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Sommario

Qualsiasi modello computazionale basato su un sistema fisico, è verosimilmente
soggetto al fatto che densità e velocità di propagazione dell’informazione sono
intrinsecamente limitati. Per questo motivo, il modello RAM, in particolare per
il presupposto che il costo di un accesso in memoria sia indipendente dalla taglia
della stessa, non è implementabile su sistemi fisici.

Questo lavoro si inserisce nel contesto delle limiting technology machine, mo-
delli computazionali in cui si ipotizza provocatoriamente di aver raggiunto con
la tecnologia di fabbricazione i limiti fisici di densità e velocità dell’informazione.
Questo, allo scopo di affrontare il problema delle latenze intrinseche a ogni sistema
fisico evidenziando organizzazioni scalabili per processori e memorie.

Viene quindi presentato uno studio algoritmico, che illustra l’implementazione
di programmi a elevata concorrenza per SP ed SPE, modelli di macchine sequenziali
in grado di eseguire programmi direct-flow in tempo ottimale.

Successivamente, viene introdotta una innovativa organizzazione di memoria,
gerarchica e pipelined, con latenza e banda ottimali per un sistema fisico.

Allo scopo di sfruttarne appieno le caratteristiche, e trar vantaggio dall’even-
tuale instruction level parallelism del codice da eseguire, viene sviluppato un inno-
vativo modello di processore. Particolare attenzione è rivolta all’implementazione
di un efficiente flusso di informazione all’interno del processore stesso.

Entrambe le organizzazioni sono estremamente scalabili, in quanto basate su
un insieme di nodi a taglia e capacita fisse, connessi con una topologia ad array
multidimensionale.

Lo studio delle prestazioni computazionali della macchina risultante ha eviden-
ziato come le latenze interne al processore possono diventare la principale compo-
nente della complessita temporale per l’esecuzione di un flusso di istruzioni, che va
ad aggiungersi all’effetto dell’interazione tra processore e memoria. Viene pertan-
to sviluppata una caratterizzazione dei flussi di istruzioni, basata sulla topologia
indotta dalle dipendenze tra istruzioni.
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Abstract

Any computational model which relies on a physical system is likely to be
subject to the fact that information density and speed have intrinsic, ultimate
limits. The RAM model, and in particular the underlying assumption that mem-
ory accesses can be carried out in time independent from memory size itself, is not
physically implementable.

This work has developed in the field of limiting technology machines, in which
it is somewhat provocatively assumed that technology has achieved the physical
limits. The ultimate goal for this is to tackle the problem of the intrinsic laten-
cies of physical systems by encouraging scalable organizations for processors and
memories.

An algorithmic study is presented, which depicts the implementation of high
concurrency programs for SP and SPE, sequential machine models able to compute
direct-flow programs in optimal time.

Then, a novel pieplined, hierarchical memory organization is presented, with
optimal latency and bandwidth for a physical system.

In order to both take full advantage of the memory capabilities and exploit the
available instruction level parallelism of the code to be executed, a novel processor
model is developed. Particular care is put in devising an efficient information flow
within the processor itself.

Both designs are extremely scalable, as they are based on fixed capacity and
fixed size nodes, which are connected as a multidimensional array.

Performance analysis on the resulting machine design has led to the discovery
that latencies internal to the processor can be the dominating source of complexity
in instruction flow execution, which adds to the effects of processor-memory inter-
action. A characterization of instruction flows is then developed, which is based
on the topology induced by instruction dependences.
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Chapter 1

Introduction

The RAM is a model of computation which has allowed much of all the design and
analysis of sequential algorithms. Its success is directly related to the essentiality
of its definition, combined with the ability to provide for long time fairly accurate
performance estimates for large classes of problems.

However, one particular assumption makes the RAM model infeasible in prac-
tice. Indeed, time complexity is in general computed by counting the number of
basic arithmetical-logic steps necessary to perform the analysed computation, the
key assumption being that each state transition, and in particular each memory ac-
cess, can be performed in constant time, independently from memory and machine
size. The likely impossibility derives from two fundamental principles, postulated
in [5], which state that both information density and speed have upper bounds
in physical systems. The principle of maximum information density, in particu-
lar, implies that any system able to store M bits in a d dimensional space, must
occupy a volume whose linear dimension, or radius, grows with Ω(M1/d). Due to
the principle of maximum information speed, such length results in a proportional
latency. When asymptotically evaluating any phisical implementation of the RAM
with M bits of memory, it is therefore necessary to take into account a worst case
latency of up to O(M1/d) time steps for each single operation.

Even if modern machines are still far from being affected by these fundamental
constraints, other factors come into play, which results in similar effects. Counting
the number of basic arithmetical-logic steps was a very effective way of predicting
performance when computing machines were constrained by the switching speed of
their circuits. It is more and more inadequate nowadays, as the performance limits
are in the form of relatively poor communication latencies and bandwidths among
the different components of a computing machine. Indeed, a relevant fraction of
the work of designing a new computing machine is already devoted at dealing with
these issues.

In the context of sequential computation, two main strategies exist to reduce

1



2 CHAPTER 1. INTRODUCTION

the impact of latencies on the overall performance of program execution. First,
it is possible to organize the memory as a hierarchy of modules with different
trade-offs between size and latency, from smaller and faster to larger and slower.
If during program execution a relevant part of memory accesses targets the faster
modules, it is possible to partially, or even completely in certain cases, hide the
cost of latency with respect to the total execution complexity. Programs whose
memory accesses are organized in this way are said to exhibit temporal locality.

A second strategy consists instead in devising a memory organization which
allows concurrency of memory accesses. Then, if programs are able to issue mem-
ory accesses which can overlap in time, the effect of latencies can again be at least
reduced.

Other solutions have been proposed, which offer a combination of both. Models
with a block-transfer primitive, for example, allow the concurrent repositioning of
a block of consecutive memory locations across the memory hierarchy. Programs
which need to access ranges of consecutive memory locations derive particular
benefits from such an organization, and are said to exhibit spatial locality.

The seminal work on memory hierarchies and program locality lead to the
definition of models such as the External Memory Model [17] and the Hierarchical
Memory Machine [1]. The BT-RAM, or RAM with block transfer, was introduced
in [2], the relevance of the model deriving also from the fact that a lot of actual
hardware currently relies on such operation. The Logarithmic Pipelined Model [14]
on the other hand, explores non-hierarchical memories with pipelined access, and
analyzes algorithmic complexity based on their concurrency.

A more fundamental approach is taken instead in [4], which deeply investigates
possible realizations of the abstract RAM taking into account the fundamental
limits on information density and speed. In this spirit, such realizations are designs
which specify a layout in d dimensions, so that the time for each state transition
is independent from machine size. In other words, the designs are scalable to
arbitrary machine size, as advocated in [5].

The resulting models feature a memory organization which is both hierarchical
and pipelined, so to be able to accept one request per time step, or at a constant
rate, and bound the latency to the access time of the queried memory module.
Dedicated processor organizations, the SP (Speculative Prefetcher) and the SPE
(Speculative Prefetcher and Evaluator), are adopted in order both to take the most
advantage from a pipelined hierarchical memory, and to avoid unnecessary accesses
by managing information flow within the processor itself.

The work which is presented here stems from the results of [4] in two ways.
The first part is a further algorithmic exploration of SP and SPE. In particular, it
is shown how parallel algorithms designed for the Work-Time Framework [11] can
be encoded into programs with a high concurrency of memory accesses. While the



3

fundamental idea is not new (see for example [14]), its realization in the context
of SP and SPE is not straightforward, and leads to some new insights into the two
models. The results have already been published in [15].

The second and main part of this work, instead, extends the investigation of
scalable machine designs to explicitly parallel machines. Indeed, while [4] restricts
its scope to sequential computation, such constraint is by no means dictated by
fundamental limits. On the contrary, the analysis in [5] and [6] show that parallel
organizations can be extremely effective choices for scalable machines.

It is interesting to note that a shift towards parallel architectures is an impor-
tant and pervasive trend also in actual machines. Reasons for this phenomenon
include, among the others, the increasing difficulty of improving single core per-
formance, the possibility of implementing innovative forms of power management,
the emerging of new kinds of workloads, yield improvements.

A novel machine organization, with separate processor and memory subsys-
tems, is therefore presented.

First, an organization for a high-bandwidth, pipelined, hierarchical memory
is introduced. Its design specifies a layout in d dimensions for a memory of M
locations, which offers a bandwidth of O(M (d−1)/d) at a sustained rate, with a
latency depending only on the levels which implement the requested locations.

Then, a specialized processor is presented, in order to both fully exploit the
capabilities of the memory system, and enable concurrent execution of instructions.

Much of the effort for specifying the processor goes to an efficient management
of the internal information flow, so that at least some of the instruction commu-
nications which traditionally involve multiple accesses to memory, can take place
within the processor itself.

Both memory and processor are designed in a extremely modular way. Larger
machines can be implemented with the simple addition of more modules.

One insteresting result in the analysis of the capabilities of the new model
is that the latencies due to communication internal to the processor can be the
dominating figure in the overall execution complexity, which adds to the effects of
processor-memory interaction.

A characterization of instruction flows is then developed, which is based on
the topology induced by instruction dependences. It is shown in particular, that
the ratio between the length of the longest dependence chain and the number
of instructions is a good metric to capture the behavior of code with respect to
internal processor communication.

The aim of the proposed machine design is the efficient execution of sequential
programs. There are multiple reasons for this. First of all, sequential algorithms
and code constitute a relevant part of the available background in informatics and
engineering. Then, parallel programming is still struggling to become the main
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programming paradigm. Indeed, besides being inherently more complex to design,
analyse and debug parallel code or algorithms, there in no dominant framework, or
model, which is able to both express machine capabilities and be flexible enough
with respect to the users’ needs. On the contrary, the shift from sequential towards
parallel programming would be best described by a fragmentation rather than a
unitary trend.

On top of that, also in the context of parallel programs, the ultimate constraint
to the achievement of execution concurrency are sequential portions of code [3]. It
is therefore of paramount importance that a general purpose parallel machine is
able to achieve the best possible performance with sequential code.

Next is an overview of this work. Chapter 1, besides this introduction, pro-
vides some background information on instruction dependences and the concept
of scalable machines.

In Chapter 2, the algorithmic results on SP and SPE are presented, highlighting
the different approaches needed with the two different processors. Applications of
the findings lead in particular to an optimal linear-time implementation for SP
and SPE of a program for merging two sorted lists.

Parallel machines are introduced in Chapter 3. A high-bandwidth non-hierarchical,
pipelined memory is initially described, to be then used as a module in a hierar-
chical memory organization. Extra care is devoted to the geometrical placement
of memory modules, and the relative position between them and the processor, in
order to preserve the latencies and bandwidth offered by the single modules.

The processor organization is later introduced, starting from the definition of
its requirements and proceeding with the description of its operating behavior. An
important concept is the distinction between static programs and dynamic instruc-
tion stream, which are the sequence of instructions which are actually computed
on a given input.

Chapter 4 investigates lower bounds which affect sequential execution com-
plexity on two-dimensional arrays. The results show how the topology induced by
instruction dependences can be the dominant component of execution complexity,
overgrowing the impacts of memory latency and bandwidth.

Chapter 5, then, focuses on the strategies which implement execution itself. Af-
ter presenting a general purpose, but not so efficient strategy, it is shown how extra
information, in the form of instructions annotations, can dramatically improve the
time complexity. To this purpose, three strategies of increasing complexity and
efficiency are introduced, the last of which is able to match some of the lower
bounds of Chapter 4.

Chapter 6, finally, provides an overview of the achieved results and depicts
the possible paths that could be taken to proceed the investigation on physically
implementable machines.
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1.1 Programs and Dynamic Instruction Streams.

In this Section, some useful concept are reported from [4], as they provide the
basis for most of the presented results.

A sequential program is in its essence a list of instructions. In turn, each
instruction specifies an operation and a list of operands which are functional to
the operation itself.

Operands include a value and an addressing mode, which can be literal, if the
operand represents the value itself, direct, if the value is a memory reference, or
indirect when the value is a reference to a reference.

During program execution, when the same locations are accessed more than
once, the order of accesses induces dependence relations among the originating
instructions.

At this point, it is useful to introduce a further distinction among sequences of
instructions. While the list of instructions which constitute a program is fixed, the
sequence of instructions which are actually executed by a sequential processor is
not, and in general depends on the evolution of memory states caused by execution.

Definition 1. A dynamic instruction stream is the stream of instructions which
are executed by a sequential processor which is given a program and an initial
memory state.

The dependences among instruction which are targeted in this work can be
classified in two categories.

Definition 2. There is a functional dependence between instructions i and in-
struction j when the output of i is used by j as an operand.

Definition 3. There is an address dependence between instructions i and instruc-
tion j when the output of i is used by j as the address of an operand.

The simplest approach for dealing with dependences is letting all the necessary
communication happen through memory accesses. As it can be expected, there
are better choices in terms of time complexity. Indeed, it is in general possible to
avoid paying some of the latencies deriving from these accesses.

It is important to point out that address dependences have a much heavier
impact on execution complexity. Indeed, the entire communication between two
instruction involved in a functional dependence can take place in the processor
itself. This is not the case, instead, of address dependences, for which a memory
lookup has to take place between the executions of i and j.

The operations specified by the instructions can be of data processing or control
flow type. While the former is typically an arithmetic logic operation, the effect
of the latter is on the selection of the next instructions to be executed.

Two categories of programs are of particular interest.
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Definition 4. A program is straight line if it is composed only of data processing
instructions.

Definition 5. A program is direct flow if it is straight line and the operands
specified by its instructions have only direct or literal addressing mode.

1.2 Limiting Technology Machines

An interesting approach in the investigation of the concept of scalability in the
context of limited information speed and density is the one given in [5]. The
somewhat provocative scenario which is described in this work, is that of limiting
technology machines, which are computing machine whose circuits implementation
matches the computational limits of physical systems. In other words, it is not
possible to achieve further performance gains through furter miniaturization or
operating frequency increase.

The purpose of this theoretical exercise is that of devising machine designs
which are optimal independently from the adopted produciton technology.

In these setting, the only way to build machines with increase performance
is to assemble larger machines. The main difficulty arises from the necessity of
decoupling the time complexity of a state switch from the size of the machine itself.
The approach which is taken in this work is the same as in [4], and consists in
structuring machine designs as a bounded degree interconnection of nodes of fixed
capabilities and size. In this way, state transitions only involve a fixed amount of
logic ports and space, thus making it possible to be carried out in time independent
from machine size. The concept is further resumed with the presentation of the
parallel design in Chapter 3.



Chapter 2

Sequential Limiting Technology
Machines

This Chapter presents a technique to encode a parallel work time-framework al-
gorithm to a sequential program suitable for execution on the SP or SPE.

SP and SPE are two processor designs introduced in [4] in order to be able to
fully exploit the capabilities of a pipelined hierarchical memory.

One essential feature is that instructions are processed in segments, and not
one by one. Memory accesses of instructions belonging to the same segment are
aggregated, so to overlap them and exploit the concurrent accesses to memory.
Besides, the result of each instruction execution is propagated to the following
ones, thus eliminating the need fo some of the memory access.

Clearly, the generation of the segment of instructions to be executed is not
in general a deterministic process. Indeed, whenever a control-flow instruction is
met, it becomes necessary to predict the result of the branch, for later checking
its correctness.

Both designs are scalable to arbitrary size, in that they are implemented as
linear arrays of nodes of fixed size. Therefore, the time for a state transition is
decoupled from the size of the machine.

After reviewing some important details about the SPE and introducing an
essential background on PRAMs and the work-time framework, a technique is
presented to implement high concurrency programs for the SP and SPE. Then, an
improved version, with a better memory utilitation is presented, which only runs
on the SPE.

Finally, after showing the conditions for optimality, examples which address
practical problems are considered.

7
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2.1 The Speculative Prefetcher and Evaluator

The Speculative Prefetcher and Evaluator is a processor design which is intended
to fully exploit a Pipelined Hierarchical Memory (PHM) while complying with the
physical constraints of maximum information density and speed (see [5]). Both
memory and processor are extensively discussed in [4].

The PHM includes M memory locations, each of which is addressable by means
of a unique integer in [1,M ]. Its hierarchical nature is captured by a memory
access function a(x), which expresses the latency of a request for memory location
x. Without loss of generality, locations are numbered such that a(·) is a non-
decreasing function. Besides, by its pipelined nature, the PHM is able to accept
one request per clock cycle; in other words, it is able to sustain a constant access
rate. As a consequence, it is possible to hide latencies by overlapping. In fact, the
total latency of q independent requests is q + a(Mmax), Mmax being the slowest
accessed location. On the other hand, any pipelined not hierarchical memory
always accounts for a a(M) latency, thus making it more and more difficult to
amortize it when M grows. Moreover, it should be noted that, for any pure
hierarchical memory, as the amount of locations to be accessed grows, access rate
asintotically drops to zero.

As shown in Figure 2.1, the SPE includes an Instruction Generator Unit (IGU),
connected to an Instruction PHM, and an Instruction Execution Unit (IEU), con-
nected to a Data PHM. While actual instruction execution is carried out by the
IEU, the task of the IGU is to translate a static program into a dynamic instruc-
tion stream. Both IEU and IGU are linear arrays of k constant-sized units called
stations, each of which can store and manage one instruction. Parameter k, hence,
denotes processor size.

Execution consists of a sequence of stages. At each stage the IGU fetches
instructions from the Instruction PHM and assembles a segment of q ≤ k dynam-
ically loaded instructions to be supplied to the IEU. In doing so, the IGU has
the ability to perform branch predictions, and consequently loop unrolling. Seg-
ment length q can be programmatically adjusted within the [1; k] range via the
segmentsize() directive.

The IEU executes the segment in a series of rounds. Each round is divided into
two parts: in the first the IEU speculatively fetches the operands, both directly
and indirectly addressed, of all the instructions of the segment; in the second, all
the stations compute sequentially with the speculative operands they hold. In
case speculation is successful, the SPE can effectively hide memory access laten-
cies. Anyway, speculation may fail due to dependences among instructions. In
particular, two kinds of dependences may arise, which are dealt with in different
ways.

In the following definitions, m[x] indicates the content of memory location x.
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IGU
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-segment
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Figure 2.1: Scheme of the PHMM architecture: IGU reads instructions from the
instruction PHM, produces a segment and passes it to IEU stations. Here data
are speculatively prefetched and instructions are executed, solving possible invalid
data with the internal forwarding or reading them from data PHM.

Definition 6. There is Functional Dependence (FD) between instructions Ij and
Ik if Ij modifies m[x], and Ik uses the content of m[x] as operand or to indirectly
address the output location, while no operation between Ij and Ik modifies m[x].

Definition 7. There is Address Dependence (AD) between instructions Ij and Ik
if Ij modifies m[x], and Ik uses m[x] to indirectly access an operand, while no
operation between Ij and Ik modifies m[x].

Functional dependences can be effectively dealt with via a mechanism of inter-
nal forwarding. In the IEU, whenever the result of an instruction is ready, beside
being committed to memory, it is propagated to the following stations. This way,
in case of a functional dependences, the updated values are available in the IEU
without further memory accesses.

On the other hand, an address dependence requires that a memory access
takes place between the computation of the dependent instructions. Its latency,
therefore, can be hidden only if enough instructions are interposed between the
dependent ones.

The time complexity of a round (initialization and execution) isO(q+a(Mmax)),
q being the size of the segment and Mmax the slowest accessed memory location.
By carefully balancing q and a(Mmax) it is possible to jointly exploit locality and
concurrency of accesses, and hide latencies. For the same reason, a sensible choice
for processor size k is to match the worst case latency a(M).
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When speculation is effective, only few rounds suffices for completing a segment,
and it is possible to achieve O(1) amortized complexity per instruction.

In order to understand the impact of dependences on complexity, we recall the
definition of some concepts.

Definition 8. Given the instruction stream (I1, I2, . . . , IN) generated by the IGU
during the execution of program P on a particular input, its address dependence
depth D is the maximum length of a subsequence Ij1 , Ij2 , . . . , IjL with j1 < j2 <
· · · < jL where subsequent instructions have address dependence.

Definition 9. A program P is straigth–line if it consists only of data processing
instructions.

Definition 10. A program P is direct–flow if it is straigth–line and does not use
indirect addressing.

In [4] it is shown that any N -instruction straigth–line program with address
dependence depth D and accessing memory locations with address smaller than
M can be executed by an SPE in time T = O((D+ 1)(N + a(M))). Moreover, for
a direct–flow program, D = 0; hence, it can be executed in T = O(N + a(M)).

In particular the following result from [4] holds:

Lemma 1. A program consisting of nested for loops where the only branches are
those related to the cycles, can be executed in T = O(D(N + a(M))).

Lemma 1 applies to wide classes of programs, such as FFT and Matrix Multi-
plication.

We quote the following example, which intuitively shows how this occurs.

Example 1. Let us consider the execution of a C-like code that increments every
element of an array: for i=1 to k; A[i] = A[i]+1. Using the naive branch pre-
diction policy that always reenters the loop, the IGU can unroll the loop in i=1;

m[i]=m[i]+1; i=i+1; m[i]=m[i]+1; .... The IEU speculatively calculates all
the i values at the first round; then, at the second one, prefetches all the indi-
rect accessed operands, and correctly completes the segment through speculative
execution. So it can resolve address dependences in O(1) amortized time.

