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Abstract 
 

As engineering problems are becoming more and more advanced, the size of an average model 

solved by partial differential equations is rapidly growing and, in order to keep simulation times 

within reasonable bounds, both faster computers and more efficient software implementations are 

needed.  

In the first part of this thesis, the full potential of simulation software has been exploited through 

high performance parallel computing techniques. In particular, the simulation of induction 

heating processes is accomplished within reasonable solution times, by implementing different 

parallel direct solvers for large sparse linear system, in the solution process of a commercial 

software. The performance of such library on shared memory systems has been remarkably 

improved by implementing a multithreaded version of MUMPS (MUltifrontal Massively Parallel 

Solver) library, which have been tested on benchmark matrices arising from typical induction 

heating process simulations.  

A new multithreading approach and a low rank approximation technique have been implemented 

and developed by MUMPS team in Lyon and Toulouse. In the context of a collaboration between 

MUMPS team and DII-University of Padova, a preliminary version of such functionalities could 

be tested on induction heating benchmark problems, and a substantial reduction of the 

computational cost and memory requirements could be achieved.  

In the second part of this thesis, some examples of design methodology by virtual prototyping 

have been described. Complex multiphysics simulations involving electromagnetic, circuital, 

thermal and mechanical problems have been performed by exploiting parallel solvers, as 

developed in the first part of this thesis. Finally, multiobjective stochastic optimization 

algorithms have been applied to multiphysics 3D model simulations in search of a set of 

improved induction heating device configurations. 
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Sommario 
 

Nell’ultima decade, i problemi ingegneristici sono diventati sempre più complessi e le dimensioni 

dei relativi modelli numerici sono notevolmente aumentate. Al fine di mantenere i tempi di 

calcolo entro limiti ragionevoli è necessario utilizzare computer sempre più performanti ed 

implementare codici di calcolo più efficienti. 

Nella prima parte di questo elaborato sono descritte ed ampiamente utilizzate le più recenti 

tecniche di programmazione per il calcolo parallelo ad alte prestazioni, permettendo di sfruttare 

pienamente le potenzialità dei moderni software di simulazione. In particolare, il tempo di calcolo 

necessario per la simulazione numerica dei processi di riscaldamento per induzione magnetica è 

stato considerevolmente ridotto attraverso l’implementazione di solutori diretti paralleli per 

matrici sparse nel processo di soluzione di un software commerciale. Successivamente, grazie 

alla collaborazione con gli sviluppatori del solutore diretto MUMPS (MUltifrontal Massively 

Parallel Solver), le prestazioni di tale libreria sono state ulteriormente migliorate grazie 

all’utilizzo di librerie BLAS parallele. Una serie di test sono stati condotti sulla soluzione di  

matrici ricavate dalle analisi agli elementi finiti di problemi tipici dell’elettromagnetismo e del 

riscaldamento per induzione.  

Grazie all’introduzione di un nuovo approccio “multi-threading” e all’utilizzo di tecniche di 

compressione delle matrici (low-rank approximation), il team di MUMPS (Lione-Tolosa) ha 

sviluppato alcune funzionalità sperimentali. Nel contesto di una collaborazione tra il team di 

MUMPS ed il Dipartimento di Ingegneria Industriale, Università di Padova, l’utilizzo della 

libreria in versione sperimentale ha permesso una notevole riduzione del costo computazionale e 

della memoria necessaria per la fattorizzazione e la soluzione dei problemi analizzati. 

Nella seconda parte di questo elaborato sono riportati alcuni esempi di prototipazione virtuale 

attraverso software agli elementi finiti. Lo studio di sistemi multiphysics molto complessi, che 

comprendono fenomeni elettromagnetici, circuitali, termici e meccanici, è stato effettuato su 

modelli di dimensioni notevoli ed in tempi ridotti, sfruttando le tecniche di calcolo parallelo 

sviluppate nella prima parte di questa tesi. Infine, grazie ai miglioramenti introdotti con il calcolo 

parallelo, l’ottimizzazione di dispositivi elettromagnetici attraverso algoritmi stocastici 

multiobiettivo è stata applicata ad un problema multiphysics su modelli tridimensionali. 
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Introduction 
 

Today’s computer simulations are employed to study many of the physical experiments required 

to gain deeper understanding of our world. Often, these experiments are impractical or impossible 

to be performed in the real world and scientists or engineers can only refer to mathematical 

models that describe the behaviors and the phenomena of interest. The models may contain 

Partial Differential Equations (PDE) that need to be solved by numerical methods on computers. 

As the models are required to be more and more complex and detailed, the size of an average 

simulation is rapidly growing. In order to keep simulation times within reasonable bounds, both 

faster computers and more efficient implementations are needed. A common way to reduce 

simulation times is to use parallel computers, in which the computational problem is distributed 

over a number of processors and each processor is accountable for a part of the problem. 

Simulation times can be reduced further by taking into account both the hardware and application 

characteristics in the parallel implementation of the simulation software.  

In this thesis, a reduction of the computing time and memory requirements for the simulation of 

induction heating processes is one of the most important goals. In order to study real applications, 

an analytic approach would not be possible due to the presence of non-linear phenomena, and 

magnetic saturation in magnetic flux concentrators, iron core losses, radiative thermal exchanges 

could not be accurately taken into account. The need for more detailed analysis during the design 

and verification process, known as virtual prototyping, led to the diffusion of powerful numerical 

methods, which allow for the determination of electric current density distribution inside 

workpieces and inductors, even in case of complex geometrical and physical properties.  

Solving linear systems of equations lies at the heart of many problems in computational science 

and engineering. In many cases, the discretization of continuous problems by differential 

numerical methods lead to large sparse linear systems. This holds in induction heating 

applications, as well as for structural problems and fluid dynamics problems.  

In last years, the potential of simulation software could be exploited only by a small fraction, as 

developed models could not be too detailed in order to obtain useful results in a reasonably short 

time. The scientific community is pushing towards an ever increasing model complexity, with the 

aim to perform multiphysics simulations and numerical optimizations of the heat treatment 

processes. This is a consequence of the study of new induction heating processes, that requires an 

accurate determination of electric and magnetic fields distribution in a physical domain, and 

temperature distribution inside heated parts.  

Benefits carried by parallel computing are discussed in chapter 1. Then, a detailed description of 

different parallel computing environments is given in chapters 2,3 and 4. 
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High performance solution methods and their application to induction heating simulation are 

reviewed and discussed in chapters 5 and 6. Outstanding improvements have been achieved in the 

context of a joint project developed by the MUMPS team in Bordeaux, Lyon and Toulouse, and 

supported by many French institutions, as CERFACS, CNRS, ENS Lyon, INPT(ENSEEIHT)-

IRIT, INRIA and University of Bordeaux.  

In the work described in this thesis, remarkable enhancements have been achieved by improving 

direct sparse solvers through parallel computing, and simulation time could be reduced of an 

order of magnitude on inexpensive multicore computers in respect to reference commercial 

codes. Thanks to a fruitful collaboration with MUMPS team, very recent functionalities 

developed in Lyon and Toulouse and described in chapter 6, could be tested on matrix 

benchmarks from induction heating models, leading to further important savings in the 

computing time and memory needed with respect to reference commercial codes.  

Part of this thesis has been developed at Cedrat Group headquarter, in Meylan, Grenoble-France. 

Most of the improvements presented in this thesis have been implemented in Cedrat Flux 11.1, a 

commercial 3D finite-element simulation software.  

Finally, a review of some innovative induction heating applications, their numerical design and 

optimizations is addressed in chapter 8, by focusing mainly on the computational cost that such 

models usually require and on benefits brought by parallel computing in this scientific area. 
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1. What is parallel computing? 
 

Traditionally, software has been written for serial computation, to be run on a single computer 

having a single Central Processing Unit (CPU) [1]. By following this approach, a problem is 

divided in a discrete series of instructions that are executed one by one, as represented in Figure 

1.  

 
Figure 1. In a serial computation, a problem is divided in a discrete series of 

instructions that are executed one by one, in sequence. 

 

Conversely, parallel computing is the simultaneous use of multiple compute resources to solve a 

computational problem. In this framework, a problem is divided into discrete parts that can be 

solved concurrently. Each part consists of a sequence of instructions, that can be executed 

simultaneously by using multiple processors, as it is shown in Figure 2. An overall control 

mechanism is needed in order to coordinate the computation. 

 
Figure 2. In a parallel computation, a problem is divided into discrete parts that can be solved 

concurrently on different processors. 
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It is important to point out that, even if every problem could be broken in parts to be executed in 

parallel, data dependencies and interactions between different parts could prevent from a 

parallelization of computations and lead to incorrect results. Furthermore, the computational 

problem should meet some prerequisites, in order to perform the computation efficiently.  

The computing resources might be a single computer with multiple processors and a common 

memory address space. This kind of system is usually referred to as a shared memory system. 

Otherwise, the computing resources could be a distributed memory system, that is an arbitrary 

number of computers, each one with a dedicated memory address space, connected by a network. 

It is also possible to combine benefits of both kind of systems, as it is usual in modern cluster 

facilities [1]. 

Historically, parallel computing has been used to model difficult problems in many areas of 

science and engineering, from the study of applied physics, atmosphere science and geology, to 

mechanical and electrical engineering. In recent years, industrial and commercial applications 

provided new driving force in the development of faster computers, able to process large amounts 

of data in sophisticated ways, as needed for: 

- Web search engines, advanced graphics and collaborative work environments 

- Storm forecasting, climate prediction 

- Quantum chemistry, molecular nanotechnology, pollution modeling, cosmology 

- Data mining, oil exploration, financial modeling, vehicle design 

By throwing more resources at a task could shorten its process time, or make a bigger task 

feasible. Furthermore, a well performing parallel computer could be assembled from a few cheap 

commodity components (Figure 3). 

 

 
Figure 3. Throwing more resources at a task could shorten its process time, with potential cost savings, or 

make a bigger task feasible. 

 

Furthermore, many problems are so large and complex that it is impractical or impossible to 

solve them on a single computer, because of limited computing power and available memory. An 

example is the “Grand Challenge” problems, requiring PetaFLOPS and PetaBytes of computing 
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resources [2]. Other examples are the web search engines that process millions of transactions per 

second, searching in huge databases. 

Another important aspect of parallel computing is the provision of concurrency. A single 

compute resource can do only one operation at a time. Vice versa, multiple computing resources 

are able to perform many operations simultaneously. For example, the Access Grid [3] provides a 

global collaboration network.  

Cloud computing is an emerging technology that allows to perform complex calculations via a 

SAAS (Software As A Service) approach. In this way, the use of non-local resources on a wide 

area network, or even on Internet, allows for the solution of very large problems on modern 

facilities, at a low price [4]. 

Finally, both physical and practical reasons pose significant constraints to simply building ever 

faster serial computers. In particular, the speed of a serial computer is directly dependent upon 

how fast data can be moved through the hardware. Absolute limits are the speed of light (30 

cm/ns) and the transmission limit of copper wire (9 cm/ns). To increase speed would mean to 

approach the processing elements. On the other side, there are still significant limits in 

miniaturization technologies. Processor technology is allowing for an increasing number of 

transistors to be placed on a chip (Figure 4). However, even with molecular or atomic-level 

components, a limit will be reached on how small components could be built [1].  
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Figure 4. Increasing speeds would mean to reduce distances between processing elements, by improving 

lithography technology. There are still significant limits in miniaturization technologies [5]. 

 

Of course, there are economic limitations. It is increasingly expensive to make a single processor 

faster. Conversely, to use a large number of moderately fast commodity processors is an 

inexpensive way to achieve similar or better performances. This direction is followed by 

computer producers since current computer architectures are increasingly relying upon hardware 

level parallelism to improve performances, as multiple execution units, pipelined instructions and 

multicore architectures. An example of a multicore processor die is shown in Figure 5. 
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Figure 5. Example of multicore processor and L3 cache layout. 

 

 
Figure 6. Million Instructions Per Second (MIPS) is a measure of hardware performance. Results about 

most recent multicore processors are reported. Note: for Intel processors, the number of instructions 

retired per clock cycle is 4, for AMD the number is 3 [5]. 

 



8 

 

During the last decades, the trends indicated by ever faster networks, distributed systems and 

multiprocessor computer architectures show that parallelism is the future of computing. In the 

same period, there has been a greater than 1000x increase in supercomputer performance, and 

today parallel computing facilities are extensively exploited around the world in a wide variety of 

applications.  

 

 
Figure 7. Exponential growth of supercomputing power as recorded by the TOP500 [6]. 
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Figure 8. Systems share through last two decades has moved from academy and research to industry, as recorded 

by the TOP500 [6]. 
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1.1 Concepts and terminology 

General requirements of a computer were described by the work of John Von Neumann in first 

half of XX century. Since then, virtually every computer has followed the same basic design, 

differing from earlier computers which were programmed through “hard wiring”. The main 

layout of a computer comprises a memory, a control unit, an arithmetic logic unit and an 

input/output interface. Readable and writeable RAM memory is used to store both program 

instructions and data. In particular, program instructions are coded data which tell the computer 

to perform some operations, while data is the information to be processed. The control unit 

fetches instructions and data from the memory, decodes the instructions and then sequentially 

coordinates operations, in order to accomplish the programmed task. Each basic operation is 

performed by the arithmetic logic unit. The interface to human operator or to peripherals allows 

for an input and an output data exchange. Also in the case of a parallel computer, the basic 

fundamental architecture is the same for the different units. 

 
Figure 9. Fundamental architecture of a CPU. 

 

There are different ways to classify parallel computers [1]. Parallel computers can be 

characterized according to the data and instruction streams, forming various types of computer 

organizations. They can also be classified in relation to the computer structure, i.e. multiple 

processors having separate memory or one shared global memory. Furthermore, parallel 

processing levels can also be defined in relation to the granularity in a program, that is the 

dimension of blocks of instructions, called grain size. Thus, a classification of parallel computers 

can be identified: 

1) Classification based on the instruction and data streams  

2) Classification based on the structure of computers 

3) Classification based on granularity 
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1.1.1 Classification based on instruction and data streams  

In the first classification, known as Flynn’s Classical Taxonomy, a behavioral concept is 

discussed [1]. The term ‘stream’ refers to a sequence or flow of either instructions or data 

operated on by the computer. In particular, in the complete cycle of instructions execution, a flow 

of instructions from main memory to the CPU is established. This flow of instructions is called 

instruction stream. Similarly, there is a flow of operands between processor and memory bi-

directionally. This flow of operands is called data stream. These two types of streams are shown 

in Figure 10.  

 
Figure 10. Instruction stream is established from main memory to the CPU. A bi-directional data stream is 

established between processor and memory. 

 

Multi-processor computer architectures are distinguished according to how they can be classified 

along the two independent dimensions of Instruction Stream and Data Stream. Each of these 

dimensions can have only two states, Single or Multiple (Figure 11). 

 
Figure 11. Flynn’s Classical Taxonomy. 

 

A SISD computer is a serial computer, in which only one instruction stream is acted on by the 

CPU during any clock cycle, and only one data stream is being used as input during any clock 

cycle (Figure 12). The execution of the operations is deterministic.  
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Figure 12. Execution of instructions in a SISD computer. 

 

A SIMD computer is a parallel computer, in which all processing units receive the same 

instruction broadcast from the control unit. As in Figure 13, the same instruction at a given clock 

cycle is executed simultaneously by each processing unit on a different data element. Every 

processor must be allowed to complete its instruction before the next instruction is taken for 

execution. Instruction execution is deterministic because it is synchronized, as all executions are 

lockstepped together. This kind of computers are best suited for specialized problems 

characterized by a high degree of regularity, such as computations involving dense matrices 

(Figure 14). Two kind of computers fall within this category: processor arrays, as GPUs, and 

vector pipeline systems. 

 

 
Figure 13. Execution of instructions in a SIMD computer. 
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Figure 14. Example of a vectorized sum on a SIMD computer. 

 

A MISD computer is a parallel computer, in which each processing unit acts on the same data 

independently, via separate instruction streams. This kind of computer has a very limited use, as 

cryptography. 

Finally, in a MIMD computer every processor may be executing a different instruction stream 

and working with a different data stream (Figure 15). Executions could be either synchronous or 

asynchronous, deterministic or non-deterministic. Currently the most modern type of 

supercomputers fall in this category, i.e. networked parallel computer clusters and “computing 

grids”, multi-processor computers, multi-core computers, cloud computing network. 

 

 
Figure 15. Execution of instructions in a MIMD computer. 

 

1.1.2 Classification based on computer structure 

In the second classification, the computer structure is considered. As seen above, a parallel 

computer (MIMD) can be characterized as a set of multiple processors with a shared memory, or 

memory modules communicating via an interconnection network. When multiprocessors 

communicate through a global shared memory, the system is a shared memory computer (Figure 

16).  
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Figure 16. Layout of a shared memory system. 

 

Shared memory multiprocessors show the following characteristics: 

- Every processor communicates through a shared global memory 

- For high speed real time processing, these systems are preferable as their throughput is 

high as compared to distributed memory computers. 

- The processors have also access to I/O devices 

- The inter-communication between processors, memory and other devices are 

implemented through various interconnection networks (Figure 17): 

o Processor-Memory Interconnection Network: this is a switch that connects various 

processors to different memory modules. Different strategies are adopted in order 

to connect every processor to every memory module. There can be a conflict 

among processors when they attempt to access the same memory modules. Even if 

this conflict is managed by the switch, the access to memory is delayed, i.e. 

leading to a bottleneck for computations.  

o Input-Output Processor Interconnection Network: this interconnection network is 

used for communication between each processors and I/O channels, i.e. a hard 

disk memory. 

o Interrupt Signal Interconnection Network: when a processor needs to send an 

interruption to another processor, the request is sent to this switch and delivered to 

the destination processor. In this way, synchronization between processors is 

ensured. Moreover, in case of failure of one processor, the switch can broadcast 

the message to other processors.  

o Every reference to the memory in shared memory computers is managed via 

interconnection network, thus there is a delay in executing the instructions. In 

order to reduce this delay, every processor may use cache memory for the frequent 

references made by the processor. Cache memory is a smaller, faster memory 

which stores copies of the data from frequently used global memory locations. As 

long as most memory accesses are cached memory locations, the average latency 

of memory accesses will be closer to the cache latency than to global memory 

latency, i.e. leading to faster computations. 
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Figure 17. In shared memory systems, processor-memory communication bandwidth and latency determines the 

speed of a computation. 

 

Otherwise, when every processor in a multiprocessor system manages its own local memory and 

each processor communicate with others via messages transmitted between local memories, the 

system is called distributed memory computer (Figure 18). 
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Figure 18. Layout of a distributed memory system. 

 

Distributed memory computers do not share the global memory and the problem of memory 

conflicts, which slows down the execution of instructions in shared memory systems, is avoided. 

Such systems have multiple processors with their own large local memory and a set of I/O 

devices. This set of processor, memory and I/O devices is a computer system by itself, called 

node. Thus, distributed memory computers are also called multicomputer systems. The nodes are 

connected together via message passing interconnection network, through which processes 

communicate by passing messages each other. Every node in a multicomputer system owns a 

separate memory, the system is called distributed memory computer. Since local memories are 

accessible to the attached processor only, no processor can access other memories remotely. 

Therefore, message passing interconnection network provides connection to every node and 

inter-node communication with message depends on the type of interconnection network. For 

example, interconnection network for a non-hierarchical system could be a shared bus. 

 

1.1.3 Classification based on grain size 

The third classification is based on granularity, i.e. the amount of computation in relation to 

communication. Fine-grained parallelism means that individual tasks are relatively small in terms 

of code size and execution time. The data is transferred among processors frequently, in amounts 

of one or a few memory words. Conversely, in a coarse-grained parallelism, data is 

communicated occasionally, after larger amounts of computation. 

To recognize different level of parallelism in a program to be executed on a multiprocessor 

system can be tricky. The idea is to identify the sub-tasks or instructions in a program that can be 

executed in parallel. For example, in Figure 19 there are three statements in a (sequentially 

executed) program and statements S1 and S2 can be exchanged. This means that an execution of 

S1 and S2 in parallel would not change program output.  
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Figure 19. Parallel execution of S1 and S2 blocks of instructions. 

 

On these bases, parallelism can be classified at various levels in a program. These parallelism 

levels form a hierarchy according to which, lower the level, the finer is the granularity of the 

process. The degree of parallelism decreases with increase in level. Every level according to a 

grain size demands communication and scheduling overhead, as it is summarized in Figure 20.  

 
Figure 20. Parallelism levels in a program.  
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The instruction level is the lowest level and the degree of parallelism is the highest. The fine 

grain size is used at instruction or statement level as only few instructions form the grain size 

here. The fine grain size may vary according to the type of the program. For example, in 

scientific applications, the instruction level grain size could be higher. As a higher degree of 

parallelism can be achieved at this level, the overhead for a programmer will be more. 

The loop level is another level of parallelism, where iterative loop instructions can be 

parallelized. Fine grain size is also used at this level. Simple loops in a program are easy to 

parallelize whereas the recursive loops are difficult. This type of parallelism can be achieved 

through compilers. 

The procedure level consists of independent subroutines. Medium grain size is used at this level 

containing some thousands of instructions in a procedure. Multiprogramming is implemented at 

this level. Parallelism is exploited by programmers, but not through compilers.  

The program level consists of independent programs. Coarse grain parallelism is used at this 

level. Time sharing is achieved through the operating system. 

Traditionally, coarse grain parallelism is implemented in shared memory multiprocessors, while 

distributed memory computers are used to execute medium grain program segments. Fine grain 

parallelism is exploited in SIMD computers, as multicores or manycores architectures. 

However, it is not sufficient to check for the parallelism between statements or processes in a 

program. The identification of possible parallelism and, eventually, the decision about which 

kind of parallelism would give the best performance, also depends on the number and types of 

processors available, the memory organization and simultaneous need for same data, control and 

resources by different processes, as it will pointed out in the next chapter [1]. 

 

1.2 Parallelism conditions 
As discussed above, parallel computing requires that the segments to be executed in parallel must 

be independent of each other [1]. Therefore, for a correct parallel execution, all the conditions of 

parallelism between the segments must be analyzed. Three types of dependencies can be 

recognized, as in Figure 21. 
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Figure 21. Dependency conditions. All the conditions of parallelism between the segments must 

be analyzed for a correct parallel execution. 

 

Data dependency refers to the situation in which two or more instructions share the same data. 

The instructions in a program can be arranged based on the relationship of data dependency. In 

other words, the programmer should concentrate on how two instructions or segments are data 

dependent on each other. Four types of data dependencies are recognized: 

- Flow dependence: if instruction 2 follows instruction 1, and output of 1 becomes input of 

2, then 2 is “flow dependent” on 1 

- Anti-dependence: when instruction 2 follows 1 such that output of 2 overlaps with the 

input of 1 on the same data 

- Output dependence: when output of the two instructions 1 and 2 overlap on the same data, 

the instructions are said to be output dependent 

- I/O dependence: when read and write operations by two instructions are invoked on the 

same file 

The following program instructions are an example of data dependency: 

S1:     

S2:       

S3:     

S1 and S2 are flow dependent, because variable   is generated by S1 as output, and it is used by 

S2 as input. Instructions S2 and S3 are anti-dependent because variable   is generated by 

instruction S3 but used by S2 and in sequence S2 comes first. Instruction S3 is flow dependent 

because of variable  . Instructions S3 and S1 are output dependent because variable   is 

generated by both instructions. 
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A control dependence could arise when instructions or segments in a program contain control 

structures. Therefore, dependency among the statements can be in control structures also, but the 

order of execution in control structures is not known before the run time. In this case, control 

structures dependency among the instructions must be analyzed carefully. As an example, the 

successive iterations in the following control structure (Figure 22) are dependent on one another. 

    (              ) 
  {  

        ( [   ]    ) 
                [ ]    

           

                [ ]   ; 
   } 
Figure 22. Example of control dependency. 

 

Parallelism between the instructions may also be affected by conflicts due to shared resources. In 

particular, if two instructions are using the same shared resource, then it is a resource dependency 

condition. The contention of memory, caches, buses, registers, ports, and functional units could 

lead to runtime errors and incorrect results. 

