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SUMMARY 

Despite the extensive use of anti-influenza vaccines during the last decades, influenza and its 

complications are still a major cause of morbidity and mortality worldwide. Older adults (>65 years) are 

particularly susceptible to influenza illness and it is estimated that approximately 90% of influenza 

deaths occurs in this population [1].  Notably secondary bacterial infections (SBI), the majority of which 

are associated with S. pneumoniae or S. aureus, make a significant contribution to deaths during 

influenza epidemics and pandemics, through a phenomenon known as “excess mortality” [2]. In order to 

reduce influenza-driven mortality, broader protective vaccines are needed and different strategies are 

possible. Among these, universal influenza vaccines or even broad-spectrum “pneumonia” vaccines 

targeting a range of different viral and bacterial respiratory pathogens are thinkable. To allow the design 

of such vaccines, a multitude of basic questions - such as the ideal vaccine composition, appropriate 

vaccine adjuvants and an understanding of the complex pathogen interactions - have to be addressed.  

With the current work we wanted to address this specific medical need. In the first part we studied 

the special immunological pre-requisites for successful influenza vaccination in the elderly, while in the 

second part we extended our focus on the impact of different influenza vaccines on viral-bacterial co-

infection. 

Elderly people are particularly susceptible to influenza infection and its complications, but respond 

poorly to conventional vaccines. MF59-adjuvanted influenza vaccines have been specifically developed 

and licensed to target this age population and are considered - together with similar formulations - as 

the best strategy to prevent influenza disease in the context of immunosenescence [3]. Yet, the 

development process was entirely empirical and it is only poorly understood how MF59 contributes to 

successfully restoring responsiveness to influenza vaccines in the elderly.  

To deeply investigate the mechanism of action of MF59 in elderly subjects, we assessed immune 

response elicited by this adjuvant in old mice (>18 months). Our results showed that MF59 is able to 

potentiate responses against influenza antigens not only in young mice (6-8 weeks), but also in older 

ones: it enhanced immune cell recruitment at the site of injection, antigen-translocation to draining 

lymph nodes, CD4+ T cell response and germinal center formation. Yet, in line with clinical data, we 

noticed that hemagglutination inhibition (HI) antibody titers induced by MF59-adjuvanted vaccine in old 

mice were similar to those obtained in young ones immunized with not adjuvanted antigens arguing for 

the fact that MF59 can overcome some but not all aspects of immunosenescence. Accordingly, we 
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wanted to dissect, which of the MF59-induced signaling cascades were impacted by aging. We recently 

showed in young mice, that transient ATP-release in injected muscle is an important contributor to 

adjuvanticity of MF59 [4]. Here we verified that also in aged mice ATP plays a central role for adjuvant 

activity. Yet, while in young mice it is not the only actor of adjuvanticity, in elderly other MF59-targeted 

immune pathways seem to be reduced due to “immunosenescence” or “inflammaging”. 

MF59 is a safe, effective and well established vaccine adjuvant for influenza vaccine in humans with 

millions of doses administered. Whether there is room for further improvement of anti-influenza 

responses especially in the vulnerable elderly population has to be assessed. 

Complications from secondary bacterial infection are a leading cause of influenza-associated 

morbidity and mortality. Anti-influenza vaccination is considered the best strategy to counteract primary 

viral disease spread. Moreover data from animal models suggest that it is also an effective method to 

prevent subsequent secondary bacterial pneumonia [5]. Yet, currently approved influenza vaccines are 

typically assessed only for their capacity to elicit neutralizing antibodies specific for the homologous 

(vaccine-type) influenza strain. Protection against heterotypic (antigenic shift by mutations within 

influenza strain) or against heterologous (HA and/ or NA differing from those in the vaccine strain) 

influenza infection is studied to a lesser extent.  And importantly, studies in humans have typically not 

been designed or appropriately powered to assess effectiveness against SBI.   

It can be assumed that prevention of influenza infection through vaccination would also prevent 

complications such as SBI, but in case of heterotypic or heterologous virus challenge - as would easily 

occur during a normal influenza season - does partial protection significantly affect bacterial super-

infections? Furthermore different types of influenza vaccines induce differential innate and adaptive 

responses in infected individuals that might impact positively or negatively on SBI. Does this occur and 

can it be measured?  

We aimed to answer these questions in pre-clinical models of differently anti-influenza immunized 

mice. To that extent, we vaccinated BALB/c mice systemically with an A/California/7/2009 (H1N1) 

subunit vaccine either as plain antigens or adjuvanted with i) MF59 to induce a mixed Th1/Th2 response 

[6], ii) a combination of MF59 and CpG to get a more Th1-prone response [6] or with iii) LTK63 

administered via the mucosal route to obtain a Th1/Th17 polarized response [7]. After vaccination mice 

were challenged with the heterologous mouse adapted strain A/Puerto Rico/8/1934 (H1N1) (PR8) and 

infection course and various aspects of immune response were dissected. We found that vaccination via 

different administration routes and adjuvants enhances immune responses to influenza virus infection 

by creating in the host a differently Th-polarized environment: all tested priming conditions induced 
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strong vaccine-specific Th1, Th2 or Th17-polarized responses and anti-influenza antibody titers that 

quickly restored pre-infection immune environment in lung. On the contrary, plain immunization was 

significantly less effective: mice showed high viral titers similar to those of naïve ones and had overall 

higher influx of immune cells into the lung, an indication of ongoing inflammation. Notably mucosal 

vaccination with LTK63, though inducing lower HI titers, was equally good in protecting mice from 

influenza infection as systemic vaccination with MF59±CpG, strongly arguing for an important 

contribution of additional immune responses to protection in the setting of heterologous infection. 

Secondly we asked if different flavors of immune responses during influenza infection would have a 

beneficial or detrimental impact on SBI caused by Methicillin-resistant S. aureus (MRSA) USA300, which 

has been recently associated with increasing cases of fulminant post-influenza pneumonia in humans [8]. 

To this end we set up a new influenza-bacterial co-infection model in previously anti-influenza 

vaccinated mice. Immunizations were performed as before to skew the immune response towards 

different Th profiles. Mice were then infected with influenza PR8 virus and six days later co-infected with 

S. aureus. In this co-infection model we followed disease evolution by measuring mouse weight loss and 

pathogen clearance in lungs.  

In this setting the differences between the single vaccination strategies became even more evident. 

While non-adjuvanted vaccine protected significantly from single influenza infection, it conferred little 

protection from viral-bacterial co-infection. Plain vaccinated mice were subjected to severe bacterial 

overgrowth and to high morbidity and mortality during SBI similarly to naïve mice. They just differed 

from naïve mice by their capability to control virus loads during SBI, while naïve mice showed a second 

wave of lung viral titer increase after bacterial infection that is a typical consequence of SBI [9]. In 

contrast, we demonstrated that all adjuvanted vaccines were superior in preventing not only viral 

infection but also bacterial superinfection as compared to plain antigens vaccination. In particular Th1-

prone mice efficiently controlled influenza infection better than those receiving other formulations and 

were nearly not affected by SBI. 

Altogether our results showed that adjuvanted-influenza vaccines are an efficient method to 

counteract not only heterologous influenza infection, but also eventual SBI. Moreover we demonstrated 

that the adjuvant MF59 is extremely important to enhance immunity against virus antigens in aged 

preclinical models. MF59 could eventually be improved by adding immunopotentiators like CpG to 

further enhance Th1-prone immune responses. These responses seem to be superior for preventing both 

viral and viral-bacterial infection. 



10 
 

RIASSUNTO 

Nonostante che negli scorsi decenni si sia fatto un ampio uso dei vaccini anti-influenzali, l’influenza e 

le relative complicazioni sono tuttora tra le maggiori cause mondiali di morbilità e mortalità. Le persone 

più anziane (>65 anni di età) sono particolarmente sensibili all’influenza e si stima che all’interno di tale 

popolazione si ritrovi circa il 90% delle morti dovute alla  malattia [1]. Le infezioni batteriche secondarie 

(SBI) causate principalmente da  S. pneumoniae e S. aureus rappresentano un’importante causa di morte 

durante le epidemie e pandemie influenzali attraverso un fenomeno conosciuto come “mortalità 

eccessiva” [2]. Affinché si riesca a ridurre la mortalità dovuta all’influenza, occorrono vaccini con un più 

ampio spettro di protezione. Tra le possibili strategie troviamo vaccini influenzali universali o addirittura 

vaccini “generici” contro la polmonite in grado di difendere l’organismo da un’ampia gamma di virus e 

batteri patogeni per l’apparato respiratorio. Affinché si arrivi allo sviluppo di tali vaccini innovativi, 

occorre definire innanzitutto alcuni aspetti basilari, quali ad esempio la loro composizione ideale e la 

scelta degli adiuvanti appropriati, il tutto insieme ad una maggiore conoscenza delle complesse 

interazioni tra i patogeni target. 

Nel presente lavoro di tesi abbiamo voluto approfondire questo specifico aspetto medico. Nella 

prima parte dello studio abbiamo definito quali sono i particolari prerequisiti immunologici per la buona 

riuscita della vaccinazione anti-influenzale negli anziani. Nella seconda parte invece ci siamo focalizzati 

sull’impatto che differenti tipologie di vaccini anti-influenzali possono avere sulla co-infezione tra il virus 

e un batterio. 

La popolazione anziana, che è particolarmente suscettibile all’influenza e alle sue complicazioni, 

risponde scarsamente ai vaccini convenzionali. I vaccini adiuvantati con MF59 sono stati sviluppati e 

approvati specificatamente per questa popolazione target e, insieme a formulazioni simili, sono 

considerati ad oggi la migliore strategia per prevenire l’influenza nell’ambito dell’immunosenescenza [3]. 

Tuttavia lo sviluppo di tali vaccini è stato puramente empirico e ben poco si sa di come MF59 

contribuisca a ristabilire nelle persone anziane un’efficiente risposta al vaccino. 

In questo studio abbiamo analizzato la risposta immunitaria indotta da MF59 in topi anziani (>18 

mesi) in modo da definire meglio il meccanismo di azione dell’adiuvante nei soggetti in età avanzata. Dai 

nostri risultati si evince che MF59 è in grado di potenziare la risposta immunitaria nei confronti 

dell’influenza non solo nei topi giovani (6-8 settimane), ma anche in quelli più vecchi. Abbiamo 

dimostrato infatti che l’adiuvante induce robusto reclutamento di cellule immunitarie al sito d’iniezione 
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del vaccino, potenzia la traslocazione dell’antigene ai linfonodi drenanti e incrementa la risposta delle 

cellule T CD4+ e la formazione dei centri germinativi. Tuttavia, in linea con i risultati clinici, i titoli 

anticorpali d’inibizione dell’emoagglutinazione (HI) indotti dalla vaccinazione con MF59 nei topi anziani 

raggiungono livelli simili a quelli ottenuti nei topi più giovani vaccinati senza l’adiuvante. Da questo 

risultato possiamo dedurre che MF59 è in grado di porre rimedio ad alcuni degli aspetti caratterizzanti 

l’immunosenescenza, ma non a tutti. In accordo con ciò, abbiamo voluto definire meglio quali tra le 

cascate di segnalazione indotte da MF59 è impattata dall’invecchiamento. In nostro gruppo ha 

recentemente dimostrato in topi giovani che l’iniezione di MF59 nel muscolo induce un rilascio 

transiente di ATP che si rivela poi importante per l’effetto adiuvante del prodotto [4]. In questo lavoro di 

tesi abbiamo verificato che anche nei topi anziani il rilascio di ATP gioca un ruolo centrale per l’attività 

dell’adiuvante. Tuttavia, mentre nei topi più giovani tale rilascio non è l’unico “attore” del 

potenziamento immunologico indotto dall’adiuvante, in quelli più vecchi gli altri pathway avviati da 

MF59 sembrano essere impattati negativamente dall’immunosenescenza e dallo stato di continua 

infiammazione tipico degli anziani. 

MF59 è un adiuvante sicuro ed efficace e il suo utilizzo nella vaccinazione anti-influenzale umana è 

ormai consolidato con milioni di dosi somministrate. Quello che resta da definire è se c’è la possibilità di 

un ulteriore miglioramento della risposta anti-influenzale soprattutto in una popolazione così vulnerabile 

come quella degli anziani. 

  Le cause principali di morbilità e mortalità associate con l’influenza sono da imputarsi alle SBI. La 

vaccinazione anti-influenzale è considerata ad oggi la migliore strategia per combattere la diffusione 

della malattia. Inoltre, dati risultanti da studi su modelli animali, rivelano che la vaccinazione anti-

influenzale è anche un metodo efficace nella prevenzione di polmoniti batteriche conseguenti 

all’influenza [5]. Purtroppo i vaccini attualmente in commercio sono testati soltanto per la loro capacità 

di indurre anticorpi neutralizzanti specifici per il virus influenzale omologo al ceppo contenuto nel 

vaccino stesso. Non sono molto diffusi studi riguardanti la protezione indotta dai vaccini nei casi 

d’infezioni di virus influenzali eterosubtipici (cioè varianti antigeniche dovute a mutazioni all’interno di 

un ceppo influenzale) o eterologhi (le cui proteine HA e/ o NA differiscono da quelle presenti nel 

vaccino). Inoltre occorre notare che non sono stati ancora stabiliti studi clinici appropriati per definire 

l’effettiva efficienza dei vaccini influenzali nei confronti delle SBI. 

Si può facilmente assumere che la prevenzione dell’infezione influenzale indotta dalla vaccinazione 

possa anche prevenire le relative complicazioni come le SBI, ma in caso d’infezione di virus eterosubtipici 

o eterologhi - situazione che può normalmente verificarsi durante la stagione influenzale – quale impatto 
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può avere una protezione parziale dall’influenza sulle superinfezioni batteriche? Inoltre formulazioni 

diverse dei vaccini anti-influenzali inducono negli individui infettati risposte immunitarie innate e 

adattative diverse che possono avere un impatto positivo o negativo sulle SBI. Questa situazione si 

verifica realmente e come può essere quantificata? 

In questo lavoro ci siamo fissati l’obiettivo di rispondere a queste domande utilizzando come 

modello di studio pre-clinico topi immunizzati contro l’influenza mediante svariate formulazioni di 

vaccini. Brevemente i topi BALB/c sono stati vaccinati per via sistemica con il vaccino a subunità specifico 

per il virus A/California/7/2009 (H1N1) sia utilizzando gli antigeni influenzali da soli, sia in formulazioni 

adiuvantate con i) MF59 in modo da indurre una risposta mista Th1/Th2 [6], ii) MF59+CpG per ottenere 

una risposta polarizzata verso il profilo Th1 [6] o con iii) LTK63 somministrato per via mucosale affinché 

la risposta immunitaria fosse indirizzata verso un profilo Th1/Th17 [7]. Dopo la vaccinazione, i topi sono 

stati infettati col virus A/Puerto Rico/8/1934 (H1N1) (PR8): tale virus è eterologo rispetto agli antigeni 

contenuti nel vaccino utilizzato ed è un ceppo virale adattato al topo. Nel corso dello studio abbiamo 

seguito l’evoluzione dell’infezione e vari aspetti della risposta immunitaria. I nostri risultati dimostrano 

che la somministrazione del vaccino mediante vie diverse e l’utilizzo di svariati adiuvanti potenziano la 

risposta immunitaria nei confronti dell’infezione influenzale creando nell’ospite un ambiente polarizzato 

verso i diversi profili Th: tutte le condizioni d’immunizzazione testate inducono elevate risposte 

immunitarie polarizzate verso i profili Th1, Th2 o Th17 e titoli anticorpali in grado di ristabilire 

velocemente la situazione immunitaria del polmone ad un livello pari a quello presente prima 

dell’infezione. Al contrario, il vaccino non adiuvantato si è dimostrato significativamente meno efficiente: 

i topi mostrano elevati titoli virali simili a quelli dei topi naïve ed hanno un robusto influsso di cellule 

immunitarie all’interno dei polmoni che identifica l’instaurazione di un processo infiammatorio. Occorre 

notare che la vaccinazione mucosale adiuvantata con LTK63, pur inducendo titoli HI più bassi, stabilisce 

un livello di protezione dall’infezione pari a quello della vaccinazione sistemica con MF59±CpG. Questo ci 

fa supporre che nel contesto di un’infezione eterologa, ai fini della protezione, sia molto importante il 

contributo di risposte immunitarie addizionali alla risposta anticorpale sistemica. 

Partendo dai risultati ottenuti, ci siamo chiesti se le varie tipologie di risposta immunitaria indotte 

durante l’infezione d’influenza avessero un impatto positivo o negativo su SBI causate da S. aureus 

USA300 resistente alla meticillina (MRSA). Questo ceppo batterico è stato infatti recentemente associato 

con un numero crescente di casi di polmonite fulminante post-influenzale [8]. A questo scopo abbiamo 

stabilito un nuovo modello d’infezione influenzale-batterica nei topi vaccinati per l’influenza. Le 

immunizzazioni sono state eseguite come in precedenza in modo da polarizzare le risposte immunitarie 
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verso i vari profili Th. In seguito i topi sono stati infettati col virus influenzale PR8 e sei giorni dopo co-

infettati con S. aureus. In questo modello di co-infezione abbiamo seguito l’evolversi della malattia 

misurando il peso corporeo dei topi e quantificando la replicazione dei patogeni nei polmoni. 

Nel nostro modello di co-infezione le differenze tra le singole strategie di vaccinazione si sono 

marcate ancora di più. Sebbene il vaccino non adiuvantato proteggesse abbastanza bene dalla semplice 

infezione influenzale, è in grado di conferire soltanto una protezione parziale durante la co-infezione. 

Infatti, i topi vaccinati con tale formulazione sono soggetti a un’incontrollata crescita batterica e 

mostrano elevati livelli di morbilità e mortalità comparabili a quelli dei topi naïve. Si discostano dai topi 

naïve soltanto per la loro capacità di controllare la replicazione virale durante la SBI: mentre i topi naïve 

mostrano una seconda ondata d’incremento del titolo virale nei polmoni dopo l’infezione batterica - 

tipica conseguenza della SBI [9] -, i topi che avevano ricevuto il vaccino non adiuvantato continuano il 

controllo del virus indipendentemente dalla SBI. Comparando i risultati del vaccino non adiuvantato con 

quelli ottenuti dalle tre formulazioni contenenti adiuvanti, abbiamo dimostrato che tutti i vaccini 

adiuvantati sono superiori non solo nella prevenzione dell’influenza, ma anche nel caso della 

superinfezione batterica. In particolare i topi il cui sistema immunitario aveva una polarizzazione verso il 

profilo Th1 sono in grado di controllare più efficientemente l’infezione influenzale rispetto ai topi che 

avevano ricevuto una delle altre due formulazioni adiuvantate e inoltre la SBI non ha quasi impatto 

negativo su di loro.  

 Nel complesso i nostri risultati dimostrano che i vaccini influenzali adiuvantati sono un metodo 

efficiente per combattere non solo un’infezione influenzale eterologa, ma anche un’eventuale SBI. 

Abbiamo inoltre dimostrato che l’adiuvante MF59 è di estrema importanza per potenziare la risposta 

immunitaria nei confronti degli antigeni virali nel modello pre-clinico di topi anziani. MF59 può essere 

eventualmente implementato mediante l’aggiunta di “potenziatori” del sistema immunitario come ad 

esempio il CpG, in modo da rafforzare le risposte polarizzate verso il profilo Th1. Queste risposte, infatti, 

risultano essere superiori per la prevenzione sia della semplice infezione virale sia della co-infezione.  
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INTRODUCTION 

 

INFLUENZA VIRUS 

Influenza, commonly known as flu, is a contagious respiratory viral disease of global importance. 

Yearly, influenza viruses cause an estimated 3-5 million cases of severe illness, and 250,000-500,000 fatal 

cases [1, 10]. The global importance of influenza is evidenced by the World Health Organization’s (WHO) 

establishment of the Global Influenza Surveillance Network (GISN) in 1952 and an international vaccine 

development program on a scale not comparable to any other infectious disease [11]. 

The term Influenza derived from Italian language and was initially used to ascribe the cause of 

disease to some unfavorable astrological influences. Then, with the progress in medical science, the 

word came to designate, in all languages, human and animal respiratory illness caused by influenza virus 

infections. 

Structure and classification 

Influenza viruses are enveloped RNA viruses, belonging to the Orthomyxoviridae family. They are 

classified into three influenza virus genera, or virus types, influenza A, B and C, according to antigenic 

differences between their matrix and nucleoproteins. Influenza A, B and C viruses also differ with respect 

to host range, variability of the surface glycoproteins, genome organization and morphology. Humans 

are the only host for influenza B viruses, while influenza A viruses can infect a various range of animal 

species including birds, pigs, horses, dogs, and humans. Particularly influenza A viruses are responsible 

for pandemic outbreaks of disease and for most of the well-known annual flu epidemics. Influenza C 

virus, which is substantially different from the A and B viruses, is of minor importance for human 

influenza infections, causing only a mild common-cold-like disease. [The entire paragraph refers to [12]]. 

The A and B viruses have a segmented genome composed of eight gene fragments of single-stranded 

negative-sense RNA encoding 12 proteins: surface glycoproteins hemagglutinin (HA) and neuraminidase 

(NA), two matrix proteins (M1 and M2), the nucleoprotein (NP), three polymerase complex proteins PB1, 

PB2 and PA, and four non-structural proteins NS1, NS2, PA-X and PB1-F2. The RNA segments are 

packaged in the viral core which is surrounded by a lipid membrane, or “envelope”, derived from the 

plasma membrane of the infected host cell during the process of budding of progeny virus from the cell 
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surface. Influenza virion shape is roughly spherical with a diameter ranging from 80 to 120 nm, although 

pleomorphic particles may occur. The external lipid layer contains numerous copies of the two major 

spike glycoproteins HA and NA together with lesser amount of M2 proton-selective ion channel protein. 

HA and NA surface glycoproteins have antigenic properties, indeed they are able to induce antibody 

response in humans. [The entire paragraph refers to [12] and Fig. 1A].  

In humans, the primary targets for influenza viruses are epithelial cells in the upper and lower 

respiratory tract. Hemagglutinin binds to sialic acid-containing receptors on the host cell surface and is 

responsible for the penetration of the virus into the cell cytoplasm [13]. HA-specific antibodies are 

therefore able to block infection of cells and are believed to be the primary method by which prevention 

of infection occurs [14]. The second envelope glycoprotein neuraminidase has enzymatic activity 

catalysing the cleavage of sialic acid residues from glycoproteins or glycolipids on the surface of infected 

cells. Consequently NA action facilitates the release of viral progeny after inside-cell replication [15]. The 

third surface protein M2 forms a tetramer with ion channel activity. The inner side of the envelope that 

surrounds the influenza virion is coated by the antigenic matrix protein M1. By acidifying the 

environment inside virions, the M2 channel mediates the dissociation of ribonucleoproteins (RNPs) 

complex from M1-lining leading to virus uncoating process [16]. The viral RNPs complex forms the core 

of the virus that is constituted by each of the eight RNA segments wrapped in the nucleoprotein and 

attached to polymerase complex proteins (PB2, PB1, PA) [17]. [The entire paragraph refers to Fig. 1A] 

Influenza A viruses are classified into subtypes depending on their surface antigens HA and NA: 

currently 17 different HAs and 9 NAs are known [12, 18]. Virus subtypes are serologically distinguishable, 

i.e. antibodies to one virus subtype do not react with another. The current nomenclature system for 

influenza A viruses takes into consideration the virus type, geographic location of first isolation, strain 

number, year of isolation and virus subtype (Fig. 1B) [19]. 

 

 Figure 1 - Influenza virus structure and nomenclature. (A) Model of influenza A virus [20]. (B) Diagram of influenza 

nomenclature [21]. 

A B 
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Antigenic drift and shift 

Influenza viruses continuously undergo antigenic evolution to escape the pre-existing immunity [22]. 

This variation in viral proteins implies that immune responses mounted against earlier forms of the virus 

are less effective or completely ineffective against newer variants. Since the viral surface glycoprotein HA 

is the antigen against which virus-neutralizing antibodies are directed, variations in this protein are 

primarily responsible for the immune escape of influenza viruses. Other viral antigens undergo 

significantly less variation, but - under immunological pressure - may also contribute to the evasion of 

the immune defence of the host [23]. The antigenic evolution of influenza viruses is the leading cause of 

the occurrence of annual influenza epidemics and occasional pandemics. Influenza A viruses change their 

antigenic properties by two distinct mechanisms: “antigenic drift” and “antigenic shift”.  

Antigenic drift. Antigenic drift occurs via errors during replication, which are irreparable. The change 

produced by antigenic drift is due to error-prone polymerase resulting in accumulation of genetic 

mutations that are selected by immunological pressure for HA and to a lesser extent NA [24, 25]. Most of 

these mutations do not affect the conformation of the proteins; however, some of them cause 

alterations to the viral proteins such that the binding of host antibodies is impaired. Consequently, host 

antibodies raised to previously circulating strains can no longer efficiently inhibit infecting viruses, 

allowing the virus spread among the population [26]. During the seasonal influenza outbreaks, those 

virus particles that have successfully accumulated mutations to evade pre-existing immunity will prevail 

enhancing disease spread [22]. Accordingly, the influenza vaccines have to be reformulated almost every 

year to take account of the changing virus. 