2.2 PRAMs and the Work-Time Framework

A Parallel Random Access Machine (PRAM) [9, 10] is an abstract parallel machine
model, that consists in a collection of P synchronous processors and M shared
memory locations. A PRAM program is a sequence of parallel steps, each of which
specifies an instruction per processor.
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Beside the number of nodes, the computational power of a PRAM is deter-
mined by which shared memory operations are permitted. Within a step, in fact,
each memory location may or may not be accessed by more than one processor.
In other words, a PRAM can be provided with either an exclusive read (resp.
exclusive write) memory, or a concurrent read (resp. concurrent write) memory.
Moreover, when concurrent writes are allowed, a contention policy must be speci-
fied in order to determine the actual memory state after the access. For example
the priority policy allows only the processor with highest priority to write on the
contested location, while the common policy allows concurrent writes on a location
only if all the involved processors are writing the same data. The most studied
configurations, in order of increasing power, are exclusive read exclusive write
(EREW), concurrent read exclusive write (CREW), concurrent read concurrent
write (CRCW).

Both Single Instruction Multiple Data (SIMD) and Multiple Instruction Mul-
tiple Data (MIMD) versions have been studied. Anyway, they are equivalent [8]
if they feature the same memory access policy. In this work, we will just refer to
the SIMD version.

The Work-Time framework (WT) [11] is a parallel programming framework in
which an algorithm AWT consists in an ordered sequence of T sets s0, . . . , sT−1 of
independent operations on MWT memory locations. Different sets may differ in
size and therefore exhibit more or less parallelism. Let |si| = pi, then we define
the work W of AWT as W =

∑T−1
i=0 pi.

WT algorithms are meant to be executed by PRAMs, by means of a schedule.
A sufficient condition for a valid schedule of AWT in a PRAM is that each operation
in si is executed after all operations in si−1 and before any operation in si+1. Any
such schedule allows us to apply Brent’s Theorem [7] and to execute AWT in a
PRAM with P processors in a time O(W

P
+ T ).

On the other hand, it is not clear how we can reschedule a PRAM program
for P processors as the processor number increases, since possible dependences
between steps are not stated explicitly. For this reason WT framework is much
more convenient if we need to extract dependences and available parallelism.

It should be noted that, since it is always possible to simulate AWT on a RAM
in time TRAM = W , lower bounds on RAM complexity automatically hold also
for the work. In particular, let T ∗RAM be the best RAM complexity for a given
problem. Then, the equivalent WT algorithm AWT is work–optimal if and only if
W is O(T ∗RAM).

The major construct of the WT model is the pardo, which specifies a parallel
step with a syntax similar to a traditional for. The main difference is that the
cycle index denotes just the index of an element of the set of instructions and can
not be modified by the instructions. For example
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for j, 1 ≤ j ≤ p pardo

operationj

denotes a set of p independent operations, whose execution order is irrelevant.

Since WT framework is a very high level model, it is important to pay attention
that:

F1 in each parallel step all the reads take place before any write;

F2 addresses can be expressed in a high level fashion.

Therefore any simulation or implementation of an algorithm which relies on
such features has to provide them. We address these issues in two steps: first
we show how every algorithm can be reformulated in a less general yet equivalent
(from an asymptotic time and space complexity point of view) form, which does
not require hypotesis F1; then we show how to derive efficient SPE programs from
this special sub-class of WT algorithms.

Let us introduce a class of WT algorithms.

Definition 11. A step of a WT algorithm AWT is CRCW decoupled if any con-
currently accessed memory location is either read or written. AWT is itself CRCW
decoupled if this condition holds for each step.

Any CRCW decoupled algorithm does not rely on (F1). In the opposite case,
it is possible to devise an equivalent CRCW decoupled algorithm with the same
work and time complexity. In fact, it suffices to split each parallel step into two
sub–steps. The first fills an auxiliary array with the operation inputs, while the
second performs the actual execution, reading from the array. In the worst case,
the memory overhead is O(p).

Consider now, without loss of generality a SIMD parallel step in the WT frame-
work, which executes on an initial memory state Mi and leads to final state Mi+1.
Available parallelism and the memory locations that must be read or written (both
usually parametrized with the size of the input) are indicated by a pardo state-
ment. In particular an index j is used to distinguish each concurrent operation.
Note that the memory to store the instructions for a whole parallel step is constant
and therefore the whole program takes O(T ) memory.

In particular, the operands of operation j are a function of j. Typically, such
function is simple enough to be expressed by the addressing modes of a modern
instruction set (for example a base address and an index–dependent offset). In the
most general case, when (F2) is fully exploited, the function can be explicitly used
to prepare an auxiliary operand vector.
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2.3 High-Concurrency SPE Programs

One way to write efficient programs for SPE is to exploit the parallelism of Work–
Time algorithms. Parallel steps can be efficiently coded into sequential programs,
also in case of concurrent memory accesses, which can be sequentially implemented
with little effort. In fact, the address dependence depth of each resulting segment
is O(1), and memory accesses can be fully pipelined.

However, it must be noted that a straightforward static unrolling of a pardo

statement could lead to an SPE program with O(W (n)) size. In this case, in-
struction fetch latencies could be larger that data latencies, thus hindering time
efficiency.

A more complicated unrolling, proportional to processor size, can be devised,
which leads to programs with O(k) size. This last strategy is not the most compact,
still it is interesting because it also applies to the SP processor (see [4]).

We now address the problem of executing a parallel step si of pi independent
operations of a Work-Time algorithm in an SPE of size k. The set s contains p
instructions ai,

si = {ai(xi,0, xi,1, xi,2) : i = 0, 1, . . . , pi − 1},

where i is the operation id and xi,j is the jth operand of ith operation. We recall
that we deal with SIMD programs, therefore every operation of the set s has the
same opcode. Operand xi,j can represent the actual operand, the memory address
containing the operand (direct addressing) or the memory address for the indirect
addressing and it is possibly null (operations have from one to three operands).

Our strategy requires q = O(min(k, p)) extra memory cells, which do not aug-
ment the latency since q = O(min(k, p)) = O(k) = O(a(M)) = O(M). It consists
of a loop, which considers q operations of s at once. The loop is divided in three
parts

1. generation of the array IDX containing the instruction indeces;

2. generation of the array OP containing all the operands and the addresses of
output cells;

3. execution of the segment as a direct flow.

In the following there is the code for the case p < k or p multiple of k, which can
be easily extented to arbitrary p managing the elements of last segment after of
the loop.

q ← min{p, k}
segmentsize(q)
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for j, 0 ≤ j ≤ bp/kc do {
// part 1

IDX[0] ← j · q
IDX[1] ← j · q + 1

...

IDX[q-1] ← j · q + (q − 1)

// part 2

OP[0] ← xIDX[0],0

OP[1] ← xIDX[0],1

OP[2] ← addr(xIDX[0],2)

...

OP[3(q-1)] ← xIDX[q−1],0

OP[3(q-1)+1] ← xIDX[q−1],1

OP[3(q-1)+2] ← addr(xIDX[q−1],2)

// part 3

instructionsIDX[0](OP[0], OP[1], OP[2])

instructionsIDX[1](OP[3], OP[4], OP[5])

...

instructionsIDX[q−1](OP[3(q-1)], OP[3(q-1)+1], OP[3(q-1)+2])

}

The loop is executed b p
k
c+ 1 times, with a total complexity of O((b p

k
)ca(M) +

a(M)) = O(p+ a(M)). The code size is O(q) = O(min(k, p)).

Theorem 2. Consider WT algorithm AWT , with W (n) work and T (n) paral-
lel steps. Then an equivalent SPE program PA can be written, with O(W (n) +
T (n)a(Mtotal)) complexity and O(k) program size, where Mtotal is the overall mem-
ory used by AWT and k is the size of the SPE.

2.4 High-Concurrency, Compact SPE Programs

It is possible to exploit the loop unrolling and speculative execution capabilities
of the SPE to obtain a better result than that of Section 2.3. Without loss of
generality (see Section 2.2), let us restrict our scope to CRCW decoupled WT
algorithms. The resulting method is itself rather simple. If only exclusive writes
are used, WT statement
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for j, 1 ≤ j ≤ p pardo

operationj

can be coded for SPE with a loop in the form:

segmentsize(min(k, p))

for j, 1 ≤ j ≤ p do

instructionsj

where instructionsj is the bare SPE coding for the high level WT operationj.

As for concurrent writes, contention policies are quite different one from an-
other, and therefore different approaches are needed for their implementation.
Consider, as an example, a reduction–like policy, based on an associative and
commutative operation as Max, + or logical AND. In the SPE it is sufficient to
append the appropriate reduction instruction to the core of the loop. The resulting
code has the following structure:

segmentsize(min(k, p))

for j, 1 ≤ j ≤ p do

instructionsj

acc← max{acc; outputj}

where outputj is the result of instructionsj, the reduce operation is a Max and
the final result is accumulated in variable acc.

Another common policy, priority CW PRAM, can be implemented recurring
to predicated instructions, whose output is committed to memory only if a certain
condition is verified. The following example code refers to a situation where only
one location is concurrently written to.

currentMin ← p+ 1

segmentsize(min(k, p))

for j, 1 ≤ j ≤ p do

cond ← j <currentMin

[cond]currentMin ← j

[cond]instructionsj
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where [cond]instruction commits to memory only if the boolean cond is true.
currentMin is efficiently updated within the processor via internal-forwarding.

It should be noted that with this method the number of lines of the resulting
program is proportional to the length of the original algorithm, and therefore
independent from input size.

The correctness of the simulation relies on the following facts:

• SPE instructions are chosen to match the corresponding WT operations;

• each SPE instruction receives the right operands;

• memory writes are consistent with the policy specified by AWT .

Hence, Lemma 3 holds true.

Lemma 3. Given WT parallel step si, it is possible to implement an equivalent
SPE program P(i), such that they both lead from memory state Mi to Mi+1.

Proof. As already mentioned, the body of the for loop in the SPE program cor-
rectly implements the operations of the Work-Time algorithm by construction,
and in both cases the same operands are used.

Next, we need to prove that this method actually leads to efficient solutions.
Before examining the actual time complexity of the resulting programs, it is nec-
essary to consider and measure their memory consumption. In fact, the latencies
that must be paid heavily depend on that.

We start by providing bounds on the amount of memory required by the SPE
implementation P(i) of a single parallel step si.

Lemma 4. Let M
(i)
WT (resp. M

(i+1)
WT ) be the size of memory state Mi (resp. Mi+1),

and let M
(i+1)
PH be the amount of memory needed by P(i). Then, both M

(i+1)
PH and

M
(i+1)
WT are O(M

(i)
WT + pi).

Proof. Since pi is the number of operations of the parallel step, M
(i+1)
WT is O(M

(i)
WT +

pi). As for M
(i+1)
PH , an auxiliary operand vector only needs O(min{pi, k}) = O(pi)

extra space.

This bound can be extended to the entire SPE program in a direct way.

Lemma 5. Let Mtotal = maxi{M (i)
PH} be the maximum memory needed by any of

the P(i) which implement some step si of AWT . Then Mtotal is bounded from below
by the maximum available parallelism of AWT plus input size n and from above by
the work W (n) plus the input size. Formally: n+ maxi{pi} ≤Mtotal ≤ n+W (n).
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Proof. In the worst case, each Pi adds an extra pi of memory use. The Lemma
follows from the fact that W (n) =

∑
pi.

We can now focus our attention to the actual time complexity of the translation
of a single step.

Lemma 6. Work-Time CRCW-decoupled parallel step si, with pi available par-
allelism can be translated into SPE program P(i) with O(pi + a(M

(i+1)
PH )) time

complexity.

Proof. Consider the for loop of the implementation. Its body has address depen-
dence depth D = O(1). Therefore, as in Example 1, the IGU is able to roll out

dpi/ke segments with O(k + a(M
(i+1)
PH )) time complexity each. More precisely, at

least dpi/ke − 1 segments have O(k) complexity, since k ≥ a(Mtotal) ≥ a(M
(i+1)
PH ).

Summing up, we get O(pi + a(M
(i+1)
PH )).

As for reduction–like CWs, the simulation adds a functional dependence for
each concurrent WT operation. Anyway, the internal forwarding mechanism of
SPE can deal with them with no additional slowdown. The same holds for CW
implementations based on predicated instructions.

Next we show how Lemma 6 can be repeatedly applied in order to get a whole
SPE implementation of AWT . Correctness follows from the fact that each sin-
gle application produces the same memory state transition as the correspondent
parallel step.

Theorem 7. Consider WT algorithm AWT , with W work and T time complexity.
Then an equivalent SPE program PA can be written, with complexity O(W+T ã) =
O(W+Ta(Mtotal)), where ã is the average of the worst case memory access latency

of each step, ã = 1
T

∑T
i=0 a(M

(i+1)
PH ).

Proof. PA can be obtained with T applications of Lemma 6. The resulting com-
plexity is therefore

∑T−1
i=O (pi+a(M

(i+1)
PH )), which is O(W+T ã). Since a(Mtotal) ≥ ã

is always true, O(W + Ta(Mtotal)) is a less strict upper bound to the complexity.
It is nevertheless usefull as it is much easier to derive in actual applications.

One should note that this simulation results in a program of O(T (n)) instruc-
tions. Therefore instruction memory latencies can be ignored.

Corollary 1. Let AWT be a work–optimal WT algorithm. If Ta(Mtotal) is O(W ),
then there exists a SPE implementation of AWT with optimal RAM complexity.

Proof. Direct application of Theorem 7.
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Note that a stronger result is also valid, for T ã = O(W ). It is more difficult to
derive in actual applications. In general, any work–optimal parallel algorithm with
polylogarithmic time complexity is a good candidate for efficient implementations
on the SPE, if a(x) = o(x).

Anyway, another metric emerges from Prop. 5. In fact, the exploitation of the
available parallelism, besides helping overlapping latencies, also increases memory
use. Actually, once the condition T ã = O(W ) is met, any further parallelism
would just increase memory footprint.

The example of matrix multiplication in Section 2.5 clearly outlines this mech-
anism.

2.5 Applications

Consider L , the set of programs consisting of nested for loops, where the only
branches are those determining the execution of loops, and LD, the subset of L
with address dependence depth at most D. As demonstrated in [4], a program
P ∈ LD can be executed by an SPE with k = a(M) stations in time T =
O(D(N + a(M))), where N is the length of the instruction stream of P on a
particular input, and a(M) is the maximum memory latency. This proves the
efficient execution of a wide class of algorithms, including matrix multiplication,
FFT, etc., whose address dependence depth is O(1).

Other sequential algorithms, which target important, basic problems, have a
less regular structure, and are not directly covered by the previous result. For
example the problem of merging two sorted lists of n elements has a O(n) ad-
dress dependence depth. An implementation with constant slowdown with respect
to the RAM lower bound was left as open problem in [4]. In general, we have
to pay particular attention when implementing RAM algorithms which use data
structures such as queues or stacks. In fact, if there are not enough operations to
amortize latencies on, programs will exhibit non-constant slowdown with respect
to RAM complexity.

For these problems, if a work–optimal WT algorithm exists, with polylogarith-
mic number of parallel steps T (n), Corollary 1 can be successfully applied to obtain
an optimal SPE program, whenever the memory access function of the PHM is
O(xα), α < 1.

Connected Components of Dense Undirected Graphs The Connected
Components problem for a dense, undirected graph G = (V,E), |V | = n, |E| =
m = O(n2), consists in finding the connected subsets of vertices in G. It can be
sequentially solved in O(n + m) in a RAM, using either breadth-first search or
depth-first search [11]. The adaptation of this algorithm to SPE is non-trivial,
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and it would require the reorganization of computations to amortize latency. In
[11], a parallel solution to the problem is presented, which exhibit T (n) = log2 n
and W (n) = n2, where input size is O(n2). Therefore, applying Corollary 1, we
can implement a program for SPE with O(n2 + log2 n · a(n2)) = O(n2) complexity,
which is optimal when |E| = Θ(n2).

Merging two sorted lists The classical algorithm for merging 2 sorted lists of
n integers each has D = O(n) address dependence depth. In fact, the operands
of each comparison depend on the outcome of the previous one. Memory access
pattern, in other words, heavily depends on the input, thus making it hard to
optimize input layout in memory. Moreover, there is almost no computation to
amortize latencies on.

A standard approach for mitigating latency overheads in machines with block-
transfer capabilities is prefetching ; by prefetching, one tries to cheaply move the
data which is likely to be used next into the fastest memory locations One way
to accomplish this consists in logically partitioning memory into contiguous levels,
and moving blocks of items among them instead of single items. By appropriately
choosing the size of the levels and of the blocks it is possible to amortize the cost of
inter-level exchanges over the number of moved elements. Anyway, such technique
is not by itself sufficient to achieve a linear time SPE program for merging.

It is possible, on the other hand, to resort to the work–optimal algorithm in
[13], which merges two sorted lists of n items in T (n) = log n parallel steps, and
has P (n) = W (n)/T (n) = n/ log n available parallelism. Direct application of
Corollary 1 leads to M(n) = O(W (n) + n) = O(n) memory occupation. The
resulting time complexity is O(W + T ã) = O(W + Ta(M)) = O(n + log na(n)),
which is therefore linear.

Mergesort It may seem trivial to apply the result on merging as a subroutine
for mergesort. It must be noted, though, that the running time analysis for merge
relies on the assumption that all the input is stored in the fastest n memory
locations. If such assumption is not met, some extra thought is needed to cope with
the higher latencies. Consider for example an iterative bottom–up implementation
of mergesort for the SPE.

At iteration j, 0 ≤ j < log n, we have to merge pairs of 2j-sized lists, with
the ith pair stored in memory from position 2j+1i on. Each such merge has a
O(2j+1 + a(2j+1i)) complexity, which is superlinear if 2j+1 < a(2j+1i). As an
example, if a(x) = xα, the overall complexity of step j = 0 is Ωn1+α).

In this case, a technique similar to the execution of consecutive searches of
[14] can be employed. Basically, instead of merging one pair of sublists at a time,
whenever the size of the subinstances is small enough, all the merges advance “con-
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currently”. In other words, the time intervals in which distinct pairs are merged
are interspersed in a round-robin fashion. Therefore, since distinct subistances are
independent, it is possible to obtain segments of independent instructions, which
can be executed efficiently.

Pattern Matching Algorithms The Pattern Matching problem consists of
finding a given m-sized pattern on a n-sized string, both defined over the same
alphabet. Several algorithms optimally solve in O(n+m) operations this problem
in RAM model, for example the Knuth-Morris-Pratt algorithm [12].

Similarly to the merge of lists, a straightforward execution of the RAM algo-
rithm would not be efficient in the SPE. In fact, both the failure function creation
and the search algorithm present a loop with constant-sized body, where operands
depend on an indirect memory access whose address is computed in the previous
cycle. The algorithm presents an O(n) address dependence depth, while there
are few operations to amortize the latency of memory accesses, leading to an
O(a(M) · (n+m)) complexity.

In parallel computing, optimal algorithms are known, with Wn,m = O(n +
m) and Tn,m = O(logm), for example the one described in [11]. We can apply
Corollary 1 to this algorithm, obtaining an optimal SPE program, with O((n +
m) + a((n+m) + n) · logm) = O(n+m) complexity.

Matrix Multiplication The well-known matrix multiplication algorithm with
three nested for loops exhibits a very marked locality. Besides, it falls within the
cathegory of nested-for-loop algorithms which are efficiently executed by the SPE.

Anyway, the application of Corollary 1 helps to shed some light on the memory
requirements of concurrency exploitation.

Let us consider, to this purpose, the Work-Time algorithm in which all the n3

scalar products are executed in parallel, and sums are organized as a tree. Since
it is work optimal (W (n) = n3) and requires T (n) = log n parallel steps, the
correspondent SPE implementation P has O(n3 + log na(n3)) time complexity,
which is O(n3) for a(x) = o(x). The result is achieved even if no locality is
exploited, but at an extra memory cost M = W = n3, well above the required
O(n2). In fact, all the products need to be stored in memory at the same time.

It is possible, on the other hand, to bound the amount of exploited parallelism,
by recurring to a Work Time algorithm that executes only n2 products concur-
rently. In this case, both memory use and running time are optimal, because only
n2 products need to be stored in memory and the available parallelism is enough
for amortizing latencies.



Chapter 3

Parallel Limiting Technology
Machines

3.1 Machine Organization

In the research for improved sequential execution performance and scalability un-
der constraints of maximum information density and speed, the natural course of
action after considering sequential machines is the exploration of designs which
explicitly target instruction level parallelism, enabling concurrency exploitation
for both memory accesses and instruction execution.

The design which is proposed in this work indentifies two distinct, non over-
lapping regions of space: one for storage (a main memory) and one for processing
(a CPU). Communication between memory and processor takes place across an
interface implemented on the shared border. It can be seen as a natural evolu-
tion of the SP and SPE processors with pipelined hierarchical memory, in which
the main effort is to overcome any sequential behaviour which is not dictated by
fundamental constraints.

One should consider the somewhat limited rigor in the former distinction as the
processor itself contains a non-negligible amount of memory which is necessary for
its activity, mainly in the form of registries and buffers. Still, the main memory is
the place where the machine state is represented, at least at certain time instants
(including the beginning and end of program execution) and the input and the
output are stored, while the processor only holds cached, temporary copies and
intermediate values.

