
Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Matematica

Corso di Dottorato di Ricerca in: Matematica

Curricolo: Matematica Computazionale

Ciclo XXIX

A branch-and-price approach

for Pure Parsimony haplotyping

Coordinatore: Ch.mo Prof. Pierpaolo Soravia

Supervisore: Ch.mo Prof. Luigi De Giovanni

Dottorando: Veronica Dal Sasso

31 Gennaio 2017





Abstract

This thesis comes as the result of a detailed study of decomposition methods for large-
scale problems and their application to a particular problem arising in computational
biology.

The improvements on computer capabilities and programming techniques in the
last decades have widened the set of problems that can be easily solved as Mixed
Integer Linear programs. However, several applications still require formulations that
involve a non-tractable amount of data necessary to describe the geometry of the
solution space. In these cases, decomposition methods are used to reduce the size of
the problems to be addressed.

In this thesis we propose the application of some of these methods, as Dantzig-Wolfe
reformulation, column generation and Lagrangian relaxation, to a problem related to
the study of the human genome. The human DNA is made of two double chains, each
of which consists in a sequence of nucleotides. Among these, the ones related to the
Single Nucleotide Polymorphisms (SNPs) are interesting as they describe the di�er-
ences between individuals. We de�ne a haplotype as a sequence of nucleotides that
describes a portion of the SNPs found in a particular chromosome, and a genotype as
the sequence that aggregates the information on SNPs coming from the double DNA
chain of an individual. The problem we address falls into the class de�ning the Haplo-
typing Inference problem, that consists in recovering the structure of the haplotypes,
given the information on the genotypes. In particular, we consider the parsimony cri-
terion, which means that we want to �nd the minimum number of haplotypes able to
explain all the genotypes. This problem is known to be APX-hard.

There are several contributions in the literature that can be divided into two main
di�erent classes of mixed integer linear formulations. The �rst one presents a polyno-
mial number of both variables and constraints, thus these formulations are solved using
a branch-and-cut approach. The second class consists of formulations that present an
exponential number of constraints and variables, solved with a branch-and-cut-and-
price approach. The scope of this thesis is to investigate how a new formulation that
involves an exponential number of variables and a polynomial number of constraints
can be solved by a branch-and-price approach. Its aim is to provide a competitive
algorithm with respect to other formulations from the literature, in particular those
with a polynomial number of constraints and variables.

We start by providing a review of the state of the art on the Haplotype Inference
problem, with particular focus on the Mixed Integer Linear programming approaches
for the Haplotype Inference by Pure Parsimony (HIPP) problem. We then consider a

i



ii ABSTRACT

new mathematical programming formulation for HIPP that includes a set of quadratic
constraints. By applying Dantzig-Wolfe reformulation, we obtained a new integer
linear programming formulation, presenting an exponential number of variables and a
polynomial number of constraints on the input data. This model is the basis for the
development of a branch-and-price approach.

Due to the large number of variables involved, a column-generation approach is
needed to solve the linear relaxation at a generic node of the search tree. An initial
feasible solution is easily found by means of heuristics and used as starting point to
build the Restricted Master Problem (RMP). In order to �nd variables to be added
to the RMP, we solve a dedicated subproblem, the pricing problem, that in our case
presents a quadratic objective function. We propose di�erent ways of solving the pric-
ing problem. Among the exact methods, we consider the integer linear model obtained
by linearizing the quadratic objective function and a Smart Enumeration approach,
that partitions the set of feasible solutions and solves the pricing problem restricted to
each subset, exploiting some extra available information to further reduce the size of
the subproblems. As heuristic approaches, we at �rst note that the pricing problem is
easily solved for particular haplotypes. Then, for investigating the remaining solutions
we propose a local search-based heuristic and an Early-terminated Smart Enumera-
tion, where we stop the Smart Enumeration approach as soon as we �nd a variable that
can be added to the RMP. The oscillatory behaviour of the dual variables involved in
the de�nition of the pricing problem is limited by introducing a stabilization technique
adapted to our formulation. In particular, we extended the proof of convergence of this
procedure, that consists in using dual values obtained as convex combinations between
real dual variables and a chosen stability center, to the cases in which the stabilized
dual variables are feasible for the dual problem.

In order to solve the integer model, the solution of the linear relaxation is embed-
ded in a branch-and-price approach. The branching rule we present is inspired to the
well-known Ryan-Foster branching rule for set-partitioning problems. The correctness
of our approach has been proved. Further observations on the similarity of the formu-
lation's constraints to multiple set-covering ones suggest that we can relax a family
of constraints to obtain a new formulation similar to a multiple set-covering. How-
ever, we note that the proposed branch-and-price algorithm applied to this formulation
does not provide a feasible solution for HIPP, thus we need to integrate the proposed
branching rule and recover a feasible optimal solution for HIPP.

This branch-and-price approach has been implemented in C++, with the aid of
SCIP libraries and Cplex solver. Results have been obtained from di�erent classes of
instances found in literature, coming from real biological data and generated using
ad-hoc programs, as well as newly generated ones. The branch-and-price approach
proposed for our formulation proves to be competitive with state-of-the-art polynomial-
sized formulations. In fact, we can note how the linear relaxation of our formulation is
tighter than other linear relaxations and provides an e�ective starting solution for the
branch-and-price algorithm. Results show how our approach is e�cient, in particular
on the set of instances that contain a larger number of genotypes

We proved therefore that a branch-and-price procedure provides a good solution ap-
proach for a formulation with exponential number of variables and polynomial number
of constraints. Further work may include enhancements on the implementation details,
such as exploring di�erent ways of ordering the genotypes or combining heuristic and



iii

exact methods in the stabilized framework to solve the pricing problem. Moreover, it
is possible to investigate the generalization of the proposed approach in order to solve
set-partitioning problems.



Contents

Abstract i

Contents iv

Aknowledgements vii

1 Introduction 1

1.1 The Haplotyping Inference by Pure Parsimony Problem . . . . . . . . 2

1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Structure of the thesis and contributions . . . . . . . . . . . . . . . . . 5

2 Methodological and implementation tools 7

2.1 Linear programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 The Simplex Method . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 How to deal with large-size LP models . . . . . . . . . . . . . . 11

2.2 Mixed Integer Linear Programming . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Cutting plane approach . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Branch-and-cut approach . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Branch-and-cut-and-price approach . . . . . . . . . . . . . . . . 19

2.3 Lagrangian relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Dantzig-Wolfe decomposition . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Some well-studied optimization problems . . . . . . . . . . . . . . . . 22

2.5.1 Selection problem . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.2 Knapsack problem . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.3 Set-partitioning and set-covering problems . . . . . . . . . . . . 26

2.6 Implementing tools: SCIP and CPLEX . . . . . . . . . . . . . . . . . . 27

3 State of the Art 29

3.1 Haplotype Inference in literature . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 The Maximum Resolution Problem . . . . . . . . . . . . . . . . 29

3.1.2 Perfect Phylogeny Haplotyping . . . . . . . . . . . . . . . . . . 30

3.1.3 Other Haplotype Inference principles . . . . . . . . . . . . . . . 32

3.2 Haplotype Inference by Pure Parsimony . . . . . . . . . . . . . . . . . 32

3.3 Exponential-size integer formulations . . . . . . . . . . . . . . . . . . . 33

3.3.1 An intuitive formulation . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 A set-covering approach. . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Polynomial-size integer formulations . . . . . . . . . . . . . . . . . . . 38

iv



CONTENTS v

3.4.1 A formulation with duplicate haplotypes . . . . . . . . . . . . . 38
3.4.2 A formulation with distinct haplotypes . . . . . . . . . . . . . . 39
3.4.3 A class representative model . . . . . . . . . . . . . . . . . . . 41

3.5 A Heuristic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 New formulations for the HIPP problem 47
4.1 Improvements to the class representatives model . . . . . . . . . . . . 47
4.2 A new intuitive polynomial two-index formulation . . . . . . . . . . . 50
4.3 A new exponential-size formulation . . . . . . . . . . . . . . . . . . . . 52

5 A column-generation approach for the LP 59
5.1 Heuristics for computing an initial solution of the Restricted Master

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Di�erent approaches to solve the Pricing Problem . . . . . . . . . . . . 61

5.2.1 Solve the Mixed Integer Program . . . . . . . . . . . . . . . . . 63
5.2.2 A Smart Enumeration approach . . . . . . . . . . . . . . . . . 63
5.2.3 Fixed haplotypes . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.4 A Local Search-based approach . . . . . . . . . . . . . . . . . . 66
5.2.5 An Early-terminated Smart Enumeration . . . . . . . . . . . . 66
5.2.6 A Maximum �ow approach . . . . . . . . . . . . . . . . . . . . 67

5.3 Adding multiple variables per iteration . . . . . . . . . . . . . . . . . . 72
5.3.1 Adding variables with a larger genotypes' subset . . . . . . . . 72
5.3.2 Adding a selected set of extra variables . . . . . . . . . . . . . . 74

5.4 Convergence issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.1 A Lagrangian lower bound . . . . . . . . . . . . . . . . . . . . . 77
5.4.2 A stabilization method to smooth dual variables' values . . . . 78
5.4.3 Stabilized column generation and heuristic pricing . . . . . . . 82

6 Branch-and price frameworks for the IP 85
6.1 Branching rule for the HIPP problem . . . . . . . . . . . . . . . . . . . 85

6.1.1 The branching rule . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.1.2 Proof of correctness . . . . . . . . . . . . . . . . . . . . . . . . 88
6.1.3 Branching priorities . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Solution method on a set-covering-like relaxation . . . . . . . . . . . . 92
6.2.1 The drawbacks of the set-covering-like relaxation . . . . . . . . 93
6.2.2 Recovering the optimal integer solution . . . . . . . . . . . . . 94

7 Implementation 99
7.1 The LP of the exponential-size formulation . . . . . . . . . . . . . . . 99

7.1.1 Choosing an order for the genotypes . . . . . . . . . . . . . . . 99
7.1.2 Overview of the procedure to solve the linear relaxation . . . . 100

7.2 The branch-and-price framework . . . . . . . . . . . . . . . . . . . . . 102
7.2.1 Embedding branching constraints in the pricing problem . . . . 102
7.2.2 Embedding branching constraints in the Smart Enumeration ap-

proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8 Computational results 109
8.1 Alternative algorithm con�gurations . . . . . . . . . . . . . . . . . . . 109



8.2 Instance benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.3 Choosing parameters and algorithm con�guration . . . . . . . . . . . . 111

8.3.1 Tuning of the parameters . . . . . . . . . . . . . . . . . . . . . 111
8.3.2 Comparing alternative formulations . . . . . . . . . . . . . . . 112

8.4 Computational results on di�erent benchmarks . . . . . . . . . . . . . 114
8.5 Computational results on the manygen benchmark . . . . . . . . . . . 115

8.5.1 Performance on the solution of the root node . . . . . . . . . . 115
8.5.2 Performance of the branch-and-price algorithm . . . . . . . . . 117

9 Conclusion 119

Bibliography 121



Aknowledgements

I would like to thank my supervisor Luigi De Giovanni, for all the help he gave me
during these three years, for being patient and never letting me feel I was too slow in
understanding the theory behind what I was supposed to do. He always tried to rise
my self-esteem, particularly concerning my coding skills.

Special thanks go also to Prof. Martine Labbé, that supervised me during my stay
at the Université Libre de Bruxelles and gave me precious advices on the mathematical
aspects related to part of this thesis. The opportunity I had of working in her research
group has been greatly rewarding.

I want to thank the SCIP team, which is always ready to help through the mailing
list, whether the questions they receive are trivial or challenging. Thank you also to
the IRIDIA team for providing a useful tool for tuning algorithms and in particular to
Leslie Pérez Cánceres, that helped me with the really basics of it.

Thank you to Prof. Daniele Catanzaro and Prof. Giuseppe Lancia, who kindly
spent their time reading my thesis and who provided me with constructive feedbacks.

If the support I received from an academic point of view has been fundamental in
carrying out this thesis, the friendly environment that surronded me has not been less
important. Whether it was for the lunch time spent together, co�ee breaks, frittella
breaks, (and I regret not so many) spritz and evenings together, I have to thank my
friends at the Math department in Padova, from the ones that greeted me when I
arrived in the small 339 o�ce to the ones I left in the bright 712 o�ce, to the ones
I never shared an o�ce with. A heartfelt thank you to the collegues and friends of
the Computer Science department at the ULB, for the time spent together during
both the working and spare time. It has been a real pleasure to share with you ideas,
experiences and happy moments.

Thanks to the long-known friends, always present when it comes to have a good
dinner together or simply to meet and have a drink after a busy, tiring week. I should
also mention both been teased for my naivety in coding and been given advices on how
to improve my skills from some of you. This is what friends are for.

The greatest thanks go, �nally, to my family, that always supported me. Parents
that worried when I was worried, that had relief toasts with me when �nally I was
able to �nd a way of overcoming di�culties. And an older brother always ready to
give wise advices or to spend with me wonderful vacations.

vii



�I think,� said Anne slowly, �that I really have learned to look upon
each little hindrance as a jest and each great one as the foreshadowing of
victory.�
Lucy M. Montgomery



CHAPTER 1

Introduction

Mixed Integer Linear Programming (MILP) is a powerful tool to solve problems that
arise from di�erent contexts, for which we want to identify the most convenient sce-
nario among well-de�ned choices. As the set of these possible choices can include a
large number of di�erent scenarios, evaluating and comparing every single possibility
is impractical. Thus, the strength of a MILP approach consists in avoiding the ex-
tensive computations and, by means of solving a mathematical model, detecting the
best solution. A Mixed Integer Linear Program (or MILP model) consists of a linear
function that we want to maximize or minimize within a set of possible choices, rep-
resented by linear inequalities and integrality constraints on some variables. With the
improvements on mathematical programming techniques and computer's architecture
and technology, in particular the extension of memory capacity and processor's speed,
the dimension of programs that we consider as tractable has signi�cantly increased in
the last decades. Nevertheless, many problems addressed by MILP are formulated in
such a way that still challenges the present computational limits. Thus, solving MILP
models still presents several challenging issues whenever we face large-scale problems,
that involve a huge number of constraints or variables and lead to non-acceptable
computational times. Several approaches presented in the literature aim at overcom-
ing these di�culties and provide viable solution processes for large-scale formulations.
These approaches consist in reformulating di�cult programs into easier ones, for ex-
ample applying a Dantzig-Wolfe decomposition, relaxing some families of constraints as
to obtain a Lagrangian relaxation, or reducing the size of the program to an acceptable
one and then adding those variables or constraints that are needed to detect the best
solution, as in row and column generation.

In this thesis we consider a particular problem arising from computational biol-
ogy and a possible formulation characterized by an exponential number of variables.
Solving the associated MILP model involves the use of decomposition methods, like
the ones mentioned above. In the next sections 1.1 and 1.2 we present respectively
the problem and the main notation used throughout this thesis. Section 1.3 shows the
structure of the thesis and the main contributions.

1



2 CHAPTER 1. INTRODUCTION

1.1 The Haplotyping Inference by Pure Parsimony

Problem

The sequencing of human genome has been one of the most important achievements
of the last years in molecular biology. It has been completed in 2001 and showed
how all humans share the 99% of the information contained in the DNA, while all the
signi�cant di�erences among individuals, for example the color of the eyes or of the
hair, are contained in the remaining information. Each site of this 1% portion of the
human genome is called a Single Nucleotide Polymorphism (SNP).

It is well known that humans are diploid organisms, meaning that the DNA is
organized in pairs of chromosomes, each copy coming from one of the two parents,
unless a recombination occurs. In the case of a recombination event, it is possible that
a chromosome copy of the child consists of portions from both chromosome's copies of
the same parent. However, recent studies show that human chromosomes have a block
structure, meaning that they can be partitioned into blocks in which no (or very few)
recombinations have occurred. For this reason, we will not deal with recombinations,
as one can always assume we are considering DNA portions involving only one of these
blocks. Every single chain in the DNA is made of a sequence of nucleotides, each
of which is made of a phosphate group, a �ve-sided sugar and a nitrogenous base.
The nucleotide is fully characterized by the base, that can be chosen among the four:
Adenine (A), Thymine (T), Cytosine (C) and Guanine (G), so we can refer to di�erent
kind of nucleotides referring to their nitrogenous base.

Thus, every SNP is characterized by a pair of nucleotides, each of them belonging
to the same chain in the two di�erent chromosome's copies. Studies show that the
human DNA sites are almost always biallelic, that is only two nucleotides out of four
can be found at any site. We refer to each of these possible values as to the alleles of
that site. As a consequence, the nucleotides identifying a SNP can be equal on both
chromosome's copies, or they can be di�erent, but in any case they can assume only
two values. For example, let us assume only nucleotides A and C appear in a certain
position. Then, four scenarios are possible for that particular SNP:

1. both nucleotides are of type A,

2. both nucleotides are of type C,

3. the nucleotide in the �rst chain is of type A, the second of type C,

4. the nucleotide in the �rst chain is of type C, the second of type A.

According to these scenarios, we can give the following de�nitions:

De�nition 1.1 (Heterozygous and homozygous SNP). If the same nucleotide appears
in both chromosome's copies, as in cases 1 and 2, then the SNP is homozygous, oth-
erwise it is heterozygous.

De�nition 1.2 (Haplotype and genotype). A haplotype is a single sequence of SNP
values of a chromosome copy. A genotype is a sequence of values providing information
regarding the union of the two chromosome copies, that in particular tells us if each
SNP is homozygous or heterozygous, specifying which allele composes the homozygous
sites.



1.1. THE HAPLOTYPING INFERENCE BY PURE PARSIMONY PROBLEM 3

Example 1.1. We give here an example on how the information regarding a pair of
haplotypes is combined to form a genotype. Note that we denote with the symbol − a
heterozygous site.

h1 = A C A C

h2 = A C C A

}

g1 = A C - -

Here we give another example:

h3 = A C A A

h4 = A C C C

}

g2 = A C - -

Note that the two genotypes g1 and g2 in Example 1.1 are identical and may
be associated to the same information, but, in fact, they come from di�erent single
sequencies of nucleotides. This ambiguity arises from the fact that the de�nition we
gave of a genotype does not discern case 3 from case 4. The reason that justi�es this
ambiguity is the fact that the information on homozygous and heterozygous sites is
obtained in vitro and, normally, experiments are not able to provide also information
on which chromosome's copy is which nucleotide.
Moreover, we give the following de�nition:

De�nition 1.3 (Genotype resolution). Two haplotypes resolve a certain genotype if
the information they provide regarding homozygous and heterozygous sites is consistent
with the genotype itself, when paired.

In Example 1.1, h1 and h2 resolve g1. Notice that g1 could also be resolved by h3 and
h4.

Haplotypes have an important role in medical and pharmaceutical studies, for ex-
ample they are fundamental in detecting diseases or in studying the di�erent behaviour
of various individuals to the same therapy. Sequencing them in vitro is not practical,
as it is normally very expensive and time consuming, while it is easier to experimen-
tally obtain the information stored in genotypes. Thus, we want to answer the question
whether it is possible to deduce in silico (hence more conveniently) the haplotypes that
resolve all the given genotypes. Several approaches have been used in order to solve
this problem, its di�culty consisting in the fact that, due to the ambigous de�nition of
heterozygous sites, once we have k heterozygous SNPs in the same genotype we have
2k−1 possible pairs of haplotypes that can resolve it. We need then some criteria to
prefer one pair among the others. As usually we want to deal with a population, we
assume to have a set of genotypes, one for each individual, that represent the same
portion of the DNA and we look for a criterion that has a biological foundation to
choose which haplotypes resolve the given genotypes. Di�erent approaches have been
proposed in biological literature, that will be described in Chapter 3, considering for
example the evolutionary history of a population, modeled as a rooted tree, or the so
called Pure Parsimony criterion, based on the observation that in the real cases only
a small number of haplotypes that resolve a set of genotypes is observed. Thus, we
are inclined to consider as good a solution if it involves the smallest possible number
of haplotypes and we state the problem as follows:



4 CHAPTER 1. INTRODUCTION

De�nition 1.4 (Haplotyping Inference by Pure Parsimony Problem - HIPP). Given
a set of genotypes G, determine a set of haplotypes H such that

• each genotype is resolved by two haplotypes belonging to H,

• H has minimum cardinality.

1.2 Notation

In this section we introduce some notation that will be useful throughout the thesis.
First of all, remembering the biallelic property of each SNP site, we do not need to
code the values of each chain site using one of the four nucleotides names, but we
just need two symbols to identify the two di�erent nucleotides that can be found in a
particular position. For example, knowing that a SNP only admit the nucleotides A
and C, we can associate the value 0 to A and the value 1 to C, while for another SNP
allowing only the other nucleotides, we can associate the values 0 to T and 1 to G
respectively. In this way, a haplotype of n SNPs can be encoded as a string of length
n over the alphabet {0, 1}. By using this approach we can also represent a genotype
as a string, taking care of the right encoding for homozygous and heterozygous sites.
Thus, genotypes are represented by strings of length n with values within the alphabet
Ω = {0, 1, 2}, where homozygous sites are represented by their value itself and the value
2 identi�es heterozygous sites, as can be clearly seen in the foolowing example:

Example 1.2. Consider a small portion of the human DNA contained in a speci�c
chromosome, where capital letters represent SNPs:

taggtccCtatttTccaggcgcCgtatacttcgacgggTctata

taggtccCtatttGccaggcgcAgtatacttcgacgggTctata

The haplotypes obtained from each chain of nucleotides are the following:

CTCT
CGAT

that can be represented as strings in {0, 1} with associated genotype g as string in
{0, 1, 2}:

h1 = 0101

h2 = 0011

}

g = 0221

Using this formulation, we can formalize the notion of haplotypes that resolve a
genotype.

De�nition 1.5 (Componentwise sum of haplotypes). Let h1 and h2 be two haplotypes
representing the same set of n SNPs, we de�ne their componentwise sum as

(h1 ⊕ h2)p =











0 if h1p = h2p = 0

1 if h1p = h2p = 1

2 if h1p 6= h2p

∀ p = 1, . . . , n



1.3. STRUCTURE OF THE THESIS AND CONTRIBUTIONS 5

De�nition 1.6 (Genotype resolution via haplotype sum). Let h1 and h2 be two hap-
lotypes of length n and g a genotype of length n. We say that two haplotypes h1 and
h2 resolve a genotype g if h1 ⊕ h2 = g.

Note that genotypes may exist with no heterozygous sites. In this case, it is trivial
to choose the haplotypes that resolve it, as they are simply two copies of the genotype
itself. Moreover, these haplotypes are forced to be present in the solution of the HIPP
problem.

De�nition 1.7 (Fixed haplotypes and �xed genotypes). A genotype is �xed if it has
no heterozygous site. The haplotype that resolves it is called a �xed haplotype.

Other useful de�nitions involve the notion of compatibility between haplotypes and
genotypes.

De�nition 1.8 (Compatibility between haplotypes and genotypes). Let h1, h2 be hap-
lotypes and g1, g2 be genotypes representing the same set of SNPs. We say that:

1. h1 and g1 are compatible if for each position p such that g1p 6= 2 we have g1p = h1p,

2. g1 and g2 are compatible if g1p = g2p whenever they are both di�erent from 2 or,
equivalently, they have at least a compatible common haplotype.

De�nition 1.9 (Complementary haplotype). A haplotype h1 is the complementary of
h2 (and viceversa) with respect to a genotype g1 if h1 and h2 can be used together to
resolve g1.

From now on, we consider a set of m genotypes G = {g1, . . . , gm} made of n SNPs.
The set of all haplotypes that are compatible with at least one genotype of G is called
HG. The set of positions associated to SNPs is denoted by P = {1, . . . , n}. Given a
haplotype h, we denote with G(h) ⊆ G the subset of genotypes compatible with h.

1.3 Structure of the thesis and contributions

The thesis is divided into the following Chapters.
Chapter 2 brie�y presents the basic methodogical tools that will be used and

adapted in the modelling and solution approach proposed in this thesis, together with
the tools used for its implementation. In particular, Mixed Integer Linear Program-
ming, Decomposition methods and some well-studied optimization problems of interest
for this thesis will be introduced. We will also mention the software libraries SCIP and
Cplex, used to implement in the C++ computer language the algorithms developed in
the thesis.

Chapter 3 reviews the state of the art and makes an excursus on the di�erent MILP
approaches investigated in literature to solve haplotyping problems. After presenting
approaches for alternative haplotyping criteria, we focus on pure parsimony haplotyp-
ing and review the formulations of the HIPP problem that present a polynomial or
exponential number of variables.

In Chapter 4 we give in detail three di�erent formulations for HIPP. The �rst one
has a polynomial number of both constraints and variables and represents a slightly
improved version of a polynomial-size MILP model from the literature. The second one



6 CHAPTER 1. INTRODUCTION

presents a quadratic set of constraints. It has been reformulated using a Dantzig-Wolfe
decomposition to obtain the third formulation, an integer linear programming model
which, to the best of our knowledge, is the �rst one including an exponential number
of variables and a polynomial number of constraints. In this thesis we show how we
can obtain a solution approach whose performance is competitive with state-of-the-art
polynomial-sized formulations by applying decomposition methods.

Chapters 5 and 6 discuss how a branch-and-price approach can be devised to solve
the third MILP formulation.

Speci�cally, in Chapter 5 we investigate how to solve the linear relaxation of the
new HIPP formulation with a column-generation algorithm. We provide a heuristic
procedure to �nd a good initial solution, needed to build the initial model correspond-
ing to the Restricted Master Problem, and we propose several methods for solving the
pricing subproblem that yields the column to be added. To fasten the convergence of
the column-generation procedure, we derive a lower bound obtained from a Lagrangian
relaxation of our formulation and we apply a stabilization technique to smooth the
values of the dual variables used to solve the pricing subproblem. Our lower bound
de�nition is based on a di�erent relaxation with respect to the one usually applied in
stabilized column generation, and we need to extend the proof of convergence of our
stabilization approach so that dual feasible stabilized variables are allowed.

Chapter 6 discusses the branching procedure that allows us to recover variable in-
tegrality and, thus, solve HIPP. The branching strategy, which stems from observing
that the structure of formulation's constraint can be related to set-partitioning prob-
lems, can be seen as a generalization of the Ryan-Foster branching rule. The same
observation leads to an alternative way of solving the HIPP problem, where we solve
at �rst a relaxation corresponding to a set-covering formulation. This has the ad-
vantage of reducing the computational time, but the proposed branching stategy has
to be integrated with further branching rules, leading to the overall branch-and-price
algorithm described in the second part of the chapter.

In Chapter 7 we describe the implementation details that de�ne the overall branch-
and-price algorithm proposed for HIPP. Particular attention has been devoted to how
the branching constraints are embedded in the di�erent approaches for the pricing
subproblem, in such a way that their structure and their performance is preserved in
all the nodes of the branching tree.

Chapter 8 presents the computational results and discusses the performance of the
proposed branch-and-price algorithm on di�erent benchmarks from literature and on
a new class of large-size instances with increased number of genotypes. Results show
that the approach proposed in this thesis outperforms polynomial-size formulations on
the new benchmark.

Finally, Chapter 9 concludes the thesis by providing some �nal remarks and dis-
cussing future lines of research.



CHAPTER 2

Methodological and implementation tools

Di�erent Mixed Integer Linear Programs provide formulations for the HIPP problem
studied in this thesis. In particular, one amongst these formulations is suitable to
be solved by a branch-and-price approach, using column generation to solve linear
relaxations. In this chapter we give a brief introduction on what Linear and Integer
programming is, together with the most common procedures used to solve problems
modeled in such ways. Exhaustive presentation of these tools can be found in [11,
16, 30] among others. Moreover, an overview on column generation and the main
procedures used to improve the standard algorithm are presented, for example, in [34,
35].

We report in particular the row- and column-generation procedures, applied to solve
large size linear programs, and approaches to solve mixed integer linear programs such
as cutting plane method, branch-and-cut and branch-and-price. In the last section we
summarize some well studied problems that can occur as subproblems in the approach
that we will device for the HIPP problem.

2.1 Linear programming

A linear program (LP) is the description of an optimization problem that involves the
maximization or the minimizing of a linear function of continuous variables, subjected
to some constraints. As for the objective function, also the constraints are linear:

min
∑

i

cixi (2.1)

s.t.
∑

i

aijxi ≥ bj ∀ j (2.2)

xi ≥ 0 ∀ i (2.3)

An LP can be described in compact form by using matrix algebra. We represent the
coe�cients aij of the constraints with a matrix A, the known terms bj with a vector b

7



8 CHAPTER 2. METHODOLOGICAL AND IMPLEMENTATION TOOLS

(a) bounded feasible region (b) unbounded feasible region (c) empty feasible region

Figure 2.1: Feasible regions.

and the coe�cients of the objective function ci with a vector c:

min cTx (2.4)

s.t. Ax ≥ b (2.5)

x ≥ 0 (2.6)

All other linear programs can be transformed to take the shape (2.4)-(2.6).

If a vector x ≥ 0 satis�es the inequalities Ax ≥ b then it is called a feasible solution,
and if no other better solution can be found, x is also an optimal solution to the LP.
If the optimal solution does not exist, there are two cases: the problem is infeasible,
i.e. no feasible x exists, or unbounded, i.e. for every α < 0 there exists a feasible x
such that cTx < α.

The set of all feasible solutions is called the feasible region, and it can be seen as the
intersection of a �nite number of closed half-spaces, each one de�ned by a constraint
of the linear program. If this region is bounded, we call it a polytope, otherwise it is
called a polyhedron.

Example 2.1. We give a graphical interpretation of these concepts in Figure 2.1:
in sub�gure 2.1a we show a bounded feasible region, whose boundaries are de�ned by
the inequalities x + 2y ≤ 4.2, −x + y ≤ 1.5, x − 3y ≤ −12.6, x ≥ 0 and y ≥ 0,
in sub�gure 2.1b the feasible region is unbounded and described by −x + y ≤ 1.5,
2x− 3y ≤ 3, x ≥ 0 and y ≥ 0, while in sub�gure 2.1c the half-spaces −x+ y ≥ 1.5 and
2x− 3y ≥ 3 do not intersect, so that the feasible region is empty.

Given a polyhedron P , a vertex is a point x ∈ P that is not a convex combination
of any other two distinct points in P , that is, we cannot �nd x1, x2 ∈ P and λ ∈]0, 1[
such that x1 6= x2 and x = λx1+(1−λ)x2. According to the direction of the objective
function, a linear program that allows optimal solutions can either have a unique
optimal solution, obtained at a vertex of the polyhedron, or multiple optimal solution,
where at least one is achieved at a vertex, as seen in Figure 2.2: on the left of each
feasible region we show the direction in which the objective function improves and in
red the corresponding optimal solution(s).



2.1. LINEAR PROGRAMMING 9

(a) unique optimal solution (b) multiple optimal solutions

Figure 2.2: Unique and multiple optimal solutions.

2.1.1 The Simplex Method

There are di�erent algorithms that are used to solve a linear program. Among these,
the Simplex Method is widely used. It is an algorithm that proceeds by moving from a
vertex to another one of the feasible region, improving the value of the current solution,
until it reaches optimality. This method is largely used because of its features. It is
able to solve any linear program, it can be used to detect whether the problem is
infeasible or unbounded, it recognizes redundant constraints in the formulation and it
is able to handle problems with more than one optimal solutions [11].

The simplex method starts from a linear program in standard form, that is given
by:

min cTx (2.7)

s.t. Ax = b (2.8)

x ≥ 0 (2.9)

Note that every linear program can be transformed into standard form applying
straightforward operations on the rows of the linear system and on the objective func-
tion. This program is then re-written into the so-called tableau form. Consider an
m× n matrix A such that rank(A) = m (m ≤ n). A basis for A is a subset of indices
B ∈ {1, . . . , n} such that |B| = m and the square submatrix AB, obtained considering
only the columns whose indices are in B, is non-singular. Note that B allows us to
select a subset of m variables and the related columns that form matrix AB. Let
N = {1, . . . , n}\B. A basic solution associated with the basis B is the only solution
of Ax = b such that xN = 0 and xB = A−1

B b. Suppose, for ease of notation, that such
a basis is given by B = {1, . . . ,m}, so that A = (AB, AN ) and xT = (xTB, x

T
N ). This

means that x is feasible if and only if

xB = A−1
B b−A−1

B ANxN .

Thus, considering the value of the objective function z, we have z = cTx, or equiva-
lently z − cTBxB − cTNxN = 0. We obtain that

z − (cTN − cTBA
−1
B AN )xN = cTBA

−1
B b.



10 CHAPTER 2. METHODOLOGICAL AND IMPLEMENTATION TOOLS

Then, de�ning

ĀN = A−1
B AN ,

b̄ = A−1
B b,

c̄N = cN −AT
NA−1

B

T
cB = cN − ĀT

NcB

z̄ = cTBA
−1
B b

we get the tableau form:

min z min z

s.t. z − cTx = 0 ⇐⇒ s.t. z − c̄NxN = z̄

Ax = b xB + ĀNxN = b̄

x ≥ 0 x ≥ 0

The steps performed by the algorithm, once it is given a matrix A, vectors b and c and
a feasible basis B = {B[1], . . . , B[m]}, are shown in Algorithm 2.1.

Algorithm 2.1 Simplex Method

1: procedure Simplex(A, b, c, B)
2: compute the tableau associated to the basis B and the basic solution x̄,
3: if c̄ ≥ 0 then
4: x̄ is optimal. STOP.
5: else
6: choose k such that c̄k < 0,
7: if āik ≤ 0 for all i ∈ {1, . . . ,m} then
8: the problem is unbounded. STOP.
9: else

10: choose h ∈ {1, . . . ,m} such that āhk > 0 and h = argmin b̄h
āhk

,
11: set B[i] = k for i such that it was B[i] = h,
12: go back to Step 2,
13: end if
14: end if
15: end procedure

Thus, starting from a feasible solution, identi�ed by the initial basis B, the algorithm
looks for a variable that can potentially improve the value of the objective function,

based on the variable that reaches the minimum value for b̄h
āhk

. This new variable xk
replaces the chosen one xh and the basis B is updated so that B[i] ← B[i] for each
index i s.t. B[i] 6= h and B[i] ← k if we had B[i] = h. Variable xk is set to a value
such that we recover a feasible solution with equal or improved objective value. It

may happen that minh
b̄h
āhk

is not unique. In this case, selecting arbitrarily one of
the candidate variables we face a degenerate solution: when we compute the related
tableau, not only xh but also other variables still in the basis are set to value 0. At the
next iteration of the simplex method, this can lead to a change of basis that does not
change the objective function's value, thus a�ecting the convergence of the algorithm
to the optimal solution. This issue, that often occurs in practical problems, can be
overcome easily, for example by applying the following rule.



2.1. LINEAR PROGRAMMING 11

De�nition 2.1. Bland's rule [9]. Consider a prede�ned order on the variables indices
and, when choosing the variables for the change of the basis, always choose the ones
with minimum index.

