LTC. The

type of marker indicates the correlation length of the input signal, specifically: p˝,�q for n‹ “ 300,

p˝, ‚q for n‹ “ 500. (b) Energy gain vs hop distance for LTC and DCT-LPF with ε “ 4σnoise and

n‹ “ 300.
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transmission power levels, so as to respectively obtain the upper and lower bounds on the

achievable performance. As shown in this figure, the energy gain increases with the number

of hops. This is because, although the energy spent for the compression at the source node is

comparable to that spent for the transmission, the compression cost (compression energy) is

only incurred at the source node; while each additional relay node only has to send compressed

data. We also note that DCT-LPF is not energy efficient in single-hop scenarios, but it can

actually provide some energy gains when the number of hops is large enough (e.g., larger than

2), and the transmission power is set to the maximum level. For the minimum transmission

power, DCT-LPF starts being energy efficient only after 5 ´ 6 hops, see Fig. 4.7a.

In Fig. 4.7b we show the maximum achievable energy gain versus the distance between

hops. Given the distance, the transmission power is selected according to the Friis path

loss formula (with path loss exponent α “ 3.5, which is typical for WSNs [87]), considering

the transmission power levels and the receiver sensitivity Pth “ ´95 dBm of the CC2420

transceiver [81]. For each value of the distance, we evaluated the energy gain using the

minimum transmission power level that leads to a received power above Pth. As shown in

Fig. 4.7b, the energy gain increases with the distance, as the transmission power becomes

progressively higher of that needed for compression. This effect becomes more pronounced

when the number of hops is increased, as the relay nodes only have to forward the data (no

processing), thus benefiting from the smaller number of bits to be received and transmitted.

4.3.8 Numerical Fittings

In this section, we provide close-formulas to accurately relate the achievable compression

ratio η to the relative error tolerance ξ and the computational complexity, Nc, which is

expressed in terms of number of clock cycles per bit to compress the input signal xpnq. These
fittings have been computed for the best compression methods, namely, LTC and DCT-LPF.

Note that, until now, we have been thinking of η as a performance measure which de-

pends on the chosen error tolerance ε “ ξσnoise. This amounts to considering ξ as an input

parameter for the compression algorithm. In the following, we approximate the mathematical

relationship between η and ξ, by conversely thinking of ξ as a function of η, which is now our

input parameter. Nc can as well be expressed as a function of η.

We found these relationships through numerical fitting, running extensive simulations
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with synthetic signals. The relative error tolerance ξ can be related to the compression ratio

η through the following formulas:

ξpn‹, ηq “

$
’’&
’’%

p1η
2 ` p2η ` p3

η ` q1
LTC

p1η
4 ` p2η

3 ` p3η
2 ` p4η ` p5

η ` q1
DCT-LPF ,

(4.2)

where the fitting parameters p1, p2, p3, p4, p5, and q1 depend on the correlation length n‹ and

are given in Table 4.2 for LTC and DCT-LPF. These fitting formulas have been validated

against real world signals measured from the environmental monitoring WSN testbed de-

ployed on the ground floor of the Department of Information Engineering (DEI), University

of Padova, Italy [88]. This dataset consists of measures of temperature and humidity, sensed

with a sampling interval of 1 minute (temperature) and 10 minutes (humidity) for 6 days.

Correlation lengths are n‹
T “ 563 and n‹

H “ 355 for temperature and humidity signals, re-

spectively. The empirical relationships of Eq. (4.2) are shown in Fig. 4.8a and 4.8b through

solid and dashed lines, whereas the markers indicate the performance obtained applying LTC

and DCT-LPF to the considered real datasets. As can be noted from these plots, although

the numerical fitting was obtained for synthetic signals, Eq. (4.2) closely represents the actual

tradeoffs. Also, with decreasing n‹ the curves relating ξ to η remain nearly unchanged in

terms of functional shape but are shifted toward the right. Finally, we note that the de-

pendence on n‹ is particularly pronounced at small values of n‹, whereas the curves tend to

converge for increasing correlation length (larger than 110 in the figure).2

For the computational complexity, we found that Nc scales linearly with η for both LTC

and DCT-LPF. Hence, Nc can be expressed through a polynomial as follows:

Ncpn‹, ηq “ αη ` γn‹ ` β . (4.3)

Nc exhibits a linear dependence on both n‹ and η; the fitting coefficients are shown in

Table 4.3. We remark that the computational complexity as given by (4.3) is that achievable

by a temporal compressor configured with a compression ratio η, that keeps the reconstruction

error bounded according to the error tolerance ε “ ξpn‹, ηqσnoise (see (4.2)). Note that,

differently from Fig. 4.4, this reasoning entails the compression of our data without fixing

beforehand the error tolerance ε, which instead directly follows from η and n‹.

2Note also that the there is a lower bound on the achievable reconstruction accuracy as the signal correlation

n‹ increases. This is due to the noise that is superimposed to the useful signal.
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Compression
n‹

Fitting coefficients

Method p1 p2 p3 p4 p5 q1

LTC

10 ´0.35034 0.27640 0.92834 – – ´0.15003

20 ´0.51980 0.86851 0.31368 – – ´0.09245

50 ´0.80775 1.38842 0.17465 – – ´0.03705

80 ´0.85691 1.45560 0.18208 – – ´0.02366

110 ´0.86972 1.46892 0.19112 – – ´0.01736

290 ´0.97242 1.61970 0.17280 – – ´0.00747

500 ´1.03702 1.70305 0.17466 – – 0.00267

DCT-LPF

10 2.05351 ´12.70381 14.49624 ´4.52198 0.82292 ´0.16165

20 ´0.92752 ´3.07506 3.07560 1.06902 0.02898 ´0.09025

50 ´1.90344 ´0.17491 ´0.13500 2.43821 ´0.03826 ´0.03929

80 ´2.59629 1.41404 ´1.40970 2.81971 ´0.04122 ´0.02667

110 ´2.57150 1.43655 ´1.51646 2.87138 ´0.02747 ´0.01913

290 ´3.43806 3.17964 ´2.67444 3.13226 ´0.01531 ´0.00848

500 ´3.99007 4.17811 ´3.22636 3.22590 ´0.01102 ´0.00560

Table 4.2. Fitting coefficients for ξpn‹, ηq.

Compression Fitting coefficients

Method α β γ

LTC 16.1 105.4 3.1 ¨ 10´16

DCT-LPF 48.1 ¨ 103 82.3 ´2 ¨ 10´13

Table 4.3. Fitting coefficients for Ncpn‹, ηq.
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Figure 4.8. Fitting functions ξpn‹, ηq vs experimental results: (a) LTC, (b) DCT-LPF. The

correlation n‹of the considered datasets for temperature and humidity is 563 and 355 samples,

respectively.

Further, in (4.3) the dependence on n‹ is much weaker than that on η and for practical

purposes can be neglected without loss of accuracy. For this reason, in the remainder of this
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section we consider the simplified relationship:

Ncpηq “ αη ` β . (4.4)

The accuracy of Eq. (4.4) is verified in Fig. 4.9, where we plot our empirical approximations

against the results obtained for the real world signals described above. The overall energy

consumption is obtained as NbpxqNcpηqE0.

Tradeoffs: in the following, we use the above empirical formulas to generalize our results

to any processing and transmission technology, by separating out technology dependent and

algorithm-dependent terms. Specifically, a compression method is energy efficient when the

overall cost for compression (Ecpxq) and transmission of the compressed data (ETxpx̂q) is

strictly smaller than the cost associated with transmitting xpnq uncompressed (ETxpxq).
Mathematically, Ecpxq ` ETxpx̂q ă ETxpxq. Dividing both sides of this inequality by ETxpxq
and rearranging the terms leads to:

ETxpxq
Ecpxq “ E1

TxrℓsNbpxq
E0NcNbpxq ą 1

1 ´ η
,

where the energy for transmission ETxpxq is expressed as the product of the energy expendi-

ture for the transmission of a bit E1
Txrℓs (for the selected output power level ℓ P t1, . . . , 8u)

and the number of bits of xpnq, Nbpxq. The energy for compression is decomposed in the



74 Chapter 4

product of three terms: 1) the energy spent by the micro-controller in a clock cycle E0, 2)

the number of clock cycles performed by the compression algorithm per (uncompressed) bit

of xpnq, Nc and 3) the number of bits composing the input signal xpnq, Nbpxq. With these

energy costs and the above fitting Eq. (4.4) for Nc we can rewrite the above inequality so

that the quantities that depend on the selected hardware architecture appear on the left hand

side, leaving those that depend on algorithmic aspects on the right hand side. The result is:

E1
Txrℓs
E0

ą Ncpηq
1 ´ η

“ αη ` β

1 ´ η
, (4.5)

where α and β are the algorithmic dependent fitting parameters indicated in Table 4.3.

Eq. (4.5) can be used to assess whether a compression scheme is suitable for a specific device

architecture. As an example, for the considered WSN architecture we have that E1
Txr8s “

230 nJ for the selected CC2420 radio for its highest transmission power , whereas for the TI

MSP430 we have E0 “ 0.726 nJ and their ratio is E1
Txr8s{E0 » 316. The numerical evaluation

of the RHS of (4.5) for DCT-LPF reveals that this compression scheme is inefficient for any

value of η, i.e., the overall energy expenditure due to transmission plus compression is higher

than the energy spent in the case where compression is not applied. Instead, LTC provides

energy savings for η ď 0.6, that using the function ξpn‹, ηq for LTC can be translated into

the corresponding (expected) error performance. Note that the knowledge of n‹ is needed

for this last evaluation. These results can be generalized to any other device technology, by

comparing the RHS of (4.5) against the corresponding ratio E1
Txrℓs{E0 and checking whether

the inequality in (4.5) holds.

4.4 Performance Comparison for Interference-limited Multi-

Hop Networks

In this section we generalize our findings to multi-hop WSN where data is routed along

a tree and eventually collected by a sink node. In doing so, we model the channel access

dynamics in terms of transmission schedules, idle times and collisions, accounting for the

corresponding energy and delay terms. For the sake of analytical tractability, we account for

static routing paths. The main question that we try to answer here is whether additional

benefits arise when further protocol inefficiencies are accounted for. Especially, we are con-

cerned with the benefits that may be achieved for DCT schemes, which provide the best
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Figure 4.10. Multi-hop WSN scenario.

compression performance but that, as we have seen above, may be inefficient for single-hop

networks when the channel access is idealized.

4.4.1 Analysis for Interference Limited Networks

Scenario: we consider the multi-hop WSN of Fig. 4.10 where the field readings are gathered

by the sensors placed in a number of WSN islands (at level LK´1) and then routed to the

data collector node (the WSN sink, at level L0), through a data collection tree. This tree is

organized according to a hierarchical structure with K levels, L0, L1, . . . , LK´1, whereby Nk

is the number of children nodes for a root located at level k ´ 1 with k “ 1, . . . ,K ´ 1 and

NK “ 0. Thus, Npkq “ śk
i“1Ni, k ě 1 is the total number of nodes at level k, Np0q “ 1,

and
řK´1

k“0 Npkq is the total number of sensor nodes, including the sink.