This design clearly belongs to the category of machines which exhibit a so-called
von Neumann tube (???). As a consequence, all processor-memory communication
is subject to the necessarily limited capabilities of their connection interface, which
is by all means an artificial bottleneck. However, the somewhat conservative choice

21
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of machines with separate processor and memory allows for approaching more
radical designs in a gradual fashion, and identifying more precisely the single
changes and challenges which need to be introduced or tackled. The space of
possibilities allowed by physically implementable machines is indeed quite vast; it
is therefore helpful to both the researcher and the reader to explore and present the
findings as a gradual evolution from acquired and shared models and knowledge.

Another, minor, reason to consider machines which exhibit a von Neumann
tube, is that actual general purpose machines are not likely to abandon this orga-
nization any time soon.

Reasons for this include on one side the vast heritage of software, algorithms,
models and know-how which has accumulated over the years, and on the other
the difference in production technology between storage and processor elements.
Indeed, memory and processor technologies are extremely difficult to integrate on
the same chip as the former aims at density and capacitance, while the latter favors
switching speed.

It must be noted that there is active research to overcome this state of things
(most notably the iRAM ), but so far did not prove sufficiently cost-effective to
make it into mainstream general purpose computing machines.

3.2 A Pipelined, Hierarchical, High-Bandwidth

Memory Organization

Design targets The proposed memory design is both hierarchical and pipelined,
in order to allow the exploitation of both locality and concurrency of memory
accesses during program execution.

As it has been show in [4], even if they are not in general sufficient, both
features are necessary in order to be able to hide the effect of latencies with larger
machines and problem instances, and to achieve scalability.

In fact, when considering the performance of a non-hierarchical memory system
for asymptotically larger and larger machines, it must be noted that the time for
each single access would grow with the size of the memory. More precisely, being
d the number of dimensions in which the memory circuits are laid out and m the
storage size, latency would be at least Ω(m

1
d ). The only way to amortize latencies

would then be by overlapping accesses, but again, the required concurrency would
need to match the growing latency.

As a consequence, the more sequential, constrained portions of any program
would end up dominating the overall execution complexity, their effect being pro-
portional to latency.

More formally, let seq be such portion of program, for which accesses do not
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exhibit any concurrency, that is, there exists Tmin such that Ω(Tmin) is the least
time complexity for seq. Such Tmin could for example arise from a series of depen-
dencies among instructions, each of which require a distinct lookup in memory. It
is reasonable to expect that, even considering larger and more powerful machines,
the overall complexity of the program would be T = Ω(Tmin). However, with a

non-hierarchical memory system, complexity would be even worse: T = Ω(m
1
d ),

that is growing with the size of memory.
For an asymptotically growing non-pipelined memory system, on the other

hand, the difficulty is related to the cumulative effect of larger and larger access
times as programs are given larger problem instance to solve. In this case, it
would be the portion of the program which exhibit the least locality to ultimately
constrain complexity the most. Also the complexity of simpler programs, however,
would be severely burdened. Consider, as an example, a program which needs to
load into the processor every bit of its input at least once. Then, its complexity
would not be smaller than the sum of each single memory access latency. Letting
a(·) be the memory access function, that is the function that returns for each
memory address, its access time, then the time complexity for touching all the
bits of an instance of size sI , is T = Ω(

∑sI
i=0 i

1
d ), which can be rewritten as T =

Ω(
∑s

1
d
I
i+0 i) = Ω((s

1
d
I )2). As can be seen in the formula, the resulting time complexity

is much larger then what strictly implied by the larger latency itself.
In order to devise a scalable design for a memory system, it must therefore

allow the exploitation of both concurrency and locality.
A hierarchical memory system is also necessary in order to logically shrink

the machine. In fact, there are situations when the lack of available locality and
concurrency (due to the nature of the program, the implemented algorithm or the
problem itself), would make it more convenient to execute at least part of the
work with a smaller machine. One such situation may for example occur when a
program recurs on smaller instances.

A smaller machine, in fact, is by definition less capable of exploiting e.g. con-
currency of accesses, but also has smaller fixed costs (e.g. instruction loading and
initialization). With a hierarchical memory system, when the accesses are bound
within the first m locations (and consequently the fastest ones), the worst case
latency can be bound to a(m), independently from memory size. Therefore, the
access cost is the same as the one incurred with a smaller memory system.

In the spirit of [4], let us formally define a high-bandwidth, pipelined, hierarchical
memory.

Definition 12. A high-bandwidth, pipelined, hierarchical memory is a memory
system which satisfy the following properties.

• size: M locations with distinct addresses
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• memory access protocol: request packets RPs (read or write)

• access function: hierarchy, pipelined period, bandwidth

• B input and output ports uniformily placed on one side

• a RP enters one port and exits another port

• each port service 1 RP per clock cycle

order of locations based on latency
a location holds a word, which is enough to store an address.
define m[x] as the content of location with address x
The proposed design includes the specifications for a high bandwidth, pipelined

non-hierarchical memory (to be used as a building block) and an interconnection
strategy (to compose the complete system and connect it to the processor). Each
module allows the exploitation of concurrency both by pipelining accesses and
by accepting multiple requests per clock cycle. In particular, the interconnection
strategy is able to preserve the latencies of the single modules (latency is increased
by at most a constant factor) and to aggregate their bandwidth. Finally, by
appropriately choosing the size of the modules, it is possible to obtain a hierarchical
memory system.

It is also optimal, in the sense that it offers optimal latency and optimal band-
width at a constant rate (in a sustained fashion).

The resulting design is optimal, in the sense that it offers optimal TODO:
complete here

3.2.1 High-Bandwidth Pipelined Memory

The design which is presented here is a non hierarchical, high-bandwidth, pipelined
memory of size M , which can be laid out in d dimensions. While two and three
dimensional layouts are of practical interest, the design is general enough to be
expressed as a function of d.

The goal is to achieve an optimal balance between available bandwidth and
worst case latency. In particular, each location has to be reachable from any
port with the same latency guarantee. As for the bandwidth, the number of
implemented ports is clearly a lower bound, as their operating speed is fixed and
limited; however, a high number of ports is not sufficient if they are not in the
condition to accept new request packets, e.g. due to congestion issues.

Consider, as an example a memory module laid out in two dimensions. In
order to increase the bandwidth, one should favor shapes in which the perimeter is
maximized with respect to the area, i.e. a linear array, so to maximize the number



3.2. A PIPELINED, HIERARCHICAL, HIGH-BANDWIDTHMEMORYORGANIZATION25

of ports. However, this would have negative consequences on the latency. Indeed,
the worst case distance between a port and a memory location would grow linearly
with memory capacity. Besides, congestion would cause significant slowdowns in
the general case, that is whenever locations are accessed from sub-optimal ports.
This, in turn, would prevent the ports from accepting a request packet at each
time step, thus curbing the actual available bandwidth.

A balanced design, instead, needs that bandwidth and worst case port to loca-
tion distance be optimized at the same time. The consequent preferrable layouts
occupy a compact d dimensional volume of size M , and communicate through a
d− 1 dimensional surface.

Servicing x request packets would take T (x,M) = Ω(x/B + a(M)) time steps,
where B is the available bandwidth and a(M) is the latency. In this scenario, we
would have B(M) = O(Md−1/d), and a(M) = Ω(M1/d). As a result T (x,M) =
Ω(x/Md−1/d +M1/d) which is optimal for any x ≤M .

The design itself is based on the principles of modularity and extensibility,
and provides an optimal balance between bandwidth and worst-case latency at a
sustained constant access rate.

Memory locations are implemented by means of circuits of constant, fixed size.
Each circuit, or node, has a fixed storage capacity, ultimately determined by occu-
pied volume of (d dimensional space) and is identified by a univocal address. Word
size, that is the amount of bits per location, is large enough to store a memory
address. For clarity’s sake, and to avoid carrying an additional constant in all
the calculations presented, in the rest of this work it will be assumed that there
is a one-to-one correspondence between memory nodes and locations. It must be
noted that such assumption does not curb in any way the reach of the results.

The fixed volume of nodes, as is the case with storage, also bounds its com-
munication abilities. As a consequence, each node has a fixed amount of intercon-
nections, and through them can send and receive a fixed amount of data per time
step.

On the other hand, the choice of circuits with fixed size allows us to bound
the time to perform one memory operation to within a constant. It is therefore
independent from the size of the memory M , so that the number of nodes in the
implementation does not impact on the time for reads or writes.

Memory nodes are connected as a d dimensional array. Such layout only allows
for fixed-length interconnections between neighboring nodes. As a consequence,
the whole memory can be laid out in d dimensions with optimal volume occupation
M , as interconnections require O(M) space.

Moreover, the distance between pairs of nodes, and between the external surface
and any node is smaller or equal to the diameter of the array, that is O(M1/d).

Finally, the layout offers a O(Md−1/d) surface, in terms of number of nodes
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which are directly reachable from outside the memory, which is sufficient for guar-
anteeing the required bandwidth.

The interface with the processor is implemented by means of O(Md−1/d) ports
evenly spaced on one side of the memory module. The number of ports is propor-
tional to the number of nodes on the surface of the memory.

Like the memory nodes, they offer fixed capabilities, and are implementable
with fixed volume occupation. In particular, they have fixed communication and
buffer capabilites. On one hand, this is necessary so to achieve a constant access
rate, that is, independent of M , the memory size. One the other hand, the conse-
quence is that a port is able to accept a new request packet only if the previously
received ones have already been dispatcched towards their destination. Request
packets, indeed, cannot accumulate due to the fixed buffer.

To allow for a gradual introduction of concepts with a simpler design, it will
be assumed that ports are directly connected to the nodes on the surface of the
memory, so that each component has a fixed number of neighbors and all the
connections have fixed length.

The worst case distance from the outer interface of a port to any memory node
is proportional to M

1
d , thanks to the fact that ports, nodes and interconnections

have fixed size. Thus, worst case access latency is T (M) = Ω(M1/d) which matches
the fundamental limits.

Batch Accesses In order to coordinate multiple requests at the same time,
memory accesses are organized in batches. Batches are designed so that each one
is able to answer M request packets in T (M) = O(M1/d) time steps.

One restriction applies, which may seem very constricting. Indeed, for each
batch, only up to one memory operation per distinct location is allowed. The key
reason for this choice is that the extra management to handle multiple requests
on the same location is better suited to be implemented on the processor side of
the machine. However, as will be hinted at later in this Section, it is also possible
to enrich the memory desing with the ability to manage multiple accesses.

In its simpler version, batch accesses take place one after the other, over and
over again. A batch begins with an ingestion phase, when request packets are
accepted. During the ingestion, each port accepts up to one request packet per
time step, and immediately forwards it into the memory, in the opposite direction
with respect to the processor. In turn, all the involved memory nodes continue this
propagation mechanism in a systolic fashion. As a result, during ingestion, ports
are able to operate at full capabilities, that is, at constant rate. It must be noted
that this is necessary in order for the available bandwidth to match the number
of ports. The ingestion phase terminates after T (M) = M1/d time steps, when up
to M request packets have been accepted.
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Lemma 8. The proposed memory design is pipelined. In other words, during the
ingestion phase of a batch access, ports operate at constant rate.

Proof. During the ingestion phase, at each time step, the sequence of request
packets which have entered one port are shifted in the opposite direction with
respect to the processor. As a consequence, in one time step, the port can free its
buffers and is able to accept a new request packet.

After ingestion, ports stop accepting request packets until a new batch is
started. For simplicity, it will be assumed that at this point, each of the M mem-
ory nodes holds one request packet. The next operation consists in sending each
request packet to its specified destination, so that the actual memory operations
can be carried out in the appropriate locations. One efficient way to accomplish
this task, dubbed assignment phase, is to implement an optimal permutation al-
gorithm to sort the request packets with respect to their target memory address.
Such permutation algorithms are optimal in the sense that their time requirements
is proportional to the length of the array diameter, which is an unavoidable lower
bound. Besides, they only require fixed queue size for each node, which is suitable
for the design choices of the memory. Once each request packet has reached its
destination, each location can execute the specified memory operation. In case of
a read, the request packet is populated with the content of the location; in case
of a write, the content of the location is overwritten with the value held by the
request packet, which are then discarded.

The last step of a batch access is a reply phase, in which read values are returned
to the processor. As such values do not need to use the same port which accepted
the corresponding request, it is sufficient to let them reach the ports in a systolic
fashion. In other words, the reply phase is exactly specular to the ingestion, and
can be carried out in T (M) = M1/d time steps.

At the end of a reply phase, a new batch can begin, and ports start accepting
request packets again.

The total time to service one request packet is the sum of the time spent in the
ingestion, assignment and reply phases. Consequently, the latency for a memory
operation is M1/d, optimal for a memory laid out in a volume M , in d dimensions.

Lemma 9. The proposed design has optimal latency T (M) = M1/d for a memory
of size M . Moreover, latency does not depend from the ports and memory location
involved in the memory operation.

Proof. Let us consider a single read request packet. Once it is accepted by a port,
it waits up to O(M1/d) time steps for the ingestion phase to terminate. Then, it is
routed to its destination in O(M1/d) time steps with the assignment phase. Once
its target memory node is reached, the actual read can be carried out. Finally, it
waits up to O(M1/d) time step in the reply phase to reach a port for being output.
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The case of a write request packet is identical, with the exception of the reply
phase. In fact, once the appropriate memory node is updated, the write request
packet can be safely discarded.

In both cases, the total latency is T (M) = M1/d time steps.

The number of request packets which are serviced for each time step isO(Md−1/d).
Indeed, each of the Md−1/d ports accepts or replies a request packet per time step,
thanks to the pipelined behaviour of the memory. The assignment phase, in turn,
routes M request packets in time T (M) = O(M1/d), which is equivalent to pro-
cessing Md−1/d packets per time step.

Lemma 10. The proposed design provides bandwidth B(M) = Md−1/d for a mem-
ory of M locations, which is optimal if the memory is implemented in a compact
volume of size O(M).

Proof. Thanks to the systolic behaviour of the ingestion and reply phases, the ports
are able to operate independently at full capacity. Moreover, in the assignment
phase, up to M request packets are concurrently routed in time T (M) = O(M1/d),
which is enough not to slow down port activity. The actual execution of reads
and writes, finally, is a completely parallel operation. Therefore, the available
bandwidth is B(M) = Md−1/d.

Resulting time complexity for processing a batch of accesses to a memory of
M locations is the total time spent in the ingestion, assignment and reply phases,
that is T (x,M) = O(M1/d). It is important to stress that this complexity result
holds for any number of requests smaller or equal to M . In other words, the same,
optimal, latency is guaranteed to single accesses as well as to the maximum allowed
concurrency.

Lemma 11. With the proposed design, a memory of M locations can process x
request packets in T (x,M) = O(M1/d) time steps. The time complexity is constant
for any number of request x ≤M .

Proof. The cumulative time for a batch operation, from the first arrival of a request
at a port to the instant when the last reply leaves its port, is O(M1/d), that is,
proportional to the complexity of each of the phases. The same outcome is obtained
applying the results for access rate, bandwidth and latency. Putting them into a
formula, we have:

T (x,M) = O(x/B(M) + a(M)) = O(M1/d).
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Alternative, more refined implementations of batch accesses may let the mem-
ory in an idle state when it is not needed. Such a feature could be useful, for
example, if the idle state is able to dissipate significantly less power than the ac-
tive state. In this case, the task of initiating a batch access is let to the processor.
It may be accomplished by means of a special activation message sent to all the
ports, or even implicitly by starting to send request packets to at least one port.
In the latter case, some little extra coordination is needed among the components
of the memory, so that all of them are notified the beginning of a batch.

Sustained Access The memory design presented so far achieves optimal average
performances. However, the resulting behaviour implies that memory is accessible
only during specific time windows, that is, during the ingestion phase.

It is possible, in fact, with a slightly more complex memory organization, to
implement a memory which allows sustained access to its locations, without com-
promising the time and space results obtained so far.

In particular, it is necessary to better decouple the different phases of a batch,
so that they can be pipelined.

To this purpose, one solution is to distinguish between input and output ports,
and to augment them with suitable buffers. The input buffers, in order to be effec-
tive, need to be able to cache the whole content of the ingestion phase. Specularly,
output buffers need the same capacity to cache the data to be output. Moreover,
both sets of buffers have to be able to exchange their whole content with the
memory nodes in a fixed time, so that input buffers become immediately free to
ingest new packets, and the memory nodes can receive the new batch of requests
immediately after performing the actual reads and writes. Finally, with the ad-
dition of these extra structures, latency must not grow by more than a constant
multiplicative factor.

One way to fulfill all requirements is to design the buffers as linear arrays
of M1/d cells, such that each cell has a fixed storage capacity, and is able to
communicate with its neighbors in a fixed, constant time, independent of buffer
size. Each linear array is then connected on one end to one distinct port, so
that it charges (or dischargers) through it. The linear arrays are laid out in lines
perpendicular to the processor memory interface, so that there are no intersections.
On the contrary, they are interleaved with the rows of memory nodes, such that
each memory node is at constant distance both from a dedicated cell of an input
buffer and from a dedicate cell of an output buffer. In this way, it is sufficient
to connect each memory node with its dedicated input and output cell for the
communication between actual memory and buffers to be fully parallelized, and
consequently take just a fixed number of time steps.

Theorem 12. The design of a high-bandwidth, pipelined memory presented here,
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is able to process x request packets in T (x,M) = O(M1/d) time steps in a sustained
fashion.

Proof. It must be noted that extra care has been taken so that all the base compo-
nents which are employed (memory nodes, ports, buffer cells) have fixed size. As
part of that, the interconnection topology is a graph with fixed degree (paramet-
ric in the dimensionality d), and all connections are near-neighbor, that is, they
stretch for a fixed distance which depends only on node size. In order to measure
volumes and distances, it is therefore sufficient to count the number of nodes. Con-
sequently, all the performance consideration made for the simpler memory design
are valid also in this settings.

On top of this, the buffers are powerful enough to let ports operate at constant
rate, so that bandwidth is preserved.

The wide O(M) bandwidth between buffers and the actual memory, on the
other hand, prevents excessive latency penalties, and at the same time allows
overlapping the assignment phase with ingestion and reply of the next and previous
batches. Thus, also latency is preserved.

Finally, one should note that it would be possible to implement the same mech-
anism integrating the buffer capabilities into the memory nodes themselves, and
interleaving in time the operations for ingestion, assignment and reply. However,
the definition of dedicated structures helps better identifying the working mecha-
nism of the memory design, and allows for a much clearer presentation of concepts.

Alleviating the constraint of distinct addresses The proposed memory de-
sign requires that each batch contains at most one memory operation per location.
Such a restriction may look quite important for a general purpose machine. How-
ever, as will be shown in the presentation of the processor, this is not the case.
Indeed, the support for multiple requests for location is left as an optional feature
because the processor is more suitable for managing intermediate memory oper-
ations and avoid unnecessary fetches or commit. Besides, as it has already been
shown, allowing one single read or write per location greatly simplifies the routing
problem in the assignment phase.

However, in order to allow room for wider applications than the processor
presented in this work, it is hinted here how to manage multiple requests on the
same location and in the same batch.

Let us describe the problem in more detail. Among accesses targeting the
same location, a sequential order is necessary, which is the one expressed by the
semantics of the program. It is assumed, then, that each access inherits its priority
from the instruction it originates from. An access originating from an instruction
which is processed later in the execution will have to be carried out later than
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one originating from an earlier processed instruction. This assumption implies the
existence of one single stream of instructions, such that each access can inherit
its priority from the relative position of its originating instruction in the stream.
From another point of view, we assume that in case of parallel programs, the
management of parallel accesses is implemented in software, by the program itself,
which determines the sequential order of conflicting memory operations.

The solution proposed here is similar in spirit to the one devised in and is
an extension of the memory design which has already been presented, in partic-
ular of the assignment phase. Actually, this augmentation essentially mimics the
behaviour of the processor described in this work, when managing intermediate
memory accesses.

The solution consists in extracting from the submitted batch of requests a
subset with at most one read and one write per location. Specularly, before out-
putting the result, the original batch is populated with the correct values. One
the hardware side, constant extra storage per memory node is required for hosting
the original batch, the size of which is still required not to exceed the size of the
memory.

The request packets which are selected, in particular, are the first read and
the last write for each memory location, if any. Indeed, the value carried by any
previous write would be overwritten. Any further read, in turn, can be given the
value carried by the last preceding write, if any, or, otherwise, the value fetched
by the first read.

Once the subset of request packets is selected, it can be processed essentially
in the same fashion as a batch with no duplicated accesses. The only difference
consists in the need for executing a read followed by a write in the same location.

Then, a post-assignment phase is necessary to populate the remaining read
packets in the original batch. Sorting packets by memory locations and program
order can be implemented by means of permutations on the array of memory
nodes. With this arrangements, it is possible to efficiently implement the selection;
besides, after the selected subset has been processed, each write and each first read
can efficiently propagate their value to the appropriate read packets.

Finally, when all read requests have been populated, write request packets can
be safely discarded, and the remaining packets sent to the output buffers.

Lemma 13. A memory of M locations which implements the proposed design is
able to process x ≤M memory accesses with duplicates in O(M1/d) time steps.

Proof. It must be noted that the hardware requirements are the same as in the
case which has already been debated, to within constant multiplicative factors.