 

1.3 Amdahl-Gustafson’s law 

Amdahl's law is a model for the relationship between the expected speedup of parallelized 

implementations of an algorithm relative to the serial algorithm, under the assumption that the 

problem size remains the same when parallelized [7]. Amdahl’s law is used to evaluate the 

maximum expected improvement, called speedup, to an overall algorithm when a part of the 

algorithm is parallelized (Figure 24). In this situation, the speedup of a program using multiple 

processors is limited by the time needed for the sequential fraction of the program. Amdahl’s law 

was initially intended for the special case of using   processors in parallel, as an argument for the 

single-processor approach’s validity for achieving large-scale computing capabilities. Amdahl 

assumed that a fraction   of a program execution time was infinitely parallelizable without any 

scheduling overhead, while the remaining fraction (   ) was totally sequential. The modern 

version of Amdahl’s law states that, when an enhancement of a fraction   of the computation 

leads to a speedup  , the overall speedup is: 

        (   )  
 

((   ) 
 

 
)
    

Amdahl’s law lead to important conclusions, such as: 

- when   is small, optimizations will have little effect, i.e. some problems are difficult to 

parallelize 
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- as   approaches infinity, speedup is bound by  (   )⁄ , i.e. there are other factors that 

limit the speedup 

For example, if a program needs 20 hours using a single processor, and a particular portion of the 

program which takes one hour to execute cannot be parallelized, while the remaining 19 hours 

(95% of sequential execution time) can be parallelized, then regardless of how many processors 

are devoted to a parallelized execution of this program, the minimum execution time cannot be 

less than that critical one hour. Hence the speedup is limited up to 20. 

 

 
Figure 23. A program should be analyzed carefully before planning a parallelization of its code. In 

this example, the B part performs much better in parallel executions than A, however its contribute 

to the overall speedup is low. 

 

Amdahl's law represent the law of diminishing returns about the return of adding more processors 

to a machine, when running a fixed-size computation that will use all available processors to their 

capacity. Each new processor, added to the system, will carry less usable computing power than 

the previous one. If the number of processors were doubled, the speedup ratio would diminish, as 

the total throughput heads toward the limit  (   )⁄ . This analysis neglects other potential 

bottlenecks such as memory bandwidth and I/O bandwidth, that usually are not scaling with the 

number of processors.  

Nevertheless, typically in scientific applications, a common user will not be interested in solving 

a fixed problem in the shortest possible interval of time, as Amdahl's law describes, but rather in 

solving the largest possible problem (Gustafson’s law), that is, the most accurate possible 

approximation in a fixed reasonable amount of time. If the non-parallelizable portion of the 

problem is fixed, or grows very slowly with problem size, then additional processors let to 

increase the maximum limit for the problem size. 
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Figure 24. Speedup according to Amdahl’s law.  
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2. Parallelization in shared memory computers 
 

The shared memory model is the most used and easiest to grasp method for inter-thread 

communication [8]. Its main attractiveness is that it does not require major re-thinking of 

program structure, as it can be regarded as a natural extension of single-threaded applications. 

The concept itself is simple and straightforward: each thread that need to communicate holds a 

reference to a location in the memory that can be used to place information into; then, the same 

memory can be accessed by any other thread holding a reference to the same memory location. 

Most shared memory systems provide the appearance of a single memory space and a uniform 

computing environment, where any processor can access any memory location in the system. 

There are however two fundamental issues with shared memory: in order to maintain the 

consistency of the memory content, access to the memory must be policed and all threads need to 

synchronize; for the same consistency reasons, local copies of the shared memory held in 

processor caches must be synchronized and updated, while the hardware must provide 

mechanisms for keeping the logical ordering of memory writes, the primary focus of memory 

consistency models.  

The first issue, concerning the access policies to shared memory, relies entirely in the 

programmer ability. Traditionally, locks and/or semaphores were used, with a synchronization 

object associated with each logically related group of shared memory areas; any thread requiring 

to access the shared memory would need to acquire the ownership of the synchronization object 

before accessing the shared memory area. 

The second issue, which concerns cache coherence and hardware ordering, is usually solved 

entirely in hardware through the implementation of memory consistency and cache coherence 

and validation protocols; however, these will have impact on software performance: the number 

of processor cycles needed for keeping the caches coherent and the size of the logic required to 

implement it (consequently, the power consumption) will increase with the number of cores that 

are concurrently accessing the same memory location. Optimizing for cache behavior requires 

extremely good understanding of the underlying hardware and often leads to application level 

solutions that are not immediately obvious, such as ‘un-natural’ partitioning or sizing of data or 

bundling of memory updates. 

2.1 OpenMP 

Shared-memory machines existed for a long time. In the past, each vendor developed its own 

”standard” compiler directives and libraries, which allowed for a program to exploit advanced 

capabilities of their specific parallel machine. A standardization was not formally adopted, since 

no strong support of the vendors was existing and distributed memory machines, with their own 
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more standard message passing libraries PVM and MPI, appeared as a good alternative to shared-

memory machines [9].  

In 1996-1997, a new interest in a standard shared-memory programming interface appeared, 

mainly due to a renewed interest from the vendors side in shared-memory architectures, and the 

opinion by a part of the vendors that the parallelization of programs using message passing 

interfaces appeared cumbersome and long and that a more abstract programming interface would 

be desirable. OpenMP is the result of a large agreement between hardware vendors and compiler 

developers and is considered to be an ”industry standard”. The designers of OpenMP desired to 

provide an easy method to thread applications without requiring that the programmer know how 

to create, synchronize, and destroy threads or even requiring to determine how many threads to 

create. To achieve these ends, the OpenMP designers developed a platform-independent set of 

compiler pragmas, directives, function calls, and environment variables that explicitly instruct the 

compiler how and where to insert threads into the application. Most loops can be threaded by 

inserting only one pragma right before the loop. By leaving the details to the compiler and 

OpenMP, more time is left for determining which loops should be threaded and how to best 

restructure the algorithms for maximum performance. In practical cases, the maximum 

performance of OpenMP is realized when it is used to thread "hotspots", the most time-

consuming loops in your application. 

OpenMP also addresses the inability of previous shared-memory directive sets to deal with 

coarse-grain parallelism. Indeed, the former limited support for coarse grain work led to 

developers to think that shared-memory parallel programming was essentially limited to fine-

grain parallelism.  

As mentioned before, OpenMP is a collection of compiler directives, library routines and 

environment variables meant for parallel programming in shared-memory machines. The most 

important directive in OpenMP is the one in charge of defining the so called parallel regions. 

Such a region is a block of code that is going to be executed by multiple threads running in 

parallel. Since a parallel region needs to be created/opened and destroyed/closed, two directives  

are necessary, forming a so called directive-pair                                  .  

An example of their use is reported in Figure 25. 

 
               

     (   )         
                   

 
Figure 25. Example of a parallel region. Each thread execute the same instruction. 

 

Since the code enclosed between the two directives is executed by each thread, the message 

      appears in the screen as many times as threads are being used in the parallel region. Before 
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and after the parallel region, the code is executed by only one thread, which is the normal 

behavior in serial programs. Therefore it is said, that in the program there are also so called serial 

regions. When a thread executing a serial region encounters a parallel region, it creates a team of 

threads, and it becomes the master thread of the team. The master thread is a member of the team 

and takes part in the computations. Each thread inside the parallel region gets a unique thread 

number which ranges from zero, for the master thread, up to     , where    is the total 

number of threads within the team. In Figure 26, the previous example is represented in a 

graphical way to clarify the ideas behind the parallel region constructor. At the beginning of the 

parallel region it is possible to impose clauses which fix certain aspects of the way in which the 

parallel region is going to work: for example the scope of variables, the number of threads, 

special treatments of some variables.  

 
Figure 26. Graphical representation of the example in Figure 25. 

 

When the !$OMP END PARALLEL directive is reached, all the variables declared as local to 

each thread are erased and all the threads are killed, except for the master thread which continues 

the execution of the program. It is necessary that the master thread waits for all the other threads 

to finish their work before closing the parallel region, otherwise information would get lost and 

work would not be done. This waiting is an implicit synchronization between the parallel running 

threads. 

Data dependencies exist when different iterations of a loop read or write shared memory, and 

more specifically, a thread reads or modifies data that should be used by another thread [10]. 

Consider the example in Figure 27, that calculates factorials. 

 
                         
    (                ) 
{ 
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         [ ]                 [   ]  
} 
 
Figure 27. Example of data dependency in OpenMP parallel loops. Compilation fails because 

each loop iteration writes a value that a different iteration reads. 

 

The compiler will thread the loop, but it will fail because at least one of the loop iterations is 

data-dependent upon a different iteration. This situation is referred to as a race condition, and can 

occur only when using shared resources, i.e. memory, in a parallel execution. To address this 

problem it is necessary to rewrite the loop or, in worse cases, pick a different algorithm that does 

not contain the race condition. 

Load balancing, the equal division of work among threads, is among the most important 

attributes for parallel application performance. Load balancing is extremely important, because it 

ensures that the processors are busy most, rather all, of the time. Without a balanced load, some 

threads may finish significantly before others, leaving processor resources idle and wasting 

performance opportunities. 

Within loop constructs, poor load balancing is usually caused by variations in compute time 

among loop iterations. It is usually easy to determine the variability of loop iteration compute 

time by examining the source code. In most cases, you will see that loop iterations consume a 

uniform amount of time. When that's not true, it may be possible to find a set of iterations that 

consume similar amounts of time. For example, sometimes the set of all even iterations consumes 

about as much time as the set of all odd iterations. Similarly it can happen that the set of the first 

half of the loop consumes about as much time as the second half. On the other hand, it may be 

impossible to find sets of loop iterations that have a uniform execution time. Regardless of which 

case an application falls into, you should provide this extra loop scheduling information to 

OpenMP so that it can better distribute the iterations of the loop across the threads (and therefore 

processors) for optimum load balancing [10]. 

OpenMP, by default, assumes that all loop iterations consume the same amount of time. This 

assumption leads OpenMP to distribute the iterations of the loop among the threads in roughly 

equal amounts and in such a way as to minimize the chances of memory conflicts due to false 

sharing. This is possible because loops generally touch memory sequentially, so splitting up the 

loop in large chunks, as the first half and second half in case of two threads, will result in the 

least chance for overlapping memory. While this may be the best choice for memory issues, it 

may be bad for load balancing. Unfortunately, the reverse is also true; what may be best for load 

balancing, may be bad for memory performance. Therefore, programmers must find a balance 

between optimal memory usage and optimal load balancing by measuring the performance 

through profiler tools, to see which method produces the best results [10].  
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By summarizing, OpenMP threaded application performance is largely dependent upon: 

- The underlying performance of the single-threaded code 

- CPU utilization, idle threads and poor load balancing 

- The percentage of the application that is executed in parallel 

- The amount of synchronization and communication among the threads 

- The overhead needed to create, manage, destroy, and synchronize the threads, in 

particular by the number of single-to-parallel or parallel-to-single transitions called fork-

join transitions 

- Performance limitations of shared resources such as memory, bus bandwidth and CPU 

execution units 

- Memory conflicts caused by shared memory or false sharing. 

 

2.2 Basic Linear Algebra Subprograms 

Basic Linear Algebra Subprograms (BLAS) are a set of low-level kernel subroutines that perform 

common linear algebra operations such as copying, vector scaling, vector dot products, linear 

combinations, and matrix multiplication [11,12]. They were first published as a Fortran library in 

1979 and are still used as a building block in higher-level math programming languages and 

libraries.  

The BLAS routines and functions are divided into the following groups according to the 

operations they perform: 

- BLAS Level 1 Routines perform operations of both addition and reduction on vectors of 

data. Typical operations include scaling and dot products. 

- BLAS Level 2 Routines perform matrix-vector operations, such as matrix-vector 

multiplication, rank-1 and rank-2 matrix updates, and solution of triangular systems. 

- BLAS Level 3 Routines perform matrix-matrix operations, such as matrix-matrix 

multiplication, rank-k update, and solution of triangular systems. 

Because the BLAS are efficient, portable, and widely available, they are commonly used in the 

development of high quality linear algebra software. Furthermore, most of the BLAS library 

available via vendors are multithreaded and thread-safe [13]. In other words, they exploit 

parallelization on shared memory computers, i.e. through OpenMP programming, and the parallel 

code is correctly executed by each thread. 
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3. Parallelization in distributed memory computers 

3.1 Message passing paradigm 
The message passing paradigm is commonly considered to be the opposite of the shared memory 

model, as it usually relies on a “share nothing” approach [8]. In a message passing based system, 

threads have no shared memory areas, and all information exchange happens through messages 

that are passed between the threads. Message passing is usually considered the foundation for any 

thread isolation solution: shared memory means that if one thread fails, also the other threads 

may fail, as the content of the shared memory could be corrupted. A similar situation will not 

occur in a message passing based system, as threads can protect themselves through analysis and 

possible discarding of erroneous messages. 

 

3.2 MPI – Message Passing Interface 

High performance, scalability and portability features make MPI to be the standard message-

based communication protocol in high performance computing in distributed memory systems. It 

consists of a language-independent communication protocol by exploiting both point-to-point and 

collective communication. The MPI standard (MPI-1, MPI-2 and MPI-3 versions) defines the 

syntax and semantics of a core of library routines useful to a wide range of users writing portable 

message passing programs in Fortran and C. MPI provides a clearly defined base set of routines 

that can be efficiently implemented by parallel hardware vendors. Therefore, upon this collection 

of standard low-level routines, hardware vendors can create higher-level routines for the 

distributed-memory communication environment supplied with their parallel machines. MPI 

provides a simple-to-use portable interface for the basic user, yet powerful enough to allow 

programmers to use the high-performance message passing operations available on advanced 

machines. The message passing paradigm is attractive because of its wide portability and can be 

used in communication for distributed-memory computers, shared-memory multiprocessors 

systems, networks of workstations, and a combination of these elements. The paradigm is 

applicable in multiple settings, independent of network speed or memory architecture [14].  

Even if the first MPI-1 model did not implement any shared memory concept, and MPI-2 brings 

only a limited “distributed” shared memory approach, MPI programs are regularly run on shared 

memory computers. Furthermore, designing programs around the MPI model (contrary to explicit 

shared memory models) has advantages over NUMA architectures since MPI encourages 

memory locality. 

The MPI interface provides essential virtual topology, synchronization, and communication 

functionality between a set of processes (that have been mapped to nodes/servers/computer 

instances) in a language-independent way, with language-specific syntax (bindings) and a few 

language-specific features. MPI programs always work with processes, but programmers 
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commonly refer to the processes as processors. Typically, for maximum performance, a single 

process will be assigned to each CPU (or each core in a multi-core machine). This assignment 

happens at runtime through the agent that starts the MPI program, normally called mpirun or 

mpiexec.  

MPI library functions include, but are not limited to, point-to-point “rendezvous-type” 

send/receive operations, choosing between a Cartesian or graph-like logical process topology, 

exchanging data between process pairs (send/receive operations), combining partial results of 

computations (gather and reduce operations), synchronizing nodes (barrier operation) as well as 

obtaining network-related information such as the number of processes in the computing session, 

current processor identity that a process is mapped to, neighboring processes accessible in a 

logical topology, and so on. Point-to-point operations come in synchronous, asynchronous, 

buffered, and ready forms, to allow both relatively stronger and weaker semantics for the 

synchronization aspects of a rendezvous-send. Many operations are possible in asynchronous 

mode, in most implementations. 

MPI-1 and MPI-2 both enable implementations that overlap communication and computation. 

MPI also specifies thread safe interfaces, which have cohesion and coupling strategies that help 

avoid hidden state within the interface. It is relatively easy to write multithreaded point-to-point 

MPI code, and some implementations support such code. 

MPI provides a rich range of functionalities. The following concepts help the programmer to 

decide what functionality to use in application programs: 

- Communicator objects connect groups of processes in the MPI session. Each 

communicator gives each contained process an independent identifier and arranges its 

contained processes in an ordered topology 

- A number of important MPI functions involve communication between two specific 

processes. An example is MPI_Send, which allows one specified process to send a 

message to a second specified process. Such point-to-point operations are particularly 

useful in patterned or irregular communication. For example, a data-parallel architecture 

in which each processor routinely swaps regions of data with specific other processors 

between calculation steps, or a master-slave architecture in which the master sends new 

task data to a slave whenever the prior task is completed 

- Collective functions involve communication among all processes in a process group 

(which can mean the entire process pool or a program-defined subset). A typical function 

is the MPI_Bcast broadcast call. This function takes data from one node and sends it to all 

processes in the process group. A reverse operation is the MPI_Reduce call, which takes 

data from all processes in a group, performs an operation (such as summing), and stores 

the results on one node. For example, reduction operations are useful at the end of a large 

distributed calculation, where each processor operates on a part of the data and then 

combines it into a result 
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An example of basic MPI functions is given in Figure 28. 

 

 
                
                   
                                      (               ) 
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                     (                          ) 
                     (                          ) 
                                      
                    (      ) 
      
 
Figure 28. Example of MPI usage. Each process prints its name and the string “Hello world”. 

 

3.2.1 MPICH library 

MPICH is a high-performance and widely portable implementation of the Message Passing 

Interface (MPI) standard [15]. The goals of MPICH are:  

- to provide an MPI implementation that efficiently supports different computation and 

communication platforms including commodity clusters (desktop systems, shared-

memory systems, multicore architectures), high-speed networks (10 Gigabit Ethernet, 

InfiniBand, Myrinet, Quadrics) and proprietary high-end computing systems (Blue Gene, 

Cray)  

- to enable cutting-edge research in MPI through an easy-to-extend modular framework for 

other derived implementations. 

An MPI library typically requires thread services (e.g., thread creation, mutex locks), shared-

memory services (for intranode communication), internode communication services (e.g., TCP/IP 

sockets), and OS process-management services. The APIs for these features can differ among 

operating systems and platforms. For portability, MPICH2 uses an internal abstraction layer for 

these services, which can be implemented selectively on different OS platforms [16].  

The “CH” in name “MPICH” means Chameleon, the portability layer used in the original 

MPICH to provide portability to the existing message-passing systems. There are two common 

ways to use MPI with multicore processors or multiprocessor nodes: 

- Use one MPI process per core (recall, a core is defined as a program counter and some set 

of arithmetic, logic, and load/store units) 

- Use one MPI process per node (recall, a node is defined as a collection of cores that share 

a single address space). Use threads or compiler-provided parallelism to exploit the 

multiple cores. OpenMP may be used in combination with MPI; for example, the loop-
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level parallelism of OpenMP may be used with any implementation of MPI. This is 

sometimes called the hybrid programming model. MPICH automatically recognizes 

multicore architectures and optimizes communication for such platforms.  

Before starting a parallel job, a process management system, as Simple Multipurpose Daemon 

(SMPD), must be configured on each host and each host must be connected into a ring. After 

that, all users of the network will be able to launch MPI jobs using mpiexec or a similar 

command. The simplest form of a command to start an MPI job is  “         

              ”. 
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4. State of the art of multicore systems 
 

In 2001 the first general-purpose processor that featured multiple processing cores on the same 

CMOS die was released: the POWER4 processor of IBM. Since then, multi-core processors have 

become the norm and currently the only way to improve the performance for high-end processors 

is to add support for more threads, either in the number of cores, or through multithreading on 

cores to mask long-latency operations [8]. 

There are multiple reasons why the clock rate gains of the past cannot anymore be continued. The 

unsustainable level of power consumption implied by higher clock rates is just the most obvious 

and stringent reason; equally important is the fact that wire delays rather than transistor switching 

will be the dominant issue for each clock cycle.  

Compared to single threaded processors, multi-core processors are highly different and the design 

space is enormous. The development of semiconductor technology let the integration of the idea 

of large supercomputers onto one single-chip multiprocessor, most often called a multi-core 

processor. 

Current general-purpose multi-core processors are built on a homogeneous architecture. This 

means that the cores can execute the same binary code and that it does not really matter, from a 

functional point of view, on which core a program runs. Most of these homogeneous 

architectures also implement a shared global address space with full cache coherency. By 

contrast, a heterogeneous architecture features at least two different kinds of cores that may differ 

in architecture, functionality and performance. 

All modern core designs are pipelined, where instructions are decoded and executed in stages in 

order to improve on overall throughput, although instruction latency is the same or even 

increased. 

As the capabilities and speed of cores have been improving more rapidly than memory 

performance, the net result was that cores were idling for a significant share of the time while 

waiting on high latency memory operations to complete. This observation led to the 

implementation of hardware multi-threading, a mechanism through which a core could support 

multiple thread contexts in hardware (including program counter and registers, but sharing the 

cache) and fast switching between hardware threads whenever some of the threads stalled due to 

high latency operations. The usefulness of this technology also has its limit however. Recently, 

the gap between the speed of memory access and speed of cores started to narrow due to the 

decline in processor core frequencies; therefore latency-hiding techniques will yield smaller 

benefits. Considering the performance gain per watt, these techniques will be most likely 

replaced by other mechanisms, such as increased cache sizes. 
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Having multiple cores on a chip requires inter-core communication mechanisms. The historical 

way that the individual processors in a shared memory multiprocessor communicate has been 

through a common bus shared by all processors. This is indeed also the case in the early multi-

core processors from general purpose vendors (Intel, AMD). In order not to flood the bus with 

memory and I/O traffic, there are local cache memories, typically one or two levels, between the 

processor and the bus. More recent designs are based on the realization that shared 

communication mediums such as buses are problematic both in latency and bandwidth. A shared 

bus has long electrical wires and if there are several potential slave units (as in a multicore 

processor all cores and memory sub-system are both slaves and masters) the capacitive load on 

the bus makes it even slower. Furthermore, the fact that several units share the bus will 

fundamentally limit the bandwidth from each core. As the number of cores will increase, on-chip 

communication networks will increasingly face scalability and power constraints. 

In the high-performance computing area, shared memory has not been used since its current 

implementations do not scale to thousands of nodes used in the top-performing compute clusters. 

These clusters, however, are built out of shared memory nodes and although programmers may or 

may not use shared programming models within a node, the hardware of these nodes typically 

implement a shared address space. The best performing programs in these machines typically use 

a hybrid programming model using message-passing between nodes and a shared memory within 

a node. For these reasons, all general-purpose multi-core processors today support a shared 

address space between cores and maintain a cache-coherent memory system. By definition, a 

cache system is said to be coherent if and only if all processors, at any time, have a consistent 

view of what is the last globally written value to each location. The cache coherency mechanism 

(Figure 29 and Table 1) allows for a fast access to commonly used data in processor private 

caches while still maintaining consistency when some other processor updates shared variables. 

The most common implementation uses invalidation mechanisms where local copies are 

invalidated if a core updates a shared variable [8]. 

 
 

Figure 29. Example of cache coherence mechanism. Initial state of block A is un-cached [8]. 

 

 



35 

 

Table 1. Example of cache coherence mechanism, based on Figure 29 [8]. 

Time PO P1 P2 Comments 

T1 Load A Load A  A copy in both 0 and 1 caches. The block is shared. 

T2 Store A   The copy in cache 1 needs to be invalidated. The block is exclusive in 

cache 0. 

T3 Load A   This load will succeed. No coherence action is needed. 

T4  Load A  The newly updated value in cache 0 is transferred to cache 1. The block is 

shared. Memory could be updated, depending on cache coherence 

protocol used. 

T5   Load A Block is now also cached in cache 2. 

T6  Store A  The ownership is transferred to P1 and the block is now exclusive in 

cache 1. The copies in both cache 0 and 2 are invalidated. 

 

Furthermore, many transistors on the CPU are devoted to advanced communication and 

administration techniques like out-of-order execution and branch prediction [17,18]. In particular, 

branch prediction is a method used to guess the memory address of following instructions. With 

good guessing, a CPU can request the instructions from memory long before they are executed. 

This decreases the time the CPU wastes on waiting for data and instruction to arrive. Out-of-

order execution is a queuing system for instructions on the CPU. Supported instructions have 

their respective resources with a physical location. If a processor is supporting out-of-order 

execution, instructions can line up for their resource and run as soon as it becomes available. The 

results are coordinated and synchronized automatically afterwards. Techniques of handling 

memory together with the support of task switching makes a CPU perform well when running 

operation systems. 