Thus, convergence of the simplex algorithm is ensured by the facts that there are at
most

(

n
m

)

di�erent bases, the method never increases the value of the current solution
and Bland's rule ensures that, even if the algorithm visits degenerate basis, the same
basis will never be visited twice. It is possible then to prove that the Simplex Method,
when using Bland's rule, converges in at most

(

n
m

)

iterations. In practice, however, a
much smaller number of iterations su�ces to �nd the optimal solution [11].

2.1.2 How to deal with large-size LP models

While for small-size programs the Simplex Method is highly e�cient in practice, when
the size of the models increases it could become impractical, due to the huge amount of
data that needs to be stored, possibly exponential on the size of the input data. There
are two ways in which the size of a program can increase and become impractical: we
can have a large amount of constraints, that means that matrix A has a large number
of rows, or a large number of variables, so that matrix A has too many columns. The
literature describes di�erent strategies in order to deal with both these issues, allowing
to consider only a subset of important constraints or variables.

Row generation

Consider the case in which matrix A has a non-tractable number of constraints (as
an example, exponential with respect to the size of the problem's data). The idea
underlying the row generation method is that the same optimal solution can be reached
considering di�erent feasible regions for the same problem, as shown in Figure 2.3.
Given the direction in which the objective function improves, we can easily see in
Figure 2.3b that we do not a�ect the �nal solution of the problem by leaving out from
the description of the feasible region two half-spaces. It su�ces, then, to provide a tool
that discerns which constraints are su�cient to identify the optimum. As this cannot
be said a priori, in practice we need an oracle that, given a subset of the program's
constraints, tells us when no other constraints are missing or that provides a new
constraint to be added to the current set.

In order to reduce the number of constraints considered in the solution process, we
de�ne a subset of constraints described by A′x = b′, where A′ is a matrix containing a
subset of rows of A and b′ is a vector made of the entries of b corresponding to the rows
in A′. Notice that we can even start without any constraint. We give a sketch on how
row generation works in Algorithm 2.2. Every time we get an optimal solution x̃ of this
reduced model, we need to check whether x̃ is feasible for the original formulation or
if there is a constraint that is violated. In the �rst case, we can say that x̃ is optimal
and stop the algorithm, otherwise we add the found constraint and solve again the
resulting linear program.

The core point of this method is the detection of a procedure suitable for the role
of oracle, that strongly depends on the structure of the program and on the properties
of the particular constraints involved.



12 CHAPTER 2. METHODOLOGICAL AND IMPLEMENTATION TOOLS

(a) (b)

Figure 2.3: Di�erent feasible regions for same optimal solution.

Algorithm 2.2 Row Generation

1: procedure Row generation

2: build the linear program including only constraints A′x = b′,
3: solve the linear program and get the solution x̃ ,
4: if x̃ is feasible for the complete program then
5: set xOPT = x̃. STOP.
6: else
7: add a constraint contained in Ax = b that is violated by x̄,
8: go back to Step 3,
9: end if

10: end procedure

Column generation

Column generation, on the other hand, is applied when matrix A has a non-tractable
number of columns, so that the problem involves a great number of variables. In
this case, however, only few of these variables will assume a non-zero value in a basic
optimal solution and so it seems advisable to �nd a way of considering only the relevant
ones. As for the row generation method, the main idea of column generation consists in
considering at the beginning a reduced number of variables to which other necessary
variables are iteratively added. Also in this case, a procedure is needed that could
identify a new variable or say that no other variable is necessary, since we reached the
optimum.

In order to describe this approach we need to introduce some notions on duality. In
fact, for each linear program, that we call primal program, we can build another linear
program, called its dual, whose variables are associated to the primal constraints and
whose constraints are associated to the primal variables. Thus, looking for an extra
variable to be added to the primal program is equivalent to looking for a constraint to
be added in the dual.

Given a linear program with the notation of (2.4)-(2.6), its dual linear program
can be formulated following some simple rules: a maximization problem becomes a
minimization one and viceversa, while the sense of the constraints determines the sign
of the variables and viceversa, as in Table 2.1.

The de�nition of this dual program is such that the following theorems hold:



2.1. LINEAR PROGRAMMING 13

Primal Dual

min max
Aix ≤ bi πi ≤ 0
Aix = bi πi ∈ R

Aix ≥ bi πi ≥ 0

xj ≥ 0 Aj
Tπ ≤ cj

xj ∈ R Aj
Tπ = cj

xj ≤ 0 aj
Tπ ≥ cj

Table 2.1

Theorem 2.1 (Weak duality [11]). Given a primal program min{cTx : Ax ≥ b, x ≥ 0}
and its dual max{bTπ : ATπ ≤ b, π ≥ 0}, if the respective feasible regions are not
empty, then for every feasible x and π we have that

cTx ≥ bTπ.

Theorem 2.2 (Strong duality [11] ). Given a primal program min{cTx : Ax ≥ b, x ≥
0} and its dual max{bTπ : ATπ ≤ b, π ≥ 0}, if the respective feasible regions are not
empty and neither of the problems is unbounded, then there exist optimal x̄ and π̄ such
that

cT x̄ = bT π̄.

We describe now how these notions about duality are used in the column-generation
process. We de�ne the Restricted Master Problem RMP as the primal problem (2.4)-
(2.6) in which only a subset of variables has been considered. Suppose we solve the
RMP, and let π̃ be the values of the dual variables associated, that can be derived from
the last tableau obtained when using the simplex algorithm. Note that these values
are such that bT π̃ is equal to the value of the primal objective function. If π̃ is a vector
feasible for the dual, that has the form

(D) min bTπ (2.10)

s.t. ATπ ≤ c (2.11)

π ≥ 0, (2.12)

then it is also optimal, by the weak and strong duality properties. If it is not feasible,
instead, there is at least one constraint of the set (2.11) that is violated and can be
found solving the following problem, called the pricing problem:

(PP) min{ci − π̃ai : i ∈ {1, . . . , n}} (2.13)

where ai is the i-th column of matrix A. It is possible to look for such a constraint
by iterating over all variables the computation of the reduced costs ci − π̃ai. An
alternative way consists in formulating the pricing problem as an optimization problem,
for example as a MILP model, that exploits the structure of the primal variables and
gives as solution the minimum reduced cost.

In the case in which π̃ is dual infeasible, the minimum achieved is negative, thus
we found a violated dual constraint. This constraint is associated by construction to a



14 CHAPTER 2. METHODOLOGICAL AND IMPLEMENTATION TOOLS

primal variable xk, that does not appear yet in the RMP, so we can add it in order to
obtain a better solution. It can be easily seen that the column-generation procedure
for the primal program has been translated in a row generation approach for the dual.

We outline the column-generation procedure in the Algorithm 2.3. Note that this

Algorithm 2.3 Column Generation

1: procedure Column Generation

2: build the RMP from a subset of variables,
3: solve the RMP and get the solution z̃ and the associated dual variables π̃,
4: if π̃ is dual feasible then
5: set xOPT = z̃. STOP.
6: else
7: solve (P̄P) and �nd a variable xk to be added to the RMP,
8: go to Step 3,
9: end if

10: end procedure

procedure needs an initial feasible solution to start with. Usually, it is trivial to
provide such an initial solution that is arbitrarily far from the optimal one, but it is
also possible to apply more sophisticated heuristics to get a better starting point that
may help the convergence of the column-generation approach.

2.2 Mixed Integer Linear Programming

In the previous section we dealt with problems in which the variables are continuous,
but it is quite common to require integrality of some variables, as they can represent
undivisible units or alternative decisions. A Mixed Integer Linear Program is given by
a model of this type:

min cTx+ hT y (2.14)

s.t. Ax+Dy ≥ b (2.15)

x, y ≥ 0 (2.16)

x ∈ Z (2.17)

When all the variables are required to be integer, we have a pure integer linear program.
In the presence of integer variables, the simplex method can still be applied to

the linear relaxation of the problem, that consists simply in ignoring the integrality
constraints and considering as feasible region the set P = {(x, y) : Ax+Dy ≥ b, x, y ≥
0} instead of Q = {(x, y) : Ax +Dy ≥ b, x, y ≥ 0, x ∈ Z}. However, the solution we
get can be infeasible for the original problem, as there is no guarantee that variables
x are integer. This is due to the fact that the simplex method gives as solution the
optimal vertex of P , which is not guaranteed to be in Q. As we can see in Figure 2.4a,
the optimal solution returned from the linear relaxation is not feasible for the integer
problem. In this case, the simplex method can give only a lower bound on the real
optimal value of our problem.

In particular cases the optimal solution to a linear problem can be integral: if
the feasible region described by the constraints has integer vertices, we are sure that



2.2. MIXED INTEGER LINEAR PROGRAMMING 15

(a) (b)

Figure 2.4: Linear relaxation, convex hull and feasible solutions.

solution approaches such as the simplex method return an optimal solution feasible
for the integer case.

For example, a kind of matrices that guarantee this feature for the feasible regions
they de�ne are the so-called totally unimodular matrices, that are characterized by
having determinant equal to +1 or −1 for each of their square non-singular subma-
trix. When, on the other hand, the feasible region does not have integer vertices, the
integer optimal solution can be found as a vertex of a di�erent polyhedron, as seen
in Figure 2.4b, that is given by the set of points obtained as convex combination of
two any feasible points of Q. This polyhedron is called the convex hull of the feasible
points (conv(Q)) and has all vertices in Q, so that solving the linear relaxation of this
new formulation we get the feasible optimal solution. Thus, a �rst attempt at mak-
ing an e�ective use of the simplex method also for mixed integer problems consists in
providing the formulation of conv(Q).

We say that an inequality cx ≤ d is a valid inequality for Q if it is satis�ed by
every point of Q. We de�ne a face of a polyhedron (in this case conv(Q)) as the set
F = conv(Q) ∩ {x : cx = d}, being cx ≤ d a valid inequality for Q. A facet is a
face of dimension dim(conv(Q)) − 1. Thus, a formulation of conv(Q) is given by the
set of linear valid inequalities that de�ne its facets. However, this approach is often
impractical as there is not a known general method to recover the facets of conv(Q)
once we are given Q.

Thus, an alternative consists in the cutting plane approach, that adds suitable
inequalities (cuts) to the original formulation with the aim of providing a tighter
formulation for P , as close to Q as possible. When also this approach is not successful,
we proceed with a branching approach, that consists in dividing the feasible region
into two subsets whose union contains all the feasible mixed integer points. We now
see these two methods in details.

2.2.1 Cutting plane approach

Given the set Q, a cut for the set P is an inequality such that, if we add it to the set of
constraints de�ning P , no point of Q is left out while at least one point in P becomes
infeasible.

In order to tighten the feasible region given to the simplex method, we need to



16 CHAPTER 2. METHODOLOGICAL AND IMPLEMENTATION TOOLS

a
1st cutb

2nd cut

c

Figure 2.5: Cutting planes algorithm.

�nd such a cut. The procedure works as shown in Algorithm 2.4. In particular, if the
simplex method gives the optimal solution (x̃, ỹ) over the feasible region P and this
solution is not feasible for the mixed integer problem, we want to �nd a cut that is
able to separate (x̃, ỹ) from all the points in Q and hence from conv(Q).

Algorithm 2.4 Cutting Plane method

1: procedure Cutting plane

2: solve the linear program on P and get the solution (x̃, ỹ),
3: if (x̃, ỹ) ∈ Q then
4: (xOPT , yOPT ) = (x̃, ỹ). STOP.
5: else
6: �nd a cut αx+ γy ≤ β ,
7: update P to P ∩ {αx+ γy ≤ β},
8: repeat from Step 2,
9: end if

10: end procedure

The crucial point of a cutting plane procedure is the separation problem needed to
perform Step 6, as there are in�nite cuts that separate (x̃, ỹ) and standard routines
that provide feasible cuts do not guarantee to return strong valid inequalities, that is,
facet-de�ning inequalities. This approach strongly depends on the formulation of the
particular problem.

We illustrate in Figure 2.5 the behaviour of a cutting plane algorithm: we denote
with a the �rst solution obtained by solving the linear relaxation. Then, adding the
�rst cut we can possibly reach b (note that due to the direction of the objective
function, there is another suitable vertex to be chosen, but in any case the solution
is not integer) and with the second cut we reach c, that is still not integral, so it is
possible to keep looking for suitable cuts to be added to te feasible region's description.

Note that the addition of a cut that separates the current optimal solution produces
a solution whose value is closer to the optimal one, even if we do not reach the optimal
solution itself. It means that we produced a better lower bound.

2.2.2 Branch-and-cut approach

Branching is another way of dealing with integer variables and it is based on a simple
idea: suppose xi is an integer variable that takes a fractional value α in the solution



2.2. MIXED INTEGER LINEAR PROGRAMMING 17

(a) (b)

Figure 2.6: branching on an integer variable.

of the linear relaxation. As this makes the solution infeasible for the original problem,
we can force xi to take either a value less or equal to bαc or greater or equal to bαc+1.
This means that we are splitting the feasible region into two polyhedra, whose union
contains the optimal integer solution but not the solution of the linear relaxation,
as can be seen in Figure 2.6b. At this point, we reoptimize over the two di�erent
polyhedra and take the best solution found. Note that while the solution found is
integer-infeasible, we keep on branching on di�erent variables.

This recursive procedure can be represented using a tree structure, where each node
branches into two nodes, each of which is associated with a portion of the feasible region
in which we divided the original one. The solution's value at the parent node is a lower
bound (for minimization problems) to the best feasible solution that can be achieved
from a particular node downwards. The optimal solution is found at a leaf of this
branching tree, as we stop the branching when we get a feasible solution for the mixed
integer program. There are other two reasons that allow us to stop the branching:
when the problem at that node is infeasible, or when the lower bound at that node is
greater than the value obtained by any feasible solution. If one of these three scenarios
is found, we can say that we prune the current node, i.e. we are not creating other
subtrees starting from it.

Given the importance of computing a good lower bound to prune and reduce the
number of nodes to inspect, it can be useful to combine the branching and cutting plane
approaches, obtaining the so called branch-and-cut algorithm, shown in Algorithm 2.5.

In this approach, given a node t that cannot be pruned, we �rst look for strenghtening
cuts, so that we may be able to improve the lower bound at that node and �nd a
feasible optimal solution for the current node. Then, if the solution is still not feasible
for the integer problem, we branch and create the child nodes.

Ryan and Foster branching scheme

Introducing constraints on integer variables taking fractional values is the most straight-
forward way of applying a branching procedure, but we can de�ne a more general ap-
proach, in which instead of identifying a fractional variable to be forced to be integer,
we recover two inequalities αx+ βy ≤ η and αx+ βy ≥ σ such that Q ∩ {(x, y) : η <
αx+ βy < σ} is empty. Thus, the feasible region Q can be partitioned in the regions



18 CHAPTER 2. METHODOLOGICAL AND IMPLEMENTATION TOOLS

Algorithm 2.5 Branch-and-cut

1: procedure Branch-and-cut
2: consider (2.14)-(2.16) as root node of the branching tree,
3: let P be the feasible region, z? the current best solution's value,
4: while there are unexplored nodes t do
5: select one of these nodes t,
6: if the program in t is infeasible then
7: prune t,
8: else
9: solve the linear program in t. z̃ is the objective value,

10: if z̃ ≥ z? then
11: prune t,
12: else if x ∈ Z then
13: prune t,
14: if z̃ < z? then
15: update z? = z̃,
16: end if
17: else
18: improve the current lower bound adding cutting planes to P ,
19: if any cut is added, repeat from Step 9
20: select a variable xi = α fractional and create two child nodes:
21: update P to P ∩ {xi ≤ bαc} for the left child,
22: update P to P ∩ {xi ≥ bαc+ 1}for the right child,
23: end if
24: end if
25: end while
26: end procedure

Q ∩ {(x, y) : αx + βy ≤ η} and Q ∩ {(x, y) : αx + βy ≥ σ}. A well-known example
of such an approach can be found in [45], applied to problems with a set-partitioning
structure.

Suppose we have a set of elements i ∈ I, subsets J ∈ S ⊆ P(I) and a set-
partitioning program

min cTx (2.18)

s.t.
∑

J∈S

δJi xJ = 1 ∀ i ∈ I, (2.19)

xJ ∈ {0, 1} ∀J ∈ S (2.20)

where δJi is equal to 1 if element i is in subset J and 0 otherwise.

Ryan and Foster [45] noticed that, for any feasible integer solution, a pair of con-
straints (2.19) can be either ful�lled by the same variable xJ̄ or by di�erent variables,
so that the sum of the values of variables contained in both constraints is integer. In
particular, it holds:

Theorem 2.3 ([45]). In every fractional solution of the set-partitioning linear program,



2.2. MIXED INTEGER LINEAR PROGRAMMING 19

there must exists at least a pair of constraints (h, l) for which

0 <
∑

J∈S

δJhδ
J
l xJ < 1

Moreover, the contrary also holds: if such sum is integer for any pair of constraints,
the solution results to be integer. Thus, the branching strategy they proposed consists
in checking whether at the current node there exists such a pair (h, l) and in branching
imposing this sum to be either less than or equal to 0 if the constraints are ful�lled
by di�erent variables or greater than or equal to 1 otherwise. One node's child is then
obtained adding to the current formulation the inequality

∑

J∈S

δJhδ
J
l xJ ≤ 0 (2.21)

while the other is obtained adding

∑

J∈S

δJhδ
J
l xJ ≥ 1. (2.22)

Note that these conditions are actually satis�ed as equalities, provided we also consider
the set-partitioning constraints.

2.2.3 Branch-and-cut-and-price approach

When dealing with a large-scale mixed integer problem in which the number of vari-
ables is huge and we need to use a column-generation procedure, applying the branch-
and-cut algorithm presented above is not enough to ensure we get the optimal solution.
In fact, we recall that the column-generation method ends before generating all the
possible variables, so when we branch and we face a new linear program, it is possible
that involving some of the missing variables yields a better solution. Thus, the proce-
dure described in the previous section should be slightly modi�ed: we need to ensure
that a node is infeasible only if it would be infeasible for the complete program and
not only for the RMP, and we need to keep looking for further variables to be added
throughout the branching tree.

Given a node of the branching tree, its feasible region is the one of the parent node
intersected to the branching constraint. The addition of this constraint can have two
e�ects: it does not interfer with the feasibility of the problem, so that we are still
able to �nd a starting feasible solution from which we look for variables with negative
reduced cost, or it can make the problem infeasible. In this second case, we cannot say
right away that the node can be pruned by infeasibility, as there can be some missing
variables allowed at the node that make the problem feasible again. However, the
column-generation method cannot even start, as it requires an initial feasible solution.
Such feasible solution has to be recovered and we proceed as follows, exploiting the
well-known Farkas lemma, which provides a simple necessary and su�cient condition
for the existence of a solution of a system of linear inequalities.

Lemma 2.1 (Farkas' Lemma [16] ). A system of linear inequalities Ax ≤ b is infeasible
if and only if the system πA = 0, πb < 0, π ≥ 0 is feasible.



20 CHAPTER 2. METHODOLOGICAL AND IMPLEMENTATION TOOLS

Although this result is well known, we propose here its proof taken from [16] as it is
useful for what follows.

Proof. Assume πA = 0, πb < 0, π ≥ 0 is feasible.Then 0 = πAx ≤ πb < 0 for any x
satisfying Ax ≤ b. Then Ax ≤ b is infeasible.

On the other way, assume that Ax ≤ b has no solution. Apply the Fourier-Motzkin
elimination to Ax ≤ b to eliminate all variables x1, . . . , xn. It consists in iteratively
chosing a variable xj , partitioning the rows of A according to whether aji is less than,

equal to or greater than 0 and then, after normalizing all aji to 1, 0, −1, adding between

themself each pair of rows h, k such that ajh = 1 and ajk = −1. Then, the new system

of inequalities includes all the original ones with aji = 0 and all the new ones, that also

result in having aji = 0, thus in the new system xj does not appear.
Now, the system obtained A0x ≤ b0 has the form 0 ≤ b0 and the system Ax ≤ b has
a solution if and only if all the entries of b0 are nonnegative. Since, by hypothesis,
that system has no solution, b0 must have a negative entry, let's say b0i < 0. As
every inequality of 0 ≤ b0 is a nonnegative combination of inequalities of the original
system, there exists a vector π ≥ 0 such that 0 ≤ b0i is identical to πAx ≤ πb. That
is, π ≥ 0, πA = 0, πb = b0i < 0 is feasible.

In other words, Lemma 2.1 states that if the RMP is infeasible, then the dual is
unbounded (if not infeasible) and for every α > 0, απ belongs to the feasible region.
This means that the vector π is a ray in the dual. Thus, to recover a feasible RMP we
want to add a variable with coe�cient column aj such that πaj > 0. Such a variable
can be found by solving the so-called Farkas pricing problem

max
i∈{1,...,n}

{π̃ai} = min
i∈{1,...,n}

{−π̃ai}, (2.23)

where the dual ray π̃ can be provided by the simplex method in case of an infeasible
program. Note that this results in being the pricing problem (2.13) described in
Section 2.1.2 itself, except that we are considering cost coe�cients ci = 0 for all
i ∈ {1, . . . , n}.

If the Farkas pricing does not �nd a variable xi such that πaj > 0, we can conclude
now that the problem at this node is infeasible. Otherwise, we add to the RMP
the variable obtained and repeat the Farkas pricing until we get a feasible RMP.
Then, solving the usual (PP ) we recover those variables that where not considered
at the parent node but, due to the extra branching constraint, are needed now. Note
that, as the RMP at each node possibly contains more variables, the dual has more
constraints. So, the PP must be updated at each node to prevent the generation of
variables associated to constraints already present in the dual or variables that are
forbidden due to the extra branching conditions. This means that the choice of the
branching rule in a branch-and-price approach is not separated from the design of the
procedure used to solve the pricing problem, that should preserve its performance even
after embedding the branching constraints.

2.3 Lagrangian relaxation

It is quite common to incur in Mixed Integer Linear Programs presenting a feasible
region that consists of a set of easy constraints and a remaining set of complicating



2.3. LAGRANGIAN RELAXATION 21

constraints. This means that, without the complicating constraints, the problem could
be easily solved to optimality. Given rational matrices A and E, and rational vectors
b and d, consider a program in the form:

min cx (2.24)

s.t. Ax ≤ b (2.25)

Ex ≤ d (2.26)

xi ∈ Z ∀i ∈ I ⊆ {1, . . . , n} (2.27)

x ∈ R
n (2.28)

where the system Ax ≤ b represents the complicating constraints. A typical example
is that of separable constraints Ex ≤ d: the problem would decompose in a number
of smaller and independent problems if it were not for the presence of the linking
constraints Ax ≤ b. Let Q = {x ∈ R

n : Ex ≤ d, xi ∈ Z, i ∈ I}. We de�ne the
Lagrangian relaxation as the following problem:

(LR(λ)) zLR(λ) = min
q∈Q

cx− λ(b−Ax) (2.29)

where λ ≥ 0 is a vector of dimension the rows of A. It can be proven that this problem
is a relaxation of the original one, in the sense that it can be considered as a way of
obtaining a lower bound on the optimal solution's value.

Proposition 2.1 ([16]). Let zOPT be the optimal solution of (2.24)-(2.28). Then
zLR(λ) ≤ zOPT for every λ ≥ 0.

Proof. Assume a feasible solution of (2.24)-(2.28) exists and let x̄ one of these solutions.
Since x̄ ∈ Q, x̄ is feasible for the lagrangian relaxation and, as Ax ≤ b and λ ≥ 0, we
have zLR(λ) ≥ cx̄+ λ(b−Ax̄) ≥ cx̄ = zOPT .

The tightest upper bound that we can get in this way is given by

zLD = min
λ≥0

zLR(λ), (2.30)

that is called the lagrangian dual of the original problem.
The lagrangian dual can be rewritten in the following way, that states how it can

be seen as a partial convexi�cation of the original feasible region.

Theorem 2.4 ([16]). Assume {x : Ax ≤ b, x ∈ conv(Q)} 6= ∅. Then zLD = max{cx :
Ax ≤ b, x ∈ conv(Q)}

Proof. Since Ex ≤ d is a rational system, conv(Q) is a rational polyhedron, that we
assume is described by the system Fx ≤ g. Since Q 6= ∅, by linear duality zLR(λ) =
max{cx+ λ(b−Ax) : Fx ≤ g} = min{λb+ µg : µF = c− λA, µ ≥ 0} for all λ ≥ 0. It
follows that zLD = minλ≥0 zRL(λ) = min{λb+ µg : λA+ µF = c, λ ≥ 0, µ ≥ 0}, that
is the dual of max{cx : Ax ≤ b, Fx ≤ g}. Their optimal values coicide as the primal
is feasible by assumption.

Let zLP be the optimal value of the linear relaxation of (2.24)-(2.28). It can be
proved that the lagrangian dual gives a dominating lower bound.



22 CHAPTER 2. METHODOLOGICAL AND IMPLEMENTATION TOOLS

Corollary 2.1 ([16]). zOPT ≤ zLD ≤ zLP .

Proof. conv({x ≥ 0 : Ax ≤ b, Ex ≤ d, xi ∈ Z i ∈ I}) ⊆ conv(Q)∩ {x ≥ 0 : Ax ≤ b} ⊆
{x ≥ 0 : Ax ≤ b, Ex ≤ d}, so maximizing the same objective function cx over these
sets gives the statement.

2.4 Dantzig-Wolfe decomposition

Another possible way of dealing with complicating constraints consists in reformulating
the original problem using di�erent variables. We still consider a program in the form
(2.24)-(2.28) and the set Q = {x ≥ 0 : Ex = d, xi ∈ Z, i ∈ I}. Now, let {vk}k∈K
be the set of vertices of conv(Q) and {rh}h∈H the set of its extreme rays. Every
point in conv(Q) can be written as a convex combination of its vertices plus a conic
combination of its extreme rays, meaning that every x ∈ conv(Q) can be written as

x =
∑

k∈K

αkv
k +

∑

h∈H

βhr
h where

∑

k∈K

αk = 1, αk ≥ 0 ∀ k ∈ K, βh ≥ 0 ∀h ∈ H.

We can thus rewrite the partially convexi�ed problem

max{cx : Ax ≤ b, x ∈ conv(Q)}

in the form

max
∑

k∈K

(cvk)αk +
∑

h∈H

(crh)βh (2.31)

s.t.
∑

k∈K

(Avk)αk +
∑

h∈H

(Arh)βh ≤ b (2.32)

∑

k∈K

αk = 1 (2.33)

α ≥ 0, β ≥ 0 (2.34)

obtaining the formulation for the Dantzig-Wolfe relaxation. We can recover a reformu-
lation for the mixed integer problem imposing the integrality conditions

∑

kinK

vki αk +
∑

h∈H

rhi βh ∈ Z for i ∈ I.

Note that this reformulation has the advantage of possibly breaking the compli-
cating structure of the constraints. It has however the drawback of presenting a large
number of variables, that makes impractical to consider them all together. A branch-
and-price approach is then suitable to solve the reformulated problem.

2.5 Some well-studied optimization problems

In this section we present a selection of well-studied problems that will be useful for
building the branch-and-price framework we present in the following chapters, as they
have to be solved as subproblems.



2.5. SOME WELL-STUDIED OPTIMIZATION PROBLEMS 23

2.5.1 Selection problem

Consider a set of elements N , each of them with cost cn ≥ 0, n ∈ N and a collection
Σ of subsets of elements of N with a pro�t of pσ ≥ 0, σ ∈ Σ. A selection problem
consists in selecting a number of elements in Σ such that the total pro�t minus the
costs is maximum. A formulation for this problem is the following:

max
∑

σ∈Σ

pσyσ −
∑

n∈N

cnxn (2.35)

s.t. xn ≥ yσ ∀ σ ∈ Σ, ∀ n ∈ σ (2.36)

xn, yσ ∈ {0, 1} ∀ n ∈ N, ∀ σ ∈ Σ (2.37)

We build a bipartite network in the following way: consider a source s and a sink t, a
�rst set of nodes representing the subsets σ ∈ Σ and the second set representing the
elements of N . We connect all nodes of the �rst set with the source, with directed arcs
of capacities pσ, all other nodes with the sink, with directed arcs of capacities cn and
put arcs with in�nite capacity between pairs (σ, n) if n ∈ σ.

Given a set of nodes S, we de�ne δ+(S) the subset of those arcs that have tail
in S and head outside S. An s-t cut is a subset of arcs Γ of the described network
such that, given a subset of nodes S that contains the source s but not the sink t,
Γ = δ+(S). The capacity of the cut is given by the sum of the capacities of the arcs
in Γ. The minimum cut problem aims at �nding the cut that has minimum capacity.

In [4] an explanation on how a selection problem can be solved as a minimum cut
problem on the described bipartite network has been provided. The following result
holds.

Lemma 2.2 ([4]). There is a one-to-one correspondence between cuts containing no
arcs with in�nite capacities and selections.

But we can say something better:

Lemma 2.3 ([4]). The minimum cut corresponds to the selection of maximum value.

Proof. Consider a minimum cut that partitions the set of nodes into the two subsets
(Γ, T ) and (Γ̄, T̄ ) and let (Γ′, T ′), (Γ̄′, T̄ ′) be any other cut. As no arc of in�nite
capacity can belong to the cut, the values of the cuts are related by

∑

σ∈Γ̄

pσ +
∑

n∈T

cn ≤
∑

σ∈Γ̄′

pσ +
∑

n∈T ′

cn

As
∑

σ∈Γ pσ +
∑

σ∈Γ̄ pσ =
∑

σ∈Γ′ pσ +
∑

σ∈Γ̄′ pσ we have that the associated values for
the selections are

∑

σ∈Γ

pσ −
∑

n∈T

cn =
∑

σ∈Γ′

pσ +
∑

σ∈Γ̄′

pσ −
∑

σ∈Γ̄

pσ −
∑

n∈T

cn ≥

≥
∑

σ∈Γ′

pσ +
∑

n∈T

cn −
∑

n∈T ′

cn −
∑

n∈T

cn =

=
∑

σ∈Γ′

pσ −
∑

n∈T ′

cn

that proves the lemma.



24 CHAPTER 2. METHODOLOGICAL AND IMPLEMENTATION TOOLS

This proves that it is possible to solve selection problems by solving an associated
minimum cut problem, that is equivalent to a maximum �ow problem, for which we
have strong combinatorial algorithms as Ford-Fulkerson methods.

Maximum �ow/minimum cut on networks

Given a digraph (V,D), made of a set of nodes V and directed arcs D, and given two
nodes s, t, an s-t �ow is a non-negative assignment of values xa for each a ∈ D such
that the amount of �ow entering a node equals the �ow that exits from that node,
except for the source s and the sink t. Thus, any �ow satisfyes the equalities

∑

a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = 0 ∀ v ∈ V \{s, t}

where we denote with δ−(v) the set of directed arcs having node v as head and δ+(v)
the set of nodes having it as tail. From these constraints, we derive that the total
amount of �ow leaving from s is the same entering the sink t.

Moreover, we can associate to each arc a capacity ca, a ∈ D that �xes the maximum
amount of �ow that can go through the arc. We de�ne then the maximum �ow problem
as that of �nding the maximum value of an s-t �ow f(x) that does not exceed the arc
capacity, with the following formulation:

f(x) = max
∑

a∈δ+(s)

xa −
∑

a∈δ−(s)

xa (2.38)

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = 0 ∀ v ∈ V \{s, t} (2.39)

0 ≤ xa ≤ ca ∀a ∈ D (2.40)

Note that, if the capacities are all integer numbers, the matrix describing the program
constraints is totally unimodular, so that to solve the integer �ow problem it simply
su�ces to solve its linear relaxation.

On the same network we also look for a cut of minimum capacity. In particular,
the following result holds:

Theorem 2.5 (Max-Flow Min-Cut Theorem [16]). Given a digraph (V,D), two nodes
s and t and capacities ca, a ∈ D,

max{f(x) : x is a feasible s-t �ow} = min{c(Γ) : Γ is an s-t cut}

We want to solve the �ow problem using an algorithm that exploits the combina-
torics behind the �ow network. We introduce a new network, the residual graph (V, D̄)
associated to an s-t �ow, that has the same set of nodes of the original network and
where the set of arcs is determined starting from the �ow. Let a ∈ D be an arc going
from node u ∈ V to node v ∈ V , then we denote with ā the arc going from v to u.
Thus, D̄ is de�ned as the set of arcs

{a ∈ D : xa < ca} ∪ {ā : a ∈ D,xa > 0}.

It can be proved that a feasible �ow is maximum if and only if the residual graph
contains no path going from s to t. If such a path exists, it is called an augmenting



2.5. SOME WELL-STUDIED OPTIMIZATION PROBLEMS 25

path, as it can be used to increase the total �ow and improve the current solution. This
fact provides the idea underlying the well known Ford-Fulkerson methods for solving
a maximum �ow / minimum cut problem.
Note that there are several ways of choosing an augmenting path, one of the easiest
consists in looking for such a path on the residual graph. This choice proves to be
useful to recover the solution for the minimum cut problem, that can be done looking
at the residual graph: one optimal subset of nodes S is given by all the nodes that can
be reached from the source s, and then the optimal solution is obtained selecting the
arcs in δ+(S).

2.5.2 Knapsack problem

This classical problem in Integer Programming has been widely studied both because
of its simple structure, that allows to exploit several combinatorial properties, and
because it often appears as subproblem in other di�cult problems. A complete survey
on the structure of the problem, that results to be weakly NP-hard, and solution
methods can be found in [37]. Given a knapsack of �xed capacity C and n types of
objects with integer weights pi ≤ C and utility ci, with i ∈ {1, . . . , n}, the problem
consists in maximizing the total utility of the objects we can pack into the knapsack
without exceeding the capacity C. The straightforward formulation for this problem
is:

max
n
∑

i=1

cixi (2.41)

s.t.
n
∑

i=1

pixi ≤ C (2.42)

x ∈ Z
n (2.43)

where xi records how many units of object i can be loaded.
Important variants to this model include the case in which at most one item of

each type can be selected, leading to the formulation of the 0/1 knapsack problem,
where the feasible region becomes

x ∈ {0, 1}n.

It is quite trivial to solve the linear relaxation of this problem: it su�ces to reorder
the items in an increasing way according to pi

ci
and then set xi = 1 for i ∈ {1, . . . , k}

in the new order, where k is the index such that

k
∑

i=1

pi ≤ C but
k+1
∑

i=1

pi > C,

and xk+1 =
C−

∑k
i=1

pi
pk+1

.
From this we can recover a straightforward greedy algorithm that gives an approx-

imation of the optimal integer solution taking as the optimal value z̃ the maximum
between

∑k
i=1 ci and ck+1 and respectively the solution obtained setting xi = 1 for

i ∈ {1, . . . , k} or xk+1 = 1.



26 CHAPTER 2. METHODOLOGICAL AND IMPLEMENTATION TOOLS

Notice that, supposing ci = 1 for all i ∈ {1, . . . n}, when applying the greedy
algorithm, the variables result ordered increasingly with respect to their weights. In
this case, the solution obtained with the greedy algorithm is also the optimal solution,
given by xi = 1 for i ∈ {1, . . . , k}. On the other hand, if this condition on the
coe�cients ci, i ∈ {1, . . . , n} does not hold, the greedy algorithm described above is a
2-approximation for the knapsack problem [30].

