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“Even the astronomer cannot prevent himself from seeing the moon larger at its rising

than some time afterwards”

- Immanuel Kant, Critique of Pure Reason.



Sommario

Il tema centrale di questa tesi è lo sviluppo di metodi statistici e numerici per lo studio

di caratteristiche non gaussiane e/o anisotrope in esperimenti mirati alla misura della

radiazione cosmica di fondo (CMB, dall’inglese Cosmic Microwave Background). Ci

concentriamo su due tipi molto diversi di segnali non gaussiani: il primo è la non Gaus-

sianità primordiale, che si ipotizza venga generata nell’Universo primordiale durante

l’epoca inflazionaria. Lo studio di questo tipo di non-Gaussianità permette di ottenere

preziose informazioni cosmologiche. Il secondo è invece la non-Gaussianità generata

dalla contaminazione dovuta al foreground astrofisico. In questo caso, invece, il nostro

obiettivo è utilizzare la non-Gaussianità come tracciante per identificare e rimuovere le

componenti spurie non cosmologiche (ovviamente l’emissione di foreground contiene in-

formazioni astrofisiche rilevanti, ma il tema di questa tesi verte sulla cosmologia, quindi

verrà considerata solo in virtù dell’effetto contaminante in esperimenti che mirano a

ricostruire la CMB).

Sforzi considerevoli sono stati spesi finora nel tentativo di misurare piccole deviazioni

dalla Gaussianità nelle anisotropie della CMB, che fornirebbero informazioni inestimabili

sull’epoca dell’Inflazione. La teoria prevede che l’Inflazione produca un campo di flut-

tuazioni isotropo e quasi Gaussiano. Tuttavia, una grande quantità di modelli prevede

anche l’insorgenza di piccole componenti non Gaussiane, le cui caratteristiche dipen-

dono fortemente dal modello inflazionario sottostante. Questa è la ragione principale

del grande interesse della comunità cosmologica per la misura della non Gaussianità.

Naturalmente, nella ricerca della non-Gaussianità primordiale è necessario ricorrere a

statistiche di ordine superiore rispetto allo spettro di potenza. Ci si aspetta che la mag-

gior parte del segnale non Gaussiano prodotto durante l’Inflazione si presenti sotto forma

di correlazioni a tre punti, che possono essere misurate nello spazio armonico dal bis-

pettro. Purtroppo, a causa dell’elevato tempo computazionale richiesto, non è possibile

calcolare direttamente il bispettro dai dati. La ricerca di segnali non gaussiani consiste

quindi nel misurare la correlazione tra il bispettro dei dati e determinati modelli teorici

che riproducono il segnale predetto da specifici modelli inflazionari. Molte teorie in-

flazionarie producono correlazioni ad alto ordine il cui bispettro presenta un ampiezza

dipendente dalla scala. Questo è il motivo per cui una parte significativa di questa tesi
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sarà dedicata allo sviluppo di tecniche statistiche per la stima di bispettri con un es-

plicita dipendenza dalla scala in osservazioni della CMB. I risultati presentati in questa

tesi sono ottenuti dalle osservazioni dei satelliti WMAP e Planck.

La seconda parte di questo lavoro riguarda invece il problema dell’identificazione delle

diverse fonti che contribuiscono alla luminosità del cielo nelle frequenze delle microonde.

L’emissione di foreground potenzialmente produce grandi deviazioni dalla Gaussianità,

che in linea di principio possono essere utilizzate per identificare e rimuovere i componenti

spuri dalle mappe del cielo a microonde. Il nostro obiettivo è lo sviluppo di una tecnica

di pulizia dai foreground basata sull’ipotesi che, se i dati vengono rappresentati nella base

appropriata, il segnale delle emissioni di foreground appare sparso. La sparsità implica

che la maggior parte del segnale sia concentrata in pochi elementi della base, che possono

essere usati per ricostruire il componente corrispondente ricorrendo a una tecnica detta

thresholding. Abbiamo verificato che il frame delle needlet sferiche ha le proprietà ideali

per separare il segnale coerente del foreground dal segnale isotropo e stocastico della

CMB. I principali vantaggi della nostra tecnica di needlet thresholding sono, in primo

luogo, che non richiede di avere osservazioni a diverse frequenze e inoltre che può essere

utilizzata in combinazione con altri metodi. Pertanto può essere uno strumento prezioso

in esperimenti che osservano il cielo in un limitato intervallo di frequenza come, per

esempio, gli attuali esperimenti che mirano a misurare la CMB da terra.

La tesi è strutturata come segue:

Nel primo capitolo viene fornita una breve panoramica dei concetti teorici fondamentali

della cosmologia e della statistica.

Nel secondo capitolo sono illustrate le tecniche utilizzate nell’analisi dei dati CMB.

Il terzo capitolo introduce modelli di bispettro dipendenti dalla scala e presenta la misura

della non Gaussianità primordiale dai dati WMAP.

Il quarto capitolo espande l’analisi dei modelli di bispettro con dipendenza di scala sui

dati Planck e presenta diversi miglioramenti nello stimatore.

Nel quinto capitolo viene delineato il problema della separazione dei componenti fore-

ground in osservazioni della CMB.

Il sesto capitolo contiene una descrizione del telaio dell’ugello sferico e la base della re-

gressione dell’ago.

Nel settimo capitolo introduciamo una nuova tecnica di rimozione del foreground basata

sulla sparsità del segnale nello spazio needlet.

Infine, l’ottavo capitolo è dedicato alle conclusioni e alle prospettive future.



Abstract

The focus of this work is the development of statistical and numerical methods for

the study of non-Gaussian and/or anisotropic features in cosmological surveys of the

microwave sky. We focus on two very different types of non-Gaussian (NG) signals.

The former is primordial non-Gaussianity (PNG), generated in the very Early Universe

during the inflationary expansion stage. In this case the aim of our study will be that of

exploiting the NG component in order to extract useful cosmological information. The

latter is non-Gaussianity generated by astrophysical foreground contamination. In this

case, the goal is instead that of using non-Gaussianity as a tool to help in removing

these spurious, non-cosmological components (of course foregrounds themselves contain

relevant astrophysical information, but the focus in this thesis is on Cosmology, therefore

foregrounds are regarded here only as a contaminant).

Considerable efforts have been put so far in the search for deviations from Gaussian-

ity in the CMB anisotropies, that are expected to provide invaluable information about

the Inflationary epoch. Inflation is in fact expected to produce an isotropic and nearly-

Gaussian fluctuation field. However, a large amount of models also predicts very small,

but highly model dependent NG signatures. This is the main reason behind the large

interest in primordial NG studies. Of course, the pursuit for primordial non-Gaussianity

must rely on beyond power spectrum statistics. It turns out that the most impor-

tant higher order correlator produced by interactions during Inflation is the three point

function, or, more precisely, its Fourier space counterpart, called the bispectrum. To

overcome the issue of computing the full bispectrum of the observed field, that would re-

quire a prohibitive amount of computational time, the search for PNG features is carried

out by fitting theoretically motivated bispectrum templates to the data. Among those,

one can find bispectrum templates with a scale-dependent (SD) bispectrum amplitude.

Such templates have actually received little attention so far in the literature, especially

as long as NG statistical estimation and data analysis are concerned. This is why a sig-

nificant part of this thesis will be devoted to the development and application of efficient

statistical pipelines for CMB scale-dependent bispectra estimation. We present here the

results of the estimation of several primordial running bispectra obtained from WMAP

9 year and Planck data-set.
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The second part of this thesis deals instead, as mentioned iin the beginning, with

the component separation problem, i.e. the identification of the different sources that

contributes to the microwave sky brightness. Foreground emission produces several,

potentially large, non-Gaussian signatures that can in principle be used to identify and

remove the spurious components from the microwave sky maps. Our focus will be on

the development of a foreground cleaning technique relying on the hypothesis that, if

the data are represented in a proper basis, the foreground signal is sparse. Sparseness

implies that the majority of the signal is concentrated in few basis elements, that can

be used to fit the corresponding component with a thresholding algorithm. We verify

that the spherical needlet frame has the right properties to disentangle the coherent

foreground emission from the isotropic stochastic CMB signal. We will make clear in

the following how sparseness in needlet space is actually in several ways linked to the

coherence, anisotropy and non-Gaussianity of the foreground components.. The main

advantages of our needlet thresholding technique are that it does not requires multi-

frequency information as well as that it can be used in combination with other methods.

Therefore it can represent a valuable tool in experiments with limited frequency coverage,

as current ground-based CMB surveys.

The layout of this thesis is structured as follows.

In the first chapter we provide a brief review of the basic concepts about theoretical

cosmology and estimation theory.

In the second chapter we give an insight of the methodologies used in CMB data-analysis.

The third chapter introduces scale-dependent bispectrum templates and provides esti-

mates of the PNG running from WMAP 9 year data-set.

The fourth chapter expands the analysis of SD templates to the Planck data-set, and it

provides various improvement of the SD estimator.

In the fifth chapter we outline the foreground component separation problem in CMB

surveys.

The sixth chapter contains a description of the spherical needlet frame and the essential

notions about needlet regression.

In the seventh chapter we introduce a new component separation pipeline based on the

sparseness of the foreground signal in needlet space.

Finally, the eighth chapter is dedicated to the conclusions and to an overview of future

prospects.
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Chapter 1

Theoretical Background

In this chapter we will outline an overview of the basic notions about cosmology and

CMB data analysis. We will provide a brief review of the standard cosmological model

and its most important extension, the theory of inflation. We will then introduce the

essential concepts about the description and the analysis of random fields and some basic

principles on statistics and estimation theory.

1.1 The Standard Cosmological Model

The first developments of what is now known as “the standard Cosmological model” trace

back to the beginning of the last century, when the recently formulated General theory

of Relativity allowed the development of a complete and testable theory of the structure

and the evolution of the Universe. The basis of this model are the so called Cosmological

Principle and the expansion of the Universe. The former states that the Universe is

homogeneous and isotropic on large scales, the latter derived form observations. The

crucial piece of evidence in favour of Universe expansion comes from the Edwin Hubble’s

discovery that the galaxies recede from us at a velocity proportional to the distance. The

resulting picture is a Universe homogeneous and isotropic, that expands starting from a

initial state of high energy density, the so called Big Bang.

In 1929 Edwin Hubble found the relation between the distance of galaxies and redshift

z called Hubble Law:

z =
H0d

c
, (1.1)

1
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where H0 is the so called Hubble constant. The redshift is the shift of the photons

wavelength to the red end of the spectrum due to the recession of galaxies from us

z =
λobs − λemit

λemit
≃ vrec

c
, (1.2)

where the relation between redshift and velocity applies only for low redshift. The

Hubble law states so that the galaxies are receding from us with velocity that increase

linearly with distance with a slope given by H0.

General relativity allows us to extrapolate the expansion backwards in time. This

yields to the conclusion that the Universe evolved from a state in which energy density

diverges to infinite. The term “Big Bang” refers to this initial singularity and to the

following hot phase in which the Universe expanded while dramatically cooling down.

It was in this moment that part of the chemical composition of the Universe was

established. The atomic nuclei are predicted to form when the temperature fell below

∼ 0.1MeV during the so called “Big Bang Nucleosynthesis” (BBN from now). From the

condition of nuclear statistical equilibrium it is possible to derive the expected abun-

dances of the nuclei formed. The theoretical predictions depend on the combined density

of protons and neutrons, which, in Cosmology, is called “baryon density”. Thus BBN

allows to measure the primordial baryon density, as well as the relative abundances of

several light elements. These predictions are consistent with observational measurements

of light elements, obtained for example with the analysis of distant Quasar spectra. This

consistency provides one of the main confirmation of the Big Bang models.

But the evidences of an early hot phase are not exhausted with elements abundance.

The photons that, in equilibrium with matter, formed this primordial plasma are still

observable today as a diffuse background of black-body radiation, the Cosmic Microwave

Background (from now CMB). The predictions of elements abundance and of CMB

represent the great successes that allowed the Hot Big Bang model to establish itself as

the Standard Cosmological Model.

It was however soon realised that a simple Universe filled with standard matter could

not explain a vast range of observations, like rotational curves of galaxies and grav-

itational lensing from distant clusters. The observations reveal many inconsistencies

between the distribution of luminous matter and the gravitational potential. In or-

der to explain this we need to introduce a new “Dark Matter” component (DM) that

doesn’t interact directly with matter and radiation but contributes to the gravitational
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potential. In other words, DM feels gravitational interactions, but does not interact

electromagnetically.

Moreover recent measurements of the expansion rate using the supernovae Ia as stan-

dard candles led to the identification of another new component: Dark Energy. This is

the dominating component and it is supposed to be the source of the late time acceler-

ation in the expansion rate.

1.1.1 Friedmann-Lemâıtre-Robertson-Walker Metric

The Einstein equations describe gravitation as a result of the relation between the energy

density and the geometry of space-time. The geometric properties are described by the

metric tensor that defines how coordinates are related to physical distance.

First of all we must emphasise that the Cosmological Principle is valid only if we

consider all the Universe at the same instant. The geometrical interpretation then

implies that space, but not space-time, must be maximally symmetric. Since a symmetry

corresponds to a conservation rule, a 3 dimensional space must be invariant under both

translation and rotations to agree with the cosmological principle.

The Friedmann-Lemâıtre-Robertson-Walker metric (FLRW from now) describes a

4-dimensional space-time admitting an infinity of 3-dimensional subspaces maximally

symmetric. Therefore, using the signature (−,+,+,+), the FLRW metric tensor is:

gµν =

















−1 0 0 0

0 a2(t) 0 0

0 0 a2(t) 0

0 0 0 a2(t)

















. (1.3)

Here we use comoving coordinates: the metric is free of time-space cross-terms so the

space components are proportional to a single function of t. The result is that a physical

point keeps the same spatial coordinates at any time. The expansion is quantified by

the scale factor a(t). It allows to pass from comoving distance, that remains constant in

the expansion, to physical distance that grows in time. A maximally symmetric space

will be certainly spherically symmetric, so the line element is usually defined in spherical

coordinates giving:

ds2 = −dt2 + a2(t)

[

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2

]

. (1.4)
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This leads to the definition of the parameter k. It describes the curvature of space-time:

the case k = 0 corresponds to a flat space with no curvature ; k = 1 corresponds to a

positive curvature, or to an closed space; k = −1 corresponds to a negative curvature

and to a open space.

With the metric we can compute the Ricci tensor Rµν and the Ricci scalar R and

then write down the Einstein equation:

Rµν −
1

2
gµν = 8πGTµν , (1.5)

where Tµν is the energy momentum tensor, in our case we consider a perfect fluid:

Tµν =

















−ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

















, (1.6)

here ρ is the energy density and P is the pressure for unit of surface of the fluid.

The energy density can be expressed in function of the density of each component ρ =

ρm+ρΛ+ργ+ρν where the subscript m indicates the matter density, Λ the Dark Energy

density, γ the photons density and ν the neutrinos. The matter density term contains

both baryon and Dark matter contribution ρm = ρb + ρDM . From the solution of (1.5)

(for further details see appendix A or (Dodelson 2003) for a complete discussion) comes

the Friedmann equations:

(

ȧ

a

)2

=
8πG

3
ρ− k

a2
(1.7)

ä

a
=− 4πG

3
(ρ+ 3P ). (1.8)

Equation (1.7) defines how rapidly the scale factor changes, this is called Hubble rate:

H(t) =
1

a

da

dt
(1.9)

the most important fact is that it is relate to the energy density, the measurement of the

Hubble rate provide precious information about the history of the Universe. The Hubble

rate’s value at present time is the Hubble constant that appears in equation (1.1).
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The composition of the Universe is defined in relation to the critical density ρc by the

density parameter Ω.

ρc =
3H2

8πG
, (1.10)

Ω =ρ
8πG

3H2
. (1.11)

Rewriting (1.7) it’s trivial to understand the meaning of critical density:

Ω− 1 =
k

H2a2
. (1.12)

ρc is then the density for which the Universe is spatially flat. The relation between the

curvature and the energy content of the Universe can be summarised as:

Open ↔ k = −1 ↔ Ω < 1 ↔ ρ < ρc

Flat ↔ k = 0 ↔ Ω = 1 ↔ ρ = ρc

Close ↔ k = 1 ↔ Ω > 1 ↔ ρ > ρc

(1.13)

Current experiments suggest a total density very close to ρc, that is Ω = ρ/ρc ≃ 1.

1.1.2 The discovery of The Cosmic Microwave Background

The detection of the CMB by Penzias and Wilson in 1965 set the milestone for the

affirmation of the Big Bang as standard cosmological model. The CMB was predicted

for the first time by Gamow in the 40s as the natural consequence of an expanding

Universe; whereas it is totally incompatible with a steady state Universe.

Actually the controversy was not immediately decided. The CMB is the relic of the

hot ancient Universe, coming from an epoch in which radiation and matter were tightly

coupled by the Compton and Coulomb scattering with free electrons, forming the so

called photon-baryon fluid. Being emitted in a condition of high equilibrium the CMB

photons were expected to possess a black-body spectrum. However it was very difficult

for the time to avoid atmospheric absorption and measure the spectrum with the required

narrow accuracy. Finally in the 90s the COBE spacecraft, with its spectrophotometer

FIRAS, measures the most perfect black-body spectrum in nature, with a temperature

of 2.753 ± 0.002K. Furthermore, measurement of its color temperature shows that it

is extraordinarily uniform over the whole sky providing strong evidence for large scale

isotropy.
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The CMB photons scatter the last time at the epoch called recombination. Recombi-

nation signs the moment in which neutral hydrogen began to form lowering the number

of free electrons. Before recombination due to the high temperature electrons could not

bind to the nuclei to form neutral atoms, in this early times the free electrons gave an

high contribution to the optical depth via Compton scattering. When the temperature

was lowered enough to allow the formation of the first atoms the number of free elec-

trons fell down; without their contribution optical depth fell down too and radiation

and matter decoupled. The matter began to cluster, forming the structure we observe

today, while the photons were free to travel through space with nearly no interactions,

giving rise to a diffuse electromagnetic signal of Cosmological origin, hence the name,

that we already been using, of “Cosmic Microwave Background”. Looking at the CMB

we see the image of a spherical section of this primordial photon-baryon fluid just after

the decoupling, this is the so called Last Scattering Surface. It is like to see a snapshot

of a section of the primordial plasma taken at the recombination. From the statisti-

cal mechanics we know that photons decoupling occurred when the temperature of the

Universe was ∼ 3000K. The energy density of uniform blackbody radiation is defined

by:

ργ = 2

∫

d3p

(2π)3
1

ep/T − 1
=
π2

15
T 4, (1.14)

were p is the momentum of the photons and T is the temperature. The evolution of

energy can be computed from the conservation law for the energy momentum tensor

(1.6):

∇µT
µ
ν = ∂µT

µ
ν + ΓµαµT

α
ν − ΓανµT

µ
ν = 0, (1.15)

considering the ν = 0 component, and computing the connection (A.2) for the FLRW

metric, we have the conservation law in an expanding universe:

∂ρ

∂t
+H[3ρ+ 3P ] = 0. (1.16)

The radiation pressure is Pγ = ργ/3, so that (1.16) gives ργ ∝ a−4, this implies that

the temperature scales as a−1. We can so compute the growth of the scale factor from

the recombination to our day. Since the CMB temperature decreased by about a factor

∼ 1100, a(t) should be increased equally, consistently with the expansion of the Universe.

The redshift of the CMB photons can easily be computed by applying the Wien law, it
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is so:

z =
λobsmax − λ∗max

λ∗max
= T∗

(

1

T
− 1

T∗

)

≃ T∗
T

≃ 1100, (1.17)

were ∗ indicates the values at recombination.

As we said the CMB is extremely uniform, but at a sensitivity level of about one part in

1000 of the total intensity a dipolar anisotropy can be observed. It is naturally attributed

to the kinematic Doppler effects associated with the Earth’s motion through a reference

frame in which the radiation is at rest. This allows to compute the peculiar motion

of our galaxy with respect the cosmic reference frame. The result is v ≃ 600Km/s in

direction of the constellation of Hydra Centaurus, in the same direction of the other

galaxies of our group.

Observations with a sensitivity of 10−5 part of the total intensity opens new scenarios

in the study of the CMB: since they show the presence very small anisotropies. These

anisotropies are the result of gravitational fluctuations on the last scattering surface and

their origin cannot be explained by the Standard Cosmological Model. The large scale

structure we observe today nearly certainly originated from these little perturbation.

The most accredited theory to explain the origin of these anisotropies is Inflation we

will describe in the next section.

1.1.3 Inflation

As it often happens in science, the great discovery of the CMB opened a number of new

questions about the formation of our Universe. As we saw, the Standard Cosmological

Model does not explain the origins if the little temperature anisotropies, but there is an

even most evident problem. One of the main issues is the impressive level of uniformity

of the CMB sky; this is a wonderful proof of the Cosmological principle but, on the other

hand, is a fact rather difficult to justify.

To better understand this issue we have to introduce the concept of comoving horizon

η. The comoving horizon is the maximum comoving distance traveled by light since the

beginning of the Universe. Obviously, for two regions to communicate, they should be

at a comoving distance smaller than the comoving horizon. If they aren’t, they cannot

have exchanged any information.

If recombination happened ∼ 380, 000 yr after the Big Bang, as the model predicts,

and the Universe was radiation dominated, the size of comoving horizon at that time

subtends a very small angle from our point of view. Furthermore, from the analysis of
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CMB anisotropies it is possible to obtain information about the size of causally connected

regions at the recombination, resulting in an estimate of ∼ 2◦.

Despite this, the CMB appears to be thermalized at all angular scales, so that physical

processes must have acted on all scales in order to allow the Universe to reach an

equilibrium state.

If this couldn’t happen, how can all the sky appear to have been in thermal equi-

librium, when it couldn’t even be considered a single thermodynamic system? This

apparent impasse is the so called Horizon Problem, a possible explanation to this prob-

lem comes from Inflationary theory. As we will see, this theory can also explain even

the origin of the inhomogeneities.

Inflation states that, at very early times, the Universe underwent a period of accel-

erated expansion. To understand how this can solve the horizon problem, it is more

illuminating to reason in terms of Hubble radius instead of comoving horizon. Acceler-

ation implies d2a/dt2 > 0, that is:

d2a

dt2
=

d

dt

[

a
1

a

da

dt

]

=
d

dt

(

1

aH

)−1

> 0. (1.18)

The quantity 1/aH is the Hubble radius: it is the physical distance a particle can travel

in one expansion time. It is related to the comoving horizon by the equation:

η =

∫ a

0

da′

a′
1

Ha′
. (1.19)

The difference between the two is that regions farther than η never could have communi-

cated in the past (i.e, from t=0 up to today) whereas if they are at distance grater than

1/aH they aren’t connected only at given time. From (1.18) we see that the consequence

of an accelerated expansion is the decrease of the Hubble radius, as it’s shown in the

right panel of figure 1.1. Different region of the CMB, thus, are effectively not connected

at the recombination, but only in terms of Hubble radius. The comoving horizon in-

stead grew together with the scale factor, so that it was bigger than the last scattering

surface yet at the recombination. If Inflation succeed, zones outside the Hubble radius

at recombination can have been causally connected at the early times in which they

thermalized, as it can be seen in the left panel in figure 1.1. Quantitatively, to solve the

horizon problem, during Inflation the Universe must have expanded over approximately

28 orders of magnitude (Guth 1981).
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considering the energy momentum tensor of a homogeneous scalar field ψ(t), for now we

neglect the first order perturbation δψ(x, t), so we have

Tαβ = gαν
∂ψ

∂xν
∂ψ

∂xβ
− gαβ

[

1

2
gµν

∂ψ

∂xµ
∂ψ

∂xν
+ V (ψ)

]

, (1.21)

were V (ψ) is the potential of the field and for the metric we used the signature (−,+,+,+).

