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Abstract

Musculoskeletal Modeling of the Human Lower Limb Stiffness

for Robotic Applications

This research work presents a physiologically accurate and novel computationally fast

neuromusculoskeletal model of the human lower limb stiffness. The proposed computa-

tional framework uses electromyographic signals, motion capture data and ground reac-

tion forces to predict the force developed by 43 musculotendon actuators. The estimated

forces are then used to compute the musculotendon stiffness and the corresponding joint

stiffness. The estimations at each musculotendon unit is constrained to simultaneously

satisfy the joint angles and the joint moments of force generated with respect to five

degrees of freedom, including: Hip Adduction-Abduction, Hip Flexion-Extension, Hip

Internal-External Rotation, Knee Flexion-Extension, and Ankle Plantar-Dorsi Flexion.

Advanced methods are used to perform accurate muscle-driven dynamic simulations and

to guarantee the dynamic consistency between kinematic and kinetic data.

This study presents also the design, simulation and prototyping of a small musculoskele-

tal humanoid made for replicating the human musculoskeletal structure in an artificial

apparatus capable to maintain a quiet standing position using only a completely passive

elastic actuation structure. The proposed prototype has a total mass of about 2 kg and

its height is 40 cm. It comprises of four segments for each leg and six degrees of freedom,

including: Hip Adduction-Abduction, Hip Flexion-Extension, Knee Flexion-Extension,

Ankle Plantar-Dorsi Flexion, Ankle Inversion-Eversion, and Toe Flexion-Extension. In

order to reconstruct the continuous state space parameters proper of the assembly’s

control of quiet standing, a hybrid non-linear Extended Kalman Filter based technique

is proposed to combine a base-excited inverted pendulum kinematic model of the robot

with the discrete-time position measurements.

This research work provides effective solutions and readily available software tools to

improve the human interaction with robotic assistive devices, advancing the research

in neuromusculoskeletal modeling to better understand the mechanisms of actuation

provided by human muscles and the rules that govern the lower limb joint stiffness regu-

lation. The obtained results suggest that the neuromusculoskeletal modeling technology

can be exploited to address the challenges on the development of musculoskeletal hu-

manoids, new generation human-robot interfaces, motion control algorithms, and intel-

ligent assistive wearable devices capable to effectively ensure a proper dynamic coupling

between human and robot.





Sommario

Modellazione Muscoloscheletrica della Rigidezza Articolare

dell’Arto Inferiore Umano per Applicazioni Robotiche

Questa ricerca presenta un nuovo modello neuromuscoloscheletrico della rigidezza artico-

lare dell’arto inferiore umano, fisiologicamente consistente e computazionalmente veloce.

Il modello computazionale proposto usa segnali elettromiografici, dati di movimento e

forze di reazione al suolo per predire la forza sviluppata da 43 attuatori muscolotendinei.

Le forze stimate sono poi usate per calcolare la rigidezza muscoloteninea e la corrispon-

dente rigidezza articolare. Le stime, per ogni unità muscolotendinea, sono vincolate a

soddisfare simultaneamente gli angoli e i momenti generati ai giunti, rispetto a cinque

gradi di libertà: Adduzione-Abduzione, Flesso-Estensione e Rotazione Interna-Esterna

dell’Anca, Flesso-Estensione del Ginocchio e Flessione Dorsi-Plantare della Caviglia.

Metodi avanzati sono stati utilizzati per l’esecuzione di simulazioni dinamiche e per

garantire la consistenza tra i dati cinematici e cinetici.

Nel presente lavoro, viene inoltre descritta la progettazione, simulazione e prototipazione

di un piccolo umanoide, realizzato per replicare la struttura muscoloscheletrica umana

in un apparato artificiale, in grado di mantenere una posizione eretta stabile utiliz-

zando una struttura di attuazione elastica completamente passiva. Il prototipo pro-

posto ha una massa totale di circa 2 kg e un’altezza di 40 cm. Ciascuna gamba è com-

posta da quattro segmenti e si articola su sei gradi di libertà: Adduzione-Abduzione e

Flesso-Estensione dell’Anca, Flesso-Estensione del Ginocchio, Flessione Dorsi-Plantare

e Inversione-Eversione della Caviglia, Flesso-Estensione delle dita del Piede. Per ri-

costruire i parametri di stato nel mantenimento della posizione eretta, viene proposta

una tecnica ibrida che coniuga l’utilizzo di un Filtro di Kalman Esteso non lineare, un

modello del robot basato su pendolo inverso eccitato alla base e misure di posizione.

L’obiettivo di questo lavoro è di fornire soluzioni efficaci e strumenti software atti a

migliorare l’interazione umana con ausili robotici. Questa tesi si propone di contribuire

al progresso della ricerca nella modellazione neuromuscoloscheletrica per comprendere

meglio i meccanismi di attuazione fornita dai muscoli umani, nonché le regole che gov-

ernano la modulazione della rigidezza articolare degli arti inferiori. I risultati ottenuti

suggeriscono che la modellazione neuromuscoloscheletrica può essere sfruttata per af-

frontare le sfide dello sviluppo di umanoidi, interfacce uomo-robot di nuova generazione,

algoritmi di controllo del movimento e dispositivi indossabili intelligenti capaci di garan-

tire in modo efficace un corretto accoppiamento dinamico tra uomo e robot.
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Chapter 1

Introduction

The Central Nervous System (CNS) generates neural commands to activate the muscles

in order to control the human body movements. Subsequent forces produced by muscles

are transmitted by tendons to the skeleton to perform a specific motor task. Thus, mus-

cles and tendons are the interface between the CNS and the articulated body segments

[1]. Hence, the human sensory-motor control system cannot be understood by studying

the control circuits (i.e., CNS) while ignoring the inherent properties and the mechanical

dynamics of the musculoskeletal system that it must control [2]. A firm understanding

of the properties of the whole framework, user’s intention and action’s generation, is

important for both scientists and engineers in order to interpret kinesiological events in

the context of coordination of the body and in order to design functional neuromuscular

stimulation systems for restoring lost of impaired motor function, to develop new gener-

ation human-robot interfaces, and motion control algorithms for robotic leg prosthesis

and intelligent assistive wearable devices.

1.1 The three pillars

The extraordinary breadth and multidisciplinary nature of the research field in neuro-

motor and robotics-based rehabilitation (i.e., neurorobotics) can be well summarized

by three pillars (Fig. 1.2): NeuroMusculoSkeletal (NMS) modeling, Human-Machine

Interfaces (HMIs), and Robot Control Strategies (RCSs).

1
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Figure 1.1: A schematic representation of the three pillars representing the three
major topics in the neurorobotics research field.

The NMS modeling enhances coupling between human and robot, the HMI allows for

detecting the high-level intention to move, while the RCS pillar implements a collabo-

rative control approach. Thus, these three pillars are strictly correlated in a framework

that allows for implementing an effective hybrid neurodriven control according to a Man-

In-The-Loop approach.

Figure 1.2: A schematic representation of the Man-In-The-Loop control approach us-
ing biomechanical signals to control a wearable robotic device or a software application.
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1.1.1 Neuromusculoskeletal modeling

The first pillar is the topic on which this thesis is focused. Even more important, it

represents a framework that allows for integrating models describing the anatomy and

physiology of the human body, and the mechanics of multi-joint movement. From a

biomechanical point of view, the analysis of movement plays an important role in both

rehabilitation of neurological and orthopaedic conditions [3] as well as performance en-

hancement [4]. How mammals control the overconstrained actuation of their limb has

been a research topic for decades. Human movement coordination requires some form of

planning: every Degree Of Freedom (DOF) needs to be supplied with approriate motor

commands at every moment in time. Because of the numerous DOFs in bipedal locomo-

tion, there exist an infinite number of possible movement plans for any given task that

is known as Bernstein’s Degrees of Freedom problem [5]. This abundance of DOFs, also

called redundancy, is advantageous as it allows as locomotion system to move around or

between obstacles, avoiding situations where the range of motion for specific DOFs is

limited. On the other hand, it makes planning a movement quite complicated since the

number of all possible strategies to accomplish a task is extremely large.

Researchers have tried to simplify the problem postulating that the brain uses less inde-

pendent commanding signals than those necessary to control each single muscle indepen-

dently. Recently, a new prospective has been proposed by Kutch and Valero-Cuevas [6].

They showed that the dimensionality reduction observed in neurophysiological studies

could simply arise from the physical constraint of the system. As humans move, ac-

complishing a task that require both the following of a trajectory and the exertion of

a force, they must regulate not only the generated muscle forces, but also the stiffness

of their limbs and joints in order to effectively interact with the environment. During

unimpaired gait, depending on the terrain, one might either walk in a relaxed manner

or stiffen up to increase stability.

Typically, stiffness is viewed as a material property describing the degree to which an

object resists deformation when subjected to a known force. Sometimes this idea of

deformation under a given load is discussed using the term compliance which is the

inverse of stiffness [7]. This concept can be extended to the limbs and joints of biologi-

cal organisms in which stiffness (i.e., the static component of impedance) describes the

degree to which a joint bends under a given load [8, 9]. In particular, the translation

of stiffness classical physics definition in the context of human limb joints was deeply
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discussed by Mussa-Ivaldi et al. [10], by Latash and Zatsiorsky in a seminal work [11],

and further addressed and extended, for the arm joints, by others [12, 13]. Humans

use neural control, along with the mechanical constraints of the body, to adjust the

stiffness as the body performs various tasks. It has been shown that humans change

the stiffness of their limbs as they perform tasks such as hopping [14], accurate reaching

tasks [15], or walking and running on different surfaces [16]. In particular, co-contraction

of antagonistic muscle groups alters the biomechanical operating ranges of muscle and

tendon by increasing both muscle damping and muscle-tendon stiffness [17, 18]. While

the exact method by which this neural-modulation of limb stiffness occurs is unknown,

many different hypotheses have been proposed [19, 20].

In this context, there exists also the concept of quasi-stiffness. It describes the relation-

ship between joint angle and joint torque, and it is a frequently studied aspect in biome-

chanics with numerous applications, including motor control [21], prosthesis/orthosis de-

sign, and biologically inspired robotics [22]. The distinction between quasi-stiffness and

stiffness was discussed by [11], wherein the authors stressed the important energy-storing

nature of stiffness and described the physiological joint structures and their contribution

to mechanical properties. Shamaei et al. [23] investigated the knee torque-angle rela-

tionship using a generalized inverse dynamics analysis approach in order to identify the

key independent variables needed to predict knee quasi-stiffness during walking, includ-

ing gait speed, knee excursion, and subject height and weight. It is also worth noting

the studies related to the hip [24, 25] and ankle [26] quasi-stiffness estimation. Hansen

et al. [27] reported ankle torque-angle relationships for various walking speeds, noting

that quasi-stiffness characteristics of the human ankle appear to change as walking speed

increases. Rouse et al. [28] demonstrated the differences between ankle quasi-stiffness

and stiffness using two computational models, based on a simulated inverted pendulum

and an impedance-controlled motor, with force information that could be obtained in

a standard laboratory setting. While the estimation of quasi-stiffness can be derived

by the inverse dynamics equations, measuring lower limb stiffness during locomotion

requires perturbations from the desired trajectory. Hence, such experiments are difficult

to perform and still in their infancies [29–32].

As argued by Delp et al. [33], a theoretical framework is needed, in combination with

experiments, to uncover the principles that govern the coordination of muscles during

normal movement, to determine how neuromuscular impairments contribute to abnor-

mal movement and to predict the functional consequences of treatments. Over the last
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decades, biomechanical models have been extensively used in order to understand the

physiological basis of human and animal movement [34, 35]. One of the first math-

ematical muscle’s models was proposed by Hill [36]. Gordon et al. [37] refined such

model by incorporating the dependence between changes in muscle force as function

of muscle lengths and contraction speeds. Zajac [38] extended the Hill’s model intro-

ducing a muscle-tendon model, which is known as Hill-type muscle force model. More

recently, muscle-actuated dynamic simulations based on the aforementioned biomechan-

ical models and on the use of optimization algorithms are becoming an essential tool for

determining how the elements of the musculoskeletal system interact to produce move-

ment [39]. Such algorithms are usually based on a cost function that depends directly

on a physical parameters such as force variance, energy, muscle stress, to name a few

[40–42]. The commonly used optimization algorithms can be subdivided into Static Op-

timization (SO) [43] and Dynamic Optimization (DO) [44] approaches. The first refers

to the process of minimizing or maximazing some objective function for one instant in

time only. The second refers to the process of minimizing or maximizing some objective

function over a period of time, and it is also sometimes called Optimal Control [45–47].

Using DO-based methods to compute excitation patterns comes at a large computational

cost, which has limited their use within muscle-actuated simulations. Thelen et al. [48]

proposed the Computed Muscle Control (CMC) algorithm. It uses a SO along with

feedforward and feedback controls to drive the kinematic trajectory of a musculoskeletal

model toward a set of desired kinematics. The speed and accuracy of this algorithm

improved the feasibility of using detailed musculoskeletal models to simulate movement.

Moreover, a further improvement to the performance of musculoskeletal optimizations

comes with the introduction of supplemental sets of actuators (i.e., reserve actuators)

included in addition to the modeled muscles, in order to adjust the Center of Gravity

(COG) of each segment, notoriously difficult to measure [49], and to reduce residual

forces. Anderson and Pandy [50] proposed a quantitatively comparison between a DO

solution and two SO solutions adopted for the estimation of muscle forces during normal

walking gait. They concluded that in terms of predicted muscle forces and joint contact

forces, the dynamic and static solutions were similar. Moreover, activation dynamics

and the Force-Length-Velocity (FLV) properties of muscle had little influence on the

SO solutions. Lin et al. [51] performed a correlation analysis between three different

muscle force solutions (i.e., Neuromusculoskeletal Tracking [52], SO, and CMC) in order
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to determine the extent to which inclusion of muscle activation dynamics and a time-

dependent performance criterion influences predictions of lower limb muscle forces for

walking and running. The patterns of muscle loading predicted by the three methods

were similar for both walking and running. The results suggested that the robustness

and efficiency of SO make it the most attractive method for estimating muscle forces in

human locomotion.

In light of this background, this thesis aims to provide an effective solution and readily

available software tool to improve the human interaction with robotic assistive devices,

advancing the research in NSM modeling to better understand the mechanisms of actu-

ation provided by human muscles and the rules that govern the lower limb joint stiffness

regulation. The obtained results suggest that the NMS modeling technology is mature

enough to be exploited to address the challenges on the development of musculoskele-

tal humanoids and intelligent assistive wearable devices capable to effectively ensure a

proper dynamic coupling between human and robot.

1.1.2 Human-Machine Interfaces

The second pillar is based on the fact that the detection of the intention to move is

a necessary condition to effectively control new-generation prostheses for rehabilitation

purposes. A HMI has to properly estimate the subject’s motor intention and provide

an adequate device control command for the robot.

The motor intention can be evaluated in a number of ways. A common solution is to

determine the current contribution of both subject and assistive device by evaluating the

dynamics of the operator together with that of the device itself, in order to estimate the

extra support moment has to be given to the joints [53–55]. The major drawback of this

HMI is that, to perform a movement, the subject has to be able to at least initiate the

movement before they can receive support from the system. Thus, the assistive device

is not directly coupled to the operator. In recent years, a number of researches has been

conducted on developing HMIs based on the use of biological signals generated by the

subject [56–58]. Among others, the two major approaches are based on the Electroen-

cephalographic (EEG) and Electromyographic (EMG) signals.

The first, known as Brain-Machine Interfaces (BMIs) or Brain-Computer Interfaces

(BCIs), was defined for the first time by Wolpaw [59], and is able to recognize spe-

cific brain patterns and translate them in actual actions of external devices in order to
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enable a new real-time interaction between people with severe motor disabilities and

the outside world. In this respect, the last years have seen an increase in sophistica-

tion of BMI-driven applications [60, 61] that allow direct brain communication even in

completely paralysed patients and restoration of movement in paralysed limbs through

the transmission of brain signals to the muscles or to external prosthetic devices [62–

65]. Evidences from several recent studies suggest also that BMI technology is mature

enough to play an active role in the field of motor rehabilitation after stroke [66–69].

Among the different mental tasks and brain signals that have been taken into consid-

eration, most BMI systems share the same architecture. The main components may be

divided in: signal acquisition, feature extraction, classification and action generation.

Signals are acquired from the user’s brain while he/she is performing a predefined mental

task (e.g., imagination of hand movement) and those specific features that are supposed

to better encode user’s intention are extracted. Then, features are classified and trans-

lated in an output signal (e.g., posterior probabilities associated to user’s intent) by

means of machine learning algorithms. Finally, the output of the process is used as a

control signal for external devices.

BMIs can be invasive or non-invasive according to the techniques that have been used

to record brain signals and, consequently, user’s intents. An invasive BMI relies on the

activation of single neurons or population of neurons recorded by means of a multi-unit

array implanted within the cerebral cortex or its surfaces. These systems directly record

the neuronal firing rates or the Local Field Potential (LFP) [70, 71]. Regardless of the

several advantages in terms of quality of signals, signal-to-noise ratio and spatial reso-

lution, invasive BMIs suffer from substantial drawbacks related to technical difficulties

and clinical risks of a surgical intervention. Contrariwise, non-invasive BMIs decode

user’s intents from activity recorded at the scalp level. Several non-invasive acquisition

techniques have been investigated based on the modulation of both the electrical activ-

ity of the brain (i.e., EEG and Magnetoencephalogram (MEG)) and the blood oxygen

level (i.e., functional Magnetic Resonance Imaging (fMRI), Near-infrared spectroscopy

(NIRS)) [72–74]. The main advantage of these acquisition techniques is that they do

not require any kind of surgical intervention. In addition, in the case of EEG and NIRS

based BMIs, the system is portable, low cost and it may be setup in a short period both

in clinical environment and at a patient’s home. The low signal-to-noise ratio and the

poor spatial or temporal resolution are the intrinsic disadvantages of such methods. One
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of the main challenges in the research field is to employ BMI to catch the user’s inten-

tion of moving and to naturally control new generation robotic prostheses by bypassing

conventional, and easily damaged, activation channels.

The second approach, known as EMG-informed or EMG-driven HMIs, shares a similar

architecture to that of BMI from a high level point of view, but is based on the mus-

cle activity. EMG signals measure the electrical currents generated in muscles during

contraction, representing neuromuscular activities [75]. They consist of two types: sur-

face EMG, and intramuscular EMG, which are recorded by non-invasive and invasive

electrodes, respectively. Currently, surface-detected signals are preferably used to ob-

tain information about the time or intensity of superficial muscle activation [76]. They

are emitted prior to muscle contraction and can be detected by superficial non-invasive

electrodes. EMG signals appear in lower limb muscles approximately 10 ms before the

muscle actually contracts. In the upper limb muscles, delays are between 20 and 80 ms.