Multicore systems will evolve in the near future towards the following concepts [8]: 

- The next future is to start adding, though slowly, more cores to chip designs 

- These cores should be complex and highly performing, in order to support single threaded 

applications 

- Shared memory on hardware level will be enhanced by increasing the number of cores per 

chip 

- The main issues to address will be memory access latencies, to be reduced through cache 

hierarchies and mechanisms that can improve efficiency of core usage. 

 

4.1 Emerging technologies 

After multi-core chips became a standard, several new issues emerged that required new 

solutions, while some existing, well-known problems have found innovative solutions. The 

problem of “memory wall”, initially defined as the gap between the speed of processors and the 

speed of memory access, slowly turned into a different problem: while the latency gap became 

smaller, with the increase in the number of cores, the need for memory bandwidth increased. 

Interconnections became another important issue: existing solutions became either too power 

requiring, as the transistor count raised up (the case of bus or ring solutions), or led to higher 
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latency (mesh networks), as the number of cores continues to increase. Finally, the availability of 

a larger number of cores calls into question the core usage efficiency, promoting the use of some 

of the cores (or at least hardware threads) as helpers [8]. 

There are essentially three different viewpoints followed by multi-core chip designs: 

- fewer, but more complex, high performance cores with large, shared on-chip caches and 

cache coherence mechanisms; this design is represented by most server chip vendors 

(IBM, Intel, AMD and SUN) but also companies focusing on the mobile and low power 

design space 

- large number of simple, low frequency, sometimes specialized cores with distributed on-

chip memories (with or without cache coherence mechanisms) and scalable 

interconnections 

- integration of multiple cores of different capabilities  

The main argument for the first type of design is to keep support for single-threaded applications. 

Conversely, following the second approach, the overall performance per watt will be higher by 

using simpler but more cores. Finally, the third type of design usually targets specific domains 

where some measure of performance dominates all other factors. 

Examples of processors based on low number of cores are Intel Server, IBM Power, SPARC and 

ARM processors. Examples of processors based on large number of cores are NVIDIA GPUs and 

Intel MIC.  

4.1.1 Nvidia GPU 

A Graphic Processing Unit is a specialized integrated circuit designed to manipulate and operate 

on graphical data, in order to accelerate the creation and rendering of images in a frame buffer, 

intended for output to a display. Modern GPUs has become very efficient at manipulating 3D 

computer graphics, and their highly parallel structure well fit algorithms where processing of 

large blocks of data can be done in parallel. In fact, operations as texture mapping, rendering of 

polygons, rotation and translation of geometries into different coordinate systems and video 

decoding, involve matrix and vector operations that can be effectively exploited in simulation 

software. 

In contrast to a CPU, a GPU focuses mainly on floating-point multiplication and addition, 

together with the ability to execute thousands of threads in parallel. Memory is located physically 

closer to the processors (Figure 30, 31 and 32) and memory transfer has a large bandwidth within 

the graphics card (Table 2).  However, GPUs do not integrate any system for choosing how the 

memory should be used for optimal performance [19]. Therefore, best performance can be 

achieved by programming specifically where and when data should be stored on the graphic card. 

The programmer also need to be aware of some hardware specifications, as parallel threads can 

only operate in blocks, by performing the same operation on different data. Each thread can 

operate only on its local memory, then a group of threads are grouped in a block, of dimension 
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related to the hardware configuration. Each block can operate on L1 cache. Similarly, a group of 

blocks called grid, can handle data in the global memory.  

In conclusion, GPUs provide outstanding computing power on tasks characterized by a high 

degree of parallelism, but their arithmetic power results from a highly specialized architecture, 

and many applications exists for which GPUs are not well suited [8]. 

 
Figure 30. GPU functional subdivision. 

 

 
Figure 31. Example of NVIDIA streaming multiprocessor architecture. 
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Table 2. Nvidia Tesla GPUs technical specifications. The same data on a recent Intel multicore processor are 

reported for reference [20,21]. 

 Tesla C1060 Tesla 

C2075 

Tesla K20 Tesla K40 Intel Xeon 

E5-2687W v2 

Number of Streaming Processor cores 

(Scalar Processor) 
240 448 2496 2880 8 

Core frequency 1.3 GHz 1.15 GHz 706 MHz 745 MHz 3.4 GHz 

Single Precision floating point performance 

(peak) 
933 GFlops 

1.03 

TFlops 
3.52 TFlops 4.29 TFlops -- 

Double Precision floating point performance 

(peak) 
78 GFlops 

515 

GFlops 
1.17 TFlops 1.43 TFlops 108 GFlops 

Floating Point Precision IEEE 754 IEEE 754 IEEE 754 IEEE 754  

Total dedicated memory 4 GB 6 GB 5 GB 12 GB 256 GB 

Memory Speed 800 MHz 1.5 GHz 2.6 GHz 3.0 GHz 1.86 GHz 

Memory bandwidth (between cache and 

cores) 
102 GB/s 144 GB/s 208 GB/s 288 GB/s 59.7 GB/s 

Software Development Tools 

C-based 

CUDA 

Toolkit 

C-based 

CUDA 

Toolkit 

C-based 

CUDA 

Toolkit 
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Figure 32. NVIDIA Tesla K40 GPU. 

 

4.1.2 Intel MIC 

The Intel MIC represents a step in the path from multicore to many-core. There are neither 

specialized accelerators or dedicated memory structures, but only relatively simple x86 

processors with their attached vector-processing units and caches, the DRAM controllers, and the 

PCIe interface (Figure 33). All of the power of the chip is dedicated to executing x86 instruction 

code [8,22]. 

 
Figure 33. Intel’s Xeon Phi is a heterogeneous array of more than 50 x86 cores linked 

by a two-way racetrack interconnect scheme. 
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The Intel chip shows the virtue of being homogeneous architectures, without special calls to 

hardware accelerators and without location-dependent performance. Furthermore, software 

designers can map any mixture of data-flow, multithread, or data-parallel machines onto the 

CPUs.  

4.2 Scalability Issues for Many-core Processors  

In the previous chapter, a brief outline has been carried out on well-established technologies used 

in building multi-core processors as well as the emerging technologies that are targeting some of 

the shortcomings of current technologies. On manufacturing technology level, major chip 

manufacturers estimate that current CMOS technologies will produce smaller components down 

to approximately the 6 nm manufacturing process (Figure 4). At that level, at least two major 

challenges will emerge [8]: 

- As the size of transistors will be measured in a few tens of atoms at most, quantum effects 

will have to be taken into account and, consequently, unreliability of the hardware will 

increase, with components failing more often and, more importantly, intermittently  

- There will be so many transistors on the chip that it will be impossible to switch all of 

these at the same time; this phenomenon, known as the dark silicon problem, will have a 

significant impact on future processors design 

The unreliability of future hardware will likely lead to the implementation of redundant execution 

mechanisms. By following this approach, multiple cores will perform the same computation, in 

order to increase the probability that at least one will succeed; in some cases a voting scheme on 

the result (verifying if all the computations yielded the same result) may be used to guarantee 

correctness of the calculation. Even if such kind of mechanisms will be invisible to the software, 

they will impact the complexity of the design of logical processor cores. 

The dark silicon problem is trickier to address. In particular, by lowering the frequency at which 

chips operate would only push the limit further [23], but finally it will become an issue. 

Alternative solutions include the adoption of “memristors” as building blocks (instead of 

transistors) and chip designs where, at any given time, only a subset of components would be 

active, depending on the type of application [24]. Optical interconnects within and between chips 

could also allow for building smaller chips, interconnected to build larger, cache coherent logical 

chips.  

Another scalability bottleneck relates to the design of cache coherency protocols [25]. 

Synchronizing access to the same memory area from a large number of cores will increase the 

complexity of coherency design and will lead to increasing delay and latency in accessing 

frequently modified memory areas. To maintain a coherent view across hundred or thousand 

cores could be expensive and impractical. 
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Memory bandwidth will be another scalability bottleneck. The leveling of the core frequency will 

lead to reduced latency, but the increase in the number of cores will multiply the amount of data 

required by the cores and thus the total memory bandwidth that future chips will require. As an 

extension of Moore’s law for an ever-increasing number of cores (in principle, following the 

same trend of doubling core-count every two years) a similar trend would need to be followed by 

memory bandwidth. This trend has not been followed by industry in past years. 

On the basis of previous observations about future developments and bottlenecks, the following 

trends will dominate the design of future processors: 

- A shift towards simple, low frequency, low complexity cores is expected, coupled with an 

increase of the core count to the level of several hundred within five to ten years; 

heterogeneity in core capabilities will be a factor, because it is an easy optimization gain 

- Improvements will focus on novel memory technologies that can deliver higher 

bandwidth access; technologies such as 3D stacking, optical interconnections and 

memristors will be used in processor designs; especially optical interconnects facilitate 

chips structure and interconnection 

- The size of on-chip memory will be remarkably increased, and some emerging 

technologies will reduce the footprint, power consumption and complexity of designing 

such solutions, similar to the development of the embedded DRAM technology; once 

again 3D stacking and memristors may be some of the future technologies 

- Hardware accelerators will be abundant, due to the low footprint and low power 

consumption 

- Aggressive power optimization mechanisms, as near threshold operation, power gating, 

frequency and voltage scaling, will become prevalent not only in traditionally low power 

domains, but also in most areas where processors are used. 
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5. Simulation of electromagnetic field problems  
 

Model creation is at the very heart of physics and other sciences as well. The essence of a model 

is that it should be a simplified representation of real object or physical phenomena which serves 

a particular, and perhaps limited, purpose. The physical systems are often very complex, 

containing entities that cannot be considered and whose existence and properties can only be 

inferred or approximated.  

The need for more detailed analysis during design and verification process, known as virtual 

prototyping, led to the diffusion of numerical methods finalized to the study of different physical 

phenomena. The study of new induction heating processes involves the determination of electric 

and magnetic fields distribution in a physical domain, as well as the thermal distribution inside 

heated parts. In most practical cases, an analytic approach would not be possible due to non-

linear phenomena, since magnetic saturation in magnetic flux concentrators, iron core losses, 

radiative thermal exchanges could not be easily treated. Numerical models allow for the 

determination of electric current density distribution inside workpieces and inductors, even in 

case of complex geometrical and physical properties. By summarizing, through a numerical 

model it is possible: 

- To determine electric and magnetic fields distribution, both from a local (quantities in 

particular positions in the domain) and a global point of view (i.e. magnetic flux, 

inductance, induced power) 

- To reduce high field gradients, to avoid magnetic saturation conditions, to exploit 

anisotropic materials in a more profitable way 

- To predict the behavior of an electromagnetic device or process with good accuracy 

- To reduce costs of prototyping 

 

5.1 Finite Element Method 
Finite Element Method (FEM) is a numerical technique that allows for the solution of a vector 

field problem, in which non homogeneity, directional anisotropy, non-linearity and time-varying 

phenomena are present [26]. In mathematical terms, this translates as to find approximate 

solutions to boundary value problems for differential equations. This method uses a variational 

approach (calculus of variations) to minimize an error function and produce a stable solution. 

Analogous to the idea that connecting many tiny straight lines can approximate a larger circle, 

FEM encompasses all the methods for connecting many simple systems of element equations 

over many small subdomains, named finite elements, in order to approximate a more complex 

system of equations over a whole domain. The subdivision of the domain into simpler parts 

provides several advantages: 
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- An accurate representation of complex geometries 

- Possibility to include different material properties 

- Easy representation of the global solution 

- Accounting for local effects. 

A typical FEM procedure involves: 

- dividing the domain of the problem into a collection of subdomains, with each subdomain 

represented by a set of element equations related to the original problem 

- systematically recombining all sets of element equations into a global system of equations 

for the final calculation. The global system of equations has known solution techniques,  

and can be calculated after imposing proper boundary conditions to the original problem, 

in order to obtain a numerical solution. 

In the first step above, the element equations are simple equations that locally approximate the 

original complex equations to be studied, where the original equations are partial differential 

equations [27]. To explain the approximation process, FEM is commonly introduced as a special 

case of Galerkin method. The process is to construct an integral of the inner product of the 

residual and the weight functions, and set the integral to zero. In simple terms, it is a procedure 

that minimizes the error of approximation by fitting the original PDE through trial functions. The 

residual is the error caused by the trial functions, and the weight functions are polynomial 

approximation functions. The process eliminates all the spatial derivatives from the PDE, thus 

approximating the PDE locally with: 

- a set of algebraic equations for steady state problems, 

- a set of ordinary differential equations for transient problems. 

These equation sets, defined on each finite element, are the element equations. 

By according to a mathematical approach, the method can be introduced starting from Rayleigh-

Ritz principle (variational method), for which solving      means to find the minimum of 

 ( )  
 

 
          [28]. Consider the equation       ( ), with boundary conditions 

 ( )   ( )   . This problem is infinite-dimensional, where   is replaced by       ⁄  and   

vector is replaced by a function  . The total energy  ( ), to be minimized in order to get the 

solution  , is obtained by replacing inner products     with integrals of  ( ) ( ): 

 ( )  
 

 
          

 

 
 ∫  ( )(    ( ))  
 

 

 ∫  ( ) ( )  
 

 

 

and  ( ) must be minimized in respect to all functions  ( ) that satisfy the boundary conditions 

 ( )   ( )    . The function that minimizes  ( ) is  ( ). Then, the differential equation has 

been converted to a minimum problem. By integrating by part, it follows that: 
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The term    is null at the boundary, because    , and ∫(  ( ))
 
   is positive, as     . Thus, 

there is a minimum of  ( ). In order to calculate that minimum, Rayleigh-Ritz principle lets to 

bring back to a   dimensional problem by choosing only   test functions   ( )     ( ). 

Among all the linear combination         ( )        ( ), the solution is the particular   

that minimize  ( ). In this way, it is enough to minimize   on a subspace of   instead of on all 

possible  ( ). Once the  ( ) function is found, it should be a good approximation of correct 

solution  ( ). 

By replacing   with  , the quadratic form turns into: 
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Test functions are chosen a priori. Unknowns         are represented in a   vector, thus leading 

to the quadratic form  ( )  
 

 
         . Entries     in matrix   are ∫   

   
   , coefficients 

of     . Components    are ∫      . It is possible to find the minimum of 
 

 
         by 

solving the linear system     . Thus, Rayleigh-Ritz method can be summarized in three steps: 

- Choose test functions         

- Computation of     and    entries 

- Solution of      in order to find  ( )       ( )        ( ). 

In the first step, test functions must be carefully chosen because: 

- If functions   ( ) were not simple enough, following steps could become too expensive 

or impractical to compute 

- If some combinations of   ( ) could lead to a bad  ( ) approximation, the solution could 

be not as accurate as expected 

In order to combine both computability and accuracy, element-wise polynomial functions are 

chosen as test functions  ( ).  

The most simple and used finite element is the linear element shown in Figure 34. Internal nodes 

are filled in                   . Then,    is the test function that is 1 on node   , and 0 

on other nodes. The function covers a small interval close to its node, called support, and it is null 

on all other nodes, including the boundaries. Each combination             shows a value 

   on node  , as reported in Figure 35.  
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Figure 34. Example of test function on a 1D linear finite element.  

 

 
Figure 35. Example of linear combination of test function on a discretized 1D domain. 

 

The second step is the computation of matrix entries     ∫  
   
    in the “stiffness” matrix A. 

On    support, the slope   
  is     on the left of   , while it is      on the right. If functions 

from neighbor nodes are not superimposed, then   
   
  is zero and      . Each test function is 

superimposed to itself and to only two neighbor, thus: 
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The stiffness matrix   is obtained: 

    
 

 

[
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Usually, finite element method exploits more sophisticated test functions, as higher degree 

polynomials, built on triangles/tetrahedral or rectangles/brick elements. This method is a 

systematic approach for discretization of partial differential equations on irregular grids. In 

practical problems, this method leads to large square matrices, characterized by a strong sparsity 

factor (number of nonzeros entries to number of entries ratio). It is essential to use simple 

polynomials as test functions, because their derivatives are easy to find and integrate on the 

element. Finally, each of    entries is calculated as the average of   around the point   , such that 

   ∫     . 

In the third step, the linear system is solved in order to find the minimizing solution         

      . By connecting all the    values on    nodes, the approximated solution  ( ) is 

obtained.  

 

5.1.1 FEM in induction heating simulation 

A big role in introduction of FEM in electromagnetism belongs to P.Silvester, M. Chari and other 

colleagues in 1970’s [29]. While the first application of the method was in the area of electrical 

machine analysis, Silvester and Haslam extended FEM to induction heating problems by 

considering the eddy currents induced in a linear conductor [30]. The next year, in 1973, Chari 

extended the method to a ferromagnetic conductor subjected to an oscillating AC field [31], a 

problem much closer to the heart of induction heating. In 1975, A. Foggia extended FEM to the 

case of a ferromagnetic conductor in presence of a travelling magnetic field  [32], providing the 

basis for metal strip heating applications and electromagnetic stirring in induction furnaces. 

One of the key limitations of FEM is the need to include the far field region as part of the 

solution domain. An attempt to overcome this limitation led to the first hybrid formulations for a 

magnetic field problem. McDonald and Wexler [33] proposed to bind the eddy current and source 

regions, at an appropriate distance, by a surface on which a boundary integral formulation could 

be used. Since then, many improvements provided a firm theoretical basis for FEM to be 

effectively used in the simulation of induction heating processes.  

In a generic induction heating electromagnetic problem, high frequency source fields are 

involved, and the time scale is in the order of milliseconds-microseconds, whereas the time scale 

of the thermal problem is in the range of seconds or minutes. FEM allows for the solution of the 
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quasi-stationary electromagnetic field problem, that is the determination of magnetic field 

distribution, induced current and power density distribution in the analyzed domain, eventually 

with Newton Raphson iterative loop, i.e. when accounting for non-linear field-dependent 

properties of ferromagnetic materials. A step of temperature calculation follows, with proper 

correction of temperature dependent properties of materials, for the updated time, and so on. This 

approach has been introduced by Holmdahl and Sundberg in [34]. By the same methodology, 

Lavers [35] provided one of the first solutions of a 2D induction heating problem involving a 

ferromagnetic, square section conductor. He also described the computational methods for the 

analysis of the molten metal confinement, the problem that includes the simulation of 

electromagnetic and magneto-hydrodynamic phenomena [36]. Massé described a predictor 

corrector scheme that allowed a time step refinement during the critical Curie transition [37].  

In conclusion, at the very beginning of 90s, FEM was ready for a wide practical use in simulation 

of induction heating and melting processes and installations [38]. In later years, it has established 

as the preferred method due to its versatility and wide use in other technical fields, i.e. structural 

mechanics. Large commercial multipurpose packages appeared on the market and many 

companies and groups started to use them for induction heating simulations. Examples of these 

software are Cedrat Flux [39], Ansoft Maxwell [40], Vector Field Opera [41], Quick Field [42] 

and Comsol [43]. 

 

5.1.2 Nodal and edge elements 

The numerical analysis of three-dimensional eddy current problems with the aid of the finite 

element method has been one of the main directions of research in computational 

electromagnetics during the 1990s. Available finite-element codes typically use vector and scalar 

potential functions to describe the field quantities. Finite element techniques using nodal based 

functions to approximate both scalar and vector potentials (known as nodal finite elements) were 

first to emerge [44-48]. Various possible formulations have been proposed by O. Birò in terms of 

different potential functions [53]. The most outstanding feature of these approaches is the 

incorporation of the Coulomb gauge on the vector potentials in the governing equations [49-50]. 

This technique is consistent with nodal finite elements and leads to robust numerical realizations.  

Nevertheless, the use of nodal finite elements to approximate vector potentials leads to 

difficulties when applied to two specific types of problems. The first class of problems involves 

highly permeable conducting regions (i.e. iron parts) surrounded by non-magnetic and non-

conducting domains (i.e. air) with a magnetic vector potential   used to describe the field inside 

the iron parts. The use of a magnetic scalar potential   in air in the vicinity of the iron/air 

interface is not desirable because of the weak coupling between the two potentials. The remaining 

option of employing   in air leads to considerable inaccuracies at the interface due to the 

continuity of the normal component    of the magnetic vector potential resulting in a natural 

interface condition which requires a jump in the divergence of   [51,52]. A second problem, not 
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easily treated in case of nodal finite elements, arises when singularities are approximated at sharp 

corners along which the tangential components of a vector potential vanish, and this vector 

potential describes the field on both sides of the interface constituted by the corner. Indeed, the 

continuity of the normal component renders the field obtained as the curl of the vector potential 

to be zero at the corner instead of an expected high value. A typical example is the modeling of 

thin flaws or cracks in a conducting piece, in which the eddy currents are derived from a current 

vector potential  , by setting the tangential components of   to zero.  

The above problems are avoided if the vector potentials are approximated by edge (tangential 

vector) finite elements [54-56], because these elements enforce only the (physically necessary) 

continuity of the tangential components of the vector potentials, but not forcing the continuity of 

the normal component. However,   or   formulations cannot be gauged in the same way as in the 

corresponding nodal finite element formulations, since the lack of continuity of their normal 

components implies that their divergence cannot be defined at element interfaces. One of the 

most outstanding properties of edge finite elements is that the curls of the vector basis functions 

are not linearly independent although the test functions themselves are. This holds both for 

element shape functions, defined on each element, and for the global basis functions defined on 

the global mesh, leading to a tree-cotree method for gauging vector potentials [57].  

 

5.1.3 Definition of the electromagnetic problem 

An eddy current problem arises when an object, made of conducting material, is exposed to a 

time varying magnetic field, originated by a source [53]. In induction heating applications, the 

frequency range extends from a few Hertz to a few MHz, thus the displacement current density is 

assumed to be negligible, i.e. the differential equations of quasi-static fields hold. This leads to a 

static but time varying magnetic field in the non-conducting regions    surrounding the eddy 

current carrying conductors constituting the region   . In   , the current density distribution is 

unknown and an eddy current field is present. 

The excitation can be of three types. The first possibility, called coil excitation, is realized by a 

coil with given current density   , situated in   . If the total current through a conductor is 

prescribed, but the current density distribution herein is unknown, a skin effect problem with 

current excitation is obtained. If, conversely, the voltage of the conductor is given, a skin effect 

problem with voltage excitation is defined. Skin effect problems are conveniently treated by 

different potential formulations.  

The time variation will be assumed to be sinusoidal with an angular frequency of  , and complex 

notation will be used. Hence, the differential equations to be solved are the following: 

             in    

          in    
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           in    

             in    

          in    

          in    

Where   is the magnetic field intensity,   is the magnetic flux density,   is the electric field 

intensity and   is the current density. 

The field quantities satisfy the following constitutive equations: 

       in    and    

       in    

Where   is the magnetic permeability and   is the electric conductivity. 

The effect of a given current density in the coils is assumed to be described by an impressed field 

quantity    satisfying:  

           

In this way, it is not necessary to model coil geometry in the finite element mesh. Usually,    is 

chosen equal to   , that is the magnetic field in free space computed by integration of Biot-

Savart law. 

The boundary conditions of the problem (homogeneous for simplicity) can be given at artificial 

far boundaries (i.e. “infinite boxes”), or along symmetry/periodicity planes, as follows: 

        or         on    (boundary of   )  

Therefore, the normal component of   is continuous across the interface. Therefore the tangential 

component of   is continuous across the surface (since no surface current is considered). 

        or          on    (boundary of   )  

Therefore the tangential component of   is continuous across the interface. 

The continuity conditions on the interface     between the conducting and non-conducting 

regions are  

     and        are continuous on    .  
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These interface conditions will provide the coupling between the formulations in the non-

conducting eddy current free region    and the conducting eddy current region   . The solution 

of the differential equations with the boundary and interface conditions is unique. 

There are two ways to describe the magnetic field in the non-conducting eddy current free region 

  : either by a magnetic scalar potential or by a magnetic vector potential. The most used 

formulations are detailed in [53]. 

The  -formulation  

The magnetic scalar potential   is defined by  

            

The magnetic scalar potential   is usually called the reduced magnetic scalar potential because 

the source term is hidden in   .  