Since the field is homogeneous we consider only the time derivative, the time-time com-

ponent for a perfect isotropic fluid is T 0
0 = −ρ:

ρ =
1

2

(

dψ

dt

)2

+ V (ψ), (1.22)

and the space-space component, which represent the pressure, gives:

P =
1

2

(

dψ

dt

)2

− V (ψ). (1.23)

The first of these equations shows that the dynamic of a scalar field is totally analogue

to that of a single particle moving in a potential. The second tells us that a negative

pressure requires more potential energy than kinetic. Little kynetic energy implies that

the energy density and the potential remain nearly constant in time. From equation

(1.7) it’s clear that this condition produces the exponential expansion required to solve

the horizon problem.

These assumptions form the basis for the simplest model of Inflation: the so called

“single-field slow-roll” scenario (Linde 1982) (Albrecht & Steinhardt 1982). In the slow-

roll picture, the scalar field is initially characterized by a very flat potential. This makes

V >> Ek in (1.22) and (1.23), thus producing the conditions for acceleration. Inflation

ends when the field reaches the end of the plateau, and falls down into its ground state

(i.e we have a transition from a “false vacuum” to a “true vacuum”), as shown in figure

1.2. At this point the field oscillates around the minimum, and decays into ordinary

matter and radiation. Initial energy in the false vacuum state thus get converted into

the various components of the cosmological fluid. This phase is called reheating and it

sets initial conditions in the Standard cosmological Model.

The name slow-roll derives from the analogy with the dynamics of a classic point

particle rolling down a potential.
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The equation governing the evolution of the field in an expanding Universe is:

d2ψ

dt2
+ 3H

dψ

dt
+

dV (ψ)

dψ
= 0. (1.24)

During Inflation the Hubble rate remains nearly constant. Meanwhile the scale factor

grows nearly exponentially, so its relation with conformal time can be simplified as:

η =

∫ a

ae

da

a2H
≃ − 1

aH
. (1.25)

The slow-roll model is usually characterized by the parameters:

ǫ = − Ḣ

aH2
, (1.26)

η = − 1

aHψ̇

[

3aHψ̇ + a2
∂V

∂ψ

]

, (1.27)

that quantify how slowly the field is rolling. By definition, an Inflationary epoch has

ǫ < 1.

So far we have presented the zeroth order picture, this provides a good solution for

the horizon problem but it doesn’t explain the onset of the fluctuations. It has been

shown that a perturbative expansion of the homogeneous scalar field may account for

the initial power spectrum of perturbations (Bardeen et al. 1983; Brandenberger et al.

1983; Guth & Pi 1982; Starobinsky 1982). We can express the field as:

ψ(~x, t) = ψ(t) + δψ(x, t), (1.28)

where the first term is the homogeneous part and the second represents the perturbation.

The zeroth order part is responsible for the accelerated expansion, while the first order

part induces perturbations on the metric. The existence of this perturbation component

is unavoidable in quantum context, since uncertainty principles imply small quantum

fluctuations of the field, giving rise to this δψ term. From General Relativity we know

that the density of matter and radiation is coupled to the scalar field perturbation (1.28).

Therefore it is the scalar part that eventually provided the initial conditions for density

fluctuations after reheating. Given the limited scope of this brief introduction, we omit

here the full treatment needed to derive the power spectrum for the perturbative term

(seee.g. (Dodelson 2003) for a full calculation), and we simply outline the main aspects

of the derivation.
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it can be compared with its observed counterpart. The choice of the power spectrum

as observable is strictly related to the quantum nature of the field. If we rearrange

(1.29) into the form of a harmonic oscillator and quantize it (for further details about

the quantum harmonic oscillator see (Peskin & Schroeder 1995)) it’s easy to define the

variance of the operator that would represent the field. This is important because, in the

simplest picture of the single scalar field, in consequence of their quantum mechanical

origins, the fluctuations are Gaussian.

A Gaussian distribution is fully characterized by mean and variance. In our case the

mean is 0 by definition (1.28), therefore its variance is sufficient to totally define the

field. The variance is related to the Power Spectrum by:

〈|δψ(~x)δψ(~x′)|〉 = (2π)3Pψ(k)δ
3(~k − ~k′), (1.30)

where Pψ(k) is the power spectrum. As we were saying above, being linked to the

variance, the power spectrum fully defines the perturbations fields. It is thus a quantity

of paramount importance in Cosmology.

Omitting a bit of mathematics, we leap to the definition of the spectrum in the

spatially flat slicing gauge:

Pδψ = 〈|δψ|2〉 = H2

2k3
. (1.31)

The next step is to find the gauge invariant variable, in the flat slicing gauge it is:

ζ = −aH
ψ̇
δψ. (1.32)

The power of this variable is thus related with (1.31):

Pζ = 〈|ζ|2〉 =
(

aH

ψ̇

)2

〈|δψ|2〉 =
(

aH

ψ̇

)2

Pδψ. (1.33)

In the Newtonian gauge at the end of Inflation ζ = 3Φ/2, here Φ represent the gravita-

tional potential fluctuation, finally we can define the power spectrum of the primordial

Newtonian potential generated by density perturbations:

PΦ =
4pζ
9

=
8πGH2

9ǫk3

∣

∣

∣

∣

aH=k

. (1.34)

2Gauge invariant are quantities remaining unchanged under gauge transformation. They are useful
to connect one gauge to another.
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Observing equation (1.34) we see that Inflation produces a so called scale-invariant

power spectrum, that is P (k)k3 is constant. As we will see in detail in the next chapter,

the CMB power spectrum is indeed nearly scale-invariant. A scale-invariant ( or scale-

free) spectrum is characterized by a constant logarithmic slope, physically this means

that the process from which it derives acted in the same way at all scales. The little

deviation from scale invariance, detected with a high degree of significance in recent

surveys (Planck satellite), is also matching a specific prediction of Inflation, once correc-

tions to the power spectrum in a slow-roll parameter expansion are accounted for. CMB

observation thus provide an outstanding confirmation of the Inflationary paradigm.

1.1.4 Non-Gaussianity

Until now most predictions of Inflation passed the observational tests. The Universe

appears to be remarkably flat, homogeneous and isotropic and the measured power

spectrum is very near to the Harrison-Zel’dovich one.

However, the standard single-field slow-roll scenario briefly outlined above is not the

only possible Inflationary model we can build. On the contrary, literally hundreds of

models have been proposed in the literature, eventually involving different scalar fields

potentials and kinetic terms, or possibly including multiple fields as well as different

mechanisms for the generation of perturbations. Moreover, some alternatives to Infla-

tion are still compatible with current data. If we want to discriminate between all these

possibilities, we need to consider observables beyond the power spectrum of scalar per-

turbation. A good way to discriminate between different scenarios is the measurement

of primordial non-Gaussianity. The standard single-field slow-roll paradigm implies very

small deviations from Gaussianity since the field is essentially a quantum harmonic oscil-

lator in its ground state. A certain degree of non-Gaussianity does arise from small non-

linear coupling with gravity, but it has been shown to be tiny and undetectable. However

a number of more complex models exist predicting some degree of non-Gaussianity in

the perturbations.

If a field is not Gaussian then its power spectrum is no longer enough to fully define it,

thus the natural step is to look at higher order correlator. The lowest order indicator of

Non-Gaussianity is the three-point function (“skewness”), because it is identically 0 for

a Gaussian field. Actual calculations in the Inflationary framework (beyond the scope of
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this Introduction) show that the three point function is generally and by far the largest

correlator produced in non-standard models.

The study of the primordial three-point function in CMB data is thus the focus of

this thesis. The most interesting aspect is that different models predict different 3-point

functions, so that measurements of this type allow to strongly discriminate between

different scenarios, that would otherwise be totally degenerate if looking just at the

power spectrum.

We must emphasize that a non-Gaussian signal, even if present, is predicted to be

totally subdominant with respect to the Gaussian component of primordial perturba-

tions, and require very accurate, high resolution data-sets to be studied. The recent

CMB data provided by the WMAP, and especially Planck satellite, are ideal suited to

this purpose.

1.2 Perturbations Power Spectrum and Random Fields

In this section we briefly review some key elements of the formalism used to describe

cosmological perturbations, that will be widely used in the following. With this aim we

introduce the concepts of random field and of perturbations Power Spectrum.

We have seen that the expansion history of the Universe, as well as is curvature,

depends on the evolution of the energy density of different components: matter radiation

and cosmological constant. These density fields are homogeneous in the background

FLRW model, so its natural to describe them as:

ρ(x, t) = ρ(t) + δ(x, t), (1.35)

where ρ(t) represents the background density and δ(x, t) is the density perturbation

field, representing small deviations from homogeneity. We saw how in the standard

Cosmological scenario the density of different components presents small initial fluctu-

ations , possibly set during the inflationary epoch, that later on grow via gravitational

instability, forming all the structures we see today in the Universe.

Since δ(x, t) is a random field, we cannot make deterministic predictions about one

specific realization. What we can do is to make a statistical description of the Universe;

taking a CMB related example, we can predict e.g how many hot and cold spot there

are on average, and the expected fluctuation of this number, but we cannot tell exactly
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how many of them we are going to see, and where they are going to be located in our

observed universe.

In other words, and more precisely, when we say that the perturbations are random

fields we mean that for every position xi at a given time t (wich we will omit to explicitly

write from now )the quantity δ(xi) is a random variable.

The value of a random variable cannot be predicted but we can associate to the

variable the probability density function (PDF) Px(δ̂). It quantifies the probability that

the variable δ(x) takes a certain value δ̂ in a certain point x. Considering N points

we define the joint probability P(x1x2...xN )(δ̂1, δ̂2, . . . , δ̂N ) as the probability that in every

point {x1, x2, . . . , xN} the random variable takes respectively the values {δ̂1, δ̂2, . . . , δ̂N}.
The physical quantities described by random fields, as the Universe density distribu-

tion, are so defined by the statistical properties of the field. The statistical distribution

of a random variable δ can be described through the moments of the PDF, which are

the expectation value of the quantity:

µk =

∫

dδ(x) [δ(x)− 〈δ(x)〉]kPx(δ(x)). (1.36)

Following a most common notation we define the first 4 moments as

µ1 =µ = 〈δ(x)〉 Average, (1.37)

µ2 =σ
2 = 〈δ2(x)〉 − 〈δ(x)〉2 Variance, (1.38)

µ3 =

∫

dδ(x) [δ(x)− 〈δ(x)〉]3Px(δ(x)) Skewness, (1.39)

µ4 =

∫

dδ(x) [δ(x)− 〈δ(x)〉]4Px(δ(x)) Kurtosis. (1.40)

Furthermore if the random variables are more than one, as it happens when we consider

random fields, which are collections of random variables, we can define the correlation

function ξ(r) and the covariance, for example taking the density perturbation in x and

in x+ r:

ξ(r) =〈δ(x)δ(x+ r)〉 (1.41)

cov(δ(x), δ(x+ r)) =〈δ(x)δ(x+ r)〉 − 〈δ(x)〉〈δ(x+ r)〉. (1.42)
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Given N variables we can define the covariance matrix : it is a N × N matrix that

quantifies the covariance for every combination of variable.

The most important characteristic of cosmological density perturbations, inherited,

as we will see, from quantum fluctuations, is their Gaussianity. Gaussian distribution

is:

P (x) =
1√
2πσ

exp

[

−(x− µ)2

2σ2

]

, (1.43)

from this definition we can note that the Gaussian distribution is completely defined by

the first two moments: the average µ and the variance σ2. The higher ones are null if

odd (µ3, µ5 . . . ) while the evens ones can be defined as powers of σ.

The energy density of the different cosmological components Universe is thus de-

scribed, for each components, by a “random Gaussian scalar field”. This allows us to

totally describe it with its Power Spectrum. In fact the power spectrum is, as we will

shortly see, the analogous for random fields to what the variance is for random variable.

As a Gaussian random variable is entirely described by average and variance, a Gaus-

sian random field will entirely be defined by its power spectrum. To define the power

spectrum we start taking the Fourier transform of the field:

δ(x) =

∫

d3k

(2π)3
δ(k)eik·x, (1.44)

the perturbation in real space is a random variable, then, so is its Fourier transform.

Furthermore, since the field is stationary and isotropic, the covariance matrix in Fourier

space is diagonal, and its elements are defined as:

〈δ(k)δ(k′)〉 = (2π)3Pδ(k)δD(k − k′), (1.45)

where Pδ(k) is the perturbation Power Spectrum: it is defined as the diagonal elements

of the covariance matrix of the perturbation in Fourier Space and, if the perturbation

field is Gaussian, the Power Spectrum entirely defines it.

The Wiener-Khintchine theorem states that the Power spectrum is the Fourier trans-

form of the correlation function:

ξ(r) =

∫

d3k

(2π)3
Pδ(k)e

ik·r. (1.46)

The Power Spectrum is directly related to variance of the field:
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σ2 =

∫

d3k

(2π)3
Pδ(k), (1.47)

the variance of the field is so defined by the three dimensional integral on all scales k of

the Power Spectrum. Before concluding this short digression on random fields, we would

like to stress that, whereas here we have stressed Cosmological perturbation as Gaussian

fields, in the following of this thesis we will focus our attention on non-Gaussianity. This

apparent contradiction is due to the fact that some degree of non-Gaussianity is allowed

by theories of primordial Inflation, but is expected to be always very small. So to study

the evolution of the Universe, formation of structure, and cosmological parameters, we

can safely work assuming that everything is Gaussian. On the other hand, detecting a

tiny primordial non-Gaussian component in itself would be hugely important, as it could

shed light on the Physics of the Early Universe.

1.3 Statistical Techniques

The starting point for most problems of parameter inference in statistic is the so called

Likelihood Function L. Assume we have a theoretical model depending on a set of

parameters {λi}. We also have a set of measurement {xi}, and our data depend on the

parameter we want to estimate. We denote the probability of A given B as P [A|B], so

that we define the Likelihood function as:

L = P [x|λi], (1.48)

it represents the probability to get a certain data given the parameter. Before carrying

out our experiment we have some preliminary degree of knowledge of the parameter we

want to measure. This is described in terms of a starting probability distribution P [λi],

wich is called the prior 1. If we have no preliminary information on the parameters we

want to measure (as it is often the case), then we can define an uninformative prior,

expressing the fact that we do not have any preference for picking some specific value

of a parameter over the others. In many cases, it is intuitive to see how a totally

uninformative prior is simply a uniform distribution over the allowed range of λi, that

1In our treatment we are defining probability as a “degree of belief”, and treating parameters as
random variables. That defines the so called Bayesian approach to parameters inference, as opposed to
the “frequentist” approach, where parameters are just numbers, probability is defined as the frequency
of occurrence of an event over many trials, and the concept of a parameter prior simply cannot be defined
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is P [λi] = k, where k is a constant used to normalize P [λi] to 1 over the domain

[λmin, λmax]. Given two random variables A and B the Bayes theorem states that:

P [A|B] =
P [B|A]P [A]

P [B]
. (1.49)

We can apply this crucial result to our problem, in order to get the probability distri-

bution of our parameter, given the measured Likelihood and the prior:

P [λi|x] =
P [x|λi]P [λi]

P [x]
, (1.50)

where P [λi] is the prior and P [x] is called evidence and simply acts as normalization.

Since it is independent of the parameters, the evidence can be omitted as long as we

are concerned with parameter inference problems. The probability distribution of the

parameters given the data, is called posterior. A natural estimate of λi is the the choice

which maximizes the posterior. Note that, if we have an uniform prior from (1.50) we

can write:

P [x|λi] = L ∝ P [λi|x]. (1.51)

That means that the choice of the parameters which maximizes the posterior is also

the one that maximizes the Likelihood. Our parameter estimator is thus a Maximum

Likelihood estimator. This estimator plays a crucial role in parameters inference, as

can be shown that in many case it is the “Best Unbiased Estimator” (BUE) of a set

of parameters given the data. Unbiased means that the average is equal to the true

value of the parameter. “Best” means that it gives the most accurate estimate of the

parameters, in a sense that we are now going to clarify better in order to define the

uncertainty on the parameters, or rather the “error bars” (we stressed that we are still

assuming an uniform prior). Our estimate is derived from the peak of the Likelihood,

so its natural to assume, as a measurement of the precision of our measurement, the

width of the Likelihood itself, determined in its maximum. The “width” is nothing else

than the curvature of the Likelihood: if it is strongly peaked,i.e. the curvature is large,

the errors on the estimates will be smaller. On the contrary, if around the peak the

Likelihood is rather flat,i.e. the curvature is small, it means that the errors are larger.

Performing a Taylor expansion of the logarithm of the Likelihood around the peak values
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{λ̂i} we can approximate it with a multivariate Gaussian:

lnL(x, λ) = lnL(x, λ̂) + 1

2
(λi − λ̂i)

∂2 lnL
∂λi∂λj

(λj − λ̂j), (1.52)

from which it derives:

L(x, λ) = L(x, λ̂) exp
[

−1

2
(λi − λ̂i)Hij(λj − λ̂j)

]

. (1.53)

Here Hij = − ∂2 lnL
∂λi∂λj

is the Hessian matrix, which quantifies the curvature of the Likeli-

hood, so it is the key to compute the uncertainties on the parameter. The Hessian matrix

quantifies also how much the estimates on the parameters λi and λj are correlated, if

it is diagonal the measurements of the two parameters are uncorrelated. Note that this

doesn’t means that the parameters itself are correlated, but that so are their estimates:

for example the parameters can be completely independent but they can have a similar

effect on the data.

If we fix all the parameters except one, or equivalently if we consider the case of a

totally independent estimate on a parameter, the error is given by the curvature along

the axes representing this parameter (in parameter space), this is called conditional error

and is defined by:

σcond,i =
1√
Hii

, (1.54)

however this error is rarely relevant since is not realistic assumes a totally indepen-

dent parameter or an infinite precision on the determination of the other. To obtain

the marginal error on a parameter, taking into account all the correlation, we have to

compute the inverse of the Hessian matrix, so we have:

σi =

√

H−1
ii . (1.55)

To estimate the error for a future experiment what is used is the expectation value of

the Hessian matrix. This quantity is called Fisher Matrix:

Fij = 〈Hij〉 = 〈− ∂2 lnL
∂λi∂λj

〉. (1.56)

There is an important lower limit to error bars derived from the so called Cramer-Rao

inequality. It states that for any unbiased estimator the minimum uncertainty on the
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parameters is given by:

σλ =
1√
Fλλ

, (1.57)

and if other parameters are derived from the same data, we have the marginal error:

σλ =
√

F−1
λλ . (1.58)

We are now finally in the condition to quantify our previous statement on the Maximum

Likelihood estimator, namely that it is the “best” estimator. By best we mean that

the errors bars obtained from a Maximum Likelihood procedure, using the procedure

outlined just above, saturate the lower limit provided by the Cramer-Rao inequality. No

estimator can thus obtain errors bar smaller than the Maximum Likelihood estimator.

Hence its central role in parameter estimation theory. A common case is that in which

the observables Oobs we measure come from a Gaussian distribution with mean O(λ) and

variance σ. We assume that our observations are unbiased and the mean of distribution

corresponds to the real value. The Likelihood is

L =
1

(2πσ2)
N
2

exp

N
∑

i=1

−
[

Oobsi −Oi(λ)
]2

2σ2i
≡ e

χ2

2 , (1.59)

in our case the observable will be the angular averaged bispectrum Bℓ1ℓ2ℓ3 and the

summation will be on all possible combination of indices. For a Gaussian Likelihood

minimizing the χ2 is equivalent to maximize the Likelihood. Let us study the curvature

of χ2 about its minimum. We have

χ2(λ) = χ2(λ̂) +
1

2

∂2χ2

∂λ2

∣

∣

∣

∣

λ=λ̂

(λ− λ̂)2. (1.60)

The coefficient of the quadratic term is the curvature of the Likelihood. In this ap-

proximation, the Likelihood around the peak is Gaussian, hence we can compute the

curvature from formula (1.60), so that we have:

1

2

∂2χ2

∂λ2

∣

∣

∣

∣

λ=λ̂

= F =
∑

i

1

σ2i

[

(

∂Oi(λ)

∂λ

)2

+
(

Oi(λ)−Oobs
) ∂2Oi(λ)

∂λ2

]

, (1.61)

the second term in the summation can be ignored since we assume that our observa-

tions are unbiased: if this is true the difference will oscillate around zero resulting in

cancellations. With this hypothesis, the curvature can be replaced by the Fisher matrix.
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Generalizing to many parameters we get:

Fαβ =
∑

i

1

σ2i

∂Oi(λ)

∂λα

∂Oi(λ)

∂λβ
. (1.62)

This is a very powerful results, it states that the Fisher matrix can be computed with

no data, so for a given fiducial choice of the parameters it is possible to estimate the

expected error bars on a parameter before the experiment is performed.



Chapter 2

CMB Analysis

For decades after its discovery, the only known anisotropy in the Cosmic Microwave

Background was the dipole due to the Earth motion (Smoot et al. 1977). Starting

from the 1990s, however, technological progress, especially space telescopes, allowed the

detection of O(10−5) fluctuations in its temperature field (Smoot et al. 1992). This

discovery marked a key moment in the development of the modern cosmological model,

lifting a veil on the very early Universe and enabling astrophysicists to constrain a

number of cosmological parameters with unprecedented accuracy. The most important

feature of these anisotropies is that they are small enough to consider their evolution in

linear regime. This entails that the correspondence between their sources and what we

observe on the Last Scattering Layer is easy to model and understand analytically.

The main tool used in the study of these fluctuations is the angular power spectrum

Cℓ, which is essentially the variance derived from the spherical harmonic expansion of

the temperature distribution. The comparison between observed Cℓ and theoretical ones

provides accurate information about the physics of the primordial plasma of baryons and

photons.

In the pursuit for non-Gaussianities instead, the two-point function and the power

spectrum are no longer sufficient to characterize the Cosmological field of interest. As we

saw in section 1.2, the power spectrum completely defines a Gaussian field. If the field

is no longer Gaussian, the distribution cannot be described only in terms of the power

spectrum, but also the higher correlators are needed. The first of these correlators, i.e.

the the three-point correlator in harmonic space, the Bispectrum, is the statistic most

sensitive to a non-Gaussian signal.

In the first section we will review the most important notions about CMB analysis: the

23
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spherical harmonics representation of a random fields on the sphere and the connection

between the angular power spectrum and the properties of the primordial field. In

the next section we will then introduce the basic concepts about the measurement of

non-Gaussianity of the CMB field and the estimation of the bispectrum.