2.5.3 Set-partitioning and set-covering problems

Set-partitioning and set-covering constraints are classical families of constraints that
aim at subdividing sets of elements into subsets satisfying speci�c requirements. Con-
sider a setN of elementsN = {1, . . . , n} and a family of subsets ofN , F = {F1, . . . , Fm}.
The set-partitioning constraints aim at selecting among F subsets such that each ele-
ment in the set N belongs to exactly one subset. They are de�ned as follows:

m
∑

j=1
i∈Fj

xj = 1 ∀ i ∈ N (2.44)

where xj , j ∈ {1, . . . ,m} are variables that assume value 1 if we select the subset Fj , 0
otherwise. The set -covering constraints, instead, identify a collection of subsets in F
such that each element belongs to at least one subset. Formally, considering the same
variables as above, they are de�ned as:

m
∑

j=1
i∈Fj

xj ≥ 1 ∀ i ∈ N (2.45)

Introducing costs cj ≥ 0 on the subsets Fj , we can formulated the associated
set-partitioning problem:

(SP) min

m
∑

j=1

cjxj (2.46)

s.t.
m
∑

j=1
i∈Fj

xj = 1 ∀ i ∈ N (2.47)

xj ∈ {0, 1} ∀j ∈ {1, . . . ,m} (2.48)

and set-covering problem:

(SC) min

m
∑

j=1

cjxj (2.49)

s.t.
m
∑

j=1
i∈Fj

xj ≥ 1 ∀ i ∈ N (2.50)

xj ∈ {0, 1} ∀j ∈ {1, . . . ,m} (2.51)



2.6. IMPLEMENTING TOOLS: SCIP AND CPLEX 27

Note that, as the set F can possibly contain all possible subsets of elements of
N , we have an exponential number of elements Fj and, thus, of variables xj . A
column-generation method is then a suitable approach to deal with the huge number
of variables and �nd the solution of the linear relaxation of both (SP) and (SC), to be
embedded in a branch-and-price approach. Recall that in Section 2.2.2 we presented
Ryan-Foster branching strategy for set-partitioning constraints.

In [5] it is shown how, in many applications that require a set-partitioning structure,
it can be advisable to consider instead a set-covering formulation. Depending on the
problem addressed, in fact, it may be straightforward to recover the optimal solution
to the set-partitioning problem from the optimal set-covering one. Besides, the set-
covering linear relaxation is usually numerically more stable.

2.6 Implementing tools: SCIP and CPLEX

SCIP (Solving Constraint Integer Programs) is a framework for solving constraint in-
teger programs and has been developed since 2001 at the ZIB (Zuse-Institute Berlin)
[1, 24]. It provides a very �exible environment for solving branch-and-bound based
search algorithms, integrating together four di�erent methodologies in optimization:
Mixed -Integer Linear Programming, Satis�ability Solving, Constraint Programming
and Mixed Integer Non-linear Programming. SCIP has a plugin-based design, that
consists in external user de�ned callback objects that interact with the main frame-
work. In this way, it is possible to implement:

1. variable pricers to dinamically create problem variables,

2. cut separators to apply cutting planes to the LP relaxation: some well known
families of cuts, such as mixed integer rounding cuts, Gomory mixed integer cuts
or clique cuts are already implemented, but also user-de�ned cuts can be added,

3. primal heuristics to search for feasible solutions, so that we can possibly prune
branches of the search tree by bounding,

4. node selectors to guide the search,

5. branching rules to split the problem into subproblems, where an arbitrary number
of children per node can be created,

6. constraints handlers for dealing with user-de�ned constraints: together with a
general linear constraints handler, we can �nd speci�c ones, as the knapsack
constraint or set-partitioning constraint handlers, that can exploit the special
structure of these constraints,

7. and many others.

We want to point out, moreover, that SCIP is one of the fastest non-commercial solvers
for mixed integer programming and mixed integer nonlinear programming, as shown
in Figure 2.7, and that its performance can be improved by using CPLEX as solver
instead of the default, non-commercial SoPlex.



28 CHAPTER 2. METHODOLOGICAL AND IMPLEMENTATION TOOLS

Figure 2.7: SCIP performance compared with commercial and non-commercial solvers
[24].

IBM ILOG CPLEX Optimizer [18] provides �exible and high-performance solvers
for linear, mixed integer, quadratic and quadratically constrained programming prob-
lems.

CPLEX allows to choose between di�erent algorithms that are used to solve linear
or quadratic programs with continuous variables:

1. Simplex Optimizer : it includes primal method, dual method and a network op-
timizer especially suited for pure network problems,

2. Barrier Optimizer : it provides an alternative to the simplex method and it
o�ers a particularly e�cient approach on large, sparse problems (for example,
more than 100 000 rows or columns, and no more than perhaps a dozen nonzeros
per column) and sometimes on other models as well,

3. Sifting Optimizer : it was developed to exploit the characteristics of model with
large aspects ratio (that is, a large ratio of the number of columns to the number
of rows). In particular, the method is well suited to large aspect ratio models
where an optimal solution can be expected to place most variables at their lower
bounds.

The Mixed Integer Optimizer instead provides fast and robust solutions to the most
di�cult mixed integer programs using a branch and bound technique integrated with
cutting-edge strategy.



CHAPTER 3

State of the Art

The Haplotype Inference by Pure Parsimony (HIPP) problem we de�ned in Chapter 1
of this thesis is a particular case of a more general problem called Haplotype Inference,
that consists in �nding a set of haplotypes that is able to resolve a set of given geno-
types. In the literature we �nd di�erent problems related to it: the shared aim is that
of �nding haplotypes that resolve the given genotypes, but they eventually consider
di�erent extra conditions on the haplotypes. For example, the Perfect Phylogeny prob-
lem requires in addition that the haplotypes selected have an evolutionary history that
can be represented by an appropriate rooted tree. Alternatively, the HIPP problem
requires the set of haplotypes to have the minimum cardinality. In this chapter we re-
view the di�erent versions of the HIPP problem and the di�erent solution approaches,
including both exact methods and heuristics.

3.1 Haplotype Inference in literature

3.1.1 The Maximum Resolution Problem

Note that, given a set of m genotypes G, it is always possible to �nd a feasible solution
to the Haplotype Inference problem that consists at most in 2m haplotypes. The
�rst version of the Haplotype Inference problem that has been introduced in literature
is the Maximum Resolution Problem (MRP) [15]. It does not give any particular
constraint on the features that the involved haplotypes should have, but it simply
aims at �nding the maximum number of genotypes in the set G that can be resolved
following the Clark's Inference rule, proposed in [15] and sketched in Algorithm 3.6.
First, the procedure identi�es the genotypes in the given set that contain at most
one heterozygous site: these genotypes are trivially resolved, as they allow at most one
possible pair of haplotypes resolving them, that are referred to as �xed haplotypes (see
De�nition 1.7). The set of haplotypesH used to resolve genotypes inG is initially set to
contain these �xed haplotypes. Then, given a genotype with at least two heterozygous
sites, the rule tries to resolve it using at least one haplotype in H and deriving its
complementary. If this latter haplotype is not already contained in H, it adds it to H

29



30 CHAPTER 3. STATE OF THE ART

and proceeds to another genotype. The application of this rule to all the genotypes
considered in a prede�ned order yields a procedure that gives a feasible solution to the
MRP.

Algorithm 3.6 Clark's heuristic [15]

1: procedure Clark(G)
2: let Ḡ = G be the set of unresolved genotypes,
3: let H = ∅ be the set that contains the haplotypes considered so far,
4: for g in Ḡ do
5: if g is �xed then
6: add it to H as �xed haplotypes and remove it from Ḡ,
7: end if
8: end for
9: for g in Ḡ do

10: look for a haplotype h ∈ H compatible with g,
11: if h is found then
12: compute the complementary one h̄ w.r.t. g,
13: if h̄ /∈ H then and add it to H,
14: end if
15: delete g from Ḡ
16: end if
17: end for
18: end procedure

If, at the end of the algorithm, Ḡ is empty, there are no unresolved genotypes
and the haplotypes in set H constitute an optimal solution of the MRP. There is no
guarantee that this algorithm is able to resolve all the genotypes as, for example, it
cannot even start if no �xed haplotypes are found. This event, however, is assumed
to have a very low probability when dealing with realistic samples of human DNA.
More likely, it can happen that only a portion of the genotypes is resolved by the set
H obtained. Notice that the set H can sensibly vary according to the order chosen
for the genotypes. The algorithm should then be applied considering every possible
ordering, so that it reaches better solutions.

It is proved that this problem is NP-hard and Maximization Strict-NP complete
(Max-SNP complete), meaning that there is a �xed limit on the accuracy of every
polynomial-time approximation method for this problem [27].

3.1.2 Perfect Phylogeny Haplotyping

As we already pointed out, the MRP does not take into account any biological assump-
tion, that are useful in leading the algorithms to build a plausible solution. On the
contrary, the Perfect Phylogeny Haplotyping (PPH) aims at resolving the m genotypes
contained in a set G taking into account two extra assumption on the nature of the
sought haplotypes. One of these is the assumption, considered for example in [26],
according to which the evolutionary history of 2m haplotypes (two for each genotype)
can be represented by a coalescent, a rooted tree in which the root is labeled with a
0-vector of length n, where n is the number of considered SNPs, the leaves represent



3.1. HAPLOTYPE INFERENCE IN LITERATURE 31

haplotypes and the edges between two nodes represent the switch of a site value from
0 to 1. In this way, the unique path from the root to one leaf shows exactly which sites
have value 1. The in�nite-site assumption is also made, which states that, due to the
relatively small time horizon of interest considered, at each site at most one mutation
occurs. The link between this representation of 2m haplotypes and a solution to the
Haplotype Inference problem lay in the fact that the haplotypes can be seen as the
single chains that, once paired, resolve the m genotypes we are considering.

The two given assumptions can be summarized saying that the 2m haplotypes can
be explained by a perfect phylogeny :

De�nition 3.1 ([26]). Given a 2m×n matrix in {0, 1}, a perfect phylogeny for B is
a rooted tree T with exactly 2m leaves that obeys the following properties:

1. each of the 2m rows labels exactly one leaf of T ,

2. each of the n columns labels exactly one edge of T ,

3. every interior edge (one not adjacent to a leaf) of T is labeled by at least one
column,

4. for any row i, the columns that label the edges along the unique path from the
root to leaf i specify the columns of B that have a value of one in row i in B. In
other words, that path is a compact representation of row i.

At this point, �nding a solution of the Haplotype Inference problem is equivalent
to �nding a perfect phylogeny and a suitable pairing of the leaves such that we can
recover every genotype. As it is quite trivial to recover a suitable pairing once we are
given the 2m haplotypes, the main goal becomes �nding the perfect phylogeny.

It is easy to see how these assumptions restrict the number of possible solutions,
as shown by the following example that can be found in [26]:

Example 3.1. Given the genotypes g1 = {22}, g2 = {02}, g3 = {10}, we consider the
two di�erent solutions

H ′ = {a = {10}, a′ = {01}, b = {01}, b′ = {00}, c = {10}, c′ = {10}}

H ′′ = {a = {11}, a′ = {00}, b = {01}, b′ = {00}, c = {10}, c′ = {10}}

and note that the second one does not have a perfect phylogeny, as shown in Figure 3.1,
because point 2 in the de�nition of a perfect phylogeny is not satis�ed.

The approach using a perfect phylogeny is carried on in [3], which presents an
algorithm that determines if there exists a suitable solution for the PPH problem
given a set of genotypes and, if this is the case, it yields a data structure containing
all the possible solutions. This algorithm is proven to have a O(nm2) complexity. It is
also proved how the number of possible solutions to the PPH is signi�cantly reduced
with respect to the Haplotype Inference problem.

In [22], another O(nm2)-time algorithm is presented and the implementation is
extended to deal with instances that present some errors in the data, so that it would
not be possible to �nd a solution that exactly �t the perfect phylogeny model, or where
some SNP values related to some individuals are missing. A linear-time algorithm for
the solution of this problem is presented in [20].



32 CHAPTER 3. STATE OF THE ART

00

1

01

a′ b

0

10

a c c′
b′

00

1

01

b

0

10

c c′

1

a

b′

a′

Figure 3.1: An example of solutions with (left) and without (right) perfect phylogeny.

3.1.3 Other Haplotype Inference principles

In [10] we can �nd a small overview of the use of statistical methods for solving the
Haplotype Inference Problem. The main idea underlying this approach is that there
is an unknown distribution of the haplotypes among the target population, and each
genotype is simply a combination of a pair of randomly chosen haplotypes. Thus,
we want to estimate the haplotype frequencies and then infer haplotypes according
to these frequencies. Two main approaches have been proposed. The �rst one in
[23] implements an estimation-maximization algorithm to obtain maximum-likelyhood
estimates for haplotype frequencies. In practice, starting from an initial arbitrary
distribution that represents the unknown true frequencies, an iterative estimation of
the haplotype frequencies leads to the most likely ones as convergence is reached. It
is possible to choose di�erent starting frequencies. Another approach, presented for
example in [38], makes use of a Monte Carlo method after dividing the haplotypes in
small fragments. This model proved to be robust to the presence of missing data and
to occurrencies of recombination hotspots.

3.2 Haplotype Inference by Pure Parsimony

A classical biological assumption that is widely taken into account in haplotype infer-
ence consists in the parsimony principle, according to which it is very unlikely that
in Nature we �nd more haplotypes than the necessary ones. In fact, in natural pop-
ulations the number of haplotypes observed is sensibly smaller than the number of
possible ones, thus suggesting that, with a large enough sample of genotypes, we can
likely deduce the right haplotypes when considering their minimum possible number.

It has been proved that if each genotype has at most two heterozygous sites, then
the HIPP can be solved in polynomial time [32]. On the contrary, the problem is
well-known to be not only NP-hard, but also APX-hard [31]. This means that there
exists a constant λ > 1 such that the existence of a λ-approximation algorithm for
HIPP problem would imply P=NP.

The proof for the APX-hardness is made in two steps and exploits a reduction
from the Node-Cover problem, known itself to be APX-hard (see for example [6]).
Note that the proof involves only instances in which each genotype has at most three
heterozygous sites, as they are already enough to prove the hardness of the HIPP
problem. We de�ne this problem as:



3.3. EXPONENTIAL-SIZE INTEGER FORMULATIONS 33

De�nition 3.2 (Node-Cover (NC) Problem). Let G = (V,E) be an undirected simple
graph on n nodes and m edges. A Node-Cover is a vertex set X ⊆ V such that every
edge in E has at least one endpoint in X.

We de�ne as NC2 the Node-Cover problem restricted to those graphs that yield
an optimal solution of size at least n/2. In [6] is proved that NC2 is APX-hard.

Lemma 3.1 ([6]). The problem NC2 is APX-hard.

The proof of this lemma proceeds reducing the APX-hard problem NC to the
problem NC2. This can be done via a polynomial algorithm [6] that given a graph
G = (V,E) returns an instance G′ = (V ′, E′) of NC2 and a set Q such that, if X is a
minimum node cover of G′, then X ∪Q is a minimum cover of G.

Lemma 3.2 ([31]). The HIPP problem is APX-hard

To prove this result a reduction to an APX-hard problem is used too, in particular
the HIPP problem is reduced to the NC2 problem. As a result of this complexity, each
exact algorithm for the problem will use some sort of enumeration [31].

Di�erent exact formulations have been proposed for HIPP. We can mainly divide
them into two di�erent types: those which have an exponential size on the input data,
for example having an exponential number of constraints or variables, or both, and
those that have a polynomial size. Finally, to be able to get a good feasible solution
on bigger instances within a small time orizon, some heuristic algorithms have been
proposed. In the following three sections we make an excursus on these di�erent types
of models and related solution methods.

3.3 Exponential-size integer formulations

In this section we present several state-of-the-art models for HIPP whose formulations
present an exponential number of variables and constraints.

3.3.1 An intuitive formulation

In 2003, Gus�eld [25] proposed an intuitive model for the HIPP problem. Although the
formulation is easy and understandable, it becomes of impractical use with the increase
of the instances' size, as it has an exponential number of both variables and constraints,
and no decomposition method to deal with them has been proposed. Consider a single
genotype gi, i ∈ I = {1, . . . ,m}, which presents ki heterozygous sites. It is known
that there are 2ki−1 di�erent pairs of haplotypes which resolve that genotype and
each of these pairs can be associated to an index j ∈ Ji = {1, . . . , 2

ki−1}. Thus, the
formulation uses a binary variable yi,j that is equal to 1 if the j-th pair is used to
resolve genotype gi. Moreover, being M the number of haplotypes that are compatible
with at least one genotype, it is possible to associate to each haplotype involved in any
genotype's resolving pair a variable xh, h ∈ H = {1, . . . ,M} that records if haplotype
h is used in the solution. Thus, we denote with TIP the formulation proposed for



34 CHAPTER 3. STATE OF THE ART

HIPP, that can be written as:

(TIP ) min
∑

h∈H

xh (3.1)

s.t.
∑

j∈J

yi,j = 1 ∀ i ∈ I (3.2)

yi,j ≤ xh ∀ i ∈ I, ∀ j ∈ Ji, ∀ h ∈ H : it belongs to pair j (3.3)

yi,j ∈ {0, 1} ∀ i ∈ I, ∀j ∈ Ji (3.4)

xh ∈ {0, 1} ∀ h ∈ H (3.5)

We are here minimizing the total number of haplotypes used, subject to constraints
(3.2), that force every genotype to be resolved by a pair of haplotypes, and constraints
(3.3), that link variables xh to the corresponding yi,j variables, so that if a pair indexed
by j is used to resolve a genotype, both its haplotypes are counted in the objective
function.

From the formulation we can see that, for each genotype gi, 2ki−1 variables and
2ki−1+1 constraints are needed, so that de�ning k = max{ki, i ∈ I} we have an overall
of O(m 2k−1) variables and O(m(2k−1 + 1)) constraints, that are in fact exponential
on the number of heterozygous sites.

In [25] it is also shown how the actual number of variables and constraints can be
reduced, taking into account two simple facts. First, if a pair j related to genotype
gi consists of two haplotypes compatible only with this genotype, we can avoid to
add the corresponding variables yi,j and xh associated to the two haplotypes in j. If
it happens that all pairs related to a genotype are removed, it means that we can
remove it from the set of genotypes after arbitrarily choosing a pair of haplotypes
for it. Otherwise, an optimal solution will always involve one of the pairs left for
each genotype. Although this reduction at �rst requires a complete enumeration of
all possible haplotypes involved, preserving the impracticability of the formulation,
we can avoid the complete enumeration considering directly only those haplotypes
that are compatible with at least two genotypes. That is, instead of building pairs of
haplotypes looking at one genotype at a time, we look at a pair of genotypes at a time.

The second way of reducing the number of variables and constraints takes into
account the presence of genotypes with no heterozygous site. In this case, the only
possible pair is made of two copies of the same haplotype, that is equal to the genotype
itself. This means that we remove the homozygous genotype from our problem and
the variable corresponding to the associated haplotype from the objective function.
The new model that includes these expedients is called RTIP formulation.

Anyway, the size of this formulation still increases exponentially with the number
of heterozygous sites of the genotypes, thus only relatively small size instances (up to
50 genotypes and 30 SNPs) has been solved.

3.3.2 A set-covering approach.

The statement of the HIPP problem reminds the idea of a set-covering and thus a
model can be formulated involving a covering condition (2.45) as seen in Section 2.5.3.
We de�ne triples (gi, p, a) where gi is a genotype, p is a position of the genotype such



3.3. EXPONENTIAL-SIZE INTEGER FORMULATIONS 35

that gip = 2 and a ∈ {0, 1}. In the approach presented in [33] the haplotypes' solution
set is seeked among the sets of haplotypes for which every triple is covered by one
of those haplotypes, that means there exists a haplotype h in that set such that it is
compatible with gi and hp = a. This condition, however, is not enough to obtain a
feasible solution for the problem, as can be seen in the following example.

Example 3.2 ([33]). Consider the set of genotypes G = {1222, 2122, 2212, 2221}. The
set of haplotypes H = {0111, 1011, 1101, 1110} satis�es the covering condition but is
not a valid solution for the HIPP problem as, for example, we cannot �nd any two
haplotypes in H that resolve the �rst genotype in G.

The example shows that, besides the constraints regarding the set-covering formu-
lation, we need also other constraints to ensure that every genotype is resolved by two
haplotypes. This can be formulated in the following way: for each genotype gi and
set of haplotypes that is insu�cient for resolving gi, there must be at least another
haplotype in the solution that is compatible with gi.
De�ne the sets H as all the haplotypes that can resolve at least one genotype in G,
H ′ any set of haplotypes insu�cient to resolve all the genotypes, U(H ′) the set of
genotypes unresolved by H ′ and H(gi) the haplotypes compatible with gi. Moreover,
de�ne C(gi, H ′) := H(gi) − H ′ and N ′ the set of pairs (gi, H ′) such that H ′ is an
insu�cient set of haplotypes and gi ∈ U(H ′).
The formulation for the HIPP problem given in [33] and denoted as Set Covering Model
(SCM) is the following:

(SCM) min
∑

h∈H

xh (3.6)

s.t.
∑

h∈Ha
p (g

i)

xh ≥ 1 ∀ i ∈ I, ∀ p : gip = 2, a ∈ {0, 1} (3.7)

∑

h∈C(gi,H′)

xh ≥ 1 ∀ (gi, H ′) ∈ N ′ (3.8)

xh ∈ {0, 1} (3.9)

where Ha
p (g

i) is the set of haplotypes compatible with gi that has value a in position
p.
As we have an exponential number of constraints of type (3.8), we apply a cut-
generation procedure in order to add a constraint only if it is necessary. It is easy
to see that, in the worst case, just considering the formulation (3.6)-(3.7) we already
have O(2n) variables and O(mn) constraints, thus a column-generation approach is
necessary to avoid generating all the variables. In [33] the pricing problem, that looks
for the best variable to be added by enumerating all the possible haplotypes, is solved
in a particular way, presented in the following paragraphs.

Consider N ⊂ N ′ the subset of constraints (3.8) that have been actually added and
X the set of variables generated at some iteration of the column-generation procedure.
Let (α?, β?, γ?) be the dual values associated respectively to constraints (3.7) with
a = 0, a = 1 and the |N | constraints (3.8). Looking at the dual of SCM, we build the



36 CHAPTER 3. STATE OF THE ART

pricing problem by maximizing
∑

g∈G(h)

∑

p:gp=2

[(1− hp)α
?
g,p + hpβ

?
g,p] +

∑

(g,H)∈N ,g∈G(h)

γ?g,H (3.10)

over all the possible h. If this maximum is greater than 1, the variable associated to
the haplotype found in the solution has to be added to the master problem.

As it is not advisable to consider every h haplotype compatible with at least a
genotype in G, in order to reduce the enumeration e�ort, the structure of the pricing
problem is inquired taking into account the following de�nitions.

De�nition 3.3 (Selectable clique [33]). A selectable-clique, or s-clique, is a subset K
of genotypes such that there exists a haplotype h that is compatible with every genotype
in K and no other genotype in G\K.

We describe in Algorithm 3.7 the procedure proposed in [33] identifying all the
s-cliques of a given set of genotypes G. Starting from a root node, it builds a tree in
which each leaf represents an s-clique and each branch �xes uniquely the value of a SNP.
Each node t of the tree is identi�ed by a string with values in {0, 1, 2}, called virtual
genotype gt, a set of genotypes Gt ⊂ G compatible with it and a set of positions It ⊆ P
that de�nes the set of values of the virtual genotype that have been �xed through the
branchings. A node is pruned if for all the genotypes in Gt associated to a particular
node and all positions p ∈ Tt it holds that gp = gtp. An example of such a tree, obtained
applying Algorithm 3.7 to the set of genotypes G = {2202, 1222, 1221, 2012, 0210}, is
shown in Figure 3.2. Note that the size of such a tree is highly dependent on the order

Algorithm 3.7 Find the set of s-cliques of G [33]

1: procedure Find S-cliques(G)
2: label the root node with a virtual genotype of 2s,
3: initialize t = 0, It = ∅ the set of already branched positions,
4: while there are unexplored nodes do
5: select node t,
6: if for all p ∈ P = {1, . . . , n}\It → gtp = gp ∀ g ∈ Gt then
7: the node represents an s-clique. Prune the node,
8: else
9: choose p̄ that fails this condition and branch:

10: - one branch t+ 1 has virtual genotype with 0 at position p̄,
11: - the other t+ 2 has value 1,
12: update It+1 = It+2 = It ∪ {p̄},
13: end if
14: end while
15: end procedure

in which we choose the position p̄ for branching. Every leaf of the tree is associated
to a pattern, that is an n-string over {0, 1,−} that represents its virtual genotype. A
haplotype compatible with all the genotypes in an s-clique is called a selector and is
derived from any pattern just replacing each − with a 0 or 1. The same s-clique can
appear in di�erent leaves, so more than one pattern is associated to the same s-clique.
A list of all these patterns for the same s-clique is a pattern table.



3.3. EXPONENTIAL-SIZE INTEGER FORMULATIONS 37

2222
{1,2,3,4,5}

2202
{1,2,3}

2212
{2,3,4,5}

1202
{1,2,3}

0202
{1}

0212
{4,5}

1212
{2,3,4}

1200
{1,2}

1201
{1,2,3}

0210
{4,5}

0011
{4}

1210
{2,4}

1211
{2,3,4}

0010
{4,5}

0110
{5}

1010
{2,4}

1110
{2}

1011
{2,3,4}

1111
{2,3}

Figure 3.2: Tree of all s-cliques. G contains g1 = 2202, g2 = 1222, g3 = 1221,
g4 = 2012, g5 = 0210

De�nition 3.4 (Pattern table in standard form [33]). A pattern table is in standard
form if:

• no pattern is contained in another pattern (that is, given a pattern πi and a
position a, there is not another pattern πj such that πi

a = πj
a for all a with

πi
a ∈ {0, 1} )

• for each pair of patterns πi and πj, there exist at least two positions a, b such
that πi

a 6= πj
a and πi

b 6= πj
b

Once we have a pattern table, a compact representation of it is obtained putting it in
standard form.

Thus, going back to the pricing problem, we can rewrite for each s-clique K:

α(K, p) =
∑

g∈K: gp=2

α?
g,p

β(K, p) =
∑

g∈K: gp=2

β?
g,p

γ(K) =
∑

(g,H)∈N ,g∈K

γ?g,H

λ(K,h) :=
∑

p

[(1− hp)α(K, p) + hpβ(K, p)] + γ(K)

λ(K) := max
h∈H(K)\X

λ(K,h)

where λ(K) is the maximum value assumed by the pricing problem's objective function
within the selectors of K. At this point, in order to �nd the best haplotype h̃ it is
su�cient to enumerate all the s-cliques and consider each pattern πi of a pattern table
in standard form.

For each s-clique and pattern, we can �nd the local best haplotype h̄K,i by setting:

h̄K,i
p =























0 if πi
p = 0

1 if πi
p = 1

0 if πi
p = − and α(K, p) ≥ β(K, p)

1 if πi
p = − and α(K, p) < β(K, p)



38 CHAPTER 3. STATE OF THE ART

Keeping track of the haplotype that maximizes (3.10), we obtain at the end h̃.

Notice that the introduction of the notion of s-cliques allows to decompose the
pricing problem into smaller problems. Although this leads to a reduction on the total
number of solutions to be investigated, the number of patterns to be enumerated is
exponential.

Finally, to �nd the integer solution, a standard branch-and-bound approach is
used, where at each node the branching decision forces the presence or absence of a
certain haplotype in the solution forcing the value assumed by a chosen variable. We
obtain the optimal value for the linear relaxation by recalling both the column and
cut generation.

Results of this state-of-the-art algorithm have been provided on instances with up
to 50 genotypes and number of SNPs varying from 20 to almost 200.

3.4 Polynomial-size integer formulations

Exponential-size models can be of di�cult practical use, as the large number of vari-
ables and constraints a�ects the use of memory and computational time, forcing to
use approaches as columns and rows generation. E�orts have thus been made in order
to �nd formulations that are valid with only a polynomial number of variables and
constraints.

3.4.1 A formulation with duplicate haplotypes

One of the �rst polynomial-size formulations can be found in [12], where variables
explicitly represent the haplotypes involved in the solution. Consider the following
binary variables:

• y2i−1,p, y2i,p for i ∈ I = {1, . . . ,m}, p ∈ P that represent each site of the two
haplotypes resolving genotype gi,

• di,j for i, j ∈ {1, . . . , 2m} equal to one if haplotypes indexed by i and j are equal,

• xi for i ∈ {1, . . . , 2m} equal to one if the haplotype indexed with i is used to
resolve at least a genotype and it is not equal to any other haplotype indexed
with j < i. In practice, these variables are used to count the distinct haplotypes
involved in the solution.

Note that this approach, compared with all the other formulations proposed, uses a
slightly di�erent notation, as homozygous sites are identi�ed with 0s and 2s, while
heterozygous sites with 1s, so that we can use the usual operation of addition to say
that two haplotypes h1, h2 resolve g if for every site p we have h1p + h2p = gp. The



3.4. POLYNOMIAL-SIZE INTEGER FORMULATIONS 39

PolyIP formulation is then given by:

(PolyIP ) min

2m
∑

i=1

xi (3.11)

s.t. y2i−1,p + y2i,p = gip ∀ i ∈ I, ∀ p ∈ P (3.12)

di,j ≥ yi,p − yj,p ∀ 1 ≤ i < j ≤ 2m, ∀ p ∈ P (3.13)

di,j ≥ yj,p − yi,p ∀ 1 ≤ i < j ≤ 2m, ∀ p ∈ P (3.14)

xi ≥ 2− i+
i−1
∑

j=1

dj,i ∀ i ∈ {1, . . . , 2m} (3.15)

xi, di,j , yi,p ∈ {0, 1} ∀ i, j ∈ {1, . . . , 2m}, ∀p ∈ P (3.16)

where constraints (3.12) make sure each genotype is properly resolved, constraints
(3.13) and (3.14) ensure that variable di,j is set to 1 as soon as the haplotypes i and
j are di�erent and constraints (3.14) �x xi to 1 if the associated haplotype is di�erent
from all the previous ones.

Unfortunately, this polynomia-sizel formulation has a poor linear relaxation, that
means that the gap between the optimal solution and the solution of the linear relax-
ation is usually large. To overcome this issue, in [13] the authors propose a perturbation
of the objective function and additional valid cuts. Anyway, also these improvements
do not make this approach competitive when compared with the formulation in [25]
(for small instances), so that another approach, called HybridIP, that exploits ideas
from both this polynomial formulation and RTIP, is proposed [13]. Results show that
this last approach has a better performance in terms of computational times, in fact
both models have been tested on instances with up to 50 genotypes and 10 or 30 SNPs,
while the HybridIP formulation was also able to solve instances with 30 genotypes and
up to 100 SNPs. Anyway, we do not provide further details on this approach based on
a exponential-size model, since it has been outperformed by [33].

3.4.2 A formulation with distinct haplotypes

Another polynomial formulation has been presented in [7]. In this case, we de�ne an
upper bound UB on the number of needed haplotypes, that can be either simply twice
the number of genotypes or a better upper bound obtained with a heuristic. Thus, we
de�ne the set IUB = {1, . . . , UB} and the following binary variables:

• xi, i ∈ IUB that takes value 1 if the corresponding haplotype is chosen in the
solution,

• yki,j , i, j ∈ IUB, k ∈ I that is equal to 1 if haplotypes i and j are used to resolve

genotype gk,

• zi,p, i ∈ IUB, p ∈ P that records the values of each site of the haplotypes.

The formulation obtained is the following:



40 CHAPTER 3. STATE OF THE ART

min
∑

i∈IUB

xi (3.17)

s.t.
∑

{i,j}

yki,j ≥ 1 ∀ k ∈ I (3.18)

∑

j 6=i

yki,j ≤ xi ∀ k ∈ I, ∀ i ∈ IUB (3.19)

zi,p +
∑

j 6=i

yki,j ≤ xi ∀ k ∈ I, ∀ i ∈ IUB, ∀ p ∈ P : gip = 0 (3.20)

zi,p ≥
∑

j 6=i

yki,j ∀ k ∈ I, ∀ i ∈ IUB, ∀ p ∈ P : gip = 1 (3.21)

zi,p + zj,p ≥ yki,j ∀ k ∈ I, ∀ i, j ∈ IUB, i 6= j, ∀ p ∈ P : gip = 2 (3.22)

zi,p + zj,p ≤ xi + xj − yki,j ∀ k ∈ I, ∀ i, j ∈ IUB, i 6= j, ∀ p ∈ P : gip = 2 (3.23)

xi, y
k
i,j , zi,p ∈ {0, 1} ∀ k ∈ I, ∀ i, j ∈ IUB, ∀p ∈ P (3.24)

where constraints (3.18) ensure that each genotype is resolved at least by a pair of
haplotypes, constraints (3.19) activate the x variables and constraints (3.20) - (3.23)
establish the relation between variables x, y and z according to the value of gip.

Both the number of variables (UB x variables, UB(UB − 1)/2 y variables and
nUB z variables) and the number of constraints (m for (3.18), O(mUB) for (3.19) -
(3.23)) are polynomial in the input size.

Starting from this formulation it is possible to build a procedure that solves the
problem only considering variables y and z in the following way: starting from a good
heuristic solution, with objective value z?HEUR, consider UB = z?HEUR − 1 and xi = 1
for i ∈ {1, . . . , UB}. Then, the model (3.17)-(3.24) can be re-written in such a way
that the objective function consists of maximizing the number of resolved genotypes
among the m considered:

max
∑

k∈I

∑

{i,j}

yki,j

and the constraints (3.18) are re-written as

∑

{i,j}

yki,j ≤ 1 ∀ k ∈ I

If the maximum number of resolved genotypes found solving this model is less than
m, we stop the algorithm and consider the preceeding solution as the optimal one,
otherwise we decrease again the value of UB, as illustrated in Algorithm 3.8. Further
improvements to this model include the introduction of additional constraints that
dominate the previous ones and then can substitute current constraints in order to
improve the model.

The results obtained from instances with 50 genotypes and 10 or 30 SNPs show
how this formulation has better performance than the PolyIP formulation.



3.4. POLYNOMIAL-SIZE INTEGER FORMULATIONS 41

Algorithm 3.8 [7]

1: procedure Solve
2: use a heuristic to get an initial solution and let UB = z?HEUR − 1,
3: de�ne the maximization problem and let zOPT = z?HEUR,
4: solve the max problem and let p?UB be the optimal integer solution,
5: if p?UB < m then
6: zOPT is the optimal solution. STOP.
7: else
8: let zOPT = p?UB, UB = UB − 1 and go back to step 4,
9: end if

10: end procedure

3.4.3 A class representative model

An alternative polynomial-size formulation is the one presented in [14]. This formula-
tion attempts to break the simmetries in the problem. Speci�cally, we can note how,
in the formulations proposed so far, we end up with equivalent solutions by swapping
the indices of variables associated to two distinct haplotypes. To overcome this issue,
the formulation proposed in [14] is based on class representatives: given G the set of
genotypes, each subset Si ⊆ G of genotypes is indexed according to the �rst genotype
gi, in a prede�ned order, belonging to it.