This is called Electro-Mechanical Delay (EMD) [77, 78]. If the EMD can be exploited

in the assistive device control system, the evaluation of the signal can be done by the

time muscles contract and a robust coupling between human and robot can be achieved

[79, 80]. In this case, since the EMG signals are generated unconsciously, no additional

mental load is needed by the subject.

Several comprehensive surveys about its use in modern, multi-DOFs prostheses have ap-

peared, showing that basically all possible electrode arrangements and machine-learning

methods have been tried to enable fine control over self-powered prosthesis [81, 82]. How-

ever, it turns out that EMG-based HMIs have a number of drawbacks, which still make

it challenging. The main problem lies in the inherent noise in electronics equipment,

the ambient noise, the motion artifact and its changing nature due to sweat, electrode

shift, and fatigue, the latter being especially hard to counter since it entails shifts in the

frequency components of the signal as well as in its amplitude [83].

Concluding, beside the architecture of a HMI, the key characteristic is to provide a real-

time online feedback in order to maintain the direct connection between user’s intent and

the generated action. On one side, the feasibility to recognize specific motor intention

and on the other, the possibility to learn how to modulate control patterns are the two

fundamental aspects of a HMI system. The strict interaction between these two aspects

implements the closed-loop approach (i.e., Man-In-The-Loop) where the HMI user may

continuously self-regulate his intention / activity according to the provided real-time

online feedback. The user can learn the best strategy to operate the HMI.
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1.1.3 Robot Control Strategy

As already mentioned, the control of devices by means of an EEG or EMG based HMI

suffers from intrinsic limitations such as the number of available commands, the signal

reliability and the level of effort for the user. Recently, a new and promising approach

has been proposed in order to overtake these drawbacks: a hybrid HMI (hHMI). As a

general definition, a hHMI is a combination of different signals including at least one

electrophysiological channel (e.g., EEG plus EMG biosignals) [84]. Thus, for example, a

user suffering from the progressive loss of muscular activity might control the movement

of a robotic arm by means of his residual motor functionalities while he uses his motor

imagination only to perform the action. Even more so, all the input channels can be

weighted and fused together in order to give a more reliable and robust control signal.

Currently, HMI research is moving fast towards a hybrid approach to solve the issue

of operating complex devices in natural and daily-life situations. Several examples that

adopt such a design have been reported in literature, to control software applications [85,

86], external navigation devices [87] and even new generation neuroprostheses [88]. The

achieved results demonstrated that an EEG/EMG driven device is not only attainable

but can reach high levels of performance and usability for disables users [89].

In the context of hybrid architecture for HMIs, one of the most promising techniques

for operating complex devices is the shared-control approach. The role of shared-control

is to contextualize high level commands in the current situation and thus to allow the

device to perform a wide range of behaviors with minimum user effort. The concept of

shared-control comes from the Human-Computer (Robot) Interaction field and it is based

on the so-called H-Metaphor. The H-Metaphor (or Horse-Metaphor) was proposed by

Flemish et al. [90] and implements a new design for semi-autonomous vehicles as simple

as effective. Imagine you are riding a horse in a wooded park: you need to focus your

attention only on the final destination of your journey, or you can even just enjoy the

scenery, without caring about the low level navigation details. In fact, you are confident

that the horse is intelligent enough to avoid possible obstacles and to follow the correct

path. At the same time, you have the full control of your vehicle: by means of a simple

movement of the reins, you can make it turn, stop or move forward. This idea perfectly

matches the control limitation of a non-invasive HMI system, that conveys few and high

level commands associated to specific tasks performed by the user. In this framework, a

EEG/EMG driven device, such as a telepresence robot or a semi-autonomous wheelchair
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or even a lower limb exoskeleton, may perform complex behaviors (e.g., moving in real

and crowded environment, docking a table, entering a door) by means of a few user’s

commands. The key point of such a system is the capability of contextualizing the same

command according to different situations in order to perform the intended action. Over

the last years, shared-control has been widely utilized in HMI applications [63, 91, 92],

highlighting that the role of shared-control is twofold: on one hand, it helps disabled

users to accomplish the navigation task; on the other, it reduces the workload and

allows them to reach similar performances as healthy subjects (i.e., time and number of

commands to complete the task).

1.2 Thesis overview

This thesis consists of five chapters.

Chapter 1 - Introduction contextualizes the role of the neural and musculoskeletal mod-

eling technology in the biomechanical analysis of the human movement. The aim of this

chapter is to identify the most significant results as well as the open challenges within

the three main pillars of the Neurorobotics research field.

Chapter 2 - Contributions and Significance illustrates the research questions addressed

in this thesis, the novelty and limits of this research as well as the significance of the

proposed methodologies, providing some possible future perspectives.

Chapter 3 - Materials and Methods, illustrates the workflow that goes from the collec-

tion of data to the creation of the musculoskeletal model and simulation. The proposed

methodology for estimating the musculotendon and joint stiffness during the movement

execution is presented. Finally, the design, simulation and prototyping of a small bipedal

humanoid robot is described, as well as an Extended Kalman Filter based technique for

estimating the ankle damping and stiffness parameters.

Chapter 4 - Validation Procedures and Results describes the evaluation techniques and

experiments performed to validate the proposed techniques.

Chapter 5 - Discussion and Conclusion summarizes the contributions of this research

with respect to the state-of-the-art.



Chapter 2

Contributions and Significance

2.1 Research questions to be addressed

This work addresses a number of research questions including:

• The Information Communication Technology (ICT) in the health sector is grow-

ing increasingly in the recent years, with particular reference to new-generation

protheses, neuromuscular Human-Machine Interfaces (HMI), and EMG-informed /

EMG-driven simulation techniques. What is the role of neural and musculoskeletal

modeling in neurorehabilitation? (Chapter 1)

• In the last decades, biomechanical models and muscle-driven dynamic simulations

have complemented the experimental approaches commonly adopted. With re-

spect to the estimation of physiological and mechanical parameters that cannot be

measured experimentally, what are the major open challenges? (Chapter 1, 2)

• By considering the translation of stiffness classical physics definition in the context

of human limb joints, what is the difference between the concepts of stiffness,

apparent stiffness and quasi-stiffness in biomechanical analysis? (Chapter 3)

• How do muscle force static and dynamic estimation techniques impact on the

musculotendon stiffness and corresponding joint stiffness computation approaches?

(Chapter 3)

11
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• By considering the high variability of the surface Electromiographic (EMG) signals,

and the inherent difficulties in recording deep muscle activity, is it possible to use

a probabilistic approach (i.e., Gaussian Mixture Models) to estimate single joint

angle using EMG signals? Moreover, is it possible to use an analogous approach

to estimate musculotendon stiffness using EMG signals? (Chapter 3, 4)

• By looking at the definition of the Force-Length-Velocity-Activation (FLVA) muscle

properties, how do muscle force estimates change with respect to different Hill-type

based muscle models? (Chapter 3, 4)

• In the context of muscle force optimization solutions, how do muscle force estimates

change with respect to different objective functions? (Chapter 3, 4)

• The muscle-driven dynamic simulations often include a set of fictitious actuators

(i.e., Reserve Actuators) that accounts for the dynamic inconsistencies between

kinematic and kinetic data, not resolvable by muscle actuators alone. What are

the effects of Reserve Actuators on muscle force and joint stiffness optimization

solutions? (Chapter 4)

• When studying humanoid robots, many of the processes involving the synthesis of

robots’ motion have much in common with problems found in biomechanics and

human motor-control research. Is it possible to maintain a stable posture during

standing, on a humanoid robot, using only a completely passive elastic structure?

(Chapter 4)

• By considering the implementation of a hybrid robotic system where the balance

of biped is obtained using passive elastic elements, in order to simplify the control

of gait, what is the effectiveness on using an Extended Kalman Filter (EKF)

as an identification tool for the estimation of damping and stiffness coefficients?

(Chapter 4)

• How can a Neuromusculoskeletal (NMS) model be used to provide effective control

strategies for powered orthoses and humanoid robots? (Chapter 2, 5)

• Can pattern recognition and machine learning techniques be combined to NMS

modeling to provide a better way to extract neuro-motor information from EMG

signals? (Chapter 2, 5)
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2.2 Novelty of this research

This research work presents a novel NMS model of the human lower limb stiffness that is

physiologically accurate and computationally fast (Chapter 3). The proposed computa-

tional framework uses EMG signals, Motion Capture (MC) data and Ground Reaction

Forces (GRFs) to predict the force developed by 43 musculotendon actuators (Section

3.3). The estimated forces are then used to compute the musculotendon stiffness and

the corresponding joint stiffness, clearly differentiating the concepts of stiffness from

quasi-stiffness at multiple Degrees Of Freedom (DOFs) level, within the same joint

(Section 3.4). The estimations at each Musculotendon Unit (MTU) is constrained to

simultaneously satisfy the joint angles and the joint moments generated with respect

to five DOFs, including: Hip Adduction-Abduction (HipAA), Hip Flexion-Extension

(HipFE), Hip Internal-External Rotation (HipIER), Knee Flexion-Extension (KneeFE),

and Ankle Plantar-Dorsi Flexion (AnklePDF). Advanced methods are used to perform

accurate muscle-driven dynamic simulations and to guarantee the dynamic consistency

between kinematic and kinetic data. This novel methodologies combine together the

physiological accuracy of the state-of-the-art models proposed by the biomechanists, to

the fast operation of those proposed by robotics researchers.

This work investigates the impact of different Hill-type based muscle model setups and

FLVA properties on the estimation of muscle forces and joint stiffness, as well as the

effect of using kinematic constraints in muscle force optimization solutions.

This study presents also the design, simulation and prototyping of a small musculoskele-

tal humanoid made for replicating the human musculoskeletal structure in an artificial

apparatus capable to maintain a quiet standing position using only a completely passive

elastic actuation structure (Section 3.6). The prototype has a total mass of about 2

kg and its height is 40 cm. It comprises of four segments for each leg and six DOFs,

including: HipAA, HipFE, KneeFE, AnklePDF, Ankle Inversion-Eversion (AnkleIE),

and Toe Flexion-Extension (ToeFE). In order to reconstruct the continuous state space

parameters proper of the assembly’s control of quiet standing, a hybrid non-linear EKF

based technique is proposed to combine a base-excited inverted pendulum kinematic

model of the robot with the discrete-time position measurements (Subsection 3.6.3).

The objective of this work is to provide effective solutions and readily available software

tools to improve the human interaction with robotic assistive devices. This thesis aims
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to contribute on advancing research in NMS modeling to better understand the mech-

anisms of actuation provided by human muscles and the rules that govern the lower

limb joint stiffness regulation. The obtained results demonstrate the effectiveness of the

proposed techniques, and support the idea of using the NMS modeling technology to

address the challenges on the development of musculoskeletal humanoids, new genera-

tion HMI, motion control algorithms, and intelligent assistive wearable devices capable

to effectively ensure a proper dynamic coupling between human and robot.

As part of the research activity, also a number of software tools have been developed.

• Custom MATLAB and C++ routines were implemented to setting up a devel-

opment environment capable to import raw data, perform batch processing of

movement modeling within OpenSim, and the post-processing of the obtained

data within MATLAB in order to estimate joint stiffness and quasi-stiffness.

• A complete model of the robot was implemented within OpenSim and within

SimWise 4D.

• Custom MATLAB routines were implemented to process the experimental data

related to the robot design and development, as well as for the aforementioned

hybrid non-linear EKF identification technique.

The software, C++ implementation and MATLAB routines, will be made freely available

to download at https://bitbucket.org/iaslab-unipd/.

2.3 Significance of this research

The use of a subject-specific NMS model coupled with machine learning techniques will

have a substantial contribution to the design and implementation of robotic exoskele-

tons and powered orthoses. Indeed, a better understanding of the behavior of muscles

can improve the actuation of these devices and their control algorithms, resulting in en-

hanced biomimetic control systems. Also, the ability to directly study muscles behavior

in healthy and impaired people will be readily possible.

The methodology proposed here could be used, in the future, in the context of robotics

and neurorehabilitation technologies in conjuction with predictive models of muscle re-

cruitment and modularity for synthetizing the neuromuscular mechanisms underlying

https://bitbucket.org/iaslab-unipd/
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human-like locomotion and adaptation capacity to different terrains in artificial systems

such as bipedal robots or prosthetic limbs.

The ability of the proposed methodology to characterize subject-specific and motor task-

specific MTU and joint stiffness is critical for sizing wearable robots actuator power and

spring stiffness to individual users’ joint properties and external mechanical demands.

The ability of estimating net joint stiffness could be used in scenarios involving patients

with uni-lateral impairments. In this context, stiffness could be estimated from healthy

side joints and used as a control signal for compliant prostheses and orthoses acting on

the contralateral affected leg so that it mimics (i.e., restores) healthy leg behavior across

different locomotion tasks and terrains. The ability of estimating the individual muscle

fibers and tendon stiffness could be used to modulate the metabolic cost of locomotion

in individuals wearing orthoses. In this context, the orthosis could be controlled so

that muscle fibers always operate on the most favorable portion of the FLVA surface.

Finally, the ability of translating an individual’s EMG activity into muscle and joint

stiffness estimates could help understand abnormal stiffness strategies in patients with

neurological and orthopaedic conditions in order to deliver personalized rehabilitation

treatments that restore physiological properties.

The NMS model can also provide effective solutions for the actuation of humanoid

robots that have a musculoskeletal architecture and artificial muscles. The proposed

NMS model allows taking inspiration from the way humans move and addressing the

challenge of autonomous locomotion in musculoskeletal humanoids. Indeed, a better

understanding of the dynamics of muscles during movement will allow designing more

sophisticated systems to actuate and control artificial muscles.

This research development aims to integrate musculoskeletal dynamics into robotics

systems to achieve more advanced bio-inspired control strategies. Neuromusculoskele-

tal modeling techniques not only can offer great solutions for exoskeletons control and

humanoids actuation, but can also boost research that aims to provide a more realistic

estimation of the human internal state.
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2.4 Limitations and Future Perspective

There are a number of limitations to this study that should be discussed.

This work was based on a limited number of subjects (i.e., five healthy subjects), us-

ing freely available datasets, already employed in other studies with different purposes.

Therefore, results may not be completely generalizable. However, this study aimed at

developing the theoretical and computational modelling framework for investigating the

NMS mechanisms regulating musculotendon and joint stiffness on a subject-specific ba-

sis. In this context, every single subject becomes representative. Such a preliminary step

needs to be necessarily taken before the developed framework can be applied to large

subject populations. Future work will couple the proposed methods with dimensional-

ity reduction techniques, thus enabling characterizing regularities in the neuromuscular

control of joint stiffness across large subject population.

Surface EMG only provides a surrogate measurement of the neural drive received by

muscles, from which it is currently not possible to discern the underlying afferent and

efferent components as well as their contribution to muscle and skeletal joint stiffness

regulation. It would be highly speculative to separate the contribution to joint stiffness

resulting from EMG-extracted estimates of reflex and descending neural drive. More-

over, for each subject and muscle, the resulting EMG linear envelopes were normalized

with respect to the peak-processed values obtained from each recorded trial. Such peak

values are relative maximum, not an absolute maximum. This may affect the obtained

musculotendon stiffness estimates. However, the problem of surface EMG amplitude es-

timation is one of the greatest challenges currently open in the field of signal processing.

The major problem is the fact that surface EMG is the interference signal resulting from

multiple sampled motor unit action potential superimposed in time and frequency. Be-

cause of motor unit action potential superimposition, there is in general a non-linearity

between the recorded EMG amplitude and the actual muscle activation level. Future

work could be employ high-density EMG in conjunction with decomposition techniques

to experimentally decode single motor unit action potential and spiking events. In com-

bination with our proposed framework, this could enable identifying the roles of central

and peripheral circuitries in the modulation of stiffness.

The proposed methods employed Hill-type muscle models that did not characterize a

number of important muscle-tendon force generating mechanisms. Future work will ad-

dress this limitation by modeling history-dependent muscle force generating mechanisms
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including stretch-induced force enhancement and shortening-induced force depression,

and by incorporating more realistic damping and force-velocity characteristics as well as

muscle energetics characteristics resulting from MTU stiffness modulation.

Finally, with respect to the proposed Locomotive Underactuated Implement Guided via

Elastic Elements (L.U.I.G.E.E.), there are two major limitations. First, in order to re-

duce costs due to fabrication and material, it was designed as a small humanoid robot.

Probably, in the future it will be necessary to increase its size in order to include motors,

control modules and sensors. Second, the current prototype does not have a real torso

and arms. It is well known that these components are essential for maintaining stability

during posture and gait in humans. Future works aim to carry on the study by investi-

gating the viscoelastic properties of the whole assembly, by solving the aforementioned

limitations, and by introducing motors, control modules and sensors so that this new

elastic humanoid robot can move its first steps forward.

In light of the aforementioned limitations, and of the issues discussed about the three

pillars of neurorobotics (Chapter 1), it is worth noting that the successful control of neu-

roprostheses may be achieved only if we are able to correctly detect user’s motor intents

and to translate them in coherent, natural and ecological actions of the new generation

ICT devices. Challenges are open from both theoretical and technological points of view

in order to demonstrate that neuroprostheses systems are mature enough to be used in

real and daily life situations.

Looking at the characterization of the patient’s movement biomechanics, a major chal-

lenge is related to the fact that, muscle-tendon forces, joint contact forces and several

other physiological parameters are currently not measurable in vivo with non-invasive

devices, during motion. Furthermore, often, the measurement system alters the move-

ment of the patient falsifying the measurement itself. Computational modeling of the

musculoskeletal system is the only practicable method that can provide an approach to

analyze loading of muscle and joint. The development of new modeling methods and

numerical simulation algorithms, which are computationally efficient, are increasingly

raising the interest in musculoskeletal modeling and simulation among the biomechani-

cal and medical communities.

Considering the modeling of the interaction between patient and orthotics, two criti-

cal tasks in process of using personalized models are calibration and validation. Since

generic models are constructed from detailed anatomic measurements performed on ca-

daver specimens, a subject-specific model calibration is needed. Four significant model
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calibration steps could be performed in whole or in part to transform a generic model into

a personalized model, including: geometric calibration, kinematic calibration, kinetic

calibration and neurologic calibration. In this context, validation of clinical predictions

is a major challenge faced by personalized models will ultimately require randomized

controlled trials, where outcomes are compared between patients whose treatments were

planned with a personalized model and those whose treatments were not.