Antigenic shift. Antigenic shift is a more dramatic change in virus antigenicity. Indeed the process 

leads to the introduction of new influenza A virus with antigenically distinct HA molecules in the human 

population. When this novel subtype is transmitted efficiently from human to human, it may cause a 

pandemic influenza outbreak, since neutralizing antibodies to this virus are absent in the population at 

large [22]. Past pandemic outbreaks are known to have been caused by re-assortment of gene segments 

between two or more influenza strains (e.g. avian and human) infecting at the same time a “mixing 

vessel” (e.g. humans or pigs) leading to the creation of a completely new influenza virus with gene 

segments from both parent viruses [26, 27]. However, recent studies suggest that pandemics could also 

occur without re-assortment. For example avian influenza viruses, like H5N1, could be directly 

transmitted from animal reservoirs into the human population, requiring only a small number of 

adaptive mutations [28]. 
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INFLUENZA DISEASE AND HISTORY 

Influenza disease and complications 

 Influenza viruses pose a grave and unique threat to human health. Most influenza infections are 

spread by virus-laden respiratory droplets that are expelled during coughing and sneezing. Occasionally, 

the virus is transmitted to people by pigs or birds. About 20% of children and 5% of adults worldwide 

develop symptomatic influenza A or B each year [29]. During an influenza illness, the primary causes of 

disease are related to infection and replication of the virus in the respiratory epithelium. Indeed virus 

production leads to lysis of the epithelial cells and desquamation of the respiratory lining. Influenza 

infection causes a broad range of illness, from symptomless condition through various respiratory 

syndromes, fever, disorders affecting the lung, heart, brain, liver, kidneys, and muscles, to fulminant 

primary viral and secondary bacterial pneumonia. The common circulating strains of influenza virus 

normally remain restricted to the respiratory tract and escape only under exceptional circumstances. The 

severity and course of disease are affected by the patient’s age - the very old and the very young are 

most susceptible to serious illness-, the degree of pre-existing immunity, properties of the virus, 

smoking, comorbidities (chronic heart, lung and kidney diseases, diabetes or immunosuppressive 

conditions), and pregnancy. Importantly secondary bacterial infections (SBIs), usually caused by S. 

pneumoniae or S. aureus, are known to be the “guilty parties” of a phenomenon known as “excess 

mortality” during influenza epidemics and pandemics, i.e. extraordinary high morbidity and mortality 

rate following influenza disease [2]. Although most influenza infections are self-limited, few other 

diseases exert such a huge toll of absenteeism, suffering, medical consultations, hospital admission, and 

economic loss. [The entire paragraph refers to [30]] 

Influenza pandemics  

If influenza epidemics are an important medical issue, pandemic outbreaks represent the real danger 

for human population associated with viral infection. Humanity experienced three influenza pandemics 

during 20th century and one in 2009. The most terrible outbreak was the Spanish flu (H1N1) in 1918, with 

an estimated 50 million deaths, justifying its description as “the last great plague of mankind” [31]. 

Notably studies have shown that bacterial pneumonia had a predominant role as a cause of excess 

mortality during this pandemic influenza: 95% of all severe illnesses and deaths were complicated by 

bacterial pathogens, most commonly by S. pneumoniae [32]. The successive pandemics in 1957 (Asian 

flu, H2N2) and 1968 (Hong Kong flu, H3N2) were milder, but nonetheless also caused a total of 
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approximately 2 million deaths [33]. In 2009, a novel H1N1 virus emerged from swine and caused the 

first pandemic in more than 40 years [34]. During this influenza outbreak mortality rates were similar to 

recent seasonal epidemics and most deaths occurred in young adults, often with no underlying chronic 

conditions [35]. 

 

IMMUNE RESPONSE TO INFLUENZA VIRUS INFECTION 

When the influenza virus infects cells of the respiratory tract, both innate and adaptive immune 

responses are stimulated. The innate immune response develops very quickly and controls virus 

replication during the early stages of infection. While the innate immune system recognizes virus-

infected cells through mechanisms that are not antigen-specific, the cytokines produced during this early 

phase of the host's defense facilitate activation of subsequent antigen-specific adaptive immune 

mechanisms [36]. 

Innate immunity 

After initial exposure to a novel viral subtype, it takes between 5 and 7 days before specific 

antibodies and T cells arrive in the lung to definitively clear the virus. Consequently during first days of 

infection the activity of innate immunity is critical.  

First line of defense against influenza virus is represented by physical barriers (e.g. mucus and 

collectins) that aim to prevent infection of respiratory epithelial cells. Influenza virus that enters the host 

through the oral or nasal cavities is first countered by the mucus that covers the respiratory epithelium. 

If the virus is successful in getting through the mucous layer, it must next attach to and invade the 

respiratory epithelial cells. From there, the virus can spread to both non-immune and immune cells - 

such as macrophages and dendritic cells (DCs) - in the respiratory tract [37, 38]. Rapid innate cellular 

immune responses are mounted at this point with the aim to control virus replication.  

Respiratory epithelial cells and those of innate immunity detects influenza infection through the 

recognition of pathogen associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs); 

these PAMPs are specifically present in the pathogen or are generated during infection [39]. Three 

distinct classes of PRRs are involved in the recognition of influenza-associated PAMPs: the Toll-like 

receptors (TLRs) which recognize different forms of viral RNA; retinoic acid-inducible gene I (RIG-I) 

receptor specific for 5ʹ-triphosphate RNA; and the nucleotide oligomerization domain (NOD)-like 

receptor family pyrin domain containing 3 (NLRP3) recognizing various stimuli [27]. RIG-I and NLRP3 
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detect virus that is present within the cytosol of infected cells (cell-intrinsic recognition), whereas TLR3 

detects virus infected cells, and TLR7 (and TLR8 in humans) detect viral RNA that has been taken up into 

the endosomes of sentinel cells (cell-extrinsic recognition) [40]. The interaction PAMPs-PRRs initiates 

antiviral signaling cascades, resulting in the production of type I interferons (IFN-α/β), pro-inflammatory 

cytokines as various interleukins (IL-1β, IL-18, IL-6, IL-12), eicosanoids and chemokines that together lead 

to recruitment of neutrophils, activation of macrophages and maturation of DCs [41]. Type I IFNs, 

produced by macrophages, pneumocytes and DCs, stimulate the expression of hundreds of genes that 

are collectively known as IFN-stimulated genes (ISGs) in neighboring cells, which induce an antiviral state 

[42-44]. Pro-inflammatory cytokines and eicosanoids cause local and systemic inflammation, induce 

fever and anorexia, and instruct the adaptive immune response to influenza virus. Chemokines recruit 

additional immune cells, including neutrophils, monocytes and natural killer (NK) cells, to the airways.  

Macrophages. Upon infection of the alveoli, tissue-resident alveolar macrophages become activated 

and phagocytose apoptotic influenza virus-infected cells and thus limit viral spread [45, 46]. During 

influenza disease the lung macrophage pool is continuously replenished by circulating monocytes which 

differentiate into monocyte-derived macrophage after arriving to the site of infection [47]. If 

macrophages are essential for pathogen clearance, on the other hand once they become activated 

during influenza infection they produce nitric oxide synthase 2 (NOS2) and tumor necrosis factor alpha 

(TNF-α) and this way contribute to virus induced pathology [48-50].  

Natural killer cells. Virally infected epithelial cells are targeted also by NK cells, which mediate viral 

clearance. NK cells are cytotoxic lymphocytes of the innate immune system that are able to lyse infected 

cells in a MHC class I independent manner via a direct  or indirect  mechanism of recognition. The 

sialylated NKp44 and NKp46 receptors are bound by the HA proteins expressed on the surface of 

influenza virus-infected cells and this results in direct lysis of the infected cell [51, 52]. In addition, NK 

cells possess CD16 receptor (FcγRIII) which binds to the Fc portion of antibodies bound to influenza virus-

infected cells and mediate lysis of these cells. This process is known as antibody-dependent cell 

cytotoxicity (ADCC) [53, 54]. 

Monocytes and neutrophils. Monocytes and neutrophils are rapidly recruited to the site of infection 

and help to clear infected dead cells. Together with resident alveolar macrophages, phagocytic clearance 

of virus-infected cells by these recruited cells provides an important mechanism of viral clearance [55]. In 

addition to maturation to macrophages, monocytes that migrate to influenza virus-infected tissues can 

also differentiate into monocyte-derived (myeloid) dendritic cells (mDCs) which are the key antigen-
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presenting cells for efficient initiation of adaptive immunity. But they contribute also to innate antiviral 

immune responses secreting type I IFN [56, 57]. The role of neutrophils in viral infection resolution or 

pathogenesis is not yet fully clear. It is well established that neutrophils - together with monocytes - are 

major effectors of acute inflammation characterizing anti-viral host response. But as for monocyte/ 

macrophages their hyperactivation can lead to lung immunopathology [58]. On the other hand recent 

studies showed that neutrophils can also ameliorate lung injury and the development of severe disease 

during influenza infection [59]. 

Dendritic cells. Lung DCs are a heterogeneous population and consist primarily of mDCs - also named 

conventional DC (cDC) - and plasmacytoid DCs (pDCs). DCs are professional antigen presenting cells 

(APCs) which form an important bridge between the innate and the adaptive immune system. The DCs 

are situated underneath the airway epithelium barrier and monitor the airway lumen via their dendrites 

that are extended through the tight junctions between the airway epithelial cells. DCs can detect 

opsonized (neutralized) virions and apoptotic bodies from infected cells but can also be infected 

themselves. In both cases DCs migrate, dependent on CCR7 chemokine receptor, to the draining lymph 

nodes (dLNs), where they present influenza virus-derived antigens to T cells and activate them [60, 61]. 

The DCs are able to degrade the viral proteins and present subsequently the immuno-peptides 

(epitopes) by MHC class I or class II molecules. In case of direct virus infection of DC, proteasomes in the 

cytosol degrade viral proteins into small peptides which are transported to the endoplasmic reticulum 

(ER) where they are loaded to MHC class I molecules. These MHC class I peptide complexes are then 

transported via the Golgi complex onto the cell membrane where they can be recognized by virus-

specific CD8+ cytotoxic T cells (CTLs) [62-64]. Instead, for MHC class II presentation DCs need to acquire 

viral antigens through phagocytosis of virus particles or apoptotic epithelial cells [65, 66]. Viral proteins 

are degraded into smaller peptides in endosomes/ lysosomes and presented on the cell surface in MHC 

class II peptide complexes which can be recognized by CD4+ T helper (Th) cells. Th cells assist B cells to 

proliferate and mature into antibody-producing plasma cells. Via this route of antigen acquisition, DCs 

can also present epitopes in a MHC class I-mediated fashion to CD8+ T cells. This is also known as cross-

presentation. In addition to their critical role in initiating adaptive immune responses,  DCs contribute to 

the antiviral innate immune response by secreting the powerful antiviral cytokine IFN-α/β in response to 

viral infection [40]. [Details about innate control of adaptive immunity are resumed in Fig. 2] 
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Figure 2 - Innate control of adaptive immunity to influenza. Innate immune cells, particularly DCs, in the 

respiratory tissues acquire antigens either through direct infection or by uptake of influenza-infected dead cells and 

undergo maturation process triggered by TLR7 or RIG- I-signaling, under the influence of type I IFNs produced by 

macrophages and pDCs. Respiratory DC subsets (CD103
+
 cDCs, CD11b

+
 cDCs and pDCs) migrate to dLNs, where they 

can transfer influenza antigens (Ag) to LN-resident CD8α
+
 cDC. In the dLNs respiratory CD103

+
 cDCs together with 

CD8α
+
 cDCs stimulate the naïve CD8

+
 T cells to proliferate and differentiate into cytotoxic effector CD8

+
 T cells, in a 

CD24-dependent manner. On the other hand, CD11b
+
 cDCs drive the activation of CD8

+
 T cells, mainly effector T 

cells at later stage of infection, to induce memory CD8
+
 T cells. Interaction of naïve CD4

+
 T cells with cDCs generates 

IFN--producing Th1 cells, which in turn facilitates the differentiation of effector B cells in a TLR7-dependent 

manner. These effector cells migrate from dLNs to respiratory tissues, where they have second interaction with Ag-

bearing innate immune cells to undergo further activation and differentiation to terminal effector cells that secrete 

effector molecules to control virus spread [67]. 
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Adaptive immunity 

If the influenza virus is successful in establishing infection despite defenses mounted by innate 

immunity, the ultimate clearance of the virus requires the action of adaptive immunity. This consists of 

humoral and cellular responses mediated by virus-specific antibodies and T cells respectively (Fig. 3). 

The lung presents especially delicate anatomical structures which necessitate a fine balance of pro- 

and anti-inflammatory responses for their preservation. Well-timed, appropriately placed and strictly 

regulated T cell and B cell responses are essential for protection from infection and limitation of 

symptoms, whereas poorly regulated inflammation contributes to tissue damage and disease. The 

specialized needs of the pulmonary environment impose that highly compartmentalized and sequential 

immune responses are essential for minimizing loss of function during the inflammatory processes of 

antiviral defense. 

 

Figure 3 - The roles of adaptive T cells and B cells in respiratory viral infection. During acute respiratory viral 

infection, humoral and cell-mediated immunity act at different points in time to limit disease. Mucosal 

immunoglobulins A (IgA) generated during previous encounter with virus can prevent or limit infection. IgG in the 

lungs can limit more severe disease. T cells are beneficial in terms of eliminating virus-infected cells; they 

coordinate a regulated immune response and, as T follicular helper (TFH) cells, promote high-affinity durable 

antibodies. Failure to control viral dissemination can lead to severe disease. Regulatory T (Treg) cells restrain 

effector responses through various mechanisms, including suppressive cytokines (IL-10, IL-35 and TGF-β) and 

possibly active killing via perforin and granzyme B (GzmB). An over-exuberant or poorly regulated immune 

response can also lead to damaging immunopathology [68]. 
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Humoral immune response. Influenza virus infection induces the production of virus-specific 

antibodies by B cells [26]. In particular, antibodies directed to the viral HA and NA surface glycoproteins 

correlate with protective immunity [69]. The HA-specific antibodies bind to the trimeric globular head of 

the HA predominantly and inhibit virus attachment and entry in the host cell leading to the 

neutralization of the pathogen [70-72]. Additionally these antibodies facilitate phagocytosis of virus 

particles by Fc receptor expressing cells and their binding to HA expressed on infected cells mediates 

ADCC [53]. Unfortunately due to the high variability in the HA globular head most antibodies directed 

against this glycoprotein are strain-specific and fail to neutralize heterologous variants and viruses of 

other subtypes [19, 22, 73, 74].  

Also antibodies specific for NA have anti-influenza protective potential. NA enzymatic activity is 

essential for the release of newly formed virus particles from infected cell [12]. Therefore by binding NA, 

antibodies do not directly neutralize the virus - as HA-specific antibodies - but inhibiting its enzymatic 

activity they limit virus spread and thus shorten severity and duration of illness [75-78]. Furthermore, 

NA-specific antibodies may also contribute to clearance of virus-infected cells by facilitating ADCC [53]. 

M2 protein is the third component of influenza virus envelope. Since the protein is highly conserved 

among influenza viruses of different subtypes, M2-specific antibodies are likely to afford heterosubtypic 

immunity [79-81]. Unfortunately the protein is present at low concentrations in infected cells and thus 

M2-specific antibodies are raised after natural infection only to a limited extent.  

After infection, antibodies are also induced against other viral proteins, including NP [82]. As M2, 

also NP is greatly conserved between influenza viruses and consequently NP-specific antibodies could 

potentially contribute to heterosubtypic immunity. Although NP-specific antibodies are non-neutralizing, 

it was shown in mice that they contribute to protective immunity [83, 84]. However, their exact 

mechanism of protection remains to be elucidated, but may include ADCC of infected cells and 

opsonisation of NP, resulting in improved T cell responses [85, 86]. 

Antibodies are produced by activated B cells in different isotypes: by a process called 

“immunoglobulin class switching” B cells are able to progressively produce antibodies of various isotypes 

without changing their antigen specificity [87]. The main antibody isotypes in the influenza-specific 

humoral immune response are IgA, IgM and IgG. IgM antibodies initiate complement mediated 

neutralization of influenza virus and are a hallmark of primary infection [88, 89]. Mucosal or secretory 

IgA (sIgA) antibodies are produced locally and transported along the mucus of the respiratory tract by 

transepithelial transport and can protect airway epithelial cells from infection [90, 91]. Serum IgAs are 

produced rapidly after influenza virus infection and their presence is indicative for recent influenza virus 
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infection [92, 93]. Serum virus-specific IgG antibodies predominantly transudate into the respiratory 

tract and correlate with long-lived protection, provided that the antibodies match the strains causing the 

infection [94-96]. 

Memory B cells are “stored” to generate a greater and more rapid secondary response on 

reencounter with antigen. B cell memory is particularly important for responses to respiratory viruses, as 

influenza virus, to which people are commonly exposed multiple times throughout their lives. Classically, 

recurrent encounter with viral antigens should lead to boosting of antibody titers that ultimately leads to 

complete protection. However, influenza virus has evolved various ways to evade host immunity. Host 

antibody response is extremely antigen-specific and influenza virus, thanks to the high variability rate of 

its major antigenic proteins (i.e. HA and NA) via antigenic drift, is able to escape pre-existing humoral 

response [24, 25].  

Besides B cell responses, influenza virus infection induces a cellular immune response, including 

virus-specific CD4+ T cells and CD8+ T cells. These cells together play an important role in regulation of 

the immune response and viral clearance. 

CD4+ T cell immune response. Efficient activation of naïve CD4+ T cells depends on three distinct 

signals: they are activated after recognizing virus-derived MHC class II-associated peptides on APCs (1st 

signal) that also express co-stimulatory molecules (2nd signal) [65]. The activated CD4+ T cells undergo 

extensive cell division and differentiation, giving rise to distinct subsets of effector T cells. The 

differentiation of polarized effector T cells is controlled by unique sets of transcription factors, the 

expression of which is determined by multiple signals but particularly by soluble factors as cytokines that 

act on responding CD4+ T cells during their activation (3rd signal). The best known CD4+ T cells subsets are 

Th1 and Th2 cells, which are characterized by their production of IFNγ and IL-4 cytokine, respectively 

[97]. Specialized B cell helpers, known as TFH cells and the pro-inflammatory Th17 cell subset also 

develop, along with Treg cells, which are essential for avoiding over-exuberant immune responses and 

consequent immunopathology [98].  

The successful clearance of viral pathogens is often depends on complex CD4+ T cell responses that 

encompass multiple Th cell subsets. A key role of CD4+ T cells is to ensure optimal responses by other 

lymphocytes. CD4+ T cells are necessary as helpers to promote B cell antibody production [99, 100] and 

are often required for the generation of cytotoxic and memory CD8+ T cell populations [101, 102]. 

Moreover recent studies have defined additional roles for CD4+ T cells in enhancing innate immune 

responses and in mediating non-helper antiviral effector functions.  Interestingly CD4+ T cells with 
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intrinsic cytotoxic activity toward infected cells have been described in several models of viral disease as 

well as in the clinic [103, 104]. 

Importantly CD4+ T cell responses can target relatively conserved internal influenza proteins (e.g. M1 

and NP), implying that these cells may have the potential to provide influenza-specific heterologous 

immunity. In the absence of neutralizing antibody response, CD4+ T cells have a fundamental role in 

limiting severity of influenza infection by new strains [105, 106]. 

CD4+ Th cell subsets. In contrast with canonical definitions, effector T cells that are found in vivo are 

often characterized by plasticity and heterogeneity in terms of their cytokine-producing potential. 

Nevertheless, the CD4+ T cells that are generated in response to influenza infection mainly have a Th1 

phenotype and produce large amounts of IFNγ [102]. It was historically thought that Th1 cells exclusively 

promoted cytolytic activity of CD8+ T cell during viral clearance [97] while Th2 cells were needed to drive 

optimal humoral immune responses [107, 108]. Thus, the predominance of Th1 cells over Th2 cells 

during influenza infection was somewhat surprising, given the important role of neutralizing antibodies 

in pathogen clearance and in providing long-term immunity to re-infection. However deepened studies 

have shown that both Th1 and Th2 cells provide efficient help for the generation of neutralizing antiviral 

IgG responses [109]. In particular the Th1-signature cytokine, IFNγ, enhances IgG2a class switching, and 

this explains why IgG2a is usually the dominant isotype in IgG responses generated against viruses [110]. 

Interestingly, several studies have found that, far from promoting antiviral responses, Th2 cell-associated 

cytokines (IL-4 in particular) have a strong negative impact on immune protection and drive 

immunopathology during infection with many viruses, including influenza virus [111, 112]. However Th2 

- together with TFH cells - remain extremely important for the development of a robust antibody 

response against influenza virus [107]. The roles of Th17-type effector responses during viral infection 

are not well understood, but virus-specific IL-17-producing CD4+ T cells have been detected in mice 

following infection with influenza virus [113], although at levels lower than those of Th1 cells. Th17 cells 

are implicated in driving harmful inflammation during autoimmunity, and IL-17 may also contribute to 

immunopathology during responses against influenza virus [114]. However, in some cases, Th17 cells 

contribute to host protection against viruses. One protective mechanism mediated by Th17 cells might 

be the promotion of enhanced neutrophil responses at sites of infection. IL-17 upregulates CXC-

chemokines that promote neutrophil recruitment [115], and neutrophils can contribute to protection 

against certain viruses, including influenza virus [59]. 
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CD4+ T follicular helper cell. Following influenza virus infection, TFH cells direct the formation of 

germinal centers (GCs), where they promote the generation of B cell memory and long-lived antibody-

producing plasma cells [116, 117]. TFH can address B cells differentiation towards higher affinity 

antibodies producing cells and moreover they modulate antibody class switching process. Thus, TFH cells 

are extremely important for generating durable antibody responses and protective immunity towards 

influenza infection. TFH exert their functions both by direct cell-to-cell signaling and secretion of 

modulators as IL-21, which promotes isotype switching to IgA and enhances Bcl-6 expression in B cells, 

thus augmenting memory generation [118]. Unfortunately it is not completely clear how distinct 

cytokine-polarized CD4+ T cell subsets influence the B cell response during primary viral infection. One 

possibility is that distinct Th cell subsets, such as Th1, Th2 and Th17 cells, can each develop into TFH cells 

and provide efficient help for B cells [119]. 

CD8+ T cell immune response. Naïve CD8+ T cells are activated after recognition of viral epitopes 

associated with MHC class I molecules on APCs in the dLNs, and subsequently differentiate into CTLs 

[62]. After activation, these cells are recruited from dLNs to the site of infection where they recognize 

and eliminate influenza virus-infected cells and thus prevent production of progeny virus [120]. As CD4+ T 

cells, also influenza virus-specific CTLs are mainly directed against epitopes of the highly conserved 

internal viral proteins, like M1, NP, PA and PB2. Therefore, CTLs display a high degree of cross-reactivity 

with influenza viruses of various subtypes [105, 121, 122]. CTLs lytic activity is mediated by the release of 

perforin and granzymes (e.g. GrA and GrB). Perforin permeabilizes the membrane of the infected cells 

and subsequently granzymes enter the cell and induce apoptosis [123, 124]. Furthermore, pro-

inflammatory cytokines are produced, like TNF-α, which also inhibit virus replication and enhance lytic 

activity [125, 126]. Finally CTLs also induce apoptosis of infected cells through Fas/FasL interactions 

[124].  
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IMMUNOSENESCENCE AND INFLUENZA INFECTION IN 
ELDERLY 

According to the United Nations Population Division, the number of elderly persons is expected to 

increase from currently 600 million to nearly 2 billion worldwide by 2050, and in developed countries 

25% of the population will be older than 65 years because of advances in average life expectancy [127]. 

Influenza directly or indirectly contributes to the four leading causes of global mortality, at rates that are 

highest in older adults. Currently, between 250,000 and 500,000 influenza-related deaths occur annually 

in the over 65 years of age population worldwide [1]. 

Immunosenescence and Inflammaging  

As we age, changes occur in both the innate and adaptive immune compartments leading to 

increased susceptibility to developing diseases. “Immunosenescence” is the biological aging process 

associated with progressive decline in systemic immunity and increased prevalence of cancer, auto-

immune and chronic diseases, poor responses to vaccination, and increased vulnerability to common 

infectious diseases such as influenza [128]. “Immunosenescence” does not mean “immunodeficiency”. 

Although a decline of immunological functions is evident, there are elements of the system that are 

preserved (e.g. CD8+ T cell poly-functionality and number of resident macrophages) [129], while others 

are even increased (e.g. innate/ inflammatory cytokine production by macrophages) [130]. Therefore, it 

has been suggested replacing the term “immunosenescence” with “senescent immune remodeling”, 

which better describes the plasticity of the ageing immune system [131]. 