To reduce the interference among the data forwarding processes taking place in the differ-

ent levels of the tree we adopt a pipelining scheduling technique as done in, e.g., [89]. Starting

with the lowest level LK´1, the data collection protocol works in rounds of T seconds that

are further subdivided into 3 sub-rounds, S1, S2 and S3 of T {3 seconds each. During S1, the

NpK ´ 1q nodes at level LK´1 compete for the channel to send their data to their respective

roots located in LK´2, which act as receivers. During the next sub-round S2, the nodes in

LK´2 contend for the channel to forward their data to the nodes in the next level LK´3, the

nodes in LK´1 sleep and those in LK´3 act as receivers. In the final sub-round S3, the nodes

in LK´3 forward their data toward their upper level K ´ 4 and those in levels K ´ 1 and

K ´ 2 sleep. In the next sub-round (again of type S1), the nodes at level LK´4 forward their
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data and those in LK´1 can concurrently transmit, being outside their interference range.

This procedure is iteratively applied to each level so that the nodes that are three levels apart

share the same schedule and concurrently transmit in the same sub-round. The nodes in each

level k “ 1, 2, . . . ,K ´ 2 will receive in one sub-round, transmit in the next one, and stay

silent in the last. The nodes in the last level LK´1 transmit in a sub-round and sleep during

the following two. We further assume that the nodes belonging to the same level but to a

different sub-tree do not interfere with each other.

The nodes in the sensor islands (LK´1) are the only ones that generate endogenous traffic,

each according to a Poisson process with rate λK´1 pkt/s, which depends on their sampling

rate for the underlying physical process. The rates for the nodes at the upper levels depend

on the aggregated traffic, which is recursively computed accounting to MAC contentions and

routing. The channel contentions during the transmission sub-rounds are governed through a

protocol that is similar to S-MAC [3], extending the modeling approach of [90]. The authors

of the latter paper present a model for single-hop networks, where all nodes are allowed to

talk to any other node. Below, we extend their analysis for the scenario of Fig. 4.10, where

all the nodes in a certain level can only communicate with their respective root (located in

the next level toward the sink). Hence, a mathematical analysis is developed to characterize

the performance within each level, aggregating the contributions from LK´1 up to L0 so

as to obtain the overall network performance, i.e., from the WSN islands to the sink. Our

extension is reported in what follows.

Analysis: we assume that each node has a finite FIFO queue that can store up to Q

packets. During a transmission sub-round, only the nodes with non empty queue wake up

and participate in the channel contention. In order to maintain synchronization across nodes,

in S-MAC a fixed interval at the beginning of each active period is reserved for the exchange

of SYNC packets. After this phase S-MAC exploits an RTS/CTS/DATA/ACK handshake to

guarantee the successful transmission of the data. Specifically, each node access the channel

after a backoff time picked uniformly at random from a fixed length contention window of

Wδ seconds, where W is the contention window size and δ is the time duration of an access

slot. The first node that accesses the channel (the winner of the contention) sends an RTS

packet and remains active until the completion of the RTS/CTS/DATA/ACK handshake, in
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which case its packet is successfully transmitted. All the remaining nodes go to sleep as soon

as they overhear an RTS packet and wake up at the next transmission sub-round. If multiple

nodes attempt to access the channel in the same access slot, their RTS packets will collide

and the data packets of these nodes are dropped, causing a loss event. We also assume that

the nodes remains active for the entire duration of their reception sub-rounds.

The analysis that follows is applied to each level of the discussed multi-hop WSN, starting

from the sensor islands and recursively moving towards the sink. The MAC queue of each node

in level k “ 0, 1, . . . ,K ´ 1 is modeled through a Markov chain, with transition probabilities

depending on the corresponding arrival rate λk and on the probability p fi ps`pf of removing

one packet from the queue (either due to a successful transmission, w.p. ps, or due to a collided

one, w.p. pf ).
3 For the levels above LK´1 we calculate λk aggregating the traffic of the Nk`1

underlying nodes and accounting for the respective packet losses, as follows:

λk “ PDRk`1 ¨ Nk`1 ¨ λk`1 @ k “ 0, 1, . . . ,K ´ 2 , (4.6)

where PDRk`1 is the average packet delivery ratio for the level immediately below. The

packet generation rate for the nodes in the WSN islands (level LK´1) is application dependent

as is denoted by γ pkt/s. Accounting for the reduction in the number of packets sent due

to the utilization of temporal compression algorithms, these nodes generate endogenous data

traffic according to rate λK´1, where:

λK´1 “

$
’&
’%

γ no ´ compression

γη compression .

(4.7)

Following [90], given the Markov model for the MAC queues, for each node the stationary

probability of empty queue πo can be evaluated as a function of p, i.e., πo “ fppq.4 Also, given

the number of nodes in the same group (i.e., sharing the same root node), the probability of

winning a contention p can be expressed as a further function of πo. i.e., p “ ps `pf “ gpπoq.
In fact, note that ps and pf depend on the number of nodes at level k that have at least one

packet in their buffer and thus transmit toward the same root located at level k ´ 1. This

number is a r.v. having a binomial mdf with parameters Nk and π0, i.e., BpNk, πoq. For each
3We remark that p, ps and pf are to be calculated for each level k, according to the aggregated input traffic

coming from the previous level k ´ 1. Here, we omit their explicit dependence on k for the sake of readability.
4In what follows, in addition to ps and pf , the index k is also omitted from p and πo for the sake of a more

concise and readable notation.
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level k “ 1, . . . ,K´1, the pair pp, πoq is evaluated numerically by finding the only point where

the two curves fppq and gpπoq intersect. This returns the (steady-state) operational point

for the MAC system, which is successively used to evaluate the performance of interest, in

particular: 1) the Packet Delivery Ratio, 2) the Delay and 3) the Mean Energy Consumption.

1) Packet Delivery Ratio (PDR): the PDR for a given level k, (PDRk), is defined as the

ratio of successfully delivered packets over the total number of generated data packets and

derived as follows:

PDRk “ p1 ´ π0qps
λkT

.

For our multi-hop network, the Total Packet Delivery Ratio from level LK´1 up to the sink

is obtained as
śK´1

k“1 PDRk.

2) Delay: the delay for a given level k, Dk, is defined as the number of time slots needed

to deliver a data packet to the next hop. The average delay for each level can be obtained

through the analysis in [90]; the total average delay is obtained through the aggregation of

the delays experienced in each level from the WSN islands all the way to the sink.

3) Mean Energy Consumption: for the energy consumption analysis, we recall the fea-

tures of our version of S-MAC.

1. The time slot is divided in three sub-rounds, all the nodes in the same level share the

same schedule and are synchronized.

2. In the transmission sub-round only the nodes with non empty queue wake up and

contend for the channel.

3. The nodes that wake up perform a SYNC phase, which is followed by a channel con-

tention. Only the winner of this contention transmits a data packet, whereas all other

nodes go to sleep as soon as they overhear an RTS packet or detect a collision.

4. The winner of the contention goes to sleep as soon as the data packet is acknowledged

(in the case of a successful transmission), or after an RTS collision (when two or more

node access the channel in the same access slot).
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5. The nodes remain in listening(sleep) mode for the whole duration of their recep-

tion(sleep) sub-round.

With these assumptions, we define the Mean Energy per time slot E as the sum of the mean

energy spent in the three sub-rounds:

E “ ES1 ` ES2 ` ES3 . (4.8)

Without loss of generality we hereby consider S1 as the transmission sub-round, S2 as the

reception sub-round and S3 as the sleep sub-round.

The average energy consumption in the transmission sub-round can be further factorized

as:

ES1 “ Esync ` Edata ` Esleep , (4.9)

where Esync, Edata and Esleep respectively account for the average energy consumption in the

SYNC, the data transmission and the sleep phase occurring within a sub-round of type S1.

Assuming that a the duration of a SYNC phase is Tsync, that the transmission of a SYNC

packet takes tSYNC and that a node transmits a SYNC packet every Nsync time slots, Esync

is obtained as:

Esync “ tSYNCPTx ` pTsync ´ tSYNCqPRx ` TsyncPRxpNsync ´ 1q
Nsync

, (4.10)

where PTx and PRx are the radio power consumption for transmission and reception, respec-

tively.

In order to evaluate Edata and Esleep, we consider a tagged node having a packet to

send and look at the duration of its backoff window in the following three cases: C1) the

node successfully transmits a data packet, C2) the RTS sent by this node collides, and C3)

the node goes back to sleep as it detects channel activity before its backoff timer expires.

The durations of these events is referred to as Ws, Wc and Wt for cases C1, C2 and C3,

respectively (expressed in number of access slots). For a given number of nodes that take

part in the contention, No, we obtain:

WspNoq “
W´1ÿ

i“0

i ¨ No

W
¨

`
W´i´1

W

˘No´1

řW´1
j“0

No

W
¨

´
W´j´1

W

¯No´1
, (4.11)

WcpNoq “
W´1ÿ

i“0

i ¨
”`

W´i
W

˘No ´
`
W´i´1

W

˘No ´ No

W
¨
`
W´i´1

W

˘No´1
ı

řW´1
j“0

´
W´j
W

¯No

´
´
W´j´1

W

¯No

´ No

W
¨

´
W´j´1

W

¯No´1
, (4.12)
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WtpNoq “
W´1ÿ

i“0

i ¨
”`

W´i
W

˘No ´
`
W´i´1

W

˘No
ı

řW´1
j“0

´
W´j
W

¯No

´
´
W´j´1

W

¯No
. (4.13)

Inside the sum of (4.11) we have the conditional probability that the tagged node wins the

contention, accessing the channel in slot i, whereas all other nodes that participate in the

contention pick an access slot greater than i, given that the contention is successful. The

remaining equations (4.12) and (4.13) are obtained similarly, accounting for C2 and C3. The

expected values for these durations are obtained averaging Ws, Ws and Ws over the possible

values of No, as:

E
“
Wts,t,cu

‰
“

Nÿ

n“1

ˆ
N

n

˙
¨ πN´n

o ¨ p1 ´ πoqn ¨ Wts,t,cupnq . (4.14)

The mean durations in seconds is evaluated as Tts,c,tu “ E
“
Wts,t,cu

‰
¨ δ.

Finally Edata and Esleep can be computed accounting for cases C1 (w.p. p1´ πoq ¨ ps), C2
(w.p. p1´πoq ¨ pf ), C3 (w.p. p1´πoq ¨ p1´ ps ´ pf q) and a further case C4) where the tagged

node does not participate in the contention as its queue is empty (w.p. πo):

Edata “ p1 ´ πoq ¨ ps ¨ rptRTS ` tDATAq ¨ PTx

` ptCTS ` tACK ` Tsq ¨ PRx ` Ecs

` p1 ´ πoq ¨ pf ¨ rtRTS ¨ PTx ` ptCTS ` Tcq ¨ PRx ` Ecs

` p1 ´ πoq ¨ p1 ´ ps ´ pf q ¨ rptRTS ` Ttq ¨ PRxs

` πo ¨ 0 , (4.15)

Esleep “ p1 ´ πoq ¨ ps ¨ pT {3 ´ Tsync ´ tRTS ´ tCTS

´ tDATA ´ tACK ´ Tsq ¨ PSl

` p1 ´ πoq ¨ pf ¨ pT {3 ´ Tsync ´ tRTS ´ tCTS ´ Tcq ¨ PSl

` p1 ´ πoq ¨ p1 ´ ps ´ pf q ¨ pT {3 ´ Tsync ´ tRTS

´ Ttq ¨ PSl ` πo ¨ pT {3q ¨ PSl . (4.16)

Here, tRTS, tDATA, tCTS, tACK represent the time for transmitting an RTS, DATA, CTS

and an ACK, respectively. PSl is the power consumption of the radio transceiver in the sleep

mode. Ec in (4.15) is the energy consumption for the compression of a data packet, evaluated

according to the packet length, the required number of CPU cycles (see (4.4)) and the energy
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consumption per CPU cycle E0 (Ec “ 0 if data is sent uncompressed). The probabilities ps,

pf and πo are computed as in [90].