On the other hand, with respect to Human-Machine Interfaces (HMIs), the fundamental

requirement is to improve the accessibility, reliability and robustness of such systems in

decoding user’s intentions. In this respect, biomechanical signals have to be acquired by

means of non-invasive techniques while ensuring the quality of the signals. Improvements

in the acquisition devices (e.g., amplifier, electrodes) as well as advances in the decod-

ing algorithms are strictly required in order to bring EEG/EMG based HMI system

out-of-the-lab. As previously mentioned, researchers are currently investigating novel

approaches (i.e., hybrid HMIs, shared control theory) to fulfil this ambitious goal. Next

challenge is to implement and integrate them in the new generation of prostheses: on

one side, a hybrid control of the prostheses that fuses together different kinds of physi-

ological signals (e.g., EEG, EMG, residual muscular functionality) in order to enhance

the quality and the naturalness of the control. On the other side, the goal is to improve

the Human-Robot Interaction by means of intelligent prostheses able to gather informa-

tion from the environment, to take autonomous decisions, to adapt its behavior to the

musculoskeletal parameters of the user and eventually, to provide him with an haptic

and coherent feedback. In this context, the strict coupling between human intention,

Brain-Machine Interface and intelligent device will make the prostheses no longer an

external actuator, but an actual extension of the user’s body.



Chapter 3

Materials and Methods

Despite the detailed subdivision of sections and subsections, which is adopted in order

to better clarify the concepts, two major domains can be indentified in this chapter:

1. The description of data and methodologies proposed to study the biomechanics of

human movement in order to better quantify the musculotendon and joint stiffness

during the movement execution.

2. The description of L.U.I.G.E.E. (Locomotive Underactuated Implement Guided

via Elastic Elements). A small humanoid robot, implemented in collaboration

with the Mechanical Engineering Department of the Gannon University, Erie, PA,

USA, whose actuation structure includes linear elastic springs replicating the major

human lower limb muscle groups.

With respect to the first point, the structure of the computational model developed and

employed in this thesis has four major components (Fig. 3.1): a) Human Movement

(Section 3.1); b) Movement Modeling (Section 3.2); c) Neuromusculoskeletal (NMS)

Modeling (Section 3.3); d) Muscle-Tendon Short-Range Stiffness (SRS) (Section 3.4).

The experimentally recorded data are elaborated through modules a), b), and c) to

estimate the physiological and kinematics data needed to compute the joint stiffness

through module d) and joint quasi-stiffness information.

With respect to the second point, the detailed description of the design and implemen-

tation of the robot (Section 3.6), as well as of the system state and the joint stiffness

estimation techniques (Subsection 3.6.3), proposed as part of this thesis, are provided.

19
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Figure 3.1: Flow-chart depicting the proposed multi-DOFs stiffness and quasi-
stiffness computational model. It comprises of four components: a) Human Movement;
b) Movement Modeling; c) Neuromusculoskeletal (NMS) Modeling; d) Muscle-Tendon
Short-Range Stiffness (SRS). The experimentally recorded data are elaborated through
a), b), and c) modules to estimate physiological and kinematics data needed to compute

joint stiffness through module d) and joint quasi-stiffness information.

3.1 Human Movement

The Human Movement block represents the first step of the workflow. It includes the

experimental setup and Motion Capture (MC), Ground Reaction Forces (GRFs), and

Electromyographic (EMG) signals recording. In this thesis, two public available dataset

were used in which the data from healthy male and female subjects’ movements were

collected. The raw data, for each subject and trial, were pre-processed in order to remove

noise and extract the movements of interest (i.e., stance and swing phases of walking

and running) through a custom MATLAB code, as described in Subsections 3.1.1 and

3.1.2, respectively.

3.1.1 Dataset 1: Multiple Speed Walking Simulations

The Multiple Speed Walking Simulations1 project includes 32 three-dimensional muscle-

actuated simulations of human walking. This dataset was originally recorded in order

to quantify the muscle contributions to vertical support and forward progression over

a range of walking speeds. Three-dimensional muscle-actuated simulations of gait were

1
https://simtk.org/home/mspeedwalksims

https://simtk.org/home/mspeedwalksims
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generated and analyzed for 8 subjects walking overground at 4 different speeds [93].

Protocols for measuring MC, GRFs, and EMG signals are reported in [94]. The GRFs

were sampled at 1080 Hz and low-pass filtered at 20 Hz. The EMG data were sampled at

1080 Hz, band-pass filtered between 20 and 400 Hz, rectified, and then low-pass filtered

at 10 Hz. The resulting envelope for each muscle was normalized by the peak value

recorded from that muscle over all walking speeds for a given subject. The walking

speed for each trial was categorized post-hoc as very slow, slow, free, or fast:

walking speed =



0 < v∗ ≤ v∗free − 3σ∗free very slow

v∗free − 3σ∗free < v∗ ≤ v∗free − σ∗free slow

v∗free − σ∗free < v∗ ≤ v∗free + σ∗free free

v∗free + σ∗free < v∗ fast

(3.1)

where v∗ = v/
√
gLleg represents the dimensionaless walking speed, computed from v, the

absolute walking velocity, Lleg, the leg length, and g, the gravitational acceleration [95].

v∗free and σ∗free are the mean and standard deviation, respectively, of the dimensionless

free walking speed of the subject cohort reported in [94].

Within this dataset, 4 subjects were selected (age: 13.35 ± 2.11 years; weight: 62.725 ±

16.80 kg; leg length: 0.85 ± 0.0785 m) with similar stature so that the angular velocity of

the gait would be comparable among them. However, this producted a non-homogeneous

distribution of weight. Hence, the weight of each subject was used as a normalization

factor in the computation of physiological and mechanical parameters, as described in

Chapter 4. Age, gender, body mass, leg length, and walking speeds of the selected

subjects are provided in Table 3.1. For simplicity and clearness, the four speeds have

been renamed as follows: very slow (s1), slow (s2), free (s3), and fast (s4).

Table 3.1: Subjects’ gender, age [years], mass [kg], leg length [m], walking speed [m/s]
and simulation label.

Sim Label Gender Age Mass Leg Length Walking Speed [m/s]
[years] [kg] [m] s1 s2 s3 s4

GIL01 F 10.2 41.1 0.77 0.57 0.67 1.01 1.40

GIL02 F 14.6 66.0 0.90 0.49 0.80 1.21 1.52

GIL06 F 14.1 81.9 0.81 0.50 0.81 1.11 1.42

GIL08 F 14.5 61.9 0.94 0.56 0.70 1.12 1.62
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3.1.2 Dataset 2: Muscle function of overground running across a

range of speeds

The Muscle function of overground running across a range of speeds2 project is a reposi-

tory of overground running data along with a working musculoskeletal model to perform

simulations and derive the function of individual muscles [96]. The original dataset

comprised of nine subjects (five males, four females; age, 27.7 ± 8.0 years; mass, 73.1

± 8.6 kg; height, 1.76 ± 0.07 m; leg length, 0.93 ± 0.05 m) volunteered to participate

in the study. All subjects were experienced runners and at the time of testing were

not suffering from any musculoskeletal injury likely to adversely affect their sprinting

ability. Prior to data collection, a test leg, henceforth referred to as the ipsilateral leg,

was randomly chosen by tossing a coin. All experiments were conducted on a straight

indoor synthetic running track. The total track was 110 m long, which provided subjects

with up to 60 m to accelerate to a steady-state speed, 20 m to maintain the steady-state

speed and 30 m to safely decelerate to rest. All data were collected inside the volume

where subjects were required to maintain the steady-state speeds.

Marker-derived kinematic data were acquired using a MC system (VICON, Oxford Met-

rics, Oxford, UK), by mounting small reflective markers over specific locations on the

trunk, legs, and arms. Marker trajectories were recorded using 22 optical infrared cam-

eras sampling at 250 Hz over a distance of 11.5 m. GRFs and Centre Of Pressure (COP)

data were measured using eight force plates (Kistler Instrument Corp., Amherst, NY,

USA) sampling a 1050 Hz. GRFs were low-pass filtered at 60 Hz, using a fourth-order

Butterworth filter to remove high frequency noise. EMG data were sampled at 1500 Hz

using a telemetered system (Noraxon Telemyo 2400T G2, Noraxon USA Inc., Scotts-

dale, AZ, USA). Pairs of Ag/AgCl surface electrodes were mounted, according to the

guidelines published in [97], on the skin to measure the activity of 11 lower-limb mus-

cle groups: gluteus maximus, gluteus medius, medial hamstrings (i.e., combined signals

from semimembranosus and semitendinosus), lateral hamstrings (i.e., combined signals

from biceps femoris long head and short head), rectus femoris, vastus medialis, vastus

lateralis, medial gastrocnemius, lateral gastrocnemius, soleus and tibialis anterior.

Within this dataset, the data referred to a healthy male subject (age, 19 years; mass,

75.9 kg; height, 1.82 m; leg length, 1 m), running at four different speeds s1 = 3.56 m/s,

s2 = 5.20 m/s, s3 = 7.00 m/s, and s4 = 9.49 m/s, were used in the present study.

2
https://simtk.org/home/runningspeeds

https://simtk.org/home/runningspeeds
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3.2 Movement Modeling

The Movement Modeling block (Fig. 3.2) represents the second step of the workflow in

which the MC and GRFs data are used to scale the generic musculoskeletal model to the

subject-specific anthropometric properties, and to adjust the same in order to reduce the

offsets in residual forces and moments. During this step, three-dimensional joint angles

and moments are estimated by solving the Inverse Kinematics (IK) and Inverse Dynamics

(ID) problems, respectively. The Movement Modeling block was implemented based on

the use and extensions of OpenSim3 functionalities through the available Application

Programming Interface (API) [33, 98], by developing the C++ custom code needed to

perform batch processing of movement within OpenSim.

Figure 3.2: Movement Modeling. MC data are used to scale a generic musculoskeletal
model to a subject-specific anthropometry. The scaled model is then adjusted by in-
cluding the GRFs within the Residual Reduction Analysis (RRA) in order to guarantee

the consistency between kinematic and kinetic data.

3.2.1 Musculoskeletal Model

The adopted musculoskeletal model is described by a three-dimensional, 37 Degrees Of

Freedom (DOFs), computer model (Fig. 3.3). The model includes six body segments

for each leg: pelvis, femur, tibia-fibula, talus, foot, and toes. Each arm is represented by

humerus, ulna, radius, and hand. The joint definition are derived by [99, 100], and the

anthropometry by [40]. Ninetytwo Musculotendon Units (MTUs) represent the main

muscle groups: 43 for each leg, and 6 lumbar muscles. Muscle lines of action were

identical to those in Hamner et al. [101]. The physiological parameters of muscles are

in accordance to mean values reported by [102]. The arm joints are actuated by ideal

torque motors4.

3
https://simtk.org/home/opensim

4
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1CoordinateActuator.html

https://simtk.org/home/opensim
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1CoordinateActuator.html
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(a) Kinematics (b) Musculotendon Units

(c) Full-body model

Figure 3.3: (A) Adopted skeletal structure with virtual markers position and Hip
Flexion-Extension, Knee Flexion-Extension, Ankle Plantar-Dorsi Flexion Degrees of
Freedom definition. (B) Adopted Musculotendon Unit defintion and insertion: Superior
Gluteal Nerve (SGN), Inferior Gluteal Nerve (IGN), Femoral Nerve (FN) and Lumbar
Plexus Nerve (LPN), Obtural Nerve (ON), Tibialis Nerve (TN), Sciatic Nerve (SN),
Deep Fibular Nerve (DFN), and Fibular Nerve (FN). (C) Full-body representation of

the musculoskeletal model.
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3.2.2 Scaling

Scaling is performed based on a combination of measured distances between x-y-z marker

locations and manually-specified scale factors. The marker locations are obtained using

MC equipment. The unscaled model has a set of virtual markers placed in the same

anatomical locations as the experimental markers. The dimensions of each segment

in the model are scaled so that the distances between the virtual markers match the

distances between the experimental markers. Manual scale factors, which may come from

other anthropometric analyses, can also be used as an alternative to the measurement-

based scaling for any body segment. Once the dimensions of the segments have been

scaled to match the subject, the Scale5 step were used to move some or all of the virtual

markers on the model so that they coincide with the experimental marker locations.

The scaling step scales the mass properties (i.e., mass and inertia tensor) of the model,

as well as the dimensions of the body segments. Many of the elements attached to the

body segments, such as muscle actuators and wrapping objects are also scaled.

3.2.3 Inverse Kinematics

The IK6 steps through each time frame of experimental data and positions the model in

a pose that best matches experimental marker and coordinate data for that time step.

This best match is the pose that minimizes a sum of weighted squared errors of markers

and/or coordinates (Eq. 3.2).

min
q

 ∑
i∈markers

wi‖xexpi − xi(q)‖2 +
∑

j∈unprescribed coords

ωj

(
qexpj − qj

)2


qj = qexpj for all prescribed coordinates j

(3.2)

where q is the vector of generalized coordinates being solved for, xexpi is the experimental

position of the i-th marker, xi(q) is the position of the corresponding marker on the

model, and qexpj is the experimental value for coordinate j. Prescribed coordinates are

set to their experimental values. The Least Square Problem (LSP) is solved using a

general quadratic programming solver, with a convergence criterion of 0.0001 and a

limit of 1000 iterations.

5
http://simtk-confluence.stanford.edu:8080/display/OpenSim/Scaling

6
http://simtk-confluence.stanford.edu:8080/display/OpenSim/Inverse+Kinematics

http://simtk-confluence.stanford.edu:8080/display/OpenSim/Scaling
http://simtk-confluence.stanford.edu:8080/display/OpenSim/Inverse+Kinematics
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3.2.4 Residual Reduction Analysis

Residual Reduction Analysis (RRA)7 is a form of forward dynamics simulation that

uses a tracking controller to follow model kinematics determined from the IK. However,

without muscles the skeleton of the model can be used to determine a mass distribution

and joint kinematics that are more consistent with GRFs.

Typically, modeling assumptions, noise, and other erros from MC data lead to dynamic

inconsistency, essentially: the GRFs and acceleration estimated from measured marker

kinematics for a subject do not satisfy Newton’s Second Law, F = ma. In RRA, Static

Optimization (SO) is utilized to adjust kinematics to reduce the magnitude of residuals

(i.e., non-physical forces applied to the model accounting for differences in measured

forces and accelerations) from ID. In a separate step the total mass of the model and

location of the Centre Of Mass (COM) of a targeted segment (typically the most massive,

e.g., torso) are adjusted to eliminate offsets in residual forces and moments.

3.2.5 Inverse Dynamics

The ID8 determines the generalized forces at each joint responsible for a given movement.

Given the kinematics describing the movement of a model and perhaps a portion of

the kinetics applied to the model, the ID analysis was performed [103, 104]. Classical

mechanics mathematically expresses the mass-dependent relationship between force and

acceleration, F = ma, with equations of motion.

M(q)q̈ + C(q, q̇) +G(q) = τ (3.3)

where, assuming N DOFs, q, q̇, q̈ ∈ RN are the vectors of generalized positions, velocities,

and accelerations, respectively, M(q) ∈ RN×N is the system mass matrix, C(q, q̇) ∈ RN

is the vector of Coriolis and centrifugal forces, G(q) ∈ RN is the vector of gravitational

forces, and τ ∈ RN is the vector of generalized forces.

The motion of the model is completely defined by the generalized positions, velocities,

and accelerations. Consequently, all of the terms on the left-hand side of the equations

of motion are known. The remaining term on the right-hand side is unknown. ID solves

Eq. 3.3 to yield the net forces and torques at each joint which produce the movement.

7
http://simtk-confluence.stanford.edu:8080/display/OpenSim/Residual+Reduction+Algorithm

8
http://simtk-confluence.stanford.edu:8080/display/OpenSim/Inverse+Dynamics

http://simtk-confluence.stanford.edu:8080/display/OpenSim/Residual+Reduction+Algorithm
http://simtk-confluence.stanford.edu:8080/display/OpenSim/Inverse+Dynamics
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3.2.6 Forward Dynamics

In contrast to ID where the motion of the model was known and we wanted to determine

the forces and torques that generated the motion, in Forward Dynamics (FD)9, a math-

ematical model describes how coordinates and their velocities change due to applied

forces and torques (i.e., moments). From Newton’s Second Law, the accelerations of the

coordinates can be described in terms of the inertia and forces applied on the skeleton

as a set of rigid-bodies.

q̈ = [M(q)]−1 {τ + C(q, q̇) +G(q) + F} (3.4)

where q̈ is the coordinate accelerations due to joint torques, τ , Coriolis and centrifugal

forces, C(q, q̇), as function of coordinates, q, and their velocities, q̇, gravity, G(q), and

other forces, F , applied to the model. [M(q)]−1 is the inverse of the mass matrix.

In this context, a set of differential equations that model musculoskeletal dynamics can

be provided as follows:

τm = [R(q)] f(a, l, l̇) Moments due to muscle forces

l̇ = Λ(a, l, q, q̇) Muscle contraction dynamics

ȧ = A(a, x) Muscle activation dynamics

(3.5)

The net muscle moments, τm, are a result of the moment arms, R(q), multiplied by

muscle forces, f , which are a function of muscle activation, a, and muscle fiber lengths,

l, and velocities, l̇. Muscle fiber velocities are governed by muscle contraction dynamics,

Λ, which is dependent on the current muscle activations and fiber lengths as well as

the coordinates and their velocities. Finally, activation dynamics, A, describes how

the activation rates, ȧ, of the muscles respond to input neural excitations, x, generally

termed the model’s controls.

9
http://simtk-confluence.stanford.edu:8080/display/OpenSim/Forward+Dynamics

http://simtk-confluence.stanford.edu:8080/display/OpenSim/Forward+Dynamics
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3.3 Neuromusculoskeletal Modeling

The Neuromusculoskeletal Modeling block (Fig. 3.4) represents the third step of the

workflow. The three-dimensional joint angles and moments estimated during the pre-

vious step are used together with the experimentally recorded EMG signals, within a

proper Hill-type based musculotendon model, to estimate the activation and contraction

dynamics that determine specific musculotendon forces. Moreover, the musculotendon

moment arms are computed for each MTU with respect to each joint in order to de-

termine the musculotendon moments. In this context, the EMG signals were used to

iteratively check the estimated muscle activation profiles as a parameter through which

evaluate the goodness of the simulation based muscle force recontruction [105].

Figure 3.4: Neuromusculoskeletal Modeling. The experimentally recorded EMG sig-
nals are used to check the estimated activation dynamics for each MTU. The contrac-
tion dynamics is then obtained by coupling the activation dynamics with the estimated
kinematics. Musculotendon length, lm, muscle fiber contraction velocity, vm, and mus-
cle force, fm are used to compute the musculotendon moments and the corresponding

contribution to the total joint moments for each MTU acting on each joint.

The adopted Hill-type MTU model (Fig. 3.5) is known as Thelen2003Muscle10 [106],

which represents the muscle mechanical response using five parameters:

1. Maximum Isometric Force (MIF), is the peak force that a muscle can produce at

its optimal muscle length, and is related to a muscle’s cross-sectional area.

2. Optimal Fiber Length (OFL), is the length of sarcomeres at which there is optimal

overlap of the actin and myosin myofilaments, thus producing a peak force.

3. Tendon Slack Length (TSL), is the length over which the tendon develops a force

proportional to its strain.

4. Maximum Contraction Velocity (MCV), is the maximum speed at which a muscle

changes length during a contraction.