The changes in the immune response of the elderly are principally due to intrinsic defects within 

immune cells that show altered phenotype and function [132-134], and possibly to defects in the bone 

marrow and thymic stroma microenvironment [135]. Other contributing factors include changes 

occurring in the ageing body, such as increased cellular death [136], increased oxidative stress events 

[137], nutritional status [138], hormonal dysregulation [139], comorbidities [140], and chronic diseases 

(e.g. diabetes and cardiovascular diseases) [141]. All these factors contribute to create a basal chronic 

low grade inflammation called “inflammaging” that maintains innate immune cells in a permanent low 

activation status [142]. This may cause excessive inflammation and tissue damage upon infectious 

challenges.   
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Influenza infection in elderly 

Older adults (>65 years of age) are particularly vulnerable to influenza illness [1]. This is due in part 

to reduced immune responsiveness, but also to the dramatic increase in high-risk chronic conditions that 

impact on influenza outcomes among the elderly [143-145]. Among community-dwelling older adults, 

increasing age has been correlated with increased risk of hospitalization due to secondary infections or 

pneumonia and influenza [146, 147]. 

Pathogenesis and clinical features. Mortality rates for infectious diseases are often higher among 

older adults than among younger adults with the same infection [148]. In the case of influenza, older 

adults account for 90% of the total number of deaths [149] and the risk of death increases among older 

adults afflicted with chronic disease [145]. However, mortality is not the bigger issue about influenza 

disease burden in older population, indeed for each death there are many more hospitalizations 

resulting from complications [146, 150], which are more frequent among older adults [147]. Notably, in 

comparison to younger population, elderly patients experience higher rate of lower respiratory tract 

symptoms, with productive cough, wheeze and chest pain [151]. Considering that older people may lose 

2-3% of muscle power per day of bed rest and that influenza is also associated with a decline in major 

physical functions in this subjects, it results obvious that the disease often becomes a trigger for serious 

disability in older patients [152]. Indeed, it is likely that the majority of influenza-related disability occurs 

in older adults due to the higher risk of hospitalization and long hospital stays in this population.  

Influenza is also the cause of exacerbations of pulmonary and cardiovascular disease [153], and is the 

primary source of the winter-season increase in mortality among patients suffering from chronic disease 

such as ischemic heart disease, stroke and diabetes [154-156]. Finally pneumonia has become an 

increasingly significant cause of morbidity and mortality in the aging population [157], and interestingly, 

although primary influenza infection alone can lead to adverse outcomes, SBIs during and shortly after 

recovery from influenza infections are more common reasons for influenza-associated illness in elderly 

[147, 158]. 

Immunosenescence impact on influenza infection and vaccination. In humans and mouse models 

studies are emerging to understand the correlation between immunosenescence and higher rate of 

influenza infection in elderly, with the final aim to potentiate currently available influenza vaccines.  

Distinct studies suggest that age-related dysfunction occurs in pathogen sensing pathways and/ or 

cytokine production by innate immune cells. The functions of DCs are impaired by aging: cells appear to 

be constitutively activated in people >65 years of age and are characterized by dysregulated cytokine 
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production that may limit further activation via TLRs engagement. Interestingly this impairment of DCs 

response has been shown to be strongly associated with poor antibody response to influenza 

immunization in aged subjects [159]. Furthermore aged mice infected with influenza have shown 

impaired activation of the NLRP3 inflammasome in DCs, leading to reduced production of mature IL-1β 

and IL-18, and impaired caspase-1 activation [160]. Ageing is also associated with an increase in the 

number of phagocytes, macrophages and neutrophils. In particular numbers of alveolar macrophages, 

which are the first cells encountered by pathogens or antigens in the respiratory airway, are increased 

with age. However they have been shown to have decreased phagocytic potential, inefficient chemotaxis 

and can also contribute to “inflammaging”, reducing influenza virus clearance while increasing 

immunopathology [142, 144, 161]. Notably similar results have been obtained from in vitro studies on 

neutrophils from older adults [162]. 

As innate immunity, also the adaptive response is impaired by immunosenescence [163]. Both naïve 

T and B cells are still able to undergo renewal, but a preponderance of memory T and B cells has been 

observed [134, 164, 165]. Age-related defects in naïve T cell activation, expansion, and differentiation 

may affect their helper function to B cells and lead to reduced humoral immune responses [166, 167]. 

Influenza-related studies have shown that CD4+ T cell functionality declines in the elderly leading to poor 

antibody and cellular responses to influenza vaccine [168, 169]. Particularly, several studies indicate that 

human age related susceptibility to influenza virus may be associated with a reduction in Th1 CD4+ 

responses and a relative diminished ability to kill virally infected cells [170, 171]. Likewise, Th17 cells are 

critical in mediating vaccine-induced immunity against several mucosal infectious diseases, and studies 

by Lee et al. have reported a reduced number in the elderly [172]. 

Recent studies showed that CD8+ T cells responses to influenza are decreased in magnitude and 

show altered kinetics in aged mice [173, 174]. Similarly to T cell responses, also the humoral response 

clearly declines with age due to reduced naïve B cell numbers or repertoire diversity [133]. Consequently 

in aged individuals the antibody response to new antigens is quantitatively decreased, less efficient and 

with lower avidity [175, 176]. 
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INFLUENZA-BACTERIAL CO-INFECTION 

Post-influenza bacterial pneumonia is a major cause of increased morbidity and mortality associated 

with both seasonal and pandemic influenza virus illness. The influenza-bacteria co-pathogenesis is 

characterized by complex interactions between co-infecting pathogens and the host, leading to the 

disruption of physical barriers, dysregulation of immune responses and delays in a return to homeostasis 

[2]. The net effect of this cascade can be the overgrowth of the pathogens, immune-mediated pathology 

and increased morbidity. 

Epidemiology and microbiology of co-infections 

The epidemiology of co-infections remains difficult to assess with sufficient accuracy. The attribution 

of mortality to influenza or relative complications is complex [177], as most deaths are from 

complications of influenza, rather than the primary disease. Moreover, a precise viral etiology is 

infrequently confirmed by diagnostic testing or confounded by co-circulating pathogens and co-

infections [178].  

Most commonly associated pathogens in post-influenza SBIs are primarily S. pneumoniae and S. 

aureus followed by H. influenza and S. pyogenes. S. pneumoniae is the most frequently isolated pathogen 

associated with influenza [179], although deaths, especially in children, are also associated with S. aureus 

infection, as highlighted by the recent emergence of community-acquired methicillin-resistant S. aureus 

(MRSA) [180]. 

During non-pandemic years and most pandemic years, the age distribution of severe influenza-

related morbidity and mortality (which generally reflects bacterial pneumonia rates) exhibits a U- shaped 

pattern, with infants and the elderly most frequently affected [147]. Notably the three influenza 

pandemics of the 20th century (1918 H1N1, 1957 H2N2 and 1968 H3N2) and that of 2009 (pN1N1) are all 

associated with secondary bacterial pneumonia [32] (Fig. 4). 

The 1918 influenza pandemic caused 40-50 million of deaths. Notably the majority of disease cases 

were complicated by bacterial pathogens, most commonly by S. pneumoniae [32]. The patterns of 

mortality in the next two pandemics in 1957 and 1968 resembled those of seasonal influenza in the 

respect that bacterial co-infections were a less likely cause of death than they were during the 1918 

pandemic. However bacterial pneumonia, caused predominantly by S. aureus, still accounted for 44% of 

deaths in 1957 [181]. Although the incidence and distribution data of pneumonia-associated mortality 

were similar between 1957 and 1968, S. pneumoniae was the primary pathogen of bacterial 

superinfection in the 1968 pandemic.  
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Even if S. pneumoniae was considered to be the most common cause of SBI in the decades after the 

1968 pandemic, S. aureus is emerging as a cause of fulminant pneumonia in association with influenza in 

many parts of the world [180, 182]. In particular the USA300 and USA400 clonotypes of S. aureus seem 

to be likely to cause SBIs with influenza, compared with other circulating strains, probably due to altered 

expression or regulation of particular bacterial virulence factors, such as cytotoxins or adherence factors 

[183, 184]. H. influenzae has become less frequently associated to SBIs following the introduction of the 

H. influenzae type B conjugate vaccine in 1985 [185]. 

The first pandemic of the 21st century in 2009 (pH1N1) is still being researched. In contrast to the 

1957 and 1968 pandemics, mortality rates were similar to recent seasonal epidemics and high 

proportion of cases and deaths occurred in young adults, often with no underlying chronic conditions 

[35]. The precise effect of SBIs remains unclear; some estimates put excess mortality from influenza and 

pneumonia as low as 10%, which is lower than that of many seasonal influenza epidemics [186]. S. 

pneumoniae and S. aureus were the most common causes of SBIs, with regional variations in their 

frequency [187-190]. The importance of S. aureus in 2009-2010 was probably due to strain-specific 

features of the recently emerged USA300 clonotype, such as Panton-Valentine leukotoxin (PVL) 

expression [182], coupled with increased effects of pneumococcal vaccines in the past years [190]. 

 

Fig. 4: Timeline of influenza-bacteria co-infections since 1918. The bacterial species most commonly isolated from 

serious or fatal cases of disease are listed for each pandemic. Notes: (1) The broken gray line indicates that 

although influenza B virus was not isolated until 1940, it is inferred to have circulated prior to this time. (2) 

Although the first isolation of influenza A virus was in 1933, the 1918 pandemic strain has been resurrected from 

frozen material. (3) The seasonal H1N1 strain that re-emerged in 1977 was most similar to viruses that circulated 

around 1950; the 2009 “swine” H1N1 had an H1 hemagglutinin that differs phylogenetically from the previously 

circulating human H1N1 strains [191]. 
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Mechanisms of co-pathogenesis 

During an influenza virus infection, the respiratory tract environment is remodeled facilitating 

efficient bacterial invasion. Although mostly based on animal-model data, it is clear that co-pathogenesis 

between influenza and superinfecting bacteria has a multifactorial basis [2, 192, 193] (Fig. 5). 

Interestingly, one of the critical factors is the timing of SBI: several studies showed that early after 

influenza infection (2-3 days) mice have reduced susceptibility to superinfections, while during the 

recovery stage (6-7 days) they are extremely vulnerable [193, 194]. 

 

Figure  5 - Influenza-bacterial interaction during co-infections. Numerous alterations of the respiratory epithelium 

and host immune responses occur during influenza infection that predisposes the host to co-infection with 

bacterial pathogens. Influenza infection results in epithelial surfaces exposure to bacterial attachment. Physical 

barriers are damaged, pathogen detection is decreased, anti-microbial peptides are downregulated, receptors are 

upregulated, virus production is enhanced, bacterial transepithelial migration is permitted, and repair mechanisms 

are lost. Several host responses are also dampened or altered. Macrophages, neutrophils, DCs, and NK cells have 

altered cytokine profiles and become impaired and/ or depleted. These changes result in decreased bacterial 

surveillance and eradication [192]. 
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Dysfunction of lung physiology. Historically, the generally accepted mechanism responsible for 

microbial synergy is that influenza virus-induced damage to the epithelial barrier provides increased 

attachment sites for bacteria, resulting in invasive disease [195]. Moreover the host depends on the 

mucociliary apparatus in the lung and nasal passages to clear invading pathogens, but during influenza 

infection ciliary beat frequency is decreased and ciliary motion becomes uncoordinated, thus this mode 

of bacterial removal is inhibited [196]. An important contribution to tissue damage is given by the viral 

cytotoxin PB1-F2 that can cause cell death and a cytokine storm [197]. Influenza-induced lung tissue 

damage in both humans and mice is greatest on day 6-7 after infection [198], which generally correlates 

with the time of greatest susceptibility to bacteria. However, viral strains that cause minimal epithelial 

cell damage still enhance subsequent bacterial infection in mice [199, 200]. 

Increased receptor availability. Bacteria express a range of virulence factors that can be used inside 

infected host for adherence to cell basement membrane or elements of the extracellular matrix such as 

fibrin, fibrinogen and collagen [201, 202]. Most virulent viruses, such as the mouse-adapted influenza 

virus strain PR8, cause substantial epithelial cell death in vivo, which exposes sites for adherence in the 

tracheobronchial tree [200, 203]. However most seasonal influenza strains do not cause severe lung 

injury but can still facilitate bacterial superinfection, although with lesser degree [204]. Three additional 

mechanisms have been discovered which might increase bacterial receptor availability. First, the 

influenza virus neuraminidase cleaves sialic acids exposing hidden receptors for bacteria adherence on 

host cells and disrupts sialylated mucins that can function as decoy receptors for the bacteria [205]. 

Notably bacteria causing lung infection as S. pneumoniae often produce NAs themselves in order to 

access receptors and avoid host defenses [206]. Second, the host inflammatory response to influenza 

infections can alter the regulatory state and surface display of multiple proteins, including some, such as 

the platelet activating factor (PAF) receptor that can be used to facilitate bacterial invasion [207]. Third, 

tissue wound healing generates changes in the airway that might provide adherence sites for bacteria 

during recovery from influenza [208]. 

Modulation of anti-bacterial immunity. Increasing studies about influenza and bacteria synergism 

have been focused into modulation of host immune responses by the virus. Respiratory bacteria 

activate, modulate and are eventually controlled by multiple responses of the immune system during 

invasion of the lungs [209, 210]. Influenza virus also manipulates many of these pathways by the 

expression of multi-functional accessory proteins, such as NS1, which potentially interfere with lung 

immune responses to bacterial invaders [211]. It has been demonstrated that early innate responses to 
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bacteria are compromised by the preceding influenza induction of interferons [212-214]. Type I IFNs are 

produced early after influenza recognition by innate sensors [42-44] and several possible mechanisms 

have been identified for their modulation of innate immunity towards secondary infecting bacteria. First 

of all type I IFNs signaling may suppress recruitment of macrophages and neutrophils and/ or impair 

their bactericidal capacity during superinfection at days 5 to 7 after influenza virus infection [214-216]. 

Moreover type I IFNs are able to block IL-17 responses by canonical αβ T cells or γδ T cells present in the 

lung tissue weakening Th17 local immunity which is essential to counteract respiratory bacteria invaders 

[213, 217]. Notably the antiviral state promoted by type I IFNs impairs also NK cell responses and this has 

been shown to be an upstream mechanism of depressed antibacterial activities by macrophages and 

neutrophils [218]. In addition, influenza viruses specifically deplete the airway-resident alveolar 

macrophages that are responsible for early bacterial clearance, which leads to a deficit in early bacterial 

surveillance and killing [219]. These alveolar macrophages die during the initial stages of infection and 

are replaced over the next two weeks by the proliferation and differentiation of macrophages from other 

cell classes, which creates a window of primary susceptibility that extends beyond the immediate viral 

infection. The impact of neutrophils on SBI is strictly related to the timing of viral-bacterial co-infection, 

indeed although properly functioning neutrophils are important to bacterial clearance early after 

influenza virus infection [194, 220], it is unclear the role of their dysfunction during the time period of 

enhanced susceptibility to superinfection at days 6 and 7 after influenza virus infection. It has been 

supposed that an increased accumulation of dysfunctional neutrophils in the lung late after influenza 

infection may contribute to increased susceptibility to superinfection via both impaired bacterial 

clearance and damage to the lung tissue [58, 203, 217, 221, 222]. Rynda-Apple et al. have showed that a 

fine regulation of IFNγ and IL-13 dictates susceptibility to SBI [194, 220]. Particularly at the early onset of 

influenza infection IL-13 blocks production of IFNγ leading to appropriate phagocytosis and clearance of 

bacteria [194, 220]. Then during recovery from influenza high amounts of IFNγ are present in lungs and 

this leads to downregulation of MARCO receptor on phagocytic cells with consequent impairment of co-

infecting bacteria phagocytosis and killing [212]. Finally during the clearance of influenza virus and the 

onset of wound healing, a general anti-inflammatory state is established with the aim to restore lung 

immune homeostasis [223]. This is characterized by increased IL-10 production, which in turn broadly 

suppresses multiple mechanisms that are involved in pathogen recognition and clearance [193, 224]. 

Influenza-induced desensitization of PRRs that are used by phagocytes to detect and respond to bacteria 

can persist for weeks or months and can contribute to late secondary infections after apparent recovery 

from the preceding viral illness [225].  
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Increased inflammation. Pneumonia is an inflammatory state of the lungs. Therefore, viral factors or 

host responses that increase inflammation in response to the pathogens contribute to the co-

pathogenesis of SBI. Particularly virulent viruses express the cytotoxin PB1-F2 that drives over-exuberant 

inflammatory responses with consequent increased cellular infiltration of the airways and cytokine storm 

[197]. Notably bacteria also express cytotoxins that contribute to inflammation, such as pneumolysin and 

S. aureus PVL, and these might synergize with the effects of PB1-F2 resulting in necrotizing pneumonia 

[210, 226]. Furthermore many of the inflammatory pathways activated by PPRs after recognition of viral 

or bacterial PAMPs overlap, leading to the synergistic activation of immune responses, with resulting 

excessive morbidity. Finally in the contest of depressed phagocytic activity [212, 214], neutrophil-

mediated inflammatory damage may occur in the lungs without effective pathogen control [227]. 

Facilitation of the viral infection. Although most of the mechanisms that are known involve viral 

facilitation of subsequent bacterial superinfection, it is now evident that factors that are expressed by 

co-infecting bacteria affect the virus as well. Bacterial modulation of viral infection may be mediated via 

direct interactions, such as by interference with antiviral immunity or by synergism or complementation 

by virulence factors that have similar functions. Studies in animal models have shown an increase in 

influenza virus titers during bacterial superinfections in which bacterial challenge follows the viral 

infection; this increased viral lung load is typically accompanied by delayed clearance via unclear 

mechanisms [183, 228, 229]. However, viral replication may be suppressed and morbidity may be 

diminished via the induction of innate immune responses if the bacterial infection precedes viral 

challenge [230]. Even if at this time no data are available, it is reasonable to hypothesize that the 

bacterial mechanisms that broadly interfere with innate immune mechanisms might also affect the 

immune response to respiratory viruses [231]. Finally there is evidence that the composition of the 

microbiome alters immune responses to influenza both by changing the activation set-point for antiviral 

responses and by influencing the development of adaptive immune responses [232, 233]. 

Approaches for prevention and treatment of SBI 

Considering the strong association of bacterial disease with antecedent influenza infections, there 

has been reasonable interest in determining whether prevention or treatment of the virus can eliminate 

or at least ameliorate SBI. Two classes of antiviral drugs are currently approved for use in patients with 

influenza: the M2 inhibitors, amantadine and rimantadine, and the neuraminidase inhibitors (NIs), 

zanamivir and oseltamivir [234]. Unlike antibiotics, which can eliminate or greatly reduce pathogen 

burden, existing influenza antiviral drugs are only able to stop progression of disease by preventing new 
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host cells from being infected. Nevertheless if treatments are administered early enough in the clinical 

course, they may delay progression of infection, allowing normal immune clearance mechanisms to gain 

the upper hand [235]. Unfortunately the major effects of anti-influenza treatment are symptom 

reduction and a more rapid recovery, not immediate clinical cure. Thus, the continued presence of the 

virus and the ongoing host response may predispose to SBI despite anti-viral treatment.  

NA enzyme has demonstrated to have an important role in post-influenza susceptibility to SBI [205], 

and preclinical studies in mouse models demonstrated that prophylaxis or early treatment with NIs 

improved influenza outcome and significantly reduced SBI [236]. Notably antiviral use decreases the 

incidence of SBIs, prolongs the interval between exposure to bacteria and development of disease, slows 

progression of pneumonia when it developed, and facilitates antibiotic treatment of the superinfecting 

bacteria.  

Other anti-viral therapies have been researched in the field of small molecules, monoclonal 

antibodies or small interfering RNAs. Specific blockade of the pro-inflammatory effects of PB1-F2 may 

diminish the severity of highly pathogenic influenza viruses and reduce SBI [197]. Moreover explorations 

have been started to find complementary strategies targeting bacterial toxins that are shown to 

synergistically interact with influenza viruses to enhance disease. Inhibition of the interferon antagonist 

NS1 should allow enhanced clearance of the virus, which could prevent several downstream effects on 

host immunity that likely increase susceptibility to bacteria [211]. Moreover use of collectin-like 

molecules that recognize the HA might diminish the diffuse alveolar damage caused by viruses that 

facilitate access to the lower respiratory tract to secondary invaders [236, 237]. Finally strategies of 

immunomodulation to reduce the inflammatory response during SBI have been proposed and data from 

animal models suggest that targeting specific pathways involved in inflammation might have success 

[238]. 

Interestingly antibiotic therapy is often unsuccessful in SBI cases: the use of bacteriostatic protein 

synthesis inhibitors has been shown to improve outcomes of secondary bacterial pneumonia, while 

bacteriolytic drug (e.g. ampicillin) can worse the pathology through enhanced inflammation during 

bacterial lysis [239].  

In conclusion, the most obvious way to prevent SBI is to prevent the antecedent viral infection 

entirely. Even if animal model data suggest that vaccination against influenza is an effective method to 

prevent subsequent secondary pneumonia [5, 240-242], influenza vaccine studies in humans have 

typically not been designed or appropriately powered to assess effectiveness against SBI. 
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ANTI-INFLUENZA VACCINES 

Vaccination against influenza is the most cost-effective method to prevent influenza infections [243, 

244]. Active immunization against any infectious disease, including influenza, aims at induction of 

antimicrobial immunity by inoculating the person with an attenuated or inactivated form of the 

pathogen involved. Generally immunization attempts to closely mimic the immune response to a natural 

infection, which is often considered the best strategy for protection. Consequently vaccination targets 

the adaptive immune response to stimulate B cells to differentiate to plasma cells that produce 

circulating antibodies and to develop sufficient number of pathogen-specific T cells that are activated 

upon re-exposure to the microbe during a natural infection. 

Background. Flu vaccine development began just few years after the first isolation of the influenza 

virus in 1933 [245, 246]. Pioneering observations demonstrated that influenza A/PR/8/34 (H1N1) virus 

would infect humans upon subcutaneous administration, inducing virus-neutralizing antibodies. Soon 

studies using formalin-inactivated whole-virus preparations were conducted and the first inactivated 

influenza vaccines were introduced in the 1940s [245, 246]. Even if early anti-influenza vaccine 

preparations were not consistently successful in reducing the incidence of febrile illnesses, they 

highlighted the importance of antigen potency and matching vaccine strains [246]. Subsequent 

multicenter studies commissioned by the U.S. Armed Forces Epidemiological Board used inactivated 

concentrated virus stocks incorporating multiple virus strains and found prophylactic protection and a 

much lower incidence of febrile illnesses in vaccinated groups than in controls, setting the foundations 

for influenza vaccination programs [247]. Finally in 1970s split-virus and subunit formulations were 

developed and proven to be less reactogenic compared to the whole-virus vaccine preparations despite 

comparable immunogenicity in primed populations [248, 249].  

From surveillance data to vaccine delivery. Global influenza epidemics emerge seasonally and 

typically occur during the winter seasons of the northern and southern hemispheres. The WHO meets 

twice annually to review surveillance data and make recommendations as to which strains should be 

contained in the following season influenza vaccine [11]. Usually two influenza A strains (one H3N2 and 

one H1N1) and an influenza B strain are recommended for vaccine preparation [11]. Several factors are 

taken into consideration when making recommendations regarding influenza vaccine composition: (1) 

predictions of what viral strains are likely to cause in the following season epidemics on the basis of 

worldwide surveillance data, (2) the antigenic similarity of a chosen vaccine strain to the predicted 
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circulating strain, (3) the immunogenicity of a selected strain to develop adequate humoral immunity, 

and (4) the suitability of a viral strain for use in vaccine production [11]. After the 3 strains are selected 

for influenza vaccine inclusion, the Center for Disease Control (CDC) provides reference viral seed strains 

to the national drugs regulatory agencies (as FDA and EMA), which subsequently distributes them to the 

vaccine manufacturers for production. Finally each vaccine lot is evaluated by national drugs regulatory 

agencies before delivery [11].  

Current influenza vaccines 

Current influenza vaccines are mainly produced by egg-based production methods: influenza viruses 

are propagated on embryonated chicken eggs and then viral particles are harvested from allantoic fluid 

and processed depending on the type of vaccine formulation [244]. Because vaccine manufacturers are 

dependent on the supply of vaccine-quality eggs, they cannot be flexible in the amount of doses 

produced. This can lead to vaccine shortages, especially during pandemic situations. To overcome this 

issue alternative production platforms, such as cell culture-based [250-252] or plant-based [253] vaccine 

production and synthetic DNA [254, 255] or RNA [256, 257] vaccines, are now under careful examination 

in preclinical and clinical studies.  

Seasonal trivalent influenza vaccine (TIV) formulations are made either with antigens from 

inactivated influenza or with live attenuated influenza viruses (LAIV), derived from two influenza A 

strains and one influenza B strain. In addition, even if TIVs are currently the most diffuse anti-influenza 

vaccination strategy, also quadrivalent influenza vaccine (QIV) formulations have entered the market 

recently, which adds an additional influenza B strain [258].  

The induction of HA-specific serum antibodies, as typically measured by a hemagglutination 

inhibition (HI) or virus neutralization (VN) assay, is used as an indicator vaccine efficacy. On the basis of 

clinical studies, it has been established that an antibody titer ≥40 may be considered as immune 

correlate for protection for inactivated influenza vaccines in adults [70, 259, 260]. Immune correlates of 

protection for other vaccine platforms are still poorly characterized. 