4.4.2 Results

In this section we provide some results for the scenario of Fig. 4.10, where we consider a

network with K “ 4 levels, and with N1 “ 3, N2 “ 2 and N3 “ 30, leading to a total number

of 190 nodes. The packet generation rate at the lowest level λ3 is obtained considering an

average inter-sampling time for the underlying physical phenomenon Is P r10´3, 102s sec-

onds. Moreover, considering a packet payload size of 127 bytes and 16 bits per sample,

the resulting packet generation rate for the endogenous traffic is γ “ 1{p63.5Isq packets/s.

For the compression methods, we focus on LTC and DCT-LPF as from Section 4.3.8 we

know that these respectively perform best in terms of computational complexity and com-

pression efficiency. Thus, we compare their performance at different compression ratios,

η P t0.01, 0.1, 0.3, 0.5, 0.7, 0.9u, and without compression. The queue length of each node is

set to Q “ 10 pkts, its contention window to W “ 50 access slots and the duration of an

access slot is set to δ “ 0.2 ms. For the computation of the energy terms (compression and

radio activity) we consider the power consumptions of the CC2420 radio transceiver and of

the MSP430 micro-controller. In the results that follows, different performance metrics are

shown as a function of the compression ratio η. As per our working methodology in this

chapter, each value of η (and, in turn, each curve in the following graphs) is characterized by

a corresponding error tolerance ξpn‹, ηq, attainable from the correlation length n‹ and (4.2).

A decreasing η corresponds to an increasing error as shown in Fig. 4.8.

In Figs. 4.11a 4.11b we plot the the total delivery delay as a function of the packet gen-

eration rate for each node in the WSN islands, γ. We consider the total delay incurred

in compressing the data and transmitting them through multiple hops, as per the scenario

of Fig. 4.10. For LTC, the delay is slightly longer than no compression at low data traffic

(roughly γ ď 0.02 packets/second), where the latter outperforms LTC by about 1.5 seconds

(due to the additional execution time for compression). As γ gets larger, the delay per-

formance when sending the data uncompressed is substantially impacted and this is due to

the increased level of congestion in the network (i.e., number of collisions) and, in turn, to

the longer waiting time that the packets experience in the network queues. The same fact
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Figure 4.11. Total Delay [s] vs packet generation rate γ at the lowest level for: (a) LTC; (b)

DCT-LPF.

occurs for LTC, where however the level of congestion is milder due to the lower amount of

data that is injected into the network when compression is applied. Notably, LTC remains

quite lightweight for all values of η and, thus, for all the corresponding values of ξ. This is

because LTC requires a small number of operations (in fact, with LTC a single pass on the
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Figure 4.12. Packet Delivery Ratio vs packet generation rate γ at the lowest level.

input signal is required to provide a compressed sequence meeting the required reconstruction

fidelity ξ). DCT-LPF shows a totally different behavior due to our implementation of this

scheme, see Section 4.2.1.2, whereby we iteratively check the reconstruction quality at the

source. In general, one may use a different approach, by performing a single DCT transform

for each data frame and retaining a certain number of coefficients, so as to obtain to the

wanted compression performance, irrespective of the resulting signal representation accuracy.

In this case, the delay for DCT would only be slightly longer than that of LTC in Fig. 4.11a.

However, no control on the reconstruction quality can be assured in this case.

The Packet Delivery Ratio is shown in Fig. 4.12. When the arrival rate is small, all the

packets are successfully delivered; conversely, as the arrival rate becomes larger, the queue

lengths increase and the nodes start dropping packets. With temporal compression, the

number of packets in the network is reduced and this leads to a higher PDR.

In Fig. 4.13, we investigate the energy balance arising from the tradeoff,compression versus

transmission, by showing the overall average energy consumption over the entire network .

Notably, for LTC, from Fig. 4.13a we see that the additional cost incurred in compressing the

data is well counterbalanced by the higher efficiency of the channel access procedure due to

the reduction in the data traffic, i.e., fewer packet collisions and more sleeping opportunities

for the sensor nodes. However, this results does not hold when the compression method is

DCT-LPF as in this case the cost associated with the compression of the data is much higher
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Figure 4.13. Mean energy per time slot [J] vs packet generation rate γ at the lowest level: (a)

LTC; (b) DCT-LPF.

and some energy gain can only be achieved if the compression ratio is significant. Given these

results, we advocate the use of linear compression methods such as LTC, as these are likely

to lead to energy savings. The use of other methods should be carefully evaluated, as they

are energy-inefficient in most practical cases and can lead to unacceptable delays .
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Figure 4.14. Average frame RMSE vs packet generation rate γ for an input signal with n‹ “ 290.

Finally, in Fig. 4.14 we focus on the reconstruction performance for the network scenario

of Fig. 4.10 in the presence of packet losses due to collisions and without accounting for

any packet retransmission mechanism. To this end, we define a new reconstruction error

metric, termed frame Root Mean Square Error (RMSE), which is evaluated at the receiver

as the RMSE for every N data samples. Since in both the compressed and uncompressed

case the encoded data (corresponding to a window of N input samples) can be fragmented

into multiple packets, we devised a simple loss tolerant decoding scheme for each method. In

particular, 1) in the uncompressed case, whenever a packet is lost, the decoder uses the last

valid received sample as its replacement. 2) For LTC, we assume that fragmentation only

occurs between subsequent segment extremes pni, xpniqq (see Fig. 4.2) but that, for each of

them, no splitting of ni and xpniq occurs across different packets. In this way, the receiver

can always reconstruct the segments starting from a valid set of points (although in the case

of a packet loss a longer segment will be used to represent the lost data points). 3) For DCT,

the lost coefficients are considered equal to zero when the inverse transform is applied at the

receiver.

As shown in Fig. 4.14, when the packet generation rate γ is small (γ ă 10´2 in the

figure), the frame RMSE is constant and only depends on η and on the selected compression

scheme. In this case, LTC shows a higher average RMSE than DCT-LPF for the same
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compression ratio η, as seen in Section 4.3.8. As γ increases beyond a certain threshold

γth, the transmission channel gets saturated and, in turn, packets start being lost due to

collisions. Note that this occurs earlier for the uncompressed case and for those cases where

the compression does not effectively reduce the amount of traffic in the network (e.g., η “ 0.9).

This leads to an abrupt increase of the frame RMSE as γ increases beyond the channel

saturation point γth.

On the other hand, when the compression schemes are configured so as to effectively

reduce the amount of data that is transmitted over the network (η ą 0.5 in Fig. 4.14),

we have that γth moves to the right and this produces a beneficial effect in terms of frame

RMSE, which remains constant and acceptable for a wider range of transmission rates. As an

example, when the compression ratio is η “ 0.1, the signal reconstruction error at the receiver

can be kept small up to a packet generation rate that is roughly one order of magnitude larger

than γth in the uncompressed case.

4.5 Conclusions

In this chapter we have systematically compared lossy compression algorithms for con-

strained sensor networking, by investigating whether energy savings are possible depending

on signal statistics, compression performance and hardware characteristics. Our results re-

veal that, for wireless transmission scenarios, the energy required by compression algorithms

has the same order of magnitude of that spent for transmission at the physical layer. In

this case, the only class of algorithms that provides some energy savings is that based on

piecewise linear approximations, as these algorithms have the smallest computational cost.

We have additionally obtained fitting formulas for the best compression methods to relate

their computational complexity, approximation accuracy and compression ratio performance.

These have been validated against real datasets and can be used to assess the effectiveness of

the selected compression schemes for further hardware architectures. In the last part of the

chapter we investigate how these compression schemes perform in terms of energy efficiency,

reduced network delay and increased reliability for multi-hop networks in the presence of

realistic channel access procedures. Interestingly, we find that linear compression (e.g., LTC)

is beneficial in all cases but more energy-hungry DCT methods often perform worse than

no compression in terms of energy expenditure. The use of the latter is thus discouraged
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and should be carefully evaluated depending on the specific scenario at hand. Also, when

packet losses affect the data delivery, as due to, e.g., packet collisions, correctly configured

compression schemes also outperform the uncompressed transmission case in terms of recon-

struction fidelity at the receiver. Essentially, this is due to the corresponding reduction in

the transmitted data traffic and, in turn, in the packet collision probability.





5
Optimal Compression Policies

for Energy Harvesting Wireless Sensor Networks

Energy constrained system such as WSNs can increase their lifetime by extracting energy

from the environment. This is done by means of energy harvesting devices, e.g., solar panels,

wind turbines or scavenging antennas. This new scenario where sensor nodes are powered

by renewable sources, known as Energy Harvesting Wireless Sensor Networks (EHWSNs),

opened a new line of research in the scientific community. In this chapter we consider the

problem of optimizing the compression policy of an energy harvesting node equipped with a

photovoltaic panel.

5.1 Introduction

In recent years, Energy management in Wireless Sensor Networks (WSNs) has attracted

a large attention in the networking research community. Previous work has covered efficient

designs in terms of channel access [91], data compression [92] and compressive data gathering

and aggregation [84,93]. However, the common objective that has been considered so far has

been that of maximizing the network lifetime through an efficient use of the available en-

ergy, considering non-replenishable batteries. Notably, recent advances in energy harvesting

systems have opened up new opportunities in terms of energetically self-sustainable (or “per-

petual”) designs. Note that this calls for new objectives, as optimal policies no longer have

to be energy frugal through the entire lifetime of the nodes, but should intelligently assess

when energy is available, delivering high performance when the energy income is abundant

and putting the nodes into some energy saving mode when it is scarce [30].

89
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Lately, this new line of research has attracted the attention of many researchers. Most

approaches dealt with the design of energy neutral transmission policies [31–34,94]. The com-

mon assumptions that are made in these papers concern some knowledge (either deterministic

or in terms of statistics) of the energy and data arrival processes. This is then exploited to

devise optimal transmission schedules (and power) so as to maximize the throughput or mini-

mize the transmission completion time. In [31] a single sensor node transmitting over a fading

channel affected by additive Gaussian noise is considered. Energy arrivals and channel states

are modeled as Poisson processes and are assumed to be known causally. Optimal transmis-

sion policies are evaluated offline for static as well as fading channels. Online policies are also

addressed through a dynamic programming formulation. [94] and [32] extend and generalize

the results of [31] by relaxing the assumptions on packet arrivals and infinite size of the bat-

tery respectively. The authors of [34] present structural results on the optimal transmission

policies in the presence of a Markovian energy input process, also assessing the performance

gap with respect to selected heuristics. Other approaches dealt with the optimization of the

transmission policies in multi user scenarios [33], proposing an online adaptive policy that

maximizes the long-term transmission rate (while satisfying energy and power constraints).

Very little work has been done on the optimization of compression techniques in Energy

Harvesting Wireless Sensor Networks (EHWSNs). The gain that data compression can offer

in energy constrained WSNs scenarios has been studied in [92], where the tradeoffs between

compression and transmission energy have been investigated for several lossy compression

methods. There, the authors have shown that depending on the specific hardware architec-

ture, compression may lead to substantial gains in terms of energy efficiency. However, in an

EHWSN the dynamic of the energy buffer provides additional challenges for the optimization

of compression policies.

To the best of our knowledge, the only papers that consider the allocation of energy for

compression are [95, 96]. In [95], the authors investigate a scenario where the energy cost

of running the source acquisition system (sensing, sampling and compression) is compara-

ble with that associated with the radio transmission activity. They design a system where,

based on the statistics of the energy harvesting process, the measured data quality, the chan-

nel SNR, and the data queue state, an energy management unit performs energy allocation

between source acquisition and data transmission. The objective is that of optimally balanc-
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ing competing requirements such as signal reconstruction fidelity, queue stability and delay.