5. Pennation Angle (PA), is the angle between the tendon and the muscle fibers.

10
http://simtk-confluence.stanford.edu:8080/display/OpenSim/Thelen+2003+Muscle+Model

http://simtk-confluence.stanford.edu:8080/display/OpenSim/Thelen+2003+Muscle+Model
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(a) Musculotendon Unit (b) Muscle fibers

Figure 3.5: (A) Schematic of muscle-tendon unit showing muscle fiber in series with
tendon. The pennation angle, φ, of the muscle fiber relative to the tendon and that
the total tendon length, lt, is twice that of the tendon on either end of the muscle
fiber, lt/2. (B) Schematic of muscle fiber with contractile element and parallel elastic
element. The force produced by the contractile element, Fm, is a function of lm (muscle
fiber length) and vm (muscle fiber contraction velocity), while the tendon force, Ft, is

a function of lt. The total muscle fiber force, Fm, is the sum of FAm and FPm.

The muscle have control inputs called excitations, and the model represents the Electro-

Mechanical Delay (EMD) from these excitations (i.e., the electrical neural signal sent to

the motor-neuron junction) to activation (i.e., the level of force production) with a first

order differential equation [20, 38]. Using Newton’s third law, and assuming that the

MTUs are massless, the differential equation of the MTU is:

fiso
(
a(t)fAL(lM )fv(l

M ) + fPL(lm)
)

cos(α)− fisofSE(lT ) = 0 (3.6)

Rearranging the above equation and solving for fv(l
M ) yields:

fv(l̇
M ) =

fSE(lT )
cos(α) − fPL(lM )

a(t)fAL(lM )
(3.7)

The Force-Velocity (FV) curve is usually inverted to compute the fiber velocity, as

follows:

l̇M = f−1
v


fSE(lT )
cos(α) − fPL(lM )

a(t)fAL(lM )

 (3.8)

which is then integrated to simulate the musculotendon dynamics.
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In general, the previous equation has four singularity conditions:

1. a(t)→ 0

2. fAL(lM )→ 0

3. α→ 90◦

4. fv(l̇
M ) ≤ 0 or fv(l̇

M ) ≥ Fmlen

In order to avoid the aforementioned singularities, the adopted implementation is based

on the following assumptions:

1. a(t) → amin > 0. The activation dynamic equation smoothly approaches a min-

imum value that is greater than zero. The time derivative of activation da/dt is

computed as follows:
da

dt
=

u− a
τ(u− a)

(3.9)

where u is excitation, a is activation, and τ(u, a) is a variable time constant:

τ(u, a) =


tact(0.5 + 1.5a) if u > a

tdeact/(0.5 + 1.5a) otherwise

(3.10)

Typical values11 for activation and deactivation time constants, and for the min-

iminum activation are 10 ms, 40 ms, and 0.01, respectively.

2. fAL(lM ) → 0. The active Force-Length (FL) curve of the Thelen muscle is a

Gaussian, which is always greater than 0.

3. α→ 90◦. This singularity cannot be removed without changing the first equation,

and still exists in the present implementation.

4. fv(l̇
M ) ≤ 0 or fv(l̇

M ) ≥ Fmlen. In order to make the FV curve invertible, the

muscle contraction velocity, vM , is linearly extrapolated when FM < 0 (during a

concentric contraction) and when FM > 0.95Fmlen (during an eccentric contraction).

5. A unilateral constraint has been implemented to prevent the fiber from approach-

ing a fiber length that is smaller than 0.01*OFL, or a fiber length that creates a

PA greater than the maximum PA specified by the pennation model.

11
http://simtk-confluence.stanford.edu:8080/display/OpenSim/First-Order+Activation+Dynamics

http://simtk-confluence.stanford.edu:8080/display/OpenSim/First-Order+Activation+Dynamics
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Given the MTU model, the muscle excitations, activations and corresponding generated

forces were computed, within OpenSim, by using two different optimization-based ap-

proaches: Static Optimization (SO) and Computed Muscle Control (CMC) [48, 107].

With respect to the SO analysis, the objective function (Eq. 3.11) represents a pure

Torque-based Muscle Force computation procedure [108]:

u = min
M∑
i=1

(
Fm,i
F 0
m,i

)2

τj =

M∑
i=1

rij × Fm,i i=1,2,...,M; j=1,2,...N

0 ≤ Fm,i ≤ F 0
m,i

(3.11)

where Fm,i is the muscle force of the i-th muscle and F 0
m,i is the corresponding MIF.

rij is the posture-dependent moment arm for the i-th muscle relative to the j-th joint,

and τj is the torque about the j-th joint. The sum over M elements corresponds to the

number of MTUs crossing the Hip, Knee, and Ankle joint in the model. N is the number

of DOFs. The distribution of muscle force is computed for a specific set of joint torques.

The cost function is the sum of the squared muscle forces expressed as a fraction of the

MIF for each muscle. A set of constraints was considered such that the resulting muscle

forces summed to the specific joint torque, and muscle forces were positive and less than

or equal to the achievable MIF.

With respect to the CMC analysis, the objective function remains the same of Eq. 3.11,

however a significant change is introduced in the muscle activation-to-force condition

(see equality contraint (Cj = 0) in Eq. 3.12), implementing in this way a kind of

Torque/Kinematic-based Muscle Force computation procedure [108], as follows:

u = min
M∑
i=1

(
Fm,i
F 0
m,i

)2

τj =
M∑
i=1

rij × Fm,i i=1,2,...,M; j=1,2,...N

0 ≤ Fm,i ≤ F 0
m,i

Cj = q̈∗j − q̈j j=1,2,...N

(3.12)

where Fm,i is the muscle force of the i-th muscle and F 0
m,i is the corresponding MIF. rij is

the posture-dependent moment arm for the i-th muscle relative to the j-th joint, and τj
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is the torque about the j-th joint. The sum over M elements corresponds to the number

of MTUs crossing the Hip, Knee, and Ankle joint in the model. N is the number of

DOFs. The model accelerations q̈j are driven toward the desired accelerations q̈∗j , where

qj represents the j-th model coordinate. The desired accelerations were computed using

the following Proportional-Derivative (PD) control law:

~̈q∗(t+ T ) = ~̈qexp(t+ T ) + ~kv[~̇qexp(t)− ~̇q(t)] + ~kp[~qexp(t)− ~q(t)] (3.13)

where ~qexp are the experimentally-derived coordinates, ~̈q∗ are the desired accelerations,

and ~q are the model coordinates. ~kv = 30 and ~kp = 900 are the feedback gains on

velocity and position errors, which were experimentally set. It is worth noting that,

in both Eq. 3.11 and Eq. 3.12, the muscle activation am,i = Fm,i/F
0
m,i always varies

between 0 and 1. The optimization problem formulated in Eq. 3.12 was solved by

considering musculotendon actuators as ideal force generator, and by taking into account

the physiological Force-Length-Velocity (FLV) relationship (Fig. 3.6) that characterizes

each MTU [109]: Fm,i = am,if
(
F 0
m,i, lm,i, vm,i

)
.

Figure 3.6: The Active Force-Length-Velocity (FLV) surface of muscle is defined by
the muscle’s Optimal Fiber Length (OFL), Maximum Shortening Velocity (MSV), and
Maximum Isometric Force (MIF). Active muscle force generation can be constrained
to this surface and scaled by the level of muscle activation. Force-Length and Force-

Velocity curves are highlighted in gray.

To compensate for the residual forces that account for dynamic inconsistencies between

kinematic and kinetic data, a set of reserve actuators were introduced [110]. These

fictitious actuators account for forces the model could not resolve with musculotendon

actuators alone. Here, five different sets of reserve actuators were considered (Table 3.2)
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in order to better assess the impact of these actuation contributions in the muscle force

optimization process.

Table 3.2: Values of Reserve Actuators Maximum Generable Force (i.e., labeled as
r5, r10, r20, r40, r80) for each Degrees of Freedom (DOF). Adopted Actuator Types

are Point Actuator (PA), Torque Actuator (TA), and Coordinate Actuator (CA).

DOFs Maximum Generable Force Act
r5 r10 r20 r40 r80 Type

FX, FY, FZ [N] 2000 2000 2000 2000 2000 PA

MX, MY, MZ [Nm] 2000 2000 2000 2000 2000 TA

HipFE, AA, Rot [Nm] 5 10 20 40 80 CA

KneeFE [Nm] 5 10 20 40 80 CA

AnklePDF [Nm] 5 10 20 40 80 CA

Subtalar [Nm] 5 10 20 40 80 CA

Mtp [Nm] 5 10 20 40 80 CA

Lumb Ext, Bend, Rot [Nm] 100 100 100 100 100 CA

Arm [Nm] 1000 1000 1000 1000 1000 CA

3.4 Joint Stiffness Estimation

The Joint Stiffness Estimation block (Fig. 3.7) represents the fourth step of the work-

flow. It was implemented through a set of custom MATLAB routines, that post-process

the physiological and geometric parameters estimated within the aforementioned blocks,

to provide a physiologically consistent representation of the mechanisms regulating

multi-joint stiffness and quasi-stiffness during the locomotion.

Figure 3.7: Muscle-Tendon Short-Range Stiffness computational model. The physi-
ological and geometrical parameters (i.e., Muscle and Tendon Forces, Tendon Length,
and Musculotendon Moment Arms) estimated in the Neuromusculoskeletal Modeling
block are used together with model parameters (i.e., Optimal Fiber Length and Ten-
don Slack Length) to compute the Musculotendon Stiffness and the corresponding Joint

Stiffness.
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3.4.1 Quasi-Stiffness and Passive Motion

Often, quasi-stiffness and stiffness are inaccurately used interchangeably. Yet, they are

separate concepts, except for when the joint is constrained to be passive around a fixed

equilibrium position and in quasi-static conditions. Quasi-stiffness is strongly related

with the use of Kinematic Networks (K-nets) [111] and the concept of the Passive Motion

Paradigm (PMP) [112]. Considering the stance phase during the human locomotion, the

whole body can be represented as an open kinematic chain, where the body’s Center of

Gravity (COG) needs to follow a pre-planned trajectory. By using the PMP it is possible

to relate the trajectory of the COG in the Cartesian Space (CS) with the torque at the

joints via an elastic field associated with a time-varying quasi-stiffness. Hence, the

general dynamic equation (Eq. 3.3) can be rewritten in the following form:

M(θ)θ̈ + C(θ, θ̇) +G(θ) = ΘKqs(t) (3.14)

where M(θ, t) and C(θ, θ̇) are the inertial and Coriolis matrices [8], θ is the vector of

joint angles [θ1, θ2, ..., θn]T , G(θ) is a vector of torques representing the contribution of

gravity to each joint, Θ is a diagonal matrix of angles θi and Kqs is the vector of joint

quasi-stiffness so that the vector of joint torques is equal to:

τ = ΘKqs(t) =


θ1 0 0

0
. . . 0

0 0 θn



Kqs,1

...

Kqs,n

 (3.15)

The quasi-stiffness vector Kqs(t) can be thought as a set of virtual springs with time

varying characteristics positioned at the joint level, where each joint is independently

controlled. Given an initial, fixed, reference position and an initial load, a change in

quasi-stiffness moves the joint angles θ to a new equilibrium position. Eq. 3.14 is

representative of an open loop system where the torque is imposed indirectly via an

elastic field (Eq. 3.15). It is immediate to see that given the dependency of M(θ, t) and

C(θ, θ̇) from θ and θ̇, the control of the trajectory becomes highly non-linear.
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3.4.2 Stiffness and Feedback Linearization

The basic idea of feedback linearization is to construct a control law to cancel all non-

linearities of a nonlinear dynamical system via full-state nonlinear feedback, allowing

traditional linear control techniques to be easily implemented on the nonlinear system

[113]. In contrast to quasi-stiffness, Kqs, the term stiffness, Kj , represents the parameter

that generates a position dependent reaction force when a deviation of the limb from the

intended trajectory occurs. To meet the trajectory tracking requirement, let us consider

a simple proportional controller. Let θd(t), θ̇d(t) and θ̈d(t) be representatives of the

desired trajectory, while defining the error between the actual and desired trajectory as

e(t) = θd(t)− θ(t) (3.16)

Let

ω2
j = diag(M−1Kj)

ë(t) + ω2
j e(t) = 0

(3.17)

be the resonance frequency, ω2
j , of the system, and the relationship between the resonance

frequency and the trajectory error. Eq. 3.16 and Eq. 3.17 can be equivalently rewritten

in the following form:

θ̈ = θ̈d − ë(t)

ë(t) = −ω2
j e(t)

(3.18)

By substituting Eq. 3.18 in the left hand side of Eq. 3.14, and solving for Kqs(t) we

have the control input:

Kqs(t) = Θ−1
[
M(θ)

(
θ̈d + ω2

j e(t)
)

+ C(θ, θ̇) +G(θ)
]

(3.19)

Hence, substituting Eq. 3.19 on the right hand side of Eq. 3.14 we obtain:

M(θ)
[(
θ̈d − θ̈

)
+ ω2

j e(t)
]

= 0

M(θ)
[
ë(t) + ω2

j e(t)
]

= 0

(3.20)

Since the inertial matrix, M , is positive definite, from Eq. 3.20, considering the rela-

tionship between the resonance frequency and the joint stiffness [114]:

ωj =

√
Kj

M
(3.21)
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we obtain the linear differential equation that governs the error between the actual and

desired trajectories, as follows, with ξ = 1/M :

ë(t) + ξKje(t) = 0 (3.22)

3.4.3 Stiffness vs Quasi-Stiffness

When comparing Eq. 3.22 with Eq. 3.14 we can observe that quasi-stiffness Kqs and

stiffness Kj have two different reference points (Fig. 3.8). Stiffness generates a position

dependent torque variation that aims at bringing the limb back to the intended trajectory

if a disturbance occurs. Conversely, quasi-stiffness represents the gain to be applied to

the angular position to obtain the torque necessary for the movement. Furthermore,

the stiffness reference point changes in time, moving synchronously with the intended

trajectory. Instead, the quasi-stiffness reference point is a fixed angular position in

space, usually referred as the angle that the joints assume during quiet standing.

Figure 3.8: Mechanical schematics of a plausible interaction between a human limb
and a wearable robot device. Me and Ke are the inertia and stiffness of the environment;
Kf represents the stiffness coefficient of the flesh (i.e., tissue); M , Kj , and Kqs are the

inertia, stiffness, and quasi-stiffness of the human musculoskeletal system.

By assuming the previously described mechanical and control model, the joint quasi-

stiffness was computed from the slope of the torque-angle relationship performing an ID

analysis. On the other hand, the stiffness estimation was performed by implementing a

Short-Range Stiffness (SRS) model-based approach inspired to previous studies of the
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upper [115] and lower limb [29]. The SRS of each MTU (i.e., i=1,2,...,M), Kmt,i (Eq.

3.23), results from the stiffness of the muscle fibers, Km,i (Eq. 3.24), in series with the

stiffness of the tendon, Kt,i (Eq. 3.25).

Kmt,i =
Km,iKt,i

Km,i +Kt,i
i=1,2,...,M (3.23)

where Km,i is a function of muscle force, Fm,i, muscle OFL, l0m,i, and of a dimensionless

scaling constant [116, 117], λ, as follows:

Km,i =
λFm,i
l0m,i

i=1,2,...,M (3.24)

Kt,i is function of the tendon force, Ft,i, and of the effective tendon elongation given by

the difference between the instantaneous tendon length, lt,i, and the TSL, lst,i [115, 116].

Kt,i =
Ft,i

lt,i − lst,i
i=1,2,...,M (3.25)

It should be stressed that Eq. 3.25 was derived as follows. For simplicity, here the index

i is omitted. Let

σ = Eε =
Ft
At

Tendon Strength

ε =
lt − lst
lst

Tendon Strain
(3.26)

and, assuming that the tendon behaves like purely elastic bar,

Kt =
EtAt
lt

(3.27)

be an equivalent definition of tendon stiffness, where Et is the tendon elastic module

(i.e., Young’s Modulus), At is the tendon Cross-Sectional Area (tCSA), and lt is the

effective tendon length. By sustituting Eq. 3.26 in Eq. 3.27 we obtain:

E =
σ

ε
=

Ft
Atε

=
Ftlt
Atε

Kt =
EtAt
lt

=
Ft��lt

��Atε
·�
�At

��lt
=

Ft
lt − lst

(3.28)

that is exactly Eq. 3.25. This formulation can lead to singularities as the current length

of the tendon is equal to the TSL. However, such singularities were solved by considering

the tendon stiffness only when the tendon length is greater than the TSL, in accordance
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with the fact that the force varies with the strain only when the tendon length is greater

than the TSL; otherwise the tendon force is zero [38].

The corresponding aforementioned joint stiffness Kj (Eq. 3.29) results as function of

Kmt,i, the vector θ describing the joint angles, and of the moment arms of each MTU

about each joint.

Kj = JT K̃J +
∂JT

∂θ

−→
F m (3.29)

where K̃ is a diagonal matrix in which the non-zero elements represent the stiffness for

each MTU in the model, and
−→
F m is the vector of muscle forces. J is the Jacobian matrix

relating changes in joint angles to changes in muscle length (i.e., muscle moment arms)

[118]. The second term in Eq. 3.29 accounts for how angle dependent changes in muscle

moment arms influence joint stiffness.

3.5 Gaussian Mixture Model based estimation of muscu-

lotendon stiffness

To better reproduce human behaviors using robots, the latter must be endowed with

learning capabilities enabling them to acquire new knowledge from human examples.

Most works have focused on developing learning algorithms to encode trajectories using

vision or kinesthetic systems to capture the teacher demonstrations (i.e., Learning from

Demonstration) [119]. Nevertheless, the new variable impedance capabilities of recent

robotic devices demand to reformulate these methods in order to exploit their new

control schemes in performing more complex tasks. Thus, to deepen our understanding

and be able to model human-robot interaction we have to search for new approaches.

Such methodologies should allow for the description of the uncertainty related to the

measurement of the human physiological parameters, and for those variables that cannot

be measured in-vivo. These techniques must capture the basis of human features so to

adapt what has been learned by the robot to new tasks. Hence, the objective is not to

replicate exactly what humans do, but to formalize the underlining rules to control the

task. To this end, the aim of this section is to describe a preliminary study conducted

to estimate the muscle-tendon stiffness of human lower limb during the execution of

a normal gait cycle, using a Gaussian Mixture Model (GMM) probabilistic approach

[120]. A GMM is a parametric probability density function represented as a weighted
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sum of Gaussian component densities. GMM parameters are commonly estimated from

training data by using the iterative Expectation-Maximization (EM) algorithm [121] or

Maximum A Posteriori (MAP) estimation [122] from a well-trained prior model.

Time-dependent geometrical and inertial data came from the observation of each subject

during the execution of the walking movement carried out at different speeds (Subsection

3.1.1). At each instant, the behaviors of the i-th muscle of one leg (i = 1, 2, ..,M) were

defined as the set ζi = {τ,Kmt} ∈ RD, where D = 2 is the dimensionality of the system.