Inactivated influenza vaccines. Inactivated influenza vaccines include 4 types of vaccine preparation 

with characteristic structural organization or viral components: whole inactivated virus (WIV), split, 

virosomal or subunit antigen. In WIV formulation viruses are chemically inactivated with formalin or β-

propiolactone and subsequently concentrated and purified to remove non-viral protein contaminants 

[245]. WIV vaccines were the first to be used in widespread annual influenza vaccination campaigns. 

However, these preparations caused local and systemic adverse effects upon administration probably 
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due to the presence of impurities, such as egg proteins, in the vaccine [261]. Split and subunit vaccines 

have been shown to be less reactogenic and consequently WIV vaccines were mostly abandoned when 

the other two preparations entered the market.  

Currently the majority of influenza vaccines available consist of either split viruses or subunit 

influenza antigens. Split vaccines are influenza virus particles treated with detergent or diethyl ether to 

dissociate the viral lipid envelope and expose all viral components [262]. Split viruses are now widely 

used in TIV formulations due to their adequate immunogenicity and relative ease of production [244]. In 

subunit vaccines the HA and NA proteins are separated from the viral nucleocapsid and lipids and are 

further enriched through additional purification steps [263, 264]. Due to their “high purity”, subunit 

vaccines are the least reactogenic vaccine preparation currently available, but on the other hand the 

addition of adjuvants to the antigens is sometimes required to reach adequate immunogenicity in the 

elderly [265, 266]. Moreover in unprimed populations, such as young children, split virus and subunit 

vaccines are less immunogenic than in adults and two doses are required to achieve a sufficient antibody 

titer [245, 267]. 

A standard dose of TIV contains 15 µg of HA per strain (total HA concentration of 45 µg) and is 

administered as a single dose in people >9 years [268]. Younger children (between 6 months and 8 years 

of age) require two doses administered 4 weeks apart, if they have not been vaccinated in previous 

influenza seasons [268]. Usually TIV is delivered as an intramuscular (i.m.) injection, although 

intradermal (i.d.) formulations are also available [268, 269]. 

In addition to split and subunit vaccines, two other vaccine preparations are currently used though 

with less frequency. A recombinant HA subunit vaccine has been recently approved: it contains a high 

dose of antigen (45 µg per strain) to reach the required immunogenicity. It has shown high efficacy in 

healthy adults and the elderly while lower applicability in children requiring additional formulation with 

adjuvants [270, 271]. Finally virosomal TIV formulations have been used mainly in Europe since 1997 

[272]. Virosomes are reconstituted influenza virus envelopes consisting of HA, NA and viral 

phospholipids. Their particulate structure enables virosomes to retain viral membrane fusion and cell-

binding capabilities, which could increase their immunogenicity, compared to subunit and split vaccines 

[244].  

Live-attenuated influenza vaccines. LAIVs are administered intranasally (i.n.) and aim to mimic the 

natural infection inducing localized mucosal cellular and humoral immune response [273]. They are 

produced by serial passage of the virus in eggs under suboptimal conditions resulting in viruses with a 

temperature-sensitive phenotype: attenuated viruses are able to grow at 25°C - i.e. the temperature of 
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nasal passage - but not at temperature higher than 35°C which is characteristics of the respiratory tract 

[245]. Although LAIVs are proven effective, their use has raised concerns about their safety, considering 

that the virus can theoretically undergo genetic reversion into a pathogenic, transmissible influenza 

strain [274]. 

Adjuvants: tools to improve inactivated influenza vaccines 

Despite the fact that inactivated influenza vaccines are on the market since the 1940s, several 

limitations still exist regarding both their availability and their effectiveness. 

There are two major issues concerning currently licensed inactivated influenza vaccines: firstly they 

have low efficacy in elderly and unprimed people (as very young children); secondly they have very poor 

cross-reactivity [244, 245]. Inactivated influenza vaccines aim at the induction of virus neutralizing 

antibodies specific for the HA protein, but in aged subjects the immune system is compromised by 

immunosenescence which reduces immunogenicity of vaccines through impaired humoral response 

[168, 169, 176, 266]. Furthermore approved influenza vaccination strategies, due to their viral strain 

specificity, are not cross-reactive towards antigenic drifted viruses that may spread during annual 

influenza season and this may reduce a lot the vaccination success [275]. 

Optimizing influenza vaccination for infants and the elderly as well as expanding its viral subtypes 

coverage are currently two crucial objectives in immunological research and three major strategies have 

been proposed to solve this unmet need: -i) increase vaccine antigens dosage, ii) try different routes of 

administration or iii) add adjuvants to the formulation. 

Adjuvants are compounds that can be added to influenza vaccine formulations in order to enhance 

immunogenicity of vaccine antigens and consequently potentiate immunization effectiveness [276, 277]. 

Generally, adjuvants exert their effect on innate immunity by improving antigen delivery or by targeting 

specific immune pathways to enhance immune responses towards the vaccine [278]. The preparation of 

influenza vaccines together with adjuvants has been shown not only to improve vaccine efficacy in 

elderly, unprimed and immunocompromised individuals, but also to broaden influenza-specific immune 

response [3, 278-280]. Moreover, considering their immunopotentiator activity, the addition of 

adjuvants to influenza vaccine facilitates the use of lower doses of antigen. This is an advantage that gets 

important during large-scale vaccination emergency as in case of a pandemic influenza strain outbreak 

[281, 282].  Finally, adjuvants may also be incorporated in vaccine formulations to achieve qualitative 

shifts of the immune response. Therefore the ability of adjuvants to promote functionally appropriate 

types of immunity (e.g. Th1 versus Th2 cell, CD8+ versus CD4+, specific antibody isotypes) not effectively 

generated by the non adjuvanted antigens has been evaluated in preclinical and clinical studies [278]. 
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Adjuvants in influenza vaccines. Currently licensed adjuvants for vaccine usage in humans include 

aluminum salt (alum) and the squalene oil-in-water emulsion systems MF59 (Novartis) and AS03 

(GlaxoSmithKline). Although alum has been successfully used as an adjuvant in many other vaccines, no 

beneficial effect of alum was observed in influenza H5N1 or H1N1 pandemic vaccines in comparison to 

non-adjuvanted formulations [283-285]. On the other hand, oil-in-water emulsions have proven to be 

suitable adjuvants for influenza vaccines. MF59 was the first of these adjuvants approved for use in 

human influenza vaccines in 1997. It consists of squalene oil droplets stabilized by non-ionic surfactants 

and has been proven to be fundamental to overcome immunosenescence-induced weak response to 

unadjuvanted vaccines in aged people (>65 years) [286, 287]. Moreover numerous reports observed 

increased immunogenicity and efficacy of MF59-adjuvanted subunit vaccine in young children and 

healthy adults [288-290]. Overall, MF59 has been demonstrated to be safe and a very effective adjuvant 

for the stimulation of humoral and cellular responses against seasonal, pre-pandemic and pandemic 

influenza vaccines [3, 291]. AS03 is also an oil-in-water emulsion based on squalene droplets, but, unlike 

MF59, it contains -tocopherol as additional immunostimulant and is currently used only in pre-

pandemic and pandemic influenza vaccines [292, 293]. Even if AS03 adjuvanted influenza vaccines were 

significantly more immunogenic than their unadjuvanted counterparts both in primed and unprimed 

individuals [282, 294], their efficacy in immunocompromised patients remains controversial [295, 296]. 

[A complete list of adjuvants for influenza vaccines is reported in Table 1] 
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Adjuvant category Adjuvant Antigen(s) Stage of development 

Salts Alum Split, WIV (pandemic) Licensed 

Oil-in-water emulsions MF59 
(squalene, Span 85, Tween 80) 

AS03 
(squalene, DL-a-tocopherol, Tween 80) 

AF03 (squalene, Brij 76) 

CoVaccine HT 
(squalene, Tween 80, sucrose fatty acid 
sulfate esters) 

Subunit 
(seasonal and pandemic) 

Split, WIV (pandemic)  
 

Split (pandemic) 

WIV (pandemic) 

Licensed 
 

Licensed 
 

Licensed 

Animal model 

Saponins Iscomatrix  

Matrix-M 

WIV (seasonal) 

Virosomes (pandemic) 

Clinical development 

Clinical development 

Glycolipids Alpha-GalCer  
(alpha-galactosylceramide) 

LAIV (seasonal) 

DNA (HA-encoding) 

Animal model 

 

Liposomes CCS/c 
(cationic liposomes of ceramide carbamoyl- 
spermine/cholesterol) 

CAF01 
(cationic liposomes of DDA/TDB) 

Vaxfectin 
(cationic liposomes of GAP-DMORIE/DPyPE) 

Subunit (seasonal) 
 

 
Split (seasonal) 
 
 
Split (seasonal), WIV 
(pandemic) 
DNA (HA-encoding) 

Animal model 
 
 

Animal model  

Animal model  

Clinical development  

Bacterial components CTA1-DD (Cholera toxin subunit A)  

LT patch (E. coli enterotoxin) 

Salmonella and E. coli flagellin 

Peptide (M2e-based) 

Split (pandemic)  

rHA (pandemic) 
rM2e 

Animal model 

Clinical development 

Clinical development 

Cytokines IL-12, IL-23  

GM-CSF  

Type I IFN (IFNα) 

WIV (laboratory strain) 

DNA (HA-encoding)  

Subunit (seasonal) 

Animal model  

Animal model  

Animal model 

TLR agonists/ 

immunomodulators 

GLA (glucopyranosyl lipid A) (TLR4)  

Bacterial flagellins (TLR5) 

CpG oligodeoxynucleotide (TLR9) 

PolyI:C (TLR3) 

IC31 oligodeoxynucleotide (TLR9)  

sLAG-3 (IMP321) (MHC class II ligand) 

rHA (pandemic) 

rHA (pandemic) 
rM2e 

Split (seasonal)  

Split (seasonal) 
LAIV (laboratory strain)  

Subunit (seasonal)  

Split (seasonal) 

Clinical development 

Clinical development 

Clinical development 

Animal model 

Animal model  

Clinical development 

Polymers Chitosan 

PCPP 
(poly[di(carboxylatophenoxy)phosphazene]) 

Advax (delta inulin) 

Subunit (laboratory 
strain)  
DNA (M2 and NP) 

Subunit (pandemic) 

Split (pandemic) 
rHA (pandemic) 

Animal model 

 

Animal model 

Clinical development 

Table 1 - Adjuvants for influenza vaccines. [Modified from [244]] 
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MF59-adjuvanted influenza vaccines. MF59 is an oil-in-water (o/w) emulsion, prepared with a low 

content of the biodegradable oil squalene (4.3%), which is a natural component of the human body and 

a precursor in the synthesis of cholesterol and steroid hormones. The oil droplets, which have a mean 

size of about 160 nm, are stabilized by two non-ionic surfactants (Tween 80 and Span 85) [297], which 

are commonly used as emulsifiers in foods, cosmetics and pharmaceutical formulations. MF59 is a 

potent and safe vaccine adjuvant developed in the early 1990s by Chiron Vaccines (Emeryville, CA) [298] 

and has been included in licensed vaccines in more than 30 countries since 1997 [291]. The adjuvant has 

been initially developed for the use in seasonal TIVs focused on elderly subjects (Fluad®), indeed 

extensive clinical studies have proved that MF59-adjuvanted vaccine is more immunogenic than non-

adjuvanted ones in aged people (≥65 years) and is also well tolerated [287, 299, 300]. Notably influenza 

vaccination using MF59-adjuvanted TIVs has significantly reduced the probability of being hospitalized 

for pneumonia and cardiovascular or cerebrovascular disease in aged people [301].  

Recent studies have shown that the addition of MF59 to TIV significantly potentiates efficacy of 

vaccination also in young children that are unprimed and thus poorly responsive to standard influenza 

vaccines, and highlighted the necessity of its usage also in these subjects [288, 289, 302]. 

Similarly, MF59 has been recognized as key component for the success of pre- and pandemic 

vaccines and proven to be able to broaden the immune response beyond the influenza strains included 

in the vaccine. This has been demonstrated by several studies showing that MF59 can induce fast 

priming of influenza antigen-specific CD4+ T cell responses and strong and long-lasting memory cross-

reactive T- and B-cell responses [280, 281, 303-307]. 

The adjuvant effect of MF59 on influenza vaccines has been ascribed to its capacity to significantly 

increase virus neutralizing antibody titers in comparison to those obtained using unadjuvanted 

formulations [308, 309]. Even if the mechanism of action of MF59 adjuvant has been extensively 

evaluated, some issues about its activity remain to be solved [310]. Since the first studies, it became 

evident that antigen binding to the emulsion droplets is not necessary for adjuvant activity and, 

moreover, MF59 does not establish an antigen “depot” at the site of injection. Instead, both the antigen 

and the adjuvant are cleared relatively rapidly with independent kinetics [298, 311]. Studies about 

antigen and adjuvant localization after injection showed that MF59 operates mainly as a “delivery 

system” that enhances antigen uptake by local cells and subsequent presentation to T cells in dLNs [312]. 

MF59 activity seems to be localized in the muscle injection site. There, its adjuvanticity is correlated with 

the induction of a local “immunocompetent environment” initially established by MF59-activated normal 

tissue-resident cells like macrophages and muscle cells [298, 310]. These cells produce a mixture of 
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cytokines and chemokines which act as chemoattractants for the recruitment of immune cells, as 

monocytes and granulocytes, from the blood stream into the injected muscle [313, 314]. A gene 

expression profile study reported that MF59 is a broad activator of transcriptional changes in the 

injected muscle and, in particular, it induces the upregulation of genes coding for cytokines and 

chemokines, cytokine receptors, adhesion molecules involved in leukocyte migration, and antigen-

presentation related genes [315]. Moreover a recent study demonstrated that MF59 is able to induce a 

transient ATP-release at the injection site which is a crucial contributor to innate and adaptive immune 

responses elicited by influenza adjuvanted vaccine [4]. Newly muscle-recruited cells activate a positive 

feedback loop by secreting the same panel of factors previously produced by tissue-resident cells and in 

this way they strongly enhance the influx of phagocytic cells into the injection site [314]. Additionally, 

MF59 may enhance the differentiation of recruited monocytes towards DCs and alter their phenotype 

[314]. The presence of an elevated number of immune cells (firstly neutrophils, monocytes and 

eosinophils and later DCs and macrophages) localized in the muscle increases the probability of 

interaction between antigen presenting cells (APCs) and the antigen leading to an efficient transport of 

Ag to the lymph nodes which in turn translates in a strong T cell priming and subsequent wide B cells 

antibody production [316] (Fig. 6). Finally in vivo studies showed that the robust adaptive response 

induced by adjuvanted influenza vaccine is not biased to a specific profile and MF59 acts as a neutral 

adjuvant enhancing whichever response is prevalent. In particular MF59-usage in BALB/c mice results in 

a mixed Th1/Th2 profile with Th2>Th1 [6, 317], while human vaccination with MF59-adjuvated influenza 

vaccine expands CD4+ T lymphocytes population with a Th1-prone effector/memory phenotype [304] , 

probably due to some contribution of Th1-cells primed by influenza infection earlier in life. 
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Figure 6 - The mechanism of action of MF59 adjuvant. (A) MF59 adjuvant in combination with a vaccine antigen is 

injected into the muscle through a normal needle and syringe. (B) In the muscle, tissue-resident monocytes, 

macrophages and DCs are activated and respond by inducing a mixture of chemokines (CCL2, CXCL8, CCL4, CCL5), 

which results in a significant influx of phagocytic cells that take up the antigen and differentiate into APCs (iDCs, 

immature DCs). These cells are responsible for the efficient transport of antigen to the lymph nodes, where the 

immune response is triggered through the activation of T and B cells and antibody (Ab) production. mDC: 

monocytic dendritic cell. [291] 

 

MF59+CpG combined adjuvant for influenza vaccine. An optimal adjuvant (or combination of 

adjuvants) has to play two roles: it must act both as “delivery system”, localizing vaccine antigens and 

targeting them to the appropriate innate immune cell types, and as “immunopotentiator”, activating 

immune cells through specific receptors and/ or pathways [318]. An increasing number of studies are 

evaluating the use of immunopotentiators targeting PRRs as single or combined adjuvants in vaccines 

formulation [278, 319]. MF59 is a safe and potent adjuvant for the induction of humoral and cellular 

response towards influenza antigens [291], but it does not really bias the adaptive Th profile of 

vaccinated subjects. This, on the contrary, depends on the experimental settings and/ or previous 

experienced infections [6, 317]. The “neutrality” of MF59 makes it an ideal vehicle to deliver 

immunopotentiators, which have the ability to strongly skew the immune response towards specific Th 

profiles. The crucial role of cell- and antibody-mediated Th1-shifted immune response towards influenza 

infection has been demonstrated by several studies [102, 320, 321] and particularly it has been reported 
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that aging results in impaired Th1 immunity [170, 171, 322]. Notably MF59 is not a powerful adjuvant for 

the induction of Th1-polarized immune responses, but it can act as efficient delivery system for TLR-

agonists able to bias the adaptive immunity [6, 317]. Different strategies are currently under evaluation 

and in particular, the use of TLR4- and TLR9-agonists such as MPL, GLA-SE and CpG is giving promising 

results [317, 322, 323]. 

Oligonucleotides containing unmethylated cytosine and guanosine dinucleotides, which are called 

CpG sequences, have been shown to act as potent vaccine adjuvants in a range of species including 

humans by activating the innate immune response directly through TLR9-stimulation [319, 324-326]. 

CpG has shown to be a potent vaccine-adjuvant able to induce strong Th1 immune responses 

characterized by T cells secreting IFNγ and TNFα [325], which are known to synergize against a number 

of viral infections, including influenza [320]. The combination of MF59 and CpG as vaccine-adjuvant has 

been explored for influenza antigens with positive results [6, 317]. It has also been demonstrated to be 

an optimal tool for the improvement of anti-hepatitis C virus vaccines-formulations and tumor vaccines 

against melanoma [327-329]. Pre-clinical studies on MF59+CpG-adjuvanted influenza vaccines reported 

that this combination is able to induce potent and long-lasting antibody and T cell responses: the adding 

of CpG to MF59 does not affect the magnitude of functional antibody titers and cellular response, but on 

the contrary it polarizes these responses towards a Th1 profile unbalancing the proportion between IgG1 

and IgG2a towards the second isotype and expanding IFNγ-producing T cells at the expense of Th2 cells 

[6, 317]. 

Mucosal influenza vaccination adjuvanted with LTK63. The respiratory tract mucosa is the site of 

entry of influenza viruses and, consequently it can be considered also the initial site of possible 

protection against the pathogen. Several studies showed that mucosal vaccination not only elicits 

efficient mucosal immune responses which are only poorly induced by parenteral vaccination, but is also 

able to induce systemic immune responses [330]. Currently LAIVs, as FluMist®, are licensed for i.n. 

delivery in humans [273]. However other intranasal vaccination strategies have reported safety concerns 

due to the possible antigens and/ or adjuvants addressing to the central nervous system through the 

olfactory epithelium [331]. In particular, the use of NasalFlu vaccine adjuvanted with a genetically 

detoxified mutant of E. coli heat labile toxin (LTK63) has reported serious side effects, as facial nerve 

paralysis, in clinical studies [332]. Considering that the intranasal route for the delivery of adjuvanted 

influenza vaccine seems to have too many risks for human usage, other mucosal routes are currently 

under careful examination. Interestingly in vivo data demonstrated that sublingual (s.l.) immunization of 

inactivated influenza virus with a mucosal adjuvant follows the same immunological pathway as i.n. 
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immunization [333], but without negative effects on the central nervous system [334]. The s.l. 

administration of LTK63-adjuvanted subunit influenza vaccine was shown to be able to elicit comparable 

systemic immune responses to i.m. immunization without adjuvant and, moreover, to reach the same 

level of immune stimulation obtained with the same formulation given i.n. [7].  Finally, differently from 

parental vaccination, s.l. adjuvanted influenza immunization enhances antigen-specific mucosal IgA and 

Th17 responses [7], which have been reported to have a crucial role in the neutralization of the virus and 

the recruitment of neutrophils respectively [90, 91, 113, 115]. 

Anti-influenza vaccination as prevention from SBI 

Vaccination against influenza is becoming an interesting research field, also for its interest as 

efficient method for the prevention of SBIs. This is particularly significant considering that vaccines for S. 

pyogenes and S. aureus, which are frequently associated with influenza, are not currently available and 

consequently anti-influenza vaccination is the only mean for preventing these bacterial super-infections. 

LAIVs have shown potential applications in the prevention of SBIs conferring high level of protection 

in mouse model of S. pneumoniae and S. aureus super-infections [242]. Particularly it has been reported 

that seasonal FluMist® vaccination can induce cross-reactive T cell immunity towards pandemic H1N1 

influenza virus and is also able to restore innate immunity against SBIs reducing the susceptibility to the 

common post-influenza complications [242]. On the other hand, a comparative study between 

inactivated and live attenuated influenza vaccines demonstrated that, even if the two vaccination 

strategies can limit expression of pro-inflammatory cytokines that are induced after super-infection and 

ameliorate morbidity and mortality associated with S. pyogenes super-infections, they confer only an 

incomplete protection from bacterial replication in the lung [240].  

Taking into consideration the critical role of NA activity in the induction of SBI [205], Huber and 

colleagues showed that the immunity towards this component of the virion, even not able to neutralize 

influenza infection, can limit progression toward secondary bacterial complications in a mouse model of 

post-influenza S. pneumoniae infection [5]. Furthermore a more recent study demonstrated that 

vaccination with the highly conserved NP also reduces influenza-induced susceptibility to lethal bacterial 

infections [241]. In particular, focusing on the mechanisms of protection, Haynes et al. showed that both 

T cells and antibodies contribute to defense against influenza-induced pneumococcal diseases, but while 

influenza cross-reactive T cells reduce viral titers, NP-specific antibodies suppress induction of 

inflammation in the lung [241]. The findings of these two studies suggest that, in case neutralizing 

influenza vaccines are not available, non-neutralizing strategies that fail to prevent viral infection may 

nevertheless protect the public from secondary bacterial diseases. 



48 
 

Despite the evolution in vaccine formulations, and evidence that the HI assay is an imperfect 

correlate of protective immunity [335, 336], this assay remains the gold standard correlate of vaccine-

induced protection against influenza [70, 260]. Several studies are currently ongoing to evaluate 

alternative correlates of anti-influenza vaccines protection establishing the prevention of SBIs as 

endpoint in place of neutralization of influenza infection [191]. They highlighted three major parameters 

that have to be taken into consideration to evaluate vaccine efficacy towards influenza complications: 

first of all the level of anti-NA antibodies and their functionality evaluated by neuraminidase-inhibition 

(NI) assay [5]; secondly appropriate correlates of mucosal immunity, as IgA levels, are needed [191, 240, 

242]; finally, considering that the cross-reactivity of T cells has been pointed as a key component of the 

immunity fight against influenza-induced bacterial diseases [240, 241], antigen-specific cytotoxic CD8+ 

and cytokines secreting CD4+ T cells levels need a careful evaluation [337-339]. 
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OUTLINE OF THE THESIS 

Secondary bacterial infections (SBI) contribute to morbidity and mortality from influenza, especially 

in elderly subjects. This age group, besides being the most vulnerable to influenza, responds only poorly 

to conventional influenza vaccines. With this work we wanted to address this medical need and 

investigate on novel strategies for improved vaccination strategies.  

We designed this project to deeply investigate immune response induced by different anti-influenza 

vaccination strategies in mouse model. This thesis is organized in two studies:  

 With the first study we wanted to assess how the successful vaccine adjuvant MF59 that was 

specifically developed for influenza vaccination in the elderly would contribute to 

overcoming suboptimal immune responses in the elderly. This work resulted in the 

manuscript “MF59-induced ATP-signalling pathway is not impaired by immune-senescence 

thereby contributing to an efficient adjuvant activity in the elderly”. 

 With the second study we investigated whether influenza vaccination could be further 

improved by the use of different adjuvants. Using a novel mouse model of viral-bacterial co-

infection we found that there is a “Positive contribution of adjuvanted influenza vaccines 

on the resolution of viral-bacterial co-infections”. 

In the first study we tested MF59 adjuvanticity in aged mice. This adjuvant is specifically licensed to 

prevent influenza infection in elderly subjects (>65 years) and its mechanism of action has been deeply 

characterized in pre-clinical models. Yet all these studies have been performed in young mice (6-8 

weeks), which do not reflect immune response in elderly. Which MF59-activated immune events are still 

active in old mice? Is this adjuvant able to overcome intrinsic defects of immunosenescence? We 

performed a comparative study in young and aged (>18 months) mice applying most of relevant assays 

to assess MF59 activity. We vaccinated mice using influenza (Fig. 1) or ovalbumin (OVA) (Fig. 2) MF59-

adjuvated vaccines and we measured systemic antibody and cellular response. Moreover we assessed 

serum cytokine release induced by MF59 and consequent immune cell recruitment to the injection site 

and antigen translocation to draining lymph nodes (dLNs). Notably ATP release at the site of injection has 

been shown to be essential for MF59-adjuvaticity.  Is this pathway still functioning in MF59-vaccinated 

aged mice? We aimed to understand the importance of ATP-release for the activity of MF59 also in the 

context of immunosenescence. 
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Figure 1 - Characterization of mechanism of action of MF59-adjuvanted anti-influenza vaccine in elderly.  