For a single node scenario, they propose a class of distortion optimal and energy neutral

resource allocation policies that keep the data queue stable by meeting an average distor-

tion constraint. The authors of [96] extend [95] to a multi-hop WSN scenario. Specifically,

they use the Lyapunov-optimization framework with penalty functions to concoct distributed

algorithms that meet quality of service requirements such as queue stability and distortion

minimization.

In this work, we address an optimization problem similar to that of [95]. Our approach

here is however much more practical as instead of using information theoretic bounds (as also

done in [96]) for the energy consumption and the rate-distortion region, we consider realistic

rate-distortion curves and energy consumption figures for lossy compression methods. Our

aim is to obtain the compression/transmission policy that jointly maximizes throughput and

reconstruction fidelity at the data collection point, while meeting some predefined energy

constraints, i.e., the battery charge level should never go below a predefined guard threshold.

In addition, we study the impact of perfect vs delayed Channel State Information (CSI) at

the transmitter and of power control over a multipath channel. The contributions of our

work are summarized next:

• we model, through a Constrained Markov Decision Problem (CMDP), the transmis-

sion and energy dynamics of a sensor node implementing practical lossy compression

methods;

• we present an algorithm to numerically evaluate optimal compression/transmission poli-

cies, using a Lagrangian relaxation approach combined with a dichotomic search for the

optimal Lagrangian;

• we derive theoretical results on the structure of the optimal policy, demonstrating that

under suitable but realistic assumptions it is non decreasing in each of the system state

components;

• we present a thorough numerical evaluation of optimal as well as heuristic policies for

different scenarios, gauging the impact of perfect vs delayed CSI and power control.

The reminder of this chapter is organized as follows. In Section 5.2 we give a high-level

view of the problem under analysis, identifying the various system blocks. In Section 5.3 we
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Figure 5.1. Sensor Node diagram.

detail our CMDP formulation, present the algorithm to numerically find the optimal policies

and discuss the theorems unveiling their structure. In Section 5.5 we discuss a model for a

power controlled Rayleigh faded channel. In Section 5.6 we validate the main theorems, and

analyze various performance tradeoffs, the role of CSI and power control. In Section 5.7 we

report our concluding remarks.

5.2 System Model

We consider a power controlled transmission scenario where a sensor node communicates

wirelessly with a data collector (the sink). The sender is powered by a rechargeable battery

(energy buffer) that stores the energy harvested from a renewable source, such as a solar

panel. The task of the sensor is to sense some physical signal every Tsens seconds and report its

measurements to the sink. We assume that this task is delay tolerant, i.e., the sensor can store

a certain number of measurements Nm in its memory buffer and send one or more packets

of data after a time Trep “ NmTsens. Since most physical signals exhibit strong temporal

correlation, the data in the buffer can be compressed by means of a lossy compression method

so as to reduce the amount of data to be sent. Note that lossy compression permits to trade

some accuracy in the data reconstruction at the sink for energy savings at the transmitter.

Power control is instead exploited at the sender to keep the probability of successful reception

around a predetermined target value, as detailed in Section 5.5. For analytical tractability,

we assume that the sensor operates in slotted time t “ 0, 1, 2, . . . .

For the following analysis we consider the diagram of Fig. 5.1. Specifically:

• Energy Source: this block models the energy source. The output of this block is

ein, i.e., the number of energy quanta that are harvested in a time slot. The source
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dynamics are tracked through a two-state Markov model, where xt is the source state

in the current slot t. In detail, xt “ 0 represents a low energy state (e.g., the “night”)

and xt “ 1 represents a high energy state (day). More details on the source model are

given in Section 5.3.

• Battery: the energy harvested by the Energy Source block is stored in the Battery,

i.e., an energy buffer. The state of the buffer is indicated as bt. eout energy quanta are

drawn from the battery in each time slot. Note that eout depends on the compression

ratio adopted by the sensor in the current time slot and on the channel state (due to

power control).

• Compression: this block describes the compression mechanism, linking the energy

consumption, the size of the output packet and the representation accuracy of the

received data to the action taken by the sensor.

• Transmitter: this block accounts for the energy consumption associated with the

transmission, which depends on the size of the packet to be transmitted (and hence on

the compression ratio) and on the radio transceiver transmission power. The latter, in

turn, depends on the channel state as detailed in Section 5.5.

• Channel: the channel block is used to model the channel variations in time. As

described in Section 5.5, the channel evolution is tracked through a suitable Markov

chain. The channel state is indicated with ht.

• Decision Maker: this block takes as input the three components of the system state,

namely bt, xt and ht and makes a decision about the current compression ratio at,

according to a certain quality criterion, see Section 5.3.

5.3 CMDP Representation

In this section we formulate our constrained joint data transmission and compression prob-

lem as a Constrained Markov Decision Process (CMDP). A Lagrangian relaxation approach

is utilized to deal with the constraint on the energy buffer, which is taken into account to as-

sure that the node remains energetically self-sufficient, while delivering the best performance

in terms of reconstruction fidelity at the data collector.
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5.3.1 Constrained Markov Decision Process Formulation

We assume that the transmission system operates in slotted time, where t “ 0, 1, 2, . . .

is the time index. S is the state space and the system evolves slot by slot according to the

behavior of the energy source, that of the channel and the action taken by the node, i.e.,

the adopted transmission/compression policy. Our problem is modeled as a CMDP, defined

through the tuple pS,A, P, rp¨q, cp¨qq, where S represents the system state, A is the action

state, P are the transition probabilities (representing the system dynamics), rp¨q and cp¨q
respectively represent a reward and a cost function (which depend on the system state and

on the action taken in the current time slot). Specifically, let s P S be the system state at

time t, with st “ s. We refer to at P As as the action taken by the decision maker at time t,

where As is a finite set. The system evolution is Markovian with transition probabilities:

ppj|i, aq “ P rst`1 “ j|st “ i, at “ as , i, j P S . (5.1)

A decision rule is a function dt : S Ñ A that specifies the action to select when the system

is in state s at decision epoch t. In our formulation, actions correspond to the degree of

compression, as we further detail below. A policy π “ pd1, d2, . . . q is a sequence of decision

rules. Let ΦD denote the set of all pure stationary policies π “ pd, d, . . . q “ d8 where d is

a deterministic function of the current state s and does not depend on time t. The (finite)

reward rpst, atq ě 0 is the instantaneous payoff of taking action at in state st. As we detail

shortly, the notion of reward is used to quantify the reconstruction fidelity of the compressed

signal. For any admissible policy π P ΦD, the expected average reward is:

vπpsq “ lim
NÑ8

1

N

Nÿ

t“1

E
π
s rrpst, atqs . (5.2)

Our goal is to compute the optimal policy π‹ that maximize the expected average reward

(5.2)

vπ
‹

s “ max
πPΦD

vπs (5.3)

subject to the global constraint

Cπ‹

s “ lim
NÑ8

1

N

Nÿ

t“1

E
π‹

s rcpst, atqs ď Cmax (5.4)

Here, cpst, atq ě 0 is the (known) finite cost incurred in slot t, which is related to the energy

buffer state, whereas Cmax ě 0 is a user defined parameter. Any policy π‹ that maximizes
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vπs will be termed optimal. The constraint Cmax is termed feasible when there exists at least

one policy π P ΦD that meets (5.4). The reward of the policy π‹ that is optimal subject

to constraint (5.4) will be denoted by v‹pCmaxq. Next, we specify each element of the tuple

pS,A, P, rp¨q, cp¨qq for the problem under analysis.

5.3.1.1 States

Each state s P S is composed of three components s “ rb, x, hs, where S “ B ˆ X ˆ H.

B denotes the energy buffer (battery) state space, X denotes the state space of the energy

income process, and H denotes the channel state space. b P B is the energy buffer state,

B “ t0, 1, ..., Bu contains all possible energy buffer levels, where the available energy has been

discretized into B ` 1 energy quanta. x P X “ t0, 1u is the energy source state (assumed

observable). In detail, a certain amount of energy can be harvested in each time slot t.

When x “ 0, the energy source is in a “bad” state, where the amount of energy quanta

harvested from the source in slot t is ein “ 0 w.p. 1. On the other hand, when x “ 1, a

number ein P Ep1q “ t1, . . . , Eu of energy quanta is harvested in the current slot t, where ein

is distributed according to some mass distribution function (mdf). Hence, the evolution of

the energy source state is represented through a two state Markov chain, where E represents

the maximum number of energy quanta that can enter the energy buffer in a time slot.

The channel state h P H “ t1, . . . ,Hu affects the reception probability at the receiver

and, since we consider a power controlled transmission system, it also affects the power

consumption at the transmitter. We assume h to be independent of x and b and we model it

through a further Markov chain. The procedure used to derive the channel state transition

matrix for a Rayleigh channel model is detailed in Section 5.5. Optimal policies will be

computed in the case where the transmitter has perfect Channel State Information (CSI), in

the case where the CSI at the transmitter is obtained with a certain delay (delayed CSI) and

when the transmitter has no CSI at all.

5.3.1.2 Actions

At each decision epoch t the transmitter (decision maker) observes the system state s “ st

and chooses an action a “ at from the action set As. In our model, at corresponds to the

compression ratio η that has to be used by the transmitter in the current slot t. Here,
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η is defined as the ratio of the size of the compressed signal with respect to that of its

uncompressed version, see [92]. For the action set, we have As Ď t0, 1, . . . , nu. In particular,

when at “ 0 the transmitter will be silent in the current transmission slot t. For 0 ă at ă n,

the transmitter will compress the data stored in the memory buffer with a compression ratio

η “ at{n and it will thus send the compressed data to the collector. When at “ n, the

transmitter will send the data without performing any compression (η “ 1).

5.3.1.3 Transition Probabilities

Let t and st “ rbt, xt, hts respectively be the current time index and the system state in

slot t. With at we indicate the action taken in the current slot t and we refer to eoutpst, atq
as the number of energy quanta that are taken by the buffer (i.e., the energy consumption)

given that action at is chosen. Hence, the energy buffer evolves as:

bt`1 “ maxt0,mintbt ` ein ´ eoutpst, atq, Buu “ rbt ` ein ´ eoutpst, atqs: . (5.5)

If st is the system state, action at is admissible only if eoutpst, atq ď bt. Further, eoutpst, atq
is given by the sum of two components: the energy consumption associated with the com-

pression task ecpatq and that associated with the transmission task etxpat, htq. In the present

analysis, as a compression technique we select the Lightweight Temporal Compression (LTC)

algorithm, since it strikes a good balance in terms of compression vs energy consumption.

As shown in [92], for LTC the processing energy ecpatq is related to the compression ratio

η “ at{n through the linear relationship:

ecpatq “

$
’&
’%

0 η P t0, 1u
´
α
at

n
` β

¯
NbE0 0 ă η ă 1 .

(5.6)

Note that when η P t0, 1u the node does not perform any compression, thus we have ecp0q “ 0.

In (5.6), Nb is the number of bits that are to be compressed, E0 is the energy consumption

of the micro controller in one clock cycle, α and β are two fitting coefficients, see [92]. We

remark that the results that we discuss in this chapter are rather general and can be readily

extended to other compression approaches, i.e., by just replacing (5.6) with the appropriate

function.

The energy consumption etxpat, htq depends on the number of bits Nb that the node has
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to transmit, on the action at and on the channel state ht:

etxpat, htq “ at

n
NbEtxphtq , (5.7)

where Etxphtq is the energy consumption associated with the transmission of one bit and

depends on the specific radio technology and on the channel state ht (due to the power

control mechanism).