Ingestion and reply phases are not affected in any way; thus they mantain the
same complexity.
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Selection and post-assignment can be efficiently implemented by appropriately
rearranging the request packets, so that the needed communication involve only
directly connected nodes over distances smaller than the diameter of the array.

Finally, the assignment phase has the same asymptotic complexity as in the
case which has already been presented, since at most an extra memory operation
per node must be carried out.

Further Design Considerations The proposed memory design is non-hierarchical
in the sense that the time for a memory access is the same for any location, and
is equal to the lower bound access time of the furthest memory nodes.

The achieved performance results, however, match the physical lower bounds.
Access rate is constant. Thus, it matches the achievable switching frequency for a
circuit of a fixed size. Bandwidth, thanks to the constant access rate, the number
and interconnection of the ports, matches the size of the surface of the memory.
Latency, finally, thanks to the choice of fixed size base components and the array
topology, is proportional to the time to reach the farthest memory location under
the constraint of limited signal propagation.

The occupied volume is proportional to the storage capacity, and is determined
only by the number M of memory nodes, that is, the design is extensible to
arbitrary size only by setting the number of needed locations.

Lemma 14. The proposed design is scalable to arbitrary size M , in the sense that
the described performances apply to any memory size, with no added costs due
to increasing size. Moreover, the achieved worst case latency and bandwidth are
optimal under constraints of bounded information speed and density.

3.2.2 A Hierarchy of Memories

The proposed memory design offers a high degree of concurrency, thanks to its abil-
ity to accept both pipelined and parallel accesses. However, a necessary feature for
a scalable memory system, is a hierarchical organization, that is, an organization
which integrates components with different trade-offs between lantency and size.
In other words, the number of time steps to access a location must approximate
as well as possible the time bound due to minimum distance and maximum signal
speed. Formally, the desired memory access function is a(x) = O(x1/d).

The key idea is not new (see [??]), and in its simplest version consists in com-
bining memories of distinct size and speed such that they approximate the desired
memory access function.

However, due to the combined requirements of high bandwidth and minimum
device size, the problem of efficiently arranging such non-hierarchical memories,
which will be here referred to as modules, takes on some non trivial challenges. In
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particular, in order to reach a sufficiently complete solution, it will be necessary to
include both sides of the processor-memory connection, and rethink some of the
roles in the communication protocol with respect to the mainstream partitioning
of tasks.

The first choice to be made, in designing the memory hierarchy, is to decide the
size of the modules (the overall number of locations being a direct consequence of
it). In order to meet the target memory access function, it is necessary to assign
each memory location to a suitable module, and at a suitable distance from the
processor. Location x, with target latency x1/d, will have to be included in a
module with latency up to c1x

1/d, and at distance up to c1x
1/d, for given constants

c1 and c2.

Let us for the moment assume that there exists an ideal organization such that
the access time to any module is proportional to their intrinsic latency. Let us also
assume that this ideal organization is able to fully aggregate their bandwidths.
In this conditions, a convenient combination of modules is a set whose linear
dimension, the diameters, are in geometric progression (of common ratio r = 2,
for example). Access latencies follow the same progression, as they are proportional
to the diameters. Module sizes are also in geometric progression, but with a larger
common ratio, depending on the number of dimensions d of the layout; for a two-
dimensional layout, it would be the square with respect to the common ratio of
diameters and latencies. Then, locations are numbered such that the addresses
that each module gets are integer intervals, and if smaller modules are assigned
smaller addresses, so that the resulting memory access function is non-decreasing.

Let us now consider module with index k̂ in the sequence, that is the module
which contains the memory location referred to by address x. In the current

hypothesis, we have that k̂ = min
{
k ∈ N,

∑k
i=0 r

di ≥ x
}

, where r is the common

ratio of the geometric progression and d the number of dimensions of the layout
(for two-dimensional layout and common ratio 2, rdi = 4i). Due to the properties
of the geometric progression, it is possible to bound k̂, and consequently its size

and access time, in terms of x. In fact, since x >
∑k̂−1

i=0 r
di > crdk̂, for a constant c,

we have that k̂ = O((logr x)/d). The resulting module size is O(x), with diameter
T (x) = O(x1/d).

Since the number of time steps to access memory address x is bounded from
above by the latency of the hosting module k̂, we have that T (x) = O(diam) =
O(x1/d), which matches the latency due to the bounds on information density and
speed.

As for bandwidth, a sequence of c modules in geometric progression provides
an aggregated bandwidth of B =

∑c−1
i=0 r

i(d−1)/d. Compared with a total size
M =

∑c−1
i=0 r

id, the aggregated bandwidth is optimal for a memory laid out on a
compact region of space, as we have that B = O(M (d−1)/d).
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Lemma 15. A sequence of high-bandwidth, pipelined, non-hierarchical memory
modules with latencies in geometric progression can be used to layout a high-
bandwidth, pipelined, hierarchical memory with optimal memory access function.

Proof. If addresses are assigned such that the resulting memory access function is
non-decreasing, the memory location with address x is hosted by a module with
size O(x). Since the inherent latency of the module is bounded by its diameter,
location x can be accessed in T (x) = O(x1/d) time steps, which matches the latency
due to bounded information speed and density.

The aggregated bandwidth B, that is the sum of the available bandwidths of
the modules is also optimal for a memory of size M laid out in d dimensions on a
compact region of space, as B = O(M (d−1)/d).

Let us now turn our attention to the problem of combining the distinct modules
into a pipelined memory system with optimal bandwidth and latency.

The first problem that needs to be tackled is to devise a placement in d-
dimensional space such that for each module, the distance with the processor
is at most proportional to its diameter. Indeed, for the resulting latency not to
asymptotically exceed a module’s latency, the wires which connect to the processor
must not add larger delays in the communication due to signal propagation itself.

It is immediate to see that such a requirement has a number of non-trivial
facets. The first question is the definition itself of such module-processor distance.
Indeed, the processor cannot be reduced to a point in space. Since it had not
be presented yet, some assumptions are needed to proceed with the design of the
memory. The processor has size P , which means that it is laid out in O(P ) space
in dP dimensions, where dP is not required to be the same as d, the number of
dimensions the memory is laid out in. It is also assumed that such space is a
compact volume, that is, the diameter is O(P 1/dP ) and the available surface for
IO is sufficient to match the bandwidth offered by the memory. Therefore, the
latency to access the same memory location is in general dependent on position of
the part of the processor which actually originates the request. Even restricting
our consideration to the case where the distance is measured from the processor
ports is not sufficient to elude the problem. Indeed, due to minimum device size,
each port needs a minimum amount of space to be implemented. Besides, in order
to guarantee bandwith B, the processor must be equipped with Ω(B) distinct
ports, which in turn have to be (uniformily, if all the available room is employed)
scattered in the d − 1-dimensional surface of the processor, one dimension being
required for the connections.

Let us consider now one module of size Mi. Due to these considerations, the
time to access its locations is M

1/d
i only for at most O(M

(d−1)/d
i ) processor ports.

Any further port would necessarily be so far from the module that the time to
traverse it would be greater that the module access time.
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Remark 1. Memory module i with size Mi is accessible with latency proportional
to its access time only within a O(diamMi

= O(M
1/d
i ) radius.

If a processor is laid out in space with diameter diamP >> diamMi
, then only

one portion of the processor contained in a O(diamMi
) radius will be able to access

module i with O(M
1/d
i ) access time.

Note also that if, in the processor, the surface for IO is fully employed for
ports layout, then diamP is also a measure of the maximum distance between two
distinct ports.

A specular issue arises with respect to the bandwidth to access. Indeed, if
the fastest x memory location are hosted by the smallest memory module which is
large enough, then the available bandwidth can not be greater than the one offered
by the module itself.

These problems cannot be circumvent as long as both high bandwidth and low
latency are required at the same time. Indeed, the implementing the memory-
processor interface necessarily faces a space constraints, which are in turn dictated
by the fundamental limits of information speed and density.

The approach which is chosen in this work is to reasonably relax the require-
ments concerning the memory access function and the bandwidth, or, from a
different point of view, to more precisely define them.

Let us define the target behaviour of the memory system in terms of accessing
a set of distinct memory addresses:

• the available bandwidth depends on the largest of such addresses, which
determines the largest module which is involved in the communication;

• latency for accessing such addresses, in turn, is measured with respect to the
nearest ports on the processor; again, the largest of such addresses determines
the largest module and the largest latency.

In this way, the target time complexity to access the first (and fastest) x mem-
ory locations is T (x) = O(a(x) + x/B(x)) = O(x1/d + x/x(d−1)/d), which yields
T (x) = O(x1/d). As it is possible to notice, the target time complexity strikes a
perfect balance between the delay caused by the latency and the one caused by
the bandwidth.

The proposed organization arranges the set of memory modules with diameter
in geometric progression as a skewed pyramid, such that the smaller modules are
closer to the processor, and consecutive modules in the progression are adjacent in
space. With this arrangement, the distance between a module and the processor
is kept at most proportional to its diameter, so that the time for the signals to
travel is comparable with the intrinsic latency of the module. It is apparent,
however, that for each module but the smallest, part of the surface towards the
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processor is obstructed by the smaller modules, and consequently it is not possible
to provide the full bandwidth. Anyway, the unobstructed fraction of the surface is
still constant with respect to the total, so the resulting bandwith remains optimal.

One of the key simplification in this memory system is that the actual con-
nection between processor and memeory ports are implemented with simple wires.
The immediate consequence of this choice is that the task of delivering a request
packet to the appropriate memory port, or, more precisely, to the appropriate
memory module, becomes a duty of the processor, which has to be carried out be-
fore the request leaves the processor port. In fact, the resulting connection results
in each module having a separate bus which links it to a dedicated set of ports on
the processor.

The choice is motivated by the fact that it is possible to devise a processor
which can efficiently accomplish such routing task. For example, in case of a
multidimensional array implementation, the required time would be proportional
to the diameter, and consequently to the worst case distance between two processor
ports.

Any more complex, intermediate routing circuit would not perform better. On
the contrary, it could only add further latencies. With the proposed design, all the
available bandwidth is already exploited, and the access latency is already pushed
to the limits due to signal propagation speed.

Let us formally present the properties of this memory design.

Lemma 16. The access time a(x) for accessing memory location with address
x from the closest processor port is O(x1/d), which is equal to the access time

Ti = M
1/d
i of the hosting memory module i.

Proof. As implied by Lamma (15), the location identified by address x is hosted by
memory module i, with size Mi = O(x). Hence, the module latency is O(M)i1/d) =
O(x1/d).

The distance between module i and the nearest ports on the processor only
depends on the sum of the diameters of the modules which are smaller than i.
Due to the properties of geometric series, such sum is proportional to the diameter
of module i, that is

length(i) = O(
i−1∑
j=0

M
1/d
j ) = O(

i−1∑
j=0

cj/d) = O(ci/d) = O(M1/d)

which implies that propagation time matches its inherent latency.

Lemma 17. The aggregated bandwidth B(M) provided by the proposed memory
system, M being its size, is the sum of the bandwidth Bi(Mi) of the single memory
modules. Moreover, B(M) is optimal for a memory laid out in volume M .
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Proof. For each module i, the surface facing the processor is proportional to
O(M

(d−q)/d
i ). The portion of such surface which is obstructed by smaller mod-

ules is proportional to O(M
(d−q)/d
i−1 ). The ratio is

1

r(d−q)/d
= constant

r being the constant ratio in the geometric progression and d the number of di-
mensions of the layout. Since such ratio is constant and smaller than 1, the
unobstructed surface is still optimal, and the number of memory ports which can
be connected to the processor are proportional to the size of the external surface
of the module. Hence, the total processor-memory bandwidth is the sum of the
bandwidth provided by the single modules.

More on the choice of module size, and number The proposed module
organization can be adopted also with other choices of module sizes. However,
it must be noted that the achievable memory access function and the aggregated
bandwidth heavily depend on the relative size between consecutive, adjacent mod-
ules.

In general, for example, if the diameters of the modules grow more slowly than
in a geometric progression, then the latency due to the distance with the processor
will (asympotically) exceed the inherent latency of the modules.

Indeed, the geometric progression is a very natural choice for module sizes as
it matches the growth of available volume of space within distance k from the
processor as k grows, which is another way to show the optimality of the design.
In other words, there cannot be more locations with small latency than what is
provided here.

The statement is even more constraining if we consider that the most “valuable”
volume is needed for both the faster memory and for implementing the connections
with the larger, farther modules.

The addition of more small, fast modules to be used as local caches, for example,
could be implemented only on a very limited scale just to allow the volume for
the connection to the farther modules. On the other hand, this extension would
complicate the general access to memory as caches should be kept consistent with
the rest of the memory.

3.3 A Processor Organization

We turn now our attention to the processor, which is the portion of the machine
in which computing logic is implemented, and consequently, where the actual
instruction execution takes place.
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The exploitation of the features provided by a high-bandwidth, pipelined hier-
archical memory system does require a rather complex processor design.

In fact, it could be said that the processor side of the machine has been over-
looked in most of the more used and widespread computational models.

In particular, no processor is able to take full advantage of a pipelined memory
if memory requests are not overlapped in time.

3.3.1 Design Goals and Strategy

The goal of this processor design is to provide a scalable architecture able to take
full advantage of the capabilities of a high-bandwidth, pipelined, hierarchical mem-
ory, and therefore to exploit both concurrency of memory accesses and instruction
level parallelism.

In order to do so, it is necessary to fundamentally rethink instruction execution
and information flow with respect to the standard processors of models such as the
RAM or the HMM. The key assumption to overcome is the fact that the execution
of instruction do not overlap in time.

Results in [4] shows that such rethink is already necessary in the context of
sequential machines. Intuitively, if an instruction is allowed to submit memory
requests only after the preceding one has committed its result, then memory ac-
cesses cannot be pipelined and only its hierarchical nature can be exploited through
locality.

Such results appear even more substantial when considering models which tar-
get instruction level parallelism, and aim at fully exploiting the available high-
bandwidth.

The key idea to start from is to distinguish between static programs and dy-
namic instruction streams. When program P is executed on a given input, we call
the resulting stream of executed instructions a dynamic instruction stream I. In
particular I is referred to as dynamic instruction stream because of its dependency
on the program input, or, equivalently, the initial memory state.

In classic sequential processors, the instruction stream is generated implicitly
during execution, one instruction at a time. In fact, in general, the data which is
needed by the current istruction, and the instruction itself to be executed, depend
on the result of the previous instruction executions.

The proposed processor takes a different approach and attempts at determining
and executing the instruction stream in segments of instructions. In order to do
so it becomes necessary to resort to features such as branch prediction, in order
to speculatively obtain the instructions to include.

Moreover, it should be noted that the definition of instruction stream is rather
loose, as in general, for the same program-input pair, more than one instruction
stream is acceptable and correct, that is, their executions result in the same final
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memory state. In general, as long as the final memory state is unaffected, it
is possible to consider different mappings from programs to instruction streams,
possibly allowing room for performance optimizations.

Once a segment is generated, the processor tries at the same time to optimize
memory accesses and exploit all the available instruction level parallelism. In par-
ticular, the relevant portion of the memory state is fetched in one macro access
to pipeline the single accesses and to take advantage of the available bandwidth.
Moreover, as in general part of the operands becomes available after segment execu-
tion has begun, the necessary information flow among instructions of the segment
is managed within the processor itself, effectively bypassing memory. In particu-
lar, with this approach, functional dependencies can be efficiently dealt with, as
instruction results are directly used as operands by the dependent instructions.

In this way, the processor tries to amortize the resulting latency on the time to
submit all the memory requests, and on the computational part of the execution
complexity of a segment.

The resulting behaviour, generally speaking, is that of a processor which takes
a sequence of instructions, eagerly fetches all the needed operands, concurrently
computes instructions as soon as their operand are deterministically correct and
commits to memory the memory state update resulting from the segment execu-
tion.

The optimal segment length is definitely the result of trade-off dictated by the
interplay of the different factors which determine performance. Branch prediction
accuracy has an impact on the amount of time which is spent in preparing and
executing the wrong instructions. Predictions intuitively become more and more
difficult as longer segments are required. Locality, that is the slowest memory
location accessed in the segment, is another key factor, as longer segments are
in general needed to amortize larger latencies. Finally, the available concurrency
and parallelism needs to be considered. In fact, in case of (almost) independent
instructions, it is desirable to load as many of them as possible, in order to execute
them concurrently. In other cases, it may be more profitable to try to exploit
locality.

Let us now turn our attention to more quantitative aspects of the processor.
The memory design presented in this work provides M locations laid out in d
dimensions, accessible with bandwidth B = O(M (d−1)/d) and latency for address
x described by the non-decreasing function a(x) = x1/d. Worst case latency is
consequently a(M) = M1/d.

In case of a segment of k completely independent instructions, accessing mem-
ory locations with address smaller or equal to M , the time for the memory oper-
ations is T (k,M) = O(x/B(M) + a(M)) = O(a(M)) = O(M1/d). In order not
to be a bottleneck, the processor must be able to deliver the requested operands
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to the computing nodes and execute within the same time bound. Therefore, its
diameter must be O(M1/d). A larger diameter would in fact imply larger delays.

The number k of independent instruction can be pushed up to M , which trans-
lates into a rate of O(M (d−1)/d) instructions per time step, the maximum suported
by a memory of size M . The number of functional units in the processor, and con-
sequenltly its size, must be Ω(M (d−1)/d) to keep the same pace. The same figure
is obtained for the number of ports needed for communicating with memory.

Let us now consider locality of references, that is the case when the accesses
generated by the k instructions are concentrated in the Mk fastest locations. In
this settings, the rate is lower, as it is limited by the bandwidth of the memory
module which hosts location Mk. The time to fetch or commit O(k) values is

indeed T (k,Mk) = O(k/BMk + a(Mk)) = O(M
1/d
k ).

The bound on the number of functional units is sufficient to deal also with this
case, even if k grows up to Mk. There remains, on the other hand, the possibility
that k becomes larger still. This may happen, for example, when many instructions
request the same data from fast memory. In this case the processor

Let us finally take into consideration dependency management and the internal
information flow. Internal processor communication clearly benefits from a low
diameter and a high bisection bandwidth.

3.3.2 Processor Organization

The chosen processor organization is a multidimensional array of P constant size
functional an communication units, laid out in d dimensions, an analogous config-
uration to the memory system. The array, or mesh, has indeed useful properties
which makes it extremely suitable for designing a scalable and extensible ma-
chine. On one hand, multidimensional arrays are bounded degree networks, with
only near neighbor connections, which allows straightforward implementations to
be consistent with physical bounds, as all the connections are of fixed length.
Moreover, extensibility is easily achieved, as the design can be extended with the
addition of nodes and the necessary connections.

On the other hand, if node size is a constant, the diameter of the processor
grows with O(P 1/d), while its bisection bandwidth is O(P (d−1)/d). Intuitively, this
means that the performance of arrays are not compromised by their topology. On
the contrary, there exists a vast literature on efficient algorithms for mesh con-
nected processors. In particular, basic operations such as broadcasting, global
synchronizations, permutations, sorting, routing, can all be implemented in time
O(P 1/d), which matches the fundamental lower bounds due to maximum informa-
tion density and limited signal propagation speed and is therefore optimal for any
processor of size P laid out in d dimensions.
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Let us now focus on the nodes. Each of them is a complete sequential processor,
and features all the necessary hardware for instruction execution. In order to be
implementable with fixed space occupation, though, such circuits have limited
capabilities, which are the ones allowed by fundamental limits on information
speed and density in such fixed space.

Storage availability, number of executed instructions per time step, commu-
nication capabilities in terms of amount of exchanged data are a function of the
chosen node size. It is important to note than, thanks to the bounded degree of
the array topology, each node is still able to send and receive a fixed amount of
data with all its neighbors in O(1) time steps. Moreover, the maximum number
of instructions which can be executed in one time step by the entire processor is
proportional to the processor size P . Indeed, among the processors which share
this design, the only parameters which identify each single member are processor
size P and the number of dimensions of the chosen layout, which are also the only
parameters which influence performance.

One important feature is the possibility of using only one portion of the pro-
cessor as it were a smaller machine. Indeed, as instruction streams are executed
in segments of instructions, there are fixed costs which are implied by the man-
agement of each segment. For example, sending each instruction to its computing
node requires traversing the whole processor, the time complexity for which is in
turn at least proportional to Ω(P 1/d), the diameter of the array. The same argu-
ment also applies to operand acquisition and to writing results back to memory.
In favourable cases, such fixed costs, together with the necessary memory access
latencies, can be efficiently amortized on the execution time of the segment. Any-
way, there are cases for which it is more difficult, if not unfeasible, to amortize such
costs. Hence, a better approach is that of reducing them by resorting to smaller
segments, and trying to exploit locality of reference by concentrating accesses in
the faster modules.

It should be noted that this feature is allowed by a combination of the hier-
archical nature of the memory, the processor topology and the structure of the
connections between memory and processor.

While on the memory it is possible, if the program exhibit locality of references,
to concentrate most of the accesses on the smaller and faster modules, the processor
is able to bound its fixed time costs by activating only the square submesh which
is directly connected to the faster memory modules.