BALB/c mice were used at 6-8 weeks (young) and at 18 months or more (aged) of age. (A) i) Mice have been 

vaccinated twice intramuscularly (i.m.) four weeks apart with trivalent influenza vaccine (TIV) as plain antigens or 

adjuvanted with MF59. 10 days after first vaccination we examined T follicular helper (TFH) cell and germinal center 

(GC) responses in dLNs. We then collected sera and spleens two weeks after second immunization to analyse 

vaccine specific humoral and cellular response. ii) Mice have been vaccinated twice i.m. four weeks apart with 

hemagglutinin (HA) protein of H1N1/A/Puerto Rico/8/1934 (PR8) virus as plain antigen or adjuvanted with MF59. 

Three weeks after second immunization mice have been infected intranasally (i.n.) with 2.1 TCID50 of PR8 virus and 

we followed disease evolution and pathogen clearance in lungs for various days post-infection (p.i.). (B) To verify 

ATP release in muscles mice have been i.m. injected with MF59 or PBS together with the mixture luciferase-

luciferin that reports on ATP changes. We then performed quantitative analysis of chemiluminescence over time. 

Secondly mice have been vaccinated twice i.m. four weeks apart using TIV, TIV+MF59 or TIV+MF59+apyrase and we 

collected sera and spleens two weeks after second immunization to test vaccine specific Th cell and antibody 

responses. 
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Figure 2 - Analysis of MF59-induced cell recruitment to injected muscle and antigen uptake to dLNs.  

BALB/c mice were used at 6-8 weeks (young) and at 18 months or more (aged) of age. Firstly mice have been 

immunized i.m. with OVA in presence or absence of MF59 and cytokine levels in the serum were assessed at the 

indicated time points. Secondly we vaccinated mice i.m. with OVA-AlexaFluor467 and we sampled muscles and 

dLNs at the indicated time points to characterize immune cell recruitment to injection site and antigen 

translocation to dLNs. 

In the second work we wanted to dissect the complex interplay between immune responses towards 

an influenza virus and a co-infecting bacterium in the mouse model. In particular our final goal was to 

explore the possibility to modulate the events by anti-influenza vaccination inducing in mice different Th-

polarized immune response. Use of different routes of vaccine administration - mucosal versus systemic 

immunization - as well as different adjuvants, should allow us to assess how diverse conditions can 

impact on the quantity and quality of vaccine-antigen specific Th cells and antibody response. Moreover 

we had the opportunity to test the efficacy of our vaccine formulations not only against influenza 

challenge, but also for SBI. 

Briefly we immunized mice with a H1N1/A/California/7/2009 (H1N1/ Cal) subunit vaccine either as 

plain antigens or with different adjuvants inducing either Th1-, Th2- or Th17-prone immune responses. 

Vaccinated mice were challenged with the heterologous influenza PR8 virus and six days later infected 

with S. aureus USA300. 

Initially we analyzed different aspects of innate and adaptive immunity in the context of single 

influenza infection. Is systemic response sufficient to counteract heterologous influenza infection or we 

need specific mucosal immunity at the site of infection? How differently skewed-immune responses 

protect mice from influenza disease? To answer these questions we not only evaluated vaccine-specific 

serum antibody titers and spleen Th cell response but also took into account immune cell recruitment 
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and humoral and cellular adaptive response in the lung. Moreover we followed mice weight loss and 

lung viral titers as signs of ongoing disease. Fig. 3 shows details of our study. 

 

Figure 3 - Characterization of the impact of vaccination route and chosen adjuvant on immune responses and 

host-pathogen interplay during influenza infection.  

BALB/c mice have been vaccinated three times sublingually (s.l.) or two times i.m. four weeks apart. We used 

H1N1/ Cal antigens either not adjuvanted (i.m.) or formulated with MF59 (i.m.) (Th1/Th2), MF59+CpG (i.m.) (Th1) 

or LTK63 (s.l.) (Th17). Two weeks after last immunization we collected sera (sera p2) and one week later we 

collected spleens (spleens p2). At the same time we infected mice i.n. with 2.1 TCID50 of PR8 virus and we sacrificed 

them to sample lungs, sera and bronchoalveolar lavages (BALs) at 3, 6, 9 and 16 days p.i. We used naïve (not 

vaccinated) mice as negative controls and mice pre-exposed to a sublethal dose of virus as positive controls. 

Sampling and relative readouts are listed in the figure. 

 

Finally we evaluated the efficacy of previously characterized anti-influenza vaccine formulations in 

the context of viral-bacterial co-infection. How does the specific cytokine environment experienced 

during influenza infection affect co-infecting organisms? Which Th profile would impact most positively 

on bacterial clearance? With these questions in mind we followed disease evolution measuring body 

weight loss and pathogens clearance from lungs in influenza+S. aureus co-infected mice (Fig. 4). With this 
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study we aimed to induce in the host a proper Th-polarized immune response by anti-influenza 

vaccination that may help not only to resolve the influenza infection, but also the SBI. 

 

Figure 4 - Analysis of the effects of different anti-influenza vaccination strategies on viral-bacterial co-infection. 

BALB/c mice have been vaccinated as showed in Fig. 3 and three weeks after last immunization were infected i.n. 

with 2.1 TCID50 of PR8 virus. Six days later we challenged animals i.n. with 10
7
 CFU of S. aureus USA300. We 

followed mice weight loss up to sixteen days p.i. and we collected lungs the day after bacterial infection to analyse 

viral and bacterial load. Mice infected only with influenza or S. aureus were used as controls.  

 

Our studies were meant to shed light on new strategies for improved influenza vaccines, which 

would have to take into consideration the potential combination of protective antigens and adequate 

adjuvants. Moreover we wanted to stress the need of new correlates of protection for influenza 

vaccines: it is extremely important to know the power of a vaccine not only in counteracting homologous 

viral infection, but also heterologous challenge. Notably SBI are frequently diagnosed in previous 

influenza-infected subjects, especially in elderly population, so it would be extremely important to 

understand immunological imbalances that are responsible for influenza-bacteria synergy and moreover 

to design effective broad-spectrum approaches to prevent the susceptibility to bacterial superinfection. 
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MF59-INDUCED ATP-SIGNALING PATHWAY…
 (Gallotta M. et al.) 

 

MF59-induced ATP-signaling pathway is not impaired by immune-

senescence thereby contributing to an efficient adjuvant activity in the 

elderly. 
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ABSTRACT 

MF59-adjuvanted influenza vaccine has been developed specifically for the elderly, since this age 

group typically responds inadequately to traditional influenza vaccines, due to immunosenescence. 

Several studies have been performed to identify MF59 mechanism of action in pre-clinical models. 

However, most of these studies have been conducted in young mice (6-8 weeks, comparable to young 

adults), which do not reflect the immune response of the elderly. Taking into consideration that several 

signaling cascades are altered during aging, we wanted to assess which MF59-activated immune events 

were still active in old mice (> 18 months), and performed a comparison to young mice in most of the 

relevant assays for MF59 activity.  

We found differences in MF59-induced cytokines, with a lower pro-inflammatory response in the 

elderly. Yet, our results also show that MF59 still acts as adjuvant in elderly mice, enhancing immune cell 

recruitment, antigen-translocation to draining lymph nodes, CD4+ T helper responses, germinal center 

reaction and restores HI titers similar to those from young mice immunized with unadjuvanted vaccine. 

Further, since we recently showed that MF59 induces rapid and transient ATP-release in young mice, we 

tested functionality of this signaling pathway also in the elderly. Indeed, abrogation of ATP-signaling with 

apyrase - an ATP-hydrolyzing enzyme - completely blocks MF59-activity also in elderly mice suggesting 

an important role for extracellular ATP also in this age group. Understanding in elderly mice how the 

immune system is altered and how MF59 helps to overcome age-related limitations, will give us useful 

insight for future tailor-made vaccine solutions for this growing patient age group. 
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INTRODUCTION 

Influenza infection can lead to considerable morbidity and even mortality with approximately 90% of 

influenza deaths occurring in older adults [1]. The best strategy to prevent influenza disease among this 

vulnerable population is to be immunized with the current influenza vaccine on an annual basis [243]. 

Yet, traditional seasonal subunit and split-virus influenza vaccines have shown limited effectiveness in 

people over 65 years of age [145, 266, 340]. There are well-known defects in both the innate and 

adaptive arms of the immune system in older adults, which contribute to the poor vaccine efficacy in this 

population [341]. In particular, the decline of the effectiveness of the influenza vaccine in the elderly 

correlates with a decrease in the excitation of cell-mediated and antibody responses that are essential 

for providing protection against influenza. To improve vaccine-mediated protection against influenza in 

older adults, many strategies are being pursued, such as increasing the dose of the vaccine antigens, 

evaluating alternative routes of delivery to mucosal and dermal compartments compared to 

intramuscular injection and adding adjuvants to the vaccine.  

Adjuvants perform through innate immune mechanisms and are responsible for effective onset of 

immune responses increasing T cell mediated and humoral responses to vaccine antigens and increase 

vaccine effectiveness [276, 277, 342, 343]. Activation of the innate immune system is especially critical to 

the development of protective adaptive immune responses against intracellular pathogens such as 

influenza. The role of an adjuvant for improving influenza vaccines for the elderly is to increase the level 

of inflammatory mediators at the site of injection, to activate dendritic cells (DCs) and enhance their 

antigen-presenting capacity to induce the desired adaptive immune response [344]. Many different 

adjuvants have been tested for efficacy in the quest to identify a successful adjuvant that would boost 

the immune response in aged mice [345]. But few have succeeded beyond pre-clinical models.  

The current gold standard of vaccines licensed for elderly people are those adjuvanted with oil-in-

water-emulsion adjuvants like MF59 and AS03 [3, 286, 310, 346]. Influenza vaccines containing MF59 

have been approved with a very well established use in people older than 65 years, since 1997 in Europe. 

In fact, MF59-adjuvanted influenza vaccine has been developed specifically for the elderly in order to 

overcome the inadequate response to traditional influenza vaccines due to immunosenescence typically 

observed in this age group.  Besides inducing high hemagglutination inhibition (HI) titers, MF59 is also an 

efficient inducer of T follicular (TFH) and T helper (Th) responses in mice [4, 6, 347] and men [288, 348]. 

Both CD4+ T subsets cells have been implied in prediction of vaccine effectiveness. And CD4+ Th cells are 

believed to contribute to protection against influenza challenge via various pathways [102, 349].  
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Many studies have been performed to identify the mechanism of action of MF59 adjuvant in pre-

clinical models [4, 297, 311-316, 350]. All these studies have been conducted in young mice (6-8 weeks 

comparable to young adults), which do not reflect the immune response of the elderly. The aim of this 

study was to perform a comparison between aged mice (> 18 months) and young mice in most of the 

relevant assays for MF59 activity to assess which MF59-activated immune events were still active in aged 

mice contributing to MF59 powerful effect on this age group. 
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MATERIALS AND METHODS 

Mice 

Female BALB/c mice were used at 6-8 weeks (young) and at 18 months or more (aged) of age in 

agreement with institutional and European guidelines. All experiments involving animals were approved 

by the Italian Health Ministry and carried out in accordance with the Italian legislation (Legislative Decree 

116/92). 

Adjuvant, antigens, immunization 

MF59, a Novartis proprietary oil-in-water emulsion, consisting of 4.3% squalene, 0.5% Tween 80, 

0.5% Span 85 in citrate buffer (10 mM), was prepared as described before [316]. The mean particle size 

of the emulsion droplets determined with a Mastersizer X (Malvern Instruments, Southborough, MA) 

was 194 ± 76 nm. For cell-tracking experiments we used 10 µg/ mouse of ovalbumin (OVA) conjugated 

with AlexaFluor 647 (Invitrogen) with or without MF59. For adjuvanticity experiments, experimental 

trivalent influenza vaccine (TIV) composed of equal amounts of hemagglutinin (HA) from influenza 

strains H1N1/A/California/7/2009, H3N2/A/Perth/16/2009 and B/Brisbane/60/2008 was used. The 

vaccine contains purified subunit antigens and is standardized for HA content by single-radial-

immunodiffusion. Mice were divided into groups and immunized intramuscularly (i.m.) twice on days 0 

and 28 in the quadriceps muscles of both hind legs with 50 μl vaccine/ leg (100 μl total per mouse). 

Doses were 0.3 μg (0.1 μg each antigen) of either influenza soluble trivalent egg-derived antigen alone; 

antigens were mixed with research grade MF59 (1:1, vol:vol) alone or formulated with apyrase (10 U/ 

muscle). Serum samples of individual mice were collected 2 weeks after each immunization and 

evaluated for total IgG antibody titers by ELISA and hemagglutination inhibition (HI) titers by the HI 

assay. All formulations were optimized for pH and osmolality to physiological conditions. For infection 

experiments, i.m. immunizations have been performed as reported before but we used 1 μg of HA of 

H1N1/A/Puerto Rico/8/1934 (PR8) virus (Sino Biological Inc.) as antigen. 

ELISA 

Titration of HA-specific total IgG was performed on individual serum samples as previously described 

[316]. Antibody titers are dilutions that give an optical density (OD) higher than the mean plus five times 

the standard deviation of the average OD obtained in the pre-immune sera. The titers were normalized 

with respect to the reference serum assayed in parallel.  
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Determination of antibodies by HI Assay 

The HI assay was carried out on individual sera taken 2 weeks after the second immunization as 

described elsewhere [351].  

In vitro re-stimulation of antigen-specific CD4+ T cells 

Four mice per group were sacrificed 2 weeks after the second immunization and spleens were 

collected to assess the frequency and phenotype of antigen (Ag)-specific CD4+/ CD44high T cells induced 

by vaccination. The assay was performed as described elsewhere [351]. 

Influenza viral infection 

Mice were anesthetized and challenged intranasally (i.n.) with 30 μl (15 μl/ nostril) of 2.1 TCID50 of 

mouse-adapted influenza PR8 virus three weeks after the final vaccination.  After viral challenge, mice 

were monitored daily for 16 days for weight loss and euthanized if humane endpoints (= 25% weight 

loss) were reached. 

Lung viral titers 

The infectious PR8 virus titers in homogenized lung samples were determined by TCID50 assay 

performed on MDCK cells by ten-fold serial dilutions of samples as described [352]. Briefly, supernatants 

from lung homogenates were diluted in Ultra MDCK-Medium (BioWhittaker, Lonza) supplemented with 

1% PSG (Life Technologies) and 1 μg/ ml of L-(tosylamido-2-phenyl) ethyl chloromethyl ketone (TPCK-

treated) trypsin (Sigma-Aldrich). All samples were then transferred on MDCK cells, plated in a 96-well 

plate (15,000 cells/ well). The final volume was 200 μL/ well. Plates were incubated for 3 days at 37°C in 

5% CO2. Cells were microscopically observed and cytopathic effect of virus on cells evaluated. The titer 

was determined by interpolation using the method of Reed and Muench [353]. TCID50 was reported as 

the dilution in which 50% of the infected wells were positive for virus.  

Cytokine analysis 

Serum samples were collected at different time point post injection and cytokine concentrations 

were measured by Luminex Bio-Plex Pro Mouse Cytokine 23-Plex Immunoassay (Biorad) according to 

manufacturer’s instruction. The cytokines analyzed were IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, 

IL-12(p40), IL-12(p70), IL-13, IL-17, eotaxin, G-CSF, GM-CSF, IFN-γ, KC, MCP-1, MIP-α, MIP-1β, RANTES 

and TNF-α. 
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Cell recruitment into muscle and antigen uptake into draining lymph node 

Groups of mice were injected with 25 μl/ muscle of MF59 (1:1, vol:vol) or PBS buffer control. Mice 

were sacrificed 24 h post-injection, quadriceps muscles and draining lymph nodes were processed as 

previously described [316]. Cells were stained with combinations of the following antibodies: -Ly6C-

FITC, -CD11b-PE-Cy7, -Ly6G-PE, -CD11c-APC, -CD3-PerCpCy5.5 (all from BD Pharmingen), and -I-

A/I-E-AlexaFluor700, -F4/80-PacificBlue, -CD11c-APC-AlexaFluor750 (all from eBioscience). Stained 

cells were analyzed using a FACS LSR II Special Order System (BD) using BD DIVA software (BD 

Bioscience).  

FACS analysis of T follicular helper and Germinal Center B cells 

Draining lymph nodes (dLNs) were harvested and pooled per mouse after i.m. immunization. dLNs 

single cell suspensions were prepared by homogenization, fixed and stained with the following 

combination of antibodies: -IgM-BV421, -CD19-APC-H7, -IgD-PE, -GL7-Alexa647, -CD73-PE-Cy7 

(all from BD Pharmingen), -CD80-PE-CF594, -CD4-V500 (both from BD Horizon), -PD1-FITC, -CXCR5-

PerCP-Cy5.5, -CD3-BV785 (all from BioLegend), -CD38-PE-Cy5 (eBioscience). Each staining step was 

done in PBS + 2% FBS on ice. Samples were acquired on a FACS LSR II Special Order System (BD) and 

analyzed using FlowJo Software (Tree Star). 

In vivo bioluminescence imaging 

In vivo bioluminescent imaging was performed as previously described in [4]. An ultra-low-noise, 

high sensitivity cooled CCD camera mounted on a light-tight imaging chamber (IVIS Lumina System, 

Caliper, Perkin Elmer) was used. Tracking, monitoring and quantification of signals were controlled by 

the acquisition and analysis software Living Image. 

Statistical analysis 

All statistics were performed using GraphPad Prism software (version 6.0). Statistical analysis 

between results obtained from various groups of mice was performed using the Mann-Whitney test. 

Differences with p values < 0.05 were considered significant. 
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RESULTS 

MF59 enhances T helper cell and antibody responses as well as vaccine efficacy 

in young and aged mice 

It is well established that MF59-adjuvanted influenza vaccine induces increased antibody titers that 

correlates with increased protection against influenza virus in both young and older adults compared to 

the respective age group immunized with un-adjuvanted vaccine. To examine this outcome in an 

experimental mouse model, we immunized young (6-8 weeks of age) and aged (18 months of age) 

BALB/c mice with a trivalent influenza vaccine (TIV) given intramuscularly (i.m.) either alone or delivered 

with the MF59 emulsion. As expected, both young and aged mice immunized with TIV+MF59 had 

significantly higher serum influenza antigen-specific IgG antibody titers compared to non-adjuvanted TIV 

vaccine groups (Fig. 1A). The striking adjuvant effect of MF59 not only induced a large increase in total 

antibody titers but also increased functional Hemagglutination Inhibition (HI) titers, which are 

considered a correlate of protection for influenza vaccination (Fig. 1B and Suppl. Fig. 1A+B) [308]. While 

MF59 enhanced functional antibody titers in both young and aged mice, functional antibody titers in 

young mice were of a higher magnitude than that observed in aged mice. There were significant 

differences in total IgG and HI titers between young and aged mice vaccinated with non-adjuvanted TIV 

alone and between the young and aged TIV+MF59-vaccinated mice (Fig. 1A+B). Remarkably, when aged 

mice were immunized with TIV in presence of MF59, significant total IgG and HI antibody responses were 

noted, which were essentially equivalent (no significant differences) to the response observed in young 

mice immunized with TIV alone. These results are in agreement with data from clinical trials comparing 

elderly to adults [354].  

Studies performed in older adults have demonstrated that MF59 induces an increased frequency of 

circulating CD4+ T cells specific for vaccine antigens compared to un-adjuvanted vaccine [355]. 

Accordingly, we assessed the effect of MF59 adjuvantation on CD4+ T helper (Th) responses in our 

experimental murine model. Splenocytes from young and aged mice were collected after the second 

immunization, stimulated in vitro with antigen to reactivate vaccine-specific Th cells and assessed by 

FACS for intracellular cytokine expression. MF59-adjuvanted vaccine induced higher T cell responses 

compared to plain vaccine in both young and aged populations, with higher variability observed for aged 

mice (Fig. 1C). The induced Th profile was confirm with a mixed Th1 (IFNγ)/ Th2 (IL4/13) phenotype as 

described for this adjuvant (Fig. 1D). 
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Finally, we tested the effectiveness of the elicited immune responses in conferring protection from 

challenge with influenza virus. Previous work has illustrated age-associated impairments in immune 

responses during influenza viral infection with the H1N1/A/Puerto Rico/8/1934 (PR8) strain [356, 357]. 

To further examine this phenotype, we vaccinated mice using HA protein from PR8 virus as antigen alone 

or in combination with MF59 and we infected young and aged mice with the homologous strain of 

influenza. We quantified HI titer in sera from immunized mice and verified that HA protein alone was not 

sufficient to induce functional antibodies,  while the addition of MF59 greatly enhanced HI titers in both 

young and aged mice (Suppl. Fig. 1C). Notably, in parallel with previous results of TIV immunization, also 

in case of HA+MF59 vaccine functional antibodies titers were significantly higher in young mice than in 

aged ones. In our model, naïve aged mice resulted less susceptible to influenza viral infection compared 

to naïve young mice (Fig. 1E+F). However, young mice vaccinated with non-adjuvanted HA protein 

showed partial protection, as indicated by significantly reduced weight loss at day 7 post challenge 

compared to the respective naïve group (Fig. 1G). In contrast, aged mice receiving non-adjuvanted HA 

immunization were not protected in terms of weight loss at day 7 post challenge compared to the 

respective naïve group (Fig. 1G). Notably, HA+MF59 vaccine fully protected from weight loss both young 

and aged mice for the whole observed period post challenge.  

At specific time points during influenza viral infection, lung tissue was harvested from young and 

aged mice, and lung viral loads were assessed by the TCID50 assay. A kinetic study of lung viral titers was 

previously performed in young mice in our laboratory and demonstrated that a peak occurred at day 3 

post challenge (Suppl. Fig. 1D). Therefore, we evaluated and compared viral titers from lungs of young 

and aged mice three days after challenge. As illustrated in Fig. 1H, both young and aged mice vaccinated 

with HA alone showed significantly lower lung viral titers compared to the respective naïve groups. 

However, we observed in young mice a considerably higher decrease, reflecting what we observed for 

body weight loss. Consistent with a full protection from weight loss following MF59-adjuvanted 

vaccination, a very low detectable lung viral load was found in the HA+MF59 vaccinated young and aged 

mice.  

Comprehensively, our data support the conclusion that while MF59 can boost TIV-specific T cell and 

antibody responses in aged mice, it does not completely overcome the reduced ability of a senescent 

immune system to respond to an antigen. 
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Figure 1 (A-D) - MF59 induces enhanced T helper cell and antibody responses and vaccine efficacy in young and 

aged mice.  

(A) Ag-specific IgG titers in aged and young mice. Groups of mice were immunized twice with TIV or TIV+MF59 with 

a 4-week interval. Blood samples were drawn 2 weeks after the second immunization and H1N1-specific total IgG 

antibodies were measured by ELISA. Values represent geometric mean titers (GMT) of 12 mice/ group with 95% CI. 

(B) Hemagglutination inhibition (HI) titers towards H1N1/California; values represent GMT of 12 mice/ group with 

95% CI. (C-D) Spleens from young and aged mice were taken 2 weeks after the second immunization with TIV or 

TIV+MF59, and TIV-specific CD4
+
 Th cells were reactivated by in vitro stimulation. Their individual cytokine profile 

was assessed by intracellular cytokine staining and FACS analysis. (C) Dot plot graph represents the percentage of 

cytokine
+
 CD3

+
CD8

-
CD4

+
CD44

high
 T cells for each single mouse. (D) Bars show cumulative numbers of TIV-specific 

cytokine expressing cells, while the individual color code indicates the type of cytokines expressed by the 

respective cells, coded as shown in the panel above the graph. Mann-Whitney test: *p < 0.05, **p < 0.01, ***p < 

0.001, ****p < 0.0001, ns = not significant. 
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Figure 1 (E-H) - MF59 induces enhanced T helper cell and antibody responses and vaccine efficacy in young and 

aged mice.  

MF59 significantly reduced illness severity and viral load after influenza challenge in aged and young mice. 

Following infection with PR8 virus, aged mice (E) and young mice (F) were evaluated daily for weight loss. (G) 

Statistical analysis of weight loss 7 days post infection (7d p.i.). (H) Influenza virus titers were evaluated in lung 

supernatants of young (white symbols) and aged (grey symbols) mice 3 days post infection and represented as 

TCID50/ mouse. Mann-Whitney test: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns = not significant. 
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MF59-induced cytokine release is significantly lower in aged mice 

Since several studies published by our group dissected the contribution of individual pathways and 

immune mechanisms to MF59-adjuvanticity, we set to study further differences in immune responses in 

aged and young mice. 

A set of studies, undertaken both in vivo in young mice and in vitro, has demonstrated that MF59 

predominantly act through a mechanism involving chemokine-driven immune cell recruitment to the 

injection site [297, 314-316, 350]. To compare aged and young mice in cytokines release induced by 

MF59, the two groups of mice were immunized with ovalbumin (OVA) in presence and in the absence of 

MF59 and cytokine levels in the serum were assessed at different time points after intramuscular 

injection. In both aged and young mice, OVA+MF59 treatment induced high cytokine release that 

reached statistical significance for KC (CXCL1), MCP-1 (CCL2), IL-6, IL-5 and G-CSF at least at one time 

point compared to OVA alone treatment (Fig. 2A). As shown in Fig. 2B, statistical analysis performed at 6 

hours post injection revealed significant lower MF59-induced cytokine release of MCP-1, IL-5 and G-CSF 

in aged mice compared to young mice. 
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Figure 2 - Cytokines release in the serum of young and aged mice in response to MF59 injection.  