2.1 Power Spectrum

As we saw in the previous chapter, the CMB presents the most perfect black body

spectrum in nature. Furthermore, it is highly isotropic with mean temperature T =

2.753K, so that we can describe it in terms of small temperature fluctuations Θ(~x, n̂, τ) =

∆T/T , where ~x is the spatial coordinate, n̂ is the direction of the incoming photons and

τ is the conformal time, so a local observer today has ~x = 0 and τ = 0. It’s important

to emphasize that, deriving from quantum fluctuations, Θ(~x, n̂, τ) is a random field and

it’s impossible to predict its magnitude in a deterministic way. For this reason what

we observe and study is its statistical distribution over the full sky. CMB fluctuations

lie over the surface of a sphere, for which the spherical harmonics are a complete set of

orthonormal functions. They can be expressed as a Fourier series writing:

Θ(~x, n̂, τ) =

∞
∑

ℓ=0

ℓ
∑

m=ℓ

aℓm(~x, τ)Y
m
ℓ (n̂). (2.1)

We now want to derive a useful relation which links the multipoles aℓm on the right

hand side of (2.1) to the Fourier coefficients of the temperature field on the left hand

side. We thus perform a plane-wave expansion for the perturbation at a given point:

Θ(~x, n̂, τ) =

∫

d3k

(2π)3
ei(~x·

~k)Θ(~k, n̂, τ) ≡
∫

d3k

(2π)3
ei(~x·

~k)
∞
∑

ℓ=0

(−i)ℓ(2ℓ+1)Θℓ(~k, τ)Pℓ(~k · n̂),

(2.2)

where the functions Pℓ(~k · n̂) are the Legendre Polynomials (see appendix B.1.1). From

the addition theorem for spherical harmonics we know that:

Pℓ(~k · n̂) =
4π

2ℓ+ 1

ℓ
∑

m=ℓ

Y m
ℓ (k̂)Y m

ℓ (n̂), (2.3)

then from direct substitution we can derive:
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Θ(~x, n̂, τ) ≡ 4π

∫

d3k

(2π)3
ei(~x·

~k)
∞
∑

ℓ=0

(−i)ℓΘℓ(~k, τ)
ℓ
∑

m=ℓ

Y m
ℓ (k̂)Y m

ℓ (n̂). (2.4)

Equating (2.1) and (2.4) we obtain the definition of the coefficients of the CMB tem-

perature multipoles as functions of the Legendre coefficients on the temperature field in

Fourier space:

aℓm(~x, τ) = 4π(−i)ℓ
∫

d3k

(2π)3
ei(~x·

~k)Θℓ(~k, τ)Y
m
ℓ (k̂), (2.5)

this formula will come handy later on.

Since for Θ(~x, n̂, τ) it’s impossible to make predictions about any particular aℓm, what

is studied is the distribution from which they are drawn. The mean value is zero for

all aℓm, so if they are Gaussian (and to a good approximation they are), they are fully

characterized by their variance. The covariance matrix of these coefficients defines the

angular power spectrum:

〈aℓmaℓ′m′〉 = Cℓδℓℓ′δmm′ , (2.6)

where the average is performed over a theoretical ensemble of many different realization

of Universe. Unfortunately there is only one CMB sky from where we can measure

the aℓm, therefore, in order to estimate the CMB multipoles, we have to rely on an

“ergodic approximation”, assuming that averaging over the azimuthal number m (i.e.

over different multipole orientation on the sky) is equivalent to averaging on the full

ensemble. This is of course justified by rotational invariance, which make the variance

Cℓ independent of m. Since, for a fixed ℓ, we have only 2ℓ + 1 elements in our sample,

we obtain a fundamental lower limit to the precision with which we can determine the

Cℓ. This is called cosmic variance and is defined as:

(

∆Cℓ
Cℓ

)

cv

=

√

2

2ℓ+ 1
. (2.7)

The counterpart of the angular power spectrum in real space is the angular two-point

correlation function of the temperature field, they are related by:

〈Θ(n̂1)Θ(n̂2)〉 =
1

4π

∞
∑

ℓ=0

(2ℓ+ 1)CℓPℓ(n̂1 · n̂2). (2.8)

In the Cℓ lies a huge amount of information about the primordial potential, the physics
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of the primordial plasma at recombination and the evolution of the Universe, we have

to be able to discern those we are looking for. In order to separate contribution from

initial condition (i.e. Inflation) and radiative transport effects (i.e. micro-physics of

the baryon-photon plasma before recombination) we write Fourier counterpart of the

fluctuations Θℓ(~k, τ) in the form:

Θℓ(~k, τ) = Φ(~k)∆ℓ(k, τ), (2.9)

Φ(~k) is the primordial potential fluctuations that we already encountered in the pre-

vious chapter and ∆(k, τ) is the solution of a Boltzmann equation derived by keeping

into account all gravitational and physical interactions between matter and radiation

components in the Universe before recombination. ∆(k, τ) is called the CMB radiation

transfer function.

The Boltzmann equation describes the statistical behavior of a thermodynamic system

out of thermodynamic equilibrium. In other words it tells us how the abundance and

the energy distribution of every component of the Universe changes in consequence of

their interactions. This allows to predict how the perturbations evolve when they cross

the horizon and they begin to be affected by micro-physical effects. This evolution

is formalized by the transfer function: it quantifies the variations of energy density

due to the energy transport and how these affect the CMB temperature field. A full

treatment of the Boltzmann equation for CMB anisotropies is beyond the scope of this

thesis, and can be found in e.g. (Dodelson 2003). The Boltzmann equation is generally

solved numerically by public available “Boltzmann code”, such as CMBfast and CAMB,

yielding the final transfer function and allowing the computation of the CMB power

spectrum, as well of the bispectrum, as we will see in the following section.

The power spectrum of initial fluctuations is the two-point correlator of Φ(~k):

〈Φ(~k)Φ(~k′)〉 = (2π)3PΦ(k)δ
3(~k + ~k′). (2.10)

To relate it to the angular power spectrum we combine (2.10), (2.5) and (2.6) to get:
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〈aℓmaℓ′m′〉 =

= (−i)ℓ+ℓ′(4π)2
∫∫

d3k

(2π)3
d3k′

(2π)3
〈Φ(k)Φ(k′)〉ei(~x·~k−~x·~k′)∆ℓ(k, τ)∆ℓ′(k

′, τ)Y m
ℓ (k̂)Y m′

ℓ′ (k̂′),

(2.11)

applying (2.10), for the Dirac delta’s proprieties this equation becomes:

〈aℓmaℓ′m′〉 = (−i)ℓ+ℓ′(4π)2
∫

d3k

(2π)3
PΦ(k)∆ℓ(k, τ)∆ℓ′(k, τ)Y

m
ℓ (k̂)Y m′

ℓ′ (k̂). (2.12)

The angular part of the integral over the spherical harmonics leaves two δ factor, giving

the final formula:

〈aℓmaℓ′m′〉 = Cℓδℓℓ′δmm′ = (−i)ℓ+ℓ′ 2
π

∫

dk k2PΦ(k)∆ℓ(k, τ)∆ℓ′(k, τ)δℓℓ′δmm′ ,

Cℓ =
2

π

∫

dk k2PΦ(k)∆
2
ℓ (k, τ). (2.13)

This relation connects, for a given ℓ, the observable Cℓ with the theoretical quantity

Θℓ(~k, τ), which depends on the composition of the primordial plasma, and on initial

conditions at the end of inflation, providing a fundamental test for the cosmological

models.

It’s important to notice that at first order the Cℓ and PΦ(k), as well as aℓm and Φ,

are linked by a linear operator, hence if the primordial perturbation field is Gaussian

also the CMB temperature field must show the same distribution. This makes the CMB

a perfect observable to test primordial non-Gaussianity.

If we were working with galaxies, primordial non-Gaussianity will be concealed by

the effects of the highly non-linear evolution undergone by matter distribution in recent

eras. In this context the effect of primordial non-Gaussian signal constitutes only a

correction on the galaxy bispectrum, so that to measure the primordial signal we have

first to distinguish it from non-Gaussianity due to non-linear evolution.

The relations presented in this chapter show that knowing ∆ℓ(k, τ) allows to fully

determine the Cℓ, and account for all radiative effects. As we were mentioning earlier, the
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calculation of ∆ℓ(k, τ) can be done through a full numerical treatment of the Einstein-

Boltzmann system.

2.2 The Bispectrum

Measurements of primordial non-Gaussianity have been shown to be a very powerful

tool to discriminate between different Inflationary models. We know that, in case of a

non Gaussian distribution the odd moments are no longer vanishing. In the same way

as the variance is related to the Power spectrum and to the two-point correlator, we can

relate the third moment, the skewness, to the three-point correlator and to its Fourier

transform counterpart, the bispectrum. Since it is related to the third moment, also the

bispectrum vanishes if the field is Gaussian. Measurements of the bispectrum amplitude

thus provide a very sensitive indicator of departures from Gaussianity.

The bispectrum is usually characterized by an amplitude parameter: fNL, where

“NL” stands for “non-linear”. It is a dimensionless parameter representing the overall

amplitude of the curvature bispectrum. Bispectrum measurements are the most promis-

ing tool to test small primordial departures from Gaussianity. Other statistics, like

the 4-point function, generally are not expected to have the same constraining power

(Creminelli et al. 2007). An intuitive argument, which clarifies why this is the case, can

be derived by remembering that non-Gaussianity from Inflation is generally very small,

and expanding the primordial non-Gaussian field in a Taylor series around its Gaussian

component, with fNL providing the amplitude of the three-point function of expanded

field. So that we expand the primordial potential in terms of an underlying Gaussian

process:

Φ(x) = ΦL(x) + fNL(Φ
2
L(x)− 〈Φ2

L(x)〉) + gNLΦ
3
L(x) + . . . , (2.14)

here gNL represents the amplitude of the non-Gaussian contribution from the four-point

correlator; since the magnitude of the potential fluctuation is ΦL ≃ 10−5 we see that,

unless gNL >> fNL, higher order correlator are suppressed by the increasing power of

ΦL. We will see in this chapter that this expansion, called “local”, strictly applies only

to some Inflationary model, namely, those generating non-Gaussianity of the so called

local type. However the general argument holds in nearly all cases.

As for the power spectrum, since it is defined on the surface of a sphere the CMB

angular power spectrum is obtained in terms of an harmonic expansion instead of the
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classical Fourier transform. Preserving the formalism of the previous section we can now

define the angular bispectrum as:

Bm1m2m3

ℓ1ℓ2ℓ3
= 〈aℓ1m1

aℓ2m2
aℓ3m3

〉. (2.15)

In order to distinguish between geometrical and physical proprieties the bispectrum can

be expressed as (Komatsu & Spergel 2001):

Bm1m2m3

ℓ1ℓ2ℓ3
= Gm1m2m3

ℓ1ℓ2ℓ3
bℓ1ℓ2ℓ3 , (2.16)

here Gm1m2m3

ℓ1ℓ2ℓ3
is the Gaunt integral and bℓ1ℓ2ℓ3 is called the reduced bispectrum. The

Gaunt integral is defined by:

Gm1m2m3

ℓ1ℓ2ℓ3
≡
∫

d2n̂ Y m1

ℓ1
(n̂1)Y

m2

ℓ2
(n̂2)Y

m3

ℓ3
(n̂3)

=

√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π





ℓ1 ℓ2 ℓ3

0 0 0









ℓ1 ℓ2 ℓ3

m1 m2 m3



 , (2.17)

where the matrix is the Wigner-3j symbol , Gm1m2m3

ℓ1ℓ2ℓ3
is a real function which ensured that

the bispectrum satisfies the triangle conditions and selections rules: m1 +m2 +m3 = 0,

ℓ1 + ℓ2 + ℓ3 = even and |ℓi − ℓj | ≤ ℓk ≤ ℓi + ℓj ; in turn, these conditions guarantee the

invariance under translation. For further details about the Wigner symbols proprieties

see the appendix B.3.

The fact than we can find a factorization in which the reduced bispectrum is m-

independent describes instead rotational invariance (isotropy) of the CMB sky.

As for the power spectrum we can estimate the Bispectrum as an average on all the m

values. The observable quantity is thus the angle averaged bispectrum, given by:

Bℓ1ℓ2ℓ3 ≡
∑

m1m2m3





ℓ1 ℓ2 ℓ3

m1 m2 m3



Bm1m2m3

ℓ1ℓ2ℓ3
. (2.18)

Inserting (2.16) in (2.18) and applying the orthogonality relation of the Wigner symbols

(B.14), given the definition of Gm1m2m3

ℓ1ℓ2ℓ3
(2.17), the angle averaged bispectrum can be

expressed as:

Bℓ1ℓ2ℓ3 =

√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π





ℓ1 ℓ2 ℓ3

0 0 0



 bℓ1ℓ2ℓ3 . (2.19)
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on particular triangular configurations, the so called shapes. The most important bis-

pectrum shapes, encompassing a large number of Inflationary scenarios, are showed in

figure 2.1. The reason for which studies of the primordial bispectrum focus on the de-

termination of a single amplitude parameter is that the amplitudes of the individual

triangle configurations are way too small to be detected. Cosmic variance is too large

to allow the measurement of a single configuration. The signal-to-noise ratio of a single

configuration is:
S

N
≃ Bℓ1ℓ2ℓ3

σ
≃ Bℓ1ℓ2ℓ3
√

Cℓ1Cℓ2Cℓ3
≃
√

Cℓ ≃ 10−5, (2.23)

here σ ∝ CℓCℓCℓ is the variance of the bispectrum.Compressing all the bispectrum

information into a single, integrated, amplitude parameter is thus the only way to hope

to achieve a sufficiently high signal-to-noise ratio for a potentially significant detection.

Do not forget, in fact, that the simplest models of Inflation, characterized by slow-roll a

single scalar field, predict fNL ∼ 10−2, while even models allowing in principle “large”

non-Gaussianity make predictions1 for fNL ∼ 1 to 10. As one can deduce from formula

(2.14), a scale-invariant bispectrum will generally be linked to PΦ(k) as

fNL ∼ BΦ(k, k, k)

P 2
Φ(k)

. (2.24)

In addition to the fNL, theories predict what kind of triangular configurations pro-

vide the greatest contribution to the overall signal (i.e. they say on which triangles

the bispectrum in peaked), this is encoded in the shape function F (k1, k2, k3). Various

Inflationary Models can be classified according to the configurations they mainly gen-

erate in the bispectrum. The most common and studied shapes are the local shape, the

equilateral shape and the orthogonal shape (Fergusson et al. 2012; Chen 2010).

Local shape This shape covers a wide range of models, including standard single-

field slow-roll (Falk et al. 1993; Gangui et al. 1994; Gangui & Martin 2000; Wang &

Kamionkowski 2000; Komatsu & Spergel 2001; Mangilli & Verde 2009). However fNL

in standard single-field is predicted to be tiny, and undetectable (fNL ∼ 10−2). Sizable

local non-Gaussianities can be produced in Inflationary model with multiple interacting

fields. The deduction of large local non-Gaussianities would thus rule out the simplest

slow-roll single-field Inflationary scenarios.

1note that, for this order of magnitude estimate of the strength of the signal, we are defining fNL

using expansion (2.14)
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The local bispectrum is peaked on “squeezed” configuration with k1 ≃ k2 ≫ k3. This

shape derives from the expansion (2.14) we used earlier to show the suppression of higher

order correlator. It’s called “local” because non-Gaussianities are typically produced on

large super-horizon scales (represented by the smallest k). Since different regions on

super-horizon scales cannot interact, non-Gaussianity will not correlate different point

in real space. This is evident from (2.14), where the non-Gaussian part of the potential

is a local functional of the Gaussian part, i.e. ΦNL(x) = fNL(Φ
2
L(x)−〈Φ2

L(x)〉) depends
only on the value of ΦL(x) in the same point. The form of the local shape function is:

F (k1, k2, k3) = 2A2

[

1

k4−ns

1 k4−ns

2

+
1

k4−ns

1 k4−ns

3

+
1

k4−ns

2 k4−ns

3

]

, (2.25)

here A is the normalization of the Power Spectrum and ns is the spectral index PΦ(k) =

A/kns−4.

Equilateral shape For the equilateral bispectrum, the shape function peaks at the

equilateral triangle limit k1 = k2 = k3 and vanishes as ∼ k3/k1, it has the form (Crem-

inelli et al. 2006):

F (k1, k2, k3) =6A2

[

− 1

k4−ns

1 k4−ns

2

− 1

k4−ns

1 k4−ns

3

− 1

k4−ns

2 k4−ns

3

− 2

(k1k2k3)2(4−ns)/3
+

+

(

1

k
(4−ns)/3
1 k

2(4−ns)/3
2 k

(4−ns)/3
3

+ 5perm.

)]

. (2.26)

This kind of bispectrum is generated mainly from single-field Inflationary Models with

non-standard kinetic terms in the Inflaton Lagrangian. In single field large wavelenght

modes are frozen from the moment they leave the horizon, therefore they can not have

large interactions with short wavelength modes. On the other hand modes that are

still within the horizon average out any contribution to non-Gaussianities with their

oscillations. For this reason the signal in squeezed triangles is now suppressed. Therefore

the greatest contribution comes from the modes that have similar wavelengths and exit

the horizon at about the same time sourcing an equilateral bispectrum signal.

Orthogonal shape This shape is peaked both on equilateral configurations and flat-

triangle configurations (with k1 + k2 ≃ k3). The Physical arguments that bring to this
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shape are the same of the equilateral one. It is derived from the combination of similar-

equilateral shapes (Senatore et al. 2010). It can be approximated by the template:

F (k1, k2, k3) =6A2

[

− 3

k4−ns

1 k4−ns

2

− 3

k4−ns

1 k4−ns

3

− 3

k4−ns

2 k4−ns

3

− 8

(k1k2k3)2(4−ns)/3
+

+

(

3

k
(4−ns)/3
1 k

2(4−ns)/3
2 k

(4−ns)/3
3

+ 5perm.

)]

. (2.27)

2.2.2 Factorizability

Measurements of the CMB angular bispectrum are a very powerful tool for the detec-

tion of primordial non-Gaussianity. However they also present a huge computational

challenge. The bispectrum Bm1m2m3

ℓ1ℓ2ℓ3
has six degrees of freedom. Thus its brute-force

calculation would scale like O(ℓ6max), that becomes O(ℓ5max) once triangle and parity

conditions constraints are kept into account. However this is still huge for a typical

modern CMB experiment, with ℓmax ∼ 103 or larger. It’s now clear that for the analysis

of a survey like Planck, with ℓmax ∼ 2000, a more efficient method is needed.

The solution is to write the bispectrum in factorizable form, allowing to compute three

independent integral, one in every ki, instead of a triple one. As we are going to see, in

this way the problem cost reduces to O(ℓ3max).

A factorizable, or separable form, is defined by an ansatz of the kind:

BΦ(k1, k2, k3) = fNLF (k1, k2, k3) = fNL
∑

pqr

cpqrFp(k1)Fq(k2)Fr(k3) + perm. (2.28)

To obtain the general form for a separable bispectrum, we shall insert (2.28) in equation

(2.21), then expand the Dirac delta in plane wave:

δ(~k1 + ~k2 + ~k3) =

∫

d3x

(2π)3
exp ı

[

(~k1 + ~k2 + ~k3) · ~x
]

, (2.29)
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and then apply the spherical wave expansion of vector plane wave (for further details

see appendix B.2), so we obtain:

δ(~k1 + ~k2 + ~k3) = (4π)3
∫

d3x

(2π)3

{

[

∞
∑

ℓ1=0

ıℓ1jℓ1(k1r)

ℓ1
∑

m1=−ℓ1

Y
m1

ℓ1 (n̂1)Y
m1

ℓ1
(k̂1)

]

×

×
[

∞
∑

ℓ2=0

ıℓ2jℓ2(k2r)

ℓ2
∑

m2=−ℓ2

Y
m2

ℓ2 (n̂2)Y
m2

ℓ2
(k̂2)

]

×

×
[

∞
∑

ℓ3=0

ıℓ3jℓ3(k3r)

ℓ3
∑

m3=−ℓ3

Y
m3

ℓ3 (n̂3)Y
m3

ℓ3
(k̂3)

]

. (2.30)

Here the coordinate r in the Bessel functions argument represents the look-back con-

formal time r = cτ . Now returning to the definition (2.20) for the angular bispectrum,

we can substitute 〈Φ(~k1)Φ(~k2)Φ(~k3)〉 with the expanded δD and the separable function

(2.28), at last we can eliminate the summations recalling the normalization propriety of

the spherical harmonics obtaining:

Bm1m2m3

ℓ1ℓ2ℓ3
=

(

2

π

)3 ∫

d3x

∫∫∫

dk1dk2dk3 k
2
1k

2
2k

2
3

∑

pqr

[

cpqrF
(1)
p (k1)F

(2)
q (k2)F

(3)
r (k3)

+ perm.
]

∆ℓ1(k1, τ)∆ℓ2(k2, τ)∆ℓ3(k3, τ)jℓ1(k1r)jℓ2(k2r)jℓ3(k3r)×

× Y m1

ℓ1
(n̂1)Y

m2

ℓ2
(n̂2)Y

m3

ℓ3
(n̂3)

=Gm1m2m3

ℓ1ℓ2ℓ3
×
(

2

π

)3
∑

pqr

[ ∫

r2dr

∫

k21dk1 F
(1)
p (k1)∆ℓ1(k1, τ)jℓ1(k1r)×

×
∫

k22dk2 F
(2)
q (k2)∆ℓ2(k2, τ)jℓ2(k2r)×

×
∫

k23dk3 F
(3)
r (k3)∆ℓ3(k3, τ)jℓ3(k3r) + perm.

]

. (2.31)

This is the general factorized form for the angular bispectrum, Fp,q,r are now generic

functions, their form and their number depend on the model for the primordial potential.

It is now clear why factorizing the shape allows a strong reduction in computational

cost. The triple integral dk1dk2dk3, over all configurations, has been written as the

product of three one dimensional integral over dk1, dk2, dk3, separately. This operation

is performed in ∼ ℓmax operations instead of the original ∼ ℓ3max operations. With

ℓmax ∼ 103 this is a huge gain, making the problem numerically tractable.



CMB Analysis 35

2.3 KSW estimator

The KSW estimator exploits separability over the wavenumbers k of the bispectrum

shape, to achieve high numerical efficiency (Komatsu et al. 2005). Starting from the as-

sumption that the bispectrum configurations follow a Gaussian distribution, maximizing

the likelihood is equivalent to minimizing the following χ2:

χ2 =
∑

ℓ1≤ℓ2≤ℓ3

(

Bobs
ℓ1ℓ2ℓ3

− fNLB
th
ℓ1ℓ2ℓ3

(fNL = 1)
)2

σ2
(2.32)

where Bth
ℓ1ℓ2ℓ3

and Bobs
ℓ1ℓ2ℓ3

are respectively the theoretical and observed angle averaged

CMB bispectra, and σ2 is the variance of the bispectrum, defined as:

σ2ℓ1ℓ2ℓ3 = ∆ℓ1ℓ2ℓ3Cℓ1Cℓ2Cℓ3



























∆ℓ1ℓ2ℓ3 = 1 ℓ1 6= ℓ2 6= ℓ3

∆ℓ1ℓ2ℓ3 = 2 ℓi = ℓj 6= ℓk

∆ℓ1ℓ2ℓ3 = 6 ℓ1 = ℓ2 = ℓ3.