In this way, we identify a solution to the HIPP problem with a set of haplotypes
and, for each of them, a subset of genotypes resolved by it that can be written in terms
of class representatives. We will say that a haplotype of the solution induces a subset
of genotypes if it is used to resolve every genotype belonging to the subset. As each
genotype is resolved by two haplotypes, it can happen that the same genotype gi is the
�rst element of two subsets, so that both would be indexed in the same way. To avoid
this, a dummy genotype gi

′

is created, that is a copy of the real one, and it is used to
identify the second subset. Thus, subsets Si are de�ned, with index i varying in the
set K̄ = K ∪K ′, where K = {1, 2, . . . ,m} and K ′ = {1′, 2′, . . . ,m′}. An ordering such
that 1 < 1′ < 2 < 2′ < · · · < m < m′ is also considered.

The variables xi, i ∈ K̄ used to describe the formulation record how many hap-
lotypes (at most 2m) are used in the solution, or equivalently how many subsets are
induced. In particular, we de�ne binary variables yki,j , with i, j ∈ K̄ and k ∈ K, that

describe how genotype gk is resolved, that is variable yki,k takes value 1 if genotype

gk belongs to subsets Si and Sj , thus meaning that gk is resolved by the haplotypes
associated to Si and Sj . If a haplotype belonging to the solution induces a subset Si,
the corresponding binary variables xi is set to take value 1. Finally, further binary
variables zi,p, i ∈ K̄, p ∈ P record the value of the p-th SNP in haplotype i.

Note that a preprocessing step is easily available to reduce the number of variables.
In fact, as we have yki,j = 1 if and only if ykj,i = 1, we can de�ne the y variables only if

i < j ≤ k or if i = k and j = k′. Moreover, variables yki,k′ with i < k are not needed, as
it would be in contradiction with the assumption that the dummy genotypes are used
only if needed: if yki,k′ = 1, it means that genotype k belongs to subsets whose �rst
genotype is i and k′, and as in a solution each genotype belongs exactly to two subsets,
it means that we are not considering any subset whose �rst genotype is k. Following



42 CHAPTER 3. STATE OF THE ART

similar considerations, the following sets of variables do not need to be de�ned:

R1 = {y
k
i,j : k ∈ K, i, j ∈ K̄, j < i < k},

R2 = {y
k
i,k′ : k ∈ K, i ∈ K̄, i ≤ (k − 1)′},

R3 = {y
k
i,i′ : k ∈ K, i ∈ K̄, 2 ≤ i ≤ k − 1}.

Taking into account compatibility issues, moreover, further sets of variables are not
needed:

R4 = {y
k
i,j : k ∈ K, i, j ∈ K̄, p ∈ P, gkp = 2, gip = gjp 6= 2},

R5 = {y
k
i,j : k ∈ K, i, j ∈ K̄, p ∈ P, gkp + gip = 1 or gkp + gjp = 1}.

Thus, de�ning the set Ŷ = {yki,j : k ∈ K, i, j ∈ K̄}\(R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5), the
following polynomial integer programming (PIP) formulation for the HIPP problem is
given:

(PIP) min
∑

i∈K̄

xi (3.25)

s.t. xi′ ≤ xi ∀ i ∈ K (3.26)
∑

i,j: yki,j∈Ŷ

yki,j ≥ 1 ∀ k ∈ K (3.27)

∑

j: yki,j∈Ŷ,j≥i

yki,j +
∑

j: yki,j∈Ŷ,j<i

ykj,i ≤ xi ∀ k ∈ K, i ∈ K̄ : yki,j ∈ Ŷ

(3.28)

yk,k′ ≤ xk′ ∀ k ∈ K (3.29)

zk,p + zk′,p = 1 ∀ k ∈ K, ∀ p ∈ P : gkp = 2

(3.30)

zi,p ≤ 1−
∑

j: yki,j∈Ŷ,j≥i

yki,j −
∑

j: yki,j∈Ŷ,j<i

ykj,i ∀ k ∈ K, p ∈ P, i ∈ K̄ : yki,j ∈ Ȳ,

gkp = 0, gip = 2 (3.31)

zi,p ≥
∑

j: yki,j∈Ŷ,j≥i

yki,j +
∑

j: yki,j∈Ŷ,j<i

ykj,i ∀ k ∈ K, p ∈ P, i ∈ K̄ : yki,j ∈ Ȳ,

gkp = 1, gip = 2 (3.32)

zi,p ≥ yki,j ∀ k ∈ K, p ∈ P, ∀ i, j : yki,j ∈ Ŷ,

gkp = 2, gip = 2, gjp = 0 (3.33)

zj,p ≥ yki,j ∀ k ∈ K, p ∈ P, ∀ i, j : yki,j ∈ Ŷ,

gkp = 2, gip = 0, gjp = 2 (3.34)

zi,p ≤ 1− yki,j ∀ k ∈ K, p ∈ P, ∀ i, j : yki,j ∈ Ŷ,

gkp = 2, gip = 2, gjp = 1 (3.35)

zj,p ≤ 1− yki,j ∀ k ∈ K, p ∈ P, ∀ i, j : yki,j ∈ Ŷ,



3.5. A HEURISTIC APPROACH 43

gkp = 2, gip = 1, gjp = 2 (3.36)

zi,p + zj,p ≥ yki,j ∀ k ∈ K, p ∈ P, ∀ i, j : yki,j ∈ Ŷ,

gkp = 2, gip = 2, gjp = 2 (3.37)

zi,p + zj,p ≤ 2− yki,j ∀ k ∈ K, p ∈ P, ∀ i, j : yki,j ∈ Ŷ,

gkp = 2, gip = 2, gjp = 2 (3.38)

xi, y
k
i,j , zi,p ∈ {0, 1} ∀ k ∈ K, ∀ i, j ∈ K̄, ∀ p ∈ P

(3.39)

where constraints (3.26) and (3.29) are needed to ensure that the dummy genotypes
are used only when needed, constraints (3.27) ensure that each genotype belongs to two
subsets, constraints (3.28) set the value of xi, constraints (3.30) represent the condition
that each heterozygous site must be correctly explained and constraints (3.31)-(3.38)
establish the relations between z and y variables.

Slight improvements to this model can be achieved adding strenghtening inequal-
ities. Some of them are in polynomial number, so that they are added all together
to the original formulation, while other sets of cuts can be generated by means of a
separation oracle.

This formulation proves to outperform all previous models presented in [25], [13]
and [7] on the same instances used by Brown and Harrower [13]. In particular, this
model can be applied to larger real biological genotype data sets and it is polynomial,
so that it can be solved with standard solvers.

3.5 A Heuristic approach

When the instances have a large size and all exact methods fail in �nding a solution
within a reasonable time limit, a viable way to �nd a reasonable, although not necessary
optimal, solution is to use a heuristic approach.

Among the heuristic approaches to HIPP, we cite [28, 31, 46]. In particular, the
heuristic approach presented in [46] under the name of CollHaps algorithm proved to
give good heuristic solutions, most times coincident to the optimal ones, or in the
other cases close to them. These results are achieved on larger instances (up to 103
SNPs and 1000 genotypes) than the ones solved by exact algorithms in the literature
so far. Given a set of m genotypes g1, . . . , gm with n SNPs, let V be the total number
of heterozygous SNPs involved and xv, v ∈ {1, . . . , V } a variable associated to each
heterozygous SNP. Let µ be the bijective map that, given a pair (i, p) such that gip = 2,
returns the corresponding variable index: v = µ(i, p). Now, we consider two symbolic
haplotypes for each genotype gi, de�ned in the following way:

h2i−1
p =











0 if gip = 0

1 if gip = 1

xµ(i,p) if gip = 2

h2ip =











0 if gip = 0

1 if gip = 1

x̄µ(i,p) if gip = 2



44 CHAPTER 3. STATE OF THE ART

where x̄µ(i,p) = 1 − xµ(i,p). These haplotypes are used as rows of a 2m × n matrix,
called symbolic haplotype matrix. According to the parsimony criterion, �nding the
best set of haplotypes resolving all the genotypes can be seen as �nding a variable
assignment so that the resulting number of distinct rows in the symbolic haplotype
matrix is minimum.

De�nition 3.5. A collapse rule is an assignment ϑ(V ) of variables value that leads
two symbolic haplotypes to be identical.

Note that, given two haplotypes h1 and h2, we can apply a collapse rule only if for
every site p one of the following alternatives holds: h1p = h2p, or only one between h1p
and h2p is a variable, or both are variables but not complementary. In particular, the
collapse rule ϑ associated to two symbolic haplotypes h1 and h2 can be described in
the following way:

• if h1p = xv (resp. h2p) and h2p = c, c ∈ {0, 1} (resp. h1p), then ϑ(xv) = c,

• if h1p = x̄v (resp. h2p) and h2p = c, c ∈ {0, 1} (resp. h1p), then ϑ(xv) = 1− c,

• if h1p = xv and h2p = xu or h1p = x̄v and h2p = x̄u, then ϑ(xu) = xv,

• if h1p = xv and h2p = x̄u or h1p = x̄v and h2p = xu, then ϑ(xu) = x̄v,

• ϑ is the identity on all other cases.

As the same variable will have, in general, several occurrencies in the symbolic haplo-
type matrix, we need to propagate the rule to all the matrix rows.

De�nition 3.6. A collapse step is the propagation of a particular collapse rule to all
the rows of the symbolic haplotype matrix.

In the following example we show how a collapse rule and collapse step work.

Example 3.3. Consider the following two symbolic haplotypes that represent two rows
of a symbolic matrix.

1 x1 0 0 x2
x̄3 x4 0 0 1

The collapse rule applied to these two haplotypes consists in assigning the values
x1 = x4, x2 = 1, x3 = 0. Note that the associated collapse step consists in assigning
the same values to variables x1, x2 and x3 whenever they appear in the remaining rows
of the symbolic matrix.

The CollHaps algorithm tries to produce a feasible assignment of every variable
xv, v ∈ V iterating the collapse step, thus choosing two di�erent symbolic haplotypes
at a time to be made identical, as many times as possible, so that we reduce the
number of distinct rows of the symbolic matrix as much as possible.

Note that at each performed collapse step the number of distinct rows decreases
by at least one. When no more collapse steps are possible, there can be still some non-
assigned entries of the matrix, at this point any assignment to them will not decrease
the number of distinct rows anymore. In [46], it is shown that an appropriate sequence



3.5. A HEURISTIC APPROACH 45

of collapse steps can reach the optimal solution of the HIPP problem, but there is
no strategy to �nd such a sequence of steps. Thus, a heuristic approach is needed to
produce a sequence of collapse steps, based on a randomized quasi-greedy routine: for
each pair (i, j) of symbolic haplotypes we de�ne a distance value d(i,j) computed as
the number of variables to be set to constant values by the application of the collapse
rule to that pair, then probabilities are assigned so that a pair with distance value d
has twice the probability of being chosen than a pair with distance value d + 1. Pair
of haplotypes are then randomly chosen according to these probabilities.

Finally, several runs of the complete algorithm are performed and the best solu-
tion so far is stored. Computational experiments on real data and software-generated
instances proved that this approach achieves good performance in terms of quality of
the solution and computational times.





CHAPTER 4

New formulations for the Haplotype Inference by Pure Parsimony

problem

In this chapter we brie�y recall the model described in [14] and, after some consider-
ations, we give a slightly improved formulation. Then, we present a new polynomial
formulation that involves only two-index variables and we provide a Dantzig-Wolfe
decomposition of it, resulting in a formulation with an exponential number of vari-
ables. This latter formulation is considered in the remainder of the thesis, in which
its structure is investigated to provide a competitive solution approach for the HIPP
problem.

4.1 Improvements to the class representatives model

We recall that (PIP), the model described in Section 3.4.3, allows to �nd a solution to
the HIPP problem that associates to each used haplotype a subset of genotypes resolved
by it. These subsets are indexed with the identi�er of the �rst genotype contained in
them, according to a prede�ned order. Moreover, for each feasible solution they satisfy
the following properties:

• each subset of genotypes shares at least one compatible haplotype,

• each genotype belongs exactly to two of these subsets,

• every pair of subsets intersects in at most one genotype.

This formulation is intrinsically symmetry-breaking. Moreover, an important step
to increase the performance of this model consists in restricting the set of indices for
which a variable is actually needed, in particular the reduction of the number of y
variables to be de�ned.

We want to identify the same subset Ŷ of variables yki,j , that actually need to be
de�ned, in a di�erent way with respect to [14], always taking into account symmetries
and compatibility issues. We propose the approach described by Algorithm 4.9

47



48 CHAPTER 4. NEW FORMULATIONS FOR THE HIPP PROBLEM

Algorithm 4.9

1: initialize Ŷ = ∅

2: for k ∈ K do
3: insert ykk,k′ into Ŷ ,

4: for i ∈ K̄ such that i < k do
5: for j ∈ K̄ such that j 6= i′ and j <= k do
6: if gk is compatible with gi and gj then
7: insert yki,k into Ŷ ,
8: end if
9: end for

10: end for
11: end for

The resulting modi�ed formulation PIP' we present is the following:

(PIP') min
∑

i∈K∪K′

xi (4.1)

s.t. xi′ ≤ xi ∀ i ∈ K (4.2)
∑

i,j: yki,j∈Ŷ

yki,j ≥ 1 ∀ k ∈ K (4.3)

∑

j: yki,j∈Ŷ

yki,j +
∑

j: ykj,i∈Ŷ

ykj,i ≤ xi ∀ k ∈ K, i ∈ K ∪K ′ (4.4)

ykk,k′ ≤ xk′ ∀ k ∈ K (4.5)

zi,p ≤ 1−
∑

j: yki,j∈Ŷ

yki,j −
∑

j: ykj,i∈Ŷ

ykj,i ∀ p ∈ P, ∀ k ∈ K, i ∈ K ∪K ′,

s.t. gkp = 0, gip 6= 1 (4.6)

zi,p ≥
∑

j: yki,j∈Ŷ

yki,j +
∑

j: ykj,i∈Ŷ

ykj,i ∀ p ∈ P, ∀ k ∈ K, i ∈ K ∪K ′,

s.t. gkp = 1, gip 6= 0 (4.7)

zi,p ≥ yki,j ∀ p ∈ P, ∀ k ∈ K, i, j ∈ K ∪K ′

s.t. yki,j ∈ Ŷ ,

gkp = 2, gip 6= 0, gjp = 0 (4.8)

zj,p ≥ yki,j ∀ p ∈ P, ∀ k ∈ K, i, j ∈ K ∪K ′

s.t. yki,j ∈ Ŷ ,

gkp = 2, gip 6= 0, gjp = 0 (4.9)

zi,p ≤ 1− yki,j ∀ p ∈ P, ∀ k ∈ K, i, j ∈ K ∪K ′

s.t. yki,j ∈ Ŷ ,

gkp = 2, gip 6= 1, gjp = 1 (4.10)

zj,p ≤ 1− yki,j ∀ p ∈ P, ∀ k ∈ K, i, j ∈ K ∪K ′



4.1. IMPROVEMENTS TO THE CLASS REPRESENTATIVES MODEL 49

s.t. yki,j ∈ Ŷ ,

gkp = 2, gip = 1, gjp 6= 1 (4.11)

zi,p + zj,p ≥ yki,j ∀ p ∈ P, ∀ k ∈ K, i, j ∈ K ∪K ′

s.t. yki,j ∈ Ŷ ,

gkp = 2, gip = 2, gjp = 2 (4.12)

zi,p + zj,p ≤ 2− yki,j ∀ p ∈ P, ∀ k ∈ K, i, j ∈ K ∪K ′

s.t. yki,j ∈ Ŷ ,

gkp = 2, gip = 2, gjp = 2 (4.13)

xi, y
k
i,j , zi,p ∈ {0, 1} (4.14)

Constraints (4.3) are needed to ensure that each genotype is resolved, that is, it be-
longs at least to two di�erent subsets. To link the values of variables xi and yki,j
we use constraints (4.4), that record whenever the haplotype induced by Si is used.
Constraints (4.5) force xk′ to be equal to 1 if the dummy genotype gk

′

is needed and
used. Constraints (4.6)-(4.13) guarantee that the values of the haplotypes that induce
the subsets of genotypes are consistent. Namely, that they are compatible with the
genotypes of the subsets and they resolve the genotypes for which variables yki,j are set
to 1.

Observation 4.1. It is not possible to use the dummy genotype k′ without having
ykk,k′ = 1.

Proof. Suppose that yki,j = 0 and that there exist genotypes gh, gt compatible with gk

but not compatible between themselves, such that they both are resolved using one
haplotype induced by a subset whose least index is k. In this case, we would need the
dummy index k′. But, as genotype gk belongs to only two subsets, those would be Sk

and Sk′ , meaning that ykk,k′ must be equal to 1.

Observation 4.2. The combinations obtained from constraints (4.6)-(4.13) are all
and the only necessary ones.

Proof. Consider Table 4.1. The �rst three columns show all the possible combinations
of values for gip, g

j
p and gkp , while the last column states if the combination is not allowed

for compatibility reasons (-) or in which constraints we can �nd that combination.

Note that the combinations highlighted in red in Table 4.1 where not considered
in model (PIP). As a consequence, the explicit description of haplotypes did not agree
with the structure of the genotypes resolved by them.

Observation 4.3. The following constraints appearing in model (PIP) are redundant:

zk,p + zk′,p = 1 ∀ k ∈ K, ∀ p ∈ P : gkp = 2

Proof. Look at constraints (4.12) and (4.13). If yki,j = 1 these constraints become
exactly equal to (3.31), otherwise what happens to zk′ is irrelevant.

For this reason we omitted them in the new model, (PIP').



50 CHAPTER 4. NEW FORMULATIONS FOR THE HIPP PROBLEM

gip gjp gkp constr. gip gjp gkp constr. gip gjp gkp constr.

0 0 0 (4.6) 1 0 2 (4.8)-(4.11) 2 0 1 -
0 0 1 - 0 1 2 (4.9)-(4.10) 2 1 1 (4.7)
0 1 0 - 1 1 2 - 0 2 2 (4.9)
1 0 0 - 0 2 0 (4.6) 1 2 2 (4.11)
0 1 1 - 1 2 0 - 2 0 2 (4.8)
1 0 1 - 0 2 1 - 2 1 2 (4.10)
1 1 0 - 1 2 1 (4.7) 2 2 0 (4.6)
1 1 1 (4.7) 2 0 0 (4.6) 2 2 1 (4.7)
0 0 2 - 2 1 0 - 2 2 2 (4.12)-(4.13)

Table 4.1: Combinations of SNPs' values.

4.2 A new intuitive polynomial two-index formulation

In this section we present another possible formulation for the HIPP problem that
involves only two-index variables and turns out to be polynomial with respect to both
the number of constraints and the number of variables [19].

We want to build a solution that records the structure of the haplotypes involved
as well as which haplotypes are in fact used and which genotypes are resolved by
them. First of all, we note that if a genotype has no heterozygous sites, than it must
be resolved by two identical copies of the same haplotype, that is in fact equal to
the genotype. Hence, it is convenient to leave out those genotypes from the model's
constraints, but we need to consider the associated haplotypes as they can be used to
resolve also other genotypes. Recall that we denote with �xed genotypes the ones with
no heterozygous sites, and with �xed haplotypes the haplotypes associated to them.

Suppose our set G contains some �xed genotypes, we can assume that the non-
�xed ones are contained in the subset K ⊆ G and indexed from 1 to |K|, while the
remaining m− |K| at the end of the set are �xed and resolved by m− |K| associated
haplotypes. The remaining genotypes require at most 2|K| distinct haplotypes to be
resolved. We de�ne the following binary variables:

• xi, i ∈ {1, . . . , 2|K|} take value 1 if the i-th non-�xed haplotype is used to resolve
at least one non-�xed genotype, 0 otherwise,

• yki , i ∈ {1, . . . ,m + |K|}, k ∈ {1, . . . , |K|} take value 1 if the i-th haplotype is
used to resolve genotype k,

• zi,p, i ∈ {1, . . . , 2|K|}, p ∈ P is the value taken by non-�xed haplotype i in
position p,

that allow the HIPP problem to be described by the following model (QP), which
presents a set of quadratic constraints:

(QP ) min

2|K|
∑

i=1

xi + (m− |K|) (4.15)

s.t.

m+|K|
∑

i=1

yki = 2 ∀ k ∈ {1, . . . , |K|} (4.16)



4.2. A NEW INTUITIVE POLYNOMIAL TWO-INDEX FORMULATION 51

2|K|
∑

i=1

yki zip +

m+|K|
∑

i=2|K|+1

yki g
i
p = 1 ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 2

(4.17)

zip ≥ yki ∀ i ∈ {1, . . . , 2|K|}, k ∈ {1, . . . , |K|}, p ∈ P : gkp = 1

(4.18)

zip ≤ 1− yki ∀ i ∈ {1, . . . , 2|K|}, k ∈ {1, . . . , |K|}, p ∈ P : gkp = 0

(4.19)

yki ≤ xi ∀ i ∈ {1, . . . , 2|K|}, k ∈ {1, . . . , |K|} (4.20)

m+|K|
∑

k=1

yki ≥ xi ∀ i ∈ {1, . . . ,m+ |K|} (4.21)

zip ∈ {0, 1} ∀ i ∈ {1, . . . , 2|K|}, p ∈ P (4.22)

yki ∈ {0, 1} ∀ i ∈ {1, . . . ,m+ |K|}, k ∈ {1, . . . , |K|} (4.23)

xi ∈ {0, 1} ∀ i ∈ {1, . . . , 2|K|} (4.24)

The objective function minimizes the number of non-�xed haplotypes needed to resolve
all the non-�xed genotypes plus a constant, that represents the number of �xed hap-
lotypes that are forced into the solution. Constraints (4.16) ensure that exactly two
haplotypes are used to resolve any non-�xed genotype and by constraints (4.17) only
one among these two haplotypes takes value 1 at each heterozygous site of genotype k.
Constraints (4.18) and (4.19) �x the values of the p-th position of a haplotype if it is
used to resolve a genotype with a homozygous value in position p. Finally, constraints
(4.20) force variable xi to be equal to 1 if at least one genotype is resolved by the i-th
haplotype. Constraints (4.21) imply that, as soon as no genotype is resolved by the
i-th haplotype variable, xi is set to 0. Note that due to the structure of the objective
function these constraints are redundant for the formulation and can be omitted.

As we already pointed out, constraints (4.17) are quadratic, so that in order to solve
this model using the procedures described in Chapter 2 for integer linear programming,
it would be necessary to linearize those constraints, introducingO(|K|2n) new variables
wk
ip for all i ∈ {1, . . . , 2|K|}, k ∈ {1, . . . , |K|}, p ∈ P such that gkp = 2. Thus, the

original quadratic constraints (4.17) should be substituted by the following ones:

2|K|
∑

i=1

wk
ip +

m+|K|
∑

i=2|K|+1

yki g
i
p = 1 ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 2

(4.25)

wk
ip ≤ yki ∀ i ∈ {1, . . . , 2|K|}, k ∈ {1, . . . , |K|}, p ∈ P : gkp = 2

(4.26)

wk
ip ≤ zip ∀ i ∈ {1, . . . , 2|K|}, k ∈ {1, . . . , |K|}, p ∈ P : gkp = 2

(4.27)

wk
ip ≥ yki + zip − 1 ∀ i ∈ {1, . . . , 2|K|}, k ∈ {1, . . . , |K|}, p ∈ P : gkp = 2

(4.28)

From now on we refer to (QPL) as the linearized formulation.



52 CHAPTER 4. NEW FORMULATIONS FOR THE HIPP PROBLEM

The introduction of the linearizing constraints brings back to a three index formula-
tion, with increased number of variables and constraints, and presents a great number
of symmetries. Another possible approach could then be investigated, starting from a
reformulation of this model as it is shown in the following section.

4.3 A new exponential-size formulation

We apply a Dantzig-Wolfe decomposition to the formulation (QPL). Notice that, if we
consider one haplotype hi at a time, the (QPL) formulation presents a block structure,
where constraints (4.16) and (4.25) are the linking constraints. Moreover, we note that
all blocks are identical, thus we expect that this reformulation will break the noticed
symmetries. Let s be the total number of heterozygous sites contained in the genotypes,
so that for every i ∈ {1, . . . , 2|K|} we need to de�ne s variables for the linearization
of constraints.

We de�ne the set of feasible solutions within a single block as follows, where we
collect information coming from contraints (4.18)-(4.21) and (4.26)-(4.28):

Xi = {(zi, yi, xi, wi) ∈ {0, 1}
n+m+1+s| zip ≥ yki ∀ k, p if gkp = 1,

zip ≤ 1− yki ∀ k, p if gkp = 0,

wk
ip ≤ yki ∀ k, p if gkp = 2,

wk
ip ≤ zip ∀ k, p if gkp = 2,

wk
ip ≥ ykip + zip − 1 ∀ k, p if gkp = 2,

yki ≤ xi ∀k,

|K|
∑

k=1

yki ≥ xi}

As for each haplotype i this set is described by the same integer points, we refer to
it simply as set X. In particular, we can give an interpretation of the points in X as
the vectors zi that identify the structure of a haplotype and the genotypes that are
resolved using that haplotype, determined by those k such that yki = 1. Then, if there
is at least one genotype of this kind, the value of variable xi is set to 1. Note that
this holds also for �xed haplotypes, as in this case variable xi does not appear in the
objective function. Finally, the values of variables wk

i,p are set according to the values
of the other variables.

It is well known [16] that we can obtain the Dantzig-Wolfe relaxation of the (QPL)
model by solving the following linear program:

min

2|K|
∑

i=1

xi + (m− |K|) (4.29)

s.t.

m+|K|
∑

i=1

yki = 2 ∀ k ∈ {1, . . . , |K|} (4.30)



4.3. A NEW EXPONENTIAL-SIZE FORMULATION 53

2|K|
∑

i=1

wk
ip +

m+|K|
∑

i=2|K|+1

yki g
i
p = 1 ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 2 (4.31)

(zi, yi, xi, wi) ∈ conv(X) ∀ i ∈ {1, . . . , 2|K|} (4.32)

This model can be further reformulated exploiting the structure of the set conv(X).
We consider the set Q of all vertices (zq, yq, xq, wq) of conv(X). Note that X is a 0/1
polytope, so every point in X is a vertex of conv(X). We can describe every point of
conv(X) as a convex combination of points in Q, with appropriate weights λq

i :

∀ (zi, yi, xi, wi) ∈ conv(X), (zi, yi, xi, wi) =
∑

q∈Q

λq
i (zq, yq, xq, wq),

∑

q∈Q

λq
i = 1.

(4.33)

In particular,

zip =
∑

q∈Q

λq
i zqp (4.34)

yki =
∑

q∈Q

λq
i y

k
q (4.35)

xi =
∑

q∈Q

λq
ixq (4.36)

wk
ip =

∑

q∈Q

λq
iw

k
qp (4.37)

(4.38)

We de�ne

λq = xq

m+|K|
∑

i=1

λq
i (4.39)

and we denote with Gq the subset of genotypes of G that are resolved using haplotype
zq, that is the set of genotypes gk such that ykq = 1. We now present some lemmas
that are needed to provide the formulation of Dantzig-Wolfe relaxation.

Lemma 4.1. Let cq be coe�cients that take value 1 if the haplotype zq associated
to vertex q ∈ Q is not �xed, 0 otherwise. By reformulating (4.15), we get the new
objective function:

∑

q∈Q

cqλ
q + (m− |K|) (4.40)

Proof. We de�ne ci = 1 for the non-�xed genotypes i = 1, . . . , 2|K| and ci = 0 for
i = 2|K|+ 1, . . . ,m+ |K|. Thus it holds:

2|K|
∑

i=1

xi =

m+|K|
∑

i=1

cixi
(?)
=

m+|K|
∑

i=1

∑

q∈Q

λq
ixqcq=

∑

q∈Q

[

xq

m+|K|
∑

i=1

λq
i

]

cq =

=
∑

q∈Q

cqλ
q



54 CHAPTER 4. NEW FORMULATIONS FOR THE HIPP PROBLEM

Note that (?) is ensured by (4.36) and by the de�nitions of ci and cq, as if the genotype
is �xed the associated haplotype is also �xed

Lemma 4.2. By reformulating constraints (4.16) we get the new constraints:
∑

q∈Q: gk∈Gq

λq = 2 ∀ k ∈ {1, . . . , |K|} (4.41)

Proof.

2 =

m+|K|
∑

i=1

yki =

m+|K|
∑

i=1

∑

q∈Q

λq
i y

k
q

(?)
=

m+|K|
∑

i=1

∑

q∈Q

xqλ
q
i y

k
q

(�)
=

=

m+|K|
∑

i=1

∑

q∈Q: gk∈Gq

xqλ
q
i =

∑

q∈Q: gk∈Gq

[

xq

m+|K|
∑

i=0

λq
i

]

=

=
∑

q∈Q: gk∈Gq

λq

As soon as there exists an index k such that ykq = 1, then also xq = 1 by constraints
(4.20) and adding it does not change the value of the sum. Hence, (?) holds. (�) holds
as we are just writing the same condition in a di�erent way: if ykq = 1, then genotype

gk is resolved using the haplotype zq and this is equivalent to say that gk ∈ Gq.

Lemma 4.3. By reformulating constraints (4.17) we get the new constraints:
∑

q∈Q: gk∈Gq ,
zqp=1

λq = 1 ∀ k ∈ {1, . . . , |K|}, ∀ p ∈ P : gkp = 2 (4.42)

Proof.

1 =

2|K|
∑

i=0

wk
ip +

m+|K|
∑

i=2|K|+1

yki g
i
p =

=

2|K|
∑

i=0

∑

q∈Q

λq
iw

k
qp +

m+|K|
∑

i=2|K|+1

yki zip
(?)
=

=

2|K|
∑

i=0

∑

q∈Q

xqλ
q
iw

k
qp +

m+|K|
∑

i=2|K|+1

xq̄λ
q̄
i y

k
q̄ zq̄p

(�)
=

=

2|K|
∑

i=0

∑

q∈Q: gk∈Gq ,
zqp=1

xqλ
q
i +

m+|K|
∑

i=2|K|+1

∑

q∈Q: gk∈Gq ,
zqp=1

xqλ
q
i =

=
∑

q∈Q: gk∈Gq ,
zqp=1

[

xq

2|K|
∑

i=1

λq
i + xq

m+|K|
∑

i=2|K|1

λq
i

]

=
∑

q∈Q: gk∈Gq ,
zqp=1

[

xq

m+|K|
∑

i=1

λq
i

]

=

=
∑

q∈Q: gk∈Gq ,
zqp=1

λq



4.3. A NEW EXPONENTIAL-SIZE FORMULATION 55

Note that ykq = 1 implies that wk
qp = 1 and xq = 1 by constraints (4.20) and (4.26).

Thus, (?) holds. With respect to the second addend, as zip = gip ∈ {0, 1}, zip is not
a convex combination of vertices of conv(X), thus there exists a unique q̄ such that
λq̄
i = 1 for this particular i. Hence we can rewrite

xq̄λ
q̄
i y

k
q̄ zq̄p =

∑

q∈Q

xqλ
q
i y

k
q zqp

Moreover, (�) holds as, for the �rst addend, we embed in the sum's conditions the
meaning of wk

qp = 1.

Lemma 4.4. From equation (4.33) we get the constraint
∑

q∈Q

λq ≤ m+ |K| (4.43)

Proof.

∑

q∈Q

λq =
∑

q∈Q

xq

m+|K|
∑

i=1

λq
i =

m+|K|
∑

i=1

∑

q∈Q

xqλ
q
i ≤

m+|K|
∑

i=1

∑

q∈Q

λq
i =

m+|K|
∑

i=1

1 = m+ |K|

By using these lemmas we can prove the following theorem, that gives us the
formulation for Dantzig-Wolfe relaxation of the (QPL) formulation:

Theorem 4.1. A valid formulation of the Dantzig-Wolfe relaxation (4.29)-(4.32) is
given by the following model:

min
∑

q∈Q

cqλ
q + (m− |K|) (4.44)

s.t.
∑

q∈Q: gk∈Gq

λq = 2 ∀ k ∈ {1, . . . , |K|} (4.45)

∑

q∈Q: gk∈Gq

hq
p=1

λq = 1 ∀ k ∈ {1, . . . |K|}, p ∈ P : gkp = 2 (4.46)

λq ∈ [0, 1] ∀ q ∈ Q (4.47)

where Gq is a subset of genotypes in K and hq is a haplotype associated with variable
λq.

Proof. The proof of this Theorem is a direct consequence of the Lemmas 4.1, 4.2, 4.3
and 4.4, where vector hq represents an haplotype whose coordinates are described by
zq. Note that constraint (4.43) does not appear in the formulation as it is redundant.
It remains to prove that variables λq take value between 0 and 1, which derives from
the following observations:

λq = xq

m+|K|
∑

i=1

λq
i ≥ 0 because xq ∈ {0, 1} and λq

i ≥ 0 ∀ i, q

λq ≤ 1 as a consequence of (4.46)



56 CHAPTER 4. NEW FORMULATIONS FOR THE HIPP PROBLEM

We can now give the Dantzig-Wolfe reformulation of (QPL) model.

Theorem 4.2. A valid reformulation of (QPL) model is given by the following for-
mulation:

(EIP) min
∑

q∈Q

cqλ
q + (m− |K|) (4.48)

s.t.
∑

q∈Q: gk∈Gq

λq = 2 ∀ k ∈ {1, . . . , |K|} (4.49)

∑

q∈Q: gk∈Gq

hq
p=1

λq = 1 ∀ k ∈ {1, . . . |K|}, p ∈ P : gkp = 2 (4.50)

λq ∈ {0, 1} ∀ q ∈ Q (4.51)

Proof. Note that the linear relaxation of EIP is exactly the Dantzig-Wolfe relaxation
given in the previous theorem. It is known [16] that a valid reformulation of the original
model is obtained by imposing the integrality conditions on the original variables, as
seen in (4.34)-(4.35):

xi =
∑

q∈Q

xqλ
q
i ∈ {0, 1} (4.52)

yki =
∑

q∈Q

ykqλ
q
i ∈ {0, 1} (4.53)

zip =
∑

q∈Q

zqpλ
q
i ∈ {0, 1} (4.54)

and proving that they imply the condition:

λq ∈ {0, 1} for all q ∈ Q.

Suppose by contradiction that there exists a subset K such that λq
i ∈]0, 1[ for each

q ∈ K. As all vertices of conv(X) have only integer coordinates in {0, 1}, because of
(4.52) we must have

∑

q∈K

λq
i = 1, λq

i = 0 ∀ q /∈ K

thus either xq = 0 for all q ∈ K or xq = 1:

• if xq = 0 for all q ∈ K, then by constraints (4.20) we have also ykq = 0 for all k
and for all q ∈ K. Thus, as the considered vertices in K should be di�erent, we
should have di�erent vectors z.
Anyway, if

∑

q∈K zqpλ
q
i = 0, we have zqp = 0 for all q ∈ K, while if

∑

q∈K zqpλ
q
i =

1 we need zqp = 1 for each q ∈ K, so that each vertex q ∈ K results to be equal.
This is not possible, so the hypothesis was wrong and all λq

i is in {0, 1}.