(A) Four mice per group were injected in both legs (i.m.) with 50 µl per quadriceps muscle of OVA (10 µg/ mouse) 

either with or without MF59 (1:1, vol:vol, in PBS). Blood samples were drawn at indicated time points and cytokines 

in serum were analyzed by multiplex-bead-ELISA. Values represent mean of 4 mice ± SD. Mann-Whitney test was 

performed at each time point for OVA alone vs. OVA + MF59, and a significant difference was found at least for one 

time point. (B) Cytokine content in the serum 6 hours post injection. Four mice per group were injected with the 

indicated compounds as before, and cytokine content was assessed 6 hours p.i. by multiplex-bead-ELISA. Values 

represent mean of 4 muscles + SD. Aged mice (grey bars) show a lower release of MCP-1, IL-5 and G-CSF compared 

to young mice (white bars). Mann-Whitney test: *p < 0.05 
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Analysis of MF59-induced cell recruitment and antigen uptake revealed intrinsic 

defects in antigen-loaded cDCs in translocation to draining lymph nodes of aged 

mice. 

As the chemoattractive role of these cytokines in mediating innate cell recruitment and activation at 

the injection site is a key feature of MF59 adjuvanticity [314-316], we asked whether the reduced 

cytokine release observed in aged mice could affect cell recruitment and/ or antigen uptake. Young and 

aged mice were treated intramuscularly with the fluorescent model antigen OVA-AF467 in presence and 

in absence of MF59 and, at different time points, muscle single cell suspensions were prepared and 

analyzed by multicolor FACS. Injection of antigen alone led to moderate CD11b+ cells infiltration in both 

mice groups (Fig. 3A). In contrast, in both aged and young mice, MF59 induced strong cellular 

recruitment that was significantly enhanced over the antigen alone treatment for the total CD11b+ 

population (Fig. 3A) and for each cell type assessed (Suppl. Fig. S2). No significant differences were 

observed in the overall number of CD11b+ cells and any of the single cell populations present in the 

muscle infiltrate at any time points when comparing aged and young mice (Suppl. Fig. S2). MF59-induced 

cell infiltration occurred with similar magnitude and kinetics in aged and young mice (Fig. 3B).  

We further wanted to assess the impact of MF59 on antigen translocation to draining lymph nodes 

(dLNs). We collected dLNs of the same mice that were used to study cell recruitment into the muscle 

comparing aged and young mice. MF59 induced a significant increase of total OVA+ cells in dLNs of both 

mouse populations when compared to antigen alone treatment (Fig. 3C). Again, overall kinetics and 

magnitude of OVA+ cells were similar in both age groups.  

We extended our analysis to the single antigen presenting cell (APC) types usually enhanced by MF59 

(Fig. 3D and Suppl Fig. S2B). In aged mice, the influx of all assessed antigen-loaded APC types was 

observed but conventional dendritic cells (cDCs) remained significantly fewer than in young mice (Fig. 

3D+E).  This difference was observed 24 hours post treatment both with OVA and OVA+MF59 suggesting 

an intrinsic defect associated with aging. 
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Figure 3 - Cell recruitment into the muscle and antigen uptake in dLNs induced by MF59 in aged and young mice. 

(A) CD11b+ cells recruited into the muscle of aged and young mice in response to different treatments. Eight mice 

per group were injected into both legs with 50 µl of MF59 (1:1, vol:vol, in PBS) or buffer control either in presence 

or absence of the model antigen OVA (10 µg/ mouse). Cell composition of muscle-derived cells was analyzed by 

FACS at three time points (6, 24 and 48 hours) post-injection. Values show the means of the 8 treated mice. (B) 

Comparison of the cell composition in aged and young mice injected with OVA+MF59 as assessed by FACS.  (C-D) 

Total (C) and single cell type (D) antigen-positive cells in draining inguinal LNs. Groups of 8 mice were injected i.m. 

into both legs with 50 µl of OVA-AF647 (10 µg/ mouse) either unadjuvanted or together with MF59 (1:1, vol:vol, in 

PBS). LNs were analyzed by FACS at three time points (6, 24 and 48 hours) post-injection to identify specific cells 

types and antigen-content. Values represent the mean of 8 LNs for each group. (E) Statistical analysis of antigen-

positive cDCs into the draining LNs of aged and young mice. Mann-Whitney test: *p < 0.05, **p < 0.01 
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MF59 contributes to enhanced T follicular helper cell (TFH) and Germinal Center 

(GC) responses but does not overcome limited GC response in aged mice. 

Recent evidence demonstrated that enhanced TFH cells and GC responses induced by MF59 are 

important for its adjuvanticity [347, 358, 359]. To compare TFH and GC B cells responses in aged and 

young mice, they were immunized with TIV alone or TIV+MF59. Single cells derived from dLNs were 

analyzed by multicolor FACS 10 days later. MF59 adjuvantation significantly increased CXCR5high PD-1high 

CD4+ TFH cell responses in both aged and young mice. In aged mice, TFH cell expansion was at least as 

strong as observed in young mice (no significant difference) (Fig. 4A). In addition, we analyzed GL7+ 

CD19+ GC B cells and observed a significantly higher number of GC B cells in presence of MF59 in both 

age groups (Fig. 4B). Despite the enhanced effect of MF59 adjuvantation, the increased number of GC B 

cells observed in aged mice could not reach the same extent observed in young mice (Fig. 4B).  

During GC reaction activated B cells undergo class switching down-regulating the surface molecules 

IgM and IgD. Switched cells differentiate to Plasma Cells and Memory B Cells. We analyzed the effect of 

MF59 adjuvantation in GC B cell class switching characterizing this B cell population in two different 

phenotypes: IgD+ IgM+/- and IgM- IgD- GC B cells. We observed that MF59 highly increased the percentage 

of switched IgM- IgD- GC B cells compared to TIV alone in both aged and young mice (Fig. 4C). It is worth 

noting that aged mice showed an intrinsic limited switched phenotype and that aged mice immunized in 

presence of MF59 reached similar percentage composition showed by young mice immunized in absence 

of MF59. This profile reflects nicely what was found for vaccine-induced antibody titers (Fig. 1A+B).  

Altogether, our results demonstrated that MF59 adjuvantation of influenza vaccines induces 

enhanced numbers of TFH and GC B cells and enhanced class switching of GC B cells in both aged and 

young mice, but intrinsic defects observed in GC B cells of aged mice cannot be completely overcome by 

MF59. 

To further define the relative contribution of the enhancement of TFH cells to MF59-induced GC 

responses, we analyzed the correlations between TFH and GC B cell numbers in individual mice 10 days 

after immunization with TIV and TIV+MF59. In young mice, we observed a strong positive correlation 

between TFH and GC B cells numbers (Fig. 4D, lower panels), indicating that the increase of the number of 

TFH cells induced by MF59 directly translates to increased GC responses. A similar correlation, but 

significantly less strong, was observed in young mice immunized with TIV alone. No significant 

correlations were observed in aged mice immunized both in presence and in absence of MF59, indicating 

an intrinsic defect in GC responses (Fig. 4D, upper panels). Importantly, despite their impaired immune 

responses, MF59 could significantly enhanced TFH and GC B cells numbers also in aged mice compared to 
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un-adjuvanted vaccine, which, even if not directly correlated, could plausibly lead to enhanced GC 

reaction resulting in higher antibody responses. 

 

Figure 4 (A-C) - MF59 elicits enhanced T follicular helper (TFH) cell and Germinal Center (GC) responses in aged 

and young mice.  

dLNs from aged and young mice immunized with TIV+MF59 (or TIV alone as control) were analyzed by FACS 10 days 

post treatment to determine the number of CXCR5
+
PD1

+
 TFH cells (A) and GL7

+
 GC B cells (B). Mann-Whitney test: 

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (C) Effect of MF59 adjuvantation in GC B cells class switching; 

pie charts represent the percentage of two different phenotypes (IgD
+ 

IgM
+/-

 and IgM
- 
IgD

-
) within each GC B cell 

population isolated from aged and young mice in response to different treatments. 
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Figure 4 D - MF59 elicits enhanced T follicular helper (TFH) cell and Germinal Center (GC) responses in aged and 

young mice.  

Correlations at day 10 post immunization between TFH and GC B cells in individual mice immunized with TIV with or 

without MF59.  
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The MF59-induced ATP signaling pathway is active in aged mice contributing to 

its adjuvanticity. 

We have recently demonstrated that MF59 plays a unique capacity to greatly increase ATP release 

from injected muscles and this is essential for its adjuvant effect [4]. To test if this MF59 prerogative was 

conserved and still active in aged mice, we used the well-established reporter system luciferase-luciferin 

to monitor MF59-stimulated ATP release from injected muscles in aged mice and compared it to the one 

observed in young mice. In aged mice, we found that MF59 injection induced a fast and prominent ATP 

signal that was significantly higher than ATP release caused by needle injury of PBS injection in the 

contralateral muscle (Fig. 5A and 5B). No significant differences were found when comparing ATP signals 

from aged muscles to signals from young muscles.  

Our previous study has also demonstrated that MF59 co-injection with apyrase, an enzyme that rapidly 

hydrolyzes ATP to AMP, could quench the induced extracellular ATP signal and, as a consequence, 

partially abolish the induction of innate and adaptive immune response by MF59 [4]. Accordingly, we 

compared the effect of apyrase inhibition on MF59-induced ATP release in aged and young mice 

assessing CD4+ Th and antibody responses. Groups of mice were immunized with TIV, either as plain 

antigens or together with MF59 in presence or absence of apyrase. We found that in aged mice as well 

as in young mice, the enhanced T cell response induced by MF59-adjuvanted vaccine was completely 

abolished by co-injection of apyrase (Fig. 5C). In addition, young and aged mice immunized with TIV in 

presence of MF59+apyrase showed significantly decreased HI antibody titers compared to mice receiving 

TIV+MF59 (Fig.5D). Importantly, whereas in young mice apyrase co-injection did not bring HI antibody 

titers to the level observed in mice immunized with unadjuvanted vaccine, in aged mice apyrase co-

injection completely reduced HI titers to the same level observed in aged mice immunized with TIV alone 

(Fig. 5D). This last finding suggests first that in young mice MF59 activates more than one pathway since 

inhibition by apyrase of ATP-dependent pathway does not completely abrogate the whole adjuvant 

effect, and second that in aged mice ATP release is the only pathway still functioning induced by MF59, 

thereby contributing to its efficient adjuvant effect. 
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Figure 5 - MF59 similarly induces ATP release in muscle of young and aged mice and this contributes to its 

adjuvanticity.  

(A-B) ATP release in aged and young mouse muscles induced by injection of MF59. (A) Quantitative analysis of 

chemiluminescence emission over time (number of photons/sec in the region of interest) obtained after 

intramuscular injection of MF59 or PBS together with the mixture luciferase-luciferin that reports on ATP changes. 

Data show mean values ± SD from at least four independent experiments. (B) Representative images taken 3 min 

after intramuscular injection of MF59 (right hind limb) or PBS (left hind limb). (C-D) Co-injection of apyrase 

abrogates the adjuvant effect of MF59 on vaccine-specific Th cells and HI antibody response. (C) Mice were 

immunized twice (4 weeks apart) with TIV and MF59 in presence or absence of apyrase (10 U/ leg). Spleens were 

taken 2 weeks after the second immunization and vaccine-specific CD4
+
 Th cells were re-activated by in vitro 

stimulation. Their individual cytokine profile was assessed by intracellular cytokine staining and FACS analysis. The 

bars show cumulative numbers of vaccine-specific cytokine expressing cells, while the individual color code 

indicates the type of cytokines expressed by the respective cells. (D) Mice were vaccinated as before. Serum 

samples were drawn two weeks after the second immunization and TIV-specific HI titers towards H1N1/ California 

were measured; values represent means of Log2 titers of 8 mice per group ± s.d. Mann-Whitney test: *p < 0.05, 

**p < 0.01, ***p < 0.001, ****p < 0.0001, ns = not significant 
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DISCUSSION 

Although the potent adjuvant effect of MF59 in increasing the efficacy of influenza vaccine in the 

elderly (>65 years) population is well established, the molecular mechanisms triggered by this well-

characterized oil-in-water emulsion have not been yet examined in this population. In the current study, 

we compared aged mice (> 18 months) and young mice in most of the relevant assays for MF59 activity 

and found that in aged mice the release of endogenous ATP at the site of injection induced by MF59 is 

well conserved and plays a crucial contribution to its adjuvant activity. The effect of apyrase in reduction 

of MF59-boosted HI titers was even more evident in aged mice compared to young mice, indicating that 

in this population, ATP might be the most important contributor involved in MF59 adjuvanticity. 

Likewise downstream pathways such as induction of cytokines in the injection site resulting in 

infiltration of a multitude of different immune cells and efficient antigen uptake were not significantly 

different in aged and young mice.  

Instead we could demonstrate that numbers of antigen-loaded cDCs in dLNs of immunized mice 

were significantly impaired in aged mice. Since this was the case both in plain vaccinated mice and in 

mice receiving MF59-adjuvanted formulations, we conclude that most likely intrinsic impairment of 

efficient cDC activation and/ or migration are the cause. DCs are pivotal for initiation and regulation of 

innate and adaptive immune responses and constitute the key cell type to present antigen to naïve T 

cells. 

Similar findings of DC impairment due to aging were published by a group assessing influenza 

infection in young and aged mice [160, 360]. The authors could show that NLRP3 inflammasome is 

impaired in elderly mice. Accordingly IL-1β secretion in response to influenza infection is affected. IL-1β 

is one of the key inflammatory cytokines and important for immune activation events like DC activation 

and function [360, 361]. That impaired DC activation in aged mice was key for an efficient response 

against influenza infection could further be demonstrated by Stout-Delgado and colleagues, by adoptive 

transfer experiments of DCs from young to aged mice and vice versa [160]. 

Whether solely IL-1β- or additional other cytokine-impairments during aging impact on proper DC 

function is unknown. Fundamental changes in the cytokine network are caused by and during aging. In 

fact chronic inflammation during senescence was termed “inflammaging” [362, 363]. This should cause 

also considerable imbalances in the response towards adjuvant injection since cytokines and chemokines 

are thought to play a fundamental role especially for MF59 adjuvanticity [310, 314-316]. In fact it was 

speculated that MF59 acted primarily via the induction of a “chemokine-driven immune amplification 
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loop” [314]. This principle was also termed “reverse targeting” [364], nicely illustrating that instead of 

targeting antigens to immune cells, MF59 acts by recruiting immune cells towards the injected adjuvant 

and co-injected antigens. Altered cytokine- and chemokine-networks due to aging should impact also 

MF59-induced responses. As it happens we found that serum cytokines were reduced in aged mice.  

A multitude of additional MF59-induced cytokines can be identified assessing muscle-derived mRNA 

by microarray [297, 315, 351]. Such analyses have proven to be a powerful tool to assess adjuvant 

induced transcriptional changes in the injection site. We are currently performing microarray studies to 

further dissect changes caused by aging. Comparing untreated muscles of aged and young mice as well 

as MF59-injected muscles should allow us to draw conclusions on eventual imbalances in basal level 

cytokines and adjuvant-stimulated upregulation and secretion.  

Future studies will have to show whether all observed immune deficiencies – cytokine imbalances, 

cDCs activation or migration and GC B cells and isotype switch – are all caused by inflammaging or 

whether differential factors contribute. Yet, some important immune activation pathways like the 

“alarmin” ATP release are fully intact also in aged mice. Since extracellular ATP contributes considerably 

to MF59-induced cytokine release, “reverse targeting” and efficient induction of Th cells [4] this might 

explain the proven success of this vaccine adjuvant especially in elderly populations. 
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1 - (A-C) Hemagglutination inhibition (HI) titers towards H3N2/ Perth (A) and B/ Brisbane (B) 

and PR8 (C); values represent GMT of 12 mice per group with 95% CI. (D) Kinetic of viral loads in lung supernatants 

of young mice following influenza infection; the curve represents GMT as TCID50/ mouse with 95% CI. Mann-

Whitney test: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns = not significant 
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Supplementary Figure 2 - Antigen-positive cell recruitment into the muscle and into the dLNs in response to 

MF59 injection in aged and young mice.  

Eight mice per group were injected i.m. into both legs with 50 l of OVA-AF647 (10 g/ mouse) either 

unadjuvanted or together with MF59 (1:1, vol:vol, in PBS). Cell composition of mucle-derived (A) or dLNs-derived 

(B) OVA- positive cells was analyzed by FACS at three different time points (6h, 24h and 48h post injection). Values 

show the means of 8 mice per group. Mann-Whitney test: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 
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ABSTRACT  

Background 

Most pre-clinical studies assess vaccine effectiveness in specific-pathogen-free animals in controlled 

environments. This is unrealistic given that humans are continuously exposed to different commensals 

and pathogens in sequential and mixed infections. Accordingly, complications from secondary bacterial 

infection are a leading cause of influenza-associated morbidity and mortality. New vaccination strategies 

are needed to control infections on simultaneous fronts. 

Methods 

We compared different anti-influenza vaccines for their protective potential in a viral-bacterial co-

infection model. Mice were immunized with H1N1/A/California/7/2009 subunit vaccines, formulated 

with different adjuvants inducing either Th1- [MF59+CpG], Th2- [MF59] or Th17- [LTK63] prone immune 

responses, and were sequentially challenged with mouse-adapted influenza virus H1N1/A/Puerto 

Rico/8/1934 and Staphylococcus aureus USA300, a clonotype emerging as a leading contributor in post-

influenza pneumonia in humans. 

Results 

Unadjuvanted vaccine controlled viral infection, yet mice had considerable morbidity from viral 

disease and bacterial superinfection. In contrast, all adjuvanted vaccines efficiently protected mice both 

from viral disease and bacterial co-infection but with different efficiency: Th1 > Th1/2 = Th17. 

Conclusions 

Our studies should help to better understand how differential immunity to influenza skews immune 

responses towards co-infecting bacteria, and moreover to discover novel modes to prevent bacterial 

super-infections in the lungs of people suffering from influenza. 
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INTRODUCTION 

Seasonal and pandemic influenza is still one of the major causes for mortality and morbidity 

worldwide [1, 365]. Symptoms can vary from mild disease to death depending on strain virulence, host 

immune status and environmental factors. Often, complications are caused by superinfection of 

otherwise harmless respiratory bacteria that get the upper hand once the immune system is debilitated 

by influenza infection [2, 366]. Notably, bacterial infections maybe a primary cause of mortality 

associated with influenza infection in the absence of pre-existing comorbidity [187, 367]. This 

phenomenon was most dramatically observed during the 1918 Spanish Flu that killed more people than 

the First World War. In fact, already at the time, it was stated that: “if influenza condemns, additional 

infection executes” [32, 368].  

The multifactorial interplay between host status, viral and bacterial factors has been assessed in 

mouse models [183, 193, 203]. Though it is well established that influenza infection enhances 

susceptibility to secondary bacterial infections by enhancing bacterial adhesion on epithelial cells [200, 

205] and impairing host responses [214, 217, 218, 369, 370], it is less clear to what extent an ongoing 

immune response towards influenza impacts on the type of immune response against co-colonizing 

bacteria. Would different flavours of immune responses, such as individual T helper (Th) profiles, specific 

cytokine environments and immune cell compositions, have a beneficial or detrimental impact on 

bacterial disease?  

All these factors can be modulated by vaccination against influenza with different adjuvants able to 

skew Th-profiles. Accordingly, we evaluated adjuvants MF59 (Th1/2), MF59+CpG (Th1) [6] or LTK63 

(Th17) [7] for their capacity to modulate disease resolution of mixed viral-bacterial infections. 

The development of novel vaccines that protect not only from vaccine-matched influenza infection, 

but induce broader-spectrum memory responses with adequate Th profiles to exert positive bystander 

effects on eventual bacterial co-infections could help control infections on simultaneous fronts. 
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MATERIAL AND METHODS 

Vaccines 

Purified, egg-derived H1N1/A/California/7/2009 (H1N1/ Cal) influenza subunit antigen was 

concentrated through the KrosFlo research II Complete TFF System (Spectrum Laboratories) as described 

elsewhere [371]. 

Oil-in-water emulsion adjuvant MF59 was prepared as described before [316]. CpG 1826 

oligonucleotide (5’-TCC ATG ACG TTC CTG ACG TT-3’) with all phosphothioate backbones was purchased 

by Primm. LTK63, the non-toxic mutant of LT, was produced in our laboratories as reported earlier [372]. 

Mice that were pre-exposed (p.e.) to a sublethal dose (2.5 10-2 tissue-infectious-dose-50 (TCID50)) of 

mouse-adapted influenza H1N1/A/Puerto Rico/8/1934 (PR8) virus were used as positive controls in 

challenge studies. 

Mice and Immunizations  

Groups of 6 to 8-weeks-old female pathogen-free BALB/c mice (Charles River) were used in 

agreement with institutional and European guidelines. All animal experiments were approved by the 

Italian Health Ministry and carried out in accordance with Italian legislation (Legislative Decree 116/92). 

Animals were immunized three times sublingually (s.l.) with 30 µl (H1N1 (10 μg) + LTK63 (5 μg)), or twice 

intramuscularly (i.m.) with 50 μl in each quadriceps muscle (1 μg H1N1 administered either as plain 

vaccine, or together with MF59 (1:1, vol:vol), or with MF59 (1:1, vol:vol) + CpG (10 μg)) four weeks apart 

(days 1 (only s.l.), 28 and 56).  

Virus challenge  

Mice were anesthetized and challenged intranasally (i.n.) with 30 μl (15 μl/ nostril) of 2.1 TCID50 of 

PR8 virus three weeks after the final vaccination.  After viral challenge, mice were monitored for 16 days 

for weight loss and euthanized if humane endpoints (= 25% weight loss) were reached. 

Serum and bronchoalveolar lavage (BAL) sample collection  

Serum samples were collected two weeks after each immunization or at different time-points post 

infection (p.i.).  

BAL samples were collected at different time-points p.i. by injecting 1.5 ml PBS and 0.1% BSA 

intratracheally.  
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Determination of vaccine- and Infection-specific antibodies by ELISA, 

microneutralization (MN) and hemagglutination inhibition assay (HI) as well as 

CD4+ T cell responses  

Vaccine- and Infection-induced immune responses were determined as described in Supplementary 

Materials or elsewhere [7, 373]. 

Determination of cytokine concentration in lung homogenates 

At indicated time-points p.i., six mice per group were sacrificed and lungs harvested. Organs were 

homogenized in a buffer containing tissue protein extraction reagent (T-PER, Pierce) and complete 

protease inhibitor cocktail (Roche) using a gentleMACSTM dissociator (Miltenyi Biotec) according to 

manufacturer’s instruction. Protein concentrations in lung homogenates were determined using BCA 

Protein Assay kit (Pierce). Cytokine analyses were performed using the Luminex Bio-Plex Pro Mouse 

Cytokine 23-Plex Immunoassay (Biorad) according to the manufacturer’s protocol. 

Cell recruitment into lungs 

Lung cell composition was determined by FACS as described in Supplementary Materials or 

elsewhere [373]. 

Bacterial challenge 

Staphylococcus aureus (S. aureus) Lac (USA300) SmR (streptomycin resistant) bacteria were cultured 

at 37°C and 250 rpm in tryptic soy broth supplemented with streptomycin (500 μg/ ml) until an optic 

density of A600 = 2, corresponding to a concentration of 109 CFU/ ml. Bacteria were harvested by 

centrifugation, washed and suspended in PBS for mouse infection. Animals were anesthetized and 

challenged i.n. with 107 CFU of S. aureus in a volume of 30 μl (15 μl/ nostril) at day 6 after influenza 

infection. Infected mice were monitored daily for 10 days as described for single virus challenge. 

Determination of viral titers and bacterial CFU in lungs 

Viral titers in homogenized lung samples were determined by TCID50 assay performed on MDCK cells 

by ten-fold serial dilutions of supernatant samples as described [352], yet using Ultra-MDCK-Medium 

(Lonza) supplemented with 1% PSG (Life Technologies) and 1 ug/ ml TPCK-treated trypsin (Sigma-Aldrich). 

Bacterial CFU were measured via plating of serial dilutions of lung homogenates on tryptic soy agar 

plates supplemented with streptomycin (500 μg/ ml).   
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Statistical analysis 

All statistics were performed using GraphPad Prism software (version 6.0) using Mantel-Cox test for 

survival or Mann-Whitney test for the other read-outs. p values < 0.05 were considered significant. 
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RESULTS 

Immune profiles induced by different adjuvants and administration routes 

Influenza infection is controlled by protective neutralizing antibodies and by cytotoxic CD8+ T cells 

[26]. Yet, CD4+ T helper (Th) cells have been also implicated in protection via various pathways [102]. 

Accordingly, we characterized the individual immune profiles induced by the different vaccine 

formulations. Figure 1 shows that immunization with plain influenza antigens (Ag) induced moderate 

vaccine-specific antibody titers. In contrast, Ag formulated with MF59 with or without CpG induced 

about one log higher total IgG (Fig. 1A) and functional, hemagglutination-inhibition (HI) titers (Fig. 1B). 