(2.33)

The estimator is derived by inserting the explicit expressions for bispectra, and differen-

tiating with respect fNL. Using the notation introduced in (Komatsu & Spergel 2001),

the angle averaged CMB bispectrum is expressed as:

Bℓ1ℓ2ℓ3 =

√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π





ℓ1 ℓ2 ℓ3

0 0 0



 bℓ1ℓ2ℓ3 . (2.34)

where the matrix is the Wigner-3j symbol, encoding the geometric conditions while

bℓ1ℓ2ℓ3 is the so called “reduced bispectrum”, accounting for the shape dependence. We

saw that a general separable bispectrum template is written as as a linear combination

of products of three one-dimensional functions:

B(k1, k2, k3) = fNL

∑

pqr

cpqrFp(k1)Fq(k2)Fr(k3) + perm. (2.35)

Projecting on the sphere, we obtain the expression for the reduced bispectrum (for the

sake of clarity, but without losing in generality, here we assume a shape involving a

single set of permutations):

bℓ1ℓ2ℓ3 = fNL

∫

dr r2 [ Xℓ1(r)Yℓ2(r)Zℓ3(r) + perms.] . (2.36)
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For the local shape we have:

blocℓ1ℓ2ℓ3 = 2fNL

∫ ∞

0
r2dr [αℓ1(r)βℓ2(r)βℓ3(r) + αℓ2(r)βℓ3(r)βℓ1(r) + αℓ3(r)βℓ1(r)βℓ2(r)] ,

(2.37)

where:

αℓ(r) ≡
2

π

∫ ∞

0
k2dk∆ℓ(k, τ)jℓ(kr), (2.38)

βℓ(r) ≡
2

π

∫ ∞

0
k2dk PΦ(k)∆ℓ(k, τ)jℓ(kr). (2.39)

Here, PΦ(k) is the primordial fluctuations power spectrum and ∆ℓ(k, τ) is the radiation

transfer function. The field Φ is linked to the curvature perturbations ζ by Φ = (3/5) ζ.

The reduced bispectrum for the equilateral shape is instead:

bequilℓ1ℓ2ℓ3
= 6fNL

∫ ∞

0
r2dr [−2δℓ1δℓ2δℓ3 − (αℓ1βℓ2βℓ3 + 2perms.) + (βℓ1γℓ2δℓ3 + 5perms.)] ,

(2.40)

where, for simplicity of notation, we have avoided to write explicitly the r-dependence

of quantities in the integral above. The new functions are defined as:

γℓ(r) ≡
2

π

∫ ∞

0
k2dk PΦ(k)

1

3∆ℓ(k, τ)jℓ(kr), (2.41)

δℓ(r) ≡
2

π

∫ ∞

0
k2dk PΦ(k)

2

3∆ℓ(k, τ)jℓ(kr). (2.42)

The orthogonal bispectrum is:

bequilℓ1ℓ2ℓ3
= 6fNL

∫ ∞

0
r2dr [−8δℓ1δℓ2δℓ3 − 3 (αℓ1βℓ2βℓ3 + 2perms.) + 3 (βℓ1γℓ2δℓ3 + 5perms.)] .

(2.43)

Under these assumptions, the general form of the “cubic” estimator is:

Ecubic = 1

N
∑

ℓ1ℓ2ℓ3

Bth
ℓ1ℓ2ℓ3

(fNL = 1)Bobs
ℓ1ℓ2ℓ3

Cℓ1Cℓ2Cℓ3
=

1

N

m1m2m3
∑

ℓ1ℓ2ℓ3

Gm1m2m3

ℓ1ℓ2ℓ3
bfNL=1
ℓ1ℓ2ℓ3

Cℓ1Cℓ2Cℓ3
aℓ1m1

aℓ2m2
aℓ3m3

(2.44)
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where N is a normalization factor and Gm1m2m3

ℓ1ℓ2ℓ3
is the Gaunt integral, encoding the

geometric properties and defined as:

N =
∑

ℓ1ℓ2ℓ3

(

Bth
ℓ1ℓ2ℓ3

(fNL = 1)
)2

Cℓ1Cℓ2Cℓ3
(2.45)

Gm1m2m3

ℓ1ℓ2ℓ3
≡
∫

d2n̂ Y m1

ℓ1
(n̂)Y m2

ℓ2
(n̂)Y m3

ℓ3
(n̂). (2.46)

Furthermore, in case of partial sky coverage, the rotational invariance is broken. This

introduces a spurious NG signal. As a consequence the estimator becomes sub-optimal.

To correct for this effect, an additional “linear” term must be added (Creminelli et al.

2007):

E lin = − 3

f skyN

m1m2m3
∑

ℓ1ℓ2ℓ3

Gm1m2m3

ℓ1ℓ2ℓ3
bfNL=1
ℓ1ℓ2ℓ3

Cℓ1Cℓ2Cℓ3
〈aℓ1m1

aℓ2m2
〉aℓ3m3

. (2.47)

where f sky is the fraction of the sky covered by the survey, and the brackets represent

ensemble average. The best fit value of fNL is therefore:

f̂NL =
Ecubic
f sky

+ E lin. (2.48)

To obtain a numerical efficient expression, is useful to define the filtered maps:

MX(r, n̂) =
∑

ℓ,m

aℓmY
m
ℓ (n̂)

Cℓ
Xℓ(r),

MY (r, n̂) =
∑

ℓ,m

aℓmY
m
ℓ (n̂)

Cℓ
Yℓ(r),

MZ(r, n̂) =
∑

ℓ,m

aℓmY
m
ℓ (n̂)

Cℓ
Zℓ(r). (2.49)

These maps can be computed resorting to fast harmonic transform. Therefore, we can

write the estimator as:

Ecubic = 1

N

∫ ∞

0
dr r2

∫

d2n̂MX(r, n̂)MY (r, n̂)MZ(r, n̂) + perms. (2.50)

E lin =− 3

f skyN

∫ ∞

0
dr r2

∫

d2n̂MX(r, n̂)〈MY (r, n̂)MZ(r, n̂)〉+ perms. (2.51)

This expression is immediately implementable and numerically efficient. This estimator

has been widely used in the literature to extract the amplitude of the NG signal from

CMB maps.
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Chapter 3

CMB constraints on running

non-Gaussianity

The content of this chapter has been published in (Oppizzi et al. 2018a). Primordial

cosmological non-Gaussianity (NG) is nowadays constrained very tightly by Cosmic

Microwave Background (CMB) data, with the most stringent bounds coming from mea-

surements of the angular bispectrum and trispectrum of Planck temperature and po-

larization maps (Planck Collaboration et al. 2014b, 2016b). Besides the most common

”local”, ”equilateral” and ”orthogonal” NG shapes, arising from a large variety of either

single (equilateral, orthogonal) or multi-field (local) inflationary scenarios, many addi-

tional bispectra have been tested in the Planck analysis. A non-exhaustive list includes

anisotropic, flattened and parity-odd shapes, as well as a large family of strongly scale-

dependent, oscillatory models. However, to date, no analysis of Planck data includes

scale-dependent models with a mild fNL running, described by a non-Gaussian spectral

index.

The main goal of this paper is to build a set of bispectrum estimators for a complete

set of theoretically motivated running NG models. The only existing experimental con-

straint on running NG, to the best of our knowledge, was obtained by the authors of

(Becker & Huterer 2012). They considered a local-type running shape that is expected

to appear in curvaton and modulated reheating scenarios. In this work we will extend

the analysis in various directions. First of all, we will include additional shapes, peaking

both in the local and equilateral limit and generated in different multi-field inflationary

models and in Dirac-Born-Infeld (DBI) scenarios. For the latter, we will implement the

full, non-separable, shape reported in theoretical derivations and carefully compare it to

39
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the separable phenomenological parametrization that was employed in previous forecast

analyses (Sefusatti et al. 2009). Finally, before obtaining our experimental constraints,

we will pay particular attention to the validation of our pipeline, via generation of NG

CMB maps, including all the running bispectra under examination.

The paper is organized as follows: in section 3.1, we will provide a short overview of

the models included in our analyses, focusing on their primordial bispectrum predictions;

in section 3.2, we will describe in detail our data analysis pipeline, including bispectrum

estimation and generation of NG maps; in section 3.3 we will show the outcome of

validation tests, final WMAP experimental bounds on all running shapes and forecasts

for future CMB surveys; we will finally summarize our main results in section 3.4.

3.1 Scale-dependent models

In this work we will consider inflationary models that produce a running of the NG

parameter fNL, parametrized via a NG spectral index nNG. Running primordial NG can

be sourced by a wide range of different physical processes, such as non-linear evolution

of perturbations, interactions in multi-field inflation, variation of the sound speed in

single-field inflationary models, peculiar properties of the background metric. Note that

scale-dependence can arise also in very simple models and can therefore be considered

as a fairly general prediction of Inflation.

It is actually not possible to encompass such a variety of scenarios using just a single

bispectrum shape, with a specific ansatz for fNL(k). The aim of this work is to build a

quite general class of CMB bispectrum estimators, which can account for most of the

theoretically motivated, scale-dependent NG parametrizations proposed so far in the

literature. We start in this section by briefly reviewing them. Scale-dependent (SD)

NG in the context of slow-roll inflation was studied for example in (Byrnes et al. 2010;

Shandera et al. 2011; Tzavara & van Tent 2013), where the authors propose explicit

expressions for the primordial three point function, in the cases of one or two fields

contributing to the curvature perturbations. The SD local generalization, when only

one field contributes to primordial perturbations reduces to:

B(k1, k2, k3) ∝ fNL

[

(k1k2)
nζ−4knNG

3 + 2 perms.
]

, (3.1)

where nζ denotes the usual spectral index of curvature perturbations ζ. This shape
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was constrained using WMAP data in (Becker & Huterer 2012). It describes multi-

field models (e.g curvaton or modulated reheating) in which the Inflaton contribution

to perturbations is subdominant. A large scale-dependence arises here as a consequence

of strong self interactions of the field (Byrnes et al. 2010) . In the following, we will use

the superscript ”1f ” to address this model.

If two fields contribute to the curvature perturbation, the dependence on k follows

a different parametrization. This kind of template arises, for example, from the mixed

inflaton-curvaton theory (assuming the curvaton field has a quadratic potential), and

also in general two-field models when the test field has a quadratic potential (Byrnes

et al. 2010). The resulting shape is:

B(k1, k2, k3) ∝ fNL

[

(k1k2)
nζ+(nNG/2)−4 + 2 perms.

]

. (3.2)

We will refer to this model with the superscript 2f.

Both these shapes are separable over wavenumbers, therefore it will be fairly straight-

forward to implement them in a generalized version of the classic KSW bispectrum

estimator (Komatsu et al. 2005), as we will discuss in the next section. In the theoreti-

cal derivation of the previous two shapes, it was assumed that the fields are slow-rolling

and that |nNG ln (kmax/kmin) | << 1, where kmax and kmin are the largest and small-

est wavenumbers included in the analysis. For WMAP, ln (kmax/kmin) . 7 so nNG

can be at most of order of 0.1. However, in this work, we wish to argue that from a

purely phenomenological point of view, the previous two bispectrum shapes are inter-

esting templates to constrain with data even when nNG is larger than 0.1. The value

of the running, for this class of models, is proportional to higher order derivatives of

the inflationary potential. Since the power spectrum is insensitive (to lowest order) to

these quantities, measuring nNG can provide additional information about primordial

perturbations. If we move to single-field scenarios with a non-canonical kinetic term, a

mild running of the NG can be also produced. A typical such example is DBI-inflation

(Chen 2005) (see (Bartolo et al. 2010) for a generalization within effective field theory

of Inflation). In this context, the NG amplitude fNL is promoted to a function of the

triangular wavenumbers configurations. A first study of the testability of these models is

presented in (Sefusatti et al. 2009). In that work the authors proposed a parametrization
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assuming a dependence on the geometric mean of the three wavenumbers

B(k1, k2, k3) ∝ fNL

(

k1k2k3

k3
piv

)nNG/3

F (k1, k2, k3) , (3.3)

where kpiv is a pivot scale and F is the shape function. Being the scale independent

part of the bispectrum, F depends only on the ratios of the three wavenumbers. In the

theoretical literature (see e.g. (Chen et al. 2007)) a different parametrization is however

generally found, in terms of the arithmetic, rather than the geometric mean. Namely:

B(k1, k2, k3) ∝ fNL

(

k1 + k2 + k3
3kpiv

)nNG

F (k1, k2, k3). (3.4)

The geometric mean parametrization can be seen as an approximation of the theoreti-

cal shape, which is expected to work well for equilateral shapes (typical case for DBI,

and in more general single-field models), where the significant contribution comes from

configurations with k1 ∼ k2 ∼ k3 (in that case of course, the two parametrizations co-

incide). Its practical advantage lies in its explicit separability. On the other hand, for

an accurate measurement, it is important at least to compare the two parametrizations,

and explicitly verify their level of correlation. The technical problem with the arithmetic

mean is that it is not explicitly separable, that is, the factor (k1 + k2 + k3)
nNG is not

trivially factorizable. There are many well-known ways in the literature to circumvent

this problem, based for example on the modal (Fergusson et al. 2010, 2012) or binned

(Bucher et al. 2016; Bucher et al. 2010) decomposition of the shape. In this work, we

take a different approach. We stick with a KSW-type estimator, and factorize the shape

by resorting to the so-called Schwinger parametrization (Smith & Zaldarriaga 2011)

B(k1, k2, k3) ∝ fNL
F (k1, k2, k3)

Γ(1− nNG)

1

k
nNG

piv

∫ ∞

0
dt t−nNG

[

k1e
−t(k1+k2+k3) + perm

]

, (3.5)

where Γ is the Gamma function. This form is valid for nNG < 1, which is not a very

limiting assumption, since all the models predict a running nNG . 10−1. We will refer

to this shape with the superscript “am”. For an overview of the explicit form of the

resulting CMB templates, see Appendix 3.A. The advantage of this approach, in this

specific case, is that we will not have to re-expand the shape every time we change nNG,

while exploring the parameter space.





CMB constraints on running non-Gaussianity 44

Dropping constant terms, this equation can be rearranged in the form:

L(fNL, nNG) ∝ exp



−f
2
NL

2

∑

ℓ1ℓ2ℓ3

(

Bth
ℓ1ℓ2ℓ3

)2

Cℓ1Cℓ2Cℓ3
+ fNL

∑

ℓ1ℓ2ℓ3

Bobs
ℓ1ℓ2ℓ3

Bth
ℓ1ℓ2ℓ3

Cℓ1Cℓ2Cℓ3



 . (3.7)

It is easy to recognize, in the first term, the KSW normalization factor N (see formula

(2.45)) and, in the second term, the unnormalized estimator (see formula (2.44)). We

can therefore re-write the expression above as:

L(fNL, nNG) ∝ exp

[

N
(

−f
2
NL

2
+ fNLf̂NL

)]

, (3.8)

where f̂NL is the value of the NG amplitude recovered from the KSW estimator. As-

suming a constant prior on fNL, we can integrate to find the marginalized likelihood of

nNG:

L(nNG) ∝
k
nNG

piv√
N

exp

(

f̂2NLN
2

)

, (3.9)

here we have explicitly highlighted the dependence of the likelihood on the pivot scale

kpiv, and N denotes the normalization without the pivot factor. Due to the limitations in

resolution, the experimental sensitivity is not constant for different choices of different

kpiv. As a consequence, the correlation between the two parameters depends on the

pivot scale, and this reflects on the shape of the marginalized likelihood. An example

of the dependence of L(nNG) on kpiv is shown in figure 3.1, where we consider the one-

field model likelihood obtained from a Gaussian simulation (as extreme examples, we

show also cases in which we set the pivot outside the accessible scales, resulting in a

likelihood that diverges at the edges). The standard approach, (see e.g. (Sefusatti et al.

2009)(Becker & Huterer 2012)), which we also follow here, is to start with an arbitrary

value of kpiv, compute the likelihood and finally rescale kpiv in order to minimize the

correlation between the parameters at the peak of the likelihood. As mentioned above,

the estimated amplitude f̂NL(nNG) is computed via KSW bispectrum estimation, for

fixed nNG. The likelihood is then profiled by iterating this operation over a sufficiently

wide nNG interval. Finally, with the full profiled likelihood in hand, we can extract the

best fit value of nNG. In case of partial sky coverage and non-stationary noise, it is well

known that a linear term must be added to the KSW cubic statistic, to restore optimality.

This is generally computed as a Monte Carlo average over Gaussian realizations of the

masked CMB sky, including realistic instrumental noise properties. When producing
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equilateral parametrization. To better highlight differences between templates, we con-

sider an extreme value for the running, nNG = 0.8. It is also interesting to note how the

two-field model (3.2) is highly uncorrelated with the others, showing the importance of

separately fitting the different scale-dependent shapes predicted in the literature.

3.3 Results

3.3.1 Test on simulations

To test our estimator, we run it on different sets of NG maps, produced with the method

outlined in the previous section. We produce nine different sets, with different spectral

index, for three models: the one-field and two-field local models, and the equilateral

”geometric mean” model. We choose a value fNL = 50 for the local templates and

fNL = 100 for the equilateral one, at a pivot scale kpiv = 0.02 Mpc−1. For each model

we consider three different values of the running: nNG = 0, nNG = −0.6 and nNG = 0.6.

We compute the Gaussian component assuming the best-fit Planck power spectrum.

The angular resolution in these test maps is ℓmax = 500. We test our method both in

the case of full sky-coverage and in a more realistic case with 30% of the sky masked.

We find that, in all cases, our estimators recover correctly the initial value of the

parameters, within error bars. At the same time, the uncertainties derived from the

likelihood are consistent with Fisher matrix predictions. We find that 100 Gaussian

simulations are sufficient in the linear term evaluation, to correct for the partial sky

coverage effects. As an example, in figure 3.4 we show the likelihoods obtained for

the one and two-field local models from simulated NG maps with different value of the

spectral index.

3.3.2 Experimental bounds

We apply our technique to provide bounds on the running of non-Gaussianity from the

WMAP9 temperature maps, considering the various running models discussed in the

previous sections. Our data-set consists on the combination of the V and W WMAP

bands, coadded and weighted following the prescription in (Komatsu et al. 2009). To

exclude foreground and point-source contaminated pixels we use the KQ75y9 mask,

covering 31.2% of the sky. The maps used in this analysis, as well as instrumental

specifications, beams and noise per pixel are extensively described in (Bennett et al.
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3.2. In this computation we have assumed as fiducial values nNG = 0, f locNL = 2.5, f eqNL =

−16 at a pivot scale of kpiv = 0.055Mpc−1. For all experiments we have considered

a sky coverage of 70%. The maximum multipole order accessible is: ℓmax = 2400 for

Planck, ℓmax = 1350 for LiteBIRD, and ℓmax = 3000 for the other experiments. While

these surveys are clearly signal-dominated to much higher ℓ than WMAP, it is not

obvious that they will provide significant better constraints on nNG. That is because

the uncertainty on nNG is inversely proportional not only to ℓmax but also to the NG

amplitude parameter, fNL. The final forecast is therefore crucially dependent on the

fiducial value chosen for fNL. If we consider the current local scale-independent fNL

central value from Planck analysis, we know that it has moved much closer to 0, with

respect to WMAP, making forecasted Planck constraints actually weaker than what

we obtained here. A similar reasoning applies also for the equilateral shape, although

the shift in measured central values from WMAP to Planck is less dramatic there.

On the other hand, it is clear that changing the central value of e.g. local fNL, in

a scale-independent analysis, from approximately 30 at ℓmax = 500, to fNL = 2.5 at

ℓmax = 2000, does display, a posteriori, some degree of running. Allowing for a further

running parameter can therefore lead to a shifting of the overall fNL amplitude to larger

values. Moreover, for values of fNL which do not correspond to the current best-fit value

but are well within the current scale-independent 95% C.L. intervals, significant nNG

improvements are expected with future surveys. This is evident from the results shown

in table 3.3 and figure 3.8. In summary, while there is a possibility that the constraints

obtained here will not be significantly improved with Planck or future CMB data, several

plausible scenarios do allow for significant tightening of current error bars, up to factors

of 2-3. This makes further studies, using more sensitive, higher resolution than WMAP

data-sets, clearly worth pursuing.

3.4 Conclusions

Constraining the running of the primordial NG parameter fNL can provide valuable

extra-information on the Physics of Inflation, allowing for better discrimination between

different scenarios.

In this paper, we presented new constraints on the running of the primordial three-

point function, obtained from WMAP 9-year CMB temperature data. We provided

bounds on the NG running parameter nNG for different, theory-motivated, bispectrum
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At this level of sensitivity, information coming from nNG is not particularly useful to set

new meaningful bounds on inflationary models. However, the main point of this work

was to develop and test a full set of simulation and estimation tools that can be readily

applied to future more sensitive data-sets.

In this respect, a natural follow-up of this study, which is actually ongoing work within

the Planck collaboration, is the application of our pipeline to Planck data. Interestingly,

we know that local fNL, measured with Planck as a function of scale, changes from a best-

fit value fNL ∼ 40± 20, at ℓmax = 500 (fully consistent with WMAP) to fNL ∼ 2± 5 at

ℓmax = 2000. Fisher matrix forecasts, obtained both for Planck and other experimental

setups, also show that the error bars obtained in this work could shrink up to a factor

∼ 3 with future surveys, depending on the recovered central value of fNL. Note also, see

figures 3.5, that the actual nNG likelihood can deviate significantly from Gaussianity.

This makes the predicted improvements via Fisher analysis an underestimate, for certain

intervals of fNL fiducial values, which are consistent with current Planck bounds. CMB

constraints, obtained via direct bispectrum estimation as presented here, could also in

the future be combined with those coming from different probes, such as LSS or, in a

more futuristic scenario, CMB spectral distortions and 21 cm anisotropies (Emami et al.

2015; Cooray 2005; Biagetti et al. 2013; Ravenni et al. 2017; Khatri & Sunyaev 2015;

Raccanelli et al. 2015), allowing for further, significant improvements.
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3.A Scale-dependent templates

The reduced bispectrum for the model (3.1) is a generalization of the local shape (2.37).