The transition probability from state st “ rbt, xt, hts to state st`1 “ rbt`1, xt`1, ht`1s
given that action at is selected is:

ppst`1|st, atq “ δ
`
bt`1 ´ rbt ` ein ´ eoutpst, atqs:

˘
¨peinpein|xtq¨pxpxt`1|xtq¨phpht`1|htq , (5.8)

where δp¨q is the indicator function (equal to 1 if the argument is zero and null otherwise),

peinpein|xtq is the mdf of the input energy in state xt, while pxpxt`1|xtq and phpht`1|htq are

respectively obtained from the transition probability matrices of the energy source and the

channel.

5.3.1.4 Reward Function

In order to maximize the reconstruction fidelity at the data collector, the reward function

rpatq is chosen to be a strictly increasing function of the selected compression ratio η “ at{n.
The reward is zero if the selected action is at “ 0 and reaches one when at “ n. We define

rpatq as:

rpatq “

$
’&
’%

0 at “ 0

1 ´
ˆ
p1pat{nq2 ` p2at{n ` p3

at{n ` q1

˙
σ2
noise at P t1, . . . , nu

(5.9)

where the polynomial function in (5.9) is the LTC rate distortion curve obtained in [92],

which relates the error in the reconstruction process to the compression ratio η. p1, p2,

p3 and q1 are suitable constants, whereas σ2
noise is the variance of the white noise that is

superimposed to the sensed signal. Again, a different compression scheme requires to know

the associated rate distortion function, which has to be plugged into (5.9).

5.3.1.5 Cost Function

Since we want to prevent the energy buffer from depletion, we impose a positive cost for

those states where the battery level is below a pre-determined threshold bth. Also, the cost

increases linearly when b decreases below bth. Hence, at time t, the cost is defined as:
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cpbtq “

$
’&
’%

0 bt ě bth
bth ´ b

bth
bt ă bth .

(5.10)

Note that in our case rpst, atq only depends on the action at and the cost cpst, atq only

depends on the state component bt, see Fig. 5.2. These facts will be used in Section 5.4.2 to

characterize the structure of the optimal policies.

5.4 Optimal Policies

The unconstrained problem (5.3) is solved by first writing the Bellman’s optimality equa-

tion:

vpsq “ max
aPAs

#
rps, aq `

ÿ

s1PS

p
`
s1|s, a

˘
vps1q

+
, (5.11)

where the corresponding optimal policy is given by

a‹psq “ argmax
aPAs

#
rps, aq `

ÿ

s1PS

p
`
s1|s, a

˘
vps1q

+
. (5.12)

The optimal average reward vpsq can be obtained through, e.g., the Value Iteration (VI)

algorithm [97], whereas a‹psq indicates the mapping from s to the optimal action, i.e., d :

S Ñ A. When the constraint (5.4) is added to the problem, a Lagrangian relaxation approach

can be used to convert the constrained formulation (see (5.3) and (5.4)) into an equivalent

unconstrained MDP. This is achieved by defining a new reward function, rps, a;βq, through
the Lagrangian multiplier β ą 0:

rps, a;βq “ rps, aq ´ βcps, aq . (5.13)

The new optimality equation is thus:

vβpsq “ max
aPAs

#
rps, a;βq `

ÿ

s1PS

p
`
s1|s, a

˘
vβps1q

+
, (5.14)

that for any fixed value of β can be solved via VI. Theorem 12.7 of [98] proves the existence

of an optimal policy and also the fact that the Lagrangian formulation (5.14) can be solved

through a search on the parameter β as we now explain.

In detail, we need to find the optimal Lagrangian multiplier β‹ for which the constraint

(5.4) is satisfied with equality. To this end, we adapt the technique of [99], [100], where a
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Figure 5.2. Example of reward and cost functions.
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Q-learning algorithm is applied in order to determine the proper Lagrangian multiplier for a

feasible Cmax. This algorithm finds the optimal policy π˚ which satisfies (5.4) with equality.

Specifically, π˚ is a mixture of two pure and stationary policies [98], referred to here as π`

and π´. In order to obtain these policies we solve the constrained problem for two values of

β, namely β` “ β‹ ` δβ and β´ “ β‹ ´ δβ, for policies π` and π´, respectively. We denote

the costs of these two policies with C` ě Cmax and C´ ď Cmax, where we have:

Cmax “ qC` ` p1 ´ qqC´ . (5.15)

Solving this equation, we obtain q, i.e., the weight parameter of the mixture. Hence, the

optimal policy π‹ in each state s P S is given by:

π‹psq “

$
&
%

π`psq w.p. q

π´psq w.p. 1 ´ q .
(5.16)

Note that when Cmax “ 0 the probability that the buffer is emptied below bth is zero

(buffer outage), whereas an increasing Cmax corresponds to higher buffer outage probabilities.

5.4.1 Numerical Solver

Next, we outline the algorithms that we have used to solve the CMDP. Alg. 1 is a standard

VI that is used to solve the Lagrangian (unconstrained) problem, for a given value of β. Here,

we use (5.14) as an update rule to iteratively compute the optimal average reward vβpsq. The
converge vnβpsq Ñ vβpsq is assured by the standard results in, e.g., [97], whereas sp p¨q is the

span seminorm operator [101]. Alg. 2 implements a dichotomic search over the β parameter,

as an outer loop. Note that this search strategy is effective because, as proven, e.g., in

Lemmas 3.1 and 3.2 of [102], the optimal Lagrangian reward vβpsq is a uniformly absolutely

continuous, monotone and non-increasing function of β. Previous algorithms implemented

similar searches by starting with a small (large) initial value of β for which the cost constraint

is not (is) satisfied and increase (decrease) it using suitable step sizes (that usually get smaller

as the algorithm gets closer to the optimal solution, see, e.g., Eq. (3.9) of [99]). For each β,

vβpsq is found through the VI of Alg. 1 (as we do here), and the associated optimal policy πβ

is obtained. The algorithm stops when the average cost gets sufficiently close to the chosen

constraint Cmax, see also Alg. 2 of [100]. The design of the (decreasing) step size is however

critical. Our algorithm is instead more robust as it does not require any heuristic for the
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Value Iteration Algorithm

select v0β P V , ǫ ą 0 and set n “ 0 ;

repeat

vn`1
β psq “ maxaPAs

!
rps, a;βq ` ř

s1PS pps1|s, aqvnβ pjq
)
;

n “ n ` 1 ;

until sp
´
vn`1
β ´ vnβ

¯
ă ǫ;

a‹
βpsq “ argmaxaPAs

!
rps, a;βq ` ř

s1PS pps1|s, aqvnβ pjq
)
;

Algorithm 1: Value Iteration for a fixed value of β

adaptation of the step size, which is automatically updated by the dichotomic adaptation

rule βn`1 Ð fpβnq, where fp¨q is a suitable function (see Alg. 2). Also, provided that βmax

is selected so that the average cost of the optimal policy π‹
βmax

is larger than Cmax, Alg. 2

is guaranteed to converge and this descends from the monotonic behavior of vβpsq. Thus, it

will always find a pair pβ`, β´q that verifies the above properties.

5.4.2 Structure of Optimal Policies

In this section, we present some results on the structure of the optimal policies arising from

the optimization technique of Section 5.4. For improved clarity, the proof of the theorems is

given in the Appendix. Moreover, the properties that we discuss here are further elaborated

in Section 5.6 where we present some numerical results. Before delving into the description

of the main theorems, in the following we introduce some useful definitions.

Definition 5.4.1 (Supermodularity). A function f : X ˆ A ˆ B Ñ R is supermodular in

px, aq for a fixed parameter β, if for all x1 ě x and a1 ě a

fpx1, a1;βq ´ fpx1, a;βq ě fpx, a1;βq ´ fpx, a;βq . (5.17)

Definition 5.4.2 (First-order Stochastic Dominance). Let X1 and X2 be random variable

with the same support X . X1 first-order dominates X2, or X1 ľ X2 if

FX1
pxq ď FX2

pxq (5.18)

for all x P X , where FXi
is the cumulative distribution function (cdf) of Xi.
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Lagrangian multiplier update

set n “ 0, βmin “ 0, βmax , β0 “ βmin ;

repeat

compute π‹
βpsq via Algorithm 1 ;

compute the stationary distribution ρpsq induced by π‹
βpsq ;

if
ř

sPS ρpsqcps, a‹
βpsqq ą 0 then

βn`1 “ βn ` βmax

2
;

βmin “ βn ;

else

βn`1 “ βn ` βmin

2
;

βmax “ βn ;

end

n “ n ` 1 ;

until |βn`1 ´ βn| ă ǫ;

Algorithm 2: Dichotomic Algorithm for the Lagrangian Multiplier Update

Definition 5.4.3 (Stochastically Increasing Family). Let tXθuθPR be a family of random

variables on the same support X . tXθu is stochastically increasing if

Xθ1 ľ Xθ (5.19)

whenever θ1 ě θ.

We now present some results on the structure of the optimal policy. Specifically, we prove

that provided some properties for the reward function and for the transition probabilities

of the channel and the source state, the optimal policy has a threshold structure and is

monotonically increasing in each system state component. This means that optimal policies

can be efficiently stored in the node memory in the form of a lookup table having a few

entries. In each decision epoch then, the node just need to evaluate its state and select the

proper action through a simple query.

Theorem 5.4.1. Let the instantaneous Lagrangian reward function rps, a;βq be supermodular

in the pair pb, aq, concave and non-decreasing in b, then the optimal policy π‹
β is a monotone

non-decreasing function of the buffer state b.
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Theorem 5.4.2. Let the assumptions of Theorem 5.4.1 hold, let rps, a;βq be supermodular

in the pair ph, aq, and let phph1|hq be stochastically increasing in h, then the optimal policy

π‹
β is a monotone non-decreasing function of the channel state h.

Theorem 5.4.3. Let the assumptions of Theorem 5.4.1 hold, let rps, a;βq be supermodular

in the pair px, aq, and let pxpx1|xq be stochastically increasing in x, then the optimal policy

π‹
β is a monotone non-decreasing function of the energy source state x.

5.5 Channel Model

Next, we derive an H-state Markovian model for a power controlled transmission link in

the presence of Rayleigh fading. We consider that the transmitter can adapt its transmission

power according to H (radio specific) transmission levels Ptxris, with i P H “ t1, . . . ,Hu.
These are assigned to each channel state to assure that the packet error probability Ppkt

remains smaller than or equal to a given target ζ, i.e., Ppkt ď ζ for states i ď H ´ 1. This

amounts to identifying H ` 1 thresholds for the fading power and using them to characterize

the H channel states, so that power levels rPtxr1s, Ptxr2s, . . . , PtxrHss with Ptxr1s ă Ptxr2s ă
¨ ¨ ¨ ă PtxrHs are respectively assigned to states r1, 2, . . . ,Hs. For a certain Signal to Noise

Ratio (SNR) γ and compression level a, the packet error rate is evaluated as:

Ppktpγ, aq “ 1 ´ p1 ´ PbitpγqqLpaq , (5.20)

where Lpaq is the packet size expressed in bits and Pbitpγq is the bit error rate for the

selected modulation scheme. Note that the packet size depends on the level of compression

a P t0, 1, . . . , nu in the current time slot and is obtained as: Lpaq “ aLmax{n, where Lmax

is the maximum packet size expressed in bits. Assuming a π{4-DQPSK modulation, the bit

error rate is approximated as:

Pbitpγq “ 4

3
erfc p?