Therefore, the parameters which need to be considered when executing a seg-
ment of instructions are the number of activated nodes in the processor, the largest
memory address involved and the number of dimensions of the layout. Combin-
ing this with the fact that a subset of the machine can behave equivalently to a
smaller machine (i.e. there are no penalty for the larger machine), we have that



42 CHAPTER 3. PARALLEL LIMITING TECHNOLOGY MACHINES

the only parameters to consider with respect to executing a segment are the size
of processor and memory (respectively P and M), and the number of dimensions
of the layout, d.

• considering a 2D memory, a linear array on its side, is enough for that

• however, when we consider also (functional) dependences, it is apparent that
the ratio between the size of the segment and the diameter of the processor
must be increased; the bandwidth among different subsegments

3.3.3 Program Execution Outline

Let us now turn our attention to how the described machines are able to execute
programs. First of all, at a low level, the program can be seen as a bare sequence
of machine words which can be stored in a memory. There can be dedicated
memories, respectively for data and instructions or a logical partition of a unique
memory system. To be executed, anyway, such sequence of words must be accessed
and loaded.

Then, an intermediate step is that of generating a segment of the instruction
stream to submit to the executing nodes of the processor, based on the current
program counter and memory state.

Finally, actual execution takes place which includes accessing memory for
operands and final results, assigning instructions to execution nodes and man-
aging the necessary internal information flow.

The following paragraphs outline such stages in details, referring to further
parts of this work when necessary.

Instruction flow generation Traditional models as the RAM and HMM imple-
ment this step implicitly, as the program is loaded and executed one instruction
at a time, and the translation of one program instruction to the corresponding
instruction stream segment is trivial. In fact, when proceeding instruction by in-
struction, all necessary information is always available, and can be fetched along
with the instruction operand. The approach chosen in this context is to generate
and execute segments of the instruction flow, in order to exploit the concurrency
of accesses and amortize latency on the execution time of the segments. Indeed, it
is of paramount importance to be able to generate a memory access request before
all the previous ones have been answered, so to both increase the use of bandwidth
and keep the memory pipeline full.

One big difference with respect to the sequential case is that in the parallel
case the execution time to amortize on is in general smaller than the number of
instruction themselves.
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In general, the instruction flow depends on both the program and the sequence
of memory states which are generated as each instruction commits its result.
Therefore, it is not in general possible to completely determine the instruction
flow prior to the actual execution. It is possible, however, to approximate the
list of instructions which are to be executed in the near future, and speculatively
generate a limited segment of the instruction flow.

Several techniques and heuristics are already well known and in use, both in
actual processors and in the field of compilers, whose aim is that to foresee future
evolution of the program counter or future memory accesses. Branch prediction is
of paramount importance, as it allows segments not to be constrained by control-
flow instructions.

Additionally, a number of optimizations can take place at this stage. As an
example, instruction order rearrangement or loop optimizations such as nested
loops reordering, loop tiling may be applied to increased the exposed parallelism.
Alternatively, or as a complementary approach, it is possible to augment the in-
struction stream itself with extra directives or annotations, in order to help the
processor in the actual execution.

Besides, even more daring approaches may be taken at this stage, at least for
specific cases. One could for example decide to execute both ramifications of a
branch for a certain length, in order to ensure progress on execution.

All these techniques, however, must be adopted keeping in mind the tradeoff
between their beneficial contribution and their fixed costs, or penalty in case of
failure (e.g. in case of a branch misprediction).

As a side effect, the ease to speculate correctly on instrucion flow generation
becomes a further feature of programs, which adds to characteristics such as lo-
cality of accesses and concurrency. This should not be a surprise, as programming
techniques such as static loop unrolling essentially aim at producing more easily
predictable code.

In this work, it will be assumed that the machine is able to generate segments
of instruction flow of a specified length, from a program and an initial memory
state. The central topic which is addressed is the execution itself of the generated
segment, and in particular the management of internal information flow. If, on
one hand, the latter problem is central to the definition itself of the processor, it
is also necessary to understand which are the desired features of the instruction
flow, that is, to understand which kind of optimization (or augmentation) are the
most sensible to implement performance-wise.

Operands acquisition Once the segment has been submitted to the processor,
it is necessary to fetch the operands of the instructions for them to be able to
produce results.
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It should be noted that one step was intentionally overlooked from segment
generation to operand acquisition. Such step is in fact the instruction placement
on the processor. The reason for this omission is that instruction placement is
a key part of any information flow management strategy. Besides, it remains
possible to describe operands acquisition without specifying the placement. The
only prerequisite is that instructions are placed in the smallest square portion of
the processor which is directly connected to the fastest memory modules.

Once instructions are loaded in the processor, it is possible to generate the
request packets to submit to memory and fetch the operands. Then, request
packets need to be compacted and rearranged, so that the resulting set contains
up to one request per distinct memory location, and that the single requests can
be submitted to the correct modules through the dedicated ports and connections.

Both operations can be implemented on top of permutations and sorting. In
fact, if request packets are sorted with respect to their target memory address,
duplicate requests end up clustered in the processor. It this situation it is then
trivial to just discard the duplicates.

Then, it is sufficient to permute once again the remaining request packets
so that, for each target module, they are placed on a contiguous portion of the
processor such that its bisection badwidth is not smaller than the bandwidth of
the module.

Once request packets have been prepared, they can be submitted to the mem-
ory modules for being processed. Their placement guarantees that processor and
memory ports operate at full capacity. As memory modules extract the requested
values, the packets are populated and sent back to the processor. Here, an opera-
tion specular to the preparation takes place. Indeed, each result must be delivered
to each of its requesters. Once again, instructions can generate one request packet
for each of its operands, which will include information about the instruction it-
self. Sorting such packets together with the received values allows to efficiently
propagate the correct values to the corresponding requesters. A final sorting is
then sufficient to bring back the request packets to the originating instructions.

A slightly more complex case takes place when at least one of the target mod-
ules is not directly connected to the active portion of the processor. In this settings
it is necessary to activate a larger portion of the processor, so to include also the
required ports. This operation has an obvious impact on access time complexity,
as the time to access the additional memory ports must be included in the calcu-
lations. However, it is also straightforward to see that access complexity is still
dominated by the module latency, that is, by the latency of hte slowest accessed lo-
cation. Indeed, in order to take full advantage of smaller segments it is imperative
to bound accesses to the smaller and faster levels, and avoid latency to overgrow
the execution complexity of the segment.
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In case of indirect addressing, the only change is that the procedure must be
executed twice, the first time for retrieving the address of the operand, and the
second for the actual operand value.

The results on operand acquisition can now be summed up in the following
Lemma.

Lemma 18. Consider a segment of n ≤ P instructions, all accessing locations

smaller or equal to Mmax. Operand acquisition requires O
(

max
{
n1/d;M

1/d
max

})
time steps.

Proof. A segment of n instructions need up to O(n) operands to be fetched from
memory. Moreover, the minimum diameter of the active portion of processor
which is necessary to execute it, is O(n1/d). Consequently, all memory modules
with diameter up to O(n1/d) are directly accessible by the active portion of the
processor.

In the case when all accesses are concentrated in these modules, all the requests
can be managed by memory in O(n1/d). Otherwise, when Mmax is hosted by oa

further module, complexity becomes O(M
1/d
max).

Analogously, on the processor side, the preparation of the request packets and
the delivery of results to the requesting instructions is implemented on a fixed
number of permutations. The number of time steps for each permutation is pro-
portional to the diameter of the active portion of the processor, which is O(n1/d)
when only the faster memory modules are accessed. In the case when a slower
memory module is accessed, the diameter is proportional to the module diameter
itself, which is O(Mmax)

1/d.

Remark 2. It is important to point out that for each segment it is suffcient that
up to one request per distinct memory location is made. Indeed, there in no
performance disadvantage from the side of the processor, in eliminating duplicates
and copying the received values. On the other hand, it becomes much easier to
guarantee optimal performance of the memory system.

Execution After operand acquisition, at leas part of the instructions are ready to
be executed. The hardest part at this stage is the management of dependences, and
the consequent information exchange which has to take place within the processor
and between processor and memory.

One particularly relevant feature of SP and SPE, in this settings, is internal
forwarding. Thanks to the ability to propagate computed values to the next in-
structions, both machines are able to manage functional dependences without any
slowdown.
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The implementation of SP and SPE heavily relies on the fact that execution
is strictly sequential, and the actual communication is a propagation in one single
direction of the linear array which implements the processor.

The problem of designing an efficient intra communication strategy becomes
much more complex when parallel execution is the target. Indeed, it is the core of
this work.

The next chapters will in particular show non trivial lower bounds to this
problem, and a series of incrementally improved execution strategies, which end
up matching the lower bounds in the worst case.

Chapter improvements

• Figures

– Mesh

– hb pipelined mem block

– . . .

• caveat about log size of nodes

• explicitly say that with concurrency memory latency can be amortized

• in general, present the area and problems as in p1-billy

• change/add to the reason for having a pipelined memory: asymptotic anal-
ysis needs to take into account that synchronous circuit state changes need
to involve bounded regions of space to be scalable, otherwise circuits gets
slower with size.

• cite touch problem in the reasons for having a pipelined memory

• definition of hb pipelined hierarchical mem

• cite the iRAM and von Neumann bottleneck, computational RAM (start
from wikipedia)

• cite from instruction level parallelism, wikipedia

• explicitly tell the assumption that a system can implement a memory with
size proportional to its volume; see ”Bekenstein bound” and ”limits to com-
putation” in wikipedia
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• cite ”Routing on meshes in optimum time and with really small queues” by
Chlebus, B.S. and Sibeyn, J.F.

• cite HMM
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Chapter 4

Lower Bounds on Direct-Flow
Programs Execution

This Chapter aims at highlighting the factors which constrain the achievable per-
formance of parallel limiting technology machines.

First, a stripped-down version of the machines which are discussed in this work
is presented. For the sake of clarity, only their essential features are considered. In
particular, a two-dimensional layout is considered, with size equal to the number
of instructions which are to be executed. It should be noted that the hypothesis
on the size is allowes by the possibility of selecting a smaller part of the processor
for execution, while the restriction on the layout dimensionality does not curb in
any way the reach of the results. It is indeed sufficient to adapt the the diameter
of the processor based on its layout.

Then, a class of programs is recalled, for which optimal sequential limiting
technology machines are already known (see [4]).

It is shown that in the switch to a parallel settings, many factors, which were
hidden by the sequential constant execution rate, have distinct contributes to the
execution complexity.

In particular, besides processor-memory interaction and intra-processor com-
munication, the topology of the computational directed acyclic graph induced by
the dependences of a program is the worst case dominating complexity factor, even
in the case when all addresses are known in advance and no further intermediate
memory accesses are required during execution itself.

Since these constraints arise from the necessary intra processor communication,
regardless of any memory organization there may be, latency hiding is proved to
be in general infeasible.

49
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4.1 Machine Model and Direct-flow Programs

4.1.1 Direct-flow programs and related concepts

A dynamic instruction stream I = I1, . . . , IN is the sequence of instructions which
are computed by the processor when program P is executed on a particular input
(or initial memory state).

The pattern of memory accesses issued by the instructions leads to dependences
whenever the information produced by an instruction is used by a later one. Such
dependences can be conveniently represented by means of a computation directed
acyclic graph, or CDAG G.

If P does not contain any control-flow instruction, and only literal or direct
addressing is used in specifying instruction operands, then both P and its (single)
I are direct-flow.

In this case, dependences arise only when the output of an instruction is one
of the operands of a later instruction. The case when an instruction produces the
address of a later operand cannot take place in a direct-flow program, because of
the lack of indirect addressing.

In the context of sequential limiting technology machines, it has been proved
in [4] that direct-flow programs can be executed in time

T (n,Mmax) = O(n+ a(Mmax))

proportional to the sum of the lenght n of the instruction stream and the single
largest memory latency a(Mmax), which is optimal. In fact, it is possible to manage
all dependences within the processor, thus avoiding a number of memory reads.

In the context of parallel machines, on the other hand, the importance of
direct-flow programs derives from the fact that their instruction streams and the
associated CDAGs are static, and do not depend on the input/initial memory
state. Therefore, there is more room for optimizations when orchestrating the
communications needed to satisfy dependences. Conversely, lower bounds on this
restricted, somewhat easier, class hold in general and, as will be shown in this
Chapter, are not trivial.

4.1.2 Parallel limiting technology machines

The family of limiting technology machines which is considered in this work are
based on an interconnection of basic modules. For each machine, processor and
memory are laid out on distinct, non-overlapping areas, which communicate by
means of a bus.

A module is an atomic processing or memory unit with fixed capacity. For each
clock cycle, the amount of data exchanged with neighbours, its internal memory
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size, and the number of computed instructions are constant throughout the whole
family of machines. These constraints guarantee that a single module requires only
a fixed area to be laid out on.

Since scalability is pursued via the addition of modules, a crucial part of the
machine design is the choice of module interconnection topology. For its semplic-
ity, scalability and regularity properties, a square, two-dimensional mesh is the
processor layout of choice. The number of modules in the processor is n. The
analysis in [5], in particular, shows that a mesh is the best option with regard to
scalable limiting technology machines.

Processor-memory bandwidth is proportional to the external perimeter of the
mesh, and indicates the number of requests and replies that can be exchanged for
each clock cicle. Furthermore, each single memory location is assigned an integer
x such that the non-decreasing function a(x) represents its access time.

The next Chapters provide a more detailed discussion on parallel limiting tech-
nology machines.

4.2 A general lower bound

Consider the execution of instruction stream I, of length n, on the n-node mesh
processor. Let us also assume that I is direct-flow, that is, all its instructions are
of the data-processing type and use either direct or literal addressing modes for
their operands.

Interaction with memory does constrain performance in at least two ways. On
one side, bandwidth B is limited; on the other, accesss latency a(·) grows with the
size of the needed data. Letting nacc be the number of memory accesses made by
I, and Mmax the farthest and slowest accessed location, the time complexity T is
at least

T (nacc,Mmax) = Ω(nacc/B + a(Mmax)). (4.1)

As of the processor itself, it is able to execute up to n instructions per cycle,
one for each of its modules. In principle, it could execute I in O(1) time. However,
the time to initialize all the modules is at least proportional to the diameter of the
mesh:

T (n) = Ω(
√
n). (4.2)

Besides, available parallelism is in general scarse on the instruction stream side,
due to dependences. Letting pmax be the maximum available parallelism of I, then
T (n, pmax) = Ω(n/pmax). The same line of reasoning leads to a somewhat stronger
result. Consider indeed G, the CDAG associated with I. The length of its critical
path, L, that is the longest chain of consecutive functional dependences, is the
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minimum number of time steps which are necessary to complete I. Therefore, one
stricter bound is given by p̄ = n/L, the average parallelism of I:

T (n, L) = Ω(L) = Ω(n/p̄). (4.3)

The combined effect of processor-memory interaction, intra-processor commu-
nication and the available parallelism of the instruction flow leads to the following
lower bound:

T (n, nacc,Mmax, L) = Ω(nacc/B + a(Mmax) +
√
n+ L). (4.4)

Taking into account the fact that B can grow up to O(
√
n) the bound becomes:

T (n, nacc,Mmax, L) = Ω(nacc/
√
n+ a(Mmax) +

√
n+ L). (4.5)

A further factor must be taken into account, though. Indeed, the interaction of
the topologies of both the G and the mesh processor, and the limited capabilities
of each module can easily result in a greater bound than both

√
n and L.

In the following Section two classes of CDAGs will be defined and analyzed,
for which this is the dominant term of the execution complexity.

4.2.1 Comparison with the sequential case

In a sequential processor, instruction execution rate is constant. As a consequence,
the length of I is always able to hide the effect of the limited bandwidth (together
with the number of accesses), the lenght of the critical path, and the latency due
to the processor diameter.

Besides, in a parallel machine, memory latency is more likely to dominate the
overall complexity than a sequential machine, at least if memory access function
and processor size are the same.

4.3 Topology-based Lower Bounds

For large classes of CDAGs, execution time on the mesh processor is significantly
bigger than the lower bound of Equation 4.5, due to their topology. Two of
such classes are presented in this Section, which are based on the binary tree
and butterfly graphs. The provided analysis results in constructive proofs of such
tighter lower bounds.
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4.3.1 Tree CDAGs

The CDAGs which are presented next are based on the binary tree topology. The
lower bound is first shown to hold on particular instances of such CDAGs. Then,
by means of a simple yet effective technique, the result is extended to a wider class
of CDAGs, with almost arbitrary n/L ratio.

Let us consider CDAG GT , with 2k− 1 instructions, and edges arranged like a
binary tree network. Such CDAG will be referred to as tree CDAG.

Definition 13. A tree CDAG is a CDAG whose topology is that of a binary tree.
Dependences induce a partition on GT into log k+ 1 distinct levels, where k is the
number of instructions in level 0. In general, level ` contains k/2` instructions.

Lemma 19. Computing a tree CDAG GT of 2k− 1 instructions on a square mesh
requires T (k) = Ω(

√
k) time.

Proof. Consider instruction s in level `. Its direct and indirect dependences require
an area of

∑`
i=1 2i = 21+` − 2 nodes on the mesh, with diameter at least Ω(2`/2).

Since data has to flow from any of these dependences to s before s can execute,
the time to compute GT up to s is at least proportional to the diameter of the area
occupied by its dependences, that is Ω(2`/2).

Finally, when s is the root of GT , ` = log k+ 1 and the bound becomes Ω(
√
k).

One needs to note that the proof holds also if we allow recomputation on the
mesh, because of the constant load constraint.

The above result deals with CDAGs which exhibit a fixed n/L ratio: n/ log n.
It is possible, though, to concatenate several tree CDAGs, in such a way that the
lower bound at Lemma 19 can be extended to the resulting CDAG in an almost
straighforward way. Let us define the repeated tree CDAG.

Definition 14. A repeated tree CDAG GRT of n = h(2k − 1) instructions and
with L = h(log k + 1) is a CDAG whose topology is that of h trees, such that
any instruction in the initial level of tree j depends on the root instruction of tree
j − 1.

One key feature of tree CDAGs and repeated tree CDAGs is that their execution
is heavily constrainted, and basically the only way to proceed is level by level. In
other word, there is a limited number of ways to topologically sort them.

Lemma 20. Consider the task of computing repeated tree CDAG GRT , with n
instructions and functional dependence depth L, on a square mesh. Its time com-
plexity is bounded by

T (n, L) = Ω

(√
nL

log n/L

)
. (4.6)
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Proof. Since for each tree in GRT but the first, no instruction is ready before the
previous tree has completely executed, it is possible to extend the bound of Lemma
(19) by multiplying it by the number of trees h.

Then, since n = h(2k − 1) and L = h(log k + 1), we have that

T (n, L) = Ω(h
√
k) = Ω

(√
nL

log n/L

)
which concludes the proof1.

Chapter 5 presents an execution strategy for the mesh processor, which is able
to execute each level of a CDAG in time proportional to the diameter of the area
which hosts it. The resulting complexity is consequently optimal with regard to
repeated tree CDAGs. However, it will be shown next that optimality does not
hold in general.

4.3.2 Butterfly-like CDAGs

The same technique used for tree CDAGs can be employed with another class of
programs.

Let us consider CDAG GB, with k(log k + 1) instructions, and edges arranged
like a butterfly network. Such CDAG will be referred to as butterfly CDAG.

Definition 15. A butterfly CDAG is a CDAG whose topology is that of a butterfly
network.

GB is composed of 1 + log k levels of k instructions each. Computation of one
level takes O(1), provided one has enough processors. The most time-consuming
activity is communication from one level to the next, that is, to satisfy depen-
dences.

The following lemma shows how the flow of information in GB and the topology
of the mesh can constrain the time complexity of GB.

Lemma 21. Computing a butterfly CDAG GB of k(log k + 1) instructions on a
square mesh requires T (k) = Ω(

√
k) time steps.

Proof. Consider node x in level log k + 1. In order to its input to be ready, 2
instructions need to be calculated in level log k, 22 in level log k − 1 and so on.
Therefore

∑log k
j=1 2j = Θ(k) instructions have to compute and send their output to

x.
Those Θ(k) instructions need Ω(k) area (number of nodes) with a Ω(

√
k) di-

ameter. Hence, since information has to propagate from any of those nodes to x,
the time to compute GB is Ω(

√
k).

1The formula has a discontinuity in L = n. The donominator should be log n/L+ 1.
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It is possible to extend the result of Lemma 22 to a wider class of CDAGs.
Again, the class is obtained by concatenating butterfly CDAGs.

Definition 16. A repeated butterfly CDAG GRB of k(h log k+ 1) instructions is a
CDAG whose topology is that of h butterflies, such that the initial level of butterfly
j is the last of butterfly j − 1.

Just like tree–CDAGs, butterfly–CDAGs are heavily constrained, with little
freedom in instruction execution order. Lemma 22 formalizes the property for
butterfly CDAGs.

Lemma 22. Consider repeated butterfly CDAG GRB. If instruction s in level `
of GRB is ready, and ` > log k, then at least k(`− log k) instructions have already
executed.

Consider level ` ≤ log k of GRB. Then, if αk instructions of level `, α ∈ O(1),
are ready, Ω(αk`) = Ω(k`) instructions have already executed.

Proof. All direct and indirect dependences of instruction s of level ` > log k are

`−log k∑
i=0

k +

log k−1∑
j=0

2j

that is Ω(k(`− log k)).
Consider now αk instructions in level ` ≤ log k. Their direct dependecies are

0 if ` = 0, Ω(αk) otherwise. Hence the sum of direct and undirect dependences is
Ω(αk`) = Ω(k`).