Thus, the differential equation is: 

   (        )     (   )  in    

With boundary conditions on   : 

         Dirichlet condition 

                   Neumann condition 

If no Dirichlet boundary conditions are prescribed, then     must be specified at some points 

in order to ensure the unicity of the reduced magnetic scalar potential. The scalar potential is 

approximated through nodal basis function. The  -formulation is satisfactory if the permeability 

of the medium is not very high. In this case the simulated magnetic field             does 

not differ too much from the source magnetic field   . By increasing the permeability of the 

medium, e.g. when soft magnetic materials are modeled, the resultant magnetic field   is 

decreasing inside the magnetic material, e.g.            , which is a strong disadvantage from 

numerical side. This leads to a cancellation error, i.e. when two almost equal quantities are 

subtracted from each other. 

In order to overcome this penalizing situation, it is possible to derive the magnetic field intensity 

from a total magnetic scalar potential   as 

           

Since          and      inside highly permeable regions. 

This can be the situation in most practical cases, since the magnetic field intensity is generated by 

currents flowing in coils. The source coils are usually placed somewhere around the 
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ferromagnetic parts, but source currents are not flowing inside ferromagnetic materials. In this 

situation, it is possible to use the reduced magnetic scalar potential   in the air region and the 

total magnetic scalar potential   inside the highly permeable region and the two formulations 

must be coupled through the interface between the two regions. 

As an alternative, it is also possible to avoid cancellation error inside ferromagnetic materials 

with high permeability by choosing an appropriate representation of the impressed current vector 

potential. A “compatible approximation” should be used to interpolate both the impressed field 

    and the unknown        part of  . In finite element method, this means that the vector field 

    should be represented by edge elements and the scalar field   should be interpolated by nodal 

elements and the order of them must be the same. 

The Ar-formulation 

In order to avoid a modeling of the coils, magnetic flux density is computed as the sum of 

impressed Biot-Savart field in free space     , and of the curl of a “reduced” vector potential   : 

                

Then, the differential equation is: 

    (
 

 
        )              

  

 
    in     

With boundary conditions on   : 

           Dirichlet condition 

 

 
                Neumann condition 

The reduced vector potential can be approximated either by nodal or edge basis functions. 

Similarly, two vector potential formulations can be used to describe the eddy current field in the 

conducting region   : either a magnetic vector potential or an current vector potential. The 

magnetic vector potential can be employed with or without an electric scalar potential, whereas 

the current vector potential description must be augmented by a magnetic scalar potential.  

The A,V-formulation   

The field quantities are derived from a magnetic vector potential A and an electric scalar potential 

V, defined as: 
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Then, the differential equation is: 

{
    

 

 
                            

    (                   )   
   in    

With boundary conditions on   : 

       or  
 

 
               

              or    (                    )    

Magnetic vector potential can be approximated either by nodal or edge basis functions, while 

scalar electric potential is approximated by nodal basis functions. 

The T,   formulation 

The field quantities are derived from potentials as: 

              

                 

Then, the differential equation is: 

{
    

 

 
                               

 

 
               

       (            )          (    )
 in    

With boundary conditions on   : 

       or  
 

 
          

 

 
           

              or    (            )           

Current vector potential can be approximated either by nodal or edge basis functions, while 

magnetic scalar potential is approximated by nodal basis functions. 

 

5.2 Integral equations and hybrid methods in induction heating simulation 

Concurrently to the development of FEM, other numerical formulations of eddy current problem, 

based on integral equations, have been explored [58-61]. This approach let to the development of 

several calculation methods such as Inductively Coupled Circuits (ICC), Volume Integral 

Methods (VIM),  Boundary Element Method (BEM) and Partial Element Equivalent Circuit 

method (PEEC). 
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All integral equation methods are based on replacement of the real conductive and magnetic 

bodies with the primary and secondary (induced) field sources. Interaction of the selected sources 

at distance allows to compose equations for the secondary source calculation. A common action 

between primary and secondary sources must provide the same distribution of at least one of the 

electromagnetic field components, as it is in the real system. This is a necessary and sufficient 

condition for calculation of the secondary sources and, then, all the required parameters of the 

system. Secondary sources may be the real physical sources, such as currents in active conductors 

and electric charges, or artificial sources introduced for the calculation purposes only. In 

magnetic bodies, the secondary sources describing an action of the surface and volumetric 

magnetization currents must be added. Mayergoiz strongly contributed to the theory of integral 

equations for eddy current problems [62-65] by describing a complete theory of the secondary 

sources and the ways to build the computational models. 

The main advantages of integral methods are small area of discretization (only conductive and 

magnetic bodies) and, therefore, less number of elements and no necessity to use any artificial 

external borders for the open space systems. The main drawbacks lay in the difficult treating of 

complex geometries and the unsuitability to calculate fields in non-linear magnetic regions. It 

must be also mentioned that integral methods give rise to fully populated matrices and each entry 

must be calculated by analytical procedures or numerical quadrature algorithms.  

A different approach, originated from ICC, was proposed by V. Nemkov. It is based on a 

combination of Integral Equations for the “external” area, where the known sources are located, 

with an Impedance Boundary Condition (IBC) on the surface of the heated part. The surface 

impedance of the body may be calculated analytically in case of pronounced skin effect [66]. 

The Boundary Element Method is based on the fact that reaction of the body with linear 

properties (magnetic permeability, dielectric permittivity and electric resistivity) on the whole 

system field distribution may be adequately described by properly distributed secondary sources 

on the surface (the boundary) of the body. The influence of one element to another one is 

described through Green functions [67,68]. BEM could be applied to linear 2D and 3D problems, 

with complex geometries. An extension of this method to non-linear materials has been proposed 

in [69,70].  

The key idea behind Partial Element Equivalent Circuit method (PEEC) is to attribute a 

contribution to the total impedance to each part of a structure [71]. On the basis of Maxwell's 

equations, the method model connections of an electric structure by using an electric circuit with 

lumped components (L, R and M). PEEC is a method which makes it possible to calculate 

precisely the resistance, the partial inductance and the mutual partial inductances of rectilinear 

conductors of rectangular cross-section, by taking into account conductors of any cross-section 

either by using numerical integration techniques or by subdividing the cross-section in 

rectangular basic elements (mesh concept in Figure 36). The computation of resistances and 

partial inductances is based on the Ohm’s law and on the line integral of the vector potential 



55 

 

along the conductors respectively; it requires that the conductors be placed in a region where 

there are no nonlinear magnetic materials and that the current density on the conductor cross-

section be uniform. This last condition is incompatible with the frequency approach. Then, in 

order to take into account the effects of the frequency on the current non-uniformity on the cross-

section of conductors, this area is divided in small sections. PEEC is not used to simulate 

induction heating applications, but it is very effective in EMC studies, for example in PCB 

design. A PEEC software, able to simulate also parasitic capacitance effects, is Cedrat InCa3D 

[39]. 

 

 
Figure 36. Representation of conductors in a PEEC equivalent circuit. 
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6. Sparse linear systems: direct and iterative solvers 
 

Solving linear systems of equations lies at the heart of many problems in computational science 

and engineering. In many cases, particularly when discretizing continuous problems by 

differential numerical methods, the system is large and the associated matrix A is sparse. This 

holds in application of finite element method electromagnetic, thermal or structural problems, 

and of volume element method in fluid dynamics problems. Furthermore, depending on the 

particular formulation of the physical problem, the matrix could be symmetric or non-symmetric, 

positive definite or indefinite. 

Graph theory is an ideal tool for representing the structure of sparse matrices and for this reason it 

is exploited in sparse matrix techniques. For example, graph theory is the key aspect used in 

unraveling parallelism in sparse Gaussian elimination or in most preconditioning techniques. As 

an example of the use of graph models, parallelism in Gaussian elimination can be extracted by 

finding sets of unknowns that are independent at a given stage of the elimination process. These 

unknowns do not depend on each other, thus the rows corresponding to such unknowns can be 

used as pivots simultaneously. If the matrix is diagonal, then all unknowns are independent. 

Conversely, when a matrix is dense, each unknown will depend on all other unknowns. Sparse 

matrices lie between these two limit situations [77].  

Permuting the rows or the columns, or both the rows and columns, of a sparse matrix is a 

common operation. In fact, reordering rows and columns is one of the most important elements 

used in parallel implementations of both direct and iterative solution techniques. When the rows 

of a matrix are permuted, the order in which the equations are written is changed. Otherwise, 

when the columns are permuted, the unknowns are relabeled, or reordered. Two-sided 

permutations, that is to apply the same permutation to both the columns and the rows of the 

matrix, are also a common operation in sparse matrix techniques. This is related to the fact that 

the diagonal elements in linear systems play an important role. For instance, diagonal elements 

are typically large in matrices arising from PDE discretization and it may be useful to preserve 

this important property in the permuted matrix. The interpretation of the symmetric permutation 

is quite simple and straightforward. The resulting matrix corresponds to 

renaming/relabeling/reordering the unknowns and then reordering the equations in the same 

manner [77].  

The storage of matrices is also an important factor to be considered. If the coefficient matrix   is 

sparse, large-scale linear systems of the form      can be efficiently solved if zero elements of 

  are not stored. Thus, sparse storage schemes allocate contiguous storage in memory for the 

nonzero entries of the matrix and a limited number of zeros. This requires a scheme for knowing 

where the elements fit into the full matrix. 
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There are many methods for storing the data in order to take advantage of the large number of 

zero elements. The main goal is to represent only the nonzero entries, though allowing for good 

performance in common matrix operations [72].  

The simplest storage scheme for sparse matrices is the coordinate format (COO). The data 

structure consists of three arrays:  

- a real array    containing all the real or complex values of the nonzero elements of   in 

any order 

- an integer array    containing their row indices 

- a second integer array    containing their column indices.  

All three arrays are of length   , the number of non-zero elements.  

For example, the matrix: 

  

(

 
 

     
     
     
       
      )

 
 

 

Will be represented in COO format as: 

    (               ) 

     (            ) 

    (            ) 

In the previous case, the elements are listed by row. Another common ordering is by column. 

COO format is useful for its flexibility, since it is used as an “entry” format for most sparse 

matrix software packages [73]. 

However, the array    contains redundant information, thus it could be replaced by an array of 

pointers to the beginning of each row, in order to save memory. The new data structure, called 

Compressed Sparse Row storage (CSR), is still composed by three arrays: 

- a real array    contains the nonzero entries of the matrix, stored row by row, from row 1 

to  -th. The length is   ;  

- an integer array    contains the column indices of nonzero elements as stored in   , and 

its length is   ;  

- an integer array    contains the pointers to the beginning of each row in array    and   . 

The content of   ( ) is the position in    and    where the  -th row starts. The length of 
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   is    , and   (   ) contains the value   ( )     , that is the memory address of 

the fictitious row    . 

 

 

By following the example above, the matrix   is stored in CSR format as: 

    (               ) 

     (            ) 

    (         ) 

The CSR scheme is preferred over COO because it is more useful for performing typical 

computations on sparse matrices, i.e. sparse matrix vector products, which is an important 

operation for iterative solutions of sparse linear systems.  

In Figures 37 and 38, an example for the matrix-by-vector product in CSR storage is given. 

 

         
            ( ) 
          (   )    

      ( )            (  (     )  (  (     ))) 

       

 
Figure 37. Example code of sparse matrix-vector product for CSR format matrices.  

 

 
Figure 38. Illustration of the row-oriented sparse matrix-vector multiplication. 

 

Notice that each iteration of the loop computes different component of the resulting vector. This 

is an advantage because each of these components could be computed independently on a parallel 
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hardware. However, data need to be accessed in a non-patterned way, and limited memory 

bandwidth could lead to a bottleneck. Other techniques are available, such as data prefetching, 

vectorization and other advanced techniques, depending on the hardware.  

Solving a lower or upper triangular system is another important “kernel” in sparse matrix 

computations. The code in Figure 39 shows a simple routine for solving a unit lower triangular 

system      for the CSR storage format. 

 
 ( )     ( ) 
          
                ( ) 
                (   )    
         ( )     ( )             (  (     )  (   (     ))) 
       
 
Figure 39. Example code for the solution of a lower triangular system in CSR format. 

 

At each step, the inner product of the current solution   with the  -th row is computed and 

subtracted from  ( ). This gives the value of  ( ). The dotproduct function computes the dot 

product of two arbitrary vectors  (     ) and  (     ). The vector   (     ) is the  -th row 

of the matrix   in sparse format, and  (   (     )) is the vector of the components of   

gathered into a short vector which is consistent with the column indices of the elements in the 

row   (     ).  

Compressed Sparse Column format (CSC) is similar to CSR, except that values are read first by 

column, a row index is stored for each value, and column pointers are stored. Recently, new 

formats emerged in order to fit particular classes of problems or to exploit in a better way new 

hardware.  

 

Another important aspect related with the solution of large sparse linear systems is the 

conditioning of a system, that is to determine its stability. In particular, when the linear system 

arises from the discretization of physical problem models, both the system matrix   and the right 

hand side   are generally disposed to errors. When a small variation on   or   is reflected into a 

great variation on the solution  , the linear system is badly conditioned.  

The conditioning number of a square matrix   is the real number  (  )  ‖  ‖‖    ‖. The 

problem and related matrix   could be: 

- well-conditioned, if  ( ) is almost equal to 1, i.e. if the relative error reflected on the 

solution is of the same order as the source error in   vector  

- badly conditioned, if  ( ) is large  
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- badly formulated, if  ( ) is infinite 

The conditioning number could be deteriorated by the following factors: 

- Physical characteristics: very different numerical values of constants or of physical  

coefficients; in a ratio higher than     , i.e. computation domain characterized by regions 

of low-conducting materials and regions of high-conducting materials, or electric circuit 

that contains resistances or/and inductances characterized by both low and high values 

- Poor quality mesh, with flattened elements, with a very high ratio between the size of the 

smallest mesh element and that of the largest mesh element, or a very high number of 

mesh elements  

- Type of interpolation: a high degree of interpolation functions, or edge element 

interpolation. As an example, in Cedrat Flux software nodal FEM leads to invertible 

linear systems while edge elements leads to noninvertible linear systems by construction. 

A tree-cotree gauge technique can lead to invertible matrices but it deteriorates the matrix 

conditioning. 

In order to decrease the value of the conditioning number, the initial system is transformed into 

an equivalent system having better a priori properties, through a preconditioning technique. In 

particular, preconditioning consists in replacing the system to be solved      with an 

equivalent system           . In general, a preconditioning algorithm build a matrix     

as approached to     as possible, so that      matrix is well-conditioned.  

Finally, the scaling operation of linear systems can improve the conditioning by the so-called 

normalization techniques. Typically, solving a non-scaled linear system can lead to the 

divergence of the iterative process or to the slow convergence of this process, in case of iterative 

solvers, or it can generate solutions of bad quality, in case of direct solvers. 

6.1 Direct methods 
Since the early 1990s, many new algorithms and a number of software packages have been 

developed, in order to efficiently solve sparse symmetric and non-symmetric systems [74]. In 

particular, direct methods for solving a sparse linear system      involve the explicit 

factorization of the system matrix   (or a permutation of  ) into the product of lower and upper 

triangular matrices   and  . In the symmetric case, for positive definite problems    

    (Cholesky factorization) or, generally,        , where   is a block diagonal matrix with 

      and       blocks. Forward elimination followed by backward substitution completes the 

solution process for each given right-hand side  .  

Direct methods are important because of their generality and robustness. Indeed, for badly 

conditioned linear systems arising from some applications, they are currently the only feasible 

solution methods. In many other cases, direct methods are often the method of choice because, on 

the other hand, finding and computing a good preconditioner for an iterative method can be 
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computationally more expensive than using a direct method. Furthermore, direct methods provide 

an effective mean of solving multiple systems with the same   but different right-hand sides  , 

as in this case the factorization step needs to be performed only once.  

Sparse direct methods solve systems of linear equations by factorizing the coefficient matrix  , 

generally employing graph models to try to minimize both the storage needed and the amount of 

calculation performed. Sparse direct solvers follow a number of distinct phases (Figure 40). 

Although the exact subdivision depends on the algorithm and software being used, a common 

subdivision is given by: 

1. An analysis phase that investigates the matrix structure to determine a pivot sequence and 

build a dependency graph, a data structure needed for efficient factorization. Finding a 

good pivot sequence can significantly reduce both memory requirements and the number 

of floating-point operations required for next steps. Most advanced codes have different 

capabilities, i.e. permutations and scaling of the matrix prior to the factorization, as well 

as data partitioning and mapping for distributed parallel computing and memory usage 

estimation for In-core/Out-of-Core computation 

2. A factorization phase that uses the pivot sequence to factorize the matrix  

3. A solve phase that performs forward elimination followed by back substitution, by using 

the stored factors. The solve phase may include an iterative refinement for the 

improvement of the solution quality, as well as an error analysis.  

 
Figure 40. Block diagram representing the three solution phases of a sparse direct solver [88]. 

 

In a serial implementation, the factorization is usually the most time-consuming among the 

different phases, while the solve phase is generally significantly faster. This situation is still true 

for parallel executions both on distributed memory systems and shared memory computers. 

 

6.2 Frontal solvers 

A frontal solver [76] is an approach to the solution of sparse linear systems that automatically 

avoids a large number of operations involving zero terms. A frontal solver builds a    or 

Cholesky decomposition of a sparse matrix, given as the assembly of element matrices, by 

assembling the matrix and eliminating equations only on a subset of elements at a time. This 

subset is called front and it is essentially the transition region between the part of the system 

already processed and the part to be processed. In the original method, the whole sparse matrix is 
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never created explicitly and only parts of the matrix are assembled as they enter the front. 

Processing the front involves dense matrix operations, which use parallel hardware efficiently. In 

a typical implementation, only the front is in memory, while the factors in the decomposition are 

written into files. The element matrices are read from files or created as needed and discarded. 

In an unifrontal scheme, the factorization proceeds as a sequence of partial factorizations and 

eliminations on dense submatrices, called frontal matrices. For assembled systems, the frontal 

matrices can be written as: 

[
      
      

] 

where all rows in frontal matrices are fully summed (no further contributions are expected to 

these rows) and the first block column is fully summed. This means that the pivots can be chosen 

from anywhere in the first column, and numerical pivoting with arbitrary row interchanges can be 

accommodated within these columns [77,78].  

Let pivots to be chosen from a square matrix    . Then     is factored and the Gaussian 

elimination overwrites    , and the following Schur complement:  

          
      

is computed by using dense matrix kernels. The submatrices, consisting of rows and columns of 

the frontal matrix from which pivots have not been chosen yet, form the contribution block. In 

the case above, this is the same as the Schur complement matrix. At the next stage, further rows 

from the original matrix are assembled with the Schur complement to form another frontal 

matrix. The entire sequence of frontal matrices is retained in the same working array. Data 

movement is limited to assembling rows of the original matrix into the frontal matrix, and storing 

rows and columns as they become pivotal. One important advantage of the method is that only 

this single working array needs to reside in memory. 

An example is shown in Figure 41, where two pivot steps have already been performed on a 5 × 7 

frontal matrix (by computing the first two rows of   and columns of  , respectively) and the 

columns are in pivotal order. Entries in   and   are shown in lower case. Row 6 has just been 

assembled into the current 4 × 7 frontal matrix, shown as a solid box. Columns 3 and 4 are now 

fully summed, because a column is fully summed if it has all of its nonzero elements in the 

frontal matrix, and can be eliminated. After this step, rows 7 and 8 must both be assembled 

before columns 5 and 6 can be eliminated (the dashed box, a 4 × 6 frontal matrix containing rows 

5 through 8 and columns 5, 6, 7, 8, 9, and 12). The frontal matrix is stored without the zero 

columns, that is, columns 6 and 7 in the dashed box. The dotted box shows the state of the frontal 

matrix where the next four pivots can be eliminated. To factor the 12 × 12 sparse matrix in Figure 

41, a 5 × 7 dense working array is sufficient to hold all the frontal matrices. The unifrontal 
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method works well for matrices with small pattern. But, for matrices with large pattern, the 

frontal matrices may be very large and an unacceptable amount of fill-in may occur. 

 

 
Figure 41. Factorization of a 12 × 12 sparse matrix. Two pivot steps have already been performed on a 5 × 

7 frontal matrix [78].  

 

 

6.3 Multifrontal solvers 

A multifrontal solver, proposed by Duff and Reid [79], is an improvement of the frontal solver 

that uses several independent fronts at the same time. The fronts can be elaborated by different 

processors on parallel hardware, by exploiting a high-level parallelism. Nonetheless, as in the 

unifrontal method, the multifrontal method exploits low-level parallelism and vectorization 

techniques using the dense matrix kernels on frontal matrices. However, the frontal matrices in 

1 2 3 4 5 6 7 8 9 10 11 12

1 u u u u u

2 l u u u u

3 l l X X X X

4 l l X X X X

5 l l X X X X

6 l l X X X X X X

7 X X X

8 X X X X X X

9 X X X X

10 X X X X X

11 X X X X X X

12 X X
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the multifrontal method are generally smaller and denser than in the unifrontal method. The 

following three phases are performed: 

- a reordering phase, through a minimum degree algorithm, in order to reduce number of 

zeroes stored in factor matrices (fill-in). The ordering is combined with a symbolic 

analysis to generate an assembly tree [77]. 

- a numerical factorization, based on the generated assembly tree 

- a solve step, by forward substitution and backward elimination 

The meaning of elimination tree can be derived from the graph theory, along to how this is 

related to Gaussian elimination and parallelization.  

A non-directed graph (   ) is associated to any sparse symmetric matrix  , of order   (Figure 

42).   is a set of nodes and   is the set of edges, that express the connections between the 

elements of  .  

  

Figure 42. A coefficient in matrix   correspond to a node in the graph  . For each nonzero     in  , there exist an 

edge between nodes   and   in the graph   [82]. 

 

Nodes can be labeled from 1 to n, such that each pair (   )         (or    ) is nonzero. A 

sequence of distinct edges (     ), (     ), …, (       ) is a path. A path is a cycle if       for 

   . An acyclic graph is a graph without cycles. If there is a path between any pair of nodes, the 

graph is connected. A tree is defined as an acyclic connected graph. A rooted tree is defined by 

choosing a node, called root, which gives an orientation to the tree. For each tree, father nodes, 

child nodes and leaf nodes (nodes without descendants) can be defined. 

A tree associated with Gaussian elimination is called an elimination tree. Several properties of 

trees associated with a tree generation algorithm are also given in [81]. Let  ( ) be the modified 
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matrix from rows and columns   to   after elimination by pivots              . The essence of 

the multifrontal approach to Gaussian elimination is that the elimination operations 

corresponding to pivot   can be performed as soon as all the entries in the first row and first 

column of  ( ) have been calculated. Thus, it is possible to eliminate several variables at a node, 

without waiting for all the entries in  ( ) to be computed.  

The entries which are modified by the descendants of node k are included in a submatrix of  ( ) 

determined by the rows and columns with nonzeros in row k and column k of  ( ). 

Thus, the entries that are modified by the child nodes correspond to nonzeros in the child’s pivot 

row and column. It is equivalent to assert that, for any child   of node  , the sparsity structure of 

column   in rows   to   is included in the sparsity structure of column   of  ( ).  

Computation corresponding to tree nodes which are not ancestors or descendants of one another 

are independent.  

In this way, it is possible to exploit the tree parallelism. An example of an assembly tree 

corresponding to the following sum: 

  [[       ]    [       ]]    [[       ]    [       ]] 

is given in Figure 43. 

 
Figure 43. Assembly tree corresponding to the sum A [78,82]. 

 

The multifrontal method associates an operation, based on the properties of the tree, to each 

node/edge of the elimination tree [80]. In particular, each edge of the elimination tree 

corresponds to summing contributions from the children of the node with the rows and columns 

of the node itself. Consider a node  , which is not a leaf node. Then the contributions of the 

children of this node will change the entries in  ( ) corresponding to the nonzero entries in 

column  . A matrix (frontal matrix) is associated to each node  ,. The frontal matrix is 

determined by the nonzero elements in the pivot row and column, respectively, such that the 
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contributions from the previous eliminations of the descendants of node   can be summed in the 

matrix. The outer products from the elimination by pivot   are then performed within the frontal 

matrix of node  . 

An example of a matrix and its associated assembly tree is reported in Figure 44. From the initial 

matrix, an assembly tree with three nodes (each corresponding to one supernode) is derived. The 

two first independent leaf nodes contribute to the computation of the third. 