γq . (5.21)

From (5.20) and (5.21), assuming Lpaq “ Lmax (i.e., a “ n), the SNR threshold γth corre-

sponding to the target packet error probability ζ is:

γth “
ˆ
erfc´1

ˆ
3

4

´
1 ´ p1 ´ ζq1{Lmax

¯˙˙2

. (5.22)

Thus we have that Ppktpγ, aq ď ζ, with a P t1, . . . , nu is equivalent to requiring that γ ě γth.

For state i P H, the SNR γ at the receiver is given by γptq “ γ0risαptq, where γ0ris “
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P 0
rxris{pN0Bq is the average SNR, which depends on the path loss and on the noise power

N0B (N0 is the power spectral density and B is the transmission bandwidth), whereas αptq
is the fading power. The average received power P 0

rxris for transmission level i is obtained as:

“
P 0
rxris

‰
dB

“ rPtxrissdB ` rGsdB ´ rAsdB ´ rPLsdB , (5.23)

where rGsdB and rAsdB respectively represent the total antenna gains (transmitter and re-

ceiver) and the total attenuation losses (transmitter and receiver), whereas rPLsdB is the

path loss attenuation, expressed in dB, that among other parameters depends on the dis-

tance d between the transmitting sensor and the sink see, e.g., Chapter 2 of [103]. The fading

thresholds αr0s ě αr1s ě ¨ ¨ ¨ ě αrHs are evaluated as follows. In state i P r1, . . . ,H ´ 1s,
the transmission power is Ptxris and the fading is distributed in rαris, αri ´ 1ss. From the

condition γ ě γth, for state i we must have that:

rαrissdB ě rγthsdB ´ rγ0rissdB , (5.24)

using equality in the previous equation returns the lower edge of the interval rαris, αri ´ 1ss.
Moreover, we have αr0s “ `8 and αrHs “ 0. Note that H is the only channel state for which

the QoS requirement Ppkt ď ζ cannot be met. Once the thresholds have been computed, the

transition probabilities are derived as in [104,105] according to:

pxpj|iq “

ş?
αri´1s?
αris

ş?
αrj´1s?
αrjs

fR1R2
pr1, r2, ρqdr1dr2

θi
(5.25)

fR1R2
pr1, r2, ρq “ 4r1r2

λ
e´pr21`r22q{λI0p2ρr1r2{λq (5.26)

where fR1R2
pr1, r2, ρq is the bivariate Rayleigh joint pdf of the fading envelope [104], λ “

1 ´ ρ2, ρ “ J0p2πfdTpq is the correlation of two samples of the corresponding Rayleigh

envelope that are spaced by Tp seconds, fd is the Doppler frequency, Tp is the transmission

duration, J0p¨q and I0p¨q are the Bessel function and the modified Bessel function of the fist

kind and order zero. θi are the steady state probabilities for each channel state that are

readily computed from the fading thresholds, using the Rayleigh SNR pdf, see, e.g., [105].

5.6 Results

In this section, we discuss the performance of the optimal policies obtained as detailed in

Section 5.3. We first look at their structure, validating what predicted by Theorems 5.4.1,
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5.4.2 and 5.4.3. After that, we present a thorough performance evaluation for different energy

budget scenarios, highlighting the relations among the system parameters and the average

reconstruction fidelity at the sink. Moreover, we show how the performance scales when the

assumption of perfect CSI is removed, i.e., when the channel state information is retrieved

with a certain delay (delayed CSI). Finally, we describe two heuristic policies, comparing

them against the optimal solution and investigating the impact of power control. In the

results that we discuss in this chapter, we use Cmax “ 0 so that π‹ always avoids actions that

lead to buffer outage events. Since the cost in our model is non negative and Cmax “ 0, the

weight parameter q is always equal to 0 and we always take π´ as the optimal policy.

5.6.1 Optimal Policies: Structural Results

With Theorem 5.4.1 we have shown that the optimal policy is non-decreasing in the energy

buffer state b. For this result to hold, we need that the Lagrangian reward rps, a;βq is A1)

supermodular in the pair pb, aq, A2) concave and non decreasing in b. From (5.13), we have

that rps, aq only depends on a, whereas from (5.10) it descends that the cost function cps, aq
only depends on b. From these facts and β ą 0 it follows that rps, a;βq satisfies A1 and A2.

Theorem 5.4.2 states that the optimal policy is also non-decreasing in the channel state

component of the system state, provided that A3) the family of transition probabilities

phph1|hq is stochastically increasing in h. This condition means that the probability of going

to a state h1 P H is higher from a state h1 P H that is closer to h1 than any other state h2 P H

such that |h1 ´h1| ă |h2 ´h1|, for every choice of h1. With our channel modeling technique of

Section 5.5 assumption A3 is verified. Besides that, we also need to verify that A4) rps, a;βq
is supermodular in the pair ph, aq, but since the reward only depends on s through its buffer

component b, condition A4 is met.

In order for Theorem 5.4.3 to hold, A5) pxpx1|xq has to be stochastically increasing in

x, A6) the energy income in states xi has to take values in disjoint ordered sets and A7)

rps, a;βq must be supermodular in the pair px, aq. Here, we model the energy source through

a Markov chain with transition probabilities that verify A5. Moreover, we deterministically

set the energy income in state x “ 0 to 0, while the energy income in state x “ 1 is

distributed according to a truncated Gaussian r.v. that takes values in r1, Es: hence, also the
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Figure 5.3. Structure of the optimal policy.

assumption A6 is verified. Finally, A7 is also met due to similar arguments as those discussed

for Theorem 5.4.1 above.

In Fig. 5.3, we show an example policy for B “ 1000 energy quanta, where the action space

is quantized according to As “ t0, 1, . . . , nu with n “ 10 and there are nine channel states.

From this plot we see that the results of the theorems hold. In detail, the optimal policy is

monotonically non decreasing in the buffer state (i.e., along each stripe in the figures), in the

channel state (across different stripes in the same figure) and in the source state (see any two

stripes, for the same channel state, in Figs. 5.3a and 5.3b).

5.6.2 Optimal Policies: Performance Evaluation

In this section, we discuss the performance of the optimal policies that have been nu-

merically obtained utilizing the algorithms of Section 5.4.1. Different scenarios have been

considered, varying the energy buffer size, the average energy income in state x “ 1, the

transition probabilities for the energy source and the distance d between the sensor node

and the sink. These settings have been summarized introducing the new variable ξ, which

describes the average energy income for each set of parameters. Specifically, ξ is defined as

ξ “ q1τ1{B, where q1 is the average energy income in the “good” state x “ 1, τ1 represents

the average time the energy source model stays in x “ 1 before moving to x “ 0 and B is

the energy buffer size. We start by investigating the average reward (reconstruction fidelity)
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that is earned at the sink by the optimal policy, which is evaluated as:

R
def“

ÿ

sPS

ρpsqrps, a‹psqqPsucps, a‹psqq , (5.27)

where ρpsq is the steady state probability distribution induced by the optimal policy π‹,

rps, a‹psqq is the immediate reward accrued by π‹ in state s “ rb, x, hs, see (5.9), and

Psucps, a‹psqq “ Erp1 ´ Ppktpγ, a‹psqqqs (see (5.20)) is the average probability that a packet

compressed according to the optimal action a‹psq is successfully received at the sink, when

the channel is in state h P H (the expectation is taken for the SNR γ in the interval

rγ0rhsαrhs, γ0rhsαrh ´ 1ss, which corresponds to the SNR range associated with state h,

see Section 5.5). Note that compressing the packet gives us a further gain in terms of

Psucps, a‹psqq, as smaller packet sizes result in smaller packet error probabilities. Hence,

the average reconstruction fidelity at the sink, evaluated through (5.27), is benefited from a

higher degree of compression when the SNR is low. On the other hand, for high SNR values,

a higher fidelity is obtained for a “ 1 as in this case the dominating term in (5.27) is the

immediate reward rps, a‹psqq.

Fig. 5.4 shows the results for the average reward R for different values of ξ. In particular,

we considered two different scenarios for the average duration τ1 of the “good” energy state

x “ 1, picking τ1 “ 14 hours and τ1 “ 10 hours. These parameters are taken from [106],

where a Markovian model for the statistical description of the energy harvested by outdoor

micro-solar panels for WSN applications is presented. According to the results in this paper,

τ1 “ 14 and τ1 “ 10 respectively correspond to the average duration of sunlight in a day

for the city of Los Angeles in the months of August and December. For the battery size, we

considered three values, i.e., B P t100, 300, 500u energy quanta. Finally, for each pair pτ1, Bq,
the average energy income in a time slot q1 is varied in the set t8, 12, 16, 20, 33, 43, 53u energy

quanta. Also, in Figs. 5.4a and 5.4b we respectively plot R for the two cases of perfect and

delayed-CSI at the transmitter.

From Fig. 5.4, we see that for any given pair pτ1, Bq, the average reward R increases with

ξ. This is due to the higher average energy income q1 that allows the system to reach the

end of a “good” period x “ 1 (i.e., day) with a higher residual level of energy in the battery

which, in turn, permits to additionally transmit a certain amount of data during the “bad”

state (night). R is also monotonically increasing on B and τ1. This is again because, having
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Figure 5.4. Average reconstruction fidelity at the sink vs ξ (see (5.27) and (5.28)). τ1 P
t10, 14u hours, B P t100, 300, 500u energy quanta.

a bigger battery (higher B) or increasing the duration of the “good” state (higher τ1) both

result in a higher energy availability.

In Fig. 5.4a we also plot results for different values of d, i.e., the distance between the

transmitting node and the sink. We only show these results for one scenario (December,
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B “ 100 energy quanta), the others having a similar behavior. d only affects the channel

transition probabilities phph1|hq, with higher values of d leading to worse performance, since

on average the channel is more likely to be in a SNR region where the required energy

consumption (for the given quality parameter ζ) is higher.

In Fig. 5.4b we show the average reconstruction fidelity at the sink, RpT q, when the CSI

at the transmitter is known subject to a certain delay T ě 1 (expressed in time slots):

RpT q def“
ÿ

sPS

ρpsqrps, a‹q
«

ÿ

h1PH

pTh ph1|hqPsucps1, a‹psqq
ff

, (5.28)

where s “ rb, x, hs, s1 “ rb, x, h1s and pTh ph1|hq corresponds to the probability that the channel

is in state h1 in slot t ` T , given that the channel state is h in slot t, for any given t ě 0. If

H is the channel transition probability matrix, see Section 5.5, pTh ph1|hq is the the entry in

position ph, h1q of the T -step channel transition probability matrix HT . This probability is

used to track a delayed representation of the channel behavior, where T is the delay in the

acquisition of the CSI. Note that for T “ 0, H0 is the identity matrix and (5.28) reduces to

(5.27). As expected, from Figs. 5.4a and 5.4b we see that adding some uncertainty on the

channel state at the transmitter results in an overall reduction of the system performance.

This is especially detrimental when the transmitter thinks that the channel in the current

slot is good (high SNR) and, in turn, sends its packet uncompressed and using a small power

level. In fact, if the actual channel state is instead rather bad (low SNR), this behavior is

exactly the opposite of what the transmitter should do. As a result, the packet is lost with

high probability and this corresponds to a waste of energy and also to a loss of reward, as no

signal is recovered at the sink for this time slot.