It has the same expression and the scale-dependence is encoded in the function αℓ(r),

that becomes:

α1f
ℓ (r) ≡ 2

π

1

k
nNG

piv

∫ ∞

0
k2+nNGdk∆ℓ(k, τ)jℓ(kr). (3.14)

Similarly, the two-field model (3.2) derives from the local template (2.37), but in this

case it is the βℓ(r) function that is promoted to a function of nNG:

β2fℓ (r) ≡ 2

π

1

k
nNG/2
piv

∫ ∞

0
k2+nNG/2dk PΦ(k)∆ℓ(k, τ)jℓ(kr). (3.15)

The model (3.3) instead, is valid for the equilateral template (2.40), the new functions

being:

αgmℓ (r) ≡ 2

π

1

k
nNG/3
piv

∫ ∞

0
k2+nNG/3dk∆ℓ(k, τ)jℓ(kr), (3.16)

βgmℓ (r) ≡ 2

π

1

k
nNG/3
piv

∫ ∞

0
k2+nNG/3dk PΦ(k)∆ℓ(k, τ)jℓ(kr), (3.17)

γgmℓ (r) ≡ 2

π

1

k
nNG/3
piv

∫ ∞

0
k2+nNG/3dk PΦ(k)

1

3∆ℓ(k, τ)jℓ(kr), (3.18)

δgmℓ (r) ≡ 2

π

1

k
nNG/3
piv

∫ ∞

0
k2+nNG/3dk PΦ(k)

2

3∆ℓ(k, τ)jℓ(kr). (3.19)

Obtaining a reduced bispectrum expression for the last model (3.4) is slightly more

complex. We have to replace fNL with the new definition (3.5), and put it in separable

form, defining new coefficients. For the local shape we compute:

α′
ℓ(r, t) =

2

π

∫

dk k2∆ℓ(k)jℓ(kr)e
−tk, (3.20)

β′ℓ(r, t) =
2

π

∫

dk k2PΦ(k)∆ℓ(k)jℓ(kr)e
−tk, (3.21)

ζℓ(r, t) =
2

π

∫

dk k3∆ℓ(k)jℓ(kr)e
−tk, (3.22)

ξℓ(r, t) =
2

π

∫

dk k3PΦ(k)∆ℓ(k)jℓ(kr)e
−tk. (3.23)
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Starting from equation (2.37), with these new coefficients, we can write the reduced

scale-dependent local bispectrum as:

blocℓ1ℓ2ℓ3 =
fNL

k
nNG

piv

1

Γ(1− nNG)

∫ ∞

0
dt t−nNG

∫ ∞

0
dr r2

[

(

α′
ℓ1(r, t)β

′
ℓ2(r, t)ξℓ3(r, t) + 5 perm.

)

+

+
(

β′ℓ1(r, t)β
′
ℓ2(r, t)ζℓ3(r, t) + 2 perm.

)

]

. (3.24)

In the equilateral case, we need to define other four additional coefficients:

γ′ℓ(r, t) ≡ 2

π

∫ ∞

0
k2dk PΦ(k)

1

3∆ℓ(k, τ)jℓ(kr)e
−tk, (3.25)

δ′ℓ(r, t) ≡ 2

π

∫ ∞

0
k2dk PΦ(k)

2

3∆ℓ(k, τ)jℓ(kr)e
−tk, (3.26)

ǫℓ(r, t) ≡ 2

π

∫ ∞

0
k3dk PΦ(k)

1

3∆ℓ(k, τ)jℓ(kr)e
−tk, (3.27)

ηℓ(r, t) ≡ 2

π

∫ ∞

0
k3dk PΦ(k)

2

3∆ℓ(k, τ)jℓ(kr)e
−tk. (3.28)

Inserting (3.5) in (2.40) and using all these new coefficients, we obtain the reduced

equilateral bispectrum:

bequilℓ1ℓ2ℓ3
=
fNL

k
nNG

piv

1

Γ(1− nNG)

∫ ∞

0
dt t−nNG

∫ ∞

0
dr r26

[

− 2
(

ηℓℓ1 δ
′
ℓ2δ

′
ℓ3 + 2perm.

)

+

−
(

ζℓ1β
′
ℓ2β

′
ℓ3 + 2perm.

)

−
(

α′
ℓ1ξℓ2β

′
ℓ3 + 5perm.

)

+
(

ξℓ1γ
′
ℓ2δ

′
ℓ3 + 5perm.

)

+

+
(

β′ℓ1ǫℓ2δ
′
ℓ3 + 5perm.

)

+
(

β′ℓ1γ
′
ℓ2ηℓ3 + 5perm.

)

]

, (3.29)

where we adopted a compact notation, removing the explicit dependence on (r, t).



Chapter 4

Analysis of Planck data

The ESA Planck mission was the third-generation space mission dedicated to measure-

ments of CMB anisotropies. It came after COBE (Smoot et al. 1992) and WMAP

(Bennett et al. 2003), and provided large improvements both in the angular resolution,

lowered to 5 arcmin, corresponding to ℓmax ∼ 3000, as well as in sensitivity and frequency

coverage (the latter being an essential experimental feature for accurate subtraction of

Astrophysical foregrounds). Its instrumentation works in in 9 different bands (30, 44,

70, 100, 143, 217, 353, 545, 857 GHz), allowing for an unprecedented estimation of the

sky brightness in these frequencies. Planck also uses two different types of detector.

Radiometers at low frequencies (30-70 GHz) form the so called Low Frequency Instru-

ment (LFI). The High Frequency Instrument (HFI) is instead composed of bolometers,

covering the range 100 − 857 GHz. This combination of different detector technologies

allows for a tight control of instrumental systematics.

Planck results represent the state-of-the-art of precision cosmology. They are the best

CMB measurements to date, covering the full range of relevant scales for primary CMB

anisotropies (of course also secondary effects, such as Sunyaev Zel’dovich and CMB

lensing, are detected and mapped with high accuracy), from the Hubble radius to the

diffusion damping scale. More specifically, the Planck data-set succeeds in constraining

well 18 peaks in the temperature and polarization angular power spectra, providing a

strong confirmation and the tightest available constraints on the standard cosmological

model, the so called ΛCDM , and its extensions, such as Inflation. Planck simultane-

ously measures five of the six parameters of ΛCDM with percent precision, providing

unprecedented precision and overwhelming amount of information. Planck data provide

the strongest evidence on the existence of non-baryonic dark matter and establish the

57
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flatness of the universe at the 5× 10−3 level. They also provide the tightest constraints

on neutrino masses and allows for constraints on Dark Energy models found and mea-

surements of the cosmological constant. These incredible results are only the tip of

the iceberg of the Planck products, arrived now at the third and last release as Planck

Collaboration. For a compelling review of the legacy of Planck we refer the reader to

(Planck Collaboration et al. 2018d).

The analysis shown in this chapter will be part of the Planck legacy release as a

contribution to the paper ””IX.Constraints on primordial non-Gaussianity””. At the

moment of writing, the analysis is actually still ongoing, so that the results should be

considered preliminary.

4.1 Scale-dependent bispectrum estimation from Planck

data

In this chapter we present the results of the application of the method described in

the previous section to the Planck data-set. Planck constraints on Primordial non-

Gaussianity in previous releases, (Planck Collaboration et al. 2016b, 2014b), improved

by more than one order of magnitude any previous measurements of the primordial

local, equilateral and orthogonal bispectrum amplitudes. Moreover, a wide range of

additional templates was tested, including: oscillatory feature models, resonance models,

direction dependent NG, tests for deviations from the Bunch-Davies vacuum and parity-

odd bispectra. The local, equilateral and orthogonal amplitudes have been measured

independently with four different bispectrum estimation techniques, KSW (Komatsu

et al. 2005; Munshi & Heavens 2010), binned (Bucher et al. 2010), and two Modal

pipelines (Fergusson et al. 2010, 2012), obtaining fully consistent values.

The forthcoming release will update these measurements, including for the first time

the full polarization analysis. In the previous release, E-parity polarization analysis was

restricted to multipoles ℓ ≥ 40 since the characterization of systematics at larger scales

was still unsatisfactory. As a consequence, the previous results, including polarization

data, were considered preliminary.

Of particular relevance for the work of this thesis is that the analysis of scale-

dependent templates, presented here, is performed for the first time on Planck data.

To properly exploit the high level of sensitivity of this data-set, we had to improve our

technique, considering corrections for spurious NG signal from secondary anisotropies.
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Furthermore, we refined our inference procedure by implementing a new, more con-

servative prior hypothesis and a different approach. In the next sections we discuss

these extensions, while we refer to the previous chapter for the description of the basic

methodology.

4.2 Bias from the Integrated Sachs-Wolfe-lensing bispec-

trum

Secondary anisotropies, generated when the evolution of the gravitational potential de-

viates from the linear regime, are a possible source of non-Gaussianity. At first order,

the radiation transfer functions that link the primordial potential to the CMB field are

linear. Under this hypothesis, the Gaussianity of the primordial field is preserved in

the convolution and any deviation from it detected in CMB fluctuations, would be a

sign of PNG. On the other hand, non-linear contributions give rise to NG in the CMB,

independently of the statistical properties of the primordial field.

Non primordial NGs are then a possible source of systematic error in our analysis if

they generates a detectable bispectrum signal, with a shape which correlates with the

primordial templates under exam. Possible sources of secondary NG are: weak-lensing,

Integrated Sachs Wolfe and its 2nd order contributions known as Rees-Sciama effect and

the Sunyaev-Zel’dovich effect. At Planck resolution, the largest effect comes from the

ISW-lensing bispectrum (Serra & Cooray 2008; Mangilli & Verde 2009; Mangilli et al.

2013).

These two phenomena are strongly correlated, since both are sourced by the evo-

lution of the gravitational potential field of matter. The ISW effect arises from large

scale fluctuations in the gravitational potential that also source the lensing signal on

smaller scales. The net result is a coupling between large and small scales in the CMB

temperature bispectrum, i.e., a bispectrum signal peaking on squeezed triangles. In po-

larization, instead, the E-mode anisotropy sourced by the ISW temperature quadrupole

is very low, but there is a strong correlation between the large-scale reionization bump

due to scattering and the lensing potential (Cooray & Melchiorri 2006; Lewis et al. 2011).

Since lensing and ISW are correlated, this results in an induced E-parity polarization

bispectrum signal. The angular bispectrum generated by this effect can be written as:

Bm1m2m3

ℓ1ℓ2ℓ3
≡ 〈aℓ1m1

aℓ1m1
aℓ3m3

〉 = 〈aPℓ1m1
aLℓ2m2

aISWℓ3m3
〉+ 5 perm, (4.1)
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where the apexes P, L, ISW indicate the contribution that sources the fluctuations,

respectively primordial, lensing and ISW. The reduced bispectrum template is (Hu 2000;

Lewis et al. 2011):

bX1X2X3

ℓ1ℓ2ℓ3
= CX1φ

ℓ1
C̃X2X3

ℓ2
gX3

ℓ3ℓ2ℓ1
+ 5 perm, (4.2)

where X1, X2, X3 represent the CMB field considered, T or E, CXφℓ is the cross power

spectrum between the temperature or the E-parity polarization and the lensing potential

and the tilde on C̃
XiXj

ℓ indicates that the spectrum is lensed. The factor gXℓ3ℓ2ℓ1 depends

on the field considered and is:

gTℓ3ℓ2ℓ1 =
1

2
[ℓ1 (ℓ1 + 1) + ℓ2(ℓ2 + 1)− ℓ3(ℓ3 + 1)] (4.3)

gEℓ3ℓ2ℓ1 =
1

2
[ℓ1 (ℓ1 + 1) + ℓ2(ℓ2 + 1)− ℓ3(ℓ3 + 1)]×

(

ℓ3 ℓ2 ℓ1

2 0 −2

)(

ℓ3 ℓ2 ℓ1

0 0 0

)−1

,

(4.4)

where the matrices represent the Wigner 3-j symbols, note that the order of the sub-

scripts on the left hand side affects the order of the terms on the right. Moreover, like

the primordial shapes, also the ISW-lensing bispectrum obeys the the triangle conditions

and selections rules: m1 +m2 +m3 = 0, ℓ1 + ℓ2 + ℓ3 = even and |ℓi − ℓj | ≤ ℓk ≤ ℓi + ℓj

(since those are imposed just by translation and rotation invariance).

The ISW-lensing template has an oscillatory behavior and is peaked in the squeezed

configurations, as pointed out earlier. For this reason, it can produce a significant bias

especially in the measurement of local NG, even if the differences in the oscillatory pat-

tern between the two shapes put a limit on this effect. Other shapes can also be affected

to a smaller but not negligible extent, if they display a significant enough correlation

with the local template (e.g., orthogonal shape) The bias induced in the estimation of

primordial fNL is:

∆ISW−L(fPNL) =
1

N
∑

ℓ1ℓ2ℓ3

BP
ℓ1ℓ2ℓ3

(fNL = 1)BISW−L
ℓ1ℓ2ℓ3

σ2ℓ1ℓ2ℓ3
(4.5)

where BISW−L and BP are respectively the ISW-lensing and the primordial angle av-

eraged bispectrum shapes, σ2 is the bispectrum variance and N is the normalization

factor. This contribution can be modeled and estimated from Gaussian CMB simula-

tions, provided that all significant effects have been included in the computation of the

transfer functions.
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4.3 Priors

The issue of the selection of prior distribution dates back to the foundation of Bayesian

inference. This choice is especially relevant in case of low S/N, since the likelihood

becomes less informative. The analysis of the Planck data-set, where the measured

fNL central values turn out to have lower statistical significance than in the WMAP

analysis, therefore requires a more careful treatment. As an example, for the local

shape the significance of the detection decreases with the maximum multipole number

considered from 2σ at WMAP resolution (ℓmax ≃ 500) to << 1σ at Planck resolution.

In absence of any a-priori information or assumption, a proper prior must express

complete ignorance about the expected value of the parameters. A common solution in

these cases, is to resort to uniform distributions. This custom follows Laplace’s ”principle

of insufficient reason”, for which, without additional information, equal probabilities

shall be assigned to each point of parameter space.

In most cases uniform distributions are indeed an appropriate option, but they present

the major drawback to not necessarily be invariant under reparametrization. This

implies that a prior that is flat, and so apparently uninformative, under a certain

parametrization, can be non flat, and so informative, under another.

The first to provide a satisfactory solution to the problem of determining a parametrization-

independent uninformative prior was H. Jeffreys (Jeffreys 1946). Jeffreys’ solution was

to enforce the invariance under reparametrization with the following general rule for the

selection of uninformative priors:

πJ(θ) ∝
√

det(I(θ)) (4.6)

where I(θ) is the Fisher Information Matrix. This approach is not the only way to

address the issue: different procedures actually exist and can be applied as appropriate

(Jaynes 1968). A detailed presentation of this topic is beyond the the purpose of this

work; we address the interested reader to the compelling review in (Kass & Wasserman

1996).

In our estimator, the major complication arises from the choice of the arbitrary pivotal

scale kpiv . As noted already in (Becker & Huterer 2012), a flat prior on fNL, defined at a

certain scale, corresponds to a non-flat prior for another scale. In this work the authors

checked for alternatives, considering also a uniform prior in log(fNL). In conclusion they
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decide to quote the results for a flat prior in fNL, selecting the pivot scale that minimize

the correlation between the parameters. We use the same approach in the analysis of

WMAP9 data-set presented in the previous chapter.

This is in general a good choice, and would work properly in case of a significant

detection of a bispectrum signal. In absence of a clear detection, however, it presents

some caveats. Since the range of scales available is obviously finite, a fit performed at

a certain pivot scale will tend to favour particular values of nNG. Given that, there is

not a perfectly “fair” scale at where to perform the fit. This effect is negligible when

the data-set is actually informative about the models tested (i.e. when the likelihood is

sufficiently peaked), but it can become dominant otherwise. When the goodness-of-fit

is somewhat constant throughout the parameter space (i.e. the likelihood is flattened),

the shape of the posterior can be more affected by the pivot choice than by the data.

Since this is a parametrization effect, the implementation of a Jeffreys prior, that is

invariant by construction, seems the natural solution. In the next section we will show

how to implement an invariant prior in our estimator therefore making the results pivot

independent.

4.3.1 New posterior and likelihood profiling

The implementation of the Jeffreys prior implies a modification in the analytical form

of the profiled PDF described in the previous chapter. The likelihood is:

L(nNG, fNL) ∝ exp

[

−N (fNL − f̂NL)
2

2

]

exp

(

f̂2NLN
2

)

, (4.7)

where f̂NL is the value of the NG amplitude recovered from the KSW estimator and

N is the normalization factor defined in formula (2.45) (see section 3.2 for a detailed

description).

The Jeffreys prior is defined as the square root of the determinant of the Fisher

information matrix I(fNL, nNG). In the case of separable scale-dependent bispectra, the

Fisher matrix is:

Iα,β ≡
∑

ℓ1≤ℓ2≤ℓ3

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π





ℓ1 ℓ2 ℓ3

0 0 0





2

1

σ2ℓ1ℓ2ℓ3

∂bℓ1ℓ2ℓ3
∂θα

∂bℓ1ℓ2ℓ3
∂θβ

.

(4.8)
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Template Field SMICA SEVEM Commander NILC

Local
T −1.6± 5.5 −2.2± 5.6 −2.4± 5.6 −0.03± 5.6
E 47± 28 38± 29 31± 29 21± 28

T+E −0.83± 5.1 −1.7± 5.1 −2.1± 5.1 −2.7± 5.1

Equilateral
T 14± 66 17± 66 16± 66 5.2± 69
E 170± 160 180± 170 170± 170 59± 150

T+E −18± 47 −9.1± 47 −10± 47 −32± 47

Orthogonal
T −15± 36 24± 37 25± 37 3.9± 39
E −210± 86 −180± 88 −180± 88 −120± 85

T+E −37± 23 −15± 23 −13± 23 −21± 23

Table 4.1: Results for the NG amplitude parameter fNL of the local,equilateral and or-
thogonal template obtained with the KSW estimator on the data-set from the SMICA,
SEVEM, Commander and NILC component separation pipelines. The results are cor-

rected for the ISW-lensing bias, and the error bars represent the 1σ intervals.

where θα and θβ correspond to fNL or nNG, depending on the value of the index, and

the matrix is a Wigner-3j symbol.

The determinant of the Fisher matrix, after some maths, can be expressed as:

detI(fNL, nNG) = f2NLI(fNL = 1, nNG), (4.9)

so that the bispectrum Jeffreys prior is:

πJ(fNL, nNG) ∝
√

f2NL det(I(fNL = 1, nNG)). (4.10)

We search an expression for the Posterior distribution marginalized over fNL. In the

previous analysis, we computed the marginalized likelihood assuming a constant prior

for fNL, obtaining:

L(nNG) ∝
1√
N

exp

(

f̂2NLN
2

)

, (4.11)

this correspond to the posterior when the prior on nNG is uniform. Assuming instead, the

Jeffreys prior for both parameters and integrating over fNL, we obtain the marginalized

posterior:

P(nNG) ∝
[

f̂NL

√

2π

N exp

(

f̂2NLN
2

)

erf

(

f̂NL

√

N
2

)

+
2

N

]

√

det(I(fNL = 1, nNG)).

(4.12)

The implementation of this expression in the estimator is straightforward. Compared

to the analysis presented before, we only need to numerically compute the Fisher ma-

trix determinant for each value of nNG considered. As we wanted, this expression is
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We notice that, due to the decrease in statistical significance of the estimated primor-

dial NG parameters, the prior choice could now be source of artifacts on the constraints

obtained in case of very low significance of the detection of the amplitude fNL. This

was not an issue in WMAP analysis, since the scale invariant local and equilateral tem-

plates, that are nested within our SD models, provided a sufficient level of detection

to be unaffected by the prior. To circumvent this risk, we modify our estimator with

the implementation of an uninformative Jeffreys prior. We also resort to an alterna-

tive frequentist approach in which the likelihood is not marginalized with respect fNL

but it is instead profiled along its maximum. Furthermore, we perform an hypothesis

test looking at the likelihood ratio between the standard scale invariant shapes and the

scale-dependent models.

We run our SD estimation pipeline on the Planck temperature maps and simulations,

while we also test the standard local, equilateral and orthogonal templates with the KSW

estimator (that is a byproduct of our pipeline) on both temperature and E polarization

maps. The results for the scale invariant templates show a good agreement between

maps provided by the different component separation pipelines, and are in line with the

results from the previous release. Since the analysis is still ongoing and the comparison

between the different optimal estimators included in the Planck NG estimation pipeline

is fundamental for the interpretation of the measurements, we refer to the final release

for further comments.

From the likelihood ratio test, we do not find evidences in favour of scale-dependent

models for any of the templates tested, assuming an acceptance threshold of α = 0.01.

Coherently, the results from our estimators, both from the frequentist one based on the

likelihood profiling and from the Bayesian one based on the likelihood marginalization

with a Jeffreys prior, state that at the current level of detection it is not meaningful to put

constraints on the additional scale-dependence parameter nNG. The standard technique

resorting to a flat prior instead provides very weak constraints that, however, seems to

be an artifact induced by the choice of the pivot scales where the fit is performed.

From this analysis we conclude that, since Planck constraining power on direct bis-

pectrum estimation almost saturates the theoretical limit for CMB observation, future

investigation of scale-dependent bispectrum templates shall rely on different data-set,

as LSS, CMB spectral distortion and radio surveys (Emami et al. 2015; Cooray 2005;

Biagetti et al. 2013; Ravenni et al. 2017; Khatri & Sunyaev 2015; Raccanelli et al. 2015).



Chapter 5

Component separation in CMB

surveys

The Cosmic Microwave Background has proven to be the best benchmark for precision

measurements in Cosmology. The simplicity of the underlying physics allows testing fun-

damental theories and measuring cosmological parameters with unique precision. Given

the exquisite sensitivity of current and future surveys, systematic effects are becoming

more and more the dominant source of error in CMB data, and need to be understood

and modeled with unprecedented accuracy.

One of the major source of systematic contamination in the data, besides instrumental

effects, is the astrophysical foreground (Delabrouille & Cardoso 2009). Instrumental

effects can be carefully modelled to the necessary accuracy, e.g. resorting to laboratory

measurements. On the other hand, the required sensitivity can be several order of

magnitude lower than the unavoidable astrophysical signals. Foregrounds are nowadays

the principal concern in the analysis of current data-sets and in the development of future

surveys. In this chapter we briefly describe the astrophysical phenomena contributing

to the total sky brightness and the techniques developed to disentagle these emission

from the cosmological signal.

Foregrounds as a whole are very complicated to threat. The Planck team reported

that up to 20 physical components are required to proper modeling the microwave sky

(Planck Collaboration et al. 2016a). Moreover, these processes exhibit an highly complex

behavior, their emission laws may vary across the sky as well as between different scales

and frequencies. The major contribution comes from diffuse galactic emission, but also

the solar system and extra-galactic sources play an important role.
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All these emissions appear mixed together in the total microwave brightness of the sky.

The problem to identify and isolate a particular signal is known as component separation.

With the advent of large CMB surveys, component separation becomes a very active field

of study in observational cosmology. A large number of methodologies and algorithms

have been developed in the attempt to improve our understanding and to consolidate

our measurements. Given the heterogeneity of the sources, the importance of component

separation transcends cosmology, as it is fundamental to exploit the huge potential held

in the sky maps from modern surveys to provide astrophysical information (Planck

Collaboration et al. 2016c,d; Ade et al. 2014a,b; Planck Collaboration et al. 2018a;

Génova-Santos et al. 2017, 2015; Hilton et al. 2013; Hasselfield et al. 2013; Bierman

et al. 2011). Thanks to the careful classification of the various emissions, microwave

experiments such as Planck and WMAP have provided valuable information on the

Galaxy and the Solar System in addition to cosmology and CMB physics.

We review the main emission mechanisms in section 5.1. Some of the most used

component separation techniques are described in section 5.2. In section 5.3 we outline

the component separation pipeline used in the analysis of Planck data.