 

 
Figure 44. A matrix with three supernodes ({   } {   } {   }) and the associated assembly tree [84]. 

 

The order of a frontal matrix is given by the number of nonzeros below the diagonal in the first 

column of the supernode associated with the tree node. Each frontal matrix is divided into two 

parts:  

- the factor block, called fully summed block, which corresponds to the variables factorized 

when the elimination algorithm processes the frontal matrix 

- the contribution block which corresponds to the variables updated when processing the 

frontal matrix.  

Once the partial factorization is complete, the contribution block is passed to the parent node. 

When contributions from all children are available on the father node, they can be assembled (i.e. 

summed with the values contained in the frontal matrix of the father), as in Figure 45.  



68 

 

  
 

Figure 45. Nested dissection generates the elimination tree [84]. 

 

The elimination algorithm exploits a postorder traversal search of the assembly tree, in which 

father nodes are not processed before their children [82]. It uses three areas of storage in a 

contiguous memory space, one for the factors, one to stack the contribution blocks, and another 

one for the current frontal matrix [85]. During the tree traversal, the memory space required by 

the factors is always growing, while the stack memory (containing the contribution blocks) varies 

depending on performed operations. When the partial factorization of a frontal matrix is 

processed, a contribution block is stacked and the size of the stack increases; conversely, when 

the frontal matrix is formed and assembled, the contribution blocks of the children nodes are 

popped out of the stack and its size decreases. The stack memory is thus very dependent on the 

assembly tree topology.  

It is well known that, despite their good reliability and numerical robustness, sparse direct solvers 

pose heavy requirements in terms of computational and memory resources. The reason is that the 

factors of a sparse matrix are much denser due to the appearance of fill-in, as new nonzero 

coefficients are introduced during the factorization process [82].  

Reordering (i.e., renumbering the unknowns of a sparse linear system) is a well-known technique 

to reduce the fill-in in the final factor matrices, and this has a significant impact on the active 

memory size. In [85], the effect of reordering techniques on the active memory size is reported. 

In particular, the active memory size is largely dependent on the shape of assembly trees resulting 

from the reordered matrix. 

Many methods and algorithms have been proposed in order to reduce the amount of fill-in and, 

among them, one of the most commonly used is the nested dissection method [86]. This method 

can be summarized in three steps: 

- assembly of an undirected graph, in which nodes represent rows and columns of the 

matrix, and each edge represents a nonzero entry in the sparse matrix representing the 

system 
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- recursively partitioning of the graph into subgraphs using separators, defined as small 

subsets of nodes that, when removed, allow for the graph to be partitioned into subgraphs 

with almost the same fraction of the number of nodes. 

- factorization, by ordering the elimination of the variables based on the recursive structure 

of the partition: in particular, each of the two subgraphs formed by removing the separator 

is eliminated first, and then the separator vertices are eliminated. 

Given the sparse, symmetric matrix   of size  , reported as an example in Figure 46, its structure 

can be represented with an adjacency graph, i.e., a graph  (   ) containing   nodes (one for 

each coefficient in  ) and edges (   ) for all        . The fill-in can then be easily modeled by 

using this graph. Specifically, eliminating a variable of   lead to the elimination of the associated 

node from   along with all incident edges. At the same time, new edges that connected the 

neighbors of the eliminated nodes must be built. These newly introduced edges represent fill-in 

coefficients. Then, assume that a node separator   of   is computed, i.e., a subset of nodes which, 

if removed, splits the graph into two subgraphs    and   . Assume that   is permuted in such a 

way that all the variables in    are eliminated first, then all variables in    are eliminated and, 

finally, all variables in   are eliminated. Because all the neighbors of vertices in    are either in 

   or in  , no fill-in will be generated inside the submatrix that connects the variables in    to 

variables in   . 

 
 

(a) One level of nested dissection based on a 5x5 square 

grid mesh. 

(b) Matrix A is reordered with respect to the nested 

dissection. 

 

Figure 46. One level of nested dissection [82]. 

 

Because fill-in that occurs inside the diagonal blocks      and      may still be excessive, this 

procedure can be recursively and independently applied to the two subgraphs corresponding to 

   and   , until the fill-in inside diagonal blocks can be considered negligible.  

The application of nested dissection algorithm to a graph generates a separators tree which 

implicitly defines a fill-in reducing permutation of the input matrix. This is shown in Figure 47, 
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where          is assumed for the leaves of the tree, i.e.    is a separator that splits    into two 

empty subdomains. 

 
Figure 47. Each separator splits the graph in two subgraphs, until the fill-in inside diagonal blocks can be 

considered negligible (leaf nodes) [82]. 

 

This procedure describes the key idea of the nested dissection method although modern nested 

dissection ordering tools employ more sophisticated algorithms [86].  

The separators tree can also be regarded as an elimination or assembly tree that defines the 

dependencies between the variables of a matrix and thus, implicitly, the order in which they have 

to be eliminated. Specifically, the elimination tree states that the elimination of the variables 

associated with a node (or with the corresponding separator) only affects variables associated 

with ancestor nodes, i.e. nodes along the path that connects the eliminated node to the root of the 

tree. Therefore, all the pivotal orders defined by topological traversals of the tree are equivalent 

in the sense that they produce the same amount of fill-in. 

Each frontal matrices is associated with each node of the tree and is formed by coefficients 

related to the variables associated with that node as well as to their neighbors. Note that the 

neighbors include also variables that have become such due to fill-in introduced by the 

elimination of previous variables. 

Based on the introduced concepts, the multifrontal factorization consists in a topological order 

traversal of the tree (i.e., bottom-up) where, each time a node is visited, two operations are 

performed: 

- assembly: the frontal matrix is formed by summing the coefficients in the rows and 

columns of the variables associated with the tree node with coefficients produced by the 

factorization of its children. 

- factorization: once the frontal matrix is formed, a partial Cholesky factorization is 

performed on it in order to eliminate the variables associated with the tree node. The 

result of this operation is a set of rows of the global factor and a Schur complement, also 
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commonly referred to as contribution block (CB), containing coefficients that will be 

assembled into the father node. 

As shown in Figure 48, the set of variables in a frontal matrix can be split into two subsets: 

- fully-summed (FS) variables are the variables associated with the tree node or, 

equivalently, with the corresponding separator. They are called fully-summed because the 

rows and columns in the front are up to date with respect to previously eliminated 

variables, that is, variables that have been eliminated at descendant nodes. 

- non fully-summed (NFS) variables: this subset contains the neighbors of the fully-

summed variables and is formed by pieces of separators belonging to ancestor nodes 

which form a border around the fully-summed variables. For the frontal matrix at node    

of the tree in Figure 47, this border is formed by half of the    separator and the entire    

separator; variables in this border have become neighbors of those in    due to fill-in 

coefficients introduced by the eliminations of variables in     and    . 

  
(a) Before elimination: the front is assembled. FS 

variables are ready to be eliminated. NFS variables will 

be updated. 

(b) After elimination: FS variables are eliminated, 

CB is the Schur complement that will be assebled 

into the father front. 

 

Figure 48. Structure of a front [82]. 

6.5 MUMPS software package 
MUMPS (MUltifrontal Massively Parallel Solver) is a software package for solving systems of 

linear equations of the form       , where   is a square sparse matrix that can be either 

unsymmetric, symmetric positive definite, or general symmetric [87-91]. MUMPS implements a 

direct method based on a multifrontal approach which performs a direct factorization: 

     

where   is a lower triangular matrix and   an upper triangular matrix.  

If the matrix is symmetric, then the factorization 
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where   is block diagonal matrix with blocks of order 1 or 2 on the diagonal is performed.  

The parallel version of MUMPS requires MPI for message passing communication and use 

BLAS, BLACS, and ScaLAPACK [13,14,15] libraries as dense factorizations kernels. Other 

features of the MUMPS package include the solution of the transposed system, input of the 

matrix in assembled format (distributed or centralized) or elemental format, error analysis, 

iterative refinement, scaling of the original matrix, out-of-core capability, parallel analysis, 

detection of null pivots, basic estimate of rank deficiency and null space basis for symmetric 

matrices, and computation of a Schur complement matrix. MUMPS offers several built-in 

ordering algorithms, a tight interface to some external ordering packages such as PORD [92], 

SCOTCH [94] or METIS [93], and the possibility for the user to input a given ordering. MUMPS 

is available for real or complex arithmetic, both in single and double precision computations. 

Recent experimental functionalities involve the computation of the determinant, the computation 

of some entries in the inverse of the matrix and the possibility to exploit sparsity of the right-hand 

sides, in order to reduce the amount of floating-point operations and accesses to the factor 

matrices.  

From a functional point of view, MUMPS distributes the work tasks among the processors, and 

an identified processor (the host) is in charge of most of the analysis phase, to map and broadcast 

the matrix to the other processors (slaves) in the case where the matrix is centralized, and to 

collect the solution [87-91]. The system      is solved in three main steps: 

- Analysis: 

A preprocessing phase is performed, through an ordering according to the symmetrized 

pattern        and a symbolic factorization. Both parallel and sequential 

implementations of the analysis phase are available. A mapping of the multifrontal 

computational graph is then computed and used to estimate the number of operations and 

memory necessary for factorization and solution. Matrix      denotes the preprocessed 

matrix. 

- Factorization: 

During factorization, a direct factorization         or         
  is computed, 

depending on the symmetry of the preprocessed matrix. The original matrix is initially 

distributed onto the available processors by following the mapping of the dependency 

graph, the so called elimination tree. Then, the numerical factorization is performed as a 

sequence of dense factorizations on frontal matrices. In addition, to standard threshold 

pivoting and two-by-two pivoting, an option allows for static pivoting. The elimination 

tree also expresses independency between tasks and enables multiple fronts to be 

processed in parallel (multifrontal approach). After the factorization, the factor matrices 

are kept distributed, both in local memory or on hard disks memory, ready to be used in 

the following solution phase. 

- Solution: 
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The solution of             or              , where      and      are 

respectively the transformed solution   and right-hand side   associated to the 

preprocessed matrix     , is obtained through a forward elimination step: 

          or           

followed by a backward elimination step 

           or           

The right hand side   is firstly preprocessed and then broadcasted from the host to the working 

processors. Sparse right-hand sides might be used to limit the volume of data exchange during 

this step. A forward elimination and a backward substitution are then performed using the 

(distributed) factors, computed during factorization, to obtain     . The solution      is finally 

post-processed to obtain the solution   of the original system       , where   can be either 

assembled on the host or kept distributed on the working processors. Iterative refinement and 

backward error analysis are among post-processing options of the solution phase.  

Each of these phases can be called separately and several instances of MUMPS can be handled 

simultaneously. MUMPS allows for the host processor to cooperate to the factorization and solve 

phases, as any other processor. For both the symmetric and the unsymmetric algorithms, a fully 

asynchronous approach with dynamic scheduling of the computational tasks is exploited. 

Asynchronous communication is used to enable overlapping between communication and 

computation. Dynamic scheduling was initially chosen to accommodate numerical pivoting in the 

factorization. The other important reason for this choice was that, with dynamic scheduling, the 

algorithm can adapt itself at execution time to remap work and data to more appropriate 

processors. In fact, the main features of static and dynamic approaches are combined. In 

particular, based on the estimation obtained during the analysis step, a part of computational tasks 

is mapped. Other tasks are dynamically scheduled at execution time. Also the main data 

structures (the original matrix and the factors) follow the same scheme and are partially mapped 

during the analysis phase. 

 

6.6 Improvements of shared memory parallelism 

In the context of a joint project developed by the MUMPS team in Bordeaux, Lyon and 

Toulouse, and supported by many French institutions, as CERFACS, CNRS, ENS Lyon, 

INPT(ENSEEIHT)-IRIT, INRIA and University of Bordeaux, new functionalities that exploit 

shared memory parallelism have been implemented and developed by MUMPS team. This 

chapter summarizes these results.  

There are typically two sources of parallelism in multifrontal methods. From a coarse-grain 

parallelism point of view, elimination trees are directed acyclic graphs (DAG) that define 

dependencies between their fronts. Then, the structure of tree offers an inner parallelism, which 

consists in factorizing different independent fronts at the same time. This is called tree 
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parallelism. From a fine-grain parallelism point of view, the partial factorization of a frontal 

matrix at a given node of the elimination tree can also be parallelized: this is called node 

parallelism. In a distributed-memory environment, the MUMPS solver implements both these 

types of parallelism. However, tree parallelism decreases near the root, where node parallelism 

generally increases because frontal matrices become bigger [96].  

Preliminary results on how to mix distributed memory (as MPI processes) with shared memory 

models (OpenMP threads on multicore computers) show that using 4 to 8 threads per MPI 

process is a good compromise between performance and scalability issues. On usual matrix 

benchmarks, this combination can lead to a speedup of 6 on an eight-core machine. Furthermore, 

it has been observed that unsymmetric    and Cholesky     factorizations are generally more 

efficient than      factorization. These results have been obtained on a 96-core machine at 

INRIA, Bordeaux, France. More details are reported in [96,97]. 

The set of test problems used in mentioned experiments is given in Table 3, where   is the order 

of the matrix and     its number of nonzero entries. The matrices come from Tim Davis 

collection (University of Florida) [98], from the GridTLSE collection (University of Toulouse) 

[99] and from geophysics applications [100,101]. For symmetric matrices, the associated 

unsymmetric problem is solved, although the value of     reported only represents the number 

of nonzeros in the lower triangle matrix. A nested dissection ordering, METIS [93], is used to 

reorder the matrices and, by default, double precision computation is enabled. Five different areas 

can be defined in Table 3, separated by the horizontal lines. The first area corresponds to matrices 

for which there are very large fronts, arising from 3D finite element problems. The third area 

relays on matrices with many small fronts, i.e. arising from circuit simulation matrices. The 

second area corresponds to an intermediate situation between the two extremes. Last two zones 

corresponds to 3D and 2D geophysics applications, respectively. 

Table 3. Details about matrices used for performance tests [97]. 

Matrix Symmetry Arithmetic N NNZ Application field 

3DSpectralwave Symmetric Real 680943 30290827 Materials 

AUDI Symmetric Real 943695 77651847 Structural 

Sparsine Symmetric Real 50000 1548988 Structural 

Ultrasound80 Unsymmetric Real 531441 33076161 Magneto-Hydro-

Dynamics 

DielFilterV3Real Symmetric Real 1102824 89306020 Electromagnetism 

Haltere Symmetric Complex 1288825 10476775 Electromagnetism 

ECL32 Unsymmetric Real 51993 380415 Semiconductor 

device 

G3_Circuit Symmetric Real 1585478 7660826 Circuit simulation 
Qimonda07 Unsymmetric Real 8613291 66900289 Circuit simulation 

GeoAzur_3D_32_32_32 Unsymmetric Complex 110592 2863288 Geo-Physics 

GeoAzur_3D_48_48_48 Unsymmetric Complex 262144 6859000 Geo-Physics 

GeoAzur_3D_64_64_64 Unsymmetric Complex 512000 13481272 Geo-Physics 

GeoAzur_2D_512_512_512 Unsymmetric Complex 278784 2502724 Geo-Physics 

GeoAzur_2D_1024_1024_1024 Unsymmetric Complex 1081600 9721924 Geo-Physics 

GeoAzur_2D_2048_2048_2048 Unsymmetric Complex 4260096 38316100 Geo-Physics 
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A multi-core based computer has been used for these tests, performed by Jean-Yves L’Excellent 

and Wissam Sid-Lakhdar [97]: 

- Processor: 2x 4-Core Intel Xeon Processor E5520 2.27 GHz (Nehalem) 

- Memory: 16 GigaBytes. 

- Compiler: Intel compilers (icc and ifort) version 12.0.4 20110427. 

- BLAS: Intel(R) Math Kernel Library (MKL) version 10.3 update 4. 

- Location: ENSEEIHT-IRIT, Toulouse. 

In Table 4, the effect of using threaded BLAS and OpenMP directives on the factorization time 

are reported; a comparison between these results with an MPI parallelization using MUMPS 

4.10.0, with different combinations of threads per process for a total of 8 cores, is reported. In 

case of multiple threads per MPI process, threaded BLAS and OpenMP directives are used within 

each MPI process, in order to set the total number of threads to 8, that is, only one thread per core 

has been used. 

On the first set of matrices (3Dspectralwave, AUDI, Sparsine, Ultrasound80), the ratio of large 

fronts over small fronts in the associated elimination tree is high. In this case, the best 

performance is achieved by setting more threads per MPI process, because node parallelism and 

the underlying multithreaded BLAS routines can reach their full potential on many fronts. On the 

second set of matrices, the ratio of large fronts over small fronts is medium; thus, the best 

computation times are generally reached when mixing tree parallelism at the MPI level with node 

parallelism at the BLAS level. On the third set of matrices, where the ratio of large fronts over 

small fronts is very small (that is, most fronts are small), using only one core per MPI process is 

often the best solution. To this extreme cases, tree parallelism determine the performance, 

whereas node parallelism does not bring any improvement, because parallel BLAS are not 

efficient on small fronts where there is not enough work for all threads working in a team. For 

Geoazur series of matrices, tree parallelism is more critical on 2D problems than on 3D 

problems: on 2D problems, the best results are obtained by increasing the number of MPI 

processes, and by using fewer threads per MPI process. 

In general, OpenMP directives improve the amount of node parallelism (compare columns 

“Threaded BLAS” and “Threaded BLAS + OpenMP directives” in the “1 MPI x 8 threads” 

configuration), but the improvements are very limited. With the increasing number of cores per 

machine, this approach is only scalable when most of the work is done on very large fronts, as in 

the case of a very large 3D problem [97].  

In other cases, tree parallelism is necessary. As message passing in MUMPS was mainly 

designed in order to exploit parallelism on a network of computing nodes rather than in multi-

core processors, the availability of high performance multithreaded BLAS libraries could allow 

for both node and tree parallelism to be exploited at the shared memory level. The path consists 

in introducing multithreaded tree parallelism, as in [97]. 
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Table 4. Factorization times with different core-process configurations. Times are in seconds. N/A: the factorization 

failed for out of memory error. For each matrix, the best time obtained appears in bold [97]. 

Matrix 
Sequential 

 

Threaded 

BLAS only 

 

Threaded BLAS + OpenMP 

directives 

Pure MPI 

 

 
1 MPI x 1 

thread 

1 MPI x 8 

threads 

1 MPI x 8 

threads 

2 MPI 

x 4 

threads 

4 MPI 

x 2 

threads 

8 MPI x 1 

thread 

3DSpectralwave 2061.95 372.83 371.87 392.98 387.57 N/A 

AUDI 1270.20 251.14 249.21 250.87 300.43 315.85 

Sparsine 314.58 62.52 61.87 82.01 80.22 94.42 

Ultrasound80 441.84 89.05 89.16 95.67 124.07 124.10 

DielFilterV3Real 271.96 60.69 59.31 52.13 47.85 61.92 

Haltere 691.72 121.29 120.81 115.18 140.34 145.55 

ECL32 3.00 1.13 1.05 0.93 0.98 0.94 

G3_Circuit 16.99 8.84 8.73 6.24 4.21 3.61 
Qimonda07 25.74 27.42 28.49 18.21 9.63 5.54 
GeoAzur_3D_32_32_32 75.74 16.09 15.84 16.28 18.68 19.62 

GeoAzur_3D_48_48_48 410.78 73.90 72.96 69.71 95.02 106.86 
GeoAzur_3D_64_64_64 1563.01 254.47 254.38 276.98 303.15 360.96 

GeoAzur_2D_512_512_512 4.48 2.3 2.33 1.46 1.4 1.56 

GeoAzur_2D_1024_1024_1024 30.97 11.54 11.65 8.38 6.53 6.21 
GeoAzur_2D_2048_2048_2048 227.08 64.41 64.27 49.97 43.33 43.44 

 

A few strategies have been implemented in order to overcome the limitations of the previous 

approach on small frontal matrices, where limited gains from node parallelism are observed. 

Even when there are large frontal matrices near the top of the tree, node parallelism may be 

insufficient close to the bottom of the tree and tree parallelism could be exploited instead. A 

solution is to introduce tree parallelism at thread level, allowing for different frontal matrices to 

be treated by different threads. Many algorithms for shared memory systems, such as 

proportional mapping and Geist-Ng algorithms, have been widely used in sparse direct methods. 

Variants of these methods have been adapted to MUMPS for the mapping algorithm in 

distributed memory environments. The final goal is to achieve load balancing and a high degree 

of concurrency among the processors, while reducing the amount of processor-to-processor data 

communication, through tree parallelism [102]. The Geist-Ng algorithm has been adapted to 

current multicore processors and hierarchical cache structures.  

The AlgFlops algorithm is based on Geist-Ng algorithm is aimed to load balancing among 

threads. Given an arbitrary tree and   available processors, the main idea is to find the smallest 

set of branches in the tree such that the set can be partitioned into exactly   subsets, each one 

requiring approximately the same amount of work. The algorithm consists of two steps: 

- Finding a layer     that separates the bottom of the tree from the top. This layer identifies 

a set of branches in the bottom of the tree that can be mapped onto the processors with an 

acceptable load balance 

- Factorizing the elimination tree 



77 

 

The algorithm consists in an iterative procedure that, by starting from the root of the tree, 

replaces the largest subtrees by their children until finding a satisfactory layer, as shown in Figure 

49. A detailed description of the algorithm is reported in [97]. 

 
Figure 49. One step in the construction of the layer    . AlgFlops replaces the largest subtrees by their children 
until finding a satisfactory layer, in which all branches imply a similar load for each processor. 

 

As concerning the numerical factorization, each thread picks the heaviest untreated subtree under 

    and factorizes it. If no more subtrees remain, the thread goes idle and waits for the others to 

finish. Whereas the Geist-Ng algorithm only used tree parallelism, the proposed AlgFlops 

algorithm uses tree parallelism under     but also node parallelism above it, because 

- there are fewer nodes near the root of a tree, and more nodes near the leaves 

- fronts near the root are usually larger than fronts near the leaves 

- this approach matches pros and cons of each kind of parallelism granularity 

Other improvements are introduced in AlgTime algorithm, where mono-thread factorizations are 

performed under    , with inexpensive synchronization of threads on    . 

Some experimental results for    -based algorithm are reported in the Table 5. The application of 

these algorithms leads to further reductions in the factorization time on all tested sparse matrices, 

in addition to the improvements obtained by multithreaded BLAS dense algebra operations. 

Furthermore, in a shared memory hardware,    -based algorithm shows better performance than 

when message-passing only is used. 
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Table 5. Experimental results with    -based algorithms on an eight-core hardware [97]. 

Matrix Serial reference 

Threaded 

BLAS + 

OpenMP 

Lth-based algorithms 

 

AlgFlops AlgTime 

3DSpectralwave 2061.95 371.87 343.64 339.78 
AUDI 1270.20 249.21 225.82 210.10 
Sparsine 314.58 61.87 59.46 57.91 
Ultrasound80 441.84 89.16 77.06 77.85 

DielFilterV3Real 271.96 59.31 46.10 44.52 
Haltere 691.72 120.81 102.17 99.51 
ECL32 3.00 1.05 3.07 0.72 
G3_Circuit 16.99 8.73 8.82 3.02 
Qimonda07 25.74 28.49 27.34 4.26 
GeoAzur_3D_32_32_32 75.74 15.84 13.02 12.87 
GeoAzur_3D_48_48_48 410.78 72.96 64.14 62.48 
GeoAzur_3D_64_64_64 1563.01 254.38 228.69 228.12 
GeoAzur_2D_512_512_512 4.48 2.33 0.88 0.84 
GeoAzur_2D_1024_1024_1024 30.97 11.65 5.37 5.02 
GeoAzur_2D_2048_2048_2048 227.08 64.27 35.47 34.56 

 

The gains of the proposed algorithms are very important on matrices arising from 2D finite 

element or circuit simulation problems, whose elimination trees typically present many nodes at 

the bottom and few medium-sized nodes at the top. In 3D finite element cases, even if the 

proposed    -based algorithms could offer some advantages, achieved gains are generally much 

smaller than in 2D cases, because in the 3D case most of the time is spent above     layer where 

the fronts are very large, while in 2D cases a remarkable part of the work is performed on small 

frontal matrices under     layer. 