Each behavior was approximated by the sum of G Gaussian components. The parameter

Kmt (Eq. 3.23) was estimated as a function of the time by means of the probability

density function described in Eq. 3.30.

p
(
ζi
)

=
G∑
g=1

πgN
(
ζi;µg,Σg

)
(3.30)

where πg are priors probabilities, and N
(
ζi;µg,Σg

)
represents a set of Gaussian distri-

butions defined by µg and Σg, respectively mean vector and covariance matrix of the

g-th distribution.

The EM algorithm was iterated to estimate the optimal parameters φi =
(
πig, µ

i
g,Σ

i
g

)
for each mixture. The algorithm can be separated in two cyclic phases: expectation and

maximization. Naming n the number of trials used to train the model, and T the number

of observations acquired during each trial, the toal number of data samples is N = nT .

The iteration stops when the increase of the log-likelihood L =
∑N

j=1 log
[
p
(
ζij |ϕi

)]
at

each iteration becomes smaller than a defined threshold δ, given by L(t+1)
L(t) < δ. The

algorithm optimizes the parameters of the G Gaussian components by maintaining a

monotone increasing likelihood during the local search of the maximum. The Bayesian

Information Criteria (BIC) [123] was used to estimate the number of mixtures G, as

reported in Eq. 3.31.

SBIC = −2L+ np logN (3.31)

where np = (G − 1) + G (D + 1/2D(D + 1)) is the number of free parameters required

for a mixture of G components with full covariance matrix. The log-likelihood measures

how well the model fits the data, while the second term aims to avoid data over-fitting

to keep the model general. An approximated value of Kmt was estimated by using the

Gaussian Mixture Regression (GMR). The conditional expectation of human muscle-

tendon stiffness, Kmt, was computed starting from the consecutive values τ , known a
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priori. This means that the muscle-tendon stiffness was directly related to the time

instant τ . The model was trained by considering how the muscle-tendon stiffness (com-

puted using the analytical formulation provided in Subsection 3.4.3) change during a

specific walking movement, executed at four different speeds. A Gaussian component g

was defined by the parameters (πg, µg,Σg), with means and covariance matrix so that:

µg = {µτ,g, µK,g}

Σg =

 Στ,g ΣτK,g

ΣKτ,g ΣK,g

 (3.32)

The conditional expectation and its covariance was estimated using Eq. 3.33:

K̂mt = E[Kmt|τ ] =

G∑
g=1

βgK̂mt,g

Σ̂K = Cov[Kmt|τ ] =
G∑
g=1

β2
g Σ̂K,g

(3.33)

where βg is the weight of the g-th Gaussian component through the mixture, K̂mt,g is

the conditional expectation of Kmt,g given τ , and Σ̂K,g is the conditional covariance of

Kmt,g given τ , defined as follows:

βg =
πgN (τ |µτ,g,Στ,g)∑G
g=1N (τ |µτ,g,Στ,g)

K̂mt,g = E[Kmt,g|τ ] = µK,g + ΣKτ,g (Στ,g)
−1 (τ − µτ,g)

Σ̂K,g = Cov[Kmt,g|τ ] = ΣK,g + ΣKτ,g (Στ,g)
−1 ΣτK,g

(3.34)

Thus, the generalized form of the behaviors ζ̂i = {τ,Kmt} was generated by keeping in

memory only the means and covariance matrices of the Gaussian components calculated

through the GMM. In this way, the computational load was minimized, not having to

compute every time the Gaussians.
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3.6 Locomotive Underactuated Implement Guided via

Elastic Elements (L.U.I.G.E.E.)

Humanoid robotics offers a unique research tool for understanding the human brain

and body. Human body representations have been used for centuries to help in under-

standing and documenting the shape and function of its compounding parts. Since the

Da Vinci drawings, human body atlases have evolved significantly and can nowadays

describe the human anatomy with great precision, using multi-level biological scales

spanning multiple dimensions. In parallel, the body physiology, its systems and their

functions, the mechanisms of human motion, the pathological and healing processes are

among the many topics being studied and described in different domains of science.

The synthesis of human motion is a complex procedure that involves accurate recon-

struction of movement sequences, modeling of musculoskeletal kinematics, dynamics and

actuation, and characterization of reliable performance criteria. Many of these processes

have much in common with the problems found in robotics research. It is clear that these

human-friendly robots will look very different than today’s industrial robots and gener-

ating coordinated natural motion in human-like robotic structures has proved to be a

challenging task. Moreover, the characterization and control of humanoid systems has

also an impact beyond robotics. It can provide the support to understand biological

functions of the human body (biomechanics), tools to design machines and spaces where

humans operate (ergonomics), simulation environments to study the effects of muscu-

loskeletal alterations (surgical simulation), to design and study rehabilitation systems,

and support to synthesize realistic computer animations.

3.6.1 Background and motivation

The proposed assembly is a bio-inspired four-segmented underactuated bipedal robot,

originally inspired to the Jena Walker II 12 [124], and BioBiped1 13 [125]. The total

mass of the implement is about 2 kg and its height is about 40 cm. Previous studies

have implemented the apparatus in virtual simulation environment [126] developing a

prototype for simulating human walking [127] and testing an impedance-based control

approach for driving the mechanism to imitate human gait [128].

12
http://lauflabor.ifs-tud.de/doku.php?id=projects:projects_biped_robots

13
http://www.biobiped.de/index/

http://lauflabor.ifs-tud.de/doku.php?id=projects:projects_biped_robots
http://www.biobiped.de/index/


Chapter 3. Materials and Methods 42

In this thesis, the design and prototype was improved in order make a robot capable to

maintain a quiet standing posture using only a completely passive actuation structure.

Furthermore, the reconstruction of the continuous-time state space parameters proper of

the assembly’s control of quiet standing was also investigated [129]. The reconstruction

was based on a hybrid non-linear Extended Kalman Filter (EKF) in order to combine

a base-excited inverted pendulum kinematic model of the robot with the discrete-time

position measurements.

The position of the robot COM was measured using the Tracker Video Analysis and

Modeling Tool14 from a web-camera recording [130]. The modeling and simulation

phases were conducted in two stages by using OpenSim and SimWise 4D15. The former

is the aforementioned freely available, user extensible software system that lets users

develop models of human musculoskeletal structures and create dynamic simulations of

movement. The latter is a proprietary solution for design and engineering professionals

developing products involving assemblies of three-dimensional parts. The two multi-

body dynamics simulation environments were used to define an effective human-like

skeletal structure, and to determine the spring stiffness positioning and natural lengths

adopting a top-down heuristic approach.

3.6.2 Design and prototyping

The simulated model and the corresponding prototype comprise of four segments for each

leg: thigh, shank, foot and toes, plus one body segment called waist, which represents

with its COM and dimensions the upper part of the skeleton. Table 3.3 provides the

volume, mass and dimensions of the principal robot body parts.

Each leg has a total of 6 DOFs (Fig. 3.9):

• Hip Flexion-Extension (HipFE) and Hip AdductionAbduction (HipAA) obtained

a universal joint;

• Knee Flexion-Extension (KneeFE) implemented via a single DOF revolute joint

allowing the rotation of the shank with respect to the thigh;

• Ankle Plantar-Dorsi Flexion (AnklePDF) and Ankle Inversion-Eversion (AnkleIE)

implemented coupling two single DOF revolute joints;

14
http://www.opensourcephysics.org/items/detail.cfm?ID=7365

15
https://www.design-simulation.com/SimWise4d/index.php

http://www.opensourcephysics.org/items/detail.cfm?ID=7365
https://www.design-simulation.com/SimWise4d/index.php
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• Toe Flexion-Extension (ToeFE) given by a single rotational DOF, and needed to

accomodate the movement of the foot with respect to the ground.

Table 3.3: Robot bodies name, volume, mass and dimensions. Hip and Ankle repre-
sent the blocks that interconect the waist to the thigs and the shanks to the feet.

Body Volume Weight Width Length Height

Name [mm3] [kg] (X) [mm] (Y) [mm] (Z) [mm]

Waist 2.22 e+5 0.231 150 102 99

Hip 5.89 e+4 0.061 42 67 81

Thigh 7.66 e+4 0.079 54 150 42

Shank 7.08 e+4 0.074 54 142 54

Ankle 3.28 e+4 0.034 42 50 41

Foot 2.81 e+4 0.029 48 104 46

Toe 1.61 e+4 0.019 50 48 27

Figure 3.9: On the left hand-side, the kinematic structure of the robot and the defi-
nition of the available Degrees Of Freedom (DOFs; i.e., green cylinders). On the right
hand-side, the corresponding tree major DOFs (i.e., Hip Flexion-Extension, HipFE;
Knee Flexion-Extension, KneeFE; Ankle Plantar-Dorsi Flexion, AnklePDF) along the

sagittal plane considered in the human model.

In this study, the assembly is completely passive. Thirteen linear springs (Fig. 3.10

and Table 3.4) were inserted according to the position of the major muscle groups as

depicted in Fig. 3.11.
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Figure 3.10: Po-
sitioning of springs.

ID Path Length K

[mm] [N/mm]

1 Ankle Bracket - Shank 63.5 0.305

2 Toe - Ankle Bracket 25.4 0.228

3 Shank - Ankle Bracket 38.1 0.525

4 Ankle Bracket - Shank 69.9 0.223

5 Thigh - Ankle Bracket 127.0 0.715

6 Shank - Hip Bracket 114.3 0.441

7 Shank - Thigh 76.2 0.543

8 Shank - Hip Bracket 152.4 0.072

9 Thigh - Hip Swing Arm 25.4 0.531

10 Thigh - Hip Swing Arm 25.4 0.531

11 Hip Bracket - Hip Swing Arm 38.1 0.525

12 Hip Bracket - Hip Swing Arm 38.1 0.525

13 Shank - Ankle Bracket 38.1 0.525

Table 3.4: ID and path (i.e., attachment and
insertion bodies) of each spring. The lengths
[mm] and stiffness coefficients [N/mm] values of

each spring.

Figure 3.11: On the left hand-side, three views of the elastic actuation structure,
spanning the Hip, Knee, and Ankle joints, are represented. On the right hand-side, the
corresponding major human muscle groups are depicted, including from the top to the
bottom: gluteus, psoas, bicep femoris and rectus femoris, vasti, gastrocnemius, soleus

and tibialis anterior.

Spring 1, 4, and 5 around the foot controlled the equilibrium position of the ankle as

it rotates around the plantar flexion axis (i.e., AnklePDF). Spring 5 also contributed to

the shank’s equilibrium position about the thigh (i.e., KneeFE). This action was then
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balanced by spring 7 along the front of the knee. Spring 2 was the only spring without

a paired mate. This was because while standing the toe would always produce a down-

ward force on the ground and a short natural length of the spring prevented the toe from

curling downward when the foot was raised. This then established a stable position for

the ToeFE. Spring 3-13 was a matched pair on each ankle that prevented the foot from

rolling around the inversion / eversion axis (i.e., AnkleIE). Spring 6 and 8 balanced the

hips to the shanks of the robot. These were then combined with spring sets 9 and 10

to balance the hips to the thighs and thus established an equilibrium position for the

anterior / posterior rotation of the pelvis about the thigh flexion axis (i.e., HipFE).

Finally, a pair of spring 11-12 connected each leg to the hip to establish equilibrium of

the lateral rotation of the thigh abduction / adduction (i.e., HipAA).

For propertly choose and positioning each spring a top-down approach was adopted

[129]. It consisted of allowing the top piece of the assembly to rotate freely while pin-

ning the part immediately under it to the ground. In the first stem this corresponds to

letting the hips rotate while holding the thighs fixed. The stiffness for spring sets 6, 8, 9

and 10, which were associated with hip rotation, was then experimentally changed until

the hip joint could reach a stable position. Of these, the primary foci were spring sets

6 and 8 since the other two were a balanced pair. After finding an upright equilibrium

position for the hips, the top-down approach was applied to the thighs which could then

rotate around the knees while the shanks were held fixed. This movement was used to

determine the constants of the springs across the knees (i.e., spring sets 5 and 7). Then,

the shanks were let free to rotate with the connected feet held fixed to infer the values

for spring sets 1 and 4. Last, the feet were held fixed to produce a fullbody simulation

of the model with a floor constraint. While this was an oversimplified floor constraint, it

produced a completely stable standing model with no outside control. This theoretically

demonstrated that the spring-stabilizing concept was valid.

For this project, tension springs have been chosen for use. When subjected to com-

pression, the tension spring either acts as a rigid member or buckles, producing either

an incredibly large reactive force or almost no force at all. In order to overcome this

issue, the springs’ natural lengths were shortened so that when the assembly moved, the

springs always remained in tension. This prevented the nonlinear force reaction elicited

by the compression of a tension-spring and pre-tensioned the entire system.

Finally, linear contact mechanics was implemented between the feet and the floor with a

coefficient of friction of 0.5 and a coefficient of restitution of 0.5 [131]. These constraints
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allowed the feet to rest on the floor and slide along it without falling through. The feet

could also rise up off of the floor if the assembly were to fall over. Notice that, using the

aforementioned constraints the floor is able to provide a force pushing the robot upward

or to resist lateral movement with friction but it cannot hold the feet down to the floor

in case the robot would fall.

Figure 3.12: Front and rear views of the self-standing locomotive underactuated
implement guided via elastic elements.

Each body part was fabricated using a plastic-extrusion type rapid prototyping machine.

This method was chosen for its relatively quick turn-around, and because most of the

links were hollow (Fig. 3.12). The joints of the robot were implemented using steel

screws. The attachments for the springs were screwed directly into the link, which are

made of PLA plastic. The spring attachments were custom made for easily adjusting

the pretensioning of the springs in order to obtain the proper equilibrium point of the

structure. Since the strength of PLA is generally low and the bracket connecting the

hip with the waist is required to remain thin, this piece was fabricated using a 12-gage

metal sheet. Changing the material to increase strength was necessary due to the high
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force generated by one of the strongest springs attached on the bracket simulating the

vastus medialis. The material was chosen for its low cost and easiness to be fabricated

by press-bracketing. Additional strengthening at the foot was provided with an allu-

minum insert so to attach the gastrocnemius. Alluminum was chosen for its favorable

mechanical properties and the easiness to be machined within our facility.

3.6.3 EKF-based estimation of viscoelastic joint parameters

The EKF is widely used in many engineering fileds to quantify the state of linear systems

encompassing quickness in the estimation and quasi-optimal results. Here, an EKF with

augmented states was utilized. The perturbation to the humanoid was delivered using

a base-excitation. Among the advantages of EKF-based methods is that the excitation

does not need to be a canonical input but can be delivered using an arbitrary input

[132]. This method allows for fast estimations on a single trial, offering the potential to

estimate joint stiffness during walking when proper robot actuation is implemented.

The impedance of a mechanical system is often modelled as a second order system [8].

Using such a model requires computing the first and second derivatives (i.e., θ̇, and θ̈,

respectively) of the joint angles (i.e., θ) [133]. Here, the identification of the stiffness

and damping parameters of the assembly was investigated using a time series analysis of

the measurement by means of an EKF. As a first approximation, the assembly system

can be modeled as a base-excited inverted pendulum with one DOF (i.e., the rotation

around the ankle joint), which can be represented as follows:

Iθ̈ + bθ̇ + kθ = mgh · sin(θ) + u+ wS (3.35)

where for small displacement sin(θ) ∼= θ, yielding:

Iθ̈ + bθ̇ + (k −mgh) θ = u+ wS (3.36)

where I is the inertia of the whole system with respect to the ankle, b is the damping

coefficient, k is the stiffness coefficient, m is the mass of the assembly, h is the distance

between waist and ankle COMs, and g is the acceleration of gravity. u = bφ̇ + kφ, is

the torque at the base due to a horizontal displacement d, where tan(φ) = d/h ∼= φ.

wS is the uncertainties of the system modeled as a Gaussian noise. The corresponding
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augmented state space model can be defined by adding a number of states equal to the

number of parameters that must be estimated (i.e., the damping coefficient, b, and the

stiffness coefficient, k), so that the states can be defined as follows:

x1 = θ Angular Position

x2 = θ̇ Angular Velocity

x3 = b+ wB Damping Coefficient

x4 = KS + wKS Stiffness Coefficient

(3.37)

where Ks = k −mgh. The terms wB and wKS are artificial noise terms that must be

added to the system for each of the desired parameter in order for the Kalman filter to

modify its estimates [134]. Hence, the EKF can be applied as follows:

EKF =



ẋ = f(x,w, u, t)

y = h(x, v)

w ∼ (0, Q)

v ∼ (0, R)

(3.38)

where f and h represent the process and observation functions, respectively, w and v are

random noise of the augmented system state x, and the measurements vector y, Q and

R are the corresponding covariance matrices. The subscript indicates the j-th discrete

experimental measure. The filter was initialized as follows:

EKFinit =


x̂0 = E[x0]

P0 = E[(xx − x̂0)(xx − x̂0)T ]

(3.39)

where x0 and P0 represent the initial state and the covariance, respectively. The predic-

tion phase was implemented as:

EKFpred =


x̂j = f(xj−1, uj)

Pj = Fj−1Pj−1F
T
j−1 +Qj−1

(3.40)
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and the update step as follows:

EKFupdate =


Gj = PjH

T
j

(
HjPjH

T
j +R

)−1

x̂j = x̂j +Gj (yj − h(x̂j))

Pj = (I −GjHj)Pj

(3.41)

where F and H are the Jacobian matrices of functions f and h, respectively. G represents

the Kalman Gain, indirectly computed from the noise. Position and velocity information

were corrupted imposing a Gaussian noise N(0, 0.01). Finally, the EKF was tuned using

the following parameters:

Ih = mh2 = 0.2672 kg m2/rad

m = 1.67 kg

h = 0.4 m

g = 9.81 m/s2

k = 10 Nm/rad

KS = 3.45

b =
√
Ihks = 0.96

(3.42)

with initial state equal to x0 = [0.20bKS ]T , P0 identity matrix, Q diagonal matrix with

elements equal to 0.01 and R = 0.001. It is worth noting that also the mass/inertial

properties of the fasteners, springs, and other metal parts were considered within the

solution of Eq. 3.35 and on the parameterization of the EKF filter (Eq. 3.42) because

they have a significant effects on the overall system mass/inertia properties.





Chapter 4

Validation Procedures and

Results

The evaluation of the proposed techniques was based on the available data chosen from

the previously described datasets (Section 3.1).

The first, Multiple Speed Walking Simulations (Subsection 3.1.1), was principally used

to investigate the mechanisms regulating multi-joint stiffness and quasi-stiffness during

the stance phase of walking. The same dataset was also used to evaluate the impact of

introducing the Force-Length-Velocity-Activation (FLVA) muscle properties within the

muscle force optimization solution.