5.1 Sky components

Diffuse galactic emission dominates the sky brightness in the microwave part of the spec-

trum. It originates from the interstellar medium (ISM), the diffuse matter filling the

voids between stars. The ISM is composed of atomic and molecular gas in a partially

ionized state and a small amount of dust. Energetic radiation from young stars stimu-

lates the emission by heating and exciting the ISM, while Supernovae explosions enrich

it of high energy particles and cosmic rays. It is concentrated on the galactic plane,

where it clusters in vast clouds and nebulae, and its density decrease with the galactic

latitude. As a rule of thumb, the integrated emission of the diffuse matter decreases as

the galactic latitude cosecant.

The main contribution to diffuse emission in the frequency range between 1−1000 GHz

derives from interstellar dust and free electrons interacting with electric and magnetic

fields. The proper modeling of the microwave sky requires detailed knowledge of the

physics behind diffuse galactic emission. These information are as precious as the

knowledge of the CMB itself for the development of separation technique. The most
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distinctive features of each component separation technique often lie in how much of

this prior knowledge is exploited and in the way it is included in different approaches.

5.1.1 Dust

Galactic dust is a fraction of the interstellar medium consisting of small particles of

various materials, it shows a very heterogeneous chemistry. The principal components

are sub-micrometer size silicate and carbonaceous grains, with different shapes, size

and physical state, as well as large molecules and organic compound as the polycyclic

aromatic hydrocarbons.

Dust represent ∼ 1% of the interstellar medium in our Galaxy, but it play a leading

role in the interaction of this diffuse medium with starlight, absorbing high-frequency

radiation and re-emitting in the infrared as a grey body. This process is so efficient that

it accounts for some 20% of the bolometric luminosity of the Milky Way (Whittet 1992).

It is especially concentrated in the galactic disk, forming structures on a wide range

of scales ranging from 10−4 pc to 103 pc.

Dust is a longstanding issue in astronomical observations. Given its properties, it

places important limitations on observations at any wavelength. In visible light its main

effect is the extinction of starlight, so that dusty structures appears as dark patches with

no stars. Some of these ”holes” in the Galaxy can be noticed with unaided eye, as in the

case of the ”dark constellations” identified by the Inca and the Aboriginal civilizations.

The identification and the correction for dust induced biases characterized the devel-

opment of modern astronomy. Evidences of the effects of dust extinction on the deter-

mination of stars distances has been found as early as the nineteenth century (Struve

1847). It is after the investigation of Trumpler, during the third decade of the last cen-

tury (Trumpler 1930a,c,b), that corrections for absorption and reddening 1 have been

routinely implemented in astronomical data reduction.

In millimeter and infrared astronomy, on the contrary, the contaminant effects come

from the thermal emission and the recently explained rotational emission, once known as

Anomalous Microwave Emission (AME) (Planck Collaboration et al. 2014a). Thermal

dust emission is particularly relevant for CMB surveys above 100 Ghz, where it is the

dominant radiation mechanism (Planck Collaboration et al. 2016a).

1The term reddening refers to the distortion of stars spectra due to the selective extinction from dust.
Since the absorption efficiency is higher at shorter wavelengths, stars appears redder proportionally to
the amount of dust along the line of sight.
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Analysis of Planck data-set shows that a modified Black Body provides a good de-

scription for the dust spectra below 857 GHz, while beyond this limits the underlying

physics become too complex. Thermal dust emission is so parametrized by its tem-

perature and emissivity index, defined pixel by pixel to account for variations in dust

population and environment.

Moreover, aspherical grains align with galactic magnetic fields. As a consequence, sta-

tistical asymmetry arises in their orientation, resulting in a significant degree of linear

polarization, proportionally to the strength of magnetic fields. Dust induced E-mode

and, especially, B-mode signals represent one the greatest issues for CMB polarization

measurements. Spinning dust can emit dipole radiation if grains have a non-zero electric

dipole. This results in a continuous emission in the range from ∼ 1 Ghz to ∼ 100 Ghz

with a peak around 20 − 40 Ghz. It has been first referred as AME because the phys-

ical nature was still unclear, due to the significant correlation with synchrotron and

bremsstrahlung. These degeneracies are still a limitation for a proper modelling of spin-

ning dust radiation. Forthcoming low frequency surveys are expected to provide valuable

information to overcome this issue (Génova-Santos et al. 2015).

Finally, the redshifted emission of dust in distant galaxies is responsible for the Cos-

mic Infrared Background (CIB) radiation. Since the extra-galactic and the galactic

component share similar emission laws, they are usually tracked together. Thermal dust

templates often contains both contributions that are subsequently separated.

5.1.2 Emission from charged particles

Charged particles, especially free electrons, represent an important source of spurious

signal. Their effects are detectable both on galactic and cosmological scales. In our

Galaxy, the contribution of free electrons to the total microwave brightness comes from

the synchrotron and the bremsstrahlung (free-free) diffuse radiation. At cosmological

scales the interaction of CMB photons with free electrons in hot intra-cluster medium

via inverse Compton scattering account for the Sunyaev–Zel’dovich effect.

Bremsstrahlung radiation arises in an ionized medium as a consequence of the ac-

celeration of free electrons in the Coulomb field of ions. It is the dominant emission

mechanism in the HII regions, where the hydrogen is partially ionized by the energetic

photons from young and hot stars. Moreover, due to the interaction with cosmic rays, a

small fraction (∼ 5%) of the hydrogen in the ISM is permanently in ionized state and it
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contributes to the diffuse bremsstrahlung. The emission law of thermal bremsstrahlung,

i.e. assuming equilibrium between electrons and ions, can be modeled from the velocity

distribution of electrons, as a function of the temperature and density. The resulting

spectrum presents two regimes: a power law with spectral index ∼ 2 at frequencies

above ∼ 1Ghz, where the medium is optically thin, while for lower frequency the ISM

is optically thick and the brightness temperature becomes constant and equal to the

electron temperature.

Supernovae explosion enrich the ISM with relativistic electrons and cosmic rays. These

high energetic electrons are forced in helical trajectories by the Galactic magnetic field

and being accelerated they radiate. For relativistic particles this effect is known as

synchrotron emission2. In the non-relativistic case (cyclotron), particles spiraling into

a magnetic field B radiate at a frequency equal to the gyration frequency of the field

ωB. This frequency depend only on the intensity of B and not on the particle energy.

Relativistic particles instead emit in a cone of angular amplitude ∝ γ−1, where γ is

the Lorentz factor, perpendicular to the acceleration, this is called beaming effect. An

observer will thus receive radiation only when this narrow beam points toward him,

detecting a series of pulses of duration ∝ (ωBγ
2)−1. As a consequence the spectrum

of synchrotron extend from the gyration frequency ωB to ∼ ωBγ
2, following the energy

distribution of electrons. For example, assuming a power law distribution neE ∝ En,

the spectrum becomes I(ω) ∝ ω−n−1

2 .

Synchrotron emission is dominant in the sky maps at frequency below 100GHz. It can

have an high polarization fraction, with a maximum theoretical value ∼ 70%. Realistic

values are however much lower, ∼ 10% for the diffuse emission and ∼ 30−50% in partic-

ular structures (Ade et al. 2016). Furthermore, a number of extra-galactic synchrotron

emitters appear as point sources and should be masked.

Finally, the most relevant extra-galactic contribution comes from the SZ effect. It

derives from the interaction on CMB photons with the hot ionized gas in galaxy clusters

and dark matter halos. The internal motion of this gas provides a distortion in the

CMB spectrum as there is a transfer of energy between the hot gas and the low energy

CMB photon. In addition there is also a little kinetic contribution from the peculiar

velocities of gas clouds. The Sunyev-Zel’dovich effect dominates the power spectrum of

CMB secondary anisotropies on angular scale ∼ 1′.

2Synchrotron has been discovered in 1946 in the synchrotron of the General Electric Company as an
unexpected blue emission.



Component separation in CMB surveys 76

5.2 Component Separation Methods

Having described the foreground physics, we now move on to introduce some of the com-

ponent separation methods used in modern CMB experiments. The basic assumption

of the vast majority of component separation techniques is the so called linear mixture

model. It describes the overall observed sky brightness at different frequencies in terms

of a linear mixture of several diffuse emissions. Assuming to have observations in Nchan

different frequency bands, with Npix data points for each channel, of a mixture of Ncomp

components, in matrix notation it states:

y = As+ n, (5.1)

where y is an Nchan ×Npix matrix representing the observed data, s is an Ncomp ×Npix

matrix containing the template of emission of the components andA is the Nchan×Ncomp

mixing matrix that weights the contributions of each component at each frequency, i.e.

it defines the emission laws.

The aim of component separation can be to isolate the contribution of a particular

emission of interest, e.g. the CMB, as well as to build the full sky model assigning

a spatial template and an emission spectrum to each source. Starting from equation

(5.1), different techniques can be developed according to the a priori hypotheses, to the

parametrization choices and to the bases used to represent the data. In the context of

this thesis, we are particularly interested in methods making minimal assumptions on

the characteristics of the components, the so called “Blind methods”. These techniques

try to estimate the mixing matrix by exploiting statistical properties such as either the

independence of the components, like for the ICA method described in the following, or

other general assumptions. Blind separation has the obvious advantage of working even

in presence of unknown contamination, provided the initial ansatz gives a reasonably

fair description of the real scenario under study. Clearly, additional information is

needed to classify the different sources. Reconstructing all components in the data

requires essentially the inversion of equation (5.1). This, in turn, clearly requires as

many observation channels as the total number of components. This is the motivation

behind multi-channels CMB surveys. A general rules states that we need at least the

same number of channels than the components we aim to identify. A description of the

main component separation methods used in CMB analysis is contained in the following
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sections.

5.2.1 Internal Linear Combination

Internal Linear Combination, ILC, is a blind method providing estimates of a single

component. The basic assumption is that the observations are calibrated with respect to

the component of interest, that is therefore constant among the different channels. This

is equivalent to assuming perfect knowledge of the emission law of the target component.

Given that the CMB is the best example of black body spectrum in nature, this method

is very well suited for CMB estimation.

ILC maps are weighted averages of the different channels. Assuming model (5.1) and

denoting the target component with the vector s0 of lengthNpix, the general ILC solution

is in the form:

ŝ0 = ω
Ty, (5.2)

where ω is the weights vector of length Nchan subject to the constraint ||ω||1 = 1. The

weights are defined minimizing the variance of the output map, that is:

σ2ILC = ω
T 〈yyT〉ω = ω

TCω, (5.3)

where C is the estimated covariance between the channels. The solution to the mini-

mization of (5.3) is obtained resorting to the method of Lagrange multiplier, under the

constraint provided by the weights normalization. Therefore the general ILC solution

states:

ω =
aTC−1

aTC−1a
, (5.4)

here a is the vector of calibration coefficient equalizing the response of each channel to

the CMB.

ILC is a very versatile method and can be further refined compared to the simple

solution given in (5.4). The weights can be allowed to vary between different regions

of the sky or different angular scales, when working in harmonic space, or both if the

signal is represented in a more complex basis such as wavelets. This expedient improves

the results since it allows to take trace of the great variability of foreground emission

along the sky. Once the data are represented an appropriate basis, this implementation

is straightforward, it consists in performing ILC independently on different sub samples,
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assuming you divide the sky in uncorrelated regions, in pixel space, or you expand the

signal in uncorrelated modes, in other representation domains.

If the target component is uncorrelated to the other emissions, it is proven that ILC is

equivalent to the inversion of the mixing matrix. On the contrary, in presence of signif-

icant correlations the ILC solution is biased. So that, this method is unfitted to recover

galactic components, that are all strongly correlated to each other. Particular care is

required also in handling small data sets, due to the possible emergence of empirical

correlation.

5.2.2 Independent Components Analysis

Independent Component Analysis (ICA) is a class of component separation techniques

exploiting statistical independence to identify the components. Since no assumptions

are made about the physical properties of the various emissions, ICA is classified among

blind methods. In practice, the aim of ICA is the inversion of equation (5.1), i.e. to find

W = A−1, under the constraints that the different sources of emissions are mutually

independent. ICA is a widely used technique and it is proven to work very well, but

there is a caveat to take into account when targets are physically significant sources:

its results are defined up to re-scaling and permutations of components. The reason is

simply that the correlation between the components is invariant under these operations.

The only way to overcome these limitations is to resort to additional information, being

however aware that this operation will compromise the “blindness” of the method.

The core of any ICA method is the criterion used to define independence. The obvious

choice will be to enforce the decorrelation of the components templates. Denoting as

x = Wy the ICA estimate of s in equation (5.1), this condition is equivalent to setting

to zero the diagonal elements of:

〈xxT〉 = W〈yyT〉WT = WCWT, (5.5)

where, again , C represents the estimated covariance between the channels. Unfor-

tunately, due to symmetries, this condition alone cannot provide the correct number

of constraints to define W (i.e. N2
comp). Modern ICA techniques solve this problem

resorting to more complex criteria, like non-linear correlator and localized correlations.
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5.2.3 Template Fitting

Template fitting provides estimates of the amplitude of a component from the fit of a

known template to the data of interest. With templates T of the expected foregrounds

sources in hand, the contribution on a given channel can be obtained via linear regression.

The results are then subtracted from data to remove the spurious signal.

In the linear mixture model (5.1), the distribution of the components over the data

is stored in the matrix s. The templates used should then reproduce the elements of

s other than the CMB, or a linear combination thereof. Assuming to have the exact

templates, the linear fit would provide the entries of A corresponding to the given source

and channel.

The result for a collection of known templates T fitted to a map y is the standard

linear regression solution. Calling c the vectors of estimated amplitudes we have:

c =
(

TTC−1T
)−1 (

TTC−1y
)

, (5.6)

where C is the Npix ×Npix covariance matrix of the map, that depend on the noise and

on the CMB. The estimation and the inversion of C is a major limitations in template

fitting since, given the high number of data points collected by modern surveys, it is

very large and so computationally expensive.

The choice of templates is, obviously, the a crucial part of any template fitting tech-

nique. A possibility is that of resorting on external templates from previous experiment

or from theoretical speculations. This approach requires a lot of a-priori information on

the emissions of interest, which can be unavailable or unreliable. Relying on external

data-sets also runs into the issue of having to deal with additional systematic effects,

cross-calibration problems and so on. For this reason, most of the modern CMB surveys

have been designed with a number of channels at foregrounds dominated frequencies,

allowing us to track spurious contaminant components without having to rely on exter-

nal information. These templates, obtained directly from the data, are called internal

templates. The most straightforward approach would be just to use these foreground

dominated maps as template, for example a high frequency channel as dust template

and a low frequency as synchrotron. However, these maps contain also the CMB contri-

butions, which would be removed together with the contaminants, so that a correction

factor must be introduced in formula (5.6). Another widely used solution is thus to
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build linear combinations of these maps, so that the constant component (the CMB,

providing the observation are calibrated to black body) vanish from the fitted template.

5.3 The Planck Pipeline

The large number of method developed in this field reflects the high complexity of the

component separation problem. The difficulty of modeling foreground emission in future,

higher sensitivity, CMB surveys, aimed at detecting the faint primordial B-mode signal,

encourages this heterogeneous approach. Alternative methods might in fact perform

better or worse in correspondence to a different physical and statistical behaviour of the

polarized astrophysical emission, and the latter is hard to predict at this stage. Each

method exploits different characteristics to identify contaminants and each provides

different results. This make difficult comparing them and almost impossible identifying

a single technique superior to the others for all scientific targets. Also looking at their

performance on data, the problem of uniquely identify the “correct” result still remain.

In light of these points, the component separation effort by the Planck collaboration

was indeed characterized by the use and cross-validation of a variety of methods, which

we briefly review here. Well before the first official data release, the Planck Collabo-

ration organized a so called “component separation challenge” among a large number

of different algorithms representing the state of the art for each different methodology.

These techniques were blindly tested on a series of ad-hoc simulations of Planck obser-

vations. The results of the challenge are summarized in (Leach et al. 2008): as expected,

no method outperformed the others. The official pipeline developed during these prelim-

inary test and fixed after the first release consists of a suite of four different algorithm,

involving different techniques and aiming at different targets.

NILC, (Needlet Internal Linear Combination) (Basak & Delabrouille 2012, 2013)is

an ILC algorithm working in needlet space. It exploits the properties of needlets to be

localized both in real and harmonic space. This allows calibrating the weights to follow

the irregularities in the distribution of contaminant emissions . As any ILC techniques

it only provides estimates for a single component, the CMB. The advantages of using

the needlet frame will be discussed in detail in the following chapters.

Commander (Eriksen et al. 2004; Eriksen et al. 2008) follows a totally different ap-

proach, performing a Bayesian fit of a parametric model of observations. It provides a

full modellization of the sky signal, estimating all the significant sources contributing
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to the total microwave sky brightness. The model parameters are estimated via Gibbs

sampling on a real space map at low resolution (although a new version working in

harmonic space, dubbed Commander2, was used in the last Planck release (Planck Col-

laboration et al. 2018e)). Its outputs are the most complete among the model tested in

the challenge, it provides maps of all known components, therefore it is computationally

very expensive.

SEVEM (Spectral Estimation Via Expectation Maximization) (Fernández-Cobos

et al. 2012) is a multi-step algorithm that models the CMB signal only. In the first

step it uses internal templates, obtained from the difference of adjacent channels, to

clean the three central bands of Planck, i.e. the least contaminated by astrophysical

emission. It then obtains estimates of the CMB power spectrum from these channel

from a Expectation Maximization algorithm. Finally, the spectrum is used to Wiener

filter the pre-cleaned maps, obtaining the final CMB map..

SMICA (Spectral matching Independent Component Analysis) (Cardoso et al. 2008)

is an ICA technique working in harmonic space based on the evaluation of auto and

cross-power spectra of the survey’s channels. The condition of decorrelation of the

CMB from other emission is enforced using localized correlations, i.e. looking at the

binned spectral covariance matrix. A parametric model of the of the spectral covariance

Cℓ(θ)
3, is adjusted to the data minimizing, for each multipoles bin, the cost function:

ℓmax
∑

ℓmin

(2ℓ+ 1)
[

Tr(ĈℓCℓ(θ)
−1 + log detCℓ(θ)

]

, (5.7)

where [ℓmin, ℓmax] are the multipole bin boundaries and Ĉℓ is the standard pseudo-Cℓ

estimator of power spectra of the channels. It gives estimates of the power spectra of

the CMB and of the foregrounds included in the model Cℓ(θ), for a maximum of Nchan

components considered.

3Notice that here Cℓ contains all the harmonic correlations between the channels for the multipole ℓ,
not the CMB power spectrum as usual



Chapter 6

Needlet Regression

Wavelets are functions with the property to be localized both in space (or time) and

frequency. They are widely used in signal processing due to their ability to identify

localized oscillatory signals in the data stream. The representation of signals as wavelet

series is a valid alternative to the standard Fourier analysis, more suitable to investigate

non-periodic features.

Thanks to their versatility, spherical wavelets are powerful tools for CMB data anal-

ysis. The reason is easy to understand: on one side, harmonic analysis is the ideal

framework to test CMB models, that are almost uniquely developed and computed

in frequency space; on the other side, many practical limitations, like incomplete sky

coverage, foreground emission or missing pixels, makes the exact computation of the

harmonic coefficients a challenging task. The tight space localization of wavelets is ideal

to overcome these issues and at the same time to investigate the spectral behavior of

CMB fluctuations. Some examples of the applications of wavelet in CMB analysis can

be found in (Vielva et al. 2004; Hansen et al. 2006; Cabella et al. 2004; Moudden et al.

2005; McEwen et al. 2007).

Wavelets have the important property to give a sparse representation of smooth func-

tions. Sparse means that the majority of the coefficients of the wavelet expansion of a

given function are zero. In other words, the information content of a coherent signal,

when projected on a wavelet basis, is concentrated in few wavelet coefficients. This

property is very useful in signal representation and denoising.

The choice of the wavelet basis is not unique, the basis functions should be modeled in

the optimal shape to better highlight the features of interest. In the context of signal

analysis on the sphere, a number of possible bases exist in the literature (Antoine et al.
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2010; Sanz et al. 2006; McEwen et al. 2007, 2006). In this work we resort to spherical

needlets, developed as a functional analysis tool by (Narcowich et al. 2006) and applied

to CMB analysis in (Baldi et al. 2006, 2007; Pietrobon et al. 2006).

Needlets have a number of mathematical features that make them ideal for the applica-

tion in CMB analysis. In this chapter we will review the main characteristics and show

the construction of the spherical needlet basis. In the following section, we will then

discuss in detail the notion of sparseness and wavelet thresholding techniques.

6.1 Spherical Needlets

Spherical wavelets are usually constructed by relying on a local flat sky approxima-

tion. This means that the base function is defined on a flat tangent plane and then

implemented on the sphere. The needlet basis, instead, is defined directly in harmonic

space, with respect to spherical harmonics. As we will show in the following, this is

a great advantage for the exact computation of the needlets coefficients. Furthermore,

as their name suggest, needlets enjoy remarkable localization properties. In real space,

by construction, they are quasi-exponentially localized, this means that the basis func-

tion decreases faster that any polynomial around its center. Their support in harmonic

space instead is compact so that each layer is exactly limited to a log-constant multi-

pole interval. Moreover, we will show that random needlet coefficients have noticeable

uncorrelation properties, both in space and frequency space. Finally, as is the case for

other wavelet systems, needlets are not a orthonormal basis but a tight frame, so that

the basis contains redundant elements; this is a key element to exploit sparseness. In

the following description of the construction of needlets we will follow extensively (Baldi

et al. 2009; Marinucci & Peccati 2011; Marinucci et al. 2008).

Needlets are constructed in spherical harmonics space, so that we start recalling of some

useful notions about spherical harmonics representations. The projector of a squared

integrable function on the sphere f ∈ L2(S2) into the space of spherical harmonics Hℓ

is the kernel operator:

PHℓ
f(x) =

∫

S2

dx f(x)Kℓ(〈x, y〉), (6.1)



Needlet Regression 84

where the kernel Kℓ is the Legendre polynomial of degree ℓ, we recall the relation with

the spherical harmonics:

Kℓ(〈x, y〉) =
2ℓ+ 1

4π
Pℓ(〈x, y〉) =

∑

m

Y m
ℓ (x)Y

m
ℓ (y), (6.2)

known as the spherical harmonics addition theorem. This kernel operator satisfies the

reproducing property, the proof is immediate recalling the spherical harmonics orthog-

onality relation:

∫

S2

dy Kℓ(〈x, y〉)Kℓ′(〈y, z〉) =
∑

mm′

Y m
ℓ (x)Y

m′

ℓ′ (z)

∫

S2

dy Y m′

ℓ′ (y)Y
m
ℓ (y) = Kℓ(〈x, z〉)δℓ

′

ℓ .

(6.3)

The projector (6.2) represents the first block for the construction of the basis. The

importance of this relation can be understood recalling that, under certain conditions,

integrals like (6.2) can be exactly computed as a weighted summation. Calling Pℓ the
restriction to the sphere S2 of the polynomials p(x) of degree < ℓ, this space can be

decomposed as the direct sum of the spaces of spherical harmonics of degree ≤ ℓ, formally

Pℓ =
⊕ℓ

0Hℓ. It is a known results that there exists a finite set of points Xj ∈ S2 and

weights λjk ∈ R
+ so that:

∫

S2

dx p(x) =
∑

ξjk∈Xj

λjkp(ξjk) (6.4)

gives the exact result if p ∈ Pℓ. Note that we have introduced here the indices j, k, the

meaning and importance of which will become clear in the following.