In Fig. 5.5a we show the average reward RpT q as a function of T in the August scenario,

with B “ 500 and varying q1. We observe that as the value of T increases, the performance

decreases until reaching a minimum value (around T » 10 time slots) and this occurs for all

the considered values of q1. This is because H
T converges towards the stationary distribution

of the channel for an increasing T . Fig. 5.5b shows the average reward RpT q in the same

scenario for different values of T . Interestingly, the performance gap Rp0q´RpT q, with T ě 1,

is an increasing function of ξ. This is because, as discussed above, an increasing T corresponds

to a higher transmission error probability. Moreover, for higher value of ξ, the optimal action

in most of the system states corresponds to transmitting the data packets uncompressed and

transmission errors when ξ is higher have a higher impact on the performance. In this case,
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in fact, the lost packet would have implied a higher reward, as it is uncompressed and thus

its contribution to the reconstruction fidelity is higher and also the energy wasted due to its

erroneous transmission is higher than that of sending it compressed.
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Figure 5.5. Average reconstruction fidelity at the sink RpT q: impact of delayed CSI.
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5.6.3 Optimal vs Heuristics Policies

In this section we compare the performance of the optimal policy against that of two

heuristic policies:

• Constant Compression Policy (CC): in any given time slot, CC transmits a compressed

data packet according to a constant compression level aCC P t1, . . . , nu for each state

s where b ą bth, whereas no transmission is performed otherwise. With this policy the

reward and the energy consumption per transmitted packet are constant, and can be

tuned according to the selected compression level. For the results that follow we have

set aCC “ 1, corresponding to the smallest compression ratio η “ aCC{n “ 0.1.

• No Compression Policy (NC): in any given time slot, NC transmits a data packet

uncompressed (aNC “ 0) if b ą bth, whereas no transmission is performed otherwise.

Note that an uncompressed packet implies the highest reward, but also the energy

consumption associated with the transmission of a full packet is the highest.

In Fig. 5.6, we show the temporal evolution for the first 500 time slots for NN, NC and the

optimal policy, along with the corresponding evolution of channel and source states. The first

three graphs respectively show the energy buffer state evolution (solid line) and the action

taken in each time slot (dots) for the optimal policy, CC and NC. The last graph shows the

channel state (solid line) and the energy source state (dashed line). It is interesting to note

how the optimal policy manages to keep the battery in a state that is neither fully charged

nor below the threshold bth “ 50, modulating the action that the system takes in each state.

In this way, the buffer constraint is met, the average fidelity is maximized and no input

energy is wasted. This is not the case for the other two policies. In particular, CC loses some

efficiency as it wastes some harvested energy when the energy buffer is full, while NC drains

out the energy buffer too fast and, in turn, forces the node to remain idle more often.

Fig. 5.7 shows the percentage of used transmission slots and the average reward per slot

R. We consider the same scenario of Fig. 5.5a, with perfect CSI (i.e., T “ 0). For all the

policies the percentage of used slots increases with ξ, CC achieving the best performance since

its energy consumption is always that of acc “ 1, which is the least energy demanding action.

NC, on the other hand, always uses the most expensive action and thus it more often drains

out the energy buffer. Thus, the percentage of used slots for this NC is smaller. The optimal
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Figure 5.6. Performance comparison between optimal and heuristic policies: temporal evolution

example.

policy modulates the behavior of the node depending on the system state, the percentage of

used slots is in between that of CC and NC, but as Fig. 5.7b shows, its average reward is

always higher.

5.6.4 Impact of Power Control

In this section we evaluate the impact of power control at the transmitter. This means

that the system state is only composed by the energy buffer state b and the energy source
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Figure 5.7. Performance comparison between optimal and heuristic policies.

state x. Thus, we obtain the optimal policy for this new system state and we investigate

its performance in the presence of a Rayleigh faded channel, see Section 5.5, and a fixed

transmission power. The probability of a successful transmission is still a function of the

channel state, but with a fixed transmission power we can no longer assure that the error

probability will be bounded. In fact, setting a low transmission power will lead to a small
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energy consumption, but the only successful transmissions will occur when the channel state

is good (i.e., high SNR). On the other hand, with a high transmission power almost all the

transmitted packets will be correctly received, but the energy consumption will be very high

and the battery will be drained quickly, forcing the transmitter to stop and wait for incoming

energy in order to meet the constraint on the energy buffer level.

Fig. 5.8 shows the performance of the optimal policy (“Optimal policy”) along with the

performance of CC and NC when power control is not applied. We set the transmission

power to the maximum level for this graph. For comparison, we also show the performance

of the optimal policy when power control is applied (“Optimal policy-PC”). The performance

without power control is lower for all policies, both in terms of transmission activity (% of

used slots) and fidelity R. The optimal policy without power control shows a transition

around ξ “ 1. This happens because, in the considered example, when ξ ă 1 the average

amount of energy harvested during a “good” period is no longer sufficient to fully recharge

the battery. Thus, the behavior of the optimal policy tends to mimic that of CC, favoring the

transmission of many compressed packets with low average reward over the transmission of

a smaller number of high rewarding (uncompressed) data packets. On the other hand, when

ξ ą 1, the input energy is more abundant, and the behavior of the optimal policy is similar

to NC.

5.7 Conclusions

In this chapter, we have considered the problem of finding optimal transmission/compression

policies for an Energy Harvesting sensor node. We have modeled the system through a

Constrained Markov Decision Problem, by taking into account the dynamics of the energy

harvesting process, as well as arising from channel and energy buffer behaviors. Our model

exploits the results obtained in Chapter 4, which characterize the lossy compression methods

in terms of rate distortion curve and associated energy consumption. We have investigated

the policies arising from the optimization procedure both from a theoretical point of view,

verifying that their structure has some monotonicity properties, and through simulation re-

sults in different energy budget scenarios. Moreover, the impact of Channel State Information

and power control at the transmitter have been investigated. Finally, we have compared the

performance of the optimal policy against that of heuristic policies, showing that a policy that
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Figure 5.8. Impact of power control.

modulates the node behavior depending on the system state leads to a more efficient use of

the available energy and also exhibits better performance in terms of average representation

accuracy.





6
Conclusion

In this thesis we have presented a framework for the performance evaluation of lossy

compression methods and the analysis and optimization of compression policies in Energy

Harvesting Wireless Sensor Networks (EHWSNs).

In the first two chapters, we have developed two mathematical models, one for space–time

correlated signals and one for the representation of renewable energy sources. In particular,

the first model allowed us to analyze the statistical properties of real world signals, i.e., their

correlation structure, and accurately reproduce them. We have validated this model against

real datasets, showing that it is possible to use this tool to finely tune the correlation of

synthetic signals, which is particularly useful for simulation purposes.

The model we have developed in Chapter 3 for a renewable energy source, specifically a

photovoltaic panel, finds application in energy self–sustainable systems, such as, for instance,

in the simulation of energy harvesting communication networks and is as well useful to ex-

tend current theoretical work through more realistic energy models. Our approach has been

validated against real energy traces, showing good accuracy in their statistical description in

terms of first and second order statistics.

In Chapter 4 we have investigated the performance of lossy compression schemes for

energy constrained scenarios. This performance comparison has been carried out considering

the compression capabilities, the complexity and the energy consumption as performance

metrics. In particular, we have investigated whether energy savings are possible depending

on signal statistics, compression performance and hardware characteristics. Our study reveals

that, depending on the hardware architecture considered, the energy spent for computation

may be comparable with the energy spent for the data transmission. In such a scenario, the

117
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only methods that can actually lead to energy savings are linear approximation methods,

that have the smallest computational cost. In this chapter, we have also derived closed

form expression for the best compression methods relating their computational complexity,

approximation accuracy and compression ratio. These formulas can be used to investigate

whether a compression method leads to energy savings when used with different hardware

architectures. Finally, we have extended our analysis to multi-hop scenarios, where we have

considered a realistic channel access procedure. We have shown that linear compression is

beneficial in all cases and that more energy-hungry methods often perform worse than no

compression in terms of energy expenditure and transmission delay.

In the last part of this thesis we have considered the problem of optimizing the compres-

sion strategies for an Energy Harvesting sensor node. We modeled through a Constrained

Markov Decision Process the dynamics of the transmission and the energy buffer of a sensor

node implementing a lossy compression algorithm. We have solved the optimization problem

through Lagrangian relaxation and have discussed the structure of the optimal policy arising

from such model. In addition, we have shown that the optimal policy can effectively maximize

the throughput of the system and the representation accuracy, while fulfilling a predefined

energy constraint. Moreover, we have investigated the effect that the delay on the Channel

State Information acquisition and the power control have on the performance.

6.1 Future research directions

The work presented in this thesis deals with the optimization of lossy compression poli-

cies for EHWSNs; even though we have presented a rather complete framework, including

signal and energy source models, the networking scenario can be further generalized. Other

energy sources can be investigated (e.g., wind, vibrational or electromagnetic energy), as the

statistical behavior of different renewable sources can lead to different results. Moreover, a

data buffer model can be included in the optimization problem. In our model, in fact, we

have assumed that the sensor node has always some data to transmit, while in a real scenario

also the data has a stochastic behavior that can be included in the optimization framework.

Finally, the natural extension of the work we presented in the last part of the thesis is to

consider the optimization problem from a network perspective, accounting for multiple (pos-

sibly cooperating) sensor nodes. This can be done defining a reward function that takes into
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account the network performance and, similarly to what we did in Chapter 4, considering a

realistic channel access procedure. In this way, it would be possible to relate the performance

of the optimal policy also to network parameters, such as the number of nodes, the topology

or the selected MAC protocol.





A
Appendix

In this Section we give the proof of Theorem 5.4.1, 5.4.2 and 5.4.3. In what follows, we

omit the dependence on the time index t. For improved readability and with a slight abuse of

notation, with ai, bi, hi and xi we respectively indicate elements of action, battery, channel

and energy source sets.

A.1 Proof of theorem 5.4.1

Proof. Since

π‹
βprb, x, hsq “ argmax

a
tQβprb, x, hs, aqu , (A.1)

in order to prove that the optimal policy is non-decreasing in the buffer state b, we have to

prove that Qβprb, x, hs, aq is supermodular in the pair pb, aq. Now Qβprb, x, hs, aq is defined

as:

Qβprb, x, hs, aq “ rps, a;βq `
ÿ

s1PS

pps1|s, aqvβps1q (A.2)

where the first term in the right hand side of the equation, i.e., rps, a;βq, is supermodular by

assumption. Let us rewrite the second term as:

Q1prb, x, hs, aq “
ÿ

s1PS

pps1|s, aqvβps1q (A.3)

“
ÿ

h1PH

ÿ

x1PX

Eÿ

ein“0

phph1|hqpxpx1|xqpeinpein|xqvβprb ` ein ´ eoutph, aq, x1, h1sq ,

(A.4)

where we used the independence of the channel evolution and of the source state evolution.

We need to prove that the sum in (A.4) is supermodular in pb, aq for any h P H and x P X .

121
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Using Lemma A.1.1 we have that vβprb, x, hsq is concave in b, thus it can be shown that

vβprb ` ein ´ eoutph, aq, x1, h1sq is supermodular in pb, aq for any h1 P H and x1 P X . In fact,

since vβprb, x, hsq is concave in b, it holds that:

vβprb1, x, hsq ` vβprb2, x, hsq ď vβprαb1 ` p1 ´ αqb2, x, hsq ` vβprp1 ´ αqb1 ` αb2, x, hsq (A.5)

for 0 ď α ď 1. Substituting b1 “ b ` ein ´ eoutph, a1q , b2 “ b1 ` ein ´ eoutph, aq and

α “ peoutph, a1q ´ eoutph, aqq{peoutph, a1q ´ eoutph, aq ` b1 ´ bq, and rearranging the terms we

get:

vβprb1 ` ein ´ eoutph, a1q, x, hsq ´ vβprb1 ` ein ´ eoutph, aq, x, hsq

ě vβprb ` ein ´ eoutph, a1q, x, hsq ´ vβprb ` ein ´ eoutph, aq, x, hsq , (A.6)

that for a1 ě a and b1 ě b proves the supermodularity of vβ in pb, aq for any channel state

h and source state x. Furthermore, positive weighted sum of supermodular function is also

supermodular, hence Qβprb, x, hs, aq is supermodular in pb, aq and the monotonic structure of

the optimal policy in the energy state b is proven.