The second, Muscle function of overground running across a range of speeds (Subsection

3.1.2), was used to investigate how the musculotendon force estimates vary using dif-

ferent optimization settings: from the pure Static Optimization (SO) to the Computed

Muscle Control (CMC) approaches with ideal force generators, with physiological FLVA

properties, and with different sets of reserve actuators.

51
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4.1 Dataset 1: Multiple Speed Walking Simulations

4.1.1 General evaluation

All trials were analyzed over a single stance phase. The obtained results, for each sub-

ject, were grouped with respect to the four different speeds: s1 - 0.53 ± 0.035 m/s;

s2 - 0.75 ± 0.061 m/s; s3 - 1.12 ± 0.071 m/s; s4 - 1.49 ± 0.088 m/s. The weight of

each subject was used as a normalization factor for the physiological and mechanical

parameters in order to make the results directly comparable among the subjects.

A second step in the general evaluation of the obtained results included the estima-

tion of Maximum Residual Forces (MRFs), Maximum Residual Moments (MRMs), and

Maximum Position Error (MPE). The obtained values were compared with the available

thresholds provided by the OpenSim documentation1 and literature [105].

The MRFs were obtained during the third trial (i.e., s3 ) along x and z-axis, and during

the fourth trial (i.e., s4 ) along the y-axis, with 4.314 N, 3.005 N, and 8.718 N, respec-

tively. The MRMs were obtained during the third trial (i.e., s3 ) along x and y-axis, and

during the first trial (i.e., s1 ) along the z-axis, with 1.216 Nm, 0.268 Nm, and 8.983 Nm,

respectively. Similarly, the MPEs were encountered during the first trial (i.e., s1 ) on the

HipFE, during the second and fourth trials (i.e., s2, and s4 ) on the HipAA, during the

third trial (i.e., s3 ) on the AnklePDF, with 3.27◦, 1.03◦ and 1.76◦, and 2.7◦, respectively.

4.1.2 Activation, Kinematics and Dynamics

In order to evaluate the ability of the subject-specific model to properly estimate the

muscle activity across different walking speeds, the estimated muscle activations (Section

3.3) were compared to the experimentally recorded Electromyographic (EMG) profiles.

A cross-correlation analysis between the EMG profiles and the corresponding estimated

muscle activations was performed. The obtained cross-correlation sequences were nor-

malised so that the auto-correlations at zero lag were identically 1.

Fig. 4.1 shows the ability of the subject-specific model to properly estimate the muscle

activity across different walking speeds in comparison with the experimentally recorded

EMG profiles. In some cases, the computed activation patterns were substantially dif-

ferent from experimental data. However, EMG data were not available for all lower

1
http://simtk-confluence.stanford.edu:8080/display/OpenSim/Getting+Started+with+CMC

http://simtk-confluence.stanford.edu:8080/display/OpenSim/Getting+Started+with+CMC
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Figure 4.1: Comparison between right lower limb EMG envelopes (i.e., gray line and
shaded area) and simulated muscle activity (i.e., blue line and shaded area). The results
are expressed as mean±one standard deviation across the four trials, during the stance
phase of gait. Among the stance limb events, Foot Flat (FF) and Heel Off (HO) are

highlighted as vertical red dotted lines.

extremity muscles, making it impossible to compare simulated activation patterns for

all major muscle groups. The simulated activations could have been forced to follow

experimental EMG data more closely. However, as well documented in [93], the com-

pensations required by CMC algorithm (Section 3.3) to accommodate large imposed

changes in muscle excitations often cause substantial deviations in excitation patterns

of other muscles and may also lead to poorly tracked kinematics.

Since the adopted workflow is not a pure EMG-driven approach, I believe that the results

of testing the simulations kinematics, sagittal joint moments, and muscle excitations are

adequate for this study. To support this claim, Fig. 4.2 shows the corresponding results

of the cross-correlation analysis performed between the EMG profiles and the corre-

sponding estimated muscle activations. The obtained cross-correlation sequences across
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the major muscle groups reported maximum values of 0.8975±0.023 for s1, 0.9394±0.045

for s2, 0.9051±0.044 for s3, and 0.8968±0.063 for s4.

Figure 4.2: Results of cross-correlation analysis on muscle activations. In each box
plot (i.e., one for each speed: s1 - 0.53 ± 0.035 m/s; s2 - 0.75 ± 0.061 m/s; s3 - 1.12
± 0.071 m/s; s4 - 1.49 ± 0.088 m/s), the central mark is the median, the edges of the
box are the 25th and 75th percentiles, the whiskers extend to the most extreme data

points not considered outliers.

Each trial were also analysed from a kinematic (Fig. 4.3) and dynamic (Fig. 4.4) point

of view in order to assess the ability of the subject-specific model to properly track the

experimentally recorded trajectories and to predict dynamically consistent sagittal joint

moments about the Hip Flexion-Extension (HipFE), Knee Flexion-Extension (KneeFE),

and Ankle Plantar-Dorsi Flexion (AnklePDF).

Figure 4.3: Right lower limb joint angles [deg] (HipFE, KneeFE, and AnklePDF)
during the stance phase of gait. The results are expressed as mean±one standard
deviation across the four trials, during the stance phase of gait. Among the stance limb
events, Foot Flat (FF) and Heel Off (HO) are highlighted as vertical red dotted lines.
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Figure 4.4: Right lower limb joint moments [Nm/kg] (HipFE, KneeFE, and An-
klePDF) during the stance phase of gait. The results are expressed as mean±one
standard deviation across the four trials, during the stance phase of gait. Among the
stance limb events, Foot Flat (FF) and Heel Off (HO) are highlighted as vertical red

dotted lines.

The predicted joint angles and joint moments, were compared to the reference values

obtained from Inverse Kinematics (IK) and Inverse Dynamics (ID). Before computing

mean and standard deviation, to compensate for the non-homogeneous distribution of

weights, the joint moments were normalized by the weight of each subject. The Root

Mean Square Errors (RMSEs) computed between the experimental and simulated pro-

files for the HipFE, KneeFE, and AnklePDF are provided in the Table 4.1.

Table 4.1: Root Mean Square Errors (RMSEs) of Kinematics [deg] and Dynamics
[Nm/kg] estimates.

KINEMATICS: Joint Angles DYNAMICS: Joint Moments
s1 s2 s3 s4 s1 s2 s3 s4

HipFE 1.4798 0.7600 1.0688 1.0066 0.0182 0.0039 0.0284 0.0467

KneeFE 2.8234 1.4467 1.8430 1.4902 0.0091 0.0022 0.0262 0.0520

AnklePDF 2.0846 1.1751 1.4710 1.6813 0.0041 0.0009 0.0247 0.0446

4.1.3 Mechanics

From a mechanical point of view, the focus was on the evaluation of the estimated joint

stiffness and inter-joint stiffness profiles (Section 3.4). Here, the inter-joint stiffness is the
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existing relationship between joints due to bi-articular Musculotendon Units (MTUs).

Moreover, the definitions of joint stiffness, based on the Short-Range Stiffness (SRS)

model, and the definition of joint quasi-stiffness (Section 3.4) were directly compared

and evaluated from a quantitative point of view.

Figure 4.5: Estimated values of Hip, Knee, and Ankle Joint Stiffness and Quasi-
Stiffness ([Nm/deg/kg]), for each speed. The joint moment (y-axis) was plotted as
function of joint angle (x-axis). The color of each profile varies as function of the
Stiffness and Quasi-Stiffness values within the ranges depicted in each color bar. The
obtained results are plotted as mean values, by grouping the values of the four subjects

with respect to the four distinct speeds.
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Fig. 4.5 shows the joint moment (y-axis) plotted as function of joint angle (x-axis). The

color of each profile varies as function of the stiffness and quasi-stiffness values within

the ranges depicted in each color bar. By observing the graphs, as a whole, it is possible

to see how the joint angles and moments change at different speeds.

There is a clear difference between stiffness and quasi-stiffness estimates. The former

varies progressively during the execution of the movement, according to the dynamics

of the lower limb and the interaction of the same with the ground. The latter presents

an almost constant profile, except in some points related to significant events during

the analyzed movement. With this regard, in Fig. 4.6 an enlargement of the results

obtained for the Hip joint, at speed s2 - 0.75 ± 0.061 m/s is provided, in order to better

clarify the aforementioned differences.

Figure 4.6: A representative comparison between specific points along the Stiffness
and Quasi-Stiffness profiles (i.e., taken from Fig.4.5) for the Hip joint, at speed s2 - 0.75
± 0.061 m/s. (A) Joint Stiffness and Quasi-Stiffness [Nm/deg/kg] plotted as function
of the percentage of stance phase (x-axis). (B) Joint Stiffness estimates plotted along
the Torque-Angle curve. (C) Joint Quasi-Stiffness estimates plotted along the Torque-
Angle curve. The color bar intervals were normalized within the same range to provide
a direct comparison between (B) and (C). (C.1 - C.2) Enlargements of two specific

windows as highlighted also in graphs (A) and (B).

Finally, the inter-joint stiffness profile regulation during the four different trials was

evaluated (Fig. 4.7). It was found to be symmetric. Furthermore, the inter-joint stiffness

between Hip and Ankle was negligible (i.e., order of magnitude of 10−14 Nm/deg/kg),

in agreement with the absence of tri-articular muscles connecting the Ilium with the

Foot. Since the stiffness is a positive definite tensor it is expected to be symmetric,
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and these results confirm that all the algorithms were properly implemented. The inter-

joint stiffness is not negligible for the pair Hip-Knee and Knee-Ankle. However, the

magnitude of these stiffness time-profiles is smaller than those proper of the joints.

Figure 4.7: Estimated values of Hip-Knee and Knee-Ankle Inter-Joint Stiffness
([Nm/deg/kg]) relationship, for each speed. The obtained results are plotted as mean
values, by grouping the values of the four subjects with respect to the four distinct
speeds. Among the stance limb events, Foot Flat (FF) and Heel Off (HO) are high-

lighted as vertical red dotted lines.

4.2 Dataset 2: Muscle function of overground running

across a range of speeds

4.2.1 General evaluation

All trials were anlysed over a single gait cycle beginning and ending at ipsilateral foot-

strike. Results were time-normalised to a full stride cycle: from a foot strike to the next

foot strike and then provided for each speed: s1 - 3.56 m/s; s2 - 5.20 m/s; s3 - 7.00

m/s; s4 - 9.49 m/s.

MTUs data were grouped into functional muscle compartments by summing the contri-

butions from each MTU within the group (Table 4.2). Stride length, stride frequency,

peak joint moment and peak joint stiffness were calculated for a single stride for each

trial. Stride length was defined as the anterior distance travelled by consecutive ipsi-

lateral foot-strikes, calculated from the heel marker at the time of initial foot-ground

contact. Stride frequency was calculated by dividing running speed by stride length.
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Table 4.2: Innervation zones, corresponding muscle groups from which experimental
EMG were recorded and the associated MTUs in the adopted model. For each MTU,
Maximum Isometric Force (MIF), Optimal Fiber Length (OFL), Tendon Slack Length

(TSL), and Pennation Angle (PA) at OFL are provided.

Innervation Zones Muscle Groups EMG MTU MIF [N] OFL [m] TSL [m] PA [rad]

Superior Gluteal Nerve Gluteus Minimus gmin1 810 0.069785 0.016420 0.174530

gmin2 855 0.065219 0.020350 0.000000

gmin3 969 0.039898 0.053548 0.017453

Gluteus Medius * gmed1 2457 0.049845 0.072671 0.139630

* gmed2 1719 0.080209 0.050309 0.000000

* gmed3 1959 0.063704 0.052265 0.357800

Tensor Fasciae Latae tfl 699 0.099706 0.446050 0.052360

Inferior Gluteal Nerve Gluteus Maximus * gmax1 1719 0.138380 0.097448 0.087266

* gmax2 2457 0.146150 0.106380 0.000000

* gmax3 1656 0.144880 0.130800 0.523000

Gemellus gem 492 0.026262 0.042676 0.000000

Femoral Nerve Iliacus iliacus 3219 0.097906 0.129310 0.250000

Gracilis grac 486 0.252820 0.277680 0.143120

Quadricep Femoris quadfem 1143 0.056950 0.025311 0.000000

Rectus Femoris X rectfem 3507 0.125600 0.361100 0.242600

Sartorius sar 468 0.424860 0.147590 0.022690

Vastus Lateralis X vaslat 5613 0.107320 0.151330 0.321140

Vastus Intermedius vasint 4095 0.092961 0.145320 0.078540

Vastus Medialis X vasmed 3882 0.106720 0.122730 0.516620

Lumbar Plexus Nerve Psoas psoas 3339 0.094994 0.176420 0.185000

Obtural Nerve Adductor Group addmag1 1143 0.09505 0.032776 0.261800

addmag2 1029 0.134390 0.099956 0.261800

addmag3 1464 0.143620 0.272980 0.261800

addlong 1881 0.114810 0.148340 0.123910

addbrev 1287 0.108460 0.052601 0.106470

Gracilis gra 486 0.252820 0.277680 0.143120

Tibialis Nerve Gastrocnemius Medialis X gasmed 4674 0.068869 0.461420 0.350000

Gastrocnemius Lateralis X gaslat 2049 0.074574 0.454330 0.210000

Lateral Hamstrings * bifemlh 2688 0.109580 0.367080 0.202460

* bifemsh 2412 0.119860 0.164850 0.214680

Soleus X sol 10647 0.058013 0.290070 0.576000

Tibialis Posterior tibpost 4764 0.042903 0.344130 0.244350

Sciatic Nerve Medial Hamstrings * semimem 3864 0.087532 0.376390 0.261800

* semiten 1230 0.222470 0.304930 0.226900

Deep Fibular Nerve Tibialis Anterior X tibant 2715 0.078736 0.282320 0.174530

Fibular Nerve Peroneous Group perbrev 1305 0.056610 0.182290 0.200000

perlong 2829 0.054958 0.386950 0.261800

perter 540 0.091290 0.115560 0.226890

Foot Nerve Flexor Group flexdig 930 0.048664 0.420670 0.244350

flexhal 966 0.056089 0.39379 0.296700

Extensor Group extdig 1536 0.076618 0.412640 0.200000

exthal 486 0.092418 0.359890 0.174530

’X’ experimental EMG signals for single MTU; ’*’ experimental EMG signals for combined MTU
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Table 4.3 shows that the percentage increase in stride length was greater than that in

stride frequency as running speed increased from 3.56 m/s to 7.0 m/s, while the opposite

effect was observed at 9.49 m/s. Peak joint moments showed the higher values at the

maximum speed of 9.49 m/s with a constant increasing profile among the four trial in

the hip and ankle joints. On the other hand, the knee joint moment showed a significant

increase from 3.56 m/s to 5.20 m/s, while an opposite trend was observed from 5.20 m/s

to 9.49 m/s. Peak joint stiffness reached the absolute maximum value in the hip joint

at 5.20 m/s. Knee joint showed an increasing trend from 3.56 m/s to 5.20 m/s and the

same is for the ankle joint from 3.56 m/s to 7.00 m/s, although the increase of the knee

(i.e., 17.77 Nm/deg) is slightly lower than that of the ankle (i.e., 19.02 Nm/deg).

Table 4.3: Magnitude of stride length, stride frequency; Peak joint moments, and
peak values of joint stiffness during HipFE, KneeFE, and AnklePDF, across the four

speeds: s1 - 3.56 m/s; s2 - 5.20 m/s; s3 - 7.00 m/s; s4 - 9.49 m/s.

s1 - 3.56 m/s s2 - 5.20 m/s s3 - 7.00 m/s s4 - 9.49 m/s

Stride Length [m]
2.68 3.58 4.14 4.40

Stride Frequency [Hz]
1.33 1.45 1.69 2.16

Peak Joint Moment [Nm]
HipFE 95.95 150.44 260.22 445.62

KneeFE 243.46 305.68 279.61 226.04

AnklePDF 3.03 5.76 10.79 16.36

Peak Joint Stiffness [Nm/deg]
HipFE 100.48 124.22 113.55 110.91

KneeFE 96.01 113.78 105.56 108.51

AnklePDF 93.75 110.92 112.95 110.09

The MRFs, estimated for the second dataset, were obtained during the fourth trial (i.e.,

s4 ) along x and z-axis, and during the third trial (i.e., s3 ) along y-axis, with 1.44 Nm,

1.67 Nm, and 11.54 Nm, respectively. On the other hand, the MRMs were obtained

during the third trial (i.e., s3 ) along x-axis, during the fourth trial (i.e., s4 ) along y-

axis, and during the second trial (i.e., s2 ) along the z-axis, with 19.22 N, 33.48 N, and

9.39 N, respectively. The MPE across the four trials was of 25 mm in pelvis translation

during the second trial (i.e., s2 ).
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The same parameters were evaluated also with respect to five different sets of residual

and reserve actuators (Section 3.3). In this case, the MRFs were obtained during the

third trial (i.e., s3) along x, y and z-axis, with 1.42 Nm, 1.66 Nm, and 9.35 Nm, respec-

tively. The MRMs were obtained during the third trial (i.e., s3) along x-axis and y-axis,

and during the second trial (i.e., s2) along the z-axis, with 19.17 N, 13.48 N, and 9.49 N,

respectively. The MPE across the three trials was of 18 mm in pelvis translation during

the second trial (i.e., s2).

4.2.2 Activation, Kinematics and Dynamics

Similarly to the evaluation done for the first dataset, the ability of the subject-specific

model to properly estimate the muscle activity across different walking speeds was com-

pared with the experimentally recorded EMG profiles (Fig. 4.8). The assessment was

limited to a subset of MTUs for which an experimentally recorded EMG signal was

available. Fig. 4.8 shows a comparison between the simulated muscle activation, com-

puted with the SO and CMC approaches (Section 3.3), and the experimentally recorded

EMG signals. In particular, the SO solutions are based on the use of two different sets

of residual and reserve actuators (i.e., SO rr01 and SO rr02 that corresponds to the first

and fifth columns of Table 3.2, respectively).

A cross-correlation analysis (Fig. 4.9) between the EMG profiles and the corresponding

estimated muscle activations was performed. The obtained cross-correlation sequences

were normalized so that the auto-correlations at zero lag were identically 1.0. The cross-

correlation sequences (Fig. 4.9 - XCORR) reported mean values in the range 0.74±0.04

between SOrr01 and EMG env, 0.76±0.05 between SOrr02 and EMG env, and 0.75±0.04

between CMC and EMG env. All three simulated muscle activation solutions are strictly

correlated to the experimental EMG profiles in terms of wave form. However, in terms

of amplitude the CMC-based solutions seem to be better than pure SO-based estimates

(Fig. 4.9 - RMSE). This directly reflects on the generated MTU forces and SRS.