In conclusion, on a shared memory hardware, better performance are achieved when threads 

work on separate tasks in parallel, instead of setting them to cooperate on the same task, even at 

the price of a strong synchronization. Further improvements are obtained by implementing 

memory allocation policies, such as interleaving allocation policy on NUMA systems [97]. 

An existing fully-featured, distributed memory code has been adapted to shared-memory 

architectures, by using efficient multithreaded BLAS libraries in combination with the message-

passing based tree parallelism, as in the original MUMPS 4.10.0.  Furthermore, a new 

multithreading model has been introduced in main computation kernels through OpenMP models, 

at node parallelism level. As a further step, a higher-level tree parallelism has been exploited by 

taking advantage of the task graph arising from matrix factorizations. Since the task graph is a 

tree, serial kernels are effectively used to process independent subtrees in parallel, and 

multithreaded kernels are then applied to process the nodes from the top of the tree. An 

algorithm, based on a performance model of individual tasks, is used to determine the switching 

criterion from tree parallelism to node parallelism. This switching implies a cost for 

synchronization, that can be reduced by dynamically re-assigning idle CPU cores to active tasks. 

The performance of this algorithms depends also on compilation of the code and used BLAS 

libraries, thus a careful configuration is needed.  
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Large performance gains have been observed, while reusing the existing computational kernels 

and memory management algorithms, and keeping the existing numerical functionalities.  

Although this study is focused on computations with a single MPI process, MUMPS can be 

easily utilized in a hybrid distributed-memory/shared memory, by taking advantage of modern 

clusters with multi-core nodes. A preliminary experiment shows that, on 8 nodes with 8 cores 

each of the bonobo machine from the plafrim platform at Inria-Bordeaux [103], the factorization 

time of a GeoAzur 3D matrix of size 96x96x96 using 64 MPI processes (one core per MPI 

process) takes 657 seconds and falls down to 297 seconds by using 8 MPI processes with 8 cores 

per MPI [96]. There is still significant room for improvements, and the optimization of such a 

hybrid MPI-OpenMP approach will be the object of future work of MUMPS development team. 

 

6.7 Improvements by Low-Rank approximation techniques 

In the context of a joint project developed by the MUMPS team in Bordeaux, Lyon and 

Toulouse, and supported by many French institutions, as CERFACS, CNRS, ENS Lyon, 

INPT(ENSEEIHT)-IRIT, INRIA and University of Bordeaux, new functionalities that exploit 

low-rank approximation techniques have been implemented and developed by MUMPS team. 

This chapter summarizes the results obtained by Patrick Amestoy and Clement Weissbecker 

[80,83].  

A low-rank matrix can be represented in a form which decreases its memory requirements and 

the complexity of involved basic linear algebra operations, such as matrix-matrix products. This 

is formalized in [109]. 

Let   be a matrix of size    . Let    be the approximated numerical rank of   at accuracy  .   

is a low-rank matrix if there exist three matrices   of size      ,   of size      and   of size 

    such that: 

         

Where ‖ ‖    and   (    )    . 

The numerical rank at precision  ,     and matrices   and   can be computed with a Rank-

Revealing QR (RRQR) factorization. Low-rank approximation techniques rely on the idea of 

neglecting   and of representing   as the product of   and   , at accuracy  . Thus,        

is the low-rank form of  , and its accuracy can be controlled by a numerical parameter  , the 

low-rank threshold. The choice of   is critical, as    should be small enough to guarantee that the 

low-rank form of   could use less memory than the standard form. Analogous criteria can be 

defined in the case where the objective is to reduce the complexity of operations involving the 

factorization of  . Table 6 shows the requirements on the rank    in order to reduce the operation 

count of the matrix-matrix product and of the triangular system solve, when the resulting matrix 

is stored in a dense form. 
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Table 6. Cost of dense and low-rank basic linear algebra operations.  ,  ,         
 
 and         

 
 are 

   ,   is lower triangular,   ,   ,   ,    are     . The bracketing is critical to exploit the smaller dimension of 

each matrix [83]. 

Operation type Dense Low-rank Rank requirement 

Cholesky factorization        ⁄  - - 

RRQR compression     
 

             

 
   - - 

Triangular solve   (  
    )               

Matrix-matrix product   (  
   )  

 
                     

 

In practice, matrices coming from applicative problems are not low-rank and cannot be directly 

approximated in a low-rank form. However, low-rank approximations can be performed on sub-

blocks defined by an appropriately chosen partitioning of matrix indices [109,110]. Theoretical 

studies dealing with mathematical properties of the underlying operators, as well as geometrical 

and physical properties of the domain where the problem is defined, lead to the definition of a 

heuristic admissibility condition for low rank sub-blocks. The admissibility condition relies on 

the intuition that variable sets that are far away in the problem domain usually show weak 

interactions. In this case, the corresponding matrix block has a low rank [82].  

An example is reported in Figure 50(a), where strong and weak interactions among different part 

of the domain are shown. Figure 50(b) shows that the rank of block     is a decreasing function 

of the geometrical distance between clusters   and  . This experiment has been done on a top-

level separator of a 3D (    ) wave propagation problem called Geoazur128, with square 

clusters of dimension 16x16, so that each sub-block has size 256. It shows that depending on the 

distance between clusters, a potential compression could be exploited. The dashed line at 

      sets a tradeoff for the storage of sub-blocks by a low-rank representation [83]. 

  
(a)  Strong and weak interactions in the domain (b) Correlation between graph distance and full accuracy 

block rank 

Figure 50. The rank of block     is a decreasing function of the geometrical distance between clusters   and   [83]. 
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In practical cases, admissibility conditions according to geometrical or physical aspects of the 

problem cannot be easily exploited. In [82], a technique based on algebraic properties of the 

matrix is presented, by taking into account, for example, the efficiency of basic linear algebra 

kernels on the   and   matrices of the low-rank form.  

In particular, a new format called Block Low-Rank (BLR) has been studied and compared to 

other low-rank formats, as Hierarchical (H) matrices and Hierarchically Semi-Separable (HSS) 

matrices [110]. This structure, based on a non-hierarchical blocking of the matrix, can be 

exploited within internal data structures of the multifrontal method, and it has been implemented 

in an experimental version of MUMPS software in order to decrease the memory consumption 

and the operation count of the solver [111]. 

Figure 51 shows the global structure of the BLR representation of a dense Schur complement of 

order 128 x 128 corresponding to the top level separator of a 128 x 128 x 128 Laplacian problem, 

with a low-rank threshold set to      .  

 

 
Figure 51. Structure of a BLR matrix. The darkness of a block is proportional to its storage 

requirement. The lighter a block is, the smaller is the memory needed to store it. Each block in 

the matrix is of size 512 x 512 [83]. 

 

An experimental comparison in [82,83] shows that the gains achieved with the BLR format are 

comparable to those obtained with other hierarchical formats. The cost of constructing the low-

rank representation is much lower in the case of the BLR format with respect to the HSS and H 
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approaches; this provides an additional property which is very favorable in the context of a 

sparse, multifrontal solver involving operations with complex data access patterns.  

 

6.8 PARDISO software package 

The PARDISO package [118] offers a parallel solver for the direct solution of unsymmetric and 

symmetric sparse linear systems on shared memory multiprocessors. PARDISO employs a 

combination of left- and right-looking Level 3 BLAS supernode techniques [119] and has been 

included in Intel Math Kernel Library in 2006. The parallel pivoting methods allow complete 

supernode pivoting to compromise numerical stability and scalability during the factorization 

process. Intel MKL version of PARDISO is based on PARDISO version from 2006, thus many 

new features and improvements of PARDISO 5.0.0, such as distributed memory factorization for 

some classes of matrices, are not available in the Intel MKL library. The PARDISO solver 

performs three tasks, an analysis and symbolic factorization step, a numerical factorization step, 

and a forward and backward substitution by optionally including iterative refinement. 

For unsymmetric matrices, that are considered in this thesis, the solver first computes a non-

symmetric permutation      and scaling matrices    and    with the aim of placing large 

entries on the diagonal to enhance reliability of the numerical factorization process [120]. In the 

second step, the solver computes a fill-in reducing permutation   based on the matrix       

(     )
 , followed by the parallel numerical factorization: 

                  

Where   and   are supernode pivoting matrices. When the factorization algorithm reaches a 

point where it cannot factor the supernodes with such pivoting strategy, a pivoting perturbation 

strategy is used [121]. The result of this pivoting approach is that the factorization is, in general, 

not exact and iterative refinement may be needed.  

The PARDISO solver enables to use a combination of direct and iterative methods [122] to 

accelerate the linear solution process for transient simulations, as in thermal transient simulations 

(not considered in this thesis), in which many consecutive solutions of sparse systems are 

required. In such particular class of problems, the values of the nonzero coefficients in the matrix 

gradually change, thus keeping the same identical sparsity pattern. The analysis phase of the 

solvers has to be performed only once and the numerical factorizations become the important 

time-consuming steps during the simulation. PARDISO solver computes a numerical 

factorization        for the first system solution, then it applies the factors   and   for the next 

steps in a preconditioned Krylov-Subspace iteration. If the iteration does not converge, the solver 

automatically switches back to the actual numerical factorization. 
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6.9 Iterative methods 

The term “iterative method” refers to a wide range of techniques that use successive 

approximations to obtain more accurate solutions to a linear system at each step [28]. In other 

words, an iterative method is a solution algorithm that, by starting from an arbitrary chosen initial 

guess   , produces a better approximation      of the exact solution  , at each  -th iteration. 

With an iterative method, it is possible to obtain a good approximation of the exact solution. An 

iterative method can be obtained by splitting of the matrix  . If        , then        is 

          and, at each iteration from    to     , the solution of            should 

return     .  

A good     decomposition should observe the following requirements: 

- The vector      should be easy and inexpensive to compute. Thus,   should be a simple 

and invertible matrix, i.e. a diagonal or tridiagonal matrix 

- The    sequence should converge to the exact solution  . In other words, the error 

between current solution and the exact solution should decrease to zero 

The requirements above are in conflict. By choosing     and    , only one iteration could 

lead to the solution, but it could be difficult to solve the obtained linear system. The   matrix is 

named preconditioner, and a proper choice usually makes the difference between a fast 

convergence and a stagnation of the iterations.  

Some simple choice of   could be: 

-     diagonal of   (Jacobi method) 

-     triangular part of   (Gauss-Seidel method) 

-     a combination of both (SOR method) 

-        (incomplete    factorization) 

Among iterative methods, projection methods are the most used [72]. The idea of projection 

techniques is to extract an approximated solution    to the      problem from a subspace 

      of dimension   (subspace of candidate approximants). A typical technique is to impose 

orthogonality constraints to the residual vector      , at each iteration. In this family, 

Conjugate Gradient Algorithm (CG) and Generalized Minimal Residual Method (GMRES) are 

the best known iterative algorithms.  

In general, the reliability of iterative techniques, when dealing with various applications, depends 

much more on the quality of the preconditioner than on the particular Krylov subspace 

accelerators used. A preconditioner is any form of implicit or explicit modification of an original 

linear system which makes it “easier” to solve by a given iterative method. In fact, since the rate 

at which an iterative method converges depends significantly on the spectrum of the coefficient 

matrix, iterative methods usually involve a second matrix that transforms the coefficient matrix 

into one with a more favorable spectrum. The transformation matrix is called a preconditioner. A 
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good preconditioner improves the convergence of the iterative method, sufficiently to overcome 

the extra cost of computing and applying the preconditioner.  

One of the simplest ways of defining a preconditioner is to perform an incomplete factorization 

of the original matrix  . This involves a decomposition of the form       , where   and   

have the same nonzero structure as the lower and upper parts of  , and   is the residual of the 

factorization. This incomplete factorization, known as    ( ), is inexpensive to compute, but it 

often leads to rough approximation that may cause many iteration to converge. As a general rule, 

more accurate     factorizations require fewer iteration to converge, but the preprocessing cost 

to compute factors are higher.  

The first step when implementing iterative algorithms on a high-performance parallel computer is 

to identify the main operations, or kernels, that they require [72]. Five types of operations can be 

identified, which are: 

- Setting up the preconditioner 

- Matrix vector products 

- Vector updates 

- Dot products and reduction operations 

- Preconditioning operations 

In this list, the potential bottlenecks are setting up the preconditioner   and solving linear 

systems with  , i.e., the preconditioning operation. A detailed review on how to implement these 

methods efficiently on shared memory computers and distributed memory computers is reported 

in [72].  

Iterative methods are very different from direct methods in this respect. While the performance of 

direct methods, both for dense and sparse systems, is essentially determined by the factorization 

of the matrix relying on dense algebra suboperations, this operation is not present in iterative 

methods (although preconditioners may require a setup phase). Since such operations can be 

executed at very high efficiency on most computer architectures, a lower Flop rate for iterative 

than for direct methods will be achieved. Dongarra and Van der Vorst [73] give some 

experimental results about this, and provide a benchmark code for iterative solvers. Furthermore, 

the basic operations in iterative methods often use indirect addressing, depending on the data 

structure. Such operations also have a relatively low efficiency of execution, and are limited by 

hardware capabilities as memory bandwidth and latency. However, a lower efficiency of 

execution does not imply a long solution time for a given system. Furthermore, iterative methods 

are usually simpler to implement than direct methods, and since no full factorizations have to be 

stored in memory, they can handle much larger systems than direct methods.  

It should be pointed out that not every method will work on every problem type, so knowledge of 

matrix properties is the main criterion for selecting an iterative method. Furthermore, different 

methods involve different kernels, and this may rule out certain methods depending on the 
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problem or target computer architecture. Below are short descriptions of each of the main 

iterative methods, along with brief notes on the classification of the methods in terms of the class 

of matrices for which they are most appropriate [75]. 

 

The following methods belong to the so-called stationary methods: 

- Jacobi 

The Jacobi method is based on solving for every variable locally with respect to the other 

variables. One iteration of the method corresponds to solving for every variable once. The 

resulting method is easy to understand and implement, but convergence is slow. This 

method is easy to use, but unless the matrix is “strongly” diagonally dominant, this 

method is probably best only considered as a preconditioning in a nonstationary method. 

- Gauss-Seidel 

The Gauss-Seidel method is similar to the Jacobi method, except that it uses updated 

values as soon as they are available. In general, if the Jacobi method converges, the 

Gauss-Seidel method will converge faster than the Jacobi method, but in general not 

competitive with the nonstationary methods. It can be applied to strictly diagonally 

dominant, or symmetric positive definite matrices. Parallelization properties depend on 

structure of the coefficient matrix. Different orderings of the unknowns have different 

degrees of parallelism; multi-color orderings may give almost full parallelism. 

- SOR 

Successive Over-Relaxation (SOR) can be derived from the Gauss-Seidel method by 

introducing an extrapolation parameter  . For its optimal choice, SOR may converge 

faster than Gauss-Seidel by an order of magnitude.  

- SSOR 

Symmetric Successive Over-Relaxation (SSOR) has no advantage over SOR as a 

standalone iterative method; however, it is useful as a preconditioner for nonstationary 

methods. 

The following methods belong to the so-called nonstationary methods: 

- Conjugate Gradient (CG). 

The conjugate gradient method derives its name from the fact that it generates a sequence 

of conjugate (or orthogonal) vectors. These vectors are the residuals of the iterations. 

They are also the gradients of a quadratic functional, the minimization of which is 

equivalent to solving the linear system. CG is an effective method, valid for symmetric 

positive definite matrices, since storage for only a limited number of vectors is required. 

Speed of convergence depends on the conditioning number. Inner products acts as a 

bottleneck in a parallel environment, because such reduction operations acts as 

synchronization points. The efficiency of this method on parallel hardware depends 
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weakly on the coefficient matrix, but strongly on the structure of the eventual 

preconditioner. 

- Minimum Residual (MINRES) and Symmetric LQ (SYMMLQ). 

These methods are alternatives to CG for coefficient matrices that are symmetric but 

possibly indefinite. SYMMLQ will generate the same solution iterates as CG if the 

coefficient matrix is symmetric positive definite. 

- Conjugate Gradient on the Normal Equations: CGNE and CGNR.  

CGNE solves the system (   )      for   and then computes the solution      . 

CGNR solves (   )     ̃ for the solution vector   where  ̃     . When the 

coefficient matrix   is nonsymmetric and nonsingular, the normal equations matrices 

    and     will be symmetric and positive definite, thus CG could be applied. The 

convergence may be slow, since the spectrum of the normal equations matrices will be 

less favorable than the spectrum of  . 

- Generalized Minimal Residual (GMRES). 

The Generalized Minimal Residual method computes a sequence of orthogonal vectors 

(as MINRES), and combines these through a least-squares solve and update. This method 

can be applied to general non-symmetric matrices. However, unlike MINRES and CG, it 

requires storing the whole sequence, so that a large amount of storage is needed. 

Furthermore, even if GMRES leads to the smallest residual for a fixed number of iteration 

steps, these steps become increasingly expensive to compute. For this reasons, restarted 

versions of this method are used, in which computation and storage costs are limited by 

specifying a fixed number of vectors to be generated. The restart point depends on matrix 

  and the right-hand side  , and its correct setting requires skill and experience. GMRES 

requires only matrix-vector products involving the coefficient matrix, and the number of 

inner products grows linearly with the iteration number, up to the restart point. In an 

implementation based on a simple Gram-Schmidt process, the inner products are 

independent one another, thus leading to only one synchronization point. A more stable 

implementation, based on a modified Gram-Schmidt orthogonalization, needs one 

synchronization point per inner product. 

- BiConjugate Gradient (BiCG). 

The Bi-Conjugate Gradient method generates two CG-like sequences of vectors, one 

based on a system with the original coefficient matrix  , and one on its transposed   . 

Instead of orthogonalizing each sequence, they are made mutually orthogonal, or “bi-

orthogonal”. As CG, this method uses limited storage. It is useful when the matrix is 

nonsymmetric and nonsingular; however, convergence may be irregular, and there is a 

possibility that the method will break down. BiCG requires a multiplication with the 

coefficient matrix and with its transpose at each iteration. This excludes all cases where 

the matrix is only given implicitly as an operator, since usually no corresponding 

transpose operator is available in such cases. Parallelization properties are similar to those 

for CG; the two matrix vector products (as well as the preconditioning steps) are 
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independent, so they can be done in parallel, or their communication stages can be 

packaged. 

- Quasi-Minimal Residual (QMR). 

The Quasi-Minimal Residual method applies a least-squares solve and update to the BiCG 

residuals, thus leveling the irregular convergence behavior of BiCG. Also, QMR avoids 

the breakdown that can occur in BiCG. On the other hand, it does not effect a true 

minimization of either the error or the residual, and while it converges smoothly, it does 

not essentially improve on the BiCG. This method is applicable to non-symmetric 

matrices. Computational costs per iteration are similar to BiCG, but slightly higher. The 

method requires the transpose matrix-vector product, and parallelization properties are 

similar to BiCG. 

- Conjugate Gradient Squared (CGS). 

The Conjugate Gradient Squared method is a variant of BiCG that applies the updating 

operations for the  -sequences and the   -sequences both to the same vectors. Ideally, 

this would double the convergence rate, but in practice convergence may be much more 

irregular than for BiCG. A practical advantage is that the method does not need the 

multiplications with the transpose of the coefficient matrix. Unlike BiCG, the two matrix-

vector products are not independent and the number of synchronization points in a parallel 

environment is larger. 

- Biconjugate Gradient Stabilized (Bi-CGSTAB). 

The Biconjugate Gradient Stabilized method is a variant of BiCG, like CGS, but using 

different updates for the   -sequence in order to obtain smoother convergence than CGS. 

This method is applicable to non-symmetric matrices. Computational costs per iteration 

are similar to BiCG and CGS, but the method does not require the transpose matrix. In 

some cases, this method avoids the irregular convergence patterns of CGS while 

maintaining about the same speed of convergence.  

- Chebyshev Iteration. 

The Chebyshev Iteration recursively determines polynomials with coefficients chosen to 

minimize the norm of the residual in a min-max sense. This method requires some 

explicit knowledge of the spectrum of the coefficient matrix; in the symmetric case the 

iteration parameters are easily obtained from the two extremal eigenvalues, which can be 

estimated either directly from the matrix, or from applying a few iterations of the 

Conjugate Gradient Method. The computational structure is similar to that of CG, but this 

method has the advantage of requiring no inner products, thus there are no 

synchronization points. An Adaptive Chebyshev method can be used in combination with 

methods as CG or GMRES, to continue the iteration once suitable bounds on the 

spectrum have been obtained from these methods. 

In conclusion, stationary methods are older, simpler to understand and implement, but usually not 

as effective. In practical problems, preconditioned nonstationary methods are used. 
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7. Application of parallel direct solvers to FEM software  
 

With the multicore era of 2000-2010, the cost of desktop parallel computing has been brought 

down. As a consequence, the diffusion of low-cost multicore and many-core hardware made 

parallel computing approachable not only to research institutes but also to industry. Furthermore, 

open source FEM packages integrated advanced parallel solvers for the solution of large sparse 

linear systems, largely using optimized numerical libraries targeting to different hardware, i.e. 

multicore computers, distributed memory computers, GPUs and others.  

Following the success of the open source code, in recent years there has been a great effort by 

simulation software vendors in order to develop parallel versions of their commercial codes. In 

commercial FEM codes there are only few, but effective, potential points of intervention. Among 

all, the most important is the linear system solution, which can be seen as the inner and most 

frequent operation in the solution loop.  

As an example, a typical transient simulation of an induction heating process might be 

represented as in Figure 52. A thermal transient study requires the solution of a sequence of time 

steps. At each time step, one or more iterations between a thermal problem solution and a time-

harmonic electromagnetic problem solution are performed in order to achieve a refinement of the 

solution and to avoid propagation of errors. In general, both thermal and electromagnetic problem 

solutions could be non-linear, thus involving a Newton-Raphson process of successive 

approximation, through a sequence of linearized system solutions.  

 
Figure 52. Typical solution loop for a simulation of induction heating processes. A transient thermal problem is 
iteratively coupled to a steady-state time-harmonic electromagnetic problem. In general, both problems could be 

non-linear. 

 

Non-linear EM problem solution

Complex linear system

Non-linear TH problem solution

Real linear system
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Figure 53. Solution scheme of a non-linear problem by Newton-Raphson method. 

 

Note that an optimization and parallelization of the “linear system solution” kernel can lead to a 

remarkable reduction on the overall simulation time. This idea has been exploited in cooperation 

with Cedrat Group [39], a company that provides electromagnetic simulation tools for electrical 

applications design, and MUMPS development team [87]. A study on how to accelerate the linear 

system solution has been carried out in this thesis, leading to the integration of different parallel 

solvers in Cedrat FEM simulation tool, named Flux [95]. In particular, two state-of-the-art 

parallel direct solvers for sparse linear systems solution have been tested on a set of large 

matrices, arising from the simulation of typical industrial application of induction heating 

processes.  

 
Figure 54. Implementation of non-linear problem solution scheme in Cedrat Flux software. The work presented in 

this thesis contributed to the introduction of parallel computing capabilities for Cedrat Flux software. 
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In order to compare the solver performance on different hardware configurations, all tests have 

been carried out for the solution of a quasi-stationary time-harmonic electromagnetic problem 

with constant material properties. However, reported conclusions can be considered of general 

validity, and they can easily be extended to both transient and steady state regime, 

electromagnetic, thermal or multiphysics coupled problem solutions.  

Although iterative methods are widely applied to the solution of this kind of problem, the 

performance of direct solvers is investigated because this kind of solvers are the best suited in 

case of badly conditioned problems, as it usually happens when dealing with induction heating 

simulations.  

Memory usage and factorization times for MUMPS (MUltifrontal Massively Parallel sparse 

direct Solver) [87], configured with multithreaded BLAS library on a multicore computer, have 

been compared with another popular sparse direct solver, Intel PARDISO (PARallel Direct 

Solver) [13]. Intel PARDISO targets shared memory multicore computers only, while MUMPS 

4.10.0 targets distributed memory systems.  

With the aim to build an efficient direct algorithm for the solution of large sparse complex 

matrices, further work has been carried out by MUMPS team, that developed an experimental 

version of the library. Tests have been performed by MUMPS team, both on workstation-size 

multicore hardware and on a modern cluster with multicore nodes. The author provided all tested 

matrices obtained by finite element models of induction heating processes. Different 

parallelization strategies and memory policies have been adopted for each different grain size 

level. Furthermore, the use of low-rank compression techniques allowed for a remarkable 

reduction of memory consumption during the factorization phase of the “linear system solution” 

kernel [82].  