Lemma A.1.1. Under the assumptions of Theorem 5.4.1, the expected average reward func-

tion vβpsq is concave and monotonically non-decreasing in the energy buffer state b, for any

channel state h, and energy source state x.

Proof. Proceeding by induction, as the V.I. algorithm converges for any v0βprb, x, hsq, let us

choose v0βprb, x, hsq concave non-decreasing function of the buffer state b. Now assume that

vmβ prb, x, hsq is concave non-decreasing in b, we have to prove that vm`1
β prb, x, hsq is also

concave non-decreasing in b. We recall that vm`1
β prb, x, hsq is defined as:

vm`1
β prb, x, hsq “ max

a
Qm

β prb, x, hs, aq (A.7)

If vmβ is concave in b it can be shown (see proof of Theorem 5.4.1) that Qm
β prb, x, hs, aq is

supermodular in the pair pb, aq. Therefore,

Qm
β prb1, x, hs, a1q ´ Qm

β prb, x, hs, a1q ě Qm
β prb1, x, hs, aq ´ Qm

β prb, x, hs, aq (A.8)

for some a1 ě a and b1 ě b. Using the concavity of Qm
β prb, x, hs, aq in b, we can write:

Qm
β prb1, x, hs, a1q ´ Qm

β prb, x, hs, a1q ě Qm
β prb1 ` p, x, hs, aq ´ Qm

β prb ` p, x, hs, aq (A.9)
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for some p ě 0. Now substituting b1 “ b̄ and b “ b̄ ´ p we obtain

Qm
β prb̄, x, hs, a1q ´ Qm

β prb̄ ´ p, x, hs, a1q ě Qm
β prb̄ ` p, x, hs, aq ´ Qm

β prb̄, x, hs, aq , (A.10)

and rearranging the terms:

Qm
β prb̄ ` p, x, hs, aq ´ Qm

β prb̄, x, hs, a1q ď Qm
β prb̄, x, hs, aq ´ Qm

β prb̄ ´ p, x, hs, a1q . (A.11)

Taking a1 “ a “ argmaxaQ
m
β prb̄, x, hs, aq and using (A.7) we get:

vm`1
β prb̄ ` p, x, hsq ´ vm`1

β prb̄, x, hsq ď vm`1
β prb̄, x, hsq ´ vm`1

β prb̄ ´ p, x, hsq , (A.12)

that proves concavity of vm`1
β in b.

A.2 Proof of Theorem 5.4.2

Proof. Since

π‹
βprb, x, hsq “ argmax

a
tQβprb, x, hs, aqu , (A.13)

in order to prove that the optimal policy is non-decreasing in the channel state h, we have to

prove that Qβprb, x, hs, aq is supermodular in the pair ph, aq. Now Qβprb, x, hs, aq is defined

as:

Qβprb, x, hs, aq “ rps, a;βq `
ÿ

s1PS

pps1|s, aqvβps1q (A.14)

where the first term in the right hand side of the equation, i.e., rps, a;βq, is supermodular

in ph, aq since it does not depend on h and it is monotonically non-decreasing in a. Let us

rewrite the second term as:

Q1prb, x, hs, aq “
ÿ

s1PS

pps1|s, aqvβps1q (A.15)

“
ÿ

h1PH

ÿ

x1PX

Eÿ

ein“0

phph1|hqpxpx1|xqpeinpein|xqvβprb ` ein ´ eoutph, aq, x1, h1sq ,

(A.16)

where we used the independence of the channel evolution and of the source state evolution.

We need to prove that the sum in (A.4) is supermodular in ph, aq for any b P B and x P X
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that is:

ÿ

x1PX

pxpx1|xq
Eÿ

ein“0

peinpein|xq
ÿ

h1PH

phph1|h1qvβprb ` ein ´ eoutph1, a1q, x1, h1sq

´
ÿ

x1PX

pxpx1|xq
Eÿ

ein“0

peinpein|xq
ÿ

h1PH

phph1|h1qvβprb ` ein ´ eoutph1, a2q, x1, h1sq

ě
ÿ

x1PX

pxpx1|xq
Eÿ

ein“0

peinpein|xq
ÿ

h1PH

phph1|h2qvβprb ` ein ´ eoutph2, a1q, x1, h1sq

´
ÿ

x1PX

pxpx1|xq
Eÿ

ein“0

peinpein|xq
ÿ

h1PH

phph1|h2qvβprb ` ein ´ eoutph2, a2q, x1, h1sq

(A.17)

for h1 ě h2, a1 ě a2, for any x P X and any b P B. Getting rid of the constant terms (A.17)

can be rewritten as:

ÿ

h1PH

phph1|h1q
`
vβprb ` ein ´ eoutph1, a1q, x1, h1sq ´ vβprb ` ein ´ eoutph1, a2q, x1, h1sq

˘

ě
ÿ

h1PH

phph1|h2q
`
vβprb ` ein ´ eoutph2, a1q, x1, h1sq ´ vβprb ` ein ´ eoutph2, a2q, x1, h1sq

˘
.

(A.18)

Since phph1|hq is stochastically increasing in h, a sufficient condition for (A.18) to hold (see

Lemma 4.7.2 in [101]) is that

vβprb ` ein ´ eoutph1, a1q, x1, h1sq ´ vβprb ` ein ´ eoutph1, a2q, x1, h1sq

ě vβprb ` ein ´ eoutph2, a1q, x1, h1sq ´ vβprb ` ein ´ eoutph2, a2q, x1, h1sq (A.19)

i.e., vβ is supermodular in ph, aq. Since b, x1, h1, ein are fixed, and eoutph, aq is monotonically

increasing in h, (A.19) can be rewritten (with some abuse of notation) as:

vβprpb1, a1q, x1, h1sq ´ vβprpb1, aq, x1, h1sq ě vβprpb, a1q, x1, h1sq ´ vβprpb, aq, x1, h1sq (A.20)

where b1 ě b and a1 ě a. But this is the condition for the supermodularity of vβ in pb, aq that

holds for Theorem 5.4.1.

A.3 Proof of Theorem 5.4.3

Proof. Since

π‹
βprb, x, hsq “ argmax

a
tQβprb, x, hs, aqu , (A.21)
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in order to prove that the optimal policy is non-decreasing in the source state x, we have to

prove that Qβprb, x, hs, aq is supermodular in the pair px, aq. Now Qβprb, x, hs, aq is defined

as:

Qβprb, x, hs, aq “ rps, a;βq `
ÿ

s1PS

pps1|s, aqvβps1q (A.22)

where the first term in the right hand side of the equation, i.e., rps, a;βq, is supermodular

in px, aq since it does not depend on x and it is monotonically non-decreasing in a. Let us

rewrite the second term as:

Q1prb, x, hs, aq “
ÿ

s1PS

pps1|s, aqvβps1q (A.23)

“
ÿ

h1PH

ÿ

x1PX

Eÿ

ein“0

phph1|hqpxpx1|xqpeinpein|xqvβprb ` ein ´ eoutph, aq, x1, h1sq ,

(A.24)

where we used the independence of the channel evolution and of the source state evolution.

We need to prove that the sum in (A.4) is supermodular in px, aq for any b P B and h P H

that is:

ÿ

h1PH

phph1|hq
ÿ

x1PX

pxpx1|x1q
Eÿ

ein“0

peinpein|x1qvβprb ` ein ´ eoutph, a1q, x1, h1sq

´
ÿ

h1PH

phph1|hq
ÿ

x1PX

pxpx1|x1q
Eÿ

ein“0

peinpein|x1qvβprb ` ein ´ eoutph, a2q, x1, h1sq

ě
ÿ

h1PH

phph1|hq
ÿ

x1PX

pxpx1|x2q
Eÿ

ein“0

peinpein|x2qvβprb ` ein ´ eoutph, a1q, x1, h1sq

´
ÿ

h1PH

phph1|hq
ÿ

x1PX

pxpx1|x2q
Eÿ

ein“0

peinpein|x2qvβprb ` ein ´ eoutph, a2q, x1, h1sq

(A.25)

for x1 ě x2, a1 ě a2, for any h P H and any b P B. Getting rid of the constant terms (A.25)

can be rewritten as:

ÿ

x1PX

pxpx1|x1q
Eÿ

ein“0

peinpein|x1q
`
vβprb ` ein ´ eoutph, a1q, x1, h1sq ´ vβprb ` ein ´ eoutph, a2q, x1, h1sq

˘

ě
ÿ

x1PX

pxpx1|x2q
Eÿ

ein“0

peinpein|x2q
`
vβprb ` ein ´ eoutph, a1q, x1, h1sq ´ vβprb ` ein ´ eoutph2, a2q, x1, h1sq

˘
.

(A.26)
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Since pxpx1|xq is stochastically increasing in x, a sufficient condition for (A.26) to hold (see

Lemma 4.7.2 in [101]) is that

Eÿ

ein“0

peinpein|x1q
`
vβprb ` ein ´ eoutph, a1q, x1, h1sq ´ vβprb ` ein ´ eoutph, a2q, x1, h1sq

˘

ě
Eÿ

ein“0

peinpein|x2q
`
vβprb ` ein ´ eoutph, a1q, x1, h1sq ´ vβprb ` ein ´ eoutph2, a2q, x1, h1sq

˘
.

(A.27)

for each x1 ě x2. If the energy income from states xi takes values in disjoint ordered sets,

i.e., exi

in P Exi “ tExi

min, E
xi

min ` 1, . . . , Exi
maxu, Exi X Exj “ H for i ‰ j, YiE

xi “ t0, 1, . . . , Eu,
Exi

max ă E
xi`1

min , and since the sums in (A.27) are convex combinations we can write:

Eÿ

ein“0

peinpein|x1q
`
vβprb ` ein ´ eoutph, a1q, x1, h1sq ´ vβprb ` ein ´ eoutph, a2q, x1, h1sq

˘

ě vβprb ` Ex1

min ´ eoutph, a1q, x1, h1sq ´ vβprb ` Ex1

min ´ eoutph, a2q, x1, h1sq

ě vβprb ` Ex2
max ´ eoutph, a1q, x1, h1sq ´ vβprb ` Ex2

max ´ eoutph, a2q, x1, h1sq

ě
Eÿ

ein“0

peinpein|x2q
`
vβprb ` ein ´ eoutph, a1q, x1, h1sq ´ vβprb ` ein ´ eoutph2, a2q, x1, h1sq

˘
.

(A.28)

Thus (A.27) holds if the innermost inequality in (A.28) holds. Rearranging the term we can

write:

vβprb ` Ex1

min ´ eoutph, a1q, x1, h1sq ´ vβprb ` Ex2
max ´ eoutph, a1q, x1, h1sq

ě vβprb ` Ex1

min ´ eoutph, a2q, x1, h1sq ´ vβprb ` Ex2
max ´ eoutph, a2q, x1, h1sq . (A.29)

that holds since eout is monotonically increasing in a and vβ is concave and increasing in b

for Lemma A.1.1.
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