Then, the attention was focused on assess the ability of the subject-specific model to

properly track the experimentally recorded trajectories (Fig. 4.10(A)) and to predict

dynamically consistent sagittal joint moments (Fig. 4.10(B)) about the HipFE, KneeFE,

and AnklePDF (Section 3.3) across the four trial performed by the subject. The pre-

dicted joint angles and joint moments were compared with the solutions obtained from

the IK and ID, respectively. Here, just a cumulative representation of the joint angles
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Figure 4.8: Comparison between right lower limb EMG envelopes (i.e. gray line)
and simulated muscle activity across running speeds, during a single gait cycle begin-
ning and ending at ipsilateral foot-strike. Combined MTU activations are expressed
as mean±one standard deviation. Blue dotted lines represent the estimates obtained
with the dynamic approach (i.e., CMC). Yellow and green lines are for the estimates
obtained with the static approach (ie., SO) using two different sets of residual and re-
serve actuators. The vertical dotted lines represent the major gait events: Right Foot
Strike (rFS), Right Foot Off (rFO), Left Foot Strike (lFS), and Left Foot Off (lFO).

and moments tracking was provided with the purpose to give an overall assessment.

Considering the IK results as reference value of the experimentally recorded Motion

Capture (MC) data, the simulated joint angles tracked the experimental data with a

RMSE of 5.56◦, 9.18◦, and 6.71◦ for the HipFE, KneeFE, and AnklePDF, respectively.
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Figure 4.9: Maximum values of the cross-correlation (XCORR) functions and Root
Mean Square Errors (RMSEs) computed between EMG signal profile and corresponding
estimated muscle activations, across running speeds, during a single gait cycle begin-
ning and ending at ipsilateral foot-strike. Blue box plots are referred to the dynamic
approach (i.e., CMC). Yellow and green box plots are for the estimates obtained with
the static approach (ie., SO) using two different sets of residual and reserve actuators.

Considering the range of values assumed by the IK results, these RMSEs corresponds

to a mean error of about 5%, across all speeds and DOFs. Fig. 4.10(B) shows that the

simulated joint moments [Nm] computed by summing the moments generated by MTUs

at each joint matched the experimental joint moments computed by solving the ID. The

RMSE computed between ID and simulation results are of 48.3 Nm, 36.67 Nm, and 30.3

Nm for the HipFE, KneeFE, and AnklePDF, respectively. The aforementioned values

corresponds to a mean error of about 6.71%, across all speeds and DOFs. Moreover, the

range of values obtained for the HipFE, KneeFE and AnklePDF are within the range of

values obtained on the complete original dataset by Dorn et al. [96].
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(a) Kinematics (b) Dynamics

Figure 4.10: (A) Right lower limb joint angles [deg]. (B) Right lower limb joint
moments [Nm]. HipFE, KneeFE, and AnklePDF during a single gait cycle beginning
and ending at ipsilateral foot-strike. The results are expressed as mean±one standard
deviation across running speeds. Colored lines and corresponding shaded areas are
reference values from IK and ID solutions; black solid lines represent mean values, with
the corresponding standard deviation as black dashed lines referred to the simulation
estimates. The vertical dotted lines represent the major gait events: Right Foot Strike

(rFS), Right Foot Off (rFO), Left Foot Strike (lFS), and Left Foot Off (lFO).

4.2.3 Mechanics

From a mechanical point of view, Fig. 4.11 shows the obtained estimates of joint stiffness

[Nm/deg] for the HipFE, KneeFE and AnklePDF. All three joint stiffness mean values

tend to increase as the speed increases, but with different rates. The mean values plus

and minus one standard deviation for the CMC-based estimates across the four speeds

are: 45.62±16.86 Nm/deg (s1 ), 53.65±19.72 Nm/deg (s2 ), 60.31±14.08 Nm/deg (s3 ),

73.75±22.97 Nm/deg (s4 ) for the hip; 26.65±19.02 Nm/deg (s1 ), 30.93±20.23 Nm/deg

(s2 ), 35.84±21.18 Nm/deg (s3 ), 51.54±32.5 Nm/deg (s4 ) for the knee; and 46.85±14.87

Nm/deg (s1 ), 57.28±16 Nm/deg (s2 ), 62.82±16.5 Nm/deg (s3 ), 76.87±18.18 (s4 )

Nm/deg for the ankle.

Also in this case, the inter-joint stiffness for each combination of two joints was found

to be symmetric. Furthermore, the inter-joint stiffness between Hip and Ankle was neg-

ligible (i.e., 0.7±0.014 Nm/deg), in agreement with the absence of tri-articular muscles

connecting the Ilium with the Foot. The inter-joint stiffness is not negligible for the pair
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Figure 4.11: Comparison of estimated joint stiffness [Nm/deg] during a single gait
cycle beginning and ending at ipsilateral foot-strike. HipFE, KneeFE, and AnklePDF
joint stiffness estimates across running speeds, for the SO approach using two different
sets of residual and reserve actuators, and for the CMC approach. The vertical dotted
lines represent the major gait events: Right Foot Strike (rFS), Right Foot Off (rFO),

Left Foot Strike (lFS), and Left Foot Off (lFO).

Hip-Knee and Knee-Ankle (Fig. 4.12). However, the magnitude of these stiffness time

profiles is again smaller than those proper of the joints.

Figure 4.12: Comparison of estimated inter-joint stiffness [Nm/deg], between Hip and
Knee, and between Knee and Ankle, during a single gait cycle beginning and ending at
ipsilateral foot-strike, across running speeds, for the SO approach using two different
sets of residual and reserve actuators, and for the CMC approach. The vertical dotted
lines represent the major gait events: Right Foot Strike (rFS), Right Foot Off (rFO),

Left Foot Strike (lFS), and Left Foot Off (lFO).
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4.3 Preliminary Evaluations

As part of the research activity described in this thesis, they are worth mentioning some

preliminary evaluations with respect to two major issues.

The first, is about how different human muscle models affect the estimation of lower

limb joint stiffness during running [109]. The set of preliminary results provided here,

despite assuming equal muscle activations which has been calculated via CMC, shows

significant differences in the joint stiffness estimates obtained by adopting either The-

len2003Muscle (Section 3.3) or Millard2012EquilibriumMuscle2 model.

Figure 4.13: Right Lower Limb Joint Stiffness and Joint Torque estimated values.The
x-axis reports the time-samples, while y-axis expresses the joint stiffness [Nm/rad] and
joint torque [Nm]. The labels lFO, lFS, rFO, rFS stand for Left Foot-Off, Left Foot-

Strike, Right Foot-Off, and Right Foot-Strike respectively.

Fig.4.13 shows a misalignment of the peaks of the stiffness time profiles with respect to

the different phases of movement, in particular for the hip and ankle joints. A delay can

be noticed between the instants in which the foot impacts the ground and the instant in

which the stiffness peaks gererated by either model occur. Notice that Thelen’s model

has an average delay of 112 ms compared to the 57 ms of Millard’s model. Furthermore,

Thelen’s model produces stiffness peaks with a much larger amplitude compared to the

2
http://simtk-confluence.stanford.edu:8080/display/OpenSim/Millard+2012+Muscle+Models

http://simtk-confluence.stanford.edu:8080/display/OpenSim/Millard+2012+Muscle+Models
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model of Millard. The stiffness peaks for both hip and knee occurs almost synchronously

within each model. The ratio of hip/knee stiffness at the peak is different for the two

models: 1.8 (Thelen’s model), 2.3 (Millard’s model). It is bigger in Millard’s model in-

dicating a predominancy of hip stiffness over the other joints. Finally, the ankle stiffness

is drammatically different between the two models. Similar considerations hold true for

the left lower limb joints. What was discussed previously is still valid for the estimates

of inter-joint stiffness. It was found symmetric and not negligible for the pairs Hip-Knee

and Knee-Ankle, as depicted in Fig. 4.14.

Figure 4.14: Right Lower Limb Inter-Joint Stiffness. The x-axis reports the time-
samples, while y-axis expresses the joint stiffness [Nm/rad]. The labels lFO, lFS, rFO,
rFS stand for Left Foot-Off, Left Foot-Strike, Right Foot-Off, and Right Foot-Strike

respectively.

The second issue concerns the human muscle-tendon stiffness estimation during normal

gait cycle based on Gaussian Mixture Model (GMM) [120]. The preliminary results

provided here regard a study in which unlike the analytical techniques already widely

validated in literature, a probabilistic approach based on the GMM was adopted for the

computation of the muscle-tendon unit stiffness.

Normal gait cycle data collected from four different subjects (Subsection 3.1.1) were used

to train a model of the muscle-tendon stiffness (Section 3.5). The four different velocities

were subdivided into training and testing sets. In order to compare data recorded at

different speed, time instants were normalized between 0 and 1, corresponding to the

beginning and the ending of the gait cycle. 43 models, one for each muscle, for 2 legs, by

considering 4 velocities for each subject, were obtained. That is, the muscle-tendon stiff-

ness was related at the time that characterizes the analyzed movement. This approach

has been adopted for each of the 4 subject, using a leave-one-out technique in relation

to the velocities: three for training the model and one for testing. No experiments have

been conducted to compare different subjects’ gaits. A total of 1376 models have been

obtained as a function of the gait phase. Some examples referred to the major muscles

involved in the task are reported in Fig. 4.15. On y-axis the muscle-tendon stiffness

values of Gluteus Medialis, Bicep Femoris, Iliacus, Psoas, Vastus Lateralis, and Soleus

are provided as function of the gait phase, represented on x-axis by the time instants

normalized between 0 and 1. The stiffness of the Gluteus appears to be underestimated
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compared to that calculated with the analytical approach (Section 3.4). An overestima-

tion is evident for Psoas, Bicep Femoris and Iliacus. By far, the best looking results are

observed on Vastus and Soleus muscles, commonly excited during the KneeFE move-

ments.

Figure 4.15: Muscle-Tendon Stiffness values computed using the analytical approach
(RED) and the corresponding estimated values using the GMR approach (BLUE).

The RMSE between the values computed by using the analytical approach and those

estimated through the Gaussian Mixture Regression (GMR) has been computed to eval-

uate the effectiveness of the proposed GMM-based technique. On the RMS values for

each velocity, the mean error and the standard deviation were computed, in order to

obtain the error related to each muscle of each subject. The resulting eight graphs are

reported in Fig. 4.16. On the x-axis, the reported muscles are listed in the following
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order: 1. Gluteus Medius 1, 2. Gluteus Medius 2, 3. Gluteus Medius 3, 4. Gluteus Minimus

1, 5. Gluteus Minimus 2, 6. Gluteus Minimus 3, 7. Semimembranosus, 8. Semitendinosus, 9.

Bicep Femoris (long head), 10. Bicep Femoris (short head), 11. Sartorius, 12. Adductor Longus,

13. Adductor Brevis, 14. Adductor Magnus 1, 15. Adductor Magnus 2, 16. Adductor Magnus

3, 17. Tensor Fasciae Latae, 18. Pectineus, 19. Gracilis, 20. Gluteus Maximus 1, 21. Gluteus

Maximus 2, 22. Gluteus Maximus 3, 23. Iliacus, 24. Psoas, 25. Quadricep Femoris, 26. Gemel-

lus, 27. Piriformis, 28. Rectus Femoris, 29. Vastus Medialis, 30. Vastus Intermedius, 31. Vastus

Lateralis, 32. Gastrocnemius Medialis, 33. Gastrocnemius Lateralis, 34. Soleus, 35. Tibialis

Posterior, 36. Flexor Digitorum, 37. Flexor Hallucis, 38. Tibialis Anterior, 39. Peroneus Brevis,

40. Peroneus Longus, 41. Peroneus Tertius, 42. Externsor Digitorum, 43. Extensor Hallucis.

On the y-axis are showed the RMS values expressed in N/m, in accordance with the unit of

measure of the MTU stiffness. The figures are respectively related to GIL01 subject, left (A)

and right (B) leg limbs, GIL02 subject, left (C) and right (D) leg limbs, GIL06 subject, left (E)

and right (F) leg limbs, and GIL08 subject, left (G) and right (H) leg limbs.

Results show a positive trend with an error amounting to an order of magnitude less compared

to the dispersion of the measured dataset. In general, a higher accuracy in the adductor group

is noticeable, while a greater deviation emerges on gluteus and tibialis muscle groups. As with

regard to the muscles that control the hip movements (among others, gluteus and adductors),

oscillations are observable, which could be imputable to the actions put in place to maintain

the torso in an upright position during locomotion. On the other hand, several oscillations are

shown on the tibialis muscle group. These are directly connected to the ankle joint displacement

during the foot-ground contact, in particular during the stages of transition from single to double

support and vice versa.
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Figure 4.16: Root-Mean-Square (RMS) Errors. It has been computed for each muscle,
of each subject (from top to bottom: GIL01, GIL02, GIL06, GIL08). On the left side
(Graph A, C, E, G) the values of right leg. On the right side (Graph B, D, F, H) the

values of left leg.
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4.4 Robot mechanical parameter estimation

The virtual model of the robot was tested in a number of ways to determine the stability of

the system. The hips were moved to a variety of positions in the simulation and then allowed

to move freely. Among the number of tests, the assembly was moved into a squatting position

where the center of the hips was located about 110 mm below the equilibrium position (Z = 0),

as shown in Fig. 4.17. Furthermore, the implement was dropped onto the floor from about 50

mm, as shown in Fig. 4.18.

Figure 4.17: Initial squatting
position.

Figure 4.18: Initial 50 mm drop
position.

With respect to the evaluation of the theoretical model, in all tests where the virtual model did

not initially tip over, the assembly returned to its original position. During the squat test, after

the model was released, the hip’s location moved back to its standing position within 2 seconds,

as shown in Fig. 4.19. For the drop test, after the initial shock subside, the assembly remained

standing in its position. These tests showed that the theoretical model was robust enough to

initial displacements, maintaining its equilibrium position, as shown in Fig. 4.20.

Figure 4.19: Hip position re-
turning to equilibrium position af-

ter squat movement.

Figure 4.20: Vertical displace-
ment of hips from 50 mm drop

onto floor.
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Within SimWise 4D, the robot position was also perturbed by sliding the ground of 25 mm,

in order to observe the waist angular displacement with respect to the ankle joint. The input

perturbation and the corresponding waist displacement were then used within the previously de-

scribed Extended Kalman Filter (EKF) (Subsection 3.6.3) in order to estimate the viscoelastic

properties (i.e., damping and stiffness coefficients) of the ankle joint. Given this input pertur-

bation, the last plot of Fig. 4.21 shows the obtained damping [Ns/m] and stiffness [Nm/rad]

coefficients. They appear to be underestimated relative to the reference profiles obtained from

Eq. 3.42 that are 0.96 Ns/m and 3.45 Nm/rad, respectively. The waist displacement, tracked

with a RMSE of 0.0074 rad, ranges from -0.19 rad to -0.08 rad at its maximum, and reaches the

minimum displacement of 0.0044 rad in 10.2 seconds.

Figure 4.21: Simulation Test
Figure 4.22: Real Robot Test

A second evaluation was conducted on the real robot, by placing it on a mobile base and moving

it as in the same fashion of the simulation. The position of the robot COM was measured using

the Tracker Video Analysis and Modeling Tool from a web-camera recording (Section 3.6), as

illustrated in Fig. 4.23. The horizontal perturbation of the base [mm], the corresponding EKF-

based estimates of the waist angular displacement [rad] computed with respect to the ankle,
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and finally the obtained damping [Ns/m] and stiffness [Nm/rad] coefficients are provided in Fig.

4.22. The RMSE between tracked angle and estimates was of 0.0052 rad (i.e., about 0.3 deg).

In this case, both coefficients move around the reference values. The horizontal sections, visible

in both profiles, correspond to a joint angle θ = 0. It should be noted that while the stiffness

of the springs around the ankle are constant, the moment arm of the spring changes as function

of θ and therefore a change in the stiffness is to be expected. Furthermore, there exist a slight

play of the ankle mechanism where the assembly does not return to θ = 0 after every perturba-

tion therefore producing a bias in the estimation of stiffness and damping. The high-frequency

movement observable in Fig. 4.22 are mainly due to the imposed perturbation. Since, the exact

damping of the system is not really known a priori, it was assumed to be less than the critical

damping. This hyphotesis is confirmed by the fact that the damping is lower than the guess. If

it was higher the system would not oscillate.

Figure 4.23: Screenshot of the robot COM estimation procedure applied to a video
recording of the experiment.

A third evaluation was conducted, in OpenSim, to compare the execution of a simple locomotion

task (i.e., walking) between human and robot. The kinematics of each body that makes up the

robot model was analyzed to obtain the corresponding joint angle between human and robot, in

order to estimate the joint displacement error with respect to the imposed trajectory. Then, the

attention was focused on the estimated joint stiffness comparing human and robot.

The human joint stiffness was normalized with respect to the weight of the subject to have a

direct term of comparison with the robot. Based on the estimated human joint stiffness, several

experiments were performed to evaluate the performance of our elastic robot as a function of the

different settings. Eight different stiffness constants were applied to all the springs of the sys-

tem: 0.005 N/mm, 0.010 N/mm, 0.015 N/mm, 0.020 N/mm, 0.025 N/mm, 0.030 N/mm, 0.035
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N/mm and 0.040 N/mm. These constants were chosen empirically as they better represented

the normalized joint stiffness of the adopted human model. For each of the stiffness constants

four sets of spring resting lengths were imposed, starting from the spring lengths provided in

Table 3.4 and varying in the range ± 10 mm. The stiffness of the robot was derived using the

same algorithm described for the human (Subsection 3.4.3). The torque of the motors divided

by the moment arm constituted the active force, and the springs were passive elements much

like the tendons in humans.

(a) Motor-Spring working principle (b) Active and Passive Springs

Figure 4.24: Scheme of the two types of connection for the spring: either to the motor
or to the body. It was defined active a spring connected between a motor and a link

and passive a spring connected between two segments.

Within OpenSim, the robot model was equipped with additional bundles connected to a set of

virtual motors that actuated the robot by pulling the springs and therefore move the links. Two

types of connection between springs and motors were considered (Fig. 4.24): (A) a single spring

connection, where only one spring connected to a motor and a link is extended when the motor

is in use. The force generated is used to restore the spring original length and therefore pull the

load. (B) A spring-pair connection, where a servo motor connects with a joint via two springs,

one on each side of the joint. Thus reproducing an agonist-antagonist muscle behavior similar to

the correspondent one in a human limb. In this context, a spring connected between a motor and

a link (i.e., A1 and A2 in Fig. 4.24(b)) was defined active, while a spring not directly connected

between a motor and a link (i.e., B1 and B2 in Fig. 4.24(b)) was defined passive. Using this

formalism, the typical behavior that characterize the human muscle, based on agonist-antagonist

and / or flexion-extension pairs, can be reproduced through an artificial structure. The motors

were strategically placed to pull the springs.
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Both the simulations of the robot using 0.015 N/mm and 0.025 N/mm stiffness constant guar-

antee the same tracking of the hip and knee trajectories and are overlapping in the following

graphs (Fig. 4.25(A)). The difference of hip angle between robot and human is minimal, with

a maximum error of 11◦ at heel down. An oscillatory trend of the profile related to the robot

(i.e., red solid line) can be noticed starting with the impact of the foot with the ground. This

phenomenon is most likely derived from the difference in inertia of the torso between the two

models. The lighter torso of the robot cannot act as a low pass filter as in the case of the

human; thus, transmitting some higher frequency vibration to the lower body. The knee joint

angle is tracked much more smoothly (Fig. 4.25(B)), even though the deviation from the human

reference can be substantial just right before the swing phase (i.e., 25◦).