Also sublingual administration of influenza Ag formulated with LTK63 induced measurable total and 

functional antibody titers. Yet, these were significantly lower than the MF59±CpG-induced ones, and 

were similar to not-adjuvanted vaccine. As expected, each vaccine adjuvant induced a different Th 

profile in the spleen (Fig 1C). All adjuvants enhanced Th responses as compared to plain vaccine 

antigens. Yet, the individual profiles of intracellular cytokines were dramatically different: MF59 led to a 

mixed Th1/Th2 profile, MF59+CpG to more Th1-prone responses and LTK63 to Th17 cells. 
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Figure 1 - Profiles of different vaccine-induced adaptive immune responses. 

Mice (15/ group) were immunized twice intramuscularly (i.m.) or three time sublingually (s.l.) 4 wk apart with Ag 

(antigen: H1N1/A/California/7/2009 subunit, H1N1/ Cal) alone or combined with adjuvants, as indicated: MF59 (1:1 

vol:vol), MF59 (1:1 vol:vol) + CpG (10 μg), LTK63 (5 μg) and Ag (0.1 μg for i.m and 10 μg for s.l. immunization). (A–B) 

Serum samples were obtained 2 wk after the last immunization, and Ag-specific antibody titers were measured. (A) 

Total IgG antibody titers towards H1N1/ Cal. Values represent geometric mean titers (GMT) as ELISA Units/ ml (EU/ 

ml) with 95% CI. (B) Hemagglutination inhibition (HI) GMT titers towards H1N1/ Cal with 95% CI. Mann-Whitney 

test (t): *p < 0.05, ****p < 0.0001, ns = not significant, nd = not detected. (C) Spleens from 3 mice per group were 

taken 3 wk after last immunization and Ag-specific CD4
+
 Th cells were reactivated by in vitro stimulation. Their 

individual cytokine profile was assessed by intracellular cytokine staining and FACS analysis. Cumulative data from 

two independent experiments are shown as numbers of vaccine-specific cytokine expressing cells and the 

individual colour code indicates the type of cytokines expressed by the respective cells reported as mean CD4
+
 T 

cells (%). 
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Potential of vaccine formulations to protect from a lethal, heterologous influenza 

challenge 

Next, we assessed the potential of the individual vaccine formulations to protect from a lethal 

influenza challenge. Three weeks after the last immunization, mice were challenged with mouse-adapted 

H1N1/A/PR8/1934 (PR8) influenza virus and monitored for 16 days for body weight and viral titers. In 

naïve mice excessive weight loss (Fig. 2A) and mortality (Fig. 2B) were indicative of ongoing disease for 

up to nine days. During this period virus replicated rapidly for three days, then immune responses 

succeeded in controlling the infection (Suppl. Fig. 1). In contrast, weight loss in vaccinated mice was 

much milder (Fig. 2A), survival rate was greatly increased (Fig. 2B), and viral replication in lungs was 

contained significantly earlier (Fig. 2C). Interestingly, all adjuvanted formulations were significantly 

better as compared to antigen alone. This effect was especially evident at day 6 post infection (p.i.). Only 

mice that received influenza Ag with MF59+CpG controlled the infection early on (Fig. 2C) and showed 

less than 10% weight loss (Fig. 2A). This is little surprising since this formulation induced a Th1 profile 

(Fig. 1C) that should be the most suitable immune response towards a viral infection [27]. 
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Figure 2 - Protective efficacy of different vaccine formulations after heterologous influenza challenge 

(A-B) Mice (10/ group) were immunized as described in Fig.1. Three wk after the last immunization, mice were 

challenged intranasally (i.n.) with 2.1 TCID50 of influenza virus PR8. Mice that were previously pre-exposed (p.e.) to 

a sublethal dose influenza challenge were used as positive control. Animals (6/ group) were monitored for body 

weight loss for 16 days post influenza infection (p.i.) and euthanized if humane endpoints were reached. The empty 

arrows indicate the day of influenza (PR8) challenge. (A) Body weight loss of influenza infected mice. Curves 

represent mean percentage (%) of mouse weights at indicated days p.i. compared to initial body weights ± SD. (B) 

Survival curve of respective mice. Final survival rate of each group of mice is reported at the end of individual 

curve. (C) Mice were immunized and infected with influenza as reported before. Lungs were taken three and six 

days p.i. and viral titers were assessed. Cumulative data from two independent experiments are shown, each with 3 

mice/ group and time-point. Values represent GMT as TCID50/ mouse with 95% CI. Mann-Whitney test (t): *p < 

0.05, **p < 0.01, ns = not significant. LLOD = lower limit of detection. 
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To further characterize immune responses after challenge, we sacrificed mice at different time-

points p.i. and assessed cell composition of dissociated lung tissue by FACS analysis. Single cells were 

stained with a large panel of cell type-specific antibodies in order to identify most of the infiltrating cell 

types (gating strategy in Suppl. Fig. 2). 

As shown in Figure 3A+B and Supplementary Figures S3+S4, naïve mice and those received plain 

antigens had a high infiltrate of a variety of immune cells in their lungs. Cell influx peaked between days 

6 and 9 p.i., and especially inflammatory cells like neutrophils, monocytes and monocyte-derived 

macrophages were strongly enhanced (Fig. 3B and Suppl. Fig. 3+4). In contrast, all mice that received 

adjuvanted vaccine formulations, independently from the type of adjuvant, had a significantly reduced 

infiltrate as compared to naïve or plain-vaccinated mice. This was also evident for the overall infiltrate as 

well as for individual inflammatory cell types (Fig. 3A+B and Suppl. Fig. 3+4). 

 

 

Figure 3. Lung immune cell recruitment during influenza challenge.  

Mice were immunized and infected with PR8 virus as before. Lungs were taken at indicated time-points p.i. and 

total number of cells infiltrated was determined. Immune cell composition was assessed by cell surface marker 

staining and FACS analysis. Cumulative data from two independent experiments are shown, each with 3 mice/ 

group and time-point. (A) The curve represents mean of total cell counts/ lung + SD. (B) The bars show cumulative 

numbers of cell types at 6 days p.i. normalized to total cell count in the lungs. The individual colour code indicates 

mean numbers of respective cell types. Mann-Whitney test (t): *p < 0.05, **p < 0.01, ns = not significant. 
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Interestingly, mice that received s.l. immunization with LTK63 showed almost no weight loss and 

very little inflammatory lung infiltrate, even though vaccine-induced total and functional HI antibodies 

were significantly lower than those of the other adjuvanted groups (Fig. 1 A+B). HI titers are a correlate 

of protection for influenza infection during homologous challenge [28, 29]. Yet, antigenically drifted 

viruses may appear during the annual influenza season and this usually leads to reduced efficacy of 

recommended vaccines [30, 31]. In our model, mice were immunized with antigens from 

H1N1/A/California/7/2009 virus but challenged with the closely related but heterologous mouse-

adapted PR8.  

In order to dissect the mechanism(s) of protection, we tested serum of naïve and vaccinated mice for 

the capability to cross-react with (Fig. 4A) and eventually block PR8 viral infection in vitro in a micro-

neutralization (MN) test (Fig. 4B). Cross-protective MN titers were not detected in any of the groups 

during the first six days p.i., though cross-reactive antibodies were measured. Neutralizing antibodies 

were detected in all groups from day 9 onwards likely due to the onset of adaptive immunity against 

virus-infection. We further tested the presence of cross-reactive IgA in BAL samples at different time-

points during the infection (Fig. 4C). Only mice that received influenza antigen with LTK63 via the 

mucosal route had detectable IgA before the infection that cross-reacted with the challenge virus PR8. 
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Figure 4 - PR8-specific serological and mucosal humoral response. 

Mice were immunized and infected with influenza PR8 virus as reported before. Cumulative data from two 

independent experiments are shown, each with 3 mice/ group and time-point. Serum and (bronchoalveolar 

lavages) BAL samples were obtained at the indicated days p.i., and PR8-specific antibody titers were measured. (A) 

Total IgG antibody titers in serum. Values represent GMT as EU/ ml with 95% CI. (B) PR8 virus micro-neutralization 

(MN) antibody titers in serum. Values represent titers of pooled samples that correspond to a 50% inhibition of 

infection (IC50). (C) PR8-specific IgA titers in BALs. Values represent GMT as EU/ ml with 95% CI. nd = not detected 
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Polarized T helper cells are recruited into the lungs upon influenza infection 

Next, we tested the quantity and quality of vaccine-specific Th cells that are recruited to the site of 

infection (Fig. 5). Single cell suspensions of dissociated lungs were prepared at different time-points p.i., 

and Ag-specific CD4+ Th cells were identified as cytokine-secreting cells by intracellular staining and FACS 

analysis after in vitro stimulation (gating strategy in Suppl. Fig. 5). Few vaccine-specific Th cells were 

found prior to virus challenge (Fig. 5A). Only mice receiving LTK63-adjuvanted vaccine had measurable 

Th responses with a characteristic Th17 profile.  

Numbers of Th cells in lung infiltrates increased during the course of infection in all treatment 

groups, peaking between days 6-9 p.i. As expected, the characteristic Th profiles induced by the different 

vaccine formulations were also maintained in Th cells infiltrating infected lungs: a Th1/Th2 profile for 

MF59, Th1-prone responses for MF59+CpG and Th17 responses for LTK63. This was further confirmed 

measuring the respective indicator cytokines IFN (Th1), IL-5 (Th2) and IL-17 (Th17) in lung homogenates 

via multiplex-bead ELISA (Fig. 5B). Whether vaccine-induced Th cells contributed to viral clearance via 

secretion of immune-activating cytokines and/ or via direct effector functions still remains to be 

determined.  

Altogether, this data suggest that the different vaccine formulations may induce protective immunity 

through the differential contribution of cytokine-secreting Th cells, functional antibodies in blood and/ or 

at mucosal sites, and eventually other mechanisms. 
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Figure 5 - Each vaccine formulation induces characteristic Th-polarized immune responses in the lungs. 

Mice were immunized and challenged with PR8 virus as before. Lungs were taken at indicated day p.i and Ag-

specific CD4
+
 Th cell response (A) or total cytokine concentration (B) were evaluated. Cumulative data from two 

independent experiments are shown, each with 3 mice/ group and time-point. (A) Ag-specific CD4
+
 Th cells were 

stimulated in vitro and their individual cytokine profile was assessed by intracellular cytokine staining and FACS 

analysis. The bars show cumulative numbers of Ag-specific cytokine expressing cells normalized to total cell counts 

in the lungs. The individual colour code indicates the type of cytokines expressed by the respective cells. (B) 

Cytokine concentration in lung homogenates. The curves represent mean cytokine concentration as fold increase 

compared to pre-infection concentration + SD. 
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Bystander effects of adjuvanted influenza vaccines on viral-bacterial co-infection 

Finally, we characterized the performance of the different vaccine formulations in a viral-bacterial 

co-infection model that more realistically reflects the conditions encountered in real life. 

Mice immunized with different influenza vaccines were challenged with PR8 like before, and were 

subsequently challenged on day 6 p.i. with 107 CFU of Staphylococcus aureus. Day 6 post-influenza 

infection was chosen for various reasons: (i) the overall timeframe is in line with actual influenza 

infection and bacterial superinfection [193], (ii) mice of the three different adjuvant groups had similar 

inflammatory lung infiltrates (Fig. 3B), similar low viral titers (Fig. 2C), and similar quantity of Ag-specific 

Th cells in infected lungs (Fig. 5A). Yet, the quality of Th profiles (Fig. 5A) and the respective cytokine 

environment in lungs (Fig. 5B) were fundamentally different and peaked on day 6 p.i. 

Since it is believed that different Th profiles have differential effectiveness against different 

pathogens (Th1 for virus and other intracellular pathogens, Th2 for extracellular bacteria and parasites, 

and Th17 for intracellular bacteria), we were intrigued to know whether the respective cytokine 

environment would have a positive or negative impact on super-infecting bacteria. 

Mice infected just with S. aureus had only minor weight loss and no mortality during the following 

days without any statistical difference between the different treatment groups (Suppl. Fig. 6A+B). In 

contrast, co-infected mice had enhanced morbidity and mortality (Fig. 6A+B) as compared to single 

influenza infection (Fig. 2A+B). In particular, naïve mice and those vaccinated with plain antigens showed 

a dramatic weight loss and less than 30% survival after influenza-S. aureus co-infection. In contrast, mice 

receiving adjuvanted influenza vaccines were mostly protected from severe weight loss and showed 65-

100% survival rates. As expected, Th1-prone mice (Ag+MF59+CpG), that were better protected during 

single influenza infection, better counteracted also the secondary bacterial challenge as compared to the 

other adjuvanted formulations. 

On the day of co-infection, naïve and plain vaccinated mice had similar body weight loss (Fig. 6A) and 

similar viral titers in lungs (Fig. 6C). Yet, while plain vaccinated mice continued to control viral load with 

or without bacterial co-infection and had lower viral titers in the lungs on day 7 p.i. than on the previous 

day, naïve mice showed the classical rebound of viral titers observed during bacterial superinfections [2, 

9]. And, similarly to exacerbation of viral disease by co-infecting bacteria, also bacterial loads were 

greatly enhanced by viral pre-infection (Fig. 6D). While comparable bacterial counts were obtained from 

lungs of all groups of mice during single bacterial infection (Fig. 6D, solid bars), bacterial loads were 

significantly enhanced in naïve and plain vaccinated mice in the co-infection model (Fig. 6D, striped 

bars).  
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In contrast, all mice receiving adjuvanted vaccines controlled viral loads to low levels by the day of 

the co-infection (Fig. 6C). Importantly, bacterial counts in lungs were also efficiently controlled as 

compared to naïve mice and those receiving not-adjuvanted vaccine (Fig. 6D). As expected from previous 

results, the overall outcome was best for mice that received vaccines with MF59+CpG via systemic 

vaccination. Mice vaccinated i.m. with MF59- or s.l. with LTK63-adjuvanted vaccine had slightly greater 

weight loss (Fig. 6A), lower survival rate (Fig. 6B) and some S. aureus overgrowth after co-infection (Fig. 

6D). 

Altogether our results indicate that - while all adjuvanted influenza vaccines clearly contribute to 

resolution of viral-bacterial co-infections - Th1 inducers would be the most appropriate. Future studies 

will have to show whether differences are due to differentially induced Th profiles and cytokine 

environment at the site of infection or whether other mechanisms like induction of differential antibody 

isotypes or ADCC are involved. 
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 Figure 6 - Bystander effects of adjuvanted influenza vaccines during viral-bacterial co-infection  

 At least twelve mice per group and experiment were immunized and challenged with PR8 virus as before. Six days 

p.i. mice were co-infected i.n. with 10
7
 CFU of S. aureus Lac USA300. Vaccinated mice that were infected with virus 

or bacteria only were used as controls. Cumulative data from five independent experiments are shown. The empty 

arrows indicate the day of influenza (PR8) challenge, while the solid arrows indicate S. aureus (S.a.) infection. (A-B) 

All animals were monitored for body weight loss for 16 days post influenza infection and euthanized if humane 

endpoints were reached. (A) Body weight loss of influenza-S. aureus co-infected mice. Curves represent mean 

percentage (%) of mouse weights at indicated days p.i. compared to initial body weights ± SD. (B) Survival curve of 

the respective mice. Final survival rate of each group of mice is reported at the end of respective curve. (C) Lungs 

from 3-6 mice per group and experiment were taken at indicated days p.i. and viral titers were assessed. The curves 

represent GMT as TCID50/ mouse with 95% CI. Starting from 6 days p.i. dashed lines represent mice infected only 

with influenza while solid lines are used for influenza-S. aureus co-infected (co-inf) mice. (D) Lungs from 3-6 mice 

per group and experiment were taken 24 h after S. aureus infection and CFU counts were assessed. Values 

represent geometric mean counts as CFU/ mouse with 95% CI. Mantel-Cox (B) and Mann-Whitney (C-D) tests: *p < 

0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns = not significant. LLOD = lower limit of detection. 
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DISCUSSION 

The upper respiratory tract is exposed to numerous pathogens simultaneously, and viral-bacterial co-

infection in the lung is a common clinical manifestation. Only recently, the complex interplay of different 

commensals and pathogens with the host immune system and its impact on immune-maturation or -

suppression is getting full attention [2, 374, 375]. 

Complications from secondary bacterial infection are a leading cause of morbidity and mortality 

associated with influenza virus infection. The situation is becoming more challenging due to extensive 

and sometimes inappropriate use of antibiotics that leads to the emergence of antibiotic-resistant 

bacteria. Hence, infectious diseases remain an important unmet medical need and new concepts of 

vaccination strategies or treatments to control infections on simultaneous fronts are needed. 

Accordingly, we assessed the impact of different influenza vaccination strategies in a mouse model 

of viral-bacterial co-infection. 

Influenza infection is controlled mostly by protective neutralizing antibodies and by antiviral effector 

T cells [26, 102]. Upon vaccination or infection, subjects develop innate and adaptive immune responses 

clearing the virus. Strain-specific antibody and memory responses are induced which are directed against 

major viral epitopes (hemagglutinin and neuraminidase), and exert selective pressure on circulating 

influenza strains. Virus mutations drive antigenic drifts and shifts to achieve immune evasion and 

necessitate updating of seasonal influenza vaccines regularly in order to match strains. The selective 

pressure against many pathogens is higher on B cell epitopes (direct immune targets via antibody 

binding to matching epitope) than on T cell epitopes (indirect immune targets via immune activation) 

[376]. 

Conventional influenza vaccination strategies aim to induce high functional antibody titers that are 

considered a correlate of vaccine efficacy [259, 377]. While this is certainly true against homologous 

virus strains, the situation could be different when infections are caused by circulating strains that do not 

match with the antigens contained in the seasonal vaccine.  

During vaccine development, little attention is usually paid to the concomitant induction of CD4+ T 

cell responses and other potential mechanisms of protection. In our model, HI titers alone were not 

predictive of vaccine efficacy, since plain vaccinated mice and those receiving antigens together with the 

mucosal adjuvant LTK63 had similar vaccine-specific HI titers, but strikingly differential morbidity and 

mortality after challenge with a heterologous influenza strain or in mixed viral-bacterial co-infection. 

Though HI titers of LTK63-immunized animals were about one log lower than titers from the other 
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adjuvanted groups, they were similarly protected from weight loss, inflammatory infiltrate, and viral 

loads, while plain vaccinated mice performed considerably worse in all settings. An explanation might be 

the induction of higher CD4+ Th cell responses by LTK63, the altered Th profile, the additional induction 

of mucosal IgA antibodies or other factors. Most likely the different factors contribute to varying content 

to protection. 

Successful vaccination with influenza vaccines via the sublingual route could path the development 

of novel needle-free vaccines [7]. Such vaccines would have the advantage of being self-administrable, 

avoid needle-phobia and pain and could therefore enhance vaccine uptake considerably.   

Most importantly, mice receiving LTK63-adjuvanted vaccine sublingually were equally protected 

from bacterial overgrowth in mixed infections as MF59-adjuvated vaccinated mice. MF59-adjuvanted 

vaccines were specifically developed for elderly populations and are currently considered – together 

with similar adjuvanted influenza vaccines – as the gold standard of influenza vaccines for protection of 

immune compromised subjects, of elderly and infant populations [3, 286, 310]. Notably aged people 

(>65 years) are also the ones most susceptible to influenza-induced bacterial superinfections [158]. It 

would be interesting to apply our influenza+S. aureus co-infection model to aged mice and eventually 

identify the proper anti-influenza vaccination strategy specific for this target population to counteract 

the two pathogens together.  

We showed that all adjuvants are efficient inducers of Th responses. CD4+ T cells have been implied 

in prediction of vaccine effectiveness and memory Th cells are believed to contribute to protection 

against influenza challenge via various pathways [102, 349]. As indicated by their name, Th cells provide 

crucial help to B and CD8+ T cells. They are important for the fast induction of protective antibodies and 

provide stimulatory signals that determine differential isotype switch. In BALB/c mice Th1 cells induce 

preferentially a switch towards IgG2a/b, Th2 cells IgG1 and Th17 cells additionally IgA. But besides their 

helper function, Th cells might play also more direct roles via immune activation due to their release of 

effector cytokines at the site of infection coordinating an antiviral state in infected tissues or by acting as 

cytotoxic CD4+ T cells.  

Th1 cells are usually considered to be the most important in the defence against virus and 

intracellular bacterial pathogens; Th2 cells were implied in protection from parasites and extracellular 

bacteria; and Th17 cells are important players at mucosal sites, against fungal pathogens and 

intracellular bacteria. It could be expected that the most efficient immune response against an influenza-

bacterium mixed infection would be constituted by a mixed Th1/ Th17 response.  
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In line with expectations, Th1-inducing (MF59+CpG) vaccine formulation performed even better than 

the other adjuvanted vaccines. Mice that experienced more Th1-polarized immunity were better 

protected from prior influenza disease and consequently they efficiently counteracted secondary 

bacterial infection.  

Future experiments will have to show, whether these differences translate into measurable greater 

vaccine effectiveness. Nevertheless, our work contributes with a new approach to the quest of the 

development of better influenza vaccines in order to avoid regular updating of seasonal influenza 

vaccines to match circulating seasonal and eventual pandemic strains. Universal flu vaccines that induce 

broadly cross-protective antibodies are certainly a promising strategy [378]. But also the contribution of 

adequate vaccine adjuvants for the induction of the most adequate immune profiles should be key. 

The development of novel vaccines that protect not only from vaccine-matched influenza infection, 

but induce broader-spectrum memory responses with adequate Th profiles to exert positive bystander 

effects on eventual bacterial co-infections could help to control infections on simultaneous fronts. 
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1 - Lung viral titer kinetics in naïve mice. 

Forty-two mice were challenged i.n. with 2.1 TCID50 of influenza PR8 virus. Lungs from 6 mice were taken at 

indicated days p.i. and viral titers were assessed. The curve represents GMT as TCID50/ mouse with 95% CI. LLOD = 

lower limit of detection. 

 

 

Supplementary Figure 2 - Gating strategy: lung immune cell recruitment.  

Gating strategy of lung-derived cells. Lung single cell suspensions were prepared and analyzed by FACS, applying 

the depicted gating strategy. 



100 
 

 

 

Supplementary Figure 3 - Lung immune cell recruitment kinetics. 

Mice were immunized with Ag and adjuvants as indicated and challenged with influenza virus PR8. Lungs from 3 

mice per group were taken at indicated days p.i and immune cell composition was determined by cell surface 

markers staining and FACS analysis. Cumulative data from two independent experiments are shown as numbers of 

cell types normalized to total cell counts in the lungs and the individual colour code indicates mean numbers of 

specific cell type. 
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Supplementary Figure 4 - Lung immune cell recruitment: single cell types at 6 days p.i. 

Mice were immunized and challenged PR8 virus as before. Single-cell suspensions of lungs were analyzed by FACS 6 

days p.i. Cumulative data from two independent experiments are shown, each with 3 mice/ group and time-point. 

Dots show numbers of the respective cell type per individual lung (n=6 per group), whereas bars indicate means. 

Mann-Whitney test (t): *p < 0.05, **p < 0.01, ns = not significant. 
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Supplementary Figure 5 - Gating strategy: lung Th cell response.  

Gating strategy of lung Th cell responses. Lung single cell suspensions were prepared, Ag-specific cells were 

stimulated in vitro and analyzed by FACS, applying the depicted gating strategy. 
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Supplementary Figure 6 - Mouse weight loss and survival during single S. aureus infection. 

At least twelve mice per group and experiment were immunized as reported before and infected i.n. with 10
7
 CFU 

of S. aureus Lac USA300 at the corresponding time of infection for viral/ bacterial co-infected mice. All animals 

were monitored for body weight loss for 10 days after bacterial infection and euthanized if humane endpoints were 

reached. The empty arrows indicate the day of Mock infection, while the solid arrows indicate S. aureus (S.a.) 

infection.  Cumulative data from five independent experiments are shown. (A) Body weight loss of S. aureus 

infected mice. Curves represent mean percentage (%) of mouse weights at indicated days p.i. compared to initial 

body weights ± SD. (B) Survival curve of respective mice. 
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SUPPLEMENTARY MATERIAL AND METHODS 

Determination of antigen-specific antibody titers by ELISA  

Titration of H1N1/ Cal or PR8-specific IgG was performed on individual sera while titration of specific 

IgA was performed on individual BAL. Polysorp plates (Nunc) were coated overnight at 4°C with 2.6 

μg/ml of H1N1 antigen in PBS and blocked with SmartBlock (Candor) for 1 h at 37°C. Plates were washed 

three times with PBS 0.05% Tween 20 and, for IgG titration, incubated for 1 h at 37°C with individual 

mouse sera serially diluted 2-fold in PBS 1% BSA 0.01% Tween 20. These plates were washed and 

incubated for 1.5 h at 37°C with alkaline phosphatase-conjugated goat anti-mouse IgG (Sigma). For IgA 

titration, blocked plates were incubated for 20 min at 37°C with individual mouse BAL serially diluted 2-

fold (starting dilution 1:10) in PBS 1% BSA 0.05% Tween 20 and alkaline phosphatase-conjugated goat 

anti-mouse IgA. All plates were washed and P-nitrophenyl phosphate disodium was added. The reaction 

was stopped adding a solution of 3% EDTA pH 8, and absorbance measured with SpectraMax (Molecular 

Devices) reader at 405 nm.  