The importance of this standard result is that integrals involving spherical harmonics

can be exactly computed numerically (or approximated with a known tolerance). A

number of numerical libraries providing the necessary cubature points and weights exists

. Given that needlets will depend on these function by construction, they will inherit

these properties.

The last ingredient is the window function b(ℓ, j) that sets the harmonic support for

each needlet layer j. This function must satisfy three properties:

1. compact support: b(ℓ, j) > 0 if ℓmin,j ≤ ℓ ≤ ℓmax,j and b(ℓ, j) = 0 otherwise. This

ensure that each needlet layers represents a fixed range of scales. Moreover, each

layer j will have equal support in log(ℓ).
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2. partition to unity, so that
∑

j b
2(ℓ, j) = 1.

3. smoothness, i.e. b(ℓ, j) is infinitely differentiable.

We follow the procedure presented in (Baldi et al. 2009) for the derivation of the proper

b(ℓ, j) satisfying these conditions. First we consider the function:

φ1(t) =











e
− 1

1−t2 if − 1 ≤ t ≤ 1

0 if t < −1
⋃

t > 1,

(6.5)

this function satisfies condition 1 and 3 since it is C∞ and its support is compact over

the interval [−1, 1]. We use then this function to define:

φ2(x) =

∫ x
−1 dt φ1(t)
∫ 1
−1 dt φ1(t)

, (6.6)

that is still infinitely differentiable; it is also a non decreasing function with φ2(−1) = 0

and φ2(1) = 1. For the next step we have first to introduce the needlet bandwidth

parameter B that governs the multipole coverage of each layer. We then implement a

change of variable in the last definition to obtain:

φ3(t) =



























1 if 0 ≤ t < 1
B

φ2

(

1− 2B
B−1(t− 1

b )
)

if 1
B ≤ t ≤ 1

0 if t > 1.

(6.7)

This function is constant for t between 0 and B−1 and then decreases to zero between

B−1 and 1. This can be easily checked noticing that its argument is equal to 1 if t = B−1

and equal to −1 if t = 1, and making then a comparison with the properties of (6.6).

This is the last step in the construction of the window function b(ℓ, j), which we define

from its square to ensure the condition 2, that is we take the positive root of:

b2(x) = φ3

( x

B

)

− φ3(x), (6.8)

note that the support of this function is (B−1, B).

We have now all the ingredients to define the spherical needlet basis functions as:

ψjk(x) =
√

λjk
∑

ℓ

b(ℓB−j)

ℓ
∑

m=−ℓ

Y m
ℓ (ξjk)Y

m
ℓ (x) (6.9)
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where j represents the needlets scale, λjk and ξjk are respectively the weights and the

cubature points at the level j. Given the definition (6.8), the support of b(ℓB−j) is

ℓ ∈ (Bj−1, Bj+1), this is the multipoles window spanned by the needlets layer j. It is

immediate to recognize in the last factor the projector (6.2), so that we can define the

needlet coefficient as:

βjk =

∫

S2

dx f(x)ψjk(x) =
√

λjk
∑

ℓ

b(ℓB−j)

ℓ
∑

m=−ℓ

aℓmY
m
ℓ (ξjk) (6.10)

where we use:

aℓm =

∫

S2

dx f(x)Y
m
ℓ (x). (6.11)

Equation (6.10) is the direct needlet transform, and βjk are the needlet coefficients at

scale j in the position defined by the cubature point ξjk. Thanks to the properties (6.4),

the harmonic coefficients aℓm can be computed numerically with a high level of precision.

This makes the numerical implementation of needlets very convenient.

The inverse of equation (6.10) is:

f(x) =
∑

jk

βjkψjk(x), (6.12)

that can be derived from:

∑

jk

βjkψjk(x) =
∑

j

∑

ℓm

b(ℓB−j)b(ℓ′B−j)aℓmY
m
ℓ (x)

∑

ℓ′m′

∑

k

Y m
ℓ (ξjk)Y

m′

ℓ′ (ξjk)λjk.

(6.13)

noting that the last summation over k in this relation is the spherical harmonic orthog-

onality relation, computed on the cubature points ξjk with weights λjk, yielding δ
ℓ′

ℓ δ
m′

m ,

we can write:
∑

jk

βjkψjk(x) =
∑

j

∑

ℓm

b2(ℓB−j)aℓmY
m
ℓ (x). (6.14)

recalling now the partition to unity property of the window function
∑

j bℓB
−j = 1, we

recover equation (6.12):

∑

jk

βjkψjk(x) =
∑

ℓm

aℓmY
m
ℓ (x) = f(x). (6.15)
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As an additional remark, we highlight that at each layer the needlet coefficients have

zero mean:
∑

k

βjk
√

λjk = 0 (6.16)

Relations (6.10) and (6.12) are direct consequences of the tight frame nature of the

needlet representation.

Frames are a key concept in functional analysis and are very common in signal repre-

sentation, since they allows to define redundant bases. Given an arbitrary function f on

the space V with inner product 〈., .〉, and two constants c, C, a frame is a set of functions

{ei : i ∈ I = [1, 2, 3, ...]} such that:

c||f ||2 ≤
∑

I

|〈f, ei〉|2 ≤ C||f ||2, (6.17)

where c, C represent the frame bounds. A tight frame has c = C, needlets satisfies this

condition with C = c = 1, on the space of the squared integrable functions on the sphere

L2(S2). Calling ψi the basis functions and βi the projection of the function f ∈ L2(S2)

on the ith frame element (since these results are general, we do not strictly follow the

needlets notation here), recalling then the inner product on L2(S2) we will have:

βi = 〈f, ψi〉L2(S2) =

∫

S2

dσfψi, (6.18)

where dσ is the area element on the sphere. Therefore, dropping the subscript on the

inner product for simplicity of notation, we have the Parseval identity:

||f ||2 =
∑

i

|〈f, ψi〉|2 =
∑

i

β2i , (6.19)

and :

f =
∑

I

〈f, ψi〉ψi =
∑

I

βiψi; (6.20)

this equation states trivially that the function f can be represented with the numbers

βi and the elements of the basis ψi, and it is equivalent to (6.12).

A key property of frames is that they can represent a function but they are not

necessarily a basis. They can be overcomplete, in the sense that we can add elements

to the set {ψi} and still satisfy the condition set by equation (6.17). Moreover, the

elements of the frame do not have to be normal, but just satisfy ||ψi|| ≤
√
C. If C = 1
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the frame is called normalized. Note that an orthonormal basis is always a normalized

tight frame, but the opposite is not necessary.

It is easy to show that the needlet basis satisfies the Parseval identity. We compute:

∑

jk

β2jk =
∑

jk

λjk

[

∑

ℓ

b(ℓB−j)
∑

m

aℓmY
m
ℓ (ξjk)

]2

=
∑

j

∑

ℓℓ′

b(ℓB−j)b(ℓ′B−j)
∑

m

aℓmaℓ′m′

∑

k

Y m
ℓ (ξjk)Y

m′

ℓ′ (ξjk)λjk

=
∑

j

∑

ℓ

b2(ℓB−j)
∑

m

aℓmaℓ′m′

=
∑

ℓm

|aℓm|2 =
∑

ℓ

(2ℓ+ 1)Ĉℓ = ||f(x)||2, (6.21)

where we use the same relations exploited in the computation of (6.12) and in the last

equality we resort to the definition of the power spectrum estimator, the pseudo-Cℓ:

E[Cℓ] = Ĉℓ =
1

2ℓ+ 1

∑

m

|aℓm|2. (6.22)

On the other side we have:

||f(x)||2 =
∫

S2

(d)x f2(x) =

∫

S2

(d)x

(

∑

ℓm

aℓmY
m
ℓ (x)

)

(6.23)

=
∑

ℓmℓ′m′

aℓmaℓ′m′

∫

S2

(d)x Y m
ℓ (x)Y

m′

ℓ′ (x)

=
∑

ℓm

|aℓm|2 =
∑

ℓ

(2ℓ+ 1)Ĉℓ =
∑

jk

β2jk. (6.24)

These two relations prove that the needlet basis is a tight frame with C = c = 1, and

also that the transform conserves the ”energy” of the signal.

After the definition and the construction of needlets, with these relations in hand we

will now review the properties that make the needlets representation a good choice for

CMB analysis. Needlets owe the name to their localization properties. As we explained

in the previous section, the basis functions are localized quasi-exponentially around their

centers, represented by the cubature points ξjk. In their seminal paper, (Narcowich et al.

2006) proved this statement showing that, for any point x on the sphere surface there

exists a constant cM so that:

|ψjk| ≤
cMB

j

(1 +Bj arccos (ξjk, x))M
. (6.25)
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Note that the function arccos in the above formula represents the distance on the sphere;

this states exactly that the function ψjk decrease faster than any power law. This prop-

erty is of the utmost importance in CMB analysis, where the presence of missing ob-

servations poses a serious problem for the computation of harmonic coefficients. The

consequence is the onset of spurious correlations between the harmonic coefficients aℓm.

These correlations represent a great limitation for the evaluation of the power spectrum

and the other cumulants, and must be corrected for, with high computational costs. As

proven in (Marinucci et al. 2008) instead, thanks to their localization properties, the

needlet coefficients are much less sensitive to gaps in the map. This is a precious feature

for CMB analysis since working in needlet space allows to avoid to correct for missing

observation.

Needlets are particularly well suited for the representation of random fields on the sphere,

thanks to their uncorrelation properties. The fact that the needlet window function

b(ℓB−j) has compact support in (Bj−1, Bj+1) ensures that theoretical correlations be-

tween βjk must cancel if the difference in levels is greater than 2, so that if j − j′ > 2

we have:

βjkβj′k′ =
√

λjkλj′k′
∑

ℓℓ′

b(ℓB−j)b(ℓ′B−j′)
∑

mm′

ajkaj′k′Y
m
ℓ (ξjk)Y ℓ

′m
′

(ξjk) = 0, (6.26)

as the simple consequence of the fact that the supports of the two basis functions do

not overlap. Looking at the correlations within the same scale instead, it was proven

in (Baldi et al. 2009) that the needlet representation of a Gaussian random field with

smooth power spectrum satisfies:

|Corr(βjkβjk′)| =

∣

∣

∣

∣

∣

∣

βjkβjk′
√

beta2jkβ
2
jk′

∣

∣

∣

∣

∣

∣

≤ cM
(1 +Bj arccos ξjk, ξjk′)

(6.27)

for any positive integer M and cM > 0. So that the needlet coefficients at high frequency

layers behaves as a sample of i.i.d. random variables. Moreover, the variance of the

coefficients is directly correlated to the underlying power spectrum:

〈βjkβjk〉 = λjk
∑

ℓ

b2(ℓB−j)
∑

m

〈ajkajk〉Y m
ℓ (ξjk)Y ℓ

m(ξjk) (6.28)

=
1

Nj

∑

ℓ

b2(ℓB−j)
2ℓ+ 1

4π
Cℓ = σ2j (6.29)
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where Nj is the number of coefficients in the layer, and in the derivation we use

Pℓ(cos(0)) = 0. The needlet coefficients of a Gaussian random field at the level j are

thus extracted from a Gaussian with zero average and variance defined in (6.29).

6.2 Sparseness

Sparseness is a key property in wavelets regression methods, since it allows developing

efficient techniques to disentagle coherent signals and stochastic noise. A signal is said

sparse if, in a given basis or frame, it can be represented using only few of the basis

elements. The property to give a sparse representations of functions is related both to

the characteristics of the functions and of the basis itself.

In the case of wavelet regression, and of space-frequency representations in general, it

derives from the property to identify discontinuities, coupled with the multi-resolution

nature of the basis. Empirically this can be understood from the fact that, in general,

coherent signals are smooth functions, since in order to be coherent they cannot have too

many discontinuities. Since the wavelet basis functions correlate with fluctuations and

discontinuities, a smooth signal will be represented by a few coefficients, encompassing

the characteristic behavior of the original function. Random noise, on the other hand,

is neither a coherent signal nor a smooth function, but a series of fluctuations without

a characteristic scale or position. As a consequence, the noise signal will be spread

among all the coefficients. In this hand-waving example, the result of the projection on

a wavelet basis of a coherent signal plus a random noise component will be a set of only

few coefficients with high signal to noise while all the others will be noise dominated.

This is the intuition behind wavelet denoising methods based on thresholding techniques.

Note however that the smoothness of the function is not a necessary condition to obtain

a sparse representation in wavelets space. Functions with strong discontinuities can also

be sparse provided that, for example, the jumps are well localized. This implies that

sparseness is a more general property than smoothness.

Wavelets are not the only kind of basis that provides a sparse representation. In some

cases, it is possible to combine different bases together, or add elements to the original

system, to obtain overcomplete bases. As we saw in the previous section, an overcomplete

basis is a frame. In signal processing literature, such systems are also called dictionaries.

An example is the system obtained coupling a periodic basis with a localized one. So

that certain coefficients encompass the periodic features while others identify narrow
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discontinuities. Another example can be obtained describing a data-set defined on a

two dimensional space using more than two dimensions, i.e. more that two basis vector.

Intuitively, to use more basis elements implies an higher probability that the information

about the peculiar features of the signal collapses on a single elements. As a rule of

thumb, we can state that more the system used is rich, more the representation is

sparse.

We emphasize the fact that the concepts treated here are general, but their application

on a specific case requires a careful modeling of the system used with respect to the

purpose of the analysis.

In our case, the interesting properties of the needlet system described in the previous

sections, give us good reasons to consider them as a very well suited system for our

investigation.

6.3 Thresholding

Thresholding algorithms are filtering techniques aiming at the separation of the signal

from the noise by exploiting the sparseness of wavelet representations. Following the

ideas presented in the previous section, a thresholding algorithm will set to zero all

the coefficients under a certain threshold. The basic assumption is precisely that, in a

mixture of a random noise and a coherent signal, the significant part of the information

(i.e. the signal) collapses into few high S/N coefficient. It is, in spirit, similar to principal

component analysis, that aim to reduce the complexity of a multidimensional data-set

identifying the most significant components.

The straightforward application is called hard thresholding (HT), the effects of the hard

thresholding operator on the needlet coefficients are simply:

HT (βjk) =











0 if |βjk| < λ

βjk if |βjk| ≥ λ

(6.30)

where λ is a given threshold. In the case of a coherent signal, only few significant

coefficients survives this operation, providing an optimal representation as well as an

efficient data compression.

Another option is provided by the soft thresholding (ST). The ST operator differs slightly

from the hard thresholding one, in the sense that the significant coefficients are now
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rescaled proportionally to the chosen threshold:

ST (βjk) = sgn(βjk)(|βjk| − λ)+



























βjk + λ if βjk ≤ λ

0 if |βjk| < λ

βjk − λ if βjk ≥ λ

(6.31)

where the operator (∗)+ stands for the positive part of the argument.

It is interesting to notice that the soft thresholding solution can be interpreted from

a Bayesian perspective as a maximum posterior estimator from a Gaussian Likelihood

with a leptokurtic prior on the parameters, that in this case are the needlet coefficients.

Assume that we observe a signal θ, that we know to be sparse in a given basis, from a

noisy data-set with known noise variance σ2, so that each data point x = θ + n will be

extracted from a Gaussian distribution with mean θ and (known) scale σ. Assume also

that the scale parameter 1/λ of the Laplace prior on θ is known, so that we can write:

P (θ|x) ∝ L(x|θ)P (θ) = N(x; θ, σ)L(θ;λ, 0), (6.32)

− logP (θ|x) ∝ (x− θ)2

2σ2
+ λ|θ|+ const. (6.33)

note that we use N(∗;µ, σ) and L(∗;µ, λ) to define respectively Normal and Laplace

distributions. The maximum posterior estimator (MPE) is obtained by minimizing

equation (6.33). We will show now that this problem can be reduced to the soft thresh-

olding.

We start taking the derivative with respect θ (that we denote with ∂θ):

∂θ(logP (θ|x)) = −(x− θ)

σ
+ λ∂θ|θ| = 0, (6.34)

θ̂ = x− σ2λ∂θ|θ̂|, (6.35)

since the absolute value is not differentiable around zero (and equivalently the L1 norm

||θ|| dealing with multidimensional data), we should take the subgradient, so that we
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have:

∂θ||θ|| =



























1 if θ > 0

−1 if θ < 0

[−1, 1] if θ = 0,

(6.36)

note that for θ = 0 the subgradient is actually an interval of values. We can understand

the soft thresholding solution applying the conditions (6.36) at equation (6.35). First no-

tice that the ”correction” term σ2λ∂θ|θ̂| can only take values in the interval [−σ2λ, σ2λ].
So that, looking at the case |x| ≥ σ2λ, θ must be 6= 0 since this ”correction” term

cannot account for signals higher than σ2λ. Moreover we must have sgn(θ̂) = sgn(x).

The solution in this case is so θ̂ = x − sgn(x)σ2λ. On the contrary, if |x| < σ2λ , we

take θ̂ = 0 and we can consider all the signal in x as coming from the subgradient term.

After these considerations it is clear that the solution coincides with the soft thresholding

operator, that in this case is:

ST (x) = sgn(x)(|x| − σ2λ)+. (6.37)

The crucial part of any thresholding method is the choice of the proper threshold. A

proper threshold must ensure that all the significant information is conserved while the

major part of spurious noise is removed. If the noise is Gaussian with known variance σ2,

a common technique is the Kσ clipping, where K is an integer. In this case the threshold

works similarly to an hypothesis test (the HT in particular works exactly in the same

way). Basically, a coefficient is selected if its significance level with respect to the null

hypothesis of zero signal plus noise is high enough in terms of standard deviations.

If the noise is properly modeled, the application is trivial, otherwise an estimate of the

noise shall be performed directly from the data. Usually in a wavelets analysis, estimates

of the noise are obtained looking at the high frequency layers, that in general are noise

dominated. If the noise is known to be not stationary in frequency space, the threshold

can be modulated scale by scale for an optimal shrinkage. A widely used solution,

called universal threshold, has been introduced by (Donoho & Johnstone 1994), it sets

as threshold:

λ = σ̂

√

2 log (n)

n
(6.38)
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where n in the number of coefficients in the layer and σ̂ is an estimate of the noise

standard deviation. The standard deviation is often computed from the median absolute

deviation:

σ̂ =
√
n
median(|βjk −median(βjk)|)

0.6745
. (6.39)

A large number of different techniques, developed to deal with different kinds of noise,

exist in the literature. However, since a proper threshold must be tailored on the data

of interest, we will refer to the existing literature (see e.g. (Wasserman 2006; Starck &

Murtagh 2006)) for a complete review.



Chapter 7

Foreground template fitting with

Needlet thresholding

In this chapter we apply the techniques just presented to the component separation

problem in CMB surveys. The final results of this investigation will be soon submitted

for publication as (Oppizzi et al. 2018b). The intuition behind this investigation is that

foreground signals and the CMB fluctuations disentangle when the data are represented

in a proper basis, frame or dictionary. Given the properties presented in the previous

section, needlets seem an ideal choice for this purpose. It is interesting to stress from

the start that the method we are going to describe does not rely on multi-frequency

information. It can therefore represent a useful tool, especially for experiments with

limited frequency coverage.

Foreground emission comes in the larger part from coherent sources concentrated

around the galactic plane and in few large structures that extend at higher galactic

latitudes. As we saw in the previous sections, space-frequency representations of coherent

signals naturally tend to be sparse. Needlets are clearly not an exception: as a matter of

fact, their good localization properties, coupled to their tight frame nature are the exact

requirements to induce sparseness when describing smooth functions on the sphere. We

will thus expect that the contribution from galactic foreground will be concentrated

in few large coefficients that can be identified and fitted with a needlet thresholding

technique.

On the other hand, CMB has very different features, since it is a random field and not

a coherent signal. Thanks to their uncorrelation properties, needlet are very well suited

to represent random signal; the needlet coefficients representing a Gaussian random field
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7.3 Bayesian Treatment

In order to get a better insight of the thresholding procedure introduced in the previous

section, we now illustrate and justify it within a general Bayesian framework. As shown

in e.g., (Vansyngel et al. 2016), a Bayesian approach provide a way to described different

component separation techniques within a unified, general formalism. This approach

shows in particular how different common component separation methods amount to

different choices of the prior hypothesis and sampled or marginalized parameters.

We start as usual by assuming to have observations from K channels, with a mixture

of N components and M elements (pixels) in each channel (by “pixel” we mean real

space pixels, aℓm, needlet coefficients or the elements of whichever basis is adopted to

represent the signal). We recall then the linear mixture model:

di = Asi + ni (7.1)

where di is a vector of K elements representing the observations at the pixel i, si is a

vector of N elements representing the contribution of the components at the pixel i, A is

the mixing matrix of dimension N ×K that weights the contribution of the components

among the channels, and ni is the noise on the pixel i.

The Bayesian formulation of the component separation problem aims to solve:

P (A, s|d) ∝ L(d|A, s)P (A,S) (7.2)

as shown e.g., in (Vansyngel et al. 2016). With specific assumptions on the priors and

eventually variables to marginalize over, the formulation above can be used to define

typically adopted component separation techniques, such as ILC and SMICA. In our

case, we want to introduce the sparsity assumption on the foreground templates. A

similar hypothesis is also at the basis of the development of the GMCA algorithm in

(Bobin et al. 2008). We will clarify the differences between the approach discussed here

and GMCA in due course. The usual way to enforce sparsity in a Bayesian context is

to assume leptokurtic priors. A common choice is the Laplace distribution:

L(x;λ, µ) =
λ

2
e−λ|x−µ| (7.3)
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where Cn and Cc are respectively the noise and cmb covariance matrices. Therefore we

can write:

L(d|c, f)P (c) ∝ exp

[

−1

2
d
T

C−1
n d+ f

T

C−1
n d− 1

2
f

T

C−1
n f

]

×

× exp

[

−1

2
c
T (

C−1
n + C−1

c

)

c+ c
T (

C−1
n d− C−1

n f
)

]

, (7.9)

to integrate out c, first we note that the only terms involved in the integral are in the

second line, then we remember:

∫

exp

[

−1

2
~xTR~x+ ~BT~x

]

dnx =

√

(2π)n

detR
exp

[

1

2
~BTR−1 ~B

]

(7.10)

so that we have:

L(d|f) =
∫

∞
dc L(d|f, c)P (c) ∝ exp

[

−1

2
d
T

C−1
n d+ f

T

C−1
n d− 1

2
f

T

C−1
n f

]

×

× exp

[

1

2

(

C−1
n d− C−1

n f
)T (

C−1
n + C−1

c

)−1 (
C−1
n d− C−1

n f
)

]

(7.11)

we then implement the Laplacian prior, again assuming uncorrelation between the chan-

nels, thus we have P (f) ∝ exp−λ||f || where || ∗ || is the L1 norm.