 

7.1 Benchmark matrices from induction heating simulations 

A set of linear system solutions have been performed on matrices arising from finite element 

modeling of induction heating industrial applications, in order to characterize the behavior of 

MUMPS and PARDISO in terms of memory usage and factorization times, when run on different 

hardware configurations. Finite element models that simulate the heating of a graphite susceptor 

by a pancake coil and the induction hardening of a gear are chosen as test benchmarks 

[104,105,106]. Geometric model design, meshing and matrix building are performed by a 

commercial software [39]. Starting from the same geometry (in the following, named “Pancake” 

series or “Gear” series), model meshes are gradually refined in order to solve the same physical 

problems on different mesh sizes, leading to complex linear systems ranging from      to      

degrees of freedom.  
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First benchmark: heating of a graphite susceptor by a pancake coil  

In order to evaluate the performance of different sparse solvers for complex coefficient linear 

systems, the model of a pancake inductor and a graphite susceptor has been taken as the first 

benchmark problem. This system is actually used in a furnace for the production of solar grade 

silicon by the Directional Solidification System I-DSS [105]. In Figure 55, the model geometry is 

presented and Figure 56 shows its mesh. The numerical solution of the electromagnetic problem 

has been carried out by adopting a nodal      formulation and by using the complex 

representation of the sinusoidal quantities [107, 53]. A formulation in terms of the magnetic 

vector potential   coupled with the scalar electric potential   has been chosen because it 

guarantees a precise solution of the eddy current distribution in models where highly permeable 

conducting region are not present [53, 108]. Usually, such magnetic vector potential formulation 

originates systems with more degrees of freedom than the (dual) scalar formulation. This model 

has been set up by using four different types of discretization, with a number of elements ranging 

from      up to      volume elements, leading to complex sparse systems from      to      

unknowns. The sparsity pattern related to the matrix for case 1 of Pancake series is shown in 

Figure 57. Isovalues plot representing the eddy current distribution induced in the susceptor is 

shown in Figure 58.  

 
Figure 55. Geometry of the pancake coil and graphite susceptor. 
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Figure 56. Mesh of the pancake coil and graphite susceptor. 

 

 
Figure 57. Matrix originated from Pancake 1 benchmark. 
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Figure 58. Eddy current distribution in the graphite susceptor. 

 

 

 

Second benckmark: induction hardening of a gear 

Simulations of induction hardening process is one of the most challenging tasks for multi-physics 

simulation. A complete process description requires not only to compute an electromagnetic and 

thermal coupled problem but also to couple these results with other different physics, able to 

calculate the metallurgical transformation and residual mechanical stresses [106]. In order to 

obtain reliable results from such a combined simulations, the solution of electromagnetic and 

thermal coupled problems must be as accurate as possible. Then, a very fine, possibly mapped 

mesh should be built mostly in the heat affected region in order to compute eddy currents 

distribution properly. In general, the model should consider nonlinear material properties of steel, 

and consequently the solution should be computed iteratively, through a non-linear solution 

method. Furthermore, to properly describe material properties dependency on temperature, the 

time dependent thermal problem must be solved for several time steps. Therefore, all these 

requirements lead to very long computation time.  

For the purpose of this work, only the 3D steady state electromagnetic problem is solved, as it is 

usually the most time expensive step. Linear magnetic properties are considered. The benchmark 

model includes a slice of the whole system, as  represented in Figure 59. The eddy current 

problem is solved by means of a nodal        formulation. The model mesh, reported in 
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Figure 60, contains      volume elements. With this discretization, the dimension of linear 

system is      or      by using first and second order elements, respectively. The sparsity 

patterns related to the matrices from cases 1 and 2 of Gear series are shown in Figures 61 and 62, 

respectively. Isovalues plot representing the eddy current distribution induced in the gear is 

shown in Figure 63. 

 
Figure 59. The figure represents a slice of the whole inductor workpiece geometry because of 

symmetries. 

 

 
Figure 60. Mesh of inductor, workpiece and clampers. 
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Figure 61. Matrix originated from Gear 1 benchmark. 

 

 
Figure 62. Matrix originated from Gear 2 benchmark. 
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Figure 63. Eddy current distribution in the gear. 

 

7.2 Experimental results 
The hardware platform for the evaluation of computing performance is equipped with two Intel 

Xeon (X5670, six cores) and 96 Gb RAM. MUMPS version 4.10.0 and Intel MKL PARDISO 

version 10.3.9 are compared, both in the In-Core (IC, factors are stored on memory) and the Out-

Of-Core mode (OOC, factors are stored on hard disks). The effect of swapping temporary data on 

virtual memory is also evaluated.  

Although MUMPS is based on a message passing model for parallel computations, in this context 

a single MPI process with multithreaded BLAS libraries is run, because a better performance 

with such a configuration has been observed on multicore architectures in large 3D problems 

solution. Both MUMPS and PARDISO are executed on the set of matrices in Table 7, by using 

12 OpenMP threads. The corresponding factorization times are reported in Figure 64 and Table 8. 

The IC factorization times are slightly different with MUMPS and PARDISO, leading to very 

close behavior when run on 12 cores. Memory usage for IC executions is also very similar among 

the two solvers. In the OOC mode, MUMPS is slightly slower than PARDISO on small matrices, 

but uses less memory since PARDISO does not perform I/O when memory is found to be 

sufficient, as for Pancake 3. 
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Table 7. Details about matrices used for performance tests. 

Matrix Symmetry Arithmetic Mesh elements N 
Number of 

LU factors 

Pancake 1 Unsymmetric complex 600k 320k 990M 

Pancake 2 Unsymmetric complex 1.1M 630k 2.1G 

Pancake 3 Unsymmetric complex 1.9M 1M 5.2G 

Pancake 4 Unsymmetric complex 2.9M 1.5M 8.7G 

Gear 1 Unsymmetric complex 500k 370k 700M 

Gear 2 Unsymmetric complex 500k (2
nd

 order) 2.5M 12.5G 

 

 

 
Figure 64. In-Core factorization time (12 cores, small cases) 

 

 

Table 8. Memory in GB, needed for the factorization of the largest matrices. 

Matrix 
Number of 
LU factors 

MUMPS 
OOC 

PARDISO 
OOC 

MUMPS IC 
+ swap 

PARDISO 
IC + swap 

Pancake 3 5.2G 21 87 93 86 

Pancake 4 8.7G 30 Error 155 147 
Gear 2 12.5G 35 Error 218 214 

 

The missing values for PARDISO in OOC mode (Table 8 and Figure 65) are due to an error 

during the factorization step in OOC mode with multiple threads. Timings on largest problems 

show that MUMPS is less penalized by memory swapping than PARDISO. 
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Figure 65. IC (with swap) and OOC factorization times for large cases. 

 

Experimental results show that performance of both PARDISO and MUMPS are similar. 

However, MUMPS was initially proposed for parallel computation on distributed memory 

systems, thus the performance of a hybrid (distributed-shared) implementation of MUMPS is 

very encouraging.  

Several tests have been carried out in order to identify the key factors that affect the performance 

of MUMPS, in terms of factorization time when a solution is computed on a shared memory 

system through a total number of 12 threads. Results in Table 9 are obtained on the previously 

described testing environment, for different combinations of number of MPI processes and 

number of threads for each MPI process. 

 

Table 9. Factorization times on a 12-core multicore system, with different core-process configurations. Times are in 

seconds. For each matrix, the best time obtained appears in bold. 

Matrix Sequential Threaded BLAS only Pure MPI 

 1 MPI x 1 

thread 

1 MPI x 12 

threads 

2 MPI x 6 

threads 

3 MPI x 4 

threads 

6 MPI x 2 

threads 

12 MPI x 

1 thread 

Pancake 1 2097 260 238 253 283 378 

Pancake 2 5737 678 815 849 774 894 

 

 

 

 

0

5000

10000

15000

20000

25000

Pancake 3 Pancake 4 Gear 2

T
im

e
 (

in
 s

)

MUMPS IC+swap

PARDISO IC+swap

MUMPS OOC

PARDISO OOC



100 

 

Improvements of shared-memory parallelism 

In the context of a cooperation between MUMPS team and Department of Industrial Engineering 

– University of Padova, the MUMPS team provided some new functionalities of the code, and a 

preliminary version of such functionalities have been tested on a shared memory system. In 

particular, executions of the code involved only 1 MPI process, by exploiting: 

- node parallelism through BLAS libraries for factorization kernels 

- tree parallelism through a fork-join model of parallelism, based on OpenMP programming 

The development of such functionalities and all tests have been performed by MUMPS team 

[96,97]. A detailed description is given in chapter 6. Benchmark matrices, originated from 

induction heating finite element models, have been provided by Department of Industrial 

Engineering. 

As described in the previous chapter, the initial goal was to exploit tree parallelism in shared 

memory environments, by adopting algorithms commonly used in distributed memory 

environments and by rearranging them to a multithreading model. The AlgL0 algorithm consists 

in finding a separating layer in the tree, called L0, such that node parallelism will still be applied 

above it, but tree parallelism will be applied under it through OpenMP. 

Furthermore, the use of adequate memory mapping policies allows for performance 

improvements of MUMPS on SMP (Symmetric Multi Processor) and NUMA (Non-Uniform 

Memory Access) architectures [104]. The “localalloc” policy, which consists in mapping the 

memory pages on the local memory of the processor that first touches them, is applied on data 

structures used under   , in order to achieve a better data locality and cache exploitation. The 

interleave policy, which consists in allocating the memory pages on all memory banks in a round-

robin fashion such that the allocated memory is spread over all the physical memory, has been 

used on data structures above    in order to improve the bandwidth. 

Both MUMPS 4.10.0 and MUMPS 4.10.0 with new AlgL0 algorithm have been tested on the set 

of test matrices by MUMPS team, with the stated memory allocation techniques. As reported in 

Table 10, this approach brings a remarkable reduction of computational time on all tested 

matrices. The benefit tends to decrease on large matrices, because the fraction of workload in the 

top of the tree (above L0) gradually increases in comparison to the workload in the bottom of the 

tree. Furthermore, this approach should benefit from the use of the interleave policy. 

Table 10. Time saving by using MUMPS 4.10.0 with ALGL0 algorithm. 

Matrix Time saving  

Pancake 1 13 % 
Pancake 2 11 % 
Pancake 3 8 % 

Gear 1 21 % 
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In conclusion, significant improvements of shared-memory parallelism in MUMPS have been 

verified also in 3D numerical simulation of induction heating industrial applications. Results 

show a remarkable reduction in computing time, when both tree and node parallelism are 

exploited. 

Improvements by Low-Rank approximation techniques 

A method for computing the blocking of frontal matrices for the BLR format has been developed 

by MUMPS team. A detailed description is given in chapter 6.  The method has been effectively 

tested on practical benchmarks arising from electromagnetic, mechanical and thermal problems 

in [82,83]. This technique does not require any knowledge of geometry and physics of the 

problem and can be run at a minimal cost, if compared to the cost of the analysis phase of a 

multifrontal solver.  

In the context of a cooperation between MUMPS team and Department of Industrial Engineering 

– University of Padova, the MUMPS team provided an experimental version of MUMPS with 

such new functionality. Several experimental tests have been conducted by MUMPS team on 

matrices originated from induction heating finite element models. Results show that considerable 

gains can already be achieved at very accurate approximation levels, in which case the final 

solution backward error is comparable to the one obtained with a standard, full-rank solver. 

Experimental results also show that the BLR format is tolerant with respect to variations in the 

size of the blocks. This property may be used to accommodate the BLR format of frontal matrices 

to data distribution in a parallel environment as well as to classical pivoting techniques[82,83]. 

The BLR multifrontal solver has been tested on matrices in Table 7, arising from induction 

heating applications. 

 

Table 11. Improvements by low-rank approximation techniques. 

Matrix LR threshold   
Memory saved for 

factors storage 

Operations saved for 

factorization 
Scaled residual 

Pancake 2      35% 60%           
Pancake 4       34% 60%           

      14% 29%           

 

Experimental results in Table 11 show that the method is more efficient on the largest problems, 

a good property in the context of large scale computing (in case of Pancake 2, no compression 

was achieved with          ). This behavior confirms the experimental tests performed on 

MUMPS team benchmarks coming from other applications. For Pancake 2, significant gains are 

obtained by setting the low-rank threshold to         : necessary memory is reduced up to 

35% and the numerical complexity is almost halved. In this case, a few steps of iterative 
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refinement are performed to recover full precision from the original approximated precision of 

     . For Pancake 4, solved by setting a low threshold precision of      , a good compression 

is obtained naturally without any loss of accuracy.  

Finally, it should be noted that, by choosing a more aggressive threshold  , the BLR format can 

be used to efficiently produce loosely approximated factors that could be used as effective 

preconditioners for iterative solvers [104].  
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8. Design and optimization of induction heating applications 
 

8.1 Design of a Permanent Magnet Heater 

The mass heating of billets before hot metal forming plays a major role among industrial 

induction heating applications as regarding the number of installations, unit rated power of 

heaters and energy consumption. The efficiency of the classical induction process, i.e. the ratio 

between power transferred to the workpiece and the power supplied to the inductor, is in the 

range of 50-60% for aluminum or copper billets. For these materials, a DC induction heating 

concept has been proposed to improve the process efficiency. In this approach the billet is forced 

to rotate inside a transverse DC magnetic field by means of an electric motor. Due to the 

magnetic flux variation an induced current distribution reacts to the driving torque during the 

rotation and generates thermal power within the billet.  

Recently, Laboratory for Electroheat Processes (LEP) proposed an innovative approach based 

upon a rotating system of permanent magnets [112]. This solution appears to be very promising 

as it allows for a high efficiency without using expensive superconductive systems to generate 

the magnetic field.  

It should be pointed that a virtual prototyping methodology has been effectively used to support  

the design phase of the project. Initially, several versions of the machine have been proposed, 

thus a large number of simulations have been performed with the aid of advanced finite element 

tools [39] in order to evaluate benefits and drawbacks for each solution, in terms of feasibility, 

costs and effectiveness.  

Parallel computing capabilities played an important role. In fact, by exploiting MUMPS and 

PARDISO parallel solvers, solution time could be remarkably reduced from some days to a few 

hours, thus opening the way to the optimization process. Then, in the context of an optimization 

process, a numerical model of the heater has been built (Figure 66(a)), and a set of magneto-

thermal simulations have been carried out (Figure 66(b)) in order to identify the correct design 

parameters, i.e. geometrical dimensions, position, number and material of magnets, dimensions 

of stator core and rated power of the induction motor. The optimization goals are cost reduction, 

the best exploitation of magnetic materials, and the best performance of the machine.  
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(a) Geometry of the PMH model. Steel cores, 

supporting and rotating with magnets, are not reported 

for sake of clearness. 

(b) Eddy current distribution induced in the billet during 

the rotation of magnets. 

 

Figure 66. Finite element model of PMH, used for performance evaluation and optimizations before the construction 

of the prototype. The nonlinear 3D transient electromagnetic problem is coupled to a thermal and a mechanical 

problems. The solution of each time step requires ten minutes on parallel hardware. 

 

Once the industrial scale prototype has been realized (Figure 67), electrical and thermal 

experimental measurements have been performed in order to verify the simulation results. A 200 

mm diameter, 500 mm long aluminum billet (42 kg) can be heated uniformly with unmatched 

heating efficiencies, process integration and product quality. The motor drive has a rated power 

of 52 kW at 2500 rpm, and the magnetic field is produced by SmCo rare earth permanent 

magnets. 

  
(a) The prototype installed in the Laboratory of 

Electro heat of Padua University. 

 (b) Arrangement of the permanent magnets 

inside the steel rotor. 

 

Figure 67. Industrial scale laboratory prototype.     

 

In Figure 68, a layout of the measurement system is shown. Electrical measurements have been 

performed by means of a three phase power analyzer (Chauvin-Arnoux, mod. C.A. 8335B 
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Qualistar) and four current probes (Chauvin-Arnoux, mod. MN93BK). Thermal measurements at 

the end of the heating process have been performed by means of an infrared thermo camera 

(AVIO, mod. TVS2000). The billet is blackened with a high temperature resistant paint to control 

the emissivity coefficient. Thermocouples have been used to monitor the billet surface 

temperature after the heating process. In particular, K-type thermocouples have been connected 

to a data logger unit. 

 

Figure 68. Layout of thermal and electrical measuring system. 

 

Experimental results are provided in Figure 69, for different rotating speed, ranging from 500-
750-900, up to 1000 rpm, at which the maximum induced power of 57 kW is transferred to the 
billet (the induction motor can be overloaded for testing purpose).  
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Figure 69. Absorbed Active Power for different rotating speed. In each test, roughly the same energy is provided to 

the billet. Note that additional losses are also included, even if they account for a small contribute.  

 

As shown in Figure 70, a comparison shows good agreement between experimental and 
simulation results. An almost constant difference between computed and measured power is 
related to additional power losses affecting the prototype, i.e. losses due to inverter, induction 
motor and transmission, that are not taken into account in simulations.  

Figure 69 shows measurements of power absorption from the supply network, for different rotor 
velocities. The corresponding temperature transients, reported in Figure 71, have been measured 
for insulated and not insulated clampers, holding the billet. In fact, clampers (made of steel) are 
not preheated at the beginning of each test (as they would be in a continuous operation of the 
heater). In a first configuration, clampers are in contact with the billet during the heating phase 
and heat is transferred from the billet to the clampers by thermal conduction, leading to a non-
realistic estimation of additional losses. Thus, in a second configuration, clampers are thermally 
insulated by a thin layer of fiberglass. The second configuration, that enables for higher 
temperature and efficiencies, gives a correct estimation of the behavior of the machine in a 
continuous operation. 
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Figure 70. Experimental and numerical results for two different rotating speeds: 500 rpm (upper) and 750 

rpm (bottom). Measured values are represented with continuous lines. Computed quantities are represented 

with dashed lines. 
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Figure 71. Temperature evolution inside the billet, when clampers are not insulated, are indicated by continuous 

lines. Temperature evolution inside the billet, when clampers are insulated by a fiberglass layer, are indicated by 

dashed lines. 

 

The amount of thermal energy transferred to the billet can be estimated from: 

         
  (          )

       
 

where         is expressed in    ,     is the average temperature after a thermal equalization 

phase (45 seconds),       is the ambient temperature,            ⁄  is aluminum specific 

heat and           is the mass of the billet. 

Then, global efficiency of the prototype is computed by an energy ratio, according to: 

         
       

         
     

where the absorbed electrical energy           is measured accordingly to the scheme presented in 

Figure 68. 

An estimation of efficiency is reported in Figure 72, with and without the fiberglass thermal 

insulating layer between the clampers and the billet. An higher efficiency is expected to be 

achieved when the heater is operated continuously. In this condition, the clamping system reaches 

its regime temperature and the heat transferred by thermal conduction from the billet to clampers 

is lowered. Therefore, reported global efficiency is a conservative estimate. 



109 

 

 
Figure 72. Global system efficiency for different rotational speed, both with and without thermal insulation 

towards clampers. 

 

In order to improve the performances of PMH system and to obtain a tapered temperature profile 

at end of the heating process, several approaches have been evaluated. Among all, a ‘multiple 

rotors’ solution, in which different rotors can rotate independently at different speeds, can lead to 

a controlled non-uniform temperature profile along the billet.  

A feasibility study has been carried out with a dual rotor solution. In the proposed solution the 

rotors can turn in opposite direction, as reported in Figure 73(a). Opposite directions of rotation 

allow for a remarkable reduction of the total electromagnetic torque acting on the billet, up to a 

cancelation of the net torque transferred to the clampers when the rotational velocity is the same.  

The studies are carried out by means of 3D transient finite element analysis. In order to reduce 

the model complexity and computational time, only one magnetic pole of the system is 

considered in the model, because of periodicity conditions. The geometry of finite element model 

is reported in Figure 73(b). Simulations are performed by a commercial code [39], in which 

rotational movement of regions and periodicities are managed by specific algorithms. Since the 

model considers only a slice of the full system, of an angular width      ⁄  depending on the 

number of magnetic poles  , this kind of model allows for an easy parameterization on the 

number of magnetic poles. 
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(a) The concept of a dual rotor system, with opposite 

rotational velocity. 
(b) Simulated model is reduced to only a mod-wide slice of 
the entire system, due to symmetries. 

 

Figure 73. Model of a dual rotor PMH. 

 

In the model, the volumetric region of the aluminum billet is divided into ten small volumes, in 

order to compute the integral of the induced power density in each single volume. The integral 

values of the power induced in each volume give a rough but quick representation of the non-

uniformity in induced power density distribution along the billet, and it can easily exploited in 

order to decouple thermal and electromagnetic problems, for faster evaluation of performance. 

An example of real induced current distribution is presented in Figure 74, a     system where 

both the rotors turn at 900 rpm, with opposite directions. 

 

Figure 74. On the left, 3D simulation results in terms of eddy current distribution induced in the billet by a      

rotating system. On the right, the eddy current distribution on a planar cross section is shown.  
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The power density distribution, represented by a discretized distribution, is shown in Figure 75, 

for different rotor speeds and different number of magnetic poles. 

  

Figure 75. Induced power for different rotational speeds of the rotors in the ten subdivisions. On the left, a      

system is considered. On the right a     is considered. 

 

For practical reasons concerning the successive extrusion process, a temperature difference of 

about 60-80 °C between the front and rear sides of the billet is requested. Numerical results, 

obtained by the solution of the thermal problem by setting the power density distribution 

(previously calculated for different rotor speeds) as heating source, are summarized in Table 12. 

Maximum and minimum temperature in the billet are reported for three different combinations of 

rotor speeds, both at end of the heating phase and after 30 seconds of thermal equalization. 

 

Table 12. Summary of calculated temperature in a dual rotor system, with different rotational speeds of the two 

rotors [case study: 6 magnetic poles]. 

Rotational speed 

[rpm] 
Process time 

Temperature at the end of the 

process 

Temperature after 30 seconds of 

thermal equalization 

ROTOR1_ROTOR2 [s] TMIN [°C] TMAX [°C] TMIN [°C] TMAX [°C] 

1000_900 440 429 482 437 472 

1000_750 470 403 504 409 494 

900_750 500 426 497 432 487 

 

 

In this cases, the net electromagnetic torque acting on the clampers is not fully negligible when 

different rotors are set to different speed values. However, the resulting net torque is significantly 

reduced, leading to a simplification in the design of the clampers. 

In conclusion, the effectiveness of the “multiple rotors” approach is confirmed by numerical 

simulation results and it will exploited in the second generation prototype. By varying the speed 
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of rotors independently, different distributions of the power density can be induced in the billet, 

thus conical temperature profiles can be obtained. 

 

8.2 Optimization of temperature profiles in heated parts 

In many heating applications, an ideal temperature distribution in the workpiece is usually 

desired. Induction heating is applied to various thermal processes, because it allows for controlled 

heat generation inside the workpiece, thus allowing for higher heating efficiency and good 

temperature control, even in the case of very fast heating treatments. Currently, induction heating 

of complex shaped workpieces is still a challenge, usually left to coil designer experience. 

However, in order to understand and to optimize the overall heating process, in particular for 

surface heat treatments of metals, a fine tuning of process parameters cannot be done empirically 

and requires advanced simulation tools. 

Then, an optimal design for such processes is not limited to the coil design itself, but it implies 

the solution of coupled electromagnetic and thermal problems by finite element simulations, and 

the use of modern optimal design procedures to identify advantages and drawbacks of a set of 

feasible solutions.  

In cooperation with University of Pavia, a multiobjective optimal design procedure has been 

developed and tested on a simple induction heating benchmark. As a reference, a single objective 

algorithm is applied to the same benchmark in [114], in which the temperature uniformity is the 

optimization goal. In the new approach, an automated procedure of bi-objective optimization, 

based on NSGA-II algorithm [115], has been used to solve a multiphysics inverse problem. Both 

magnetic and thermal aspects are considered in the objective functions. In particular, the 

temperature uniformity in the workpiece is evaluated by: 

- a classical min-max criterion 

- a criterion of proximity 

Then, a family of improved solutions, found using both criteria, is considered in a comparative 

way. 