 Antibody titers are the dilutions that gave an optical density (OD) higher than mean + 5 SD of the 

average OD obtained with pre-immune sera. The titers were normalized by using a reference serum 

assayed in parallel and reported as ELISA Units/ml (EU/ml).  

Determination of antibodies by hemagglutination inhibition assay (HI) 

To remove non-specific inhibitors, serum samples were pre-treated with DENKA receptor-destroying 

enzyme (Biogenetics) for 18 h at 37°C according to the manufacturer’s instructions and then inactivated 

at 56˚C for 30 min. HI assay was then performed on individual sera. Briefly, 25 μl of two-fold serially 

diluted samples were incubated with 25 μl of strain-specific influenza antigen (Whole virus, containing 

four hemagglutinating units) for 1 h at room temperature. 50 μl turkey red blood cells suspension was 

dispensed in each well and plates were again incubated at room temperature for another 1 h. Reactions 

were followed through visual inspection: a red dot formation indicated a positive reaction (inhibition) 

and a diffuse patch of cells a negative reaction (hemagglutination). All sera were run in duplicate. The 

titer was defined as the serum dilution at which the last complete agglutination inhibition occurred. The 

antibody concentration corresponds to the reciprocal value of the titer.  

Neutralization assay  

Neutralization activities in serum samples from immunized mice were detected using a 

microneutralization assay (MN).  Pooled sera were inactivated at 56˚C for 30 min and then serially 



105 
 

diluted 3-fold in minimal essential medium (MEM, Gibco) with Penicillin, Streptomycin and Glutamine 

(PSG, Life Technologies), Trypsin 1X 1:250 and incubated  for 1 h at 37°C with 300 TCID50 of mouse 

adapted influenza A/Puerto Rico/8/1934 (H1N1) virus. The first dilution tested was 1:80. All samples 

were then transferred on MDCK cells, plated in a 96-well plate (20,000 cells/ well). The final volume was 

200 μl/ well. Each sample was incubated for 18 h at 37°C in 5% CO2. Cells were then washed with PBS, 

fixed with Fixation Buffer (BD Cytofix) and permeabilized with a solution of PBS 0.1% BSA 0.1% Tween 20. 

The expression of viral proteins was detected by ELISA with a monoclonal antibody against matrix and 

nucleoprotein (α-M/NP-FITC) conjugate with fluorescein isothiocyanate (Oxoid) followed by an anti-FITC 

polyclonal antibody conjugated with horse-radish peroxidase (HRP) (Roche). O-phenylenediamine 

dihydrochloride (Sigma) was used as substrate and the absorbance recorded at 450 nm using 

SpectraMax (Molecular Devices) reader. Inhibition of infection of 50% was determined by a 4-

parameters fitting curve (SoftMaxPro) and the corresponding titers represented as the reciprocal of the 

dilution. All sera were run in duplicate. 

In vitro stimulation of antigen-specific CD4+ T cells 

Mice were challenged i.n. with PR8 virus three weeks after the last immunization as described 

before. At the indicated time points, three mice per group were sacrificed and spleens (only day 0) and 

lungs were collected to assess frequency and phenotype of Ag-specific CD4+ T cells induced by 

vaccination and infection. Single-cell suspensions were obtained, red blood cells lysed by RBC lysis buffer 

(Biolegend) and the cells were cultured in RPMI (Gibco) containing 10% FCS (HyClone), beta-

mercaptoethanol and antibiotics (PSG 1%). Splenocytes were stimulated in the presence of anti-CD28 

antibody (1 μg/ ml) (BD Biosciences) and antigen H1N1 (0.3 μg/mL), or with anti-CD28 alone (negative 

control, <0.1% total cytokine-positive cells), or with anti-CD28 plus anti-CD3 (0.1 μg/ ml) (BD Biosciences; 

positive control). After overnight stimulation at 37°C in 5% CO2, Brefeldin A (2.5 μg/ml; Sigma–Aldrich) 

was added for additional 4 h. Lung derived cells were stimulated for 4 h at 37°C in 5% CO2 in the 

presence of anti-CD28 and 2 μg/ ml of PepMix HA Influenza-A (H1N1) California (JPT) in medium with 

Brefeldin A. Same negative and positive controls described before were used. Cells were washed and 

stained with LIVE/DEAD Fixable Yellow Dead Cell Stain Kit (Invitrogen). Cells were fixed, permeabilized, 

and stained with the following antibodies: anti-CD4-V500, anti-CD3-PerCp-Cy5.5, anti-CD44-Pacific Blue, 

anti- -AlexaFluor700, anti- -PE and anti-IL2-APC (all BD Biosciences); anti-CD8-PE-Taxas Red 

(Invitrogen); anti-IL4-FITC, anti-IL13-FITC and anti-IL17-PE-Cy7 (all e-Biosciences). Cells were acquired on 

a LSR-II SORP (BD Biosciences) and analyzed by FlowJo software (Tree Star).  
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Cell recruitment into the lungs 

Mice were challenged i.n. with PR8 virus three weeks after the last immunization as described 

before. At the indicated time points, three mice per group were sacrificed and lungs were harvested and 

processed using the gentleMACSTM dissociator (Miltenyi Biotec). To facilitate tissue disruption, cells 

were enzymatically digested with 2 mg/ ml type D collagenase (Roche) and 40 μg/ ml DNase I (Roche) in 

HBSS medium (Gibco) for 30 min at 37°C in 5% CO2. An aliquot of cell suspension was taken and 

temporally stored at 4°C for bacterial titration. The cell suspension was then centrifuged and an aliquot 

of supernatant was taken and stored at -80°C for viral titer analysis. Cells in the pellet were suspended in 

PBS 10 mM EDTA and filtered through a 70 μm nylon Cell Strainer (BD Biosciences). Red blood cells were 

lysed by RBC lysis buffer (Biolegend). White blood cells were washed with PBS and stained with 

LIVE/DEAD Fixable Yellow Dead Cell Stain Kit (Invitrogen). Cells were fixed and stained with the following 

antibodies: anti-Ly6C-FITC, anti-CD11b-PE-Cy7, anti-Ly6G-PE, anti-CD11c-APC, anti-CD3-PerCp-Cy5.5, 

anti-CD8-V500 (all BD Pharmingen) and anti-MHCII-AlexaFluor700, anti-F4/80-eFluor450, anti-CD4-APC-

Cy7 (all eBiosciences). Cells were acquired on a LSR-II SORP and analyzed by BD FACSDiva software (BD 

Biosciences). 
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DISCUSSION 

Influenza is still an important source of disease in humans and secondary bacterial infections (SBI) 

associated with cases of influenza are a leading cause of severe morbidity and mortality, especially 

among high-risk groups such as the elderly and young children. Vaccines, antiviral and antibiotic 

therapies are now readily available to separately control and prevent influenza or bacterial infections. 

Yet, pathogen resistances to antibiotic and antiviral treatments are increasing worldwide. And influenza 

virus is continuously subjected to antigenic drift and therefore heterologous viral strains may appear and 

spread during annual influenza season reducing anti-influenza vaccination success [275]. Taking into 

account that humans are usually colonized by a multitude of commensal or pathogenic organisms at the 

same time, novel approaches of interventions, such as adjuvanted influenza vaccines with a broader 

spectrum or even more general “respiratory disease vaccines”, are needed. With the current work we 

set to contribute knowledge on important parameters determining success or failure of such novel 

interventions like immune status of the host, host-pathogen interactions and even more complex viral-

bacterial co-infections. 

Influenza A H1N1 and H3N2 and influenza B are most circulating viral strains up to now and trivalent 

influenza vaccines (TIV) are produced every year to fight against the seasonal epidemics induced by 

these viruses. Current vaccines consist mainly in live-attenuated virus, in inactivated split or subunit 

vaccines. Traditional vaccines aim at the induction of hemagglutinin (HA)-specific neutralizing antibodies 

which are not cross-protective [70, 260]. Moreover these vaccines exhibit a lower immunogenicity and 

efficacy in those age groups with a greater need to be vaccinated against influenza, i.e. young children 

and the elderly [266, 379, 380]. A possible strategy to improve vaccines effectiveness is to formulate split 

or subunit TIV with appropriate adjuvants. These compounds are able to enhance the immune response 

elicited by an antigen and generally exert their effect by improving antigen delivery or targeting specific 

immune pathways to improve the immunogenicity of vaccines [276-278]. Currently licensed adjuvants 

for influenza vaccine usage are the squalene oil-in-water emulsion systems MF59 (Novartis) and AS03 

(GlaxoSmithKline) [3, 286, 310, 346]. AS03 has been used in conjunction with monovalent preparations 

of inactivated 2009 pandemic H1N1 and pre-pandemic H5N1 virus vaccines [292, 293], while MF59 has 

been licensed for use with seasonal vaccines in the elderly in some countries, as well as for pre-pandemic 

and pandemic vaccines [3]. Importantly, MF59-adjuvanted vaccines are proven to induce a stronger 

immune response in the elderly (>65 years old) [290, 299, 300] and have double the efficacy of 
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unadjuvanted formulations in young children [288, 381]. Besides boosting antibody titres, MF59 

adjuvant has also been shown to broaden the immune recognition repertoire in H5 [280, 281, 303, 304] 

and seasonal TIV vaccines [305-307], generating cross-reactive antibodies as well as stimulating both 

humoral and cellular immunities. The latter capacity is especially interesting, since it has been 

demonstrated in humans and animal models that natural influenza infection confers protection not only 

against homologous but also heterologous virus strains through CD4+ and CD8+ T cell mediated immunity 

[382-386]. Therefore the induction of cross-reactive T cell response may be a promising approach for the 

development of more broadly protective vaccines. 

In this thesis we first of all deeply investigated the mechanism of action of MF59 in aged mice: this 

pre-clinical model fits better the human target population of MF59-adjuvanted vaccines. We then 

assessed whether influenza vaccines could be further improved. To that end we evaluated the impact of 

MF59 and two other experimental adjuvants on subunit anti-influenza vaccines on protection of mice 

from heterologous influenza challenge and SBI.  

In the latter study we showed that the three adjuvanted-immunization strategies used to vaccinate 

mice (antigens (Ag)+MF59±CpG and Ag+LTK63) were able to differently skew the adaptive immunity 

towards Th1- or Th2- or Th17-polarized cellular responses and to elicit systemic and/ or mucosal 

neutralizing antibodies. All these adaptive immune components together with those of innate immunity 

efficiently counteracted heterologous virus infection. As expected the effectiveness of adjuvanted-

vaccines was superior to that of unadjuvanted one and moreover the kinetics of disease evolution and 

inflammatory responses vary in the differently vaccinated mice. In line with the established correlation 

between high serological hemagglutination inhibition (HI) titres and vaccine efficacy [70, 260], 

H1N1/A/California/7/2009 subunit vaccine formulated with MF59 alone or in combination with CpG 

increased comparable functional antibody titres and consequently mice were well protected from 

influenza challenge. Yet, virus used in the infection was the heterologous H1N1/A/Puerto Rico/8/1934 

(PR8) and the two vaccine formulations conferred slightly different levels of protection. Analysing lung 

viral titres at early time points, body weight loss, anti-PR8 serum microneutralization (MN) titres and 

bronchoalveolar lavages (BALs) IgA titres, we observed that Th1-biased mice (Ag+MF59+CpG) had a 

faster reaction to the infection and were more efficiently protected from disease than those vaccinated 

with Ag+MF59 (mixed Th1/Th2 response). This should be little surprising since Th1 response is 

considered the most adapt towards a viral infection [102].  

Traditional inactivated vaccines are delivered via systemic routes (usually intramuscularly, i.m.), but 

mucosal vaccination is becoming an interesting field of research that aim to enhance cross-reactive 
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immunity and overcome immune defects due to senescence [330, 387, 388]. Live attenuated influenza 

vaccines (LAIV) are currently used in Russia and since 2003 are also approved by the FDA. They are 

delivered intranasally (i.n.) and have been shown to induce high level of heterologous protection via 

long-lasting systemic and mucosal responses [274, 389, 390]. Efficacy of this vaccination strategy has 

been proven in children 2 to 7 years old [391]. However, because of the inherent risk of immunizing with 

live viruses, LAIV are not recommended for immunocompromised individuals or people in close contact 

with these vulnerable populations.  Appropriate mucosal subunit vaccines would be the safer option. 

Gallorini et al. have recently shown that sublingual (s.l.) administration of LTK63-adjuvanted influenza 

vaccine elicits comparable antibody titres to those of i.m. immunization with conventional unadjuvanted 

influenza vaccine [7]. Furthermore, they found that adjuvanted s.l. vaccination enhances Ag-specific 

Th17 cells and neutralizing mucosal IgA that are not induced by i.m. immunization. Here we continued 

the exploration of this interesting vaccination strategy comparing its adjuvanticity and protective efficacy 

with those of traditional i.m. immunizations formulated as plain antigens or combined with MF59±CpG. 

As expected, functional HI antibody titres elicited by Ag+LTK63 immunization were comparable to those 

of unadjuvanted vaccine. Yet, mucosally vaccinated mice were able to efficiently counteract 

heterologous PR8 challenge similarly to other adjuvanted vaccinated ones; on the contrary unadjuvanted 

vaccine was not sufficient to control neither lung viral replication nor inflammatory response.  

Encouraged by these results, we further investigated possible mechanisms of protection elicited by s.l. 

vaccination. It is known that respiratory tract HA-specific IgA antibodies have functional role in 

protection against influenza [392]. In our study we showed that only mice immunized with Ag+LTK63 via 

the mucosal route had detectable levels of IgA in their lungs able to cross-react with the challenge virus 

PR8 prior the infection. Moreover only these mice showed measurable Ag-specific Th cell in lung (with 

Th17 profile) before receiving the infection. Starting from these results we can hypothesize that mucosal 

IgA and/ or Th cell response can account for heterologous protection in s.l. vaccinated mice. It was not 

within the scope of this study to investigate the specific mechanism of protection of the vaccination 

strategy. Additional studies would be needed to test our hypothesis and eventually to further validate 

the efficacy of adjuvanted s.l. vaccination route in conferring protection towards heterologous influenza 

viruses.  

Influenza infection is itself an important medical issue, but it becomes a severe threat for public 

health if associated with SBI. Post-influenza bacterial pneumonia is a major cause of morbidity and 

mortality associated with both seasonal and pandemic influenza virus illness. Notably the mechanisms 

responsible for this viral-bacterial synergy have remained elusive and historically have been attributed to 
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virus-induced lung tissue damage [200, 393, 394]. However, recent studies on animal models have 

demonstrated that preceding influenza infection induces a dysfunctional host anti-bacterial innate [212, 

214, 218, 219, 221, 370] and adaptive [213, 217, 220] immune response and have identified this 

mechanism as the major contributor to SBI susceptibility. Vaccination remains fundamental to prevent 

influenza and bacterial infections especially because antiviral and antimicrobial resistance is increasing 

[395-397] and many treatments have shown adverse effects on the host [398, 399]. Data from animal 

models indicate that vaccination against influenza viruses effectively prevent bacterial associated 

pneumonia [5, 240-242, 400]. An important caution about current influenza vaccines is that partial 

protection of related strains may not be sufficient to alleviate bacterial complications. In our study we 

used different vaccine formulations to prime the immune system towards different Th profiles during a 

heterologous influenza virus infection and we then investigated their impact on SBI caused by S. aureus 

USA300. We found that the weak protection induced by unadjuvanted influenza vaccine was not 

sufficient to efficiently block bacterial over-growth. Importantly plain vaccinated mice showed a delayed 

response to heterologous influenza challenge if compared to adjuvanted-vaccinated ones, but they were 

still able to continue viral clearance even after SBI onset. On the contrary, naïve mice showed a reduced 

control of viral replication as consequence of bacterial super-infection resulting in a rebound of influenza 

titers in their lungs the day after S. aureus co-infection. Notably, naïve and plain antigens vaccinated 

mice showed high inflammatory monocytes and neutrophils counts in their lungs at the day of co-

infection - i.e. 6 days post-influenza infection (6d p.i.) - which did not help in bacterial clearance but in 

contrast they seemed to worsen the evolution of SBI. The role of neutrophils in dual influenza-bacterial 

infection remains controversial: some studies showed that influenza induces a diminished recruitment of 

neutrophils to the lungs via type I IFN signalling and this correlates with impaired clearance of secondary 

infecting bacteria [214, 401]; on the contrary other works demonstrated significant neutrophils 

accumulation in influenza infected lungs which contribute to tissue pathology via neutrophil extracellular 

traps (NETs) formation and consequent increased susceptibility to SBI at days 6 and 7 p.i. [58, 221, 222]. 

This might also depend on differential activation status of recruited neutrophils. The flexibility of these 

innate cells - with responses as different as apoptosis, NETosis, upregulation of MHC-II and antigen 

presentation - was underappreciated for a long time [402]. It would be interesting to further evaluate 

the role of neutrophils in our model of mixed influenza-S. aureus infection and moreover to 

phenotypically compare those present in influenza-challenged lungs of naïve and unadjuvanted 

vaccinated mice.   
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All adjuvanted immunization strategies applied in our study enhanced Ag-specific Th cell response 

and mice were significantly better protected than naïve or plain vaccinated animals during heterologous 

influenza infection and secondary bacterial challenge. Interestingly, mice experiencing Th1-polarized 

immunity during influenza encounter (Ag+MF59+CpG) were better protected from SBI than mice 

receiving other adjuvanted vaccine formulations. It would be interesting to deeply investigate if this 

higher protection is just due to a better control of primary influenza infection or if Th1 polarization of the 

immunity may have some impact on bacterial pneumonia. It is known that release of IFNγ by Th1 cells 

activates macrophages and enhances bacterial killing [403, 404]. Similar the release of IL-17 by Th17 cells 

impacts on recruitment and activation state of neutrophils [404, 405]. The specific vaccine-induced 

cytokine environment during influenza infection should impact therefor also on co-infecting bacteria.  

The essential role of Th responses to control bacterial colonization has also been appreciated in 

different models of single bacterial infection. Antigen-specific T helper cells confer protection from 

nasopharyngeal colonization of Streptococcus pneumoniae [339] and especially IL-17 secreting Th17 cells 

have been shown to be important [406]. Similarly changing the flavour of a Th response from Th2 to Th1 

by adequate adjuvants has shown to enhance protection from Bordetella pertussis colonization in the 

mouse model [407].  

We took this concept one step further and tested the positive bystander effect of vaccination-

induced influenza-specific Th cells on a bacterial co-infection.  

Our results lead us to suppose that neutralization of influenza virus at early stages after infection is 

extremely important to further efficiently counteract bacterial super-infections indirectly by not 

weakening immune responses and/ or altering the cellular state of the respiratory tract. However, if the 

virus is not rapidly blocked but it has the possibility to replicate at low rate for the first 3 days p.i., the 

presence of a proper cross-reactive T-cell-based immunity elicited by adjuvanted-vaccination is of great 

help to then reduce pathogenicity induced by SBI via cytokine-mediated activation of phagocytic cells 

like macrophages or neutrophils and efficient bacterial killing. Our hypothesis needs to be further 

confirmed by focusing on mechanism of protection established by various anti-influenza vaccine 

formulations in our model of mixed infections. Particularly we have to properly test virus-specific Th cell 

response on the light of new effector functions attributed to CD4+ T cells during viral infection [102] and 

considering recent findings about the frail balance and strict timing of type 1 (IFNγ), type 2 (IL-13) [220] 

and type 17 (IL-17) [217] cytokines production during single influenza/ bacterial infection and their 

positive or detrimental impact on SBI.  
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Importantly we showed that also MF59-adjuvant is still an effective enhancer of immunity induced 

by vaccination though being more Th2-prone than the other adjuvants tested. In the mouse model MF59 

induces a mixed Th1/ Th2 response [6, 317]. Yet, this situation is different in human vaccinations. In 

humans MF59-adjuvanted vaccines induce Th1 responses [304], probably due to the fact that humans 

are not naïve to influenza but pre-exposed to prior influenza infections. The positive bystander effect of 

influenza-vaccination-induced Th cells on SBI should accordingly be more pronounced in humans than in 

the mouse model. Among adjuvants tested in the second study, only MF59 is currently licensed for 

human applications and here we highlighted that its added value to influenza vaccines is not solely due 

to its amplification of immunogenicity but also by conferring broader protection against a heterologous 

virus infection and a positive impact to counteract SBI. In contrast, unadjuvanted vaccine induced only 

minor adaptive response and it poorly protected mice from mismatched viral infection and SBI: mice 

showed excessive lung inflammatory cells infiltration, viral load comparable to that of naïve ones and 

they were very negatively affected by S. aureus secondary challenge.  

The mechanism of action of MF59 has been studied a lot in pre-clinical models [4, 297, 311, 313-316, 

350], but all investigations have been conducted in young mice (6-8 weeks, comparable to young adults) 

which do reflect the immune response in elderly. Considering that MF59 is specifically used to vaccinate 

aged people, we evaluated which immune events induced by this adjuvant were still active in aged mice 

(>18 months). Similar to young mice, also in older ones MF59 potentiated immunogenicity of TIV 

enhancing Th cell and antibody responses as well as vaccine efficacy. Since we consider these responses 

essential for the protection from SBI, we would expect to confirm the added value of adjuvants for 

influenza vaccines also in elderly mice. Respective studies will be done in the future.  

Yet, MF59 did not completely overcome the reduced ability of a senescent immune system to 

respond to vaccination. Older adults have well-known innate and adaptive immunity defects which 

reduce the effectiveness of anti-influenza vaccines in this population [341]. Our results demonstrated 

that also in aged mice there are intrinsic impairments associated with immunosenescence that even the 

strong adjuvant effect of MF59 could not overcome. Indeed in older mice we obtained lower magnitude 

of antibody response, higher variability in Th cell response, fewer influxes of conventional dendritic cells 

(cDC) to dLNs and more limited germinal center (GC) B cells maturation than in younger ones. We have 

previously shown that transient ATP-release at injection site gives an important contribution to MF59-

adjuvanticity [4]. Here we demonstrated that in old mice that this pathway is fully functional and that its 

activation is extremely crucial because it seemed to be the only one still functioning in the context of 

immunosenescence. This finding is even more important since we demonstrated that ATP signalling is 
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essential for efficient priming of Th cells. Having identified an immune activation pathway that is not 

impacted by aging and that targets immune cells that can play a fundamental role in protection from 

viral or bacterial infections should find broad application in diverse preventive and therapeutic 

treatments. 

Our data added to the mounting evidence that MF59-adjuvanted influenza vaccines play a 

fundamental role for the protection especially of the elderly population, while not adjuvanted subunit 

and split-virus vaccines have shown limited effectiveness [145, 266, 340]. 
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LIST OF ABBREVIATIONS 

Ab  Antibody 

ADCC  Antibody-dependent Cell-mediated Cytotoxicity  

Ag  Antigen 

APC  Antigen Presenting Cell 

BALs  Bronchoalveolar Lavages 

cDC  conventional Dendritic cell 

CFU  Colony Forming Unit 

CTL  Cytotoxic T lymphocyte 

DC  Dendritic Cell 

dLNs  Drain Lymph Nodes 

EMA  European Medicines Agency 

FDA  Food and Drug Administration 

GC  Germinal Center 

GISN  Global Influenza Surveillance Network 

H1N1  Hemagglutinin 1 Neuraminidase 1 

H1N1/Cal H1N1/A/California/7/2009 

HA  Hemagglutinin 

HI  Hemagglutination Inhibition (assay) 

i.m.  intramuscularly 

i.n.  intranasally 

IFN  Interferon 

Ig  Immunoglobulin 

IL  Interleukin 

ISG  IFN-stimulated Gene 

LAIV  Live Attenuated Influenza Vaccine 

M1/ M2 Matrix protein 1/ 2 

MHC   Major Histocompatibility Complex 

MLD50  50% mouse lethal dose 

MN  Microneutralization (assay) 
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MO  Monocyte 

MoA  Mechanism of Action 

MPH  Macrophage 

MRSA  Methicillin Resistant Staphylococcus aures 

NA  Neuraminidase 

NI  Neuraminidase Inhibition (assay) 

NK  Natural Killer cell 

NLRP3  Nucleotide Oligomerization Domain (NOD)-like Receptor Family Pyrin Domain 3 

NP  Nucleoprotein 

NPH  Neutrophil 

NS1  Nonstructural protein 

OVA  Ovalbumin 

p.i.  post infection 

PAMP  Pathogen Associated Molecular Pattern 

pDC  plasmacytoid Dendritic Cell 

PR8  H1N1/A/Puerto Rico/8/ 1934 

PRR  Pattern Recognition Receptor 

PVL  Panton-Valentine Leukocidin 

RIG-I  Retinoic Acid-inducible Gene I 

RNA  Ribonucleic Acid 

s.l.  sublingually 

SBI  Secondary Bacterial Infection 

TCID50  50% tissue culture infectious dose 

TFH  T follicular helper cell 

Th  T helper cell 

TIV  Trivalent Inactivated Influenza Vaccine 

TLR  Toll-like Receptor 

TNF-α  Tumor Necrosis Factor α 

Treg  Regulatory T cell 

WHO  World Health Organization 
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