Lemma 22 states that execution must proceed essentially level by level. For
example, let instruction s be in level ` = 3 log k. Then all instructions in the first
two butterflies must execute before s is ready.

Lemma 23. Consider the task of computing repeated butterfly CDAG GRB of n
instructions on a square mesh. Its time complexity is bounded by

T (n, L) = Ω

( √
nL

log n/L

)
. (4.7)

Proof. Lemma 22 implies that the complexity of GRB is at least the sum of the
complexities of its butterflies. Since n = kL and L = h log k + 1 we have that

T (n, L) = Ω(h
√
k) = Ω

( √
nL

log n/L

)
which concludes the proof.
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Matching the lower bound The general execution strategy of Chapter 5 is not
optimal for repeated butterfly CDAGs. In particular, it does not take advantage
from the locality offered by the recursive nature of the butterfly topology. The
resulting complexity is T = O(

√
nL).

However, the lower bound of Lemma 23 cannot be matched even by an ad-
hoc execution strategy. Indeed, as execution proceeds, the area for each smaller
butterfly would need to have a low diameter (the square root of its size).

The bandwidth which is required to satisfy dependences in this settings would
imply the occupation of a large area of the mesh, which in turn would constrain
performance, due to the suboptimal overall diameter to be traversed.

More precisely, the bandwidth needed at level i for a k-wide butterfly CDAG

is B(i, k) = Ω(2i
√
k/2i) = Ω(

√
2
i√
k). The area A on the mesh, which offers such

bandwidth while minimizing its diameter dA, is A(i, k) = Ω(
√

2
i
k). As a result, the

time complexity of executing a butterfly CDAG up to level i is T (i, k) = Ω(dA) =

Ω(
√
A) = Ω(

√
2
i√
k). Considering the last level (i = log k), we have T (k) = Ω(k).

An ad-hoc execution strategy for the butterfly CDAG Even if the lower
bound of Lemma 23 is not achievable, it is possible to improve the O(

√
nL) com-

plexity of the general execution strategy. The key idea relies on a suitable arrange-
ment of the butterfly CDAG on the mesh and on separately iterating on smaller
subgraphs in a divide and conquer fashion.

Let us consider, for the sake of simplicity, one infinite mesh. The whole k-wide
butterfly is laid out on a

√
k log k ×

√
k log k square.

The first level occupies a
√
k log k ×

√
k/ log k rectangle at one extremity of

the stripe. The second level occupies the adjacent rectangle of the same size. The
rest of the stripe is subsequently divided into four equal quadrants, each of size√
k log k/2× (

√
k log k − 2

√
k/ log k)/2.

Then, the layout is recursively applied on the smaller quadrants, as, from the
third level on, 4 distinct connected components, which are in turn butterflies, can
be isolated.

Actual execution involves two consecutive levels per step. At the end of each
step, the output of the second level is sent to each of the next smaller quadrants.

Lemma 24. A k-wide butterfly CDAG can be executed on a mesh with time com-
plexity

T (k) = O(
√
k log k).

Proof. The first execution step completes levels 0 and 1, by means of simple data
movements on a

√
k log k × 2

√
k/ log k area. The time complexity for these oper-

ations is proportional to the diameter of the area, which is
√
k log k.
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Sending the resulting data to the following level can also be implemented via
simple data movements. In this case, the diameter equals the largest dimension of
the next smaller quadrants, thus yielding a complexity of

√
k log k.

In general, step j, which completes levels 2j and 2j+1, takesO(
√
k/4j log k/4j),

that is O(
√
k log k/2j). Summing all the steps gives

T (k) = O(
√
k log k).

This ad-hoc execution strategy can be easily extended to execute repeated
butterfly CDAGs. The resulting complexity is T (h, k) = O(h

√
k log k), which can

be rewritten as

T (n, L) = O

(√
nL

log n/L

)
.

As a consequence, there remains a
√

log n/L gap between the upper and lower
bounds. A faster execution strategy does not seem to be easily achievable, due
to the limits of the mesh topologies and the fixed capabilities of the modules. It
is also not clear if further refinement of bandwidth and diameter arguments may
yield stricter lower bounds.



58CHAPTER 4. LOWER BOUNDS ONDIRECT-FLOWPROGRAMS EXECUTION



Chapter 5

Upper Bounds - Execution
Strategies

This Chapter presents multiple execution strategies for direct-flow segments of
instructions. In particular, the problem which is tackled is to implement an effi-
cient intra-processor communication, so to let functional dependences be resolved
without accessing memory.

After defining a quite powerful data movement primitive, a number of execution
strategies are then presented and evaluated. It is shown, in particular, that extra
information, which is a kind of topological partitioning of a segment of instruction,
based on its dependences, enables the definition of strategies which can ultimately
match the lower bound on intra-processor communication obtained in Chapter 4.

The storage requirements for such extra information, finally, are compatible
with the fixed storage availability of each node of the processor.

In order to ease the presentation, only two-dimensional layouts of the processor
are considered. Moreover, the processor is assumed to be composed of n nodes,
where n is also the number of instructions of the direct-flow segment to execute.

5.1 Avatar Operation

This Section introduces a communication operation on the mesh, which is used
throughout the rest of the work. Consider instruction i in instruction stream I.
Its essential features with regard to this work are its position within I and its
operands. Its position, which will be referred to as idi can be used as an identifier.
Its input operands, R1i and R2i, and its output operand Wi specify their role
within i, a memory address and an addressing mode. A useful notion is that of
instruction avatars.

Definition 17. Instruction i of instruction stream instream can be decomposed

59



60 CHAPTER 5. UPPER BOUNDS - EXECUTION STRATEGIES

into 3 avatars, each of which is identified by idi (the position of i within I) and
one operand (e.g. R2i).

Note that for each avatar it is possible to define a univocal position within I:
it is the concatenation of idi and the operand position.

The main purpose of an avatar is to represent an instruction with respect to
its interactions with memory. An avatar represents what makes an instruction
the endpoint of an edge of the CDAG. Moreover, by grouping avatars of different
instructions by their memory address, it is possible to identify functional depen-
dences, as for each memory location, a list of all the access is obtained. Let us
define a data movement schema on a mesh which exploits avatars.

Definition 18. An avatar operation is a mesh data movement schema consisting
in the following:

1. decompose each instruction into its avatars;

2. sort by memory location, then avatar position;

3. communicate;

4. sort by idi;

5. piece avatars together into the original instructions.

The time complexity of an avatar operation, with the exception of the com-
munication step, is T (n) = O(

√
n) on a square mesh. In fact, sorting can be

implemented in T (n) = O(
√
n) time [16], while instruction decomposition and

recomposition are embarassingly parallel operations, which take constant time.
It must be noted, though, that one key aspect of sorting is the layout of the

elements on the mesh, as an inappropriate choice can easily hinder communication
complexity. In particular, it is important to note that the complexity of sorting
does not depend on the desired layout (being it row-major, snake, etc.). On the
contrary, the choice of the layout is one of the key parameters which determine
the complexity of the communication phase.

As for the communication step, its implementation obviously depends on the
application of the avatar operation. Let us consider, for example, the task of build-
ing the CDAG of an instruction stream. The input is then instruction stream itself;
in the output every instruction is augmented, or tagged, with its dependences, i.e.
the ids of the instructions which produce its operands. It should be noted that
only up to two extra instruction ids are needed for each node in the processor, so
the extra storage capacity is consistent with the hypothesis on fixed node size.

The following list defines a communication step, which is able to fulfill such
task.
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1. Detect and isolate submeshes with respect to their avatar’s referred memory
location.

2. Let each write avatar propagate its idi to the following avatars, that are
neighbour avatars which refer to the same memory address, and whose idk >
idi.

3. Let each read avatar receive id information, keep the maximum, and in case
of update, propagate the new value to the following avatars; write avatars
do not propagate any message they receive.

It must be noted that, after communication takes place, each read avatar holds
the id of the most recent write avatar which is relevant to its memory address.
Therefore, once instructions are reconstructed, they hold references to their de-
pendences.

Let us consider the communication step time complexity TCS. As long as
avatars with the same memory address occupy a contiguous set of nodes in the
mesh, submesh detection can be implemented via a completely distributed test
among directly connected neighbours. In fact, the purpose of this substep is to
determine which neighbours are relevant for propagation.

As for the propagation itself, one must first note its iterative structure. At each
iteration each avatar receives from (and sends to) its directly attached neighbours
a constant number of messages. Moreover, since avatars are sorted with respect to
memory location, messages do flow in one direction only. Consequently, the time
complexity is no more than the diameter of the submesh, which is T (n) = O(

√
n)

in the worst case.
Finally, this data movement schema can be easily extended to a d-dimensional

meshes with T (n) = O(n1/d) complexity. Indeed, both the sorting and the com-
munication phases have complexity proportional to the diameter of the processor.

5.2 An Avatar-based Execution Strategy

This Section shows how the avatar data-movement operation can be adopted to
implement the communication, within the processor, which is necessary to fulfill
the functional dependences of a segment of instruction stream.

The basic idea is quite simple: it consists in an initialization phase, and the
repeated application of the avatar operation. During initialization, the segment of
instructions is loaded into the processor and the initial memory state is fetched,
while the avatar operations, which are interleaved with a computing phase, imple-
ment the actual communication. In the computing phase, instructions are executed
if they are ready, that is, when they have received all the needed operands. Each
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application of the avatar operation and the subsequent execution will be referred
to as round.

The readiness test can be implemented by means of a preeliminary avatar
operations to detect dependences. Then, whenever a read-avatar is given a new
value, it can test whether the originating instruction is the correct one. Instructions
which get their operands directly from memory are ready from the start, while the
rest become ready to execute as soon as the instructions they depend on complete
and communicate their results.

Finally, when all operations have produced their results, the set of write avatars
is created, and all the write requests are discarded, with the exception of the most
recent for each location. Such selected values are then committed to memory.

Let us define the avatar-based execution strategy as the execution strategy
defined by the following pseudocode:

1. load segment

2. detect dependences

3. fetch initial memory state

4. while(not completed)

(a) ready instructions execute

(b) global avatar operation

(c) instructions test for readiness

5. filter write avatars

6. commit filtered values to memory

The correctness of the strategy is a direct consequence of the nature of the
avatar operation itself, and consists in the equivalency with respect to a sequential
execution of the same instruction stream segment. It is in particular possible to
give an inductive proof.

Lemma 25. The avatar-based execution strategy can correctly execute a direct-
flow segment of an instruction stream, producing the same final memory state as
a sequential execution of the same segment.

Proof. Let us consider the instructions, within the provided segment, which receive
their operands directly from the initial memory state. These, in other words, are
the instructions which are not constrained by dependences, and are therefore ready
just after the initialization phase. Hence, they execute in the first round. With



5.2. AN AVATAR-BASED EXECUTION STRATEGY 63

the successive avatar operation, all the instructions which only depend on the ones
which have already executed receive their correct operands, and become ready. The
operands are correct because in a sequential execution of the same instructions,
the same values would be produced.

Let us assume that the instructions which have executed up to round i−1 have
received the correct operands. Consider now the instructions which are ready at
round i. Since they all receive the correct operands from the previous rounds, they
compute the same results as a sequential execution.

FInally, since for each instruction, operands are either values from the initial
memory state or results from previous instructions, at each round at least some of
the instructions complete, unless the segment has already been entirely executed.

It should be noted that, save for fetching the initial memory state, no inter-
mediate memory access is needed, because each instructions receive its operands
either from the initial memory state, or from the results of previous instructions,
which are delivered exclusively through communication within the processor itself.

Let us now turn our attention to the time complexity of this strategy. With
a segment of n instructions, the complexity of each avatar operation is T (n) =
O(
√
n) time steps. Also processor-memory interactions, that is, the initial operand

fetch and the final commit, do require T (n) = O(
√
n) time steps each. The only

remaining variable is then the number of rounds which are performed to execute
n instructions.

Lemma 26. The avatar based execution strategy can execute a direct-flow segment
of n instructions in

T (n, L) = O(L
√
n)

time steps, where L is the length of the longest chain of functional dependences
of the segment, or equivalently, the length of the critical path of the corresponding
CDAG.

Proof. Avatar operations and memory interactions do require T (n) = O(
√
n) each.

Let us consider the instructions which belong to the longest chain of functional
dependences. Then, at each round, one instruction of such chain is executed.
Indeed, the first instruction, the only one which is not affected by dependences,
executes in the first round. Moreover, the next instruction receives its operands in
the same round. Indeed, if one operand would not be available, then there would
exist a longer chain of dependences, which would contradict the hypothesis.

In general, by the same argument, for all instructions in the chain, the last
operand to become available is produced by the immediately preceeding instruction
in the chain.
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As avatar operations let each write avatar communicate with the direct depen-
dences, at each round execution completes a new instruction in the chain.

Finally, since the legth of the longest chain of functional dependences is L, the
overall complexity is

T (n, L) = O(L
√
n)

time steps.

5.2.1 Limits of the avatar-based execution strategy

The avatar-based execution strategy is able to correctly execute a direct-flow seg-
ment of instructions, and manages to avoid any memory access (with its inherent
latencies), save a first one for initialization and a final one to commit the computed
results.

However, such mechanism is quite inefficient whenever the segment is too
constrained by dependences, and there is not enough parallelism to exploit. In-
deed, the time complexity is superlinear in the number of instructions n whenever
L >

√
n. In other words, it can be slower than the sequential computation itself,

as both SP and SPE (see [4]) can execute direct-flow segments of instructions in
linear time if memory latency is not considered.

The inefficiency of this strategy derives from several factors. The most im-
portant is the fact that avatar operations always involve the complete processor,
and are not tailored to the number of instructions which are able to compute at a
certain round.

Secondly, the fact that I is in topological order is not exploited. More precisely,
the level of instruction i depends only on instructions which preceeds i in the
instruction stream.

Finally, no particular layout in the mesh is exploited. If on one hand, this allows
the strategy to be quite flexible, and to execute correctly with any instruction
layout, on the other hand it strongly hints at the fact that there is room for
improvements.

While it is possible to combine the avatar-based strategy with sequential phases
in order to avoid superlinear running times, there are other approaches which use
extra information (to be introduced next) on the instruction stream to guarantee
much better perfirmances.

5.3 Schedules

In order to efficienlty exploit the instruction level parallelism of a sequential in-
struction stream I, it is convenient to identify a topological partition of I into
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subsets of independent instructions. Such partition will be referred to as a sched-
ule, and its subsets as levels. The importance of this concept is due to the fact that
a schedule allows to encode information about available parallelism in a “ready-to-
use” way. In fact, once their inputs are ready, instructions belonging to the same
level can be executed concurrently. Moreover, communication can be structured so
that it only involves consecutive levels. intuitively, each level can propagate new
compute values to the next, so that in the end all the instructions are correctly
notified. In the rest of this document, each level will be identified by a unique
natural number, and each of its instruction will be tagged with such id. Such
information only adds an extra fixed storage requirement per node, which is still
compatible with the hypothesis of fixed node size.

Let us then formally define a schedule.

Definition 19. Given program P , a schedule is defined as a function λ(·) which
assigns to each instruction i a natural number, or level index, λ(i) = `i, such that
for any functional dependence i→ j, then λ(i) < λ(j).

The similarity with the concept of topological sort is apparent from the defini-
tion, as each dependence i→ j is in fact an edge in the correspondent CDAG. The
main difference between the two concepts is that a schedule is intentionally looser,
to highlight the degree of freedom in executing a sequential instruction stream
without changing its semantics, and generally corresponds to more than one linear
ordering of the instruction, which can be obtained permuting the instructions of
the same level. Also, the definition implies the existence of a lower bound on the
number of level indexes, which is L, the lenght of the longest chain of functional
dependences, or equivalently, the critical path in the CDAG.

Without loss of generality, it is also assumed that there are no gaps in level
numbering, and that the first level index is 0.

Meaningful parameters which characterize a schedule λ are the number of levels
Lλ that are induced on a n instruction program, and their sizes n`, with

∑
` n` = n.

5.4 Basic Execution Strategy

In the context of nodes of fixed capabilities and near neighbor connections, the ex-
ploitation of concurrency, and therefore program execution complexity, are mainly
constrained by the need to fulfill dependences, that is, the need to transport data
from producers to consumers. One key factor in communication efficiency is the
distance between (the nodes which map) dependent instructions. Intuitively, a
greater distance directly causes a larger communication time. Moreover, it in-
creases congestion, due to the greater overlap induced by longer paths. These,
in fact, need to be mapped to the same wires and nodes. Clearly, though, in a
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bounded degree network of processors, such minimization is hard to be met for all
dependences, at least in the general case.

The method that outlined in this Section aims at the efficient execution of a
generic sequential stream of instructions in the form of a CDAG, while avoiding
being unnecessarily complicated. In particular, it aims at minimizing distances
among dependent instructions by grouping communications and bounding each
group to a small submesh. This is accomplished in the hypothesis that a schedule
λ is known in advance and instructions are tagged accordingly.

In order to focus on the basic ideas of this solution, it is also assumed that,
being n both the number of nodes in the mesh and the number of instructions
to be executed, and Lλ the number of levels induced by λ, each level has n/Lλ
instructions, n/Lλ being a power of 4. In the rest of the Chapter, these constraints
are gradually lifted to reach a more general result.

With the proposed method, execution proceeds level by level. All instructions
in level ` complete before any instruction in level ` + 1 starts1. Each time a level
completes, its output, in the form of a set of write avatars, needs to be propagated
to the following levels/instructions via efficient level-to-level communication. This
way, dependences which involve consecutive levels are given the highest priority,
while “looser” ones are deferred.

From the point of view of level `, the whole process consists in fetching the
relevant part of the memory state, i.e. the content of the memory locations referred
to by its instructions, at the beginning of the whole execution, and iteratively
updating it with the outputs of its preceeding levels, until all the dependences
of level ` are satisfied. The output of level `, that is, the output avatars of its
instructions, is called memory state update, and referred to as δM`.

The generation of one memory state update and its subsequent propagation
is called a round. The whole execution is composed of Lλ rounds (one for each
memory state update), which overlap in time. It is important to note that while
different rounds may overlap in time, each instruction is involved in at most one
round at a time.

The main goal is to provide guarantees on worst case communication complex-
ity.

The choice of optimizing level-to-level communication, and not every single
point-to-point communication goes in this direction. It is, in fact, a more general
and simple approach, and, as it will be shown, allows to almost match communi-
cation time complexity lower bounds.

It is possible to see, indeed, that the challenging aspect of efficient level-to-
level communication is its contrasting requirements. It suffices to consider that
the running time T is subject to the following:

1Note that this interpretation of the schedule, may be stricter than necessary.



5.4. BASIC EXECUTION STRATEGY 67

• T ≥ data/bandwidth, T is inversely proportional to bandwidth;

• T ≥ distance, T is at least directly proportional to the distance to be trav-
elled (speed = 1 node per time step).

To reflect these constraints, each level-to-level communication is broken down
into two steps, which have conflicting requirements: (i) bulk data transfer and
(ii) rearrangement of the received data to match instructions inputs. In fact,
while data transfers benefit from an increased bandwidth, rearrangement steps are
more efficient if data is not scattered, and distances are bound. Besides, a further
sensible requirement is that the time complexity of a level to level communication
is independent from the number of levels of the schedule.

The choice for the layout of the instructions on the mesh reflects the need to
mediate among such contrasting requirements.

One way to strike a balance is to place the instructions of each level on a
distinct, non overlapping, square submesh, and to arrange the levels according
to a snake layout, sorted by level index, such that each pair of consecutive levels
share an edge. Within each submesh, instructions can be arranged in any order, as
besides possibly sharing inputs, instructions within the same level are independent
one from each other. We will refer to this layout as the thick snake layout.

One should note that, with such layout, the bandwidth between consecutive
levels and the maximum distance between any two nodes of consecutive levels are
balanced. In fact, on one hand, the bandwidth is proportional to the length of
the border that they share, which is

√
n/Lλ; on the other hand, the distance

between any two nodes is bound by the diameter of the area occupied by the
two consecutive levels, O(

√
n/Lλ). Therefore, if two instructions are adjacent on

a critical path, and are assigned to consecutive levels, the distance between the
nodes they are mapped to is O(

√
n/Lλ). Finally, the same conditions hold for

every pair of consecutive levels.
The method itself is summarized next. An initialization phase fetches from

memory all the content of the memory locations needed by the program, assigns
them to the relevant instructions, and sorts the instructions according to the thick–
snake layout.

Then, the sequence of rounds takes place. As rounds overlap in time, it must
be remarked that there is no such thing as a globally synchronized, mesh-wide
operation. At the same instant, distinct rounds cohexist in different parts of the
mesh. Analogously, the same round is in-flight in different instants, involving
different levels. From the point of view of level `, across the sequence of rounds,
it is possible to distinguish three states for generic level `:

waiting when the relevant memory state may still be updated by other levels
with lower level index;
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ready when all the memory state updates from the levels which ` depends on
have been read by `;

complete when the instructions have been executed, and the relative memory
state update forwarded.