• if xq = 1 for all q ∈ K, we must have by constraints (4.21) at least one ykq = 1.

But then, we must have ykq = 1 for all q ∈ K. Now, values of zqp are �xed if

there exists a genotype k such that gkp 6= 2. To ensure the integrality of zip we

should have no genotype such that gkp = 0. Under this assumption, we still need
zqp = 1 for all q ∈ K, hence all vertices in K results equal. This is absurd, so
every λq

i takes value 0 or 1.



4.3. A NEW EXPONENTIAL-SIZE FORMULATION 57

Variables λq are then integer for every q ∈ Q by (4.39), as they are de�ned as
sum of integer amounts, and are forced to take values 0 or 1 by the domain of the
Dantzig-Wolfe relaxation.

Note that model (EIP) corresponds to the exponential-sized formulation for HIPP
presented in [19], where the variables represent a pair q = (hq, Gq) where hq is a
haplotype and Gq ⊆ G is a subset of genotypes compatible with hq. From now on,
we de�ne a set Q of all these pairs, made of a haplotype and a subset of genotypes
compatible with it, and we denote each element of this set as a Q-pair. In this way, if
we consider the integer model, setting a variable λq equal to 1 means that we choose
haplotype hq as one of the two haplotypes used to resolve all the genotypes in Gq.
Constraints (4.49) ensure that each genotype is contained in exactly two subsets of
genotypes, meaning we are selecting two haplotypes to resolve it, while constraints
(4.50) say that, among the two haplotypes chosen for each genotype, only one has
value 1 in each heterozygous position p (the other has necessarily value 0).

This formulation has a polynomial number of constraints, and O(2n|K|) variables,
so that column-generation and branch-and-price approaches are necessary to solve it.
These approaches will be presented in the following chapters.





CHAPTER 5

A column-generation approach for the linear relaxation

The �rst step for solving an integer linear program consists in �nding the solution
of its linear relaxation, that requires some extra arrangements when computed using
a column-generation approach: �rst of all, we should provide a feasible solution as
starting point of the algorithm, then we should provide an e�cient procedure to solve
the pricing problem and �nd suitable variables to be added to the RMP (Restricted
Master Problem).

The huge number of variables involved in the formulation are likely to yield compu-
tational issues, in particular we expect a very slow improvement of the solution value
when we are considerably close to the optimum. By using a lower bound as an early
termination condition we can reduce this e�ect, stopping the column generation when-
ever the di�erence between the current optimal value and the lower bound is below a
tolerance threshold. Moreover, it is usually seen that the dual variable values do not
smoothly converge to their optimum, but that, mainly during the �rst iterations, they
signi�cantly oscillate. Thus, a stabilization procedure can be used to bound the values
of the dual variables and accelerate the convergence.

In this chapter we introduce two heuristics that yield feasible initial solutions for
the HIPP problem, then we present di�erent ways of solving the pricing problem. We
then introduce the computation of a lagrangian lower bound used as a termination
condition as well as an important tool for the stabilization procedure described in the
last section. In order to apply the proposed stabilization technique, we extend the
number of cases in which convergence is ensured with respect to previous approaches
in literature.

5.1 Heuristics for computing an initial solution of the

Restricted Master Problem

An easy way of providing a feasible initial solution to the column-generation procedure
consists in building two compatible haplotypes for each genotype. In our case, we just
need those for genotypes with at least one heterozygous site, as �xed genotypes are

59



60 CHAPTER 5. A COLUMN-GENERATION APPROACH FOR THE LP

assumed to be already resolved and are already taken into account. In particular, given
a genotype g, two haplotypes h′ and h′′ resolving g are built in the following way:

h′p =

{

gp if gp 6= 2

1 otherwise
h′′p =

{

gp if gp 6= 2

0 otherwise
(5.1)

The drawback of this initial solution is its probably large distance from the optimal
solution, as it is not taking into account the compatibilities between genotypes that
could spare non-necessary haplotypes. Thus, it is possible to consider alternative initial
solutions that exploits the structure of the genotypes and reduce the associated value of
the objective function. Such alternative solutions can be found by means of heuristics
taken from the literature. In this thesis, we focus on the ability of the proposed
column generation approach to converge to the optimal solution and we propose a
fast heuristic inspired by the haplotype inference technique presented by Clark in [15]
and reported in Algorithm 3.6. As the procedure in [15] does not guarantee that all
genotypes are resolved, we modify it as in Algorithm 5.10 in order to obtain in any case
a feasible solution, even when no �xed genotypes are given. This procedure follows
Clark's heuristic, except for the cases in which we do not �nd a compatible haplotype
for a genotype g: in this case, we arbitrarily choose two haplotypes that resolve g and
add them to the set H (see Step 17). Note that to perform this step we can use the
approach shown in (5.1).

Algorithm 5.10 Clark's inspired heuristic

1: procedure Initial Solution

2: let Ḡ = G be the set of unresolved genotypes,
3: let H = ∅ be the set that contains the haplotypes considered so far,
4: for g in Ḡ do
5: if g is �xed then
6: add g to H
7: remove g from Ḡ,
8: end if
9: end for

10: for g in Ḡ do
11: look for a haplotype h ∈ H compatible with g,
12: if h is found then
13: compute the complementary one h̄ w.r.t. g,
14: if h̄ /∈ H then and add it to H,
15: end if
16: else
17: add to H any two haplotypes that together resolve g,
18: end if
19: end for
20: end procedure

Moreover, we recall that in order to �nd the maximum number of genotypes that
can be resolved, we should run Clark's heuristic many times, considering all the possible
orderings for the set of genotypesG. In this case, however, we choose a prede�ned order



5.2. DIFFERENT APPROACHES TO SOLVE THE PRICING PROBLEM 61

that tries to exploit the compatibility of haplotypes. In particular, a possible choice
consists in considering the genotypes in set G rearranged according to the increasing
number of heterozygous positions.

The intuition behind such a choice is shown by the following example.

Example 5.1. Consider a set G of genotypes in a random ordering and �nd a feasible
starting solution applying Algorithm 5.10:

G = {2021022, 1201210,2021020, 1101110}

⇒ H = {0001000, 1011011, 1001010, 1101110, 1011010}

Consider now the same set G with genotypes rearranged according to the increasing
number of heterozygous sites. The initial solution obtained in this case is:

G = {1101110, 1201210,2021020, 2021022}

⇒ H = {1101110, 1001010, 0011000, 0011001}

As we can see, the �rst ordering does not completely exploit the information given by
the genotype with no heterozygous sites for resolving the second genotype, so that the
resulting feasible solution needs an extra haplotype.

5.2 Di�erent approaches to solve the Pricing Problem

Given the feasible initial solution, we consider the linear relaxation of (EIP), that we
call (ELP), and we build its RMP, where the only variables involved are the ones
related to the initial feasible solution and belonging to set QRM ⊆ Q:

min
∑

q∈QRM

cqλ
q + (m− |K|) (5.2)

s.t.
∑

q∈QRM : gk∈Gq

λq = 2 ∀ k ∈ {1, . . . , |K|} (5.3)

∑

q∈QRM : gk∈Gq

hq
p=1

λq = 1 ∀ k ∈ {1, . . . |K|}, p ∈ P : gkp = 2 (5.4)

λq ∈ {0, 1} ∀ q ∈ QRM (5.5)

We solve this RMP, thus obtaining a feasible primal solution for the linear relax-
ation. If the associated dual solution is also feasible, then we do not need any other
variable and the solution is optimal. If the dual solution is not feasible, instead, we
need to �nd a variable with negative reduced cost to be added to the current set of
available variables. This is done by solving a subproblem, called pricing problem, as
seen in Section 2.1.2.

We associate dual variables πk, k ∈ {1, . . . , |K|} and µk
p, p ∈ P, k ∈ {1, . . . , |K|}

respectively to primal constraints (5.3) and (5.4). Observing that constraints λq ≤ 1



62 CHAPTER 5. A COLUMN-GENERATION APPROACH FOR THE LP

are redundant due to constraints (4.50), the dual of (ELP) is the following:

max

|K|
∑

k=1

2πk +

|K|
∑

k=1

∑

p:gkp=2

µk
p (5.6)

s.t.
∑

k: gk∈Gq

πk +
∑

k: gk∈Gq

∑

p: gkp=2,hq
p=1

µk
p ≤ cq ∀ q ∈ Q (5.7)

πk ≥ 0 ∀ k ∈ {1, . . . , |K|} (5.8)

Variables with negative reduced cost are found if there exist violated constraints
for the dual problem (5.6)-(5.8). In particular, given the dual variables (πRM , µRM )
related to the solution of the RMP, a Q-pair q = (hq, Gq) is associated to a suitable
variable λq for the RMP if it holds:

c̄q = cq −
∑

k: gk∈Gq

πk
RM −

∑

k: gk∈Gq

∑

p: gkp=2,hq
p=1

µRM
k
p < 0 (5.9)

where c̄q is the reduced cost associated to Q-pair q. If no such Q-pair exists, then the
solution obtained from the RMP is optimal for the HIPP problem.

Thus, we either need a tool that gives us a Q-pair q such that c̄q < 0 or proves
that no such Q-pair exists. This is the so-called Pricing Problem. Note that these
two queries are answered at once if we are able to determine the Q-pair that gives the
minimum c̄q: if this value is negative, we found a suitable Q-pair, otherwise we know
that it holds

c̄q̃ ≥ min
q∈Q

c̄q ≥ 0,

so we have the proof that no other Q-pair q̃ is suitable.
We give the following formulation of the pricing problem (PP), whose solution

represents a Q-pair with minimum reduced cost:

(PP) min c(ζ)−

|K|
∑

k=1

πk
RMχk −

|K|
∑

k=1

∑

p:gkp=2

µRM
k
pζpχ

k (5.10)

s.t. ζp ≤ 1− χk ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 0 (5.11)

ζp ≥ χk ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 1 (5.12)

ζp, χ
k ∈ {0, 1} ∀ k ∈ {1, . . . , |K|}, p ∈ P (5.13)

Variables ζp represent the coordinates of a haplotype hq, χ is the characteristic vector
of a subset Gq ⊆ K of genotypes and c(ζ) = 0 if ζ is a �xed haplotype and it is equal
to 1 otherwise. Constraints (5.11) and (5.12) guarantee the compatibility conditions
between the haplotype and the genotypes.

Note that this formulation presents a quadratic objective function, so that in order
to apply standard linear programming techniques to exactly solve (PP) a linearization
is necessary, as will be shown in Section 5.2.1. This solution approach, however,
involves the addition of a new set of variables to the formulation (PP). In Section 5.2.2
we present alternative ways of �nding the optimal solution of (PP) exploiting some
features of this formulation.



5.2. DIFFERENT APPROACHES TO SOLVE THE PRICING PROBLEM 63

We can further notice that in some cases there can be more e�cient ways of �nding
variables with negative reduced costs that do not yield the minimum value of c̄q. In
these cases, if we are able to identify variables to be added to the RMP, we can fastly
proceed towards the optimal solution, while when they fail in �nding such a variable,
we cannot yet yield the proof that no suitable variable exists. In Sections 5.2.3, 5.2.4,
5.2.5 and 5.2.6 we present di�erent heuristic approaches to solve (PP), that aim at
quickly �nding a Q-pair q with negative reduced cost.

5.2.1 Solve the Mixed Integer Program

As we already noticed, (PP) presents a quadratic objective function. A straightforward
way of dealing with it consists in linearizing. We introduce new variables wk

p for each

genotype gk and each position p such that gkp = 2. These variables are used in the

formulation to represent the quantity ζpχ
k, so that the objective function can be re-

written in linear form. We thus introduce extra constraints to ensure that these new
variables assume the right value, that is wk

p must be equal to 0 if at least one among

ζp and χk is equal to 0 and 1 if both take value 1. The linear reformulation of the
pricing problem, called (LPP), is given by:

(LPP) min c(ζ)−

|K|
∑

k=1

πk
RMχk −

|K|
∑

k=1

∑

p:gkp=2

µRM
k
pw

k
p (5.14)

s.t. ζp ≤ 1− χk ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 0 (5.15)

ζp ≥ χk ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 1 (5.16)

wk
p ≤ ζp ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 2 (5.17)

wk
p ≤ χk ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 2 (5.18)

wk
p ≥ χk + ζp − 1 ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 2 (5.19)

ζp, χ
k, wk

p ∈ {0, 1} ∀ k ∈ {1, . . . , |K|}, p ∈ P (5.20)

Note that (LPP) can be solved using standard solvers for integer linear problems.

5.2.2 A Smart Enumeration approach

The procedure presented in this section exploits the particular structure of the variables
involved in (LPP): it reduces its size by partitioning the set of feasible solutions and
takes advantage from the information deduced.

The main idea underlying this approach is the obvious observation that, given a
genotype g1 ∈ K, the solution (hq, Gq) of the pricing problem either will include g1,
or not. For compatibility reasons, if g1 ∈ Gq we can derive extra information on
the shape of the solution, such as the values of some components of hq, and already
exclude from Gq those genotypes that are not compatible with g1. In this way, the
size of (LPP) can be signi�cantly reduced, provided we suppose g1 belongs to the
optimal solution. We then need to look also to what happens when g1 is not in the
solution. Consider Figure 5.1, where the circle represents all the possible solutions
(hq, Gq) of the pricing problem. All the solutions in which g1 ∈ Gq are colored in
blue in Figure 5.1a. In Figure 5.1b, we can see how the solutions not involving g1 are



64 CHAPTER 5. A COLUMN-GENERATION APPROACH FOR THE LP

g1 ��g
1

(a) g1 ∈ Gq

g2

��g
2

(b) g1 /∈ Gq,g2 ∈ Gq

g3

��g
3

. . .

(c) g1 /∈ Gq,g2 /∈ Gq, g3 ∈ Gq

Figure 5.1: Idea of how Smart Enumeration proceeds.

divided into solutions in which g2 ∈ Gq (in purple) and those in which g2 /∈ Gq, that
are again divided into solutions such that g3 ∈ Gq (in orange in Figure 5.1c) or not.
Thus, by exploring recursively all the genotypes inK and solving the associated pricing
problems with additional information, we are able to recover the optimal solution of
the original pricing problem. We give the outline of this procedure in Algorithm 5.11.
Note that at Step 8 of this algorithm we are solving a linear program deriving from the

Algorithm 5.11 Smart Enumeration for solving (LPP)

1: procedure Smart Enumeration

2: set αOPT = +∞, (ζOPT , χOPT ) = 0,
3: given a prede�ned order ≺ on the genotypes,
4: for gi genotype do
5: �x χi = 1 and χk = 0∀ k : gk ≺ gi,
6: �x ζp = gip ∀p ∈ P : gip 6= 2,

7: set Gi = {g
i} ∪ {gj ∈ K| gi ≺ gj and gip + gjp 6= 1, ∀p ∈ P}

8: solve (LPP) restricted to the genotypes in Gi

9: - get the optimal value αi,
10: - get the optimal solution (ζ(i), χ(i))
11: if αi < αOPT then
12: update αOPT = αi, (ζOPT , χOPT ) = (ζ(i), χ(i)),
13: end if
14: end for
15: end procedure

formulation (LPP) but whose size is reduced, so that the optimal value αi is obtained
by solving the following reduced pricing problem:

αi = min c(ζ)−
∑

p:gip=2

µi
pζp −

∑

k∈Gi

(πk+
∑

p: gkp=2,

gip=1

µk
p)χ

k −
∑

k∈Gi

∑

p:gkp=2

gip=2

µk
pζpχ

k (5.21)

s.t. ζp = 1 if gip = 1 (5.22)

ζp = 0 if gip = 0 (5.23)

ζp ≤ 1− χk ∀ k ∈ Gi, ∀ p : gkp = 0 (5.24)

ζp ≥ χk ∀ k ∈ Gi, ∀ p : gkp = 1 (5.25)



5.2. DIFFERENT APPROACHES TO SOLVE THE PRICING PROBLEM 65

ζp, χ
k ∈ {0, 1} ∀ k ∈ Gi, ∀ p (5.26)

Then, we need to keep recorded the minimum value of these αi to recover the optimal
solution of the pricing problem (LPP).

We point out that, in order to provide a partition of all the feasible solutions, at
Step 3 the Smart Enumeration procedure needs to look at each genotype following a
prede�ned order. In particular, we note how considering a genotype with only few
heterozygous sites allows us to �x a large number of variables and could possibly
reduce the number of compatible genotypes to be considered. It is then advisable to
keep the genotypes with many heterozygous sites at the end of the procedure, so that
the disadvantage of still having a great number of non-�xed variables is compensated
by the fact that only few genotypes are left to be considered. Thus, it makes sense
to consider the genotypes ordered according to the increasing number of heterozygous
sites.

We still need to prove that this procedure is correct. This is shown in the following
proposition.

Proposition 5.1. The Smart Enumeration described in Algorithm 5.11 solves (LPP)
to optimality:

Proof. By �xing variables χ in Step 5, we obtain a partition of the solution space of
(LPP) into |K| subsets, as shown in Figure 5.1. Let (h̄, Ḡ) be a Q-pair associated
to a feasible solution of the i-th reduced pricing problem. Since gi ∈ Ḡ, h̄ has to be
compatible with gi so that �xing variables as in Step 6 does not exclude any feasible
solution. Now, let gj ∈ Ḡ with gj 6= gi. From Step 5 we necessarily have gi ≺ gj .
Moreover, gjp + gip 6= 1 for all p ∈ P , as otherwise gj and gi cannot be resolved by the
same h̄. Hence the de�nition of Gi does not exclude any feasible solution.

5.2.3 Fixed haplotypes

According to the observation that, in order to �nd a variable with negative reduced
cost, we do not need to solve (PP) to optimality, we introduce here a simple procedure
that explores a subset of all the possible Q-pairs looking for a suitable variable to be
added to the RMP.

We recall that if a genotype does not contain any heterozygous site, it is resolved
by the so-called �xed haplotypes. Note that we can partition the whole set of Q-
pairs according to whether hq is �xed or not. Considering a �xed haplotype, the
corresponding pricing problem derived from model (PP) results to be a linear program:

(FPP )min −

|K|
∑

k=1

πk
RMχk −

|K|
∑

k=1

∑

p:gkp=2,hq
p=1

µRM
k
pχ

k (5.27)

s.t. χk = 0 ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp 6= 2 ∧ gkp 6= hqp
(5.28)

χk ∈ {0, 1} ∀ k ∈ {1, . . . , |K|} (5.29)

whose solution can be found by inspection as described by Algorithm 5.12. Namely,
starting from the given haplotype we add to its subset of associated genotypes only



66 CHAPTER 5. A COLUMN-GENERATION APPROACH FOR THE LP

Algorithm 5.12 Best candidate �xed haplotype

1: procedure Fixed Haplotypes

2: for g ∈ G compatible with hq do
3: compute ck = −πRM

k −
∑

p:gkp=2,hq
p=1 µRM

k
p ,

4: if ck ≤ 0 then
5: set χk = 1,
6: else
7: set χk = 0,
8: end if
9: end for

10: end procedure

those genotypes that are compatible with it and give a negative contribution to the
objective function. Note that in this way we obtain the best possible subset of geno-
types for a speci�c haplotype, according to the minimality of the reduced cost. Thus,
solving this linear problem for each �xed haplotype and storing the best Q-pair found,
we identify the variable with minimum reduced cost among those involving �xed hap-
lotypes. If this reduced cost is positive, no variable with �xed haplotype is suitable to
be added to the RMP.

5.2.4 A Local Search-based approach

A di�erent heuristic for �nding a suitable variable can be made by applying a local
search starting from the most promising �xed haplotype hq̄ with positive reduced cost
ᾱ. This procedure is described in Algorithm 5.13. The initial haplotype is found
as part of the optimal solution q̄ = (hq̄, Gq̄) of (FPP) model described in Section
5.2.3. In this case, we de�ne the neighbourhood of this Q-pair as the Q-pairs in which
the haplotype h̃ is obtained from hq̄ by �ipping the value of a position p and the
related optimal subset of genotypes is obtained by solving model (FPP) (see Steps 5-
6). Whenever a neighbour solution that improves the objective function is found, we
apply again the local search starting from this new feasible solution. Note that, if no
�xed haplotype is available, the local search can start from a random haplotype. This
procedure is not exact, but can possibly provide a Q-pair whose associated variable
has a negative reduced cost for the RMP.

5.2.5 An Early-terminated Smart Enumeration

The main drawback of the Smart Enumeration procedure presented in Section 5.2.2
is that to solve exactly (LPP) we need to �nd the optimal solution of |K| integer
linear programs. In order to speed up the process, instead of looking for the minimum
reduced cost and considering the associated solution, we can stop the procedure as
soon as we �nd a solution with a negative reduced cost. In fact, in this way we can
recover a Q-pair from the solution χ, ζ that is associated with a variable with negative
reduced cost, thus we �nd a suitable variable to be added to the RMP. In the worst
case, we need to solve all the |K| problems in order to �nd a variable to be added, or to
be able to say that no such variable exists. This Early-terminated Smart Enumeration
procedure does not always return the optimal solution of the pricing problem, but as



5.2. DIFFERENT APPROACHES TO SOLVE THE PRICING PROBLEM 67

Algorithm 5.13 Local Search applied to the solution of (FPP)

1: procedure Local Search(q̄)
2: set qLS = q̄, αLS = ᾱ,
3: set qBEST = qLS , αBEST = αLS ,
4: for each position p ∈ P do
5: h̃ = hq

LS
,

6: h̃p = 1− hq
LS

p ,
7: solve (FPP) with h̃ �xed, get
8: - optimal solution (h̃, G̃),
9: - optimal value α̃

10: if ˜alpha < αBEST then
11: update: αBEST = α̃, qBEST = (h̃, G̃),
12: end if
13: end for
14: if qBEST has been updated then
15: update qLS = qBEST ,
16: go back to Step 3,
17: else
18: STOP.
19: end if
20: end procedure

soon as we solve all the |K| reduced problems without �nding a suitable variable, we
know that considering the solution with minimum reduced cost obtained so far we are
also considering the global optimal solution of the pricing problem, so that we can
assert that no variable is missing and we reached the optimal solution. This means
that the correctness of the procedure is preserved.

5.2.6 A Maximum �ow approach

By assuming that we already checked that no �xed haplotypes have negative reduced
cost, we can restrict the pricing problem to non-�xed haplotypes and rewrite the
objective function of (LPP): we ignore the term c(ζ) and modify the pricing problem
into a maximization problem, as follows:

(MaxPP) max

|K|
∑

k=1

πk
RMχk +

|K|
∑

k=1

∑

p:gkp=2

µRM
k
pw

k
p (5.30)

s.t. ζp ≤ 1− χk ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 0 (5.31)

ζp ≥ χk ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 1 (5.32)

wk
p ≤ ζp ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 2 (5.33)

wk
p ≤ χk ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 2 (5.34)

wk
p ≥ χk + ζp − 1 ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 2 (5.35)

ζp, χ
k, wk

p ∈ {0, 1} ∀ k ∈ {1, . . . , |K|}, p ∈ P (5.36)



68 CHAPTER 5. A COLUMN-GENERATION APPROACH FOR THE LP

Variables wk
p can be seen as associated to subsets made by the pair (genotype-position)

(gk, p), where if we select a particular subset by setting wk
p = 1, we need to take into

account the associated elements and thus set χk = 1, ζp = 1. Under this consideration,
the objective function reminds the one of selection problems shown in Section 2.5.1
that considers elements n ∈ N with cost cn ≥ 0 and a collection Σ of subsets of
elements of N with a pro�t pσ ≥ 0, σ ∈ Σ. We recall that the formulation for the
selection problem is:

max
∑

σ∈Σ

pσyσ −
∑

n∈N

cnxn (5.37)

s.t. xn ≥ yσ ∀ σ ∈ Σ, ∀ n ∈ σ (5.38)

xn, yσ ∈ {0, 1} ∀ n ∈ N, ∀ σ ∈ Σ (5.39)

where variables xn take value 1 if we select element n ∈ N or 0 otherwise, and variables
yσ take value 1 if set σ ∈ Σ is selected, 0 otherwise. We note however that there are
some di�erencies, in particular, we do not know the sign of the objective's coe�cients
and due to the compatibility conditions we have extra constraints (5.31) and (5.32).

In order to see whether we can decompose the pricing problem and embed the
compatibility constraints into the objective function, we recall some notions on the
s-cliques presented in [33]:

• a set of genotypes C is an s-clique if there exists a haplotype h such that the set
of genotypes compatible with it is exactly C,

• a selector for the s-clique C is a haplotype whose compatible genotypes are
exactly the ones contained in C. The number of selectors for each s-clique can
be very large, thus we can represent them in a compact form (pattern table),

• a pattern s is an n-string over {0, 1,−} that represents the hypercube

Q(s) = {h ∈ {0, 1}n|hi = si ∀ i : si 6= −}.

A pattern table that represents all the selectors of an s-clique is made of a
collection of patterns, and it is in standard form if no pattern of the set is
contained in another pattern and each pair of patterns di�er for at least two
positions.

Lemma 5.1. The set of all possible solutions to (maxPP) can be partitioned according
to each s-clique and each pattern belonging to its pattern table in standard form.

Proof. In [33] it is proved that the set of s-cliques C induces a partition of the set HG

of all possible haplotypes, thus we can consider an s-clique at a time.

Moreover, if s1 and s2 are two patterns deduced from the s-clique tree, they belong
to two di�erent branches of the tree, so that there exists at least a position p such
that s1p = 0 and s2p = 1 (or viceversa). Thus, the same haplotype h cannot be deduced
from both patterns. This proves that the patterns of a pattern table in standard form
induce a partition of all the haplotypes compatible with the genotypes of that s-clique.
So, for each s-clique we can consider a pattern at a time.



5.2. DIFFERENT APPROACHES TO SOLVE THE PRICING PROBLEM 69

Given an s-clique C and a pattern s belonging to its pattern table, we de�ne a constant
αk
s as:

αk
s =

n
∑

p=1,sp 6=−,gkp=2

µRM
k
psp

Observation 5.1. Let C be the set of s-cliques associated to G and SC be the pattern
table in standard form of the s-clique C, obtained from the s-clique tree. Then the
solution of (MaxPP) can be computed by decomposing it into smaller programs related
to each s-clique C ∈ C and each pattern s ∈ SC , as follows:

max
C,s∈SC

max
∑

k: gk∈C̄

πk
RMχk +

∑

k: gk∈C̄

n
∑

p=1,sp=−

µRM
k
pw

k
p +

∑

k: gk∈C̄

αk
C̄,sχ

k (5.40)

s.t. wk
p ≤ ζp ∀ k ∈ {1, . . . , |K|}, p ∈ P : sp = − (5.41)

wk
p ≤ χk ∀ k ∈ {1, . . . , |K|}, p ∈ P : sp = − (5.42)

wk
p ≥ χk + ζp − 1 ∀ k ∈ {1, . . . , |K|}, p ∈ P : sp = − (5.43)

χk, ζp, w
k
p ∈ {0, 1} ∀ k : gk ∈ C̄, ∀ p ∈ P : sp = − (5.44)

Observation 5.2. According to each s-clique and each pattern, the maximization prob-
lem (5.40) is de�ned only for a subset of the original variables χk, k ∈ {1, . . . , |K|}
and p ∈ P , corresponding to the genotypes belonging to the s-clique and the positions
in the pattern for which the value is not �xed.

We recover the completeQ-pair q represented by the solution of the pricing problem
in the following way:

hqp =

{

ζp if sp = −

sp otherwise
and gk ∈ Gq if gk ∈ C̄ ∧ χk = 1

Note that the information contained in constraints (5.31) and (5.32) is now included
in the information given by the pattern. We can then focus on how to solve (5.40) -
(5.44) given an s-clique and a pattern.

Observation 5.3. If all the coe�cients πk
RM +αk

s are negative and µRM
k
p are positive,

then constraints (5.35) would be redundant and the problem in 5.40 could be solved as
a maximum �ow problem.

Following the approach proposed in [41], we can build a network (V,D) in which
there are two subsets of nodes V1, V2, such that V = V1 ∪ V2, associated respectively
to variables χk, ζp the �rst subset and to variables wk

p the second one. The set of

directed arcs D of in�nite capacity connect nodes wk
p to node ζp (resp. χk) if and only

if we have the constraint wk
p ≤ ζp (resp. wk

p ≤ χk). The result is a bipartite network.
At this point we add a source s and a sink t and link the source to all the nodes of the
�rst set with a directed arc of capacity µRM

k
p, the nodes χk to the sink with directed

arcs of capacity −(πk
RM + αk

C̄,s
) and nodes ζp to the sink with null capacity arcs, as

shown in Figure 5.2. The next step consists in �nding the maximum �ow over this



70 CHAPTER 5. A COLUMN-GENERATION APPROACH FOR THE LP

w1
1

w1
2

w2
1

w2
2

χ1

χ2

ζ1

ζ2

s

µ1
1

µ2
1

µ1
2

µ2
2

t

π1 + α1
C̄,s

−π2 − α2
C̄,s

0

0

V1 V2

Figure 5.2: Bipartite network when coe�cients have the right sign.

network, so that we can recover the solution of our problem looking at the minimum
cut identi�ed by the maximum �ow: we will set to 1 all variables on the side of the
source and to 0 those on the side of the sink.

The special scenario of Observation 5.3 is not likely to occur in our case, since
the dual variables of RMP are not constrained in sign. This means that constraints
(5.43) are not redundant and the exact problem cannot be solved using a maximum
�ow algorithm as known from [41, 42]. We can still solve a relaxation of this problem,
ignoring terms of the objective function that do not have the required signs. As an
alternative, we can try to force the coe�cients of the objective function to assume the
right sign by modifying the constraints of the RMP of (EIP). These approaches are
illustrated in the following two sections.

Ignoring terms of the objective function

If in the objective function we ignore the coe�cients that do not assume the required
sign, we do not �nd the optimal solution of (MaxPP), but by applying the maximum-
�ow approach to a smaller network we recover a heuristic solution that still can provide
a variable to be added to the RMP of formulation (EIP). We can proceed in the
following way: if a coe�cient µk

p is negative we remove variables wk
p and if πk+αk

C̄,s
> 0

we remove variables χk. We then build the related network, as shown in Figure 5.3,
where the nodes representing the removed variables are linked to source or sink by null
weight arcs.

The heuristic solution can be found by solving a maximum �ow problem and then
looking at which nodes can be reached in the residual graph. The complete Q-pair q
is then recovered in the following way:

hqp =

{

1 if ζp is reached in the residual graph

0 otherwise

gk ∈ Gq if χk is reached in the residual graph

If the Q-pair has negative reduced cost we have heuristically found a variable to add
to the RMP.



5.2. DIFFERENT APPROACHES TO SOLVE THE PRICING PROBLEM 71

w1
1

w1
2

w2
1

w2
2

χ1

χ2

ζ1

ζ2

s

0

µ1
1

µ2
1

µ1
2

t

0

−π2 − α2
C̄,s

0

0

V1 V2

Figure 5.3: Bipartite network in which variables are ignored.

Constraining the signs of dual variables

Another way of controlling the dual variables' signs in (5.40) consists in modifying
the constraints of the master problem, replacing equality constraints with suitable
inequalities. We rewrite the (EIP) formulation in the following way, obtaining model
(FullEIP):

(FullEIP) min
∑

q∈Q

cqλ
q + (m− |K|) (5.45)

∑

q:gk∈Gq

λq ♦ 2 ∀ k = 1, . . . , |K| (5.46)

∑

q:gk∈Gq ,hq
p=1

λq ♥ 1 ∀k = 1, . . . , |K|, p ∈ P : gkp = 2 (5.47)

∑

q:gk∈Gq ,hq
p=0

λq ♣ 1 ∀k = 1, . . . , |K|, p ∈ P : gkp = 2 (5.48)

λq ∈ {0, 1} (5.49)

where we can substitute ♦, ♥, ♣ with the symbols =, ≤, ≥ in order to constrain the
signs of the dual variables πk

RM , µRM
k
p, ηRM

k
p associated respectively to constraints

(5.46), (5.47) and (5.48). Note that, if we replace all symbols with =, one set of
constraints among (5.46), (5.47) and (5.48) is redundant, in particular ignoring the
second one we obtain exactly the former (EIP) formulation of the HIPP problem.
Deriving the dual problem with all these three sets of constraints we get the following
expression for the objective function of the pricing problem:

cq −
∑

k: gk∈Gq

πk
RM −

∑

k: gk∈Gq

∑

p:hq
p=1,gkp=2

µRM
k
p −

∑

k: gk∈Gq

∑

p:hq
p=0,gkp=2

ηRM
k
p (5.50)

We associate binary variables χk to each genotype, that take value 1 if genotype gk is
included in the subset of genotypes, and ζp that records the values of each position of
a haplotype. Thus, the objective function of the new pricing problem can be written



72 CHAPTER 5. A COLUMN-GENERATION APPROACH FOR THE LP

as follows:

cq −

|K|
∑

k=1

πk
RMχk −

|K|
∑

k=1

∑

p: gkp=2

µRM
k
pζpχ

k −

|K|
∑

k=1

∑

p: gkp=2

ηRM
k
p(1− ζp)χ

k (5.51)

giving the following formulation for the related pricing problem:

min c(ζ)−

|K|
∑

k=1

(πk
RM +

∑

p: gkp=2

ηRM
k
p)χ

k −

|K|
∑

k=1

∑

p: gkp=2

(µRM
k
p − ηRM

k
p)ζpχ

k (5.52)

s.t. ζp ≤ 1− χk ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 0 (5.53)

ζp ≥ χk ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 1 (5.54)

χk, ζp ∈ {0, 1} ∀ k ∈ {1, . . . , |K|}, p ∈ P (5.55)

For ease of notation, we de�ne αk =
∑

p: gkp=2 ηRM
k
p.

We would like to have negative coe�cients πk
RM + αk and positive µRM

k
p − ηRM

k
p. In

order to see if this is possible, we consider all the combinations that can be assumed
by the verses of constraints (5.46), (5.47) and (5.48), represented by ♦, ♥, and ♣.
Notice that, by considering combinations in which a single set of constraints is not
included, it is possible to have not only relaxations of the HIPP problem, but also valid
formulations. For this reason, these cases are also taken into account. In Table 5.1
we list all the possible combinations for these symbols, denoting with the symbol −
when we are not considering that particular set of constraints. A X is associated to
those coe�cients that assume the desired sign, a × to the ones that do not have the
right sign. The combinations that give only a relaxation for the HIPP problem are
highlighted in red. It is clear how, preserving the validity of the formulation, we are
not able to constrain the signs of the coe�cients, while it would be possible to have
at least a set of coe�cient of the right sign only if we consider a relaxation of (EIP)
and hence of its RMP.