Adding this to 7.11 and setting R =
(

C−1
n + C−1

c

)

for simplicity of notation, we compute

the derivative of the Log Likelihood and we find:

∂f (− log(P (f, d)) = −C−1
n d+C−1

n f+2C−1
n R−1C−1

n d−2C−1
n R−1C−1

n f+λ∂f ||f || (7.12)

and then:

f̂ = d+
(

C−1
n − 2C−1

n R−1C−1
n

)−1
λ∂f ||f ||, (7.13)

and as we derived in the previous section 6.3, the solution to this problem is the soft

thresholding operator with threshold
(

C−1
n − 2C−1

n R−1C−1
n

)−1
λ.

7.3.1 ILC-like implementation

We now show how this result can be implemented within a ILC algorithm. So that

we want to maximize P (c|f̂ , d), after deriving f̂ from the thresholding (in other words,

we “pre-clean” each channel with thresholding, followed by combining the channel via

ILC). We now consider all the channels together, so that we reintroduce the vector e
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and the index i representing the single pixel (or multipole, or needlet coefficient). We

use this notation here since our aim is to present general results, that do not depend

from the representation of the dataset. On the other hand, the structure of the data

covariance changes significantly from one basis to another, so that the optimal approach

can change.

P (ci|di, f̂i) ∝ L(di|ci, f̂i)P (ci) = N(di; ci + f̂i, CN )N(ci; 0, Cci)), (7.14)

note that CN is the covariance matrix of the noise between channels and ci, Cci are

numbers. Now again, by differentiating the log-Posterior with respect ci we find:

− log(P (ci|di, f̂i)) ∝
1

2
(di − f̂i − eci)

T

C−1
N (di − f̂i − eci) +

1

2
c2iC

−1
ci (7.15)

∂c

(

− log(P (ci|d, f̂i))
)

∝ (e
T

C−1
N e+ C−1

ci )ci + e
T

C−1
N (f̂i − di) = 0

and in conclusion we can find the new Bayesian ILC formula as:

ci =
e
T

C−1
N

e
TC−1

N e+ C−1
ci

(di − f̂i) (7.16)

or, looking instead at the maximum likelihood the solution is more similar to the stan-

dard ILC

ci = (e
T

C−1
N e)−1e

T

C−1
N (di − f̂i). (7.17)

This is equivalent to applying soft thresholding in different channels, and then subtract-

ing the results from the data-set before performing ILC, as we did in the test presented

before. Note that a similar approach can of course be adopted to find algorithms which

combine thresholding with a variety of other methods, such as template fitting. Working

in needlet space, thresholding could be a straightforward implementation in others nee-

dled based techniques as NILC. The thresholding can obtain CMB cleaned foreground

templates from one channel. This would be very useful when it is impossible to exploit

multi-frequency information, or the channels are to few to rely in adjacent channels

differences.

As a further comment, we point out that even if here we consider a single Gaussian

component (the CMB), we also can also assume a mixture of different Gaussian signals,

under the hypothesis that foreground emission has a Gaussian residual. So that we

would express c = As′, where s′ are the templates after the removal of the strongly
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non-Gaussian part. This would not change the ILC solution just computed (at least the

maximum likelihood solution), but can represent an improvement for methods relying

on Gaussian prior on the foreground templates.

7.4 Threshold Selection

The main problem of thresholding algorithm is the selection of the threshold. We pre-

sented some of the standard techniques in the previous chapter, but we also study here

some solutions suited for our specific goal. The first problem is that the procedure

for the selection of a proper λ cannot be computationally expensive, since it is only a

pre-processing step.

Since the CMB is well known to be a perfectly isotropic and Gaussian field, natural

solutions can be based on the minimization of the non-Gaussianity or the anisotropy of

the cleaned map. Under the assumption of isotropy, the CMB needlet coefficients are

equally distributed with variance:

σ2j =
1

Nj

Bj+1
∑

ℓ=Bj−1

2ℓ+ 1

4π
b2
(

ℓ

Bj

)

Cℓ. (7.18)

This cannot be the case if we have significant foreground contamination. We can thus

look for the threshold that minimize the following “anisotropy indicator”:

∆j =
1

Nj

∑

k

[

β2jk
σ2j

− 1

]2

(7.19)

where the variance can be estimated from the coefficients itself.

In similar fashion, one can seek to minimize the non-Gaussianity of the coefficients.

A simple way to do that by setting the threshold that minimize the coefficients sample

skewness (of course this could be extended to higher order cumulants, or to include

spatial information, e.g., the full bispectrum/trispectrum, accounting for mode-mode

coupling):

γ̂ =
1

Nj

∑

k(βjk)
3

σ
3/2
j

(7.20)

where again, Nj is the number of coefficient at the level j. Both these conditions can

be implemented in an iterative threshold selection algorithm.
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We search for a threshold τ2 for which:

PY (y = τ) > PX(x = τ)

ln

(

PY (τ)

PX(τ)

)

= ln (PY (τ))− ln (PX(τ)) > 0. (7.23)

(7.24)

Inserting the proper distributions with the parameters estimated from the previous for-

mula we have to solve the following equation in τ :

ln (λ)− λτ + 0.5 ln
(

2πσ2
)

+
(τ)2

2σ2
= 0

τ1,2 = σ2

(

λ±
√

λ2 − 1

σ2
ln(2πσ2λ2)

)

, (7.25)

τ0 = min

{

ln

(

PY (τ)

PX(τ)

)}

= λσ2 (7.26)

so that, in this exponential case, the solution reduce to a second order equation. The

parameter τ1,2,0 can be interpreted looking at figure 7.10 as the intersections of the

log-ratio with the x-axis and its minimum respectively.

In addition to its simple treatment, the Gaussian exponential mixture has a straight-

forward application in the masking of a real space map. The distribution of foreground

template pixels is more similar to an exponential. Note that, of course, it is not strictly

exponential, but this simple parametrization can still be useful to better account for tail

contributions than simple Gaussian modeling.

The data used are shown in figure 7.11, it is a low resolution reconstruction of a 100

Ghz survey (Temperature), assuming a 30′ beam and nside=128, based on the Planck

foregrounds templates and a random CMB realization.

With the method explained in the previous section, we can retrieve 3 notable values:

the two roots τ1,2, representing the bounds of the interval where the Gaussian term

dominates, and τ0 representing the minimum of the log ratio of the inferred distribution.

2note that in the previous section we called the threshold λ, we change here to avoid confusion with
the exponential scale parameter





Foreground template fitting with Needlet thresholding 113

Foreground systematics represent nowadays one of the main, if not the main limita-

tion in CMB analysis. This is especially true in the pursuit for polarization B-modes

anisotropies from primordial gravitational waves, that are expected to produce a very low

signal. In the last decades, during which CMB surveys played a major role in cosmolog-

ical observations, a great number of different methodologies was developed to disentagle

the various emissions. These techniques exploit peculiar features of the components to

identify and then separate them, or to reconstruct a particular source of interest.

In this work we present a preliminary investigation on a technique relying on the

assumption that the foreground signal is “sparse” in a proper representation, i.e. the

majority of the signal is concentrated in few expansion coefficients. The spherical needlet

frame enjoys the right characteristic to induce sparseness in the representation of co-

herent signals: it provide a space-frequency representation with remarkable localization

properties both in real and frequency space; moreover, it has proven to be perfectly

suited to describe random fields on the sphere due to the good uncorrelation properties

of its coefficients. So that we expect that foreground signal information collapses in few

coefficients while the CMB’s does not.

We check this hypothesis on a wide set of simulations of the microwave sky, and we

found promising confirmation to it. We indeed observe that the foreground templates can

be faithfully represented with just a few modes, when working in the needlet domain.

On the other hand, the CMB signal is actually spread among all the coefficients, as

expected from its stochastic nature.

A very natural way to deal with sparse signals in space-frequency representations is a

shrinkage technique called wavelet thresholding. We analyze the potential of a needlet

thresholding algorithm to identify and then remove the foreground contributions. This

method does not rely on multi-channel information, so that it could be a useful tool in

surveys with few observational frequencies.

We found that, in the small scale regime, this technique is quite effective in isolating

the foreground components, that actually collapse into few coefficients. On the other

hand, on the largest scales (approximately below ℓ = 20 in our tests), there are too few

modes (i.e. uncorrelated basis functions, in our representation) to efficiently disentangle

the different components. We then investigate the synergy of this technique with other

methods, and we found that the performance of a simple ILC algorithm significantly

improves when the map is pre-cleaned with a needlet thresholding.
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We also provide a complete Bayesian treatment of our techniques, in order to gain

better insight and include the implementation of thresholding as a pre-cleaning procedure

within a general, multi-frequency, component separation pipeline. Furthermore, we

search for different threshold selection criteria, tailored around our specific problem,

based on the identification and minimization of non-Gaussian and anisotropic biases

induced by foreground emission.

In conclusion, in this preliminary investigation we found that needlet thresholding is

a promising tool for component separation, especially in surveys with limited frequency

coverage. Further developments are still ongoing for the implementation of this tech-

nique, exploring the possibility of combining it with different multi-frequency component

separation approaches. Besides the thresholding-ILC combination, discussed here, an-

other interesting possibility could consist in using thresholding to extract foreground

templates at specific frequencies, followed by template-fitting/marginalization.

The needlet frame allows for a natural and straightforward extension to polarization

surveys and partial sky maps, which will also be explored. A natural and potentially

interesting field of application is indeed its use on current generation ground-based B-

mode surveys, indeed characterized by small frequency coverage.

Finally, we briefly comment on the similarities and differences with the GMCA pipeline

(Bobin et al. 2008), which also is characterized by a built-in thresholding procedure. As

already pointed out earlier, one important difference is that our approach is not assum-

ing sparsity of the CMB signal. Besides being more realistic, this has also the important

consequence of fully preserving the isotropy of the CMB signal, if our thresholding is

e.g. integrated within a template-fitting procedure. Moreover, GMCA aims at recur-

sively finding the component of the mixing matrix, while the current method implicitly

marginalize over them, aiming, as we already stressed, at the construction of a general,

single frequency pre-analysis procedure, that can be freely and flexibly combined with

a variety of other pipelines.



Chapter 8

Conclusions

The pursuit for non-Gaussian signatures in the CMB has received great attention within

the cosmological community over the last decades. The detection and the measurement

of such a signal would provide an unprecedented insight into the Physics of the Early

Universe. The most promising theory to solve the outstanding questions related to initial

conditions in the Standard Cosmological Model is the Theory of Inflation. However,

information obtained under the Gaussian assumption, i.e. from the power spectrum, has

little power to discriminate between the huge number of different Inflationary scenarios

proposed in the literature. On the contrary, primordial non-Gaussianity is expected to

be in most cases a small, but non-negligible and strongly model-dependent effect. For

this reason, primordial non-Gaussianity is expected to be one of the most informative

fingerprints of the origin of structure in the Universe, probing physics at extremely high

energy scales inaccessible to laboratory experiments.

Actual calculations in the Inflationary framework show that the statistic most sensitive

to the departure from Gaussianity is the tree-point function, or rather its harmonic

space counterpart, the primordial Bispectrum. The CMB Bispectrum, being linearly

linked to the primordial field, provides an almost direct probe of PNG. Unfortunately,

due to the high numerical complexity the full Bispectrum cannot be computed brute

force. Moreover, single bispectrum configurations have very low signal-to-noise and

carry therefore negligible statistical weight. The general approach to extract relevant

information from the bispectrum is therefore that of fitting specific, theoretical motivated

templates to the data, in search for peculiar NG features. To date, a large number of

different Bispectrum shapes has been tested on the Planck data-set, but no significant

hints of a primordial NG signal has been detected. On the other hand, very tight
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constraints have been obtained on many primordial NG scenarios.

In the first part of this thesis, we present the analysis of several scale-dependent

bispectrum shapes, both using the WMAP 9 year and the Planck data-sets. Two of the

three models considered have been constrained for the first time in this work, and none

of them has ever been tested on the Planck data-set.

Their analysis required the development of new, specifically tailored estimators. More

in detail, we develop a complete set of tools for CMB forecasting, simulation and estima-

tion of primordial running bispectra, arising from a variety of curvaton and single-field

(DBI) models of Inflation. Constraining the running of the primordial NG parameter

fNL can provide valuable extra-information on the Physics of Inflation, allowing for bet-

ter discrimination between different scenarios. The constraints on the running parameter

nNG that we obtain from the WMAP analysis are: −0.6 < nNG < 1.4, −0.3 < nNG < 1.2,

−1.1 < nNG < 0.7 for the one-field curvaton, two-field curvaton and DBI scenarios, re-

spectively. In the analysis of Planck data we have to improve our estimator to deal

with secondary biases (ISW-lensing) and to prevent the possible insurgence of statisti-

cal artifacts due to the lower significance of the estimated primordial NG amplitudes.

We resort to different prior choices, implementing an uninformative Jeffreys prior, and

different approaches, as likelihood profiling. We run our SD estimation pipeline on the

Planck temperature maps and simulations, while we also test the standard local, equi-

lateral and orthogonal templates with the KSW estimator (that is a byproduct of our

pipeline) on both temperature and E polarization maps. We refer to the final Planck

release for the results on the scale invariant templates. We do not find evidence in favour

of scale-dependent models for any of the templates tested. Furthermore, we found that

at the current level of detection it is not meaningful to put constraints on the additional

scale-dependence parameter nNG. We conclude observing that in this analysis we reach

the maximum theoretical constraining power on direct bispectrum estimation for these

templates, so that future test shall rely on different probes.

In the second part of this thesis, we still deal with the study of non-Gaussian and

anisotropic signals in microwave sky maps, but with a totally different aim, namely that

of studying and separating foreground components. One of the major limitations in

modern CMB analysis indeed comes from foregrounds systematics. The detection and

minimization of the foreground contribution (“component separation”) in microwave

surveys is therefore nowadays one of the most active fields in observational cosmology.

Component separation algorithms exploit characteristic features of foreground emission
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to disentangle them from the background radiation. Since the foreground is strongly

non-Gaussian, NG signatures represent an ideal gauge to unearth the spurious compo-

nents in microwave surveys. Following this rationale, we develop a technique relying

on the hypothesis that the foreground are “sparse” in a proper representation. Sparse-

ness can be interpreted in the general framework of non-Gaussianity. In particular it

is usually formalized resorting to the Laplace distribution, or other similar leptokurtic,

“heavy-tailed” distributions. A signal is said to be “sparse” in a given basis if its infor-

mation appear compressed in very few basis elements with high S/N . We found that

spherical needlets represent an ideal frame for our purposes, since it provides sparse

representation of coherent signals while at the same time it enjoys a number of math-

ematical properties very well suited to threat Gaussian random fields. Therefore, our

assumption is that foreground signal information, in virtue of their coherence, anisotropy

and non-Gaussianity, collapses in few coefficients, while the CMB component is spread

among all the coefficients.

We verify this assumption with a number of tests on different simulations of microwave

sky maps. All the analyses performed provide confirmation to our hypothesis. Therefore,

the following step has been the implementation of a thresholding technique, a method

widely used in wavelet regression of sparse signals. This method has the advantage of

not relying on multi-channel information, so that it can be a useful tool in surveys with

few observational bands, as is the case in current generation, ground-based surveys.

On the single map, it provides good results at high spatial frequencies, whereas at low

frequencies the low number of modes makes a sparse representation impossible.

Therefore, we provide a complete Bayesian treatment of needlet thresholding in CMB

surveys, in order to check for possible synergies with other, multi-channel techniques. We

find that thresholding is indeed very effective in improving the performance of a simple

ILC algorithm, as a frequency-by-frequency pre-cleaning procedure. We then study ad-

hoc solutions for the selection of the optimal threshold for our problem, considering the

minimization of typical foreground signatures as non-Gaussianity and anisotropy.

We judge the results of this preliminary investigation very promising; future prospects

of this work will be the development of a complete component separation pipeline com-

bining thresholding and multi-frequency separation algorithms, as well as the extension

to polarization surveys and partial sky coverage.



Appendix A

Useful Formulae of General

Relativity

In general relativity in the partial derivative operation we have to take into account the

curvature of the space time. So the covariant derivative operator is introduced:

∇µV
µ = ∂µV

µ + ΓνµλV
λ (A.1)

where V µ is a generic 4-vector and Γνµλ is the connections coefficients, also known as

Christoffel symbol. The Christoffel symbol describe geodesic in non-trivial coordinates

system.

A geodesic is the generalization in a curved space of a straight line.

The Christoffel symbol is defined from the metric as:

Γµαβ =
1

2
gµν [∂αgβν + ∂βgαν − ∂νgαβ ] . (A.2)

The geodesic equation, expressing the Newton law with no forces in general relativity is

:
d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0. (A.3)

In a curved space-time, the parallel transport of a vector V σ on a closed loop defined

by two infinitesimal vector Aµ and Bµ results in a modification δV ρon the vector. This

change is quantified by the curvature tensor also know as Riemann tensor, that is:

δV ρ = RρσµνA
µBνV σ. (A.4)
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The definition of the Riemann tensor is

Rρσµν = ∂µΓ
ρ
νσ + ∂νΓ

ρ
µσ + ΓρµλΓ

λ
νσ + ΓρνλΓ

λ
µσ (A.5)

The contraction of the Riemann tensor give the Ricci tensor Rµν, its definition follow

from (A.5):

Rµν = ∂λΓ
λ
µν + ∂νΓ

λ
µλ + ΓλλβΓ

β
µν + ΓλβνΓ

β
µλ. (A.6)

The track of the Ricci tensor define the Ricci scalar:

R =gµνRµν

∇µRµν =
1

2
∇νR (A.7)

The Einstein equation is:

Rµν −
1

2
gµν = Gµν = 8πGTµν (A.8)

were Gµν is the Einstein tensor.



Appendix B

Special Functions

B.1 Spherical harmonics

Spherical harmonics are the angular portion of a set of solutions to Laplacian. Usually we

refer to Laplace’s spherical harmonics Y m
ℓ that are a specific set of spherical harmonics

forming an orthogonal system. They are eigenfunction of the equation

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

Y m
ℓ (θ, φ) = −ℓ(ℓ+ 1)Y m

ℓ (θ, φ). (B.1)

We used them to describe a distribution on a spherical surface with harmonics behavior;

this is the analogue of the Fourier decomposition in flat space. The orthogonal relation

states:
∫

dΩY
m
ℓ ΩY

m′

ℓ′ (Ω) = δℓℓ′δmm′ . (B.2)

B.1.1 Legendre Polynomials

The Legendre polynomials are particular solutions of Legendre’s equations the is useful

to solve the Laplace’s equation in spherical coordinates. For our aim is sufficient to know

their orthogonality relation:

∫ 1

−1
Pℓ(x)Pℓ′(x) = δℓℓ′

2

2ℓ+ 1
. (B.3)

They can be expressed by a sum of products of spherical harmonics:

Pℓ(x̂ · x̂′) = 4π

2ℓ+ 1

ℓ
∑

m=−ℓ

Y m
ℓ (x̂)Y

m
ℓ (x̂

′). (B.4)
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B.2 Spherical Bessel Functions

The spherical Bessel function jℓ(x) satisfy the differential equation:

d2jℓ(x)

dx2
+

2

x

djℓ(x)

dx
+

[

1− ℓ(ℓ− 1)

x2

]

jℓ(x) = 0. (B.5)

They are crucial in the study of the CMB because, leading the radial evolution, they

project the inhomogeneities at last scattering into the actual sky.

These function obey to the so called closure relation:

∫ ∞

0
dxx2jℓ(ax)jℓ(bx) =

π

2a2
δD(a− b) (B.6)

They are related to Legendre polynomials by expressions:

1

2

∫ 1

−1
dµPℓ(µ)eixµ =

jℓ(x)

(−i)ℓ (B.7)

The inversion of this equations gives a useful expansion for Fourier basis functions:

ei
~k·~x =

∞
∑

ℓ=0

iℓ(2ℓ+ 1)jℓ(kx)Pℓ(k̂ · x̂). (B.8)

Replacing formula (B.4) in this equation we obtain the spherical wave expansion of

vector plane wave used in chapter 2.2 equation (2.30):

ei
~k·~x = (4π)

∞
∑

ℓ=0

iℓjℓ(kr)
ℓ
∑

m=−ℓ

Y m
ℓ (x̂)Y

m
ℓ (k̂) (B.9)

Another important relation allows to express the integral containing squared Bessel

functions in terms of Euler Gamma functions:

∫ ∞

0
dxxn−2j2ℓ (x) = 2n−4π

Γ(ℓ+ n
2 − 1

2)Γ(3− n)

Γ(ℓ+ 5
2 − n

2 )Γ
2(2− n

2 )
(B.10)
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B.3 Wigner 3-j symbols

The Wigner 3-j symbols are related to the Clebsh–Gordan coefficients which describe

coupling of two angular momenta, they are defined as a 2× 3 matrix





ℓ1 ℓ2 ℓ3

m1 m2 m3





more specifically a symbol of this kind describes three angular momenta forming a

triangle, for this reason they satisfies the triangle conditions L1+L2+L3 = 0, from this

derives:

|ℓi − ℓj | ≤ ℓk ≤ ℓi + ℓj

m1 +m2 +m3 = 0

ℓ1 + ℓ2 + ℓ3 = even.

The special case with ℓ1 = ℓ2 and m3 = 0 is useful in the calculation of the variance of

the bispectrum:




ℓ ℓ ℓ′

m −m 0



 =
(−1)ℓ√
2ℓ+ 1

δℓ′0 (B.11)

Other important proprieties are the orthogonality relations we used in the calculation

of angle average bispectrum

∑

ℓ3m3

(2ℓ3 + 1)





ℓ1 ℓ2 ℓ3

m1 m2 m3









ℓ1 ℓ2 ℓ3

m′
1 m′

2 m3



 = δm1m′

1
δm2m′

2
(B.12)

∑

m1m2





ℓ1 ℓ2 ℓ3

m1 m2 m3









ℓ1 ℓ2 ℓ′3

m1 m2 m′
3



 = δm1m′

1
δm2m′

2
(B.13)

∑

m1m2m3





ℓ1 ℓ2 ℓ3

m1 m2 m3





2

= 1. (B.14)
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An analytical expression for the symbol

(

ℓ1 ℓ2 ℓ3

0 0 0

)

(Verde et al. 2000), that we used

in the computations of Fisher matrix is:





ℓ1 ℓ2 ℓ3

0 0 0



 = (−1)L

√

(L+ 2ℓ1)!(L+ 2ℓ2)!(L+ 2ℓ3)!

(L+ 1)!

(L/2)!

(L/2− ℓ1)!(L/2− ℓ1)!(L/2− ℓ1)!

(B.15)

where L = ℓ1 + ℓ2 + ℓ3. Since problems arise in the numerical evaluation of the factorial

for high ℓ, this formula can be replaced appealing to the Gosper version of the Stirling

factorial approximation (Giovi et al. 2003):

n! =
(n

e

)n

√

π

(

2n+
1

3

)

(B.16)

following this approximation the Wigner symbol can be rewrote in a computational

simpler form:





ℓ1 ℓ2 ℓ3

0 0 0



 ≃
(

− L

L+ 1

)L/2 1

(6L+ 7)1/4

√

3e(3L+ 1)

π(L+ 1)

3
∏

i=1

(6L− 12ℓi + 1)1/4)√
3L− 6ℓi + 1

(B.17)
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