Let us recall that we are restricting our scope to the case when only one level is
ready in each round. Within round t, only level ` = t can deterministically (that is,
without speculating on some of the operands) execute and produce memory state
update δM` = δMt. If ` = t = Lλ−1, the memory state update is then committed
to memory. In the alternative case, δMt is directly sent to level t + 1, which is
still in waiting state. Next, δMt is propagated to the remaining waiting levels
` > t + 1. Each waiting level, after propagating, updates their current relevant
memory state with δM`, and tests itself for readiness. Level Lλ−1, finally, commits
δMt to memory.

Once the ready level has triggered the propagation, it becomes complete, and
ceases any activity until the next instruction stream segment is provided.

Level ` = t+ 1, after propagating δMt, becomes ready, and starts round t+ 1.

The following high-level pseudocode formalizes this execution policy.

1. while not complete

(a) if (waiting)

i. receive δM`

ii. send δM`

iii. rearrange δM`

iv. test for readiness and possibly set state

(b) if (ready)

i. execute and generate δM`

ii. send δM`

iii. set level state to complete

The same actions are performed by almost every level. The only exception is
that level Lλ− 1, instead of propagating memory state updates, commits them to
memory. Level 0, moreover, is ready just after initialization.

The following paragraphs analyze the single steps of the pseudocode and pro-
vide possible implementations.
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Send/Receive - Bulk Transfer The send/receive mechanism between consec-
utive levels can be seen as a bulk transfer involving two adjacent submeshes. It
can be implemented in a systolic fashion. Each node, as soon as it is ready to send
an avatar, tries to contact its neighbor. When the latter is ready, transmission can
take place. A number of details need to be settled though. Transmission direction,
for example, can be set during initialization, as it is not modified during the whole
process. Once all the instructions are sorted according to the thick-snake layout,
each node can probe its neighbours for their intruction’s level index, and detect
the ones which border on their subsequent level. It is then sufficient to propagate
such information to the rest of the mesh.

Besides setting the right direction, there needs to be a mechanism for stopping
the propagation, a way to detect that the bulk transfer has reached its destination.
This can be implemented via a counter (the number of nodes to be traversed can
be easily computed during initialization), or by explicitly labelling each avatar
with a recipient.

A similar approach can be adopted for memory commits. Indeed, level Lλ − 1
is responsible of committing all the δM`s. The bandwidth between the submesh
hosting level Lλ−1 and memory is O(

√
n/Lλ). In the assumption that the overall

processor-memory bandwidth is proportional to
√
n, the memory is able to accept

the δM`s whithout slowing the processor down.

It should be noted, finally, that each δM` contains up to one write avatar per
memory location, and that its avatars can be sorted to further accomodate memory
needs.

Data Rearrangement After initialization, all the input avatars in the instruc-
tion stream are populated with provisional, speculative values, which refer to initial
memory state M0. Therefore, throughout execution, such prefetched values may
need to be updated.

With a bulk transfer it is possible to efficiently propagate memory state updates
to all the waiting levels; data rearrangement, on the other hand, is the subsequent
process of actually updating the data held by the input avatars.

One way to implement it is by means of an avatar operation involving the
input avatars of current level ` and the memory state update δMi. In particular,
after sorting all these avatars with respect to their memory location and the snake
layout, the output avatars can forward their content to the input avatars with the
same memory location. The snake layout implies that avatars which refer to the
same memory location occupy a contiguous submesh, which gives guarantees on
both correctness and running time.

Finally, the memory state update can be discarded, and the input avatars can
be meld back into instructions.
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Readiness test In order to execute deterministically, instructions have to be
aware of when the operands they hold are consistent with the correct memory
state.

If levels are forced to execute sequentially, it is sufficient that, after executing,
each level notifies the next, which consequently becomes ready.

This is an artificial constraint, though. In fact, depending on the schedule, a
level may be ready for execution before some of its predecessors have completed.

During initialization it is possible to reconstruct the topology of the CDAG, so
that each instruction gets information (an id) about the instructions it depends
on. Consequently, each time the operands are updated in a rearrangement, it is
possible to test if the new data originates from the right instructions. In fact all
avatars include references to their instructions. Suppose, then, that each node
sets a binary flag to 1 in case of success, 0 otherwise. It suffices to calculate and
broadcast the logical AND of such flags to test the entire level.

Memory State Update Generation When a level is ready, all its operands
are correct in a deterministic way. By definition of a schedule, all its instructions
can execute concurrently, as there is no dependece among them. Finally, as soon
as its output avatar is ready, each node begins propagation to the next level.

Correctness In order to prove the correctness of this execution strategy, it is
necessary (and sufficient) to show the equivalence with the sequential case. For-
mally, for any instruction stream I and initial memory state M0, this execution
strategy has to reach the same final memory state as the sequential execution of
I.

The adoption of schedules is at the base of the correctness. Indeed a schedule,
by definition, guarantees that for any dependence, the dependent instruction be-
longs to a level with higher index than the instruction it depends on (level order
reflects constraints in dependence resolution). It is therefore safe to:

• concurrently execute instructions with the same level index;

• sequentially execute levels in index order.

There is also a less explicit consequence of relying on schedules. Let us consider
the set of memory states reached during the sequential execution of I, and let Mi

be the state after instruction i executes. The operands of instruction i, tagged
with level index `, can be safely fetched from any memory state Mj in the range
(` − 1)n/Lλ ≤ j < i. Consequently, all instructions of level ` can fetch their
operands from memory state M(`−1)n/Lλ .

It remains to prove, then, that the forwarding mechanism of this execution
strategy actually delivers the correct operands to the dependent instructions. Let
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us introduce the concept of memory snapshot of level ` at round t, which represents
the relevant (with respect to level `) portion of the memory state, updated with
the data produced up to round t.

Definition 20. Memory snaphot St` is the set of input avatars of level ` after the
rearrangement with memory state update δMt at round t.

S0
` and M0 both refer to the memory content before any execution.

It is possible to prove that, for each pair `, t, snapshot St` is consistent with
memory state Mtn/L.

Invariant 1. For each level ` and round t, the operands held by the input avatars
of snapshot St` are consistent with memory state Mtn/Lλ.

Proof. An inductive proof is given. The invariant is correct for t = 0, as all
the snapshots are initialized with values consistent with memory state M0. It is
important to note that the base case applies to all levels.

Let us assume that St` is consistent with Mtn/Lλ . As a result, memory state up-
date δMt+1 is generated correctly. In the sequential case, memory state M(t+1)n/Lλ

is the result of executing instructions with level index t+ 1. Therefore, M(t+1)n/Lλ

can be obtained overwriting the appropriate locations of Mtn/Lλ with δMt+1
2.

The bulk transfer, and the thick snake layout guarantee that each level ` > t
receives all the memory state updates, which are delivered in the right order.

Besides, with the rearrangement, each output avatar of δMt+1 can communicate
with and update all the input avatars referring to the same location. Hence,
snaphot St+1

` is consistent with memory state M(t+1)n/Lλ .

Because of Invariant 1, each instruction is guaranteed to receive the correct
operands and produce the correct outputs3.

Time complexity The whole strategy consists of a sequence of rounds which
overlap in time. Consequently, the total running time is given by the time for the
first round to complete, plus the number of rounds divided by the round completion
rate.

Let us consider a single, isolated round. Its complexity is given by the prop-
agation and rearrangement activities. Execution itself and memory state update
generation can be ignored in the calculation, as they are embarrassingly parallel

2Note that the single avatars in δMt+1 can be applied to Mtn/Lλ
in any order, as each memory

location is affected at most once.
3Note that saying that the last snapshot is consistent with the last memory state is not enough

for proving correctness. In fact, it is necessary to show that each level commits the correct output
to memory, not just the last one.
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operations, which take O(1) each, and occour only once per round. Send and re-
ceive operations, instead, require moving O(n/Lλ) data with O(

√
n/Lλ)) bit/clock

bandwidth, and for a O(
√
n/Lλ)) node distance. Hence, their time complexity is

O(
√
n/Lλ)). Each rearrangement relies on an avatar operation and some linear

propagation. Since they involve a O(n/Lλ) node square mesh, the resulting com-
plexity is again O(

√
n/Lλ)).

Although the asymptotic complexity is unaffected, it is worth to point out that
there is a degree of overlap within the propagation and rearrangement activities.
Indeed, each bulk send occour at the same time interval as the correspondent
receive. Hence, their complexity needs to be counted only once per propagation
step. Moreover, and more significantly, each rearrangement takes place as soon as
the preceding propagation moves to the next submesh. As a result, only the last
rearrangement is not hidden by the propagation and needs to be considered.

The resulting complexity is Tround = O((1 + τ)
√
n/Lλ), where τ is the number

of bulk send (respectively receive). For the first round, τ = Lλ − 1, and Tround =
O(
√
nLλ).

Let us now focus on the round completion rate. Due to the regularity of
the mesh topology, instruction layout and the fixed size of the propagated data,
propagation speed is guaranteed to be constant. It is also worth to note, that
uniform single instruction execution time is irrelevant in this settings. Therefore,
the inverse of the completion rate is the time between two successive bulk send
(or, analogously, receive, rearrangement), which comprises a send, a receive and a
rearrangement. In asymptotic notation rate−1round = O(

√
n/Lλ).

Putting all the components together, the resulting complexity is

T = Tround + (Lλ − 1)rate−1round = O(
√
nLλ)

One last caveat is the external loop condition test. In fact, a careless im-
plementation may lead to whole-mesh synchronizations, which would become the
dominant component of the time complexity. It is therefore fundamental to reduce
the scope of the test to level size submeshes, and allow a complete synchronization
only at the completion of the last level.

5.4.1 Design Notes

One key factor in the execution strategy design is to almost completely avoid
whole-mesh coordinations or communications. Indeed, it is easy to infer a lower
bound from the number x of nodes which need to coordinate, synchronize. Such
lower bound is the diameter of the smallest submesh which contains such nodes.
As for this execution method, the only coordination among nodes takes place
within the same level (readiness test, rearrangement), or within two consecutive



5.4. BASIC EXECUTION STRATEGY 73

(and adjacent) levels (send, receive), thus preventing the lower bound to affect
performance.

It must be noted, though, that node buffer are essential for the implementation
of the execution strategy, and obtain the systolic behaviour. In particular, nodes
need to be able to store two copies of a memory state update: one to be forwarded
on, and the other for the successive rearrangement.

One design alternative is switching the rearrangement and send operations. As
for worst case time complexity there is no advantage in doing this, but it is possible
to implement a “filter” on the memory state updates. Indeed, if one instruction
in a level is going to overwrite a location included in the memory state update,
the relative information can be discarded. Note that in this scenario the invariant
used for proving correctness does not hold verbatim (due to the discarded avatars).
Also, in this case, propagation tends to occur roughly at the same time in the whole
mesh. This is slightly harder to implement in the bends of the thick snake, as data
has to “change direction”. It can be done with constant extra buffer space per
node.

As for the choice of sequential level execution, it is by all means an artificial
constrain. In general, a level could be ready before some of its predecessor. More
precisely, only in the case of the greedy schedule each instruction of a level needs
at least one operand from the preceding level 4. In successive refinements of the
execution strategy, it is necessary to explore the effect of allowing both levels and
single instructions to execute as soon as they are ready. Again, the correctness
proof will not hold with such changes. In fact, Invariant 1 is itself sufficient, but
not necessary to guarantee correct execution.

It is reasonable to argue that dependences on the critical path need more
priority then the others. A slower than needed information flow in the critical
path, in fact, directly translates into poorer performance. This fact is in part
reflected by the execution strategy, and in particular by the instructions layout
and the propagation mechanism. In fact, critical path dependences are satisfied
first, at least if the schedule has not many more levels than the length of the
critical path. However, when a new memory state update is sent to the next
levels, avatars involved in critical path dependences are not given higher priority.
Alternative solutions which give extra priviledge to critical path dependences while
avoiding excessive slow downs for the looser dependences, do not seem to be easily
achievable. This is in fact an unavoidable consequence of the physical limits on
information density and speed.

Finally, it is possible to regard the internal forwarding mechanism of SP and
SPE [4] as a particular case of this execution strategy. It suffices, in fact, to choose

4If λ has the property that level ` is not ready unless it has already received ` − 1 memory
state update, it is also true that, at the same instant, only one level is ready.



74 CHAPTER 5. UPPER BOUNDS - EXECUTION STRATEGIES

a schedule with one instruction per level. This way, execution would proceed
sequentially.

5.5 A Less Constrained Execution Strategy: Variable-

Size Levels

5.5.1 Implementation

Here an extension of the basic execution strategy is presented, which lifts the
constraints of constant level size. In fact, since such common size must fit all
levels, the choice is clearly constrained by the smaller level. A direct consequence
is a higher than needed level number, which automatically translates into a more
sequential execution and inferior performance. Besides, it is shown that lifting the
constant level size constraints is feasible without harming the results obtained in
the previous Section, and can be achieved with just an incremental improvement
over the simple execution strategy. In conclusion, we keep the complexity result
of the simple execution strategy while allowing a much wider range of schedules.
This way it is in general more simple to reduce the number of levels.

Still the advantage of allowing variable level size can be pushed further. In
particular I will point out the inherent limitation of the instruction layout. Also, it
will be shown that in order to further improve performance, it is necessary to switch
to slightly more complicated instruction layout and level to level communication.

On the other hand, it is also possible to evolve the variable level size strategy
into an online execution strategy with a limited extension (an algorithm to extract
the length of the critical path and a smarter fallback when a submesh does not
complete in one iteration).

Most of the ideas the simple execution strategy relies on are mantained here,
including (with very little modification) the thick snake layout and operand com-
munication (bulk transfers and rearrangements). The main changes involve the
work units5, which are now submeshes, and the instruction execution phase.

Instruction Layout The thick snake layout is (necessarily) slightly modified.
We still partition the mesh into Lλ equally sized square submeshes, and we number
the submeshes according to the snake layout. The instruction of the first level are
placed in the first submesh. If the level overflows, the remaining instructions are
placed in the next submeshes, and so on. The only constraint is that a submesh
can be populated with instructions only if all the previous ones are already full.

5TODO is there a better way to express this? I mean that the pseudocode refers now to
submeshes, while with the simple execution strategy it refers to levels.
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Next levels are placed in the same way, starting from the first submesh which
has not been filled up. As a results, in general levels are split up across more than
one submesh. However, the number of submeshes in which a level is split is always
≤ 1 + dn`/(n/Lλ)e. The following Lemma formalizes this claim.

Lemma 27. With the thick snake layout, the number of submeshes level ` is laid

out on is s` ≤ 1 +
⌈

n`
n/Lλ

⌉
.

Proof. First note that n` < n/Lλ is a sufficient condition for level ` not to be split
across submeshes only for ` = 0. Therefore, if ` = 0, the number of submeshes is

s0 =
⌈

n0

n/Lλ

⌉
, which is consistent with the statement.

Let us now consider level ` ≥ 1, and let ni` be the number of instructions placed
in the ith submesh. n0

` is the free size of the first submesh which has not been
filled up to level `− 1. Then, the number of submeshes for the remaining n` − n0

`

instructions is
⌈
n`−n0

`

n/Lλ

⌉
. Indeed, since only one submesh at a time can be partly

filled, all ni`, with the possible exception of the first and the last, are equal to n/Lλ.
Summing the submesh which hosts n0

` , the statement follows.

Finally, note that the submeshes need not be internally sorted in any way for
the property to hold true.

Moreover, as will be shown in the rest of the Section, neither the execution
phase relies on any internal layout of the submeshes.

The Variable Level Size Execution Strategy Execution takes again place
in a number of rounds. In this context, the rounds involve the submeshes and not
the levels.

In details, each submesh can be in the

waiting state when its predecessor has not yet completed;

execution state when the submesh is executing;

complete state when all instructions have executed and their output propa-
gated.

Note that a ready state would not make sense, as it is not guaranteed that all
the instructions are ready. Indeed, in general, the instructions placed in a submesh
do not belong to the same level; consequently, it is not possible to rule out the
existence of internal dependences.

The following pseudocode depicts the execution strategy from the point of view
of each single submesh.
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1. while not complete

(a) if (waiting)

i. receive δM`

ii. send δM`

iii. rearrange δM`

iv. test for readiness and possibly set execution state

(b) while in execution state

i. execute and (possibly partially) generate δM`

ii. if (execution not complete)

A. merge the partial δM` with the level

iii. else

A. send δM`

B. send activation message to the next submesh

C. set level state to complete

Readiness test The readiness test is the step which allow a submesh to decide
whether or not to begin the execution phase.

A submesh, with the exception of the first, must be allowed to enter the ex-
ecution state before all its instructions are ready. Not doing so would lead to
deadlock, as dependences within a submesh could not be satisfied.

In order to implement the test, it is necessary that the most recently completed
submesh notifies the next about its completion, thus allowing execution for the
latter.

Relying on the status of instruction operands is not sufficient for guaranteeing
the same behaviour. On one hand, when a submesh enters the execution phase,
some of its instructions may still be waiting for operands; and on the other hand,
all its instructions may be ready before all the preceding submeshes complete.

From the point of view of the worst case scenario, it is not necessary to activate
more than one submesh at a time, so it will not be discussed here. However,
since it would be beneficial at least in some practical cases, multiple submesh
activation will be discussed later in the Section, alongside other enhancements for
the execution strategy.

Execution and memory state update generation With submeshes being
the unit of work and the possibility that instructions of different levels cohexist,
execution is bound to become a multi-step phase. Hence, as illustrated by the
pseudocode, it is implemented by means of a nested loop.
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At each iteration, only the instructions which hold deterministic operands exe-
cute. Their output avatars form the partial memory state update for that iteration,
which contains some of the missing input for the unexecuted instructions. More
precisely, these output avatars are added to the memory state update generated
so far; in case a location is written more than once, the memory state update will
contain more than one avatar referring to the same location, each marked with
a different instruction id6. An rearrangement operation is then used to bring the
new information to the instructions which need them.

When at last all the instructions complete, the resulting memory state update
is propagated along the thick snake, and an activation message is sent to the
next submesh. Finally, the submesh becomes inactive until the next segment of
instructions is provided.

Note that, with the possible exception of the first and the last, at each iteration
at least a level is completed. And that in a strong sense: there remain no other
instructions of the same level to be executed in other submeshes. Indeed, the
layout does not allow a level to partially fill a submesh with the exception of the
first and the last. As a consequence, if a submesh contains instructions belonging
to different levels, then, after execution, all levels but (possibly) the last will are
completed. If, on the other hand, a submesh contains only one level (the first),
there may be remaining instructions in the next submeshes.

Note also that the fact that at each iteration all the instructions of one level
are completed is the worst case guarantee. In particular, unless the schedule is
“tight” (i.e. all instructions are assigned in earliest level possible), instructions may
become ready before all the previous levels complete, which could be beneficial in
at least some practical cases. One should keep in mind, though, that the worst
case remains unaffected.

Other enhancements, which may be helpful in practical cases, will be exposed at
the end of this Section. In general, they try to better tailor execution units to level
size. As will be explained in the next Section, though, there is a fundamental limit
which is implied from the layout, which is the fixed level to level communication
bandwidth. Without addressing such limit, it is not possible to improve the worst
case performance.

Send, Receive - Bulk Transfer The bulk transfer operation is identical to
the correspondent phase in the simple execution strategy. Again, its role is to
propagate memory state updates along the thick snake, so that levels later on in
the schedule will be able to provide the correct operands to the instructions.

6This is necessary for example when a level is spread across multiple submeshes and one of
its instruction in the first submesh writes to the same location of an operand of a later submesh.
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Data Rearrangement As in the simple execution strategy, data rearrangement
refers to the update of the speculative operands with the newer values carried by
a received memory state update.

However, this operation is in general necessary also within the execution step
itself. Indeed, if the instructions of a submesh do not belong to the same level,
then its execution will take place in more than one iteration. At the end of each
iteration, a rearrangement operation has the task of supplying the non executed
instructions with the newly computed values.

The rearrangement operations rely on avatar operations to group avatars re-
ferring to the same memory location into contiguous areas of the submesh. Then,
within each group, the new values are propagated from its producer to the possi-
ble consumers. In order to guarantee correctness, instructions must check that the
new values do not originate from an instruction which is due to be executed later
in the instruction stream. In this case, in fact, the read avatar has already been
given its deterministically correct operand, and has to ignores any further update.

5.5.2 Analysis

Correctness The correctness of this execution strategy can be shown by proving
that for each instruction stream, the resulting memory state is identical to the one
produced by a sequential execution, even if the intermediate memory state could
be quite different.

Schedules are again fundamental, as they guarantee that it is safe to execute
instructions in level order, and to propagate the output of a level to the following
ones. Hence, since execution follows level order, no instruction is computed before
its operands have been computed.

Let us now focus on the first level of a generic submesh. Its operands (the ones
which are not directly fetched from memory) are received through bulk transfer
operations, which guarantee that each memory state update is forwarded to all the
submeshes following the originating one in the thick snake. After the propagation,
a rearrangement step ensures that values in the memory state update are matched
with the correct input avatars. Since multiple values may be present referring
to the same memory location, the match is enforced by checking the id of the
originating instruction. Therefore, for each waiting instruction, only the correct
operands are set.

Let us now consider the remaining levels of the submesh. Their operands arrive
either from bulk tranfers and rearrangements, as in the former case, or by means of
further rearrangements within the submesh itself. Since the same test is made to
match output avatars with input avatars, instructions are once again guaranteed
to receive the correct operands.
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Time Complexity As in the fixed-size level case, the whole execution consists
of a sequence of rounds which overlap in time. In order to calculate the overall
complexity, it is sufficient to consider the intervals between the activations of
consecutive submeshes. Unlike the fixed-size level case, though, such intervals are
not equal, as they depend on the number of iterations that take place in each
execution phase, which in turn depends on the number of distinct levels placed
in a single submesh. It will be shown, however, that the complexity in terms of
the number of instructions n and the number of levels Lλ remains asymptotically
unaffected.