5.3 Adding multiple variables per iteration

We proposed di�erent ways of solving the pricing problem (PP) associated to the (EIP)
formulation for the HIPP problem, both based on exact methods and heuristics, in
order to identify a variable to be added to the RMP. We propose here two di�erent pro-
cedures that allow us to consider, at each iteration of the column-generation method,
additional Q-pairs that can have higher possibilities of representing non-zero variables
in the optimal solution of (ELP). The �rst consists in looking for a particular Q-pair
with a larger genotypes subset, while the second one provides several di�erent Q-pairs,
in which the subset of genotypes can have larger as well as smaller size.

5.3.1 Adding variables with a larger genotypes' subset

If we exclude the approach based on network �ows, we note that all the proposed
methods for solving the pricing problem have the following common feature:



5.3. ADDING MULTIPLE VARIABLES PER ITERATION 73

♦ ♥ ♣ πk
RM + αk µRM

k
p − ηRM

k
p ♦ ♥ ♣ πk

RM + αk µRM
k
p − ηRM

k
p

= = ≥ × × ≥ ≥ ≥ × ×
= = ≤ × × ≥ ≥ ≤ × X

= ≥ = × × ≥ ≤ ≥ × ×
= ≤ = × × ≥ ≤ ≤ × ×
= ≥ ≥ × × ≤ = = × ×
= ≥ ≤ × X ≤ = ≥ × ×
= ≤ ≥ × × ≤ = ≤ X ×
= ≤ ≤ × × ≤ ≥ = × ×
≥ = = × × ≤ ≤ = × ×
≥ = ≥ × × ≤ ≥ ≥ × ×
≥ = ≤ × × ≤ ≥ ≤ X X

≥ ≥ = × × ≤ ≤ ≥ × ×
≥ ≤ = × × ≤ ≤ ≤ X ×
≥ ≥ - × X = - ≤ × X

≥ = - × × ≤ - ≥ × ×
≥ ≤ - × × ≤ - = × ×
= ≥ - × X ≤ - ≤ X X

= = - × × - ≥ ≥ × ×
= ≤ - × × - ≥ = × ×
≤ ≥ - X X - ≥ ≤ X X

≤ = - X × - = ≥ × ×
≤ ≤ - X × - = = × ×
≥ - ≥ × × - = ≤ X ×
≥ - = × × - ≤ ≥ × ×
≥ - ≤ × X - ≤ = × ×
= - ≥ × × - ≤ ≤ X ×
= - = × × = = = × ×

Table 5.1: Possible combinations of equalities and inequalities for (FullEIP) constraints

Observation 5.4. Given the Q-pair q obtained from solving (PP) with one of the
proposed exact or heuristic approaches, each genotype g ∈ Gq gives a non-positive
contribution in the computation of the reduced cost.

In this way we discard those Q-pairs in which the subset of genotypes is larger as
it includes also genotypes that give a positive contribution to the reduced cost, still
maintaining its overall negativity. We recall that, once we �xed a haplotype h, the
contribution ck of a genotype gk to the value of the objective function in the pricing
problem is given by

ck = −

(

πk +
∑

p: gkp=2,hp=1

µk
p

)

. (5.56)

As the aim of the HIPP problem is to minimize the number of haplotypes needed
to resolve all the genotypes, it is clear that to achieve this minimum, even in the linear
relaxation, we need to resolve as many genotypes as possible with the same haplotype.



74 CHAPTER 5. A COLUMN-GENERATION APPROACH FOR THE LP

Thus, given a Q-pair (h̄, Ḡ) such that all genotypes in Ḡ give a negative contribu-
tion, we want to enlarge the subset by as many genotypes as possible. This can be
achieved by solving the following integer linear program:

max
∑

k: gk∈G(h̄)\Ḡ

xk (5.57)

s.t. c(h̄)−
∑

k: gk∈Ḡ

(πk +
∑

p: gkp=2,h̄p=1

µk
p)−

∑

k: gk∈G(h̄)\Ḡ

(πk +
∑

p: gkp=2,h̄p=1

µk
p)x

k ≤ 0

(5.58)

xk ∈ {0, 1} ∀ k : gk ∈ G(h̄)\Ḡ (5.59)

where we recall that G(h̄) is the set of genotypes in K compatible with h̄ and variables
xk are binary, taking value 1 if we consider genotype gk in the enlarged subset, 0
otherwise.

Notice that it is exactly the formulation of a knapsack problem (see Section 2.5.2),
in which every item has the same utility 1 and weight given by (5.56). Thus, we can
easily compute the optimal solution applying a simple heuristic:

1. consider the genotypes suitable to be added to Ḡ, that are those in G(h̄)\Ḡ and
arrange them in increasing order with respect to (5.56),

2. add to Ḡ the �rst d genotypes if the constraint (5.58) is satis�ed, but it would
be violated with the addition of the (d+ 1)-th genotype.

5.3.2 Adding a selected set of extra variables

Once one of the methods proposed for the pricing problem has identi�ed a promising
haplotype h̄, we can recover several Q-pairs with a negative reduced cost: if Ḡ ⊆ K
is the set of genotypes compatible with h̄ that gives a negative contribution to the
reduced cost, then a suitable subset to be paired with h̄ is made of a subset of Ḡ
plus some genotypes in G(h̄)\Ḡ such that the overall reduced cost is still negative. As
we can choose 2|Ḡ| − 1 di�erent sets just for the subsets of Ḡ, adding the variables
associated to all these Q-pairs can easily be impractical, so that we choose just a few
of them by the simple expanding heurisitic shown in Algorithm 5.14.

Algorithm 5.14 Add multiple variable at a time

1: procedure Add variables

2: initialize S = 0 if h̄ is �xed, S = 1 otherwise and G? = ∅,
3: for gk ∈ G(h̄) do
4: compute the value ck, as in (5.56),
5: if S + ck is negative then
6: add gk to G?,
7: update S = S + ck,
8: add a variable associated to the Q-pair (h̄, G?),
9: end if

10: end for
11: end procedure



5.4. CONVERGENCE ISSUES 75

At Step 2, we initialize the reduced cost S associated to the Q-pair we are gen-
erating according to whether h̄ is �xed or not. By inspection of all the genotypes gk

compatible with h̄, we build sets G? and Q-pairs (h̄, G?) whose related reduced cost
ck is negative (see Steps 5-8. In this way, we consider both Q-pairs with a larger and
smaller subset of genotypes associated, when compared with Ḡ.

Note that the order given to the genotypes a�ects this choice of the multiple vari-
ables to be added to the RMP, as, according to the values taken by the dual variables,
we can �nd more or less suitable subsets of genotypes. However, it is not straight-
forward to identify an a priori ordering of the genotypes to be preferred to another
one.

5.4 Convergence issues

The solutions of large-scale problems are usually highly degenerate, thus while applying
a column-generation procedure the solution process can be very slow both at the
beginning and in the �nal iterations. In particular, at the end of the procedure there
is a so-called tailing o� e�ect: only small improvements are achieved at each iteration,
so that the process of reaching the optimal solution becomes very long. Moreover, at
the beginning a head in problem can occur, i.e. the column-generation procedure can
take several iterations before �nding a variable that, added to the RMP, is able to
improve the objective value. This problem mainly arises from the unstable behaviour
of the dual variables' values.

With the aim of overcoming these two issues, we derive a lower bound on the
optimal solution of (EIP) by means of a Lagrangian relaxation. It is then used to
reduce the tailing-o� e�ect, as an alternative termination condition that stops the
column generation when the di�erence between the optimal value and the lower bound
is su�ciently small. As for the head-in problem, instead, we apply a stabilization
tecnique that prevents the dual variables from oscillating too much and makes use
of the computation of the lower bound to accelerate the convergence of the column
generation.

We gather together in Table 5.2 the main notation that we use throughout this
chapter.

In order to derive the lower bound, we consider (EIP) and we add a constraint to
it that forces the number of haplotypes used to be less than or equal to a value M big
enough to ensure that the constraint is redundant. From now on we then consider the
following (NewEIP) formulation:

(NewEIP ) min
∑

q∈Q

cqλ
q + (m− |K|) (5.60)

s.t.
∑

q∈Q: gk∈Gq

λq = 2 ∀k = 1, . . . , |K| (5.61)

∑

q∈Q: gk∈Gq ,
hq
p=1

λq = 1 ∀k = 1, . . . |K|, p ∈ P : gkp = 2 (5.62)

∑

q∈Q

λq ≤M (5.63)



76 CHAPTER 5. A COLUMN-GENERATION APPROACH FOR THE LP

ρRM = (πRM , µRM , νRM ) dual variables for the RMP of (NewELP)
zRM optimal value of the RMP of (NewELP)
ρST = (πST , µST , νST ) stabilized dual variables
d(ρ) value of the objective function for (NewELP)'s dual

computed in ρ
ρ̄ = (π̄, µ̄, ν̄) stabilized dual variables
zPP optimal value of (NewPP)
qPP optimal solution of (NewPP)
v(q) value of the objective function of (NewPP)

computed in q ∈ Q
zsPP optimal value of (sPP)
qsPP optimal solution of (sPP)
τ > 0 tolerance for stabilization termination
ε > 0 tolerance for early termination

Table 5.2: Notation

λq ∈ {0, 1} ∀ q ∈ Q (5.64)

Its linear relaxation (NewELP) is obtained replacing the domain constraints (5.64) with
λq ≥ 0 for all q ∈ Q. We recall that the constantm−|K| represents the number of �xed
haplotypes. Then, at each iteration of the column-generation procedure we de�neM =
m−|K|+zRM , zRM being the optimal value of the RMP of (NewELP). The RMP is now
de�ned starting from the full formulation of (NewELP) and it considers only a subset
of variables λq. Note that each feasible solution of (ELP) is also feasible for (NewELP)
and viceversa, in fact constraint (5.63) is redundant for this formulation. In particular,
heuristics that provide an initial solution for the column-generation approach applied
to (ELP) also provide a feasible initial solution for the column generation applied to
(NewELP). As for the structure of the pricing problem, instead, the addition of a new
constraint to (ELP) leads to consider also an extra dual variable. We associate dual
variables πk

RM to constraints (5.61), µRM
k
p to constraints (5.62) and one variable νRM

to constraint (5.63). The objective function of the (NewELP) dual problem becomes

zRM =

|K|
∑

k=1

2πk
RM +

|K|
∑

k=1

∑

p: gkp=2

µRM
k
p +M νRM

while the formulation of the pricing problem as an integer porgramming model (NewPP)
is the following:

(NewPP ) min cq −

|K|
∑

k=1

πk
RMχk −

|K|
∑

k=1

∑

p:gkp=2

µRM
k
pζpχ

k − νRM (5.65)

s.t. ζp ≤ 1− χk ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 0

(5.66)

ζp ≥ χk ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 1

(5.67)



5.4. CONVERGENCE ISSUES 77

χk, ζp ∈ {0, 1} ∀ k ∈ {1, . . . , |K|}, p ∈ P (5.68)

5.4.1 A Lagrangian lower bound

Introducing formulation (NewELP) we can de�ne a particular Lagrangian function
and, from it, we derive a lower bound on the solution value of (NewELP).

Proposition 5.2. Given the dual variables πRM , µRM , at each iteration of the column-
generation procedure applied to (NewELP), a lower bound on the optimal solution is
given by:

LB(πRM , µRM ) = zRM +MzPP (5.69)

Proof. We consider a Lagrangian relaxation of (NewELP), that provides a lower bound
on its optimal value. In particular we consider the one obtained relaxing constraints
(5.61) and (5.62). Consider as Lagrangian coe�cients the values (πRM , µRM ) that are
part of the dual variables obtained solving the current RMP of formulation (NewELP),
thus we can write the Lagrangian function L(πRM , µRM ) with respect to these values
as follows:

L(πRM , µRM ) = min
∑

q∈Q

cqλ
q −

|K|
∑

k=1

πk
RM

(

∑

q: gk∈Gq

λq − 2
)

−

|K|
∑

k=1
p: gkp=2

µRM
k
p

(

∑

q: gk∈Gq

hq
p=1

λq − 1
)

s.t.
∑

q∈Q

λq ≤M

λq ≥ 0 ∀ q ∈ Q
that we can rewrite as:

L(πRM , µRM ) =

|K|
∑

k=1

2πk
RM +

|K|
∑

k=1
p :gkp=2

µRM
k
p+ (5.70)

+ min∑
q∈Q λq≤M

λq≥0 ∀ q∈Q

{

∑

q∈Q

cqλ
q −

|K|
∑

k=1

πk
RM

∑

q: gk∈Gq

λq −

|K|
∑

k=1
p: gkp=2

µRM
k
p

∑

q: gk∈Gq

hq
p=1

λq
}

(5.71)

The �rst part of the Lagrangian function, described in (5.70), is easily computed,
as it is equal to zRM −MνRM . Instead, the second part shown in (5.71) requires to
solve a linear program. We rewrite it in the following way:

min∑
q∈Q≤M

λq≥0 ∀ q∈Q

{

∑

q∈Q

[

cq −
∑

k≤|K|
q: gk∈Gq

πk
RM −

∑

k≤|K|, q: gk∈Gq

hq
p=1, p: gkp=2

µRM
k
p

]

λq

}

(5.72)

Consider the particular q̃ that is found as solution of the program

min
q∈Q
{cq −

∑

k≤|K|
q: gk∈Gq

πk
RM −

∑

k≤|K|, q: gk∈Gq

hq
p=1, p: gkp=2

µRM
k
p} (5.73)



78 CHAPTER 5. A COLUMN-GENERATION APPROACH FOR THE LP

and the feasible solution of (5.72) given by λq = M if q = q̃, λq = 0 otherwise. No
other feasible values of λq, q ∈ Q can further improve the objective function, thus
we can say that this solution is optimal for the linear program in (5.72). Moreover,
the function to be minimized in (5.73) is almost equal to the objective function of
(NewPP), apart from a constant νRM . Thus, the optimal value obtained by solving
(5.73) is exactly equal to zPP + νRM .

We can now rewrite the Lagrangian function considering these results and obtaining
the following lower bound:

L(πRM , µRM ) = zRM −MνRM +M(zPP + νRM ) = zRM +MzPP

Note that this same lower bound can be derived in another, more intuitive way:
Let zPP be the value of the optimal solution of (NewPP). If zPP ≥ 0, then the dual
constraints are all satis�ed, hence the column generation can stop because the dual
solution is also feasible. Otherwise, we have zPP < 0 and we can consider the following
dual solution:

(πRM , µRM , νRM + zPP )

As νRM + zPP is still negative and the dual constraints are satis�ed for each q ∈ Q,
we deduce that this is a feasible dual solution and in particular that it has value

|K|
∑

k=1

2πk
RM +

|K|
∑

k=1

∑

p: gkp=2

µRM
k
p +M(νRM + zPP ) = zRM +MzPP .

From the weak duality property, we know that this value gives a lower bound on the
solution of (NewELP), and in fact we obtained exactly the lower bound in (5.69).

5.4.2 A stabilization method to smooth dual variables' values

It has been observed that the values assumed by the dual variables at each iteration
of a column-generation procedure usually do not smoothly converge towards the opti-
mal ones [35]. This computational issue occurs also in our case, while solving model
(NewELP), thus we apply a stabilization technique in order to reduce the oscillatory
behaviour of the dual variables. Among the di�erent methods proposed in literature
to stabilize a column-generation procedure, we recall [21, 39, 40, 44, 39, 48]. We
start from the approach presented in [48, 39], since it does not require any change
to the primal or dual problem, and it just needs a parameter ∆ to be tuned and the
availability of an easily computable lower bound, e.g. like (5.69), for our problem.
The procedure solves the pricing problem using as coe�cients a convex combination
between the values ρRM of the current optimal dual variables and a stability center ρ̄:

ρST = ∆ ρRM + (1−∆)ρ̄ (5.74)



5.4. CONVERGENCE ISSUES 79

Thus, the pricing problem solved within the stabilization method is the following
(sPP):

(sPP ) min cq −

|K|
∑

k=1

πk
STχ

k −

|K|
∑

k=1

∑

p:gkp=2

µST
k
pζpχ

k − νST (5.75)

s.t. ζp ≤ 1− χk ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 0 (5.76)

ζp ≥ χk ∀ k ∈ {1, . . . , |K|}, p ∈ P : gkp = 1 (5.77)

χk, ζp ∈ {0, 1} ∀ k ∈ {1, . . . , |K|}, p ∈ P (5.78)

The procedure we propose to solve (NewELP) using stabilized column generation
is described in Algorithm 5.15. Notice that it requires an exact method for the pricing
problem. The �rst steps of the algorithm (Steps 2 and 3) initialize the parameters,

Algorithm 5.15 Stabilized algorithm - exactly solved pricing problem

1: procedure Stabilization

2: set ∆ = ∆0, 0 < ∆0 < 1, τ ≥ 0 and ε > 0,
3: initialize ρ̄ = ρ0, LB(π̄, µ̄) = −∞, initial set of variables Q̄ ⊆ Q
4: repeat
5: solve RMP → get (ρRM , zRM ),
6: set ρST = ∆ ρRM + (1−∆)ρ̄ ,
7: solve (sPP) → get qsPP , zsPP ,
8: if zsPP < 0 and v(qsPP ) < 0 then . Case A

9: add variable λqsPP
to Q̄,

10: compute LB(πST , µST ) = zST +M zsPP ;
11: else if zsPP ≥ 0 and v(qsPP ) < 0 then . Case B

12: add variable λqsPP
to Q̄,

13: compute d(ρST ),
14: else if zsPP < 0 and v(qsPP ) ≥ 0 then . Case C
15: compute LB(πST , µST ) = zST +M zsPP ;
16: else . Case D
17: compute d(ρST ),
18: set ∆ = 1 for the next column-generation iteration
19: end if
20: if LB(πST , µST ) > LB(π̄, µ̄) then
21: update: ρ̄ = ρST and consequentely LB(π̄, µ̄) = LB(πST , µST )
22: end if
23: if [(zRM − LB(π̄, µ̄))/LB(π̄, µ̄)] ≤ τ then
24: ∆ = 1
25: end if
26: until zRM − LB(π̄, µ̄) < ε or d(ρST ) = zRM

27: end procedure

that are the stabilization parameter ∆, set to the initial value ∆0 ∈]0, 1[, the tolerance
used to stop the stabilization τ ≥ 0 and the tolerance to stop the column generation
ε ≥ 0. The initial values of the stability center and the lower bound are initialized too.
We are then ready to start the column-generation procedure, solving the RMP from



80 CHAPTER 5. A COLUMN-GENERATION APPROACH FOR THE LP

which we obtain the dual variables ρRM . We compute the stabilized dual variables
and solve the pricing problem (sPP) (Steps 5-7). Let qsPP be the optimal solution of
(sPP). We denote with v(qsPP ) the value of the reduced cost of qsPP for (NewELP).
According to the signs assumed by the optimal solution zsPP and by v(qsPP ), we face
four cases. They have to be treated di�erently, as a result of Theorem 5.1 which, as we
are going to prove, guarantees the convergence of the algorithm to the optimal solution
of (NewELP). In particular:

Case A zsPP < 0 and v(qsPP ) < 0: we are able to �nd a variable to be added to the
current RMP and to compute the lower bound (see Step 9),

Case B zsPP ≥ 0 and v(qsPP ) < 0: we �nd a variable to be added to the RMP, but
dual variables ρST are feasible for the dual of (NewELP), so we cannot compute
the lower bound (5.69). We compute instead the dual objective value d(ρST ),
(see Step 12),

Case C zsPP < 0 and v(qsPP ) ≥ 0: in this case the Q-pair found by solving (sPP)
does not have a negative reduced cost for (NewELP), but there can still be other
Q-pairs that yield a negative reduced cost. Thus we say that a misprice happens.
Anyway, having zsPP < 0 we can compute the lower bound (see Step 15),

Case D zsPP ≥ 0 and v(qsPP ) ≥ 0: in this case a misprice can happens too, as
the positive optimum value of the (sPP) model does not say anything on the
optimality of (NewELP) (see Step 15).

When the di�erence between the primal objective value and the lower bound is small
enough, according to the rule in Step 23, we disable the stabilization by setting ∆ = 1.
In this way we recover the correctness of the column-generation procedure. Moreover,
we expect that also the dual variables are close to the optimal ones, as we stop the
stabilization when we are close to the optimal solution. Thus, keeping the stabilization
active would not improve much the convergence at this stage.

A possible improvement of this stabilization procedure consists in updating the
value of the stabilization parameter ∆, so that it increases its value while we are
proceeding towards the optimal solution. In this way, the stability center has a great
in�uence in the �rst iterations, bounding the values of the dual variables, while after
a while we can rely more on the real values ρRM . We consider as an example the
following rule to increase the value of ∆ [47]:

if
zRM − LB(ρ̄)

zRM
< 1−∆0 then ∆ = 1−

zRM − LB(ρ̄)

zRM
.

Theorem 5.1. Algorithm 5.15 applied to (NewELP) converges to its optimal solution.

The proof of Theorem 5.1 requires some additional results. Note that similar results
are presented in [39], where they are needed to ensure the convergence of the stabilized
column-generation when a misprice happens. In our case, the proof of these results
have to be extended, since we use a di�erent de�nition of the lower bound.

Lemma 5.2. Let qsPP be the Q-pair found as optimal solution of (sPP), with associ-

ated negative value zsPP . If the variable λqsPP
does not have a negative reduced cost,

then LB(πST , µST ) ≥ LB(π̄, µ̄) + ∆(zRM − LB(π̄, µ̄)).



5.4. CONVERGENCE ISSUES 81

Proof. De�ne

f(ρ, q) = cq −

|K|
∑

k=1
k: gk∈Gq

πk −

|K|
∑

k=1
k: gk∈Gq

∑

p:gkp=2,hq
p=1

µk
p − ν

representing the value of the objective function of the pricing problem with coe�cients
ρ and computed in the Q-pair q. Note that this function is linear with respect to π
and µ, so that by (5.74) it holds:

f(ρST , q) = ∆f(ρRM , q) + (1−∆)f(ρ̄, q).

Moreover, we can rewrite zsPP = f(ρST , q
sPP ), zST = d(ρST ) and v(qsPP ) = f(ρRM , qsPP ).

Then we can write:

LB(πST ,µST ) = zST +MzsPP = d(ρST ) +Mf(ρST , q
sPP ) =

= ∆d(ρRM ) + (1−∆)d(ρ̄) + ∆Mf(ρRM , qsPP ) + (1−∆)Mf(ρ̄, qsPP ) =

= ∆(zRM +Mf(ρRM , qsPP )) + (1−∆)(d(ρ̄) +Mf(ρ̄, qsPP )) ≥

≥ ∆zRM + (1−∆)(d(ρ̄) +M min
q∈Q

f(ρ̄, q)) =

= ∆zRM + (1−∆)LB(π̄, µ̄)

where the inequality holds because f(ρRM , qsPP ) = v(qsPP ) ≥ 0 by hypothesis and
f(ρ̄, qsPP ) ≥ minq∈Q f(ρ̄, q).

Proposition 5.3. When a misprice as in Case C happens, the gap zRM − LB(π̄, µ̄)
is reduced by at least a factor of 1/(1−∆).

Proof. The sequence {zkRM}k, where k indexes the iterations of the stabilized column-
generation procedure, is not increasing. Thus, we have

zk+1
RM−LB(π̄k+1, µ̄k+1) ≤ zkRM − LB(π̄k, µ̄k) ≤ zkRM − LB(πk

ST , µ
k
ST )

(∗)
≤

≤ zkRM − LB(π̄k, µ̄k)−∆(zkRM − LB(π̄k, µ̄k)) = (1−∆)(zkRM − LB(π̄k, µ̄k))

where inequality (*) holds by Lemma 5.2. Hence

zkRM − LB(π̄k, µ̄k)

zk+1
RM − LB(π̄k+1, µ̄k+1)

≥
1

1−∆

We prove now Theorem 5.1.

Proof of Theorem 5.1. We prove that at each iteration of the column-generation pro-
cedure we do not get stuck in a non-optimal solution. Recall that, after solving the
pricing problem (sPP), Algorithm 5.15 distinguishes four cases.

In Case A, we are able to add a variable and to compute the lower bound
LB(πST , µST ), that can possibly lead to update the stability center. Thus, The RMP
that we solve at next iteration will be di�erent and will produce di�erent dual variables



82 CHAPTER 5. A COLUMN-GENERATION APPROACH FOR THE LP

ρRM . If the lower bound is increased, the (sPP) changes also thanks to the change of
the stability center.

In Case B, although we cannot compute the lower bound, we add a variable to the
current formulation of the RMP, obtaining di�erent values ρRM for the next iteration.

The proof of convergence for Case C is based on Lemma 5.2 and Proposition 5.3.
These results prove that, every time a misprice of this kind takes place, the lower
bound increases, so that according to the stabilization algorithm we need to update
the stability center. This means that the following iteration of the column-generation
procedure will solve (sPP) with di�erent coe�cients ρST , even if the dual variables
ρRM are the same. Moreover, according to Proposition 5.3, in these cases the lower
bound increases by a factor big enough to ensure the convergence of the lower bound
to the optimal solution.

In Case D, we are actually suspending the stabilized procedure and solving the
pricing problem (NewPP) instead of (sPP). Thus, we either prove that no other variable
is needed to solve (NewELP) or we �nd a new variable to be added to the RMP. In
the �rst case the column-generation procedure stops, in the second case we reenable
the stabilization procedure, starting from di�erent dual variables ρRM .

In [40] another way of applying this stabilization technique is proposed. It exploits
the advantage of using a lagrangian dual problem, which guarantees that the stability
center always remains dual feasible. In this approach, considerations on the relative
positions between dual variables ρRM , stability center ρ̄ and stabilized variables ρST
allow to discard Case C, in which zPP ≤ 0, while v(qsPP ) > 0, meaning that the
constraint found cannot cut o� the current dual solution in the dual space. Moreover,
the properties of lagrangian dual guarantee that, adding in any case the variable re-
sulting from the pricing problem, at each iteration the di�erence between ρST and ρRM

decreases, so that Case D is not critical and convergence is ensured. Our procedure,
instead, is able to use even non dual-feasible stability centers, since we prevent adding
variabled with positive reduced cost. In this way, we directly consider as lower bound
the value obtained from a Lagrangian relaxation of the primal problem (NewELP).
Moreover, the approach we propose for Case D has a double advantage: together
with avoiding to stop at a non-optimal solution, it provides an easy check to know if
we are at the optimum, as we are assuming that the scenario in which the reduced
costs associated to both ρST and ρRM are positive happens only when we are close to
the optimum.

5.4.3 Stabilized column generation and heuristic pricing

The proof of correcteness of Algorithm 5.15 assumes that the value of the optimal
solution of (sPP) is provided by an exact pricing procedure. In fact, if we apply
heuristic pricing to �nd variables with negative reduced cost we are not able to compute
the lower bound according to (5.69). Notice, however, that the use of heuristics can
always be allowed to �nd and add variables with negative reduced cost, since we can
still recover the convergence of the stabilized algorithm by guaranteeing that we solve
at least once (sPP) during the column-generation procedure.

The heuristic for �xed haplotypes and the local search-based heuristic (see respec-
tively Sections 5.2.3 and 5.2.4) do not provide the dual information needed by our
stabilization, hence we cannot compute the lower bound, neither we can update the



5.4. CONVERGENCE ISSUES 83

stability center. In the application of the Early-terminated Smart Enumeration, in-
stead, some dual information is available, related to the solution of (sPP) on a subset
of the solution space. However, this cannot be directly used for lower bound and sta-
bility center updating, as de�ned by Step 21 of Algorithm 5.15. This may prevent
updating the stability center as long as the method provides negative reduced cost
variables, which is likely to happen at the early stages of column generation, when,
in fact, stabilization would be bene�cial. We thus de�ne a new criterion to suitably
update the stability center when Early-terminated Smart Enumeration is applied. The
modi�ed stabilization procedure is shown in Algorithm 5.16.

Algorithm 5.16 Stabilized algorithm - heuristic pricing

1: procedure Stabilization

2: set ∆ = ∆0, 0 < ∆0 < 1, τ ≥ 0 and ε > 0,
3: initialize ρ̄ = ρ0, LB(π̄, µ̄) = −∞, initial set of variables Q̄ ⊆ Q
4: repeat
5: solve RMP → get (ρRM , zRM ),
6: set ρST = ∆ ρRM + (1−∆)ρ̄ ,
7: solve (sPP) → get qsPP , z̃sPP ,
8: if z̃sPP is optimal then
9: apply Algorithm 5.15

10: else
11: if v(qsPP ) ≤ 0 then

12: add variable λqsPP
to Q̄

13: end if
14: if z̃sPP ≤ 0 then
15: update: ρ̄ = ρST
16: end if
17: end if
18: if [(zRM − LB(π̄, µ̄))/LB(π̄, µ̄)] ≤ τ then
19: ∆ = 1
20: end if
21: until zRM − LB(π̄, µ̄) < ε or d(ρST ) = zRM

22: end procedure

Note that the stabilized column-generation procedure is initialized as in Algo-
rithm 5.15. The �rst di�erence arises at Step 7, where instead of the optimal solution
to the pricing problem we get non-optimal z̃sPP , associated to the Q-pair qsPP . Re-
member that the Early-terminated Smart Enumeration stops as soon as it �nds a
Q-pair q such that v(q) < 0, with no guarantee on the sign of z̃sPP . Hence, we cannot
compute the current lower bound, and in particular we are not sure that the current
stabilized variables improve the value of LB(π̄, µ̄). As a consequence, Step 21 of Algo-
rithm 5.15 cannot be performed and we decide instead to update the stability center if
z̃sPP is also negative. The procedure's termination conditions are the same proposed
in Algorithm 5.15.





CHAPTER 6

Branch-and price frameworks for the Integer Program

In Chapter 5 we presented di�erent solution approaches for (ELP), or equivalently
(NewELP). In this chapter we embed them in a branch-and-price algorithm in order
to �nd the optimal solution of the integer formulation denoted as (NewEIP). We build
a sequence of branchings that iteratively partition the feasible region into subsets, in
which speci�c constraints progressively restrict the research of integer solutions. For
each of these subsets we then solve the associated linear relaxation. The standard
branching procedure for binary variables consists in �nding a variable that assumes a
fractional value in the solution of the linear relaxation at the current node and forcing
it to take value either 0 or 1. For (NewEIP), �xing one variable to 0 does not provide a
signi�cant information on the optimal solution, while a variable with value 1 has a great
impact on the value taken by many other variables. This implies that the standard
branching procedure is likely to generate a highly unbalanced branching tree. Therefore
in Section 6.1 we investigate a family of linear inequalities that provides a partition
of the set of feasible integer solutions used for implementing an ad-hoc branching rule
for (NewEIP), based on the relations between (NewEIP) constraints and the ones of
set-partitioning models.

In Section 6.2, the same relations are used to devise a more general framework for
�nding an optimal solution to the Haplotype Inference by Pure Parsimony problem by
solving a relaxation of (NewEIP). The same branching rule proposed for (NewEIP) is
applied in a more general context, that takes care of the procedures needed to recover
the optimal solution for the HIPP problem.

6.1 Branching rule for the Haplotype Inference by Pure

Parsimony problem

We recall that (NewEIP) is de�ned as follows:

(NewEIP) min
∑

q∈Q

cqλ
q + (m− |K|) (6.1)

85



86 CHAPTER 6. BRANCH-AND PRICE FRAMEWORKS FOR THE IP

s.t.
∑

q∈Q: gk∈Gq

λq = 2 ∀ k ∈ {1, . . . , |K|} (6.2)

∑

q∈Q: gk∈Gq

hq
p=1

λq = 1 ∀ k ∈ {1, . . . |K|}, p ∈ P : gkp = 2 (6.3)

∑

q∈Q

λq ≤M (6.4)

λq ∈ {0, 1} ∀ q ∈ Q (6.5)

It is worth noticing that constraints (6.3) are similar to the constraints that are found in
set-partitioning formulations, as seen in Section 2.5.3. Thus, we look for a branching
rule that takes into account this set-partitioning structure, using observations that
recall Ryan and Foster's idea [45], in order to obtain a more balanced tree.

6.1.1 The branching rule

In any integer solution of the HIPP problem, any pair of constraints (6.3) that are
related to the same position p and di�erent genotypes gs and gt will be satis�ed either
by the same variable or by di�erent ones. This means that we can either �nd a variable
that takes value 1 and whose associate subset of genotypes contains both genotypes,
or such variable does not exist. This condition can be written as follows:

∑

q: gs,gt∈Gq

hq
p=1

λq ∈ {0, 1} ∀ s, t ∈ {1, . . . , |K|}, ∀ p ∈ P : gsp = gtp = 2 (6.6)

Observation 6.1. Due to the assumptions on set K, each genotype in K has at
least one heterozygous position and, to ensure that gs and gt are compatible but not
equal, there must be a position p in which a genotype is heterozygous and the other is
homozygous.

For ease of notation, from now on, we refer to a pair of compatible and distinct
genotypes gs and gt and a position p such that gsp = 2.

We can see how in a feasible solution of (NewEIP) there can be at most one variable
that takes value 1 and whose associate subset of genotypes contains a chosen pair of
genotypes, as it is shown by Lemma 6.1.

Lemma 6.1. Let gs, gt be two compatible genotypes. Then for any feasible solution of
(NewEIP) it holds

∑

q: gs, gt∈Gq

λq ≤ 1

Proof. We rewrite the sum dividing it in the following two sums:

∑

q: gs, gt∈Gq

λq =
∑

q: gs, gt∈Gq

hq
p=0

λq +
∑

q: gs, gt∈Gq

hq
p=1

λq (6.7)

As gs, gt are compatible and they do not coincide, w.l.o.g. there exists a position p
such that gsp = 2 and gtp = β, with β either equal to 0 or 1. Thus, one of the two



6.1. BRANCHING RULE FOR THE HIPP PROBLEM 87

addends in (6.7) must be equal to 0, as the set {q : gs, gt ∈ Gq, hqp = 1− β} is empty
due to compatibility reasons. It follows that

∑

q: gs,gt∈Gq

λq =
∑

q: gs, gt∈Gq

hq
p=β

λq ≤
∑

q: gs∈Gq

hq
p=β

λq = 1

To guarantee the integrality of the �nal solution we need to enlarge the set of
conditions to be investigated: from constraints (6.2) and (6.3) we can derive another
family of set-partitioning redundant inequalities for (NewEIP):

∑

q: gs∈Gq

hq
p=0

λq = 1.