Fig. 4.25(C) shows the kinematic analysis of the ankle joint. In this particular joint the choice of

stiffness and resting length for the springs is much more important. A wide range of variability

related to the different setup considered can be noticed. Substantial fluctuations emerge in the

stages of transition from single to double support and vice versa, as well as an obvious difficulty

to correctly track the angle that characterizes the human ankle joint (i.e., green solid line). This

discrepancy can derive from the substantial difference in foot size between robot and human.

The former has much larger feet to help maintain stability and redistribute the weight on the

ground.

The elements on the joint stiffness matrix’s diagonal are depicted in Fig. 4.26(A-C) as a function

of the gait cycle. The best tracking results are obtained using 0.015 N/mm and 0.025 N/mm

stiffness constants at the spring level. Stiffness tracking is quite accurate, and in particular, the

shorter length of the spring corresponds with their resting length. The hip and ankle stiffness

are comparable, while the knee’s stiffness is lower, and about half in magnitude. The stiffness of

the hip has little variation with respect to the different phase of the gate cycle (Fig. 4.26(A)).

Knee’s stiffness starts high with an absolute maximum immediately after the heel strike for then

decreasing throughout the movement (Fig. 4.26(B)). Ankle’s stiffness is the highest of all, show-

ing a marked maximum in mid-cycle where the double support phase occurs (Fig. 4.26(C)).

The elements of the joint stiffness matrix located outside of the diagonal are presented in Fig.

4.27(A-B). Since, it was found to be symmetric, only the upper part of the matrix is represented

here. The hip-ankle inter-joint stiffness was found to be zero. This is the direct consequence

of not having any triarticular muscles spanning between such two joints. There is a noticeable

difference in magnitude between the hip-knee and knee-ankle inter-joint stiffness where the latter

has a much lower magnitude.
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Figure 4.25: Comparison of ob-
tained joint angles.

Figure 4.26: Comparison of the
estimated robot joint’s stiffness
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Figure 4.27: Comparison of the estimated robot inter-joint’s stiffness with respect
to the reference value obtained from the human model. (A)Hip-Knee Joint Stiffness

relation. (B) Knee-Ankle Joint Stiffness relation.





Chapter 5

Discussion and Conclusion

This work presents a physiologically accurate and computationally fast novel Neuromusculoskele-

tal (NMS) model of the human lower limb musculotendon and joint stiffness and quasi-stiffness.

The proposed computational framework uses Electromyographic (EMG) signals, Motion Cap-

ture (MC) data and Ground Reaction Forces (GRFs) to predict the force developed by 43

musculotendon actuators. The estimated forces are then used to compute the musculotendon

stiffness and the corresponding joint stiffness and quasi-stiffness. The estimations at each Mus-

culotendon Unit (MTU) is constrained to simultaneously satisfy the joint angles and the joint

moments generated with respect to five Degrees Of Freedom (DOFs), including: Hip Adduction-

Abduction (HipAA), Hip Flexion-Extension (HipFE), Hip Internal-External Rotation (HipIER),

Knee Flexion-Extension (KneeFE), and Ankle Plantar-Dorsi Flexion (AnklePDF).

Advanced methods were used to perform accurate muscle-driven dynamic simulations based on

two public available datasets (Section 3.1). In particular, a generic three-dimensional model of

the human musculoskeletal structure was scaled to the anthropometric characteristics of each

subject involved in the study (Subsection 3.2.2). Each resulting model was adjusted using

the Residual Reduction Analysis (RRA) in order to guarantee the dynamic consistency be-

tween kinematic and kinetic data (Subsection 3.2.4). Finally, the aforementioned physiological

and mechanical parameters were estimated using two different optimization techniques, namely

Static Optimization (SO) and Computed Muscle Control (CMC), as well as using two different

implementation of the Hill-type muscle force model, in order to evaluate the effects of using

kinematic constraints and Force-Length-Velocity-Activation (FLVA) physiological properties in

muscle force optimization solutions (Subsection 3.3). Finally, the proposed computational frame-

work was validated on the first dataset (Section 4.1) with respect to the possibility of providing

a physiologically sound estimation of joint stiffness and quasi-stiffness, in order to characterize

the mechanical properties of the whole limb during normal gait cycle at different speeds. The

focus was on the neuromuscular mechanisms regulating these mechanical parameters during the

79
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stance phase of walking. On the other hand, with respect to the second dataset (Section 4.2),

the focus was on the use of a pure SO and CMC solutions computed with ideal force generators,

with physiological FLVA properties, and with different sets of reserve actuators.

This research provides effective solutions and readily available software tools to improve the hu-

man interaction with robotic assistive devices, advancing the research in neuromusculoskeletal

modeling to better understand the mechanisms of actuation provided by human muscles and

the rules that govern the lower limb joint stiffness regulation. The obtained results suggest that

the neuromusculoskeletal modeling technology can be exploited to address the challenges on the

development of musculoskeletal humanoids, new generation human-robot interfaces, motion con-

trol algorithms, and intelligent assistive wearable devices capable to effectively ensure a proper

dynamic coupling between human and robot.

5.1 The role of Stiffness and Quasi-Stiffness

Several studies have already investigated the moment-angle relationship (i.e., quasi-stiffness) for

single lower limb joint during walking, running and sprinting. Butler et al. [22] provided a

current update of the lower extremity stiffness literature as it pertains to both performance and

injury. Winter et al. [135] showed that the torque-angle relationship dominates behavior near

the movement operating-range extremes, and the excitation and activation processes are most

significant for fast voluntary movements. Shamaei et al. [26] investigated the hip behavior in

each stage of stance phase using the slope of a linear fit to the moment-angle graph in that stage

and name it the quasi-stiffness of that particular stage. For the examined gait trials, whose speed

varies in the range 0.75-1.75 m/s, the estimated quasi-stiffness ranging from a minimum value of

91 Nm/rad to a maximum of 1775 Nm/rad during extension, and from a minimum of 9 Nm/rad

to 1400 Nm/rad during flexion. Günther and Blickhan [136] reported that the knee joint is always

stiffer and more extended than the ankle joint. Moreover, the knee torque characteristic on the

average shows the higher nonlinearity. Stefanyshyn and Nigg [137] investigated the moment-

angle relationship of the ankle joint during running and sprinting. The results indicated that

the average quasi-stiffness of the ankle joint was 5.68 Nm/deg during running and 7.38 Nm/deg

during sprinting. Loram and Lakie [138] executed direct measurement of human ankle stiffness

during quiet standing, showing that the stiffness was substantially constant, increasing only

slightly with ankle torque. Their measurement suggested that the triceps surae muscles maintain

balance via a spring-like element which is itself too compliant to guarantee stability. For this

reason, it seems that the brain cannot set ankle stiffness and then ignore the control task because

additional modulation of torque is required to maintain balance. They suggested that the triceps

surae muscle maintain balance by predictively controlling the proximal offset of the spring-like

element in a ballistic-like manner. Rouse et al. [139] investigated the sensitivity of ankle stiffness
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measurements while standing to foot placement on a perturbator robot. The stiffness estimates

ranged from 2.6 to 3.1 Nm/rad/kg. Plocharski and Plocharski [140] investigated the ankle

stiffness in dynamic conditions during walking. The highest value of stiffness was found during

an isometric trial with a plantarflexion perturbation (1282±1028 Nm/rad, at 41 ms after the

perturbation onset) and at the exact same timing during the dynamic trial (707±802 Nm/rad).

On the other hand, during the hold-release time, both the isometric and dynamic stiffness values

were within a close range of each other (859±519 Nm/rad and 877±678 Nm/rad, respectively).

Lee and Hogan [141] investigated the ankle impedance from pre-swing through swing to early

stance, by using a wearable ankle robot and a modified linear time-varying ensemble-based

system identification methods. The obtained results showed an ankle joint stiffness ranging from

about 10 to 70 Nm/rad. Rouse et al. [32] found that for the stance phase between 20% and

70% of heel strike to toe-off stiffness and quasi-stiffness were unexpectedly similar and increased

somewhat monotonically from 2 to 10 Nm/rad/kg.

The same authors proposed also a theoretical work related to the conceptual differences between

stiffness and quasi-stiffness [28], experimentally comparing ankle’s stiffness and quasi-stiffness

for normal gait. However, the present work is the first to produce a quantitative comparison

between stiffness and quasi-stiffness variables for multiple joints at the same time, at different

speeds during walking and running, investigating how different analyzes performed upstream

(i.e., estimation of physiological parameters), affect the estimates of mechanical parameters.

Moreover, the quasi-stiffness computation was done at each time frame, instead of considering

whole phases of movement as performed in the aforementioned studies. This allowed us to provide

a more in-depth analysis of the relationship between stiffness and quasi-stiffness. Our estimation

produced similar order of magnitude of stiffness for velocities similar to those tested in literature.

Moreover, the quasi-stiffness calculated in this work shows different magnitude and profile with

respect to the stiffness, supporting our hypothesis based on which stiffness and quasi-stiffness

have two different reference points (Subsection 3.4.3). Given the oscillatory behavior of the leg

during gait, an increase in cadence maintaining the step-length constant increases not only the

velocity but the acceleration of the body segments around the joints. This requires an increase

in torque and, as a consequence, both quasi-stiffness and stiffness should increase since they

are directly dependent upon the muscles’ force generating the torque at the joints. The shape

of the stiffness profiles is consistent among walking velocities; however, its magnitude does not

increase monotonically as a function of the velocity. The increase of velocity is usually associated

with the increase in muscle activation; however, such increase of muscle force/activation is not

strictly associated with a monotonic increase in stiffness during movement as demonstrated for

the upper limb by [142]. By observing Eq. 3.19, we can understand that quasi-stiffness is a

non-linear function. The use of quasi-stiffness as open-loop control variable might be convenient

when the movement can be approximated as quasi-static. Thus, the effect of inertial and Coriolis

forces are negligible and the gravitational effect can be linearized for small displacements. As
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the velocity and acceleration increase, controlling the trajectory using quasi-stiffness becomes

more difficult and a linearized feedback control might be easier to apply.

With respect to the use of optimization solutions in muscle force computation, recent works

[42, 51] highlighted the similarities between static and dynamic optimization techniques for the

estimation of lower limb dynamics during bipedal locomotion at speed comprised between 1.2

and 3.5 m/s. The present work produced a quantitative comparison between SO and CMC

estimates of joint torques and joint stiffness during running at speeds higher than 3.5 m/s. Our

results are in accordance with the results presented in [50] for lower speeds. The use of FLVA

muscle properties seem to have little influence on the static optimization solutions during running

movements. However, the joint stiffness estimates show a significant differences when comparing

the results obtained with the two approaches. When looking at movement performance, some

level of stiffness is required in order to guarantee an efficient utilization of the stored elastic

energy in the musculoskeletal system that occurs during the loading phase of movement [22].

As previously discussed, the amount of stiffness required has been reported to increase with the

velocity of the activity. This increase in stiffness may be necessary to maintain the stability of the

posture during the landing phase and allows for maximum energy return during the propulsive

phase. Following this reasoning, and evaluating the aforementioned mean stiffness and quasi-

stiffness values provided in literature for the knee and ankle joints, it seems that the SO approach

under-estimates muscle forces when employed in the analysis of motor tasks characterized by

rapid movements. This in turn under estimate the joint stiffness. It can be speculated that

the SO does not account for the large spectrum of muscle co-contraction typically observed

during the execution of different motor tasks such as walking and running [143]. The obtained

results suggest that the CMC approach is preferable when is need to analyze a relatively fast

movement. In this regard, it is also worth noting that the CMC algorithm solves the problem

of muscle force distribution for known movement kinematics, based on a control algorithm that

tracks the kinematics of a measured movement. This method is much faster than dynamic

optimization approaches, because it requires only one forward integration of the state equations.

Despite the fact that to solve the muscle redundancy, it still requires the use of an instantaneuous

cost function (i.e., in opposition to dynamic optimization, the use of a time-integral cost function

such as total metabolic cost is not possible), it efficiently enforces the musculoskeletal system

dynamics.

5.2 Remarks on the preliminary results

The first consideration regards the use of different implementations of the Hill-type muscle model

for estimating the lower limb joint stiffness during the running of an unimpaired individual.

Results show that the choice of the muscle model influences the estimation of the muscle-tendon
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stiffness and of the corresponding joint stiffness. It can be speculated that the difference in

results depends on the contraction dynamics of the tendon which is implemented differently in

the two models. This suggests that the force interaction between contractile elements and tendon

are important factors as suggested by [117]. Future research will focus on providing a better

characterization of the existing relationships between muscle models and stiffness estimation

procedures, by analyzing also the behavior of muscle-tendon actuator models that is not based

on classical Hill models (e.g., such as Millard2012AccelerationMuscle1 [144]). This investigations

might potentially be applied to the assessment of patient’s muscle stiffness as function of muscle

dynamics, so to properly plan the rehabilitation process.

On the other hand, with respect to the use of a probabilistic technique, namely Gaussian Mixture

Model (GMM), for estimating the muscle-tendon stiffness of the human lower limb, the model was

described and evaluated by using the first dataset (Section 4.1). The proposed approach took into

account a set of analytical techniques proposed in literature in order to describe the uncertainty

related to measurements of human physiological parameters in a probabilistic manner. In this

regard, it should be stressed that the proposed GMM-based approach is able to estimate muscle-

tendon stiffness as function of the gait phase, just via a probabilistic extrapolation of data

collected at different speeds, avoiding the need for those variables that cannot be measured

in-vivo. Results showed a positive trend with an acceptable error (amounting to an order of

magnitude less compared to the dispersion of the measured dataset) especially for the muscles

particularly involved in the task. As a future work, further studies regarding the influence of

muscle models on impedance calculation, and the algorithms used for muscle forces estimation

during movement are needed. Moreover, the GMM-based approach can be also exploited to

account for failed demonstrations, in order to estimate the stiffness during the rehabilitation

process of impaired individuals from data collected on able-bodied subjects. The aim is to

improve the capability of this technique to characterize the cause-effect relationships between

neuromuscular excitation patterns, muscle forces, and motions of the body and still have a

limited amount of parameters to not over-fit the data.

5.3 Thoughts on the Locomotive Underactuated Imple-

ment Guided via Elastic Elements (L.U.I.G.E.E.)

The major contribution, with respect to the design, simulation and prototyping of L.U.I.G.E.E.,

is related to the realization of an artificial apparatus capable to maintain a quiet standing posi-

tion using only a completely passive elastic actuation structure.

It should be noted that the system is not a simple inverted pendulum but has many more DOFs.

1
https://simtk.org/api_docs/opensim/api_docs30/classOpenSim_1_1Millard2012AccelerationMuscle.

html

https://simtk.org/api_docs/opensim/api_docs30/classOpenSim_1_1Millard2012AccelerationMuscle.html
https://simtk.org/api_docs/opensim/api_docs30/classOpenSim_1_1Millard2012AccelerationMuscle.html
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The system was carefully designed so that the combination of springs spanning multiple joints

acts as if the system was a global elastic structures. Stability is not guaranteed in such a type

of system because the knees could buckle and the change in the moment arm at the spring that

cross the knee could directly impact the stiffness at the ankle. To date very few robotic devices

implement an elastic mechanical-network. Most of these devices are actuated by SEA [145].

The control of SEA can be difficult because the elastic elements positioned in series introduce

a delay in the actuation that the control needs to compensate for. This problem can be solved

by a predictive control strategy (e.g., Smith predictor [146]) given an accurate knowledge of the

plant. This work is part of a larger project that aims to propose a control architecture using

Parallel Elastic Actuators [147]. Thus, the maintenance of posture and the control of gait can

be achieved via two separate control architectures.

In this installment, the mechanical properties of the passive elastic network, allowing the bipeds

to stand and compensate for external perturbation, were estimated. The robot was excited at its

base and the stiffness and damping at the ankle was estimated using an EKF. The methodology

utilized here is similar to the one used for the estimation of the same physiologically relevant

parameter in humans [132]. The EKF is ideally suited for this operation because it is capable

of handling both noisy measurements of input and output, as well as modeling errors of the

mechanical structure. It is important to notice that, even though passive, the control system

is able to maintain the system in equilibrium after perturbations up to 25% of its height. Fur-

thermore, even though the springs were not damped, the elastic network produces a damped

response. This behavior was previously reported for pre-tensioned structures in [18], where mus-

cle co-contraction was found to modulate damping in a multi-link biomechanic limb.

The mechanical properties of the proposed elastic network and the corresponding joint stiffness

of our model, normalized with respect to the mass, were also compared with simulations of a

human walking at a self-selected pace, with a speed of the latter of about 1 m/s. The stiffness

of the springs implemented on the robot, necessary to replicate the normalized human stiffness

during walking, was found to be drastically lower than the stiffness necessary to maintain a

stable static balance. Even though additional springs were added on specific muscles groups for

the simulation of walking, the overall parallel stiffness of the humanoid’s muscle groups during

walking was one order of magnitude lower than that necessary to stand. This result could be

a consequence of multiple factors. First, mass might not be an appropriate parameter for the

normalization of stiffness. Other physical parameters such as the moment of inertia of the whole

body with respect to the ankle could be a better normalization factor. Second, assuming mass as

an appropriate normalization factor, a low joint stiffness during locomotion, incapable of stabi-

lizing standing could suggest that there might be other stabilization effects at play which might

be of inertial origin. The human has a higher mass and a higher walking speed in absolute values

which could give the subject enough momentum to stabilize locomotion. Third, human could

use a set of control strategies that is not reflected in the modulation of joint stiffness that might
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be controlled by the vestibular system. To account for the variation in stiffness between standing

and locomotion springs could be made with new shape memory alloys where the stiffness could be

varied by means of heat or electrical effects; however, these solutions tends to be quite expensive

and the stiffness of the spring difficult to control. These limitations, notwithstanding constant

spring stiffness, allows for the possibility to obtain joint stiffness profiles during locomotion that

varies with time. Even if we assume that the moment arms of the spring do not vary considerably

as a function of the joint angles, we can approximate any torque-angle profile with a series of

linear change in torque at different angles. This could be obtained with a series of springs with

different moment arms acting within limited angular segments. One of the biggest advantages of

the elastic network proposed here is the possibility to render out of diagonal terms of the joint

stiffness matrix that would be impossible with a classical direct drive of the links using a motor.

In the future, the work will be carried on by investigating the aforementioned open issues, by

improving the viscoelastic characterization of the whole assembly, and by introducing motors,

control modules and sensors so that L.U.I.G.E.E. can move its first steps forward.
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