Let us consider the time complexity of a single iteration. Internal rearrange-
ments require O(

√
n/Lλ) each, as they rely on whole submesh permutations and

linear propagations across up to the length of the diameter. Execution itself and
the consequent generation of the partial memory state update are performed in
one single step, each node being able to compute independently from the other.

If every executed instruction retains its output avatar until the execution phase
is over, then also the assembly of the memory state update can be implemented
with (at most) constant overhead. In fact, each node just needs to wait until it is
time to start a bulk transfer towards the next submesh.

So, if L
(i)
λ is the number of different levels in the submesh i, its execution takes

O(L
(i)
λ

√
n/Lλ).

Adding the contribution of the initial rearrangement and that of the bulk trans-
fer does not change that complexity, as the two take O(

√
n/Lλ) each.

Summing over all the submeshes results in

O(
√
n/Lλ

∑
i

L
(i)
λ )

where
∑

i L
(i)
λ is the total number of level partitions. As shown in Lemma 27, the

number of partition for level ` is s` ≤ 2 + n`
n/Lλ

. Summing over all the levels yields

O(Lλ + l.o.t.).
Consequently, the overall complexity is

T (n, λ) = O(
√
nLλ).

5.5.3 Performance Considerations and Further Improve-
ments

The main goal of this execution strategy is to allow more flexibility in the choice of
a schedule with respect to the fixed level case, while mantaining the same achieved
complexity in terms of n and Lλ. The performance improvement in this settings
follows from the possibility of lowering Lλ given the much wider choice of schedules.
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In particular, forcing a schedule to have constant size levels implies a minimum
number of levels to preserve correctness. Indeed, this minimum is achieved with a
schedule λ which maximizes the size of its smallest level. Formally,

Lconst ≥
n

maxλ min` {n`}
.

On the other hand, the minimum number of levels in the variable level size is
just the longest chain of dependences in the instruction stream. The only way to
further lower it is to allow speculative execution and consider an expected time
complexity instead of a worst case.

Although it is more flexible with regard to level size there is some stiffness in
the mechanism. Indeed, the thick snake layout has a limited adaptiveness in term
of communication: both the bulk transfers and the rearrangements. Distinguish
between big levels and small levels with respect to submesh size. For large levels,
the output bw towards the subsequent levs is clearly too low. Note that the
proposed implementation matches this bound. For small levels, if they are not split
across two consecutive submeshes, the communication is implemented essentially
by means of rearrangements. As a consequence, these rearrangements can be quite
inefficient: the involved area can be quite larger than the level itself.

The logical improvement is then designing a more adaptive communication
system such that bulk transfers and rearrangements match the size of the involved
levels. The results of the next Section are in this direction.

As for the variable level size strategy, several further improvements are still
possible, however, which would benefit a range of practical cases. They have
not been introduced earlier because they would not improve complexity in the
worst case, and they would have somewhat cluttered the essential ideas which are
exposed in this Section.

Readiness At the same time, all the instructions which have the correct operands
can be allowed to execute. The overhead in managing the added communication
is not to be ignored. This enhancement may help, for example, in case of a poor
schedule, when instructions are placed in further-than-needed levels.

Eager partial memory state update propagation As the title suggests,
the idea is that of anticipating as much as possible the communication of the
newly calculated data, so to enable waiting instructions to begin execution earlier.
Unfortunately, it is easy to design CDAGs for which this technique would prove
useless.

Active submesh shrinking At each iteration of the execution of a submesh,
only the instructions which still need to be executed join the expensive operations,
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thus effectively shrinking the area involved in permutations. Again, it is easy to
design CDAGs for which this enhancement would prove useless.

Recursive behaviour In order to address the inefficiency of the strategy when
dealing with small levels, it is possible to recursively define a thich snake in a sub-
mesh, and apply the strategy recursively. The case of larger levels is not addressed,
unless more radical steps are taken.

5.6 Better Performance: Exploiting Variable-Size

Levels

It has been shown earlier in the Chapter that the combination of bulk transfer
operations and rearrangements is quite effective in guaranteeing good worst-case
performance.

However, the worst case complexity of the variable level size strategy can not
be improved unless the inherent limits in inter-level communication bandwidth
and latency are addressed.

In particular, all the communication operations need to be taylored to level
size. Consequently, the layout itself needs to be able to adapt to larger or smaller
levels.

In this Section it is proved that such an execution strategy is feasible. The key
ideas of the solution are a modular, recursive layout for instructions and accord-
ingly redesigned data movement operations.

The aim of this execution strategy is to bound complexity to

T = O

(∑
`

√
n`

)
.

In order to do so, the target complexity for the communication operations between
level ` and `+ 1 is in turn O(

√
max {n`;n`+1}).

5.6.1 Hilbert layout

This execution strategy is still based on bulk transfer and rearrangement opera-
tions. Its novel key feature is the layout, which is a new approach to address the
problem of bandwidth and latency in the communications between consecutive
levels. In particular, the new layout aims at being more flexible than the thick
snake, and to better scale with respect to the size of the levels. Whereas the latter
provides a fixed bandwidth and a latency which is proportional to level size, the
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target for the new layout is O(
√

max {n`;n`+1}) for both latency and bandwidth
between levels ` and `+ 1.

Let us define the Hilbert layout.

Definition 21. The Hilbert layout on a n-node square mesh consists in placing the
instructions of instruction stream I in level order along the (n−1)th approximation
of the Hilbert curve.

In this layout, a module is the square submesh corresponding to a lower-order
approximation of the Hilbert curve.

It is possible to show that such layout provides a number of interesting and
useful properties. However, the exploitation of these properties comes at a price,
which is an added complexity in the data movement management.

First of all, it is possible to show that with this layout each level occupies a
contiguous area in the mesh. Moreover, each such area is compact, that is its
diameter is optimal up to constant factors( remember that since each node hosts
one instruction, the diameter of an area hosting n` instructions is Ω(

√
n`)).

Finally, consecutive levels are adjacent in the layout, so that they are able to
communicate directly without building up on the congestion or the latency.

Let us start from a quite general result.

Lemma 28. In the Hilbert layout, any pair of instructions at distance d in the
instruction stream I are hosted by nodes at distance O(

√
d) on the mesh.

Proof. One direct consequence of adopting the Hilbert curve as a layout is that
the first 4x instructions of the instruction stream I are mapped to the first 4x-node
module.

Let i, j be two instruction of I at distance d, that is, separated by d other
instructions in I. Consider the smallest module of size larger than or equal to
d, which contains i. Such a module exists because of the recursive nature of the
Hilbert curve. Then, j may or may not be located in the same module. In the
former case, as the module has diameter

√
(d), also the distance in terms of nodes

of the mesh between the two instructions is O(
√
d). In the latter case, it is possible

to prove that j is located in the next module (of the same size) along the Hilbert
curve. Indeed, the negation of this proposition would contradict the hypothesis
that i and j are at distance d. Hence, the distance in terms of nodes of the mesh
would be twice the diameter of the modules considered in the proof, which is
O(
√
d).

In order to elaborate further on the properties of the Hilbert layout, let us define
induced modules. Intuitively, the modules induced by level ` are the portion of
mesh which is at least partially occupied by level `.
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Definition 22. An induced module with respect to level ` is a maximal module
whose x nodes host at least c× x instructions of level `, for a constant 0 < c ≤ 1.

Computing the induced modules of a given level can be implemented quite
efficiently. Indeed, it is sufficient to loop over module sizes, from 1 × 1 modules
to possibly the whole mesh. At each iteration, the instructions of the relevant
level are counted in each module and compared with the target. If the test is
passed, then the module is marked as induced. When no larger induced module is
detected, the process terminates.

The choice of the constant c determines the number and size of the induced
modules of each level. Also, since, as will be shown in this Section, the induced
module is the unit of work in this execution strategy, it determines its efficiency.

In particular, by choosing c = 1/4, the induced modules of each level are just
2. The following Lemma proves this.

Lemma 29. For constant c = 1/4, the induced modules of level ` are at most two.

Proof. Let us consider level `, with n` instructions. Let x be the module of size
4dlog4 n`e which contains the first instruction of level `. Clearly, module x is the
smallest module large enough to contain the whole `. Note also that its existence
is granted by the result on compactness.

We need to distinguish two possibilities: either module x actually contains the
whole level `, or part of it “overflows” on the following submeshes.

In the former case, the test on the number of instructions of level ` would yield

ratio =
n`

4dlog4 n`e
≤ n`

4n`
=

1

4

and module x would be marked induced. Also, any larger module would fail
the test, so x is indeed the maximal module which would be detected.

In the latter case, let n′` be the number of instructions of level ` in module x,
and n′′` the number of overflown instructions.

It is now possible to apply twice the argument used in the previous case. As
a result, the first n′` instructions of level ` would induce a maximal module of size
4dlog4 n

′
`e. The last n′′` would in turn induce a maximal module of size 4dlog4 n

′′
` e.

Each of the two modules completely contains its chunk of level `, so there would
not be other induced modules.

This behavior may look a little overcomplicated, but actually reflects the hier-
archy in the recursive nature of the Hilbert curve.

In fact, while it is always possible to decompose a module in submodules of
any smaller size, the opposite is not in general true. More precisely, in the worst
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case, the smallest common supermodule of two consecutive modules is the whole
mesh itself.

By relaxing the requirement that a level is stored in and can be processed by
exactly one module, it is possible to circumvent the issue and bound the size of
the modules involved.

We can now prove that the set of modules induced by a level have a diameter
which is optimal, that is O(

√
n`).

As a direct consequence, it is possible to bound the latency in terms of worst
case distance between any pair of instructions from consecutive levels.

Lemma 30. In the Hilbert layout, the latency, defined in terms of worst case
distance between any pair of instructions from consecutive levels `, `+1 is at most
O(
√

max {n`;n`+1}).

Proof. Consecutive levels occupy contiguous areas on the mesh. It is therefore
sufficient to sum the diameters of the induced modules to prove the bound.

The Hilbert layout can be applied also to the fixed level size case. It would
result in each level occupying a submesh of the same size of the original version.
The only difference would be the ordering of the submeshes. In other words, it
would be a different “wrapping” of the thick snake layout.

From this point of view, the Hilbert layout can be seen as a generalization of
the thick-snake.

5.6.2 Data Movements

Memory state updates need to move along the Hilbert layout to reach levels with
higher index, so that later instructions can be given the correct operands.

However, the variable size of the induced modules is more complicated to deal
with with respect to the previous strategies. Indeed, propagating memory state
updates along the Hilbert curve means that the propagation speed depends on
the size of the memory state update itself. For example an x-node memory state
update moves twice as fast as a x/4-node one, and this is true also if we do not
consider rearrangements. In fact, a module of size n is covered by a n/x node
memory state update in x steps if it just moves along the Hilbert curve. Each
step takes time Ω(

√
n/x), leading to a total of Ω(

√
xn). A single n-node memory

state update, on the contrary, would take just O(
√
n). Therefore, with many

memory state updates being propagated at the same time, the smaller ones would
be outpaced by the larger and faster ones.

Besides, propagation from a smaller induced submesh to a larger one would
take too much: O(

nlarge√
nsmall

). In order to reach the target performance, propagation

between consecutive levels should take O(
√

max {n`;n`+1}), or O(
√
nlarge).
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Also broadcasting has to be ruled out. Since it involves a whole mesh syn-
cronization, it would not be possible to overlap different propagations in time, it
would be simply too slow to perform for each memory state update.

On the other hand, expanding the memory state update to the largest induced
module which is met could seem a reasonable choice. However, an induced submesh
in general includes instructions which are to be executed earlier than its own. The
propagation process needs instead to avoid contention between propagation and
other steps of the strategy.

Also, it would require to compute the induced submesh of all the levels, which
is difficult to perform efficiently, as there is in general a significant overlap in space
among them.

Memory state updates, during propagation, need to adapt to the possibly larger
induced submeshes in another way.

A viable solution is to double the linear dimension of the memory state update
each time a module four times its size is covered. For example, a memory state
update of size 4x would cover 4x nodes in the first step(s), until a complete module
of size 4× 4x is covered. At that point the linear dimension of the memory state
update would double, thus allowing it to cover the next module of size 4 × 4x in
one single step.

It is important to note that all memory state updates expand in the same way,
regardless of their size. As a consequence, they do not pile up during propagation.
In particular, the precomputation of the induced modules is not required.

Besides, this solution does not involve in rearrangements nodes with earlier
instructions, as was the case if trying to fit all the induced modules.

Of course, in the implementation, the propagated data has to include also
“activation messages”, in order to notify the recipients that they are going to be
involved in the propagation.

It remains to prove, however, that this solution is fast enough, and that it
provides sufficient bandwodth between levels to meet the target for the Hilbert
execution strategy.

Lemma 31. A memory state update covers the first module of size 4x which follows
the generating induced module in the Hilbert curve, in time O(

√
4k) if 4k is greater

than or equal to its size.

Proof. The proof is by induction. In the base case, the first propagation step
covers the first 4k-node module, whose size equals the size of the memory state
update. The time taken is O(

√
4k), as it can be implemented in a systolic way

with a bandwidth of O(
√

4k).
Let us now assume that the Lemma holds for size 4k. Then, by doubling

the linear dimension of the memory state update, it is possible to cover the (up
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to) three 4k-node modules in the same fashion in time O(4k), thus proving the
claim.

It should be noted that the result is quite strong, as it implies that the successor
of the currently executing induced module can be fully covered with the memory
state update in optimal time whatever its size may be.

Also, in this way each induced submesh can output a memory state update
through an edge as large as its diameter, thus meeting the target for bandwith.

5.6.3 The Strategy

Most of the strategy has already been described with the layout and the data
movements.

Here, the already described components are plugged together, and the last
details are presented.

The strategy is illustrated by the following pseudocode, which describes the
whole process from the point of view of a single node in the mesh.

• while I is not completed

– if executing

∗ start induced module detection

∗ execute and produce the memory state update

∗ rearrange the memory state update in the induced submesh

∗ propagate the memory state update

∗ set state to executed

– else

∗ if called in induced module detection

· partecipate detection and possibly join the induced module

· partecipate in rearrangement and propagation

∗ if called in propagation

· partecipate the bulk transfer and rearrangement

· partecipate propagation

· possibly set state to executing

Induced module detection, propagations and rearrangements are the operations
which have been described earlier in this Section.
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It may be useful to point out that the doubling of the linear dimension of the
memory state update happen with the propagation and that propagation mes-
sages need also include information about the size of the module which has to be
involved.

As can be inferred from the pseudocode, the only distinction in node state
is whether it is executing or not. Indeed, while propagation manages to avoid
involving nodes which have already executed, induced modules can include them.
Therefore, there is no such thing as a terminated state until the whole instruction
stream has executed.

Let us focus on when a node can set its state to executing. Clearly, as there
are in general two induced modules per level, and being the single module the unit
of work, belonging to a certain module is not enough.

When a level completes, it notifies the fact to its successor in the Hilbert curve.
If the successor belongs to the same level, it simply generates its memory state
update. Otherwise, the induced modules which are detected next negotiate their
execution order based on their relative order in the Hilbert layout. Hence, only
the nodes in the first module set their state to executing, while the ones in the
second module will stay non executing.

The nodes hosting the first level are set to executing just after initialization,
as their operands are directly fetched from memory.

5.6.4 Correctness

The correctness of the Hilbert strategy consists in the equivalence with a sequential
execution of any instruction stream I and initial memory state M0, with respect
to the final memory state Mf .

The proof of this equivalence is based on schedules. Indeed, the execution order
of the instructions follows the level numbering in the provided schedule. Therefore,
no instruction is executed before its operands are computed.

Let us now focus on the correctness of communication, that is, on proving that
instructions receive the correct operands.

Each instruction receive its operands either from memory or from the output
of earlier instructions. In the latter case, it is sufficient to point out that all levels
receive all the memory state updates generated by earlier levels, as they ultimately
cover the whole mesh; and that rearrangements correctly associate output values
to inputs, as it does also in the previous executions strategies.

5.6.5 Running time

In order to calculate the running time of the Hilbert strategy, it is sufficient to
consider for each level the complexity of the operations between the moment it is
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set to executing and the moment the next level become executing. In fact, the rest
of the propagation along the Hilbert curve can happen independently from the
executing modules, and therefore fully overlaps in time with the other operations.

Induced module detection, as illustrated at the beginning of the Section, can
be implemented to run in O(

∑logn`
i=0 4i) = O(

√
n`).

The initial rearrangement of the memory state update is based on permutations
within the induced module, which has a diameter of O(

√
n`). Its running time is

therefore O(
√
n`).

The remaining operations which need to be taken into account consist in cov-
ering the following level ` + 1 with the newly generated memory state update of
level ` and the acquisition of the last memory state update from level `− 1. It can
be shown that the complexity for the covering is O(

√
max {n`;n`+1}). Indeed, the

formula reflects the fact that if n` is larger, then covering level `+ 1 is completed
after the initial propagation step, which takes O(

√
n`).

On the other hand, if n` is smaller than n`+1, the propagation strategy exposed
with the data movements terminates in time

√
n`+1.

The last memory state update acquisition can be dealt with in the same fashion,
and accouts for a O(

√
max {n`−1;n`}).

For each level, therefore, the complexity to take into account is

T (`) = O(
√
n`+

√
max {n`−1;n`}+

√√
max {n`;n`+1}) = O(

√
n`−1+

√
n`+
√
n`+1)

where nx is zero for negative values of the pedix. Summing up over all the levels
yields

T = O

(∑
`

√
n`

)
which meets the target complexity.

Chapter Improvements

• Avatar Operation Section:

– graphical representation of instruction decomposition into avatars

– Initialization, including detailed CDAG reconstruction, operands load,
both possibly speculative; segment creation could be performed in the
unused part of the mesh;

• Schedules

– graphical representation of a CDAG (note indegree is ¡=2);
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– a (generic) schedule and the greedy schedule

– graphical representation of the correspondence between a schedule and
topological sort (or see next point)

– show the degree of freedom in a topological sort (e.g. sequence of in-
structions with arrows-deps, CDAG with schedule; possibly different
colors for the different levels)

• Basic Execution Strategy

– (picture) Thick snake layout

– (picture) level-to-level trade-offs (max bw: example which does not
scale/interspersed; example with max worst case distance)

– (picture) execution (highlight the overlap in time, but NOT time AND
place, of different rounds)

– (picture) correctness-invariant (think about it. . . )

• Variable level size exec strategy

– short intros (analysis, section itself. . . )

– complexity: show more equations (e.g. sum of level partitions)
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Chapter 6

Conclusions and Future Work

As technology improvements are pushing machine performance against the phys-
ical limits and new, diverse, complex architectures are introduced by hardware
vendors, the RAM models becomes less and less adequate to assess program exe-
cution performances. Indeed, while the latter takes into account only the number
of arithmetic logic operations to perform, time complexity is more and more dom-
inated by phenomena of (relatively) high latencies and narrow bandwidths.

Hierarchical and pipelined organizations on one hand, and programs which
exhibit locality of reference and concurrency on the other, have proved to be
effective countermeasures in large classes of problems.

In particular, the results in Chapter 2 show a metodology for producing code
with high concurrency. The resulting code can prove optimal also in problems
which are traditionally tackled via the exploitation of locality. Between the two
processor introduced by [4], it has become apparent how the different execution
strategies can play a big role in the ease of programming and in the memory
occupation of such program.

However, sequential machine do not account for all the possible solutions. It
makes sense, instead, to investigate parallel organizations, also in the context of
the execution of sequential programs.

Chapter 3 to 5 have illustrated a machine design which can scale up to arbitrary
size, and can execute a direct flow segment of instruction stream with optimal
worst case performance. If the management of instruction dependences is critical
for sequential processors, it is even more so for explicitly parallel machines. Indeed,
the lower bounds show that functional dependences can be themselves the source
of additional complexity, even when memory latencies are not taken into account.

Further steps in the investigation of parallel limiting technology machines
should definitely take into account instruction streams with address dependences,
for which the dependence graph is consequently not known in advance. The avatar-
based execution strategy, despite being in general inefficient, would be already ca-

91
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pable of addressing this challenge. The more optimized strategies, instead, would
have to be adapted so to react to schedule mispreditions, multiple accesses to
memory for each segment and the consequent time overheads.

Also the computation of instruction stream segments has to be addressed. In
particular, schedule computation may be effectively included in this phase, as
programs are in general shorter than instruction streams, and may provide more
insights in determining the relations between instructions in the instruction stream.

Besides, the effort of exploiting instruction level parallelism could be integrated
with the exploitation of thread level parallelism. In other words, it could be
possible to decompose the instruction stream and aggregate the instructions in
substreams, so to bound the communications among instructions to smaller regions
of space.

Then, if it will be proved that no further gains are to be expected from this
machine design, the logical continuation of the investigation on limiting technology
machines should address designs which do not exhibit a von Neumann tube. Such
designs would feature a uniform integration of processing and storage nodes, thus
circumventing the need to communicate through a processor memory bandwidth.
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