Then, considering the statement of Lemma 6.1 and either a constraint in (6.2) or (6.3)
we obtain the following conditions, that implies that either the two genotypes belong
to the same Q-pair or not:

∑

q: gs,gt∈Gq

hq
p=1

λq ∈ {0, 1} ∀ s, t ∈ {1, . . . , |K|}, p ∈ P : gsp = 2 (6.8)

∑

q: gs,gt∈Gq

hq
p=0

λq ∈ {0, 1} ∀ s, t ∈ {1, . . . , |K|}, p ∈ P : gsp = 2 (6.9)

The branching strategy we propose is then based on identifying any violated con-
dition (6.8) or (6.9), and forcing the associated sum to take either value 0 or 1. We
distinguish the branching strategy according to whether we also have gtp equal to 2 or
if gtp ∈ {0, 1}. In fact, if gtp = β with β ∈ {0, 1}, for compatibility reasons only one
of the sets {q ∈ Q : gs, gt ∈ Gq ∧ hqp = 1} and {q ∈ Q : gs, gt ∈ Gq ∧ hqp = 0} is not
empty, thus it makes sense to check only one between conditions (6.8) and (6.9). In
this case, the branching at the node produces two child nodes as follows:

DIFFER gs and gt do not belong to the same Q-pair,

SAME gs and gt belong to the same Q-pair.

If gtp = 2, both genotypes can be contained in a Q-pair q having hqp = 0 or hqp = 1,
so that a single child node is not enough to describe correctly the case in which both
genotypes are resolved by a common haplotype. Thus, we need to generate three
di�erent child nodes to properly give a partition of the feasible region:

BI-DIFFER gs and gt do not belong to the same Q-pair,

SAME0 gs and gt belong to the same Q-pair and the associated haplotype has value
0 in position p,

SAME1 gs and gt belong to the same Q-pair and the associated haplotype has value
1 in position p.



88 CHAPTER 6. BRANCH-AND PRICE FRAMEWORKS FOR THE IP

Note that, by Lemma 6.1, knowing that gs and gt have a common haplotype h′

such that, in position p, h′p = 0 (resp. 1), we can also say that no other common
haplotype is possible. Thus, in the obtained branch, we can also �x that no haplotype
h′′ such that h′′p = 1 (resp. 0) resolves both gs and gt.

Algorithm 6.17 Branching procedure for (NewEIP)

1: procedure Branching procedure

2: choose gs, gt and p such that at least one among (6.8) and (6.9) is violated,
3: branch:
4: if gtp ∈ {0, 1} then
5: create two child nodes of type DIFFER and SAME,
6: else
7: create three child nodes of type BI-DIFFER, SAME0 and SAME1,
8: end if
9: end procedure

The above observations are summarized in Algorithm 6.17, which takes a node of the
branching tree and the solultion of the related (NewELP) as input and create two or
three child nodes. The branching constraints that characterize these nodes are chosen
looking for pairs of genotypes gs, gt and a position p that violate at least one condition
between (6.8) and (6.9). In particular, each type of child node is obtained adding the
following constraints:

DIFFER
∑

q: gs,gt∈Gq

hq
p=β

λq ≤ 0

SAME
∑

q: gs,gt∈Gq

hq
p=β

λq ≥ 1

BI-DIFFER
∑

q: gs,gt∈Gq

hq
p=1

λq ≤ 0 ∧
∑

q: gs,gt∈Gq

hq
p=0

λq ≤ 0

SAME0
∑

q: gs,gt∈Gq

hq
p=0

λq ≥ 1 ∧
∑

q: gs,gt∈Gq

hq
p=1

λq ≤ 0

SAME1
∑

q: gs,gt∈Gq

hq
p=0

λq ≤ 0 ∧
∑

q: gs,gt∈Gq

hq
p=1

λq ≥ 1

6.1.2 Proof of correctness

We now prove the correctness of the proposed procedure. First, in Theorems 6.1 and 6.2
we prove that the integrality of the �nal solution is ensured, by considering separately
the variables λq having associated subset of genotypes Gq with cardinality greater than
1 and variables that involve only one genotype. Finally, in Theorem 6.3 we use these
results to prove the correctness of the branching procedure given in Algorithm 6.17.



6.1. BRANCHING RULE FOR THE HIPP PROBLEM 89

Theorem 6.1. Suppose that for every pair gs, gt of compatible genotypes and for every
position p such that gsp = 2 conditions (6.8) and (6.9) hold. Then λq ∈ {0, 1} for all
q = (hq, Gq) ∈ Q such that |Gq| > 1.

Proof. Fix a genotype gs, a position p such that gsp = 2 and another genotype gt

compatible with gs. Recall that such a position p can always be found as gs ∈ K,
according to observation 6.1. We consider the constraint (6.3), that refer to haplotypes
which take value 1 at the chosen position p, associated to genotype gs and we split it
into two addends:

1 =
∑

q: gs∈Gq

hq
p=1

λq =
∑

q: gs,gt∈Gq

hq
p=1

λq +
∑

q: gs∈Gq ,gt /∈Gq

hq
p=1

λq (6.10)

By hypothesis, the �rst addend can be either equal to 1 (Case 1) or 0 (Case 2) by
hypothesis, forcing the second one to be respectively equal to 0 or 1.

Case 1: All variables involved in the second addend are equal to 0, and then
integer. We can focus on the variables appearing in the �rst addend.
Suppose, by absurd, that this sum involves at least one fractional variable λq̄. Thus,
as the whole sum takes value one, there must be at least another fractional variable λq̃.
That is, we found Q-pairs q̄ and q̃ such that gs, gt ∈ Gq̄ and gs, gt ∈ Gq̃, hq̄p = hq̃p = 1
and λq̄, λq̃ ∈]0, 1[.

There are two subcases:
1.A) Gq̄ 6= Gq̃, then (w.l.o.g) |Gq̄| > 2 as gs and gt are already included in Gq̄.
Then there exists another genotype gf ∈ Gq̄ such that gf /∈ Gq̃ and it holds by
hypothesis:

∑

q: gs, gf∈Gq

hq
p=1

λq =

{

0 (∗)

1 (∗∗)

If (∗) holds, then λq̄ = 0, that is absurd. So (∗∗) holds and, rewriting (6.10) according
to gs, gf and position p, we have as consequence that

∑

q: gs∈Gq ,gf /∈Gq

hq
p=1

= 0,

that is even absurd as q̃ ∈ {q ∈ Q : gs ∈ Gq, gf /∈ Gq, hqp = 1} and λq̃ > 0.
1.B) Gq̄ = Gq̃.
We have hq̄ 6= hq̃, in particular w.l.o.g. there exists p̂ such that hq̄p̂ = 1 and hq̃p̂ = 0. It

follows that gsp̂ = gtp̂ = 2. By hypothesis, we know that:

∑

q: gs, gt∈Gq

hq
p̂
=1

λq =

{

0 (?)

1 (??)

The case (?) is absurd, because q̄ ∈ {q ∈ Q : gs, gt ∈ Gq, hqp̂ = 1} and λq̄ > 0. Then
(??) holds.
Remember that q̄ belongs to {q ∈ Q : gs, gt ∈ Gq, hqp̂ = 1} and λq̄ is fractional, while q̃
does not. This implies that there must be at least another q̂ with associated variable
fractional such that gs, gt ∈ Gq̂, hq̂p̂ = 1. There are again two cases:



90 CHAPTER 6. BRANCH-AND PRICE FRAMEWORKS FOR THE IP

1.B.a) if Gq̂ 6= Gq̄, then we can apply case A to λq̄, λq̂ ∈]0, 1[, gs, gt ∈ Gq̄ and

gs, gt ∈ Gq̂, gsp̂ = 2, hq̄p̂ = hp̂p̂ = 1, obtaining that it is absurd to consider λq̄, λq̂

not integer, so that also λq̃ must be integer.

1.B.b) if Gq̂ = Gq̄ (= Gq̃), we remember that hq̄p̂ = hq̂p̂ = 1, while hq̃p̂ = 0. Then it
holds:

1 ≥
∑

q: gs, gt∈Gq

λq =
∑

q: gs, gt∈Gq

hq
p̂
=1

λq +
∑

q: gs, gt∈Gq

hq
p̂
=0

λq

where the inequality holds because of Lemma 6.1.The �rst addend of the sum
on the right is integer by hypothesis and in particular, as q̄ and q̂ belong to
{q ∈ Q : gs, gt ∈ Gq, hqp̂ = 1}, it must be equal to 1, thus the second addend

must be equal to 0. But q̃ belongs to {q ∈ Q : gs, gt ∈ Gq, hqp̂ = 0} and λq̃ > 0,
so we have an absurd.

Thus, all variables appearing in the �rst addend in (6.10) are integer.

Case 2: All variables for which q ∈ {q ∈ Q : gs, gt ∈ Gq, hqp = 1} are equal to 0.
We can rewrite the second addend of (6.10) in the following way:

∑

q: gs∈Gq ,gt /∈Gq

hq
p=1

λq =
∑

q: gs∈Gq ,gt /∈Gq

|Gq |>1, hq
p=1

λq +
∑

q:Gq={gs}
hq
p=1

λq. (6.11)

For each Q-pair q? whose associated variable is present in the �rst addend in (6.11),
there exists another genotype gr ∈ Gq such that gsp = 2 and grp 6= 0 (for compatibility
reasons). Thus, we can rewrite (6.10) in the following way:

1 =
∑

q: gs∈Gq

hq
p=1

λq =
∑

q: gs,gr∈Gq

hq
p=1

λq +
∑

q: gs∈Gq ,gr /∈Gq

hq
p=1

λq

so that λq? belongs to the �rst term, that we already proved in Case 1 contains only
integer variables. Thus, λq? is integer.

As far as now we only considered variables such that the associated haplotypes
assume value 1 at position p. We observe that

∑

q: gs∈Gq

hq
p=0

λq = 1 (6.12)

are implicit constraints for (NewEIP). We can thus repeat the same proof starting
from (6.12), and complete the proof, as we deduce that any variable λq of (NewEIP)
such that |Gq| > 1 is involved in at least one constraint of type (6.3) or (6.12).

Theorem 6.2. Suppose that for every pair gs, gt of compatible genotypes and for every
position p such that gsp = 2 conditions (6.8) and (6.9) hold. Then if the solution is still
fractional, there is an equivalent integer solution.



6.1. BRANCHING RULE FOR THE HIPP PROBLEM 91

Proof. As Theorem 6.1 holds, if there exists a Q-pair q̄ = (hq̄, Gq̄) such that λq̄ ∈]0, 1[,
then Gq̄ must contain only one genotype ḡ. Moreover, as soon as ḡ appear in another
Q-pair q = (hq, Gq) such that |Gq| > 1, we have λq = 1 and due to the formulation's
constraints (6.2) and (6.3) we have that hq̄ must be equal to the complementary of
hq. This implies that, in order to satisfy constraints (6.3), there must exists at least
another fractional variable with associated haplotype h̄. In order to be fractional, by
Theorem 6.1 this new Q-pair should be equal to (hq̄, {ḡ}). That is, exactly equal to q̄,
thus the absurd. It follows that ḡ cannot be included in any Q-pair whose associated
subset of genotypes contains also other genotypes.

Thus, ḡ is included in a collection of k Q-pairs q1 = (h1, {ḡ}), . . . , qk = (hk, {ḡ}).
But it is then possible to choose any two Q-pairs with associated variable equal to 1
that resolve ḡ.

The proof of the correctness of the proposed branching strategy is given in Theo-
rem 6.3.

Theorem 6.3. The branching strategy for (NewEIP) proposed in Algorithm 6.17 is
correct.

Proof. To be correct, this branching scheme should:

• cut o� the current solution,

• provide a partition of the feasible region,

• guarantee integrality of the solution.

As for the �rst requirement, it is trivial to show that imposing one of the preceeding
branchings, according to the values of gsp and gtp, we cut o� the current solution that
violates condition (6.8) or (6.9).

With regards to the partitioning of the feasible region, consider a feasible solution
Q̄ = {(hq, Gq) ∈ Q : λq = 1} of (EIP). We need to show that this solution is not cut
o� by any branching constraint and that it belongs to exactly one branch. Consider
the branching constraint de�ned by genotypes gs and gt and position p. We have two
possibilities:

• the two genotypes do not belong to a same Q-pair in Q̄. If moreover gsp 6= 2
or gtp 6= 2, then the solution satis�es the branching constraint of type DIFFER.
Otherwise, the solution satis�es the branching constraint of type BI-DIFFER.

• there exists one q? ∈ Q̄ such that gs ∈ Gq? , gt ∈ Gq? . Note that by Lemma 6.1
it is also unique. If gsp 6= 2 or gtp 6= 2, the solution satis�es the branching
constraint of type SAME, otherwise it satis�es the branching constraints SAME0
or SAME1.

In any case, the branching constraints are not violated by the feasible integer solution.
Moreover, each feasible solution belongs exactly to one branch, as constraints describ-
ing two di�erent branches of the same node do not allow common integer solutions.

Finally, the integrality of the solution is ensured by Theorems 6.1 and 6.2, in which
we proved that when no suitable branching constraint is found either the solution
obtained is integer or there is an equivalent integer solution, easy to be recovered.



92 CHAPTER 6. BRANCH-AND PRICE FRAMEWORKS FOR THE IP

6.1.3 Branching priorities

A branching priority is needed to choose, at each node, which pair of genotypes gs, gt

and which position p such that gsp = 2 we should select to apply the next branching
among all the triplets (s, t, p) for which at least one among (6.8) and (6.9) is violated.
We present here two possible alternatives.

Priority A): choose the pair gs, gt and the position p such that the sum

∑

q: gs,gt∈Gq

hq
p=β

λq for β ∈ {0, 1}

is the most fractional:

(gs, gt, p) = argmax(gs,gt,p)

{

max
β∈{0,1}

{

min{
∑

q: gs,gt∈Gq

hq
p=β

λq, 1−
∑

q: gs,gt∈Gq

hq
p=β

λq}
}

}

;

Priority B): select the the pair gs, gt and the position p that involve the maximum
number of variables:

argmax(gs,gt,p)

{

max
β∈{0,1}

{

max{|{λq ∈]0, 1[: gs, gt ∈ Gq, hqp = β}|}
}

}

The �rst priority scheme is rather intuitive, and often used in branch-and-bound
contexts. The second one can be useful to involve a number as large as possible of
variables in the branching, so that any branch that �xes (6.8) or (6.9) to, e.g., 0 is
possibly able to set to 0 a larger number of variables.

6.2 Solution method based on a set-covering-like

relaxation

We note that constraints (6.2) of (NewEIP) are similar to set-partitioning constraints.
It is well known that, whenever we can substitute a set-partitioning (2.44) formula-
tion with a set-covering one (2.45), this second one is to be preferred, in a column-
generation context, as its linear relaxation is numerically more stable and it is possible
to construct an integer solution given the linear programming relaxation [5]. Tak-
ing advantage of this observation, we substitute (6.2) with constraints that recall a
set-covering structure. In this section, then, we consider the linear program, that we
denote with (EIPR), obtained by substituting in the (NewEIP) formulation constraints
(6.2) with the corresponding greater-or-equal constraints:

(EIPR) min
∑

q∈Q

cqλ
q + (m− |K|) (6.13)

s.t.
∑

q∈Q: gk∈Gq

λq ≥ 2 ∀ k ∈ {1, . . . , |K|} (6.14)



6.2. SOLUTION METHOD ON A SET-COVERING-LIKE RELAXATION 93

∑

q∈Q: gk∈Gq

hq
p=1

λq = 1 ∀ k ∈ {1, . . . |K|}, p ∈ P : gkp = 2 (6.15)

∑

qinQ

λq ≤M (6.16)

λq ∈ {0, 1} ∀ q ∈ Q (6.17)

We have already noticed in Section 5.2.6 (see Table 5.1) that (EIPR) is a relaxation
of (NewEIP), in the sense that any genotype g is allowed to appear in more than two
Q-pairs. If this happens, we say that this genotype is over-resolved.

6.2.1 The drawbacks of the set-covering-like relaxation

Note that, in our case, the structure of this relaxed formulation is more complicated
and we cannot entirely rely on the relation between set-partitioning and set-covering
constraints. In fact, the solution obtained from (EIPR) can be infeasible for the HIPP
problem. The main issues that arise from using (EIPR) formulation are presented in
the following observations.

Observation 6.2. The model (EIPR) does not preserve the feasibility and the opti-
mality of the solution for the HIPP problem.

Example 6.1. Consider the set of genotypes G made of

g1 = 2012000, g2 = 0012202, g3 = 2012202.

One optimal solution of (NewEIP), with objective value equal to 4, can be the one that
assigns value 1 to the variables associated to the following Q-pairs:

q1 = (1010000, {g1}), q2 = (0011000, {g1, g2}),

q3 = (0010101, {g2, g3}), q4 = (1011000, {g3}).

Instead, considering the relaxed constraints we could get the solution, with optimal
value equal to 3, that set to value 1 the variables associated to Q-pairs

q1 = (1010000, {g1, g2}), q2 = (0011000, {g1, g2, g3}), q3 = (0010101, {g2, g3}).

However, in this case genotype g3 is not resolved using only two haplotypes out of the
three considered, so that the solution is not optimal and neither feasible for our original
problem.

Observation 6.3. The proof of Theorem 6.1 that ensures integrality of variables λq

with |Gq| > 1 for (NewEIP) does not hold for (EIPR).

In particular, Lemma 6.1 is not valid for (EIPR). This lemma states that given a
pair of genotypes gs and gt, it holds

∑

q: gs,gt∈Gq

λq ≤ 1



94 CHAPTER 6. BRANCH-AND PRICE FRAMEWORKS FOR THE IP

and it is crucial to prove case 1.B of Theorem 6.1, which proves that there cannot be
two fractional variables associated to the same subset of genotypes.

We note, however, that in general there is a simple condition, together with the
branching rule of Algorithm 6.17, that guarantees integrality of some variables even if
(EIPR) is considered.

Observation 6.4. Given a Q-pair q = (hq, Gq), if there exist gs, gt ∈ Gq and a
position p such that gsp = 2 and gtp = 1 or viceversa, then the associated variable
λq is integer and belongs to {0, 1} at the end of the branching procedure presented in
Section 6.1.

Proof. Exploiting the availability of constraints

∑

q: gs∈Gq

hq
p=1

λq = 1

and the fact that, for compatibility reason, each Q-pair containing both gs and gt must
have hqp = 1, we have that Lemma 6.1 still holds, so that the proof of Theorem 6.1 is
still valid and each λq involved in the sum

∑

q: gs,gt∈Gq

hq
p=1

λq

is integer and belongs to {0, 1}.

This condition alone is not enough to ensure integrality of all variables, as there
can be variables λq such that each pair of genotypes gs, gt ∈ Gq has the following
property:

(gsp, g
t
p) = {(1, 1), (2, 0), (2, 2), (0, 2), (0, 0)}, ∀ p ∈ P.

Thus, when the branching procedure presented in Algorithm 6.17 cannot identify suit-
able branching constraints, we cannot assume directly neither that we reached a feasible
solution for the HIPP problem, nor that we have an integer solution. This means that
we need to further explore the branching subtree rooted at the current node.

6.2.2 Recovering the optimal integer solution

In order to get the optimal solution for the HIPP problem, we embed the branch-and-
price procedure proposed in Section 6.1 in a more general branch-and-price framework
that exploits the information obtained from solving model (EIPR) and apply a suitable
procedure that recovers a feasible solution for (NewEIP) whenever necessary. This
procedure can be seen as an extended branching procedure.

De�nition 6.1 (Quasi-integer solution). We say that a solution to (NewEIPR) is
quasi-integer if for each Q-pair q such that |Gq| > 1 we have that λq is integer.



6.2. SOLUTION METHOD ON A SET-COVERING-LIKE RELAXATION 95

A possible scheme is given by Algorithm 6.18 and detailed in the following. Assume
that in a particular node the branching rule is not able to �nd a constraint to provide
a branching (see Step 3 of Algorithm 6.18). The current solution may be not feasible
for the HIPP problem and further steps need to be taken. Two scenarios are possible:
either the current node has a quasi-integer solution, or not.

In the �rst case (Step 4), Theorem 6.2 provides us with an integer solution that can
be recovered without increasing the objective value. However, this solution can still be
infeasible for the HIPP problem and extra tests, that will be seen in Algorithm 6.19,
are performed to see if it is possible to recover an equivalent (an thus, optimal) feasible
solution.

Algorithm 6.18 Branching procedure for (EIPR)

1: procedure Branching Procedure - (EIPR)

2: look for branching constraints, . Algorithm 6.17
3: if no branching is performed then
4: if solution is quasi-integer then
5: look for feasible solution for HIPP, . Algorithm 6.19
6: if an equivalent solution is found then
7: prune the node. STOP.
8: end if
9: end if

10: for g genotype do
11: compute S(g) =

∑

q: g∈Gq λq ,
12: if S(g) > 2 then
13: substitute constraint (6.14) with (6.2) related to g,
14: end if
15: end for
16: end if
17: end procedure

If the current node does not provide a quasi-integer solution, we modify the for-
mulation as follows (Steps 10-15): we look for each equality constraint of type (6.2)
that is violated in the solution and we put it in place of the corresponding inequality
constraint of type (6.14). Notice that the proposed branching procedure makes the
approach based on (EIPR) converge to the optimal solution. In fact, either it provides
an optimal feasible solution for a subtree, or it continues adding constraints of type
(6.2) until the formulation (NewEIP) is obtained, which guarantees convergence to the
optimal solution.

We go back now to Step 5, that starting from an integer non-feasible solution looks
for a feasible solution to HIPP, applying Algorithm 6.19.

Observation 6.5. Given an integer non feasible solution for HIPP found at a node
of the branching tree, it is easy to check whether we can recover a feasible optimal
solution.

De�nition 6.2 (Redundant haplotype). A haplotype h is redundant for a genotype g
if for each position p ∈ P such that gp = 2, hp = 0.



96 CHAPTER 6. BRANCH-AND PRICE FRAMEWORKS FOR THE IP

Algorithm 6.19 Recovering feasibility of the solution

1: procedure Recover feasibility(quasi-integer solution)
2: let H = {h haplotype : ∃ q ∈ Q, hq = h, λq = 1}
3: for all genotypes g ∈ K do
4: compute Q̄(g) = {q : g ∈ Gq}, set d(g) = |Q̄(g)|,
5: if d(g) ≥ 3 then
6: if ∃ q̃ ∈ Q̄ : ∀ p : gp = 2 we have hq̃p = 0 then
7: Gq̃ = Gq̃\{g}, Q̄(g) = Q̄(g)\{q̃},
8: d(g) = d(g)− 1,
9: end if

10: if d(g) ≥ 3 and this same haplotype appears in others Q-pairs
11: containing g then
12: decrease d as long as d ≥ 2
13: else if d(g) ≥ 3 then
14: for all q ∈ Q̄(g) do
15: compute h̄q the haplotype complementary to hq,
16: if h̄q = hq̂ ∈ H then
17: set Q̄(g) = {q, q̂}, Gq̂ = Gq̂ ∪ {g},
18: break.
19: end if
20: end for
21: if no complementary haplotype is in H then
22: we cannot �nd an equivalent feasible solution. STOP.
23: end if
24: end if
25: end if
26: end for
27: end procedure

Note that there is only one redundant haplotype for each genotype.

Starting from an integer non feasible solution for HIPP of value z̄, we can check if
there exists a feasible solution of equivalent objective value by applying Algorithm 6.19.
The algorithm considers each genotype and distinguishes the following cases:

1. a genotype g appears in three or more Q-pairs, but the haplotype associated to
some of these is redundant. Thus, we can simply remove g from the Q-pairs
associated to the redundant haplotype as long as we keep g in at least two Q-
pairs. Note that by the structure of the objective function of (EIPR) we can �nd
more than one Q-pair associated to the redundant haplotype for g only if such
a haplotype is �xed,

2. a genotype g appears in three or more Q-pairs, but there is no redundant hap-
lotype associated to any of these Q-pairs. In this case, we can delete genotype g
from each Q-pair in the solution but one, and then consider the complementary
haplotype. Two subcases appear:



6.2. SOLUTION METHOD ON A SET-COVERING-LIKE RELAXATION 97

a) if we are able to �nd such a complementary haplotype among the ones
already used in the solution, then we add g to the associated Q-pair,

b) otherwise the integer solution cannot be modi�ed into a feasible one and
other procedures are needed.





CHAPTER 7

Implementation

In this chapter we show more in detail how the proposed decomposition approach
for solving exactly the Haplotype Inference by Pure Parsimony problem has been
implemented. In particular, we �rst focus on how the linear relaxation is solved, and
then we proceed to the implementation of the branching strategy, that requires a
special attention on how we manage the branching decisions.

7.1 The linear relaxation of the exponential-size

formulation

Solving the linear relaxation of our problem is the starting point to apply the branching
procedure and solve the integer problem itself. Here we present the procedure imple-
mented to obtain the exact solution for the (NewEIP) and (EIPR) linear relaxations
introduced in Sections 5.4 and 6.2.

7.1.1 Choosing an order for the genotypes

A preliminary aspect to be addressed is the order in which we consider the genotypes
in the set G. As we showed in the previous chapters, the heuristic inspired by Clark's
algorithm to �nd a feasible starting solution, the Smart Enumeration used to solve the
pricing problem and the procedure used to add multiple variables at each iteration are
highly a�ected by the order we give to the genotypes.

Note that in Sections 5.1 and 5.2.2 we already proposed a possible order on the
genotypes to be preferred for �nding initial solutions closer to the optimum and to
achieve a better performance of the Smart Enumeration procedure. This proposed
order is exactly the same, and consists in sorting the genotypes according to the
increasing number of heterozygous sites.

We also noticed that an order of the genotypes that possibly improves the choice of
the variables to be added at each iteration of the column-generation procedure depends
on the values assumed by the dual variables at each iteration and it is therefore di�cult

99



100 CHAPTER 7. IMPLEMENTATION

to �x. To avoid to reorder many times the genotypes throughout the column-generation
procedure, spending running time in sorting, we consider also in this case the ordering
according to the increasing number of heterozygous sites.

7.1.2 Overview of the procedure to solve the linear relaxation

The outline of the procedure used to perform the column generation and solve the
linear relaxation of models (NewEIP) and (EIPR) is basically the same, provided we
consider the RMP associated to each one of them. It is presented in the �ow-chart
of Figure 7.1. We refer to the notation given in Table 5.2. Starting from the initial
solution, we �rst solve the RMP, built from the variables de�ned by the initial solution.
If the stabilization approach is not enabled, we solve the pricing problem (NewPP)
seen in Section 5.4 and add the found variable qPP if it has negative reduced cost.
If we do not �nd a variable with negative reduced cost, or if the di�erence between
the current optimal solution zRM and the lower bound LB is below the tolerance ε,
we stop the column generation. Otherwise, if the stabilization technique is used, we
need to compute the stabilized variables and solve the pricing problem (sPP) also
presented in Section 5.4. Note that at this point we propose again the four cases
arising from the combinations of signs of the (sPP) optimal solution, zsPP , and the
reduced cost associated to Q-pair qsPP , v(qsPP ) (see Table 5.2). If they are both
positive we suspend the stabilization for one iteration. Otherwise, we are able to solve
the updated RMP and obtain a di�erent solution. Notice that, as it is shown also in
the chart, if we do not �nd a variable with negative reduced cost but zsPP < 0, then
it is not necessary to solve again the RMP, as the solution will not change, as well as
the dual variables' value. What changes, in this case, is the stability center. Thus, we
can directly compute the new stabilized variables and solve again the pricing problem
(sPP).

To solve the pricing problem, we solve in sequence:

1. the pricing problem with �xed haplotypes,

2. the local search applied to the best �xed haplotype,

3. the exact pricing problem linearized or the exact Smart Enumeration or the
Early-terminated Smart Enumeration,

and we stop as soon as one of the three procedures gives back a variable with negative
reduced cost. We recall that the Early-terminated Smart Enumeration is also able
to state if no negative recuded cost variable exists (in this case the early terminating
condition is simply not reached). We are not considering an implementation for the
maximum �ow approach for solving the pricing problem, as preliminary results showed
that, for both (NewPP) and (sPP), the coe�cient of the objective function does not
assume the values required to solve exactly the pricing problem. Thus, we would need
to solve a large number of integer linear programs per iteration to be only able to
obtain an upper bound on the optimal solution of the pricing problem.

Note that when we apply the stabilization technique, the exact pricing procedures
are embedded in the overall column generation Algorithm 5.15, whereas the Early-
terminated Smart Enumeration approach requires a di�erent procedure as presented
in Algorithm 5.16.



7
.1
.
T
H
E
L
P
O
F
T
H
E
E
X
P
O
N
E
N
T
IA
L
-S
IZ
E
F
O
R
M
U
L
A
T
IO
N

101

START

Initial solution

solve RMP

stab enabled?

solve (NewPP)

No

compute ρST
Yes

solve (sPP)

zsPP < 0?
No

v(qsPP ) < 0?

Yes

v(qsPP ) < 0?
No Yes

add qsPP ,
compute d(ρST )

No

compute LB
update ρ̄

Yes

add qsPP ,
compute LB
update ρ̄ (?)

zPP < 0?

No

zRM − LB < ε?
Yes

add qPP

No

Yes

zRM − LB < ε?zRM − LB < ε?
Yes

No

Yes

STOP

No

Figure 7.1: Flow chart of the procedure to solve the linear relaxation at the root node of the search tree.



102 CHAPTER 7. IMPLEMENTATION

As for the Smart Enumeration (Early-terminated or not), note that once we par-
titioned the set of possible solutions, the last reduced pricing problem that should be
solved is trivial, as there is only one genotype to be considered and it reduces in �nding
the best haplotype compatible with it. Thus, we solve the pricing problem related to
this genotype �rst, then the remaining reduced pricing problems are solved according
to the order given to the genotypes.

7.2 The branch-and-price framework

We show in Figure 7.2 the procedure applied to solve the HIPP problem using the
branch-and-price approach, adapted for both models (NewEIP) and (EIPR). Note
that the RMP in a particular node is de�ned by the RMP de�ned in the parent node
to which the node's branching constraints are added. As we are not considering in
the RMP all the variables de�ned by the formulations, it could happen that the node
is infeasible. In this case, we apply the Farkas pricing as seen in Section 2.2.3: it
consists in solving the pricing problem (NewPP) using the farkas multipliers, provided
for example by the last tableau of the simplex method, without considering costs cq
associated to each Q-pair. It returns a variable qfPP and an optimumm value zfPP . If
zfPP < 0, we add variable qfPP to the formulation at the node. At this stage, we can
prune the node only if, after adding all the variables found in this way with negative
reduced cost, the node is still infeasible.

Once we have a feasible RMP, its solution process follows the steps seen in Fig-
ure 7.1: we need to apply a column-generation procedure to �nd variables with nega-
tive reduced cost. However, the presence of branching constraints at the current node
requires extra precautions while solving the pricing problem, to avoid generating vari-
ables that are not compliant with the branching constraints. This aspect will be seen
in detail later.

Di�erences on the branching procedures apply to whether we are solving (NewEIP)
or (EIPR) formulations. For the �rst model, the branching step consists in �nding a
branching constraint according to Algorithm 6.17. When we do not �nd a branching
constraint in this way, we saw in Section 6.1 that we can have an integer or quasi-integer
solution, meaning that we can have only fractional variables which involve only one
genotype at a time and that it is always possible to recover a feasible and optimal
solution for the HIPP problem. Thus the extra check on the feasibility shown in
Figure 7.2 is automatically satis�ed and simply �x quasi-integer solutions to feasible
ones. Instead, if we are solving the (EIPR) program the feasibility check on quasi-
integer solution is not trivial, and if it is not satis�ed we cannot yet prune the node. The
branching step then follows Algorithm 6.18, that may ask for changing the structure
of the RMP in the subtree, in order to recover the integer optimal solution.

7.2.1 Embedding branching constraints in the pricing problem

Particular attention has been paid on how the branching decisions are implemented.
We recall that these inequalities force the sum of variables involving the same pair of
genotypes to be either equal to 0 or to 1. This approach, however, is highly discouraged
in a column-generation framework as the addition of constraints to the RMP implies
alterations of the pricing problem that can be di�cult to handle. In our case, in fact,



7.2. THE BRANCH-AND-PRICE FRAMEWORK 103

START

Select open node

build RMP

feasible?solve RMP
Yes

No

solve Farkas PP

zfPP < 0?

PRUNE

No

Yes
quasi-integer sol?

Yes

feasible?

Yes

BRANCH

No
No

open nodes?

STOP

No

Yes

Figure 7.2: Branch-and-price fow chart.



104 CHAPTER 7. IMPLEMENTATION

consider ηs,tp as the dual variable associated to the new constraint

∑

q:gs,gt∈Gq

hq
p=β

λq ≥ 1 (≤ 0).

By adding it to the RMP we are adding a term ηs,tp χsχtζp to the objective function of
the pricing problem. This corrupts its structure, that cannot be solved anymore with
the proposed approaches.

Thus, the classical alternative consists in including the branching conditions in the
pricing problem, preserving its structure as much as possible. To do so, each time we
reach a new node we need to consider the set of branching constraints, determined by
two genotypes gs, gt, a position p and a constraint's type TYPE. We recall that we
have these di�erent types of branching constraints, as seen in Section 6.1:

DIFFER when gsp 6= 2 or gtp 6= 2 and we do not allow the two genotypes to be resolved
by a common haplotype,

SAME when gsp 6= 2 or gtp 6= 2 and we want the two genotypes to be resolved by a
common haplotype,

BI-DIFFER when gsp = 2, gtp = 2 and we do not allow the two genotypes to be
resolved by a common haplotype,

SAME0 when gsp = 2, gtp = 2 and we want the two genotypes to be resolved by a
common haplotype h such that hp = 0,

SAME1 when gsp = 2, gtp = 2 and we want the two genotypes to be resolved by a
common haplotype h such that hp = 1,

At this point, a �rst step for the solution of the current node's linear relaxation con-
sists in �xing to 0 those variables already existing in the RMP that are not compliant
with the branching constraints for the current node. This means that

• for every branching constraint of type DIFFER or BI-DIFFER, we �x to 0 those
variables that contain both gs and gt in the subset of genotypes,

• for every other branching constraint, we �x to 0 the variables associated to
q = (hq, Gq) whose subset of genotypes contains exactly one between gs and gt.
For types SAME0 and SAME1 there is the extra requirement that variables �xed
to 0 also need to have respectively hqp = 0 or hqp = 1 .

In order to solve the pricing problem and avoid generating a Q-pair that violates
some branching constraints, we need to translate the information contained in the
inequalities showed in Section 6.1 and corresponding to the di�erent types of branching
constraints, into constraints to be added to the pricing problem. We recall that, once
we identi�ed a suitable branching combination involving gs, gt and position p, at least
one between gsp and gtp is equal to 2. We have then the following three cases:

• if gsp = 0 or gtp = 0 we have only two child nodes:



7.2. THE BRANCH-AND-PRICE FRAMEWORK 105

� the child of type DIFFER. We translate the branching constraint as follows,
in order to obtain an inequality to be added to the pricing problem:

∑

q: gs,gt∈Gq

hq
p=0

λq ≤ 0 ⇒ χs + χt − ζp ≤ 1

Note that, if ζp = 1, this constraint is redundant.

� the child of type SAME. We need to add two constraints to the pricing
problem, that guarantee that the value taken by variables χs and χt is the
same:

∑

q: gs,gt∈Gq

hq
p=0

λq ≥ 1 ⇒

{

χs − χt − ζp ≤ 0

−χs + χt − ζp ≤ 0

Also in this case, note that these constraints become redundant if ζp = 1.