From the optimization process point of view,  the direct problem consists of a pancake coil 

heating a graphite disk. The inductor is composed by 3 groups of 4 turns. All the turns are series 

connected and carry a current of 1000 A at a frequency of 1000 Hz. Figure 76(a) shows      of 

the device, due to symmetries. Though the benchmark problem is axisymmetric, a 3D model is 

simulated for the sake of generality. In particular, the same procedure is valid for non-symmetric 

models, i.e. with magnetic flux concentrators. The electromagnetic (EM) problem is solved in 

time-harmonics conditions, in terms of electric vector potential and magnetic scalar potential 

formulation. The physical domain includes the inductor, the graphite disk and the surrounding 

air. 
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(a) Geometry of the model. Symmetries are taken 

into account, thus only a slice of the device is 

modeled. 

(b) Geometrical parameters. 

 

Figure 76. The direct problem consists in a pancake coil heating a graphite disk. 

 

Eddy current distribution and power losses, both in each turn and in the disk, are computed in 

order to evaluate the device efficiency. Then, a steady-state thermal problem is solved by 

assuming the power density distribution in the disk as the heat source. The thermal domain is the 

disk, and appropriate heat exchange boundary conditions are set on the surface. A typical mesh is 

composed of      first order tetrahedral elements.  

The design variables, reported in Figure 76(b) are: 

- the mean radius    of each group of turns 

- the radial distance    between turns in each group 

- the axial distance    of each group from the disk.  

Two optimization goals have been defined as:  

- the maximum electrical efficiency 

- the temperature uniformity on the disk.  

Note that the second goal only deals with uniformity of temperature, but a target temperature is 

not specified. In order to achieve a good uniformity around a an average target temperature, 

another goal could be easily added. Another option could be to transform the described 

optimization problem in a constrained optimization problem. 

The electrical efficiency,  , defined as the ratio of active power transferred to the disk to the one 

supplied to the inductor, should be maximized. Then, the maximization problem is converted to a 

minimization problem by:  

  ( )     ( ) 

where   (        ),        .  
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The uniformity function, defined on the temperature profile, should be maximized. The 

uniformity function can be evaluated based on a criterion that minimizes the difference between 

the maximum and the minimum of the temperature along a radial path  , located 1 mm below the 

upper surface of the disk: 

  ( )      (   )      (   ) 

where      and      are maximum and minimum temperature along the path  . 

An alternative approach relies on a “criterion of proximity” for the evaluation of temperature 

uniformity. The criterion is based upon a tolerance band,    , around a reference temperature 

value. An example is shown in Figure 77, where the path   is sampled by means of      points. 

For each point, the corresponding temperature   ,          is evaluated and compared with 

the temperature   ,          for     (all the other sampling points). A    value is considered 

to satisfy the “criterion of proximity” if the condition |      |    
  ⁄  holds. Then, for each    

value, the number of    values that satisfy the “criterion of proximity”, is calculated. Finally, the 

uniformity function is evaluated, for    , as: 

  
 ( )  [        

 
  (|  (   )    (   )|  

   

 
)] 

Actually, the value for index          that minimizes the right-hand side is searched for. 

 
Figure 77. Application of “criterion of proximity”. 
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Figure 78. The pseudo-code for the evaluation of the uniformity function is reported. 

 

On these basis, both   ( ) and   ( ) (or   
 ( )) objective functions have to be minimized with 

respect to the design parameters shown in Figure 71(b). The first objective refers to the 

electromagnetic problem and the second objective refers to the thermal problem, thus a 

multiphysics and multiobjective inverse problem is defined. 

The optimization problem is solved and results obtained by using the two different uniformity 

criteria have been compared. Temperature is evaluated on         points, regularly 

distributed along path  . The NSGA-II algorithm is set with a population of 20 initial individuals. 

As regarding the min-max uniformity criterion, after 16 generations the NSGA-II algorithm lead 

to the well-defined Pareto front in Figure 79. An example of initial and final temperature profiles 

for some non-dominated solutions are reported in Figures 80 and 81. 
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Figure 79. Pareto front of optimization problem    ( ) and   ( ). 

 

 
Figure 80. Temperature profiles from the simulations of individuals of the first generation. 
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Figure 81. Temperature profiles from the simulations of individuals of the last generation. 

 

Finally Figure 82 reports two coil configurations characterized by improved performance. In the 

first configuration, coil positions leads to an improved temperature uniformity according to 

  ( ); in turn, the second configuration leads to an improved electrical efficiency according  

  ( ). 

 
Figure 82. Coil configurations for two of the Pareto front solutions. 
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As regarding the second uniformity criterion, the Pareto front after 16 iterations is shown in 

Figure 83. An example of temperature profiles for some non-dominated solutions are reported in 

Figures 84 and 85. 

 
Figure 83. Evolution of the Pareto front for optimization problem    ( ) and    ( ). 
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Figure 84. Temperature profiles from the simulations of individuals of the first generation. 

 

 
Figure 85. Temperature profiles from the simulations of individuals of the last generation. 

 

In Figure 85, it can be observed that it appears that the best temperature gap is lower than in the 

previous case (52.2 °C vs 77.6°C).  
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Figure 86 shows two coil configurations corresponding to two solutions on the Pareto front. In 

the first configuration ST4, the efficiency is high but temperature uniformity is not good. In the 

second configuration ST7, the efficiency is lower but uniformity is good.  

In Figure 87 results obtained from optimization by the two uniformity criteria are shown. The 

second uniformity criterion leads to more uniform temperature profiles. 

 

 

 
 

Figure 86. Coil configurations for two solutions on the Pareto front. On one hand, in ST4 the efficiency is high but 
uniformity is not good. On the other hand, in ST7 the efficiency is low but uniformity is good. 
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 (a) (b) (c) 

    
Figure 87. Difference between the maximum and the minimum temperature along the path, for first generation (a) 

and last generation individuals. The proposed approach (b) lead to more uniform temperature profiles than in a min-

max approach (c).  

 

Table 13. Value of objective functions for the first and the last sets of individuals. The rank of the best 20 individuals 

is reported. 

First generation 
Last generation – min-

max  objective function 

Last generation – proximity 

objective function 

f1 f2[°C] f2' f1 
f2 

[°C] 
f2' rank f1 f2 [°C] f2' rank 

0.138 88.3 39 0.140 77.6 38 0 0.136 86.9 38 0 

0.132 99.7 41 0.123 142.0 43 0 0.132 95.3 39 0 

0.120 182.8 42 0.128 102.7 42 0 0.127 107.1 41 0 

0.170 52.7 32 0.120 154.2 43 0 0.117 194.2 42 0 

0.155 102.3 37 0.137 85.2 39 0 0.164 52.5 32 0 

0.159 51.3 37 0.135 89.4 39 0 0.153 105.9 36 1 

0.137 98.3 41 0.121 145.4 43 0 0.167 52.2 31 1 

0.122 152.8 42 0.128 100.3 41 0 0.150 106.7 37 1 

0.142 95.4 40 0.121 146.0 43 0 0.164 55.3 33 1 

0.150 74.5 39 0.138 79.3 38 0 0.137 84.2 38 1 

0.136 125.9 43 0.130 99.0 41 0 0.132 95.9 39 2 

0.137 119.0 41 0.133 95.1 40 0 0.128 105.1 41 2 

0.143 123.9 40 0.131 96.5 41 0 0.117 193.6 42 2 

0.142 93.2 43 0.137 81.8 38 0 0.165 51.8 32 3 

0.139 155.8 44 0.134 90.6 38 0 0.164 53.4 33 3 

0.143 108.4 42 0.139 79.0 38 0 0.153 107.1 36 3 

0.148 138.2 40 0.134 93.7 39 0 0.150 106.7 37 3 

0.153 121.2 40 0.132 96.3 40 0 0.165 52.4 32 4 

0.141 80.6 44 0.137 82.4 39 0 0.117 190.5 43 4 

0.154 85.7 42 0.132 95.9 40 0 0.137 84.4 38 5 
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Further tests should be performed on more complex models, in order to assess the generality of 

the described optimization procedure. Then, the method could be used in the design of devices in 

which the temperature distribution strongly affects the quality of a technological process, i.e. 

induction hardening of gears and silicon epitaxial growth. 

In conclusion, parallel computing can be effectively exploited in the optimization process, as 

solutions of the same generation are independent one another, and can be computed 

simultaneously. Furthermore, parallel solvers can be exploited by finite element tools for each 

solution. 

 

8.3 Multiphysics modeling of quasi-resonant induction cooktops 

Induction cooktops are gaining an ever increasing share in home cooking market in comparison 

with gas, resistance or halogen cooktops. The main reasons are high energy efficiency, low 

heating times, accurate control of the heating power and uniformity, the increased safety, the easy 

installation and maintenance. Induction cookers are faster and more energy efficient than 

traditional hobs, as the heat is delivered directly inside the pot. 

Manufacturers are looking for more performing and less expensive solutions, by developing new 

power electronics topology and control techniques, by optimizing the design of inductors, by 

exploiting innovative materials and smart software for user interface. Typically an induction hob 

consists in: 

- a ceramic glass 

- a set of inductors that generate variable magnetic field to heat the pot by induced eddy 

currents 

- an electronic board with a frequency converter 

- an user interface for control of heating power levels 

- a mechanical structure. 

The number of installed inductors can vary from 3 to 5 on different configurations, depending on 

diameters and shapes of cookware and available power supply. Inductors are placed on an 

aluminum plate, which acts as mechanical structure and as a shield for the electronic board.  

A typical the inductor, reported in Figure 88, consists in: 

- a pancake coil with one to three concentric spiral windings, in which stranded, litz copper 

wire conductors are used. The diameter of each single wire is in the range of 0.2-0.4 mm, 

depending on the maximum operating frequency. The number of wires in a conductor 

depends on the maximum inductor current and, thus, on the rated power of the inductor 

- a number ferrite cores, as magnetic flux concentrators, arranged radially under the 

inductor in order to increase the efficiency and to avoid magnetic flux leakage 
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- a temperature sensor placed in the center of the coil, to protect the inductor insulation 

from overheating 

- a mechanical structure on which all these components are assembled. 

  

  

(a) Two concentric windings of litz wire (b) ferrite magnetic flux concentrators and aluminum 

layer 

 

Figure 88. Typical arrangement of an inductor for induction hobs. 

 

In the usual configuration of resonant induction cooktops, a frequency converter, operating at a 

frequency between 20 and 50 kHz, must resonate with the inductor in order to achieve an optimal 

efficiency over the broadest possible operation range, by transferring power of about 1-3 kW to 

the pot. Then, the inductor must be designed in order to realize the Zero Voltage Switching 

(ZVS) condition for the frequency converter, over the whole range of operating frequency and 

power levels. These requirements are much more important in the quasi resonant induction 

cooktops, for limitations in handling the soft switch mode of solid state electronic components.  

Among the two typical topologies presented in Figures 89 and 90, the cheapest is the quasi-

resonant (QR) type because of a lower number of electronic switches, i.e. IGBT, and resonant 

capacitors is required. In fact, QR converters are a tradeoff solution between cost and efficiency 

[116,117]. However, despite of its topological simplicity, the design of quasi-resonant converter 

and related inductor is quite challenging.  
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Figure 89. The half-bridge topology is commonly used for resonant induction hobs.   

 

 
Figure 90. Quasi-resonant topology is cheaper, as a lower number of electronic switches, i.e. IGBT, and resonant 
capacitors is required.   

 

The amount of the power deliverable by a QR converter can be controlled in a continuous way 

between a minimum and a maximum value. The width of this range, defined as the ratio between 

the maximum achievable power and the minimum settable power, is influenced by converter 

characteristics, the coil design and the pot quality. The maximum power is limited by the 

maximum voltage tolerable for the switch. The minimum deliverable power is due to the ZVS 

condition at low power. This intrinsic limit for the continuous regulation at very low power 

levels, is usually overcome through a time partitioned heating.  

Thus, the main variables to be controlled for a good operation of the QR converter are the output 

power and the loading conditions. For this reason a precise design of the inductor is needed, by 

taking into account the real behavior of the supply voltage and current, depending on the 

operation mode of the QR converter.  



125 

 

In order to design such devices, a procedure based on a 3D finite element electromagnetic model  

of the inductor, coupled with the frequency converter circuital model and a suitable control logic 

has been developed.  

In the half-bridge resonant topology, the power delivered to the pot is controlled by sweeping the 

operating frequency close to resonance frequency. In order to simulate such systems, 2D or 3D 

time-harmonic electromagnetic problems can be effectively used. For each different set of design 

parameters, a set of simulations might be performed for relevant frequency range. Then, most 

important quantities, as the inductor current and the power delivered to the inductor and to load, 

could be easily evaluated. 

One of the control technique in a QR converter could be to set the peak current value, while the 

frequency depends on the natural oscillation of RLC circuit. In this case, an electromagnetic 

transient analysis must be performed, in order to evaluate inductor current and delivered power. 

Furthermore, through a coupled simulations, the operation mode of the QR converter can be 

tested, as for a real experimental test setup. 

Inductors are modeled by a 2D axisymmetric FEM model, shown in Figure 91, in which the main 

regions of the model are presented. Ferrite magnetic flux concentrators are modelled as a 

continuous ferrite ring with an equivalent magnetic permeability.  

 

 
 
Figure 91. 2D axisymmetric FEM model of the device.  

 

Pot 

Inductor 

Magnetic flux 

concentrators  

Aluminum layer 
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The external diameter of the coil is 150 mm, intended for the small pot. In litz copper wired 

conductors, proximity and skin effects are negligible, thus coils are modeled as perfect coils. The 

pot, represented by a metallic disk, is typically made of non-linear magnetic steel (AISI 409 or 

AISI430). The mesh must be suitable for both the aluminum layer and the non-linear steel layer, 

in different magnetic saturation conditions. In this example, a 165000 nodes, second order 

element mesh is used, and the electromagnetic problem is solved in terms of vector magnetic 

potential and electric scalar potential formulation. 

The 2D model solution returns some useful integral parameters of the device, as the equivalent 

resistance and inductance. However, magnetic saturation effects in the ferrite yokes must be 

modeled in a 3D FEM simulation (Figure 92). In order to reduce the solution time, symmetry 

conditions are posed and only      of the device is modeled, where   the number of ferrites 

cores. 

 

 
 
Figure 92. 3D FEM model of the device.  

 

Both 2D and 3D models must be coupled with the external circuit in Figure 93, where the voltage 

source supply is controlled by a quasi-resonant converter circuit simulation. The switch is 

controlled in a     and a      phases. In particular, a     signal is used by the control logic to set 

the power levels, in the circuit simulation, and sent to the electromagnetic simulation. The      

signal, that determines the frequency, is not fixed and depends on the behavior of the transient 

electromagnetic solution. It must be computed by the logic, through a circuital equation which 

cannot be solved within the FEM model. 
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Figure 93. The supply circuit coupled to 2D and 3D FEM model 

 

In order to simulate the behavior of the system, an automated evaluation of      and of the 

switching frequency is needed. Thus, a coupled multiphysics simulation has been performed by 

Portunus and Flux software. The electrical circuit described in Figure 88, supplying the inductor 

in the FEM model, must be controlled by the QR converter circuit simulation and an adequate 

control logic. In Figure 94, the multiphysics model is presented. 
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Figure 94. Multiphysics modelization of a QR converter. A FEM model is coupled to a circuit model and a control 

logic model, and a transient simulation is performed.  

 

It should be pointed out that the FEM model is fully coupled with the circuit and control logic of 

QR converter. The electrical quantities calculated by the FEM model are used for the calculation 

of electrical parameters like voltage, current and power delivered by the converter at each time 

step of the transient analysis. 

The multiphysics model relies on the following assumptions: 

- the rectifier bridge and the EMI filter, towards the supply network, are neglected 

- the solution is obtained by considering the rectified peak voltage 

- the control logic is based on the analysis of the inductor current:     just before the 

positive current peak is reached, and      is determined by the time of zero crossing of 

current 

- the maximum value for the peak current is determined by both the maximum current limit 

of the IGBT during the     phase, and the maximum voltage on the IGBT during      

phase (most critical condition) 

- the minimum value for the peak current is limited by the hard switching condition 
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The simulation results can be regarded as circuital results and FEM results. As regards the 

circuital quantities, an example of the main electrical quantities in the circuit and related control 

signal is reported in Figure 95. 

 

 
Figure 95. Example of the main electrical quantities in the circuit and related control signal. Waveform of coil 

current, coil voltage, control signal for IGBT, IGBT current and IGBT voltage are shown. 

 

Other useful information can be derived from the 3D FEM simulation results, such as the power 

delivered to the inductor, the magnetic flux density in the ferrite cores and the power density 

distribution in the pot (Figure 96). Among all, the magnetic flux density distribution in the ferrite 

cores is extremely important for a suitable design of the device, and it can only be evaluated by a 

3D model. In particular, eventual magnetic saturation effects in ferrite cores deteriorate the 

device performances, as heat losses in the ferrites and the aluminum plates arise. The power 

density distribution in the pot is another important information, as it can be correlated to the 

uniformity of heat generation in the pot (some foods are very sensitive to small temperature 

differences) and to the electrical efficiency of the device. 
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Figure 96. Magnetic flux density in the ferrite cores and the power density distribution in the pot are among the 

important information from the 3D FEM model. 

 

Simulation results have been compared with experimental measurements on some prototypes. 

Geometrical and electrical parameters have been selected by meeting the requirements on the QR 

converter limitations, as the maximum continuous operation power, the minimum continuous 

operation power and the external diameter of the coil. The experimental tests on a series of 

prototypes demonstrated the suitability of the procedure, by giving errors in the range of 3-6 % in 

all the important metrics, for both the inductor and the QR converter components.  

The solution of the described multiphysics problem is extremely time consuming because a high 

number of time steps is needed in order to obtain an accurate transient solution. Furthermore, at 

each time step, a non-linear electromagnetic problem must be computed with a good accuracy, by 

using very large meshes. The computing time for a transient multiphysics solution is in a range of 

one day for the 2D model, and 1 week for the 3D model, by an ICCG-type sequential solver. By 

exploiting different parallel solvers developed in the framework of this thesis, a remarkable 

reduction in the computing time has been achieved, and simulation time has decreased to only 18 

hours for the 3D model based simulation, on an eight-core shared memory system.  

In conclusion, all important parameters both for the converter and the inductor can be accurately 

calculated, thus allowing for an optimized design of the device.  
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Conclusions 
 

In the modeling of induction heating applications, as well as for structural and fluid dynamics 

problems, the discretization of continuous problems by differential numerical methods leads to 

large sparse linear systems. Accordingly, the solution of such linear systems is the most limiting 

factor in the simulation of increasingly detailed and complex finite-element models. 

As a conclusion of this thesis, a general review of the most remarkable results is outlined.  

A significant reduction of the computing time needed for the simulation of induction heating 

processes has been achieved. Non-linear phenomena as magnetic saturation in magnetic flux 

concentrators, iron core losses and radiative thermal exchanges, eddy current losses and 

temperature distribution in heated parts can be taken into account in the solution of more detailed 

finite-element simulations. 

In the first part of the present thesis, the full potential of simulation software has been exploited 

through the use of high performance parallel computing techniques. In particular, the simulation 

of induction heating processes could be accomplished within reasonable computing times, by 

implementing parallel direct solvers in the solution process.  

The performance of the MUMPS package, an open source library for computation in distributed 

memory system, has been compared to other state-of-the-art libraries on a shared memory 

system. Results of this work have been presented in some prestigious conferences [104]. The 

contribution of the author is the development of an interface to a commercial finite-element tool, 

in order to obtain large sparse matrices from the simulation of induction heating processes. Then, 

different parallel direct solvers for the solution of large sparse linear systems have been 

implemented and benchmarked on relevant models developed through a commercial software.  

Furthermore, outstanding improvements have been achieved in the context of a joint project 

developed by the MUMPS team in Bordeaux, Lyon and Toulouse, and supported by many 

French institutions, as CERFACS, CNRS, ENS Lyon, INPT(ENSEEIHT)-IRIT, INRIA and 

University of Bordeaux. Thanks to a fruitful collaboration with MUMPS team, such very recent 

functionalities developed in Lyon and Toulouse, could be tested on matrix benchmarks from 

induction heating models. The contribution of the author to this cooperation is the realization of 

different matrix benchmarks from typical induction heating process simulations. Experimental 

tests, performed by MUMPS team, show a very significant impact on the computing time and 

memory needed with respect to reference commercial codes.  

In particular, a new multithreading approach has been introduced in MUMPS, in order to exploit 

tree parallelism in a shared memory system, as a multicore computer. In addition, BLAS 

optimized libraries allowed for an efficient exploitation of node parallelism for factorization 
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calculations. Then, a new low-rank approximation technique has been exploited in MUMPS, 

allowing for a remarkable reduction of both the number of operations and the amount of memory 

needed for the matrix factorization.  

The application of such improvements to a distributed memory system is the natural prosecution 

of this work, as each node of a modern cluster consists in a shared memory subsystem, and 

MUMPS library was initially intended for computations on a distributed memory system. 

In the second part of the thesis, the developed parallel solvers have been exploited in a set of 

finite-element simulations. In particular, successful examples of design methodology by virtual 

prototyping have been described. Complex multiphysics simulations have been performed by 

involving electromagnetic and thermal field problems coupled with circuital and mechanical 

problems. Experimental tests carried out on the realized prototypes confirmed the expected 

performance. 

Multiobjective stochastic optimization algorithms have been successfully applied to multiphysics 

3D model simulations in search of a set of different device configurations, characterized by 

improved efficiency and temperature uniformity on the heated parts. Also in this case, parallel 

computing plays a major role, as the number of simulations to be performed in optimization 

algorithms can be very high.  

Various papers have been published on international journals [107,112,113]. The contribution of 

the author to these works is the production of complex multiphysics models and the development 

of new optimization strategies, as well as the acceleration of the simulation time through parallel 

computing with respect to the serial computing. 

As computational power is rapidly increasing by the introduction of new hardware capabilities, 

future work will focus on the development of numerical methods able to benefit from the high 

number of cores available. Moreover, an accurate solution of multiphysics problems will lead to a 

deeper understanding of physical phenomena, allowing for better solutions to engineering 

problems. 
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Nomenclature 
 

   In a code, fraction of the execution time in which the instructions could be parallelized 

   Speed-up achievable for a parallelizable fraction   of a code 

    Number of working threads in a parallel region 

   Matrix of entries     

     Solution vector 

   Right-hand side vector 

   Total energy associated to a system 

   Generic function subject to the prescribed boundary conditions 

   Particular function that minimizes the energy  ( ) 

   Generic linear combination of test functions 

   Particular linear combination that minimizes the energy  ( ) 

   Number of test functions, or dimension of a problem 

  [A/m] Magnetic field 

  [A/m2] Current density 

   [A/m2] Impressed current density 

  [V/m] Electric field 

  [A/m] Electric vector potential 

   [A/m] Impressed electric vector potential 

  [Vs/m] Magnetic vector potential 

   [Vs/m] Reduced magnetic vector potential 

  [V] Electric scalar potential 

  [A] Magnetic scalar potential 

  [A] Total magnetic scalar potential 
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   [A/m] Impressed magnetic field 

    Non-conducting region 

    Conducting region 

    Boundary of non-conducting region 

    Boundary of conducting region 

     Interface between    and    

  [S/m] Electrical conductivity 

  [H/m] Magnetic permeability 

   , 

   
 

Number of non-zero entries in a matrix 

 ,   Upper and lower triangular matrices arising from factorization phase 

 ,   Preconditioning matrices 

   Residual matrix 

   Accuracy of low-rank approximation 

    Rank at accuracy   

 ,   Matrices from low-rank approximation form 

  [°] Angular width 

   Number of magnetic poles 

  , 
  ,  
   

 

Design variables for  -th individual 

   Individual characterized by a set of value for the design variables 

  ( ),  
  ( ),  
  
 ( ) 

 

Objective functions 

   Path for the evaluation of the objective functions 

   ,  
     

 
Control signal for Quasi-Resonant cooktop multiphysics model 
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