• if gsp = 1 or gts = 1, we have still two child nodes, similar to the ones generated
before with the di�erence that, now, the constraints are de�ned for ζp = 1 and
must be redundant when ζp = 0 :

� the child of type DIFFER:
∑

q: gs,gt∈Gq

hq
p=1

λq ≤ 0 ⇒ χs + χt + ζp ≤ 2

� the child of type SAME:

∑

q: gs,gt∈Gq

hq
p=1

λq ≥ 1 ⇒

{

χs − χt + ζp ≤ 1

−χs + χt + ζp ≤ 1

• if gsp = gtp = 2, we need to generate three di�erent nodes:

� the child of type BI-DIFFER. This condition is ensured adding a constraint
to the pricing problem as follows:

∑

q: gs,gt∈Gq

hq
p=0

λq ≤ 0 ∧
∑

q: gs,gt∈Gq

hq
p=1

λq ≤ 0 ⇒ χs + χt ≤ 1

� the child of type SAME0. We require now three more inequalities for the
pricing problem:

∑

q: gs,gt∈Gq

hq
p=0

λq ≥ 1 ∧
∑

q: gs,gt∈Gq

hq
p=1

λq ≤ 0 ⇒











χs − χt − ζp ≤ 0

−χs + χt − ζp ≤ 0

χs + χt + ζp ≤ 2

� the child of type SAME2, similar to the previous one:

∑

q: gs,gt∈Gq

hq
p=0

λq ≤ 0 ∧
∑

q: gs,gt∈Gq

hq
p=1

λq ≥ 1 ⇒











χs + χt − ζp ≤ 1

χs − χt + ζp ≤ 1

−χs + χt + ζp ≤ 1



106 CHAPTER 7. IMPLEMENTATION

gs

gt

(a)

gs

gt

(b)

gs

gt

(c)

gs, gt

(d)

gs, gt

(e)

Figure 7.3: Cases arising during the Smart Enumeration approach

7.2.2 Embedding branching constraints in the Smart Enumeration

approach

The so far presented expedients to avoid the generation of forbidden variables are
enough to obtain the optimal solution of the RMP's linear relaxation if we are solving
the pricing problem as an integer problem by simply linearizing it. In this case, in
fact, all the pricing problem's variables and constraints are de�ned. When, however,
we apply the Smart Enumeration procedure, the addition of these constraints is not
su�cient any more. In fact, as we are reducing the number of genotypes considered in
order to �nd a suitable Q-pair, it is not obvious that both genotypes gs and gt involved
in the forbidden Q-pairs are taken into account in the pricing problem.

Suppose that at the current node the branching constraint involves genotypes gs

and gt and position p. For ease of explanation, we �x here di�erent roles for the
genotypes gs and gt, but note that for the implementation we should consider that
these roles can be reversed. We can identify �ve di�erent cases, according to where the
genotypes are located, as shown in Figure 7.3. Each sub�gure of Figure 7.3 represents
the set of genotypes sorted according to the prede�ned order during the solution of
a reduced pricing problem. The big spot represents the genotype ḡ we force to be
included in the solution by the partitioning strategy, the blank area represents the
genotypes considered for the reduced pricing problem, that are the ones in the set

Gḡ = {gr ∈ K| gs ≺ gr and gsp + grp 6= 1∀ p ∈ P},

while the dotted area represents the genotypes that we already excluded from this
computation due to compatibility reasons or because we already analyzed them.



7.2. THE BRANCH-AND-PRICE FRAMEWORK 107

Case TYPE

(a) DIFFER/BI-DIFFER �x χt = 0
SAME �x χt = 1
SAME0 add the constraint χt + ζp = 1
SAME1 add χt − ζp = 0

(b) DIFFER/BI-DIFFER do nothing
SAME the pricing problem is infeasible
SAME0 �x ζp = 1
SAME1 �x ζp = 0

(c) DIFFER/BI-DIFFER do nothing
SAME �x χs = 0
SAME0 add the constraint χs − ζp ≤ 0
SAME1 add χs + ζp ≤ 1

(d) all add the constraints for the complete pricing problem

(e) all do nothing

Table 7.1: Cases for pricing problem in Smart Enumeration approach

Sub�gure 7.3a shows the case in which ḡ = gs and gt ∈ Gḡ. The reduced pricing
problem is de�ned only on the subset of genotypes identi�ed by Gḡ. If we do not allow
both genotypes to appear in the solution, we need to force the variable χt associated
to gt to take value 0. Otherwise, if the branching constraint is of type SAME, we need
to force the presence of genotype gt in the solution by setting χt = 1. If the branching
constraint is of type SAME0 or SAME1 we need to add an extra constraint to the
pricing problem that forces the presence of gt in the solution only if the haplotype's
value in position p is compliant with the branching constraint.

Sub�gure 7.3b represents the case in which ḡ = gs but gt /∈ Gḡ. In this case if
the branching constraint is of types DIFFER or BI-DIFFER, we do not need to force
the value of any variable. Otherwise, if the constraint is of type SAME the pricing
problem results to be infeasible, while for the SAME0 and SAME1 types we need to
force the value of the haplotype in position p.

In Sub�gure 7.3c only gs belongs to Gḡ and gt is not included in the de�nition of
the pricing problem. Thus, while branchings of type DIFFER or BI-DIFFER do not
require extra constaints, type SAME requires χs to be forced to 0 and types SAME0
and SAME1 require extra constraints that �x χs to 0 if ζp takes value respectively 0
or 1.

Finally Sub�gures 7.3d and 7.3e show the cases in which respectivly both gs and gt

belong to Gḡ or none of them belong to Gḡ. In the �rst case, we just need to consider
the additional constraints as seen for the complete pricing problem, in the second case
instead this particular branching constraint has no in�uence on the current pricing
problem, so no extra constraints are needed.

We summarize these di�erent cases and how to deal with them in Table 7.1.





CHAPTER 8

Computational results

The algorithms presented in the previous chapters have been implemented in C++
using the SCIP 3.2 libraries [1, 2], and Cplex 12.4 [18] as solver. They have then
been tested on instances both collected from real biological data or generated by us-
ing ad-hoc utilities. The tests have been run on an Intel Premium Dual Core E2160
1.8 GHz processor with 4Gb RAM with a time limit of two hours. In this chapter
we compare the performances of the di�erent algorithms introduced for solving the
linear relaxation of (NewEIP) and (EIPR), with particular attention to the di�erent
approaches to solve the pricing problem, as well as the behaviour of the proposed
branching procedures. The parameters needed, in particular the stabilization parame-
ter, have been tuned using the irace package [36]. We recall that the branch-and-price
solution process follows the diagram in Figure 7.2. It uses the procedures seen in
Chapter 5 to solve the linear relaxation with column-generation procedures and ap-
plies the branching strategy shown, respectively, in Algorithm 6.17 for the (NewEIP)
model and in Algorithm 6.18 for the (EIPR) formulation. Moreover, Algorithm 6.17
looks for branching constraints that force two genotypes to belong to the same Q-pair
or not. This branching rule is enough to guarantee optimality. Algorithm 6.18 instead
needs to modify the formulation of (EIPR) whenever at a node of the branching tree
no other branching constraint is found and the solution is still non feasible for the
HIPP problem.

The polynomial formulation (PIP'), used for comparison, has been implemented
with standard mixed integer programming solvers. We recall that the model presented
in Section 4.1 is based on a representation of the solution using class representatives:
the selected haplotypes induce a subset of genotypes Si, where i is the index associated
to the smallest genotype in Si, on a prede�ned order. Each genotype in Si is resolved
using the haplotype that induces it.

8.1 Alternative algorithm con�gurations

In Table 8.1 we summarize the combinations of algorithms that we used: the �rst
column gives an identifying name for each of these combinations, the second and

109



110 CHAPTER 8. COMPUTATIONAL RESULTS

Stab PP # variables
F V LIN SM ESM larger multi

LIN × × X × × × ×
LINs X × X × × × ×
LINsl X × X × × X ×
LINsm X × X × × × X

LINvm × X X × × × X

SM × × × X × × ×
SMs X × × X × × ×
SMsl X × × X × X ×
SMsm X × × X × × X

SMvm × X × X × × X

ESMsm X × × × X × X

Table 8.1: Overview of algorithms' con�gurations.

#genotypes #SNPs # instances % heterozygous sites
Class min max min max avg. min max

uniform 21 43 30 50 45 28.81 18.13 40.00
non-uniform 20 43 30 50 45 17.76 7.40 28.13
manygen 80 120 20 30 100 19.52 12.06 32.47
hapmap 5 46 30 75 24 36.99 18.76 55.70

Table 8.2: Classes of instances.

third columns show which methods use stabilization with �xed (F) or variable (V)
parameter ∆, the following three columns show which solution method is applied to
solve the pricing problem (the linearization of the quadratic problem - LIN, the Smart
Enumeration - SM or the Early-terminated Smart Enumeration - ESM), and the last
two columns show whether we are adding more than one variable per iteration, and
in this case which approach have been used between the proposed two: the one that
adds only one more variable with associated the largest subset of genotypes possible,
or the one that adds a set of more variables as seen in Section 5.3.

8.2 Instance benchmarks

We report in Table 8.2 the di�erent classes of instances used to test the algorithms. The
instances from the �rst three proposed classes, that is classes uniform, non-uniform
and manygen, have been generated using ms [29], a computer program that generates
samples of haplotypes' sets drawn from an evolving population. The haplotypes are
generated by following a coalescent theory and, according to what can be observed in
nature, the same haplotype can be repeated several times. The program allows the
user to decide the size of the samples to be generated, together with a large number
of options with which a recombination level can be chosen and migrations or other
demographic events can be taken into account. After building the set of haplotypes in



8.3. CHOOSING PARAMETERS AND ALGORITHM CONFIGURATION 111

this way, they are paired randomly to generate genotypes.

We consider portions of the DNA in which recombination does not occur. Thus,
we chose the instances included in the uniform and non-uniform classes among the
respective classes presented in [13], selecting those for which recombination is not
considered. As described in [13], genotypes for the uniform instances have been paired
choosing uniformly among the distinct haplotypes generated by ms, while genotype
for the non-uniform class are built giving to each haplotype a weight proportional to
the number of times it can be found among the set produced by ms. The number of
genotypes per instance that are generated vary between 30 and 50, and there can be
duplicated genotypes.

We generated new instances within the manygen class, that are characterized by a
larger number of genotypes and a limited number of SNPs. In particular, we built a set
of 100 instances of 80, 90, 100, 110 or 120 genotypes and 20 or 30 SNPs (10 instances
per type) as follows: let m be the �nal target number of genotypes, we generate 10
samples of 3m haplotypes with either 20 or 30 SNPs using ms. For each of these sets,
we randomly pair, in the non-uniform way, two haplotypes to create a genotype until
we obtain a set of m distinct genotypes. In this way, our instances do not include
twice the same genotype, which is more compliant with the de�nition of HIPP.

The hapmap class, �nally, represents real biological data. These data have been
available since the end of the �rst phase of the HapMap project [13, 17]. These
instances consider inputs from chromosomes 10 and 21, over all four HapMap popula-
tions. For each input length they selected a continuous collection of SNPs where the
probability of incurring in recombination was very low. The number of genotypes in
these instances ranges between 5 and 46, while the number of SNPs considered varies
between 30, 50 and 75.

8.3 Choosing parameters and algorithm con�guration

Preliminary results on the di�erent classes of instances showed how the approach pre-
sented in this thesis becomes competitive, compared with state-of-the-art algorithms,
when we consider a larger number of genotypes and a limited number of genotypes,
namely when we consider instances belonging to the manygen class. For this reason,
the tuning of the algorithm has been performed on sampling instances that own these
features.

8.3.1 Tuning of the parameters

The tuning of parameters has been carried out using the irace package [36]. It imple-
ments the iterated racing procedure as an R package [43] and it builds upon the race
package [8]. The main purpose of irace is to automatically con�gure optimization
algorithms by �nding the most appropriate settings given a set of tuning instances for
an optimization problem. Iterated racing is a method for automatic con�guration that
consists of three steps:

1. sampling new con�gurations according to a particular distribution,

2. selecting the best con�gurations from the newly sampled ones by means of racing,



112 CHAPTER 8. COMPUTATIONAL RESULTS

3. updating the sampling distribution in order to bias the sampling towards the
best con�gurations.

We have used the irace package with the purpose of tuning the parameter ∆
needed by the stabilization of the dual variables within the resolution of the linear
relaxation of the RMP (see Section 5.4). We used a set of sampling instances made
of 2 instances per type sharing the characteristics of the manygen class (80, 90, 100,
110 or 120 genotypes and 20 or 30 SNPs), with a total of 20 instances and we asked
the tool to compare the objective function value obtained after 40 seconds of running.
Note that for this tuning we solved the pricing problem using the Smart Enumeration
approach, as it will be shown soon that it is more e�cient than the LIN approach.
Moreover we added only one variable per iteration.

The algorithm gave back the value ∆ = 0.13 as best candidate, that will be the
one considered from here on.

Afterwards, we used the same tool to choose which among the two branching
priorities proposed in Section 6.1 is the most e�cient. To this end, we solved the same
sample instances using the Early-terminated Smart Enumeration, with a time limit of
400 seconds that in most cases is enough to obtain the optimal solution, so we are sure
we reached the time in which branching is applied. The outcome shows that there is
no priority that clearly outperforms the other one, so from now on we will use the �rst
one, that consists in choosing the most fractional candidate branching constraint.

8.3.2 Comparing alternative formulations

The �rst results that we present here, related to the instances belonging to themanygen
class, aim at showing how the relaxation of constraints (6.2) included in (NewEIP) into
constraints

∑

q: gk∈Gq

λq ≥ 2 ∀ k ∈ {1, . . . , |K|}

included in (EIPR) a�ects the computational times and the structure of the solution.
In Table 8.3 we report and compare the performances of the branch-and-price algorithm
applied to the (NewEIP) and (EIPR) formulations proposed in Chapter 6: in the �rst
column we show the identi�er of the methods on which we tested these di�erences,
then the following four columns are dedicated to the results on the linear relaxation,
two columns for (NewEIP) and two columns for (EIPR), and the last four to the
integer problem, also divided into two parts for (NewEIP) and (EIPR). In each of
these cases we compare the percentage of instances solved within the time limit and
the average time in seconds used by the solved instances. We note that, with respect
to (EIPR) formulation, there is an overall increase on the number of instances solved
within the time limit, 12.00% for the linear relaxation and 12.00% also for the integer
problem, and the average computational time decreases respectively of the 24.91% and
26.07%. In Figure 8.1 we give a graphical representation of these results where, for
each sub�gure, we show the number of instances solved within a certain amount of
time.

Seen that the improvement in e�ciency is signi�cant, we also want to check how
the optimal solution obtained from the (EIPR) formulation has been reached. That is,



8.3. CHOOSING PARAMETERS AND ALGORITHM CONFIGURATION 113

LR IP
(NewEIP) (EIPR) (NewEIP) (EIPR)

%solved time %solved time %solved time %solved time

LINsm 52.00 2948.33 68.00 2284.10 47.00 3149.13 62.00 2396.06
SMsm 86.00 1000.73 94.00 673.19 84.00 1196.14 93.00 816.17

Table 8.3: Improvement of performance with relaxed constraints.

0 2,000 4,000 6,000

0

20

40

60

seconds

#
in
st
an
ce
s

(NewEIP), LR

(EIPR), LR

(NewEIP), IP

(EIPR), IP

(a) LIN approach for PP

0 2,000 4,000 6,000

0

20

40

60

80

100

seconds

#
in
st
an
ce
s

(NewEIP), LR

(EIPR), LR

(NewEIP), IP

(EIPR), IP

(b) SM approach for PP

Figure 8.1: Improvement of performance with relaxed constraints.

we want to check whether some constraints needed to be forced into equalities or not.
If not, we want to know how we recovered the optimal feasible solution. In Table 8.4,
column%int shows the percentage of quasi-integer solutions obtained only applying the
branching rule presented in Algorithm 6.17 and in column %feas we show how many of
these, in percentage, already yield a feasible solution for the HIPP problem. The next
column %W shows the percentage of over-resolved genotypes, that we recall are those
genotypes that appear in more than two Q-pairs, while the following three columns
show how the steps of the �xing procedure shown in Algorithm 6.19 possibly recover the
feasibility of the current solution. Column %R shows the percentage of over-resolved
genotypes that appear in a Q-pair whose haplotype is redundant for the genotype
considered, column %MR shows the percentage of extra redundant (and then, �xed)
haplotypes associated to the genotype and column %E shows the percentage of over-
resolved genotypes that actually are not resolved directly by using the information in
the proposed Q-pairs, but they can be resoved using one of the haplotypes associated
to it and another haplotype already in the solution. Finally, the last column %NR
shows the percentage of over-resolved genotypes that are still unresolved and call for a
modi�cation on the current formulation that brings back equality constraints. As can
be easily seen, for themanygen class of instances we are always able to recover a feasible
solution, without modifying any constraint of type (6.14). Note that the percentages
of columns %R and %E sum to a value greater than 100%, as some genotypes are both
non resolved and associated to a redundant haplotype. Moreover, we can note how
there is a progressive deterioration on the feasibility of solutions between the LINsm,
SMsm and ESMsm approaches.

From now on, therefore, all the results proposed have been obtained applying the



114 CHAPTER 8. COMPUTATIONAL RESULTS

%int %feas %W %R %MR %E %NR

LINsm 100.00 3.23 19.41 92.55 0.00 10.20 0.00
SMsm 100.00 2.15 16.56 89.92 0.00 12.19 0.00
ESMsm 100.00 1.00 16.92 85.11 0.00 17.07 0.00

Table 8.4: Non-optimality of solution obtained applying only Algorithm 6.17.

(PIP') (EIPR)

uniform 2.56 0.00
non-uniform 2.46 0.26
manygen 0.15 0.00
hapmap 5.67 1.90

Table 8.5: Percent optimality gap of the linear relaxation.

(PIP') (EIPR) + SMsm (EIPR) + ESMsm
%solved time #nodes %solved time #nodes %solved time #nodes

uniform 100.00 8.18 1.84 82.22 935.22 1.38 86.67 266.38 1.15
non-uniform 100.00 26.05 11.13 100.00 472.48 1.00 93.00 542.68 1.81
manygen 97.00 2448.53 5.24 93.00 816.17 5.08 100.00 119.5 4.42
hapmap 87.5 143.42 55.95 62.5 129.18 1.00 50.00 445.64 4.75

Table 8.6: Solving to integrality: comparison on di�erent classes of instances.

branch-and-price algorithm to the (EIPR) model.

8.4 Computational results on di�erent benchmarks

We present some preliminary results on the di�erent classes of instances.

In Table 8.5 we show the performances of our approach on the four sets of instances
uniform, non-uniform, manygen and hapmap. The table reports the percent opitmality
gap at the root node, computed as 100 (LR − opt)/opt, where LR is the value of the
linear relaxation and opt the optimal integer solution value. We compare two HIPP
formulations: (PIP') and (EIPR), and give the average gap for the instances solved
within the time limit. The results show that the exponential-size formulation (EIPR)
is tighter than the polinomial-size (PIP').

In Table 8.6 we present the performances of the (PIP') model compared with
model (EIPR) solved using the Smart Enumeration or the Early-terminated Smart
Enumeration. The computational times here considered only take into account the
time needed to perform the procedure proposed in Algorithm 6.17 in Section 6.1.
However, we can already see how for the instances belonging to the uniform, non-
uniform and hapmap classes, in which we have a limited number of genotypes, model
(PIP') outperforms our proposed approach. Due to this observation, we give in the
following sections detailed results regarding only the manygen class.



8.5. COMPUTATIONAL RESULTS ON THE MANYGEN BENCHMARK 115

0 50 100 150 200
−4

−3

−2

−1

0

·104

# iter

L
B
va
lu
e

LIN lb
LINs lb

(a) E�ects of stabilization

0 2,000 4,000 6,000

0

20

40

60

seconds

n
.
in
st
an
ce
s

LIN
SM

(b) E�ects of Smart Enumeration

Figure 8.2: E�ects of stabilization technique and Smart Enumeration procedure.

8.5 Computational results on the manygen benchmark

The results on the manygen instances are presented in two steps: �rst we show the
results obtained from solving the linear relaxation of model (EIPR) and we compare the
performances of all algorithm con�gurations shown in Table 8.1. Then, we select the
most promising con�gurations to be tested on the complete branch-and-price algorithm
presented in Figure 7.2.

8.5.1 Performance on the solution of the root node

We present the results for the linear relaxation of (EIPR) model. Figure 8.2a shows
the e�ect of the stabilization approach on a sample instance with 100 genotypes and 20
SNPs. As it can be easily seen, the oscillation of the dual variables is highly reduced,
so that the lower bound itself does not oscillate as without stabilization. Moreover,
we see that the red line stops before the blue one, meaning that the number of times
we need to solve optimally the pricing problem is also reduced (and, as a consequence,
the computational time decreases). In Figure 8.2b we show instead the performance
improvement of solving the pricing problem using the Smart Enumeration approach:
the chart reports the number of instances solved within the time showed on the x axis.
As we can see, the red line is signi�cantly higher than the blue one, ending at solving
63 instances against 35 within the time limit of two hours.

Figure 8.3 compares the performances of further improvements, such as the use of
a variable stabilization parameter, the addition of multiple variables per iteration and
the use of the Early-terminated Smart Enumeration. Results are divided according to
the di�erent approaches used to solve the pricing problem (LIN or SM). As we can see,
for both the approaches we have that applying the stabilization technique and adding
multiple variables per iteration sensibly improve the number of instances we are able to
solve within the time limit, while using a variable stabilization parameter ∆ does not
lead to signi�cant improvements. Moreover, using the Smart Enumeration approach to
solve the pricing problem (sPP) is more e�cient than the LIN approach, as we are able
to solve all the instances within the time limit when the Early-terminated approach
is used. Note that the shape of the colored lines in Figure 8.3b suggests that a large



116 CHAPTER 8. COMPUTATIONAL RESULTS

0 2,000 4,000 6,000
0

20

40

60

seconds

#
in
st
an
ce
s

LIN
LINs
LINsl
LINsm
LINvm

(a) LIN

0 2,000 4,000 6,000
0

20

40

60

80

100

seconds

#
in
st
an
ce
s

SM
SMs
SMsl
SMsm
ESMsm
SMvm

(b) SM

Figure 8.3: Performance pro�le graphs on di�erent solving approaches.

All 20 SNPs 30 SNPs
%solved time #frac %solved time #frac %solved time #frac

LIN 35.00 1756.47 49.2 62.00 1501.07 50.94 8.00 3735.82 35.75
LINs 51.00 2230.50 48.25 82.00 1776.85 51.54 20.00 4090.48 34.80
LINsl 59.00 2199.62 38.19 92.00 1827.81 40.91 26.00 3515.28 28.77
LINsm 68.00 2284.10 12.04 96.00 1722.49 12.06 40.00 3631.97 7.64
LINvm 68.00 2225.82 12.81 94.00 1526.97 14.64 42.00 3789.91 7.67
SM 63.00 1053.58 48.89 86.00 680.94 51.88 40.00 1854.74 42.45
SMs 79.00 911.31 48.91 98.00 696.14 54.82 60.00 1262.74 39.27
SMsl 81.00 626.11 38.40 100.00 446.90 41.46 62.00 915.15 32.93
SMsm 94.00 673.19 12.46 98.00 312.85 13.96 90.00 1065.56 10.29
SMvm 92.00 686.95 12.52 98.00 306.78 14.22 86.00 1120.17 10.13
ESMsm 100.00 102.90 12.48 100.00 40.96 13.55 100.00 164.84 11.18

Table 8.7: Computational results for the linear relaxation: average and by number of
SNPs.

part of the instances are solved in a short time, while fewer are solved with a higher
computational time. Instead, for the LIN approach the computational times are more
evenly spread along the two hours.

We give more details on the computational results in Table 8.7, where we show
the overall behaviour of all instances as well as those for instances divided according
to the number of SNPs, and Table 8.8, where we compare the performances of the
approaches according to the number of genotypes contained in the instances. The �rst
column of each section records the number of instances solved within the time limit,
the second column shows the average time, only regarding the percentage of solved
instances, and the third shows the average number of fractional variables belonging to
those instances that do not already reach an integer feasible solution simply solving
the linear relaxation.

Concerning the optimality gap at the root node, we notice that the optimal value
of the linear relaxation for all these instances is equal to the integer optimal value,
even if the solution obtained is fractional.



8.5. COMPUTATIONAL RESULTS ON THE MANYGEN BENCHMARK 117

80 genotypes 90 genotypes 100 genotypes
%solved time #frac %solved time #frac %solved time #frac

LIN 45.00 1633.32 21.22 40.00 682.71 21.22 30.00 2769.17 29.33
LINs 65.00 1753.25 24.54 60.00 1883.22 39.67 50.00 2730.22 46.70
LINsl 65.00 1045.46 14.54 65.00 1482.26 29.31 55.00 2362.71 14.18
LINsm 70.00 1115.36 9.29 80.00 2014.67 7.13 75.00 2665.19 10.00
LINvm 70.00 1173.76 10.71 80.00 1849.14 7.13 75.00 2613.54 9.2
SM 55.00 1120.16 24.73 60.00 335.34 37.75 65.00 1369.94 44.62
SMs 70.00 977.44 20.64 80.00 488.83 39.06 95.00 1289.06 49.11
SMsl 75.00 471.41 19.80 85.00 504.68 26.76 90.00 864.96 35.00
SMsm 95.00 845.00 8.11 95.00 436.01 6.47 95.00 408.09 8.58
SMvm 85.00 738.99 9.24 95.00 466.33 6.89 95.00 414.84 8.84
ESMsm 100.00 100.17 4.00 100.00 146.11 8.60 100.00 67.04 7.55

110 genotypes 120 genotypes
%solved time #frac %solved time #frac

LIN 30.00 2058.90 75.00 30.00 2057.75 86.50
LINs 35.00 2355.41 73.71 45.00 2730.50 75.89
LINsl 60.00 3496.61 49.25 50.00 2896.83 60.10
LINsm 70.00 3456.32 10.64 45.00 2122.53 15.89
LINvm 75.00 3698.42 12.87 40.00 1332.14 16.88
SM 70.00 781.44 65.53 65.00 1636.93 65.54
SMs 80.00 715.36 68.19 70.00 1039.25 66.14
SMsl 80.00 465.99 51.31 75.00 802.60 52.80
SMsm 95.00 517.81 12.32 90.00 1186.01 15.17
SMvm 95.00 539.74 12.32 90.00 1313.31 15.22
ESMsm 100.00 80.41 11.50 100.00 120.78 13.90

Table 8.8: Computational results for the linear relaxation: by genotype's number.

8.5.2 Performance of the branch-and-price algorithm

With respect to the branch-and-price algorithm described in Figure 7.2, in Figure 8.4
we give the pro�le performance graph obtained by solving the RMP with the three
di�erent algorithms for the pricing problem (sPP). As in the linear case, the most
e�cient one results to be the Early-terminated Smart Enumeration, that does not
lose in the branching procedure the e�ciency it had in the linear relaxation. In the
pro�le graph we also include the performance of model (PIP') presented in Section 4.1,
that is the state-of-the-art polynomial-sized approach to solve the HIPP problem. The
computational time needed has a clear dependence on the size of the instance, thus
resulting in a steps-shaped line. We can note how the algorithm embedding the Smart
Enumeration outperforms (PIP'). Tables 8.9 and 8.10 summarize the results: as before,
we consider also instances divided according to the number of SNPs and number of
genotypes. The columns record the percentage of instances solved within the time
limit, the average time and the average number of nodes of the branching tree.



118 CHAPTER 8. COMPUTATIONAL RESULTS

0 2,000 4,000 6,000
0

20

40

60

80

100

seconds

#
in
st
an
ce
s

LINscm
SMsm
ESMsm
PIP'

Figure 8.4: Solving to integrality. Performance pro�le graphs of di�erent approaches.

All 20 SNPs 30 SNPs
%solved time #nodes %solved time #nodes %solved time #nodes

PIP' 97.00 2448.53 5.24 100.00 2162.31 1.4 94.00 2753.02 9.32
LINsm 62.00 2396.06 4.85 86.00 1831.34 6.09 38.00 3674.11 2.05
SMsm 93.00 816.17 5.08 98.00 489.32 6.80 88.00 1180.15 3.16
ESMsm 100.00 119.5 4.42 100.00 59.23 5.84 100.00 179.78 3.00

Table 8.9: Solving to integrality. Computational results: average and by number of
SNPs

80 genotypes 90 genotypes 100 genotypes
%solved time #nodes %solved time #nodes %solved time #nodes

PIP' 95.00 1256.64 17.95 100.00 1251.02 3.40 95.00 2062.25 2.79
LINsm 65.00 1102.21 4.08 80.00 2142.57 3.06 65.00 2500.24 5.62
SMsm 95.00 1052.90 3.53 95.00 477.68 3.05 95.00 636.26 6.32
ESMsm 100.00 119.60 2.30 100.00 152.45 3.55 100.00 84.42 4.5

110 genotypes 120 genotypes
%solved time #nodes %solved time #nodes

PIP' 100.00 2862.34 1.00 95.00 4851.67 1.37
LINsm 65.00 4015.97 5.54 35.00 2176.43 7.71
SMsm 95.00 717.67 7.58 85.00 1241.04 4.88
ESMsm 100.00 99.29 6.20 100.00 141.76 5.55

Table 8.10: Solving to integrality. Computational results: by genotype's number.



CHAPTER 9

Conclusion

Mixed Integer Linear Programs for large-scale problems are di�cult to solve with
standard approaches, as the amount of data to be considered usually makes them
impractical. The advisable approach to deal with such programs consists then in using
decomposition methods. An example of such a large-scale problem is the Haplotype
Inference by Pure Parsimony (HIPP) problem, that can be modeled in di�erent ways.
In particular polynomial-sized or exponential-sized formulations have been provided
in the literature. With the constant improvements on the hardware and software
architectures, instances of signi�cant size can be considered. However, �nding optimal
solutions in an acceptable computational time remains a challenging goal.

In the literature we can �nd several formulations for the HIPP problem, mainly
divided into two classes: with respect to the input data, there are models with an
exponential number of constraints and variables, or formulations with a polynomial
number of constraints and variables. The instances that are solved using these formu-
lations within an acceptable computational time are limited in size, thus some heuristic
approaches have also been investigated. In this thesis we propose a new approach for
solving the HIPP problem that, starting from a formulation with an exponential num-
ber of variables and a polynomial number of constraints, aims at being competitive
with state-of-the-art polynomial formulations. This approach consists in a customized
branch-and-price procedure, mainly based on a specialized method to solve the linear
relaxation, and an e�ective branching strategy.

In particular, we have studied several ways of improving the performance of the al-
gorithm used to solve to optimality the linear relaxation by column generation, such as
the design and implementation of exact and heuristic methods for solving the pricing
problem, the integration of a stabilization technique, and the selection of suitable sets
of variables to be added at each iteration. The most e�ective proposed way of solving
the pricing problem exploits a partition of all its feasible solutions in order to reduce
the size of the underlying integer linear program. In this way, however, the variable
with minimum reduced cost is found only solving several programs per iteration of
the column-generation procedure, thus the use of a combination of heuristic and exact
methods has proven to be more e�cient. We achieved signi�cant improvements also by

119



120 CHAPTER 9. CONCLUSION

smoothing the dual variables' values and by early terminating the column-generation
procedures. Both these strategies rely on the de�nition of a Lagrangian lower bound
to the optimal solution of the linear relaxation of the HIPP problem. Additional re-
�nements on the solution of the linear relaxation include the choice of an a-priori order
on the genotypes that improves the performance of order-dependent sub-procedures.

The column-generation algorithm has been embedded in a branch-and-price frame-
work. The proposed branching rule is able to guarantee the integrality of variables by
exploiting some information derived from the constraints of the master problem, in a
way that recalls the well known Ryan-Foster branching strategy for partitioning prob-
lems, and that can be e�ectively embedded in the pricing problem procedures, both
exact and heuristics.

Moreover, in order to take further advantage from the similarity between the con-
straints involved in our formulation and set-partitioning constraints, we modify the
original model to take a set-covering shape with improved performance in the solution
of the linear relaxation. Due to the structure of the new model, an extension of the
branching procedure is required to recover integer feasible solutions for HIPP. Never-
theless, the computational results show that the overall branch-and-price performance
takes advantage from this set-covering-like formulation.

The proposed algorithms have been implemented in C++ using the SCIP libraries.
We carried out extensive computational experiments using Cplex as linear program-
ming solver. Numerical results for di�erent classes of instances proved that the strate-
gies implemented to improve the the column-generation algortihm to solve the linear
relaxation are e�ective, since we notice a signi�cant reduction on the computational
times. Moreover, the formulation of the linear relaxation proved to be rather tight,
as its optimal value is often equal to the integer optimal value, even if the solution
is still fractional. Results on the implementation of the branch-and-price algorithm
show how our approach is competitive with state-of-the-art polynomial formulations
for instances with a large number of genotypes of limited length.

Further improvements to this approach could come from using a more e�cient
heuristic to provide an initial solution, investigating di�erent orderings for the geno-
types and re�ne the application of the Early-terminated Smart Enumeration, for ex-
ample �nding alternative rules to update the stability center. Moreover, it would be
interesting to study the viability of di�erent, ad-hoc branching strategies for the set-
covering relaxation which are directly able to guarantee the integrality of the variables
and the overall feasibilty of the solutions.

A further future line of research is the extension of the formulation studied in
this thesis to a more general set-partitioning context. Speci�cally, we can consider
haplotypes as elements that characterize the subset of genotypes associated to them.
Thus, the formulation constraints require that each genotype belongs to two of these
subsets. Moreover, the two subsets chosen must satisfy additional requirements on
the haplotypes, as they must resolve the genotype. Thus, the approach presented in
this thesis could be considered as a starting point for solving multiple set-partitioning
formulations with additional constraints.



Bibliography

[1] T. Achterberg. �SCIP: Solving constraint integer programs�. In: Mathematical
Programming Computation 1.1 (2009). http://mpc.zib.de/index.php/MPC/
article/view/4, pp. 1�41.

[2] T. Achterberg, T. Berthold, T. Koch, and K. Wolter. �Constraint integer pro-
gramming: a new approach to integrate CP and MIP�. In: Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, CPAIOR 2008, LNCS 5015 (2008), pp. 6�20.

[3] B. Bafna, D. Gus�eld, G. Lancia, and S. Yooseph. �Haplotyping as perfect phy-
logeny: a direct approach�. In: Journal of Computational Biology 10(3-4) (2003),
pp. 323�340.

[4] M. L. Balinski. �On a selection problem�. In: Management Science 17 (1970),
pp. 230�231.

[5] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh, and P. H.
Vance. �Branch-and-price: Column generation for solving huge integer programs�.
In: Operations Research, 46(3) (1998), pp. 316�329.

[6] P. Berman and M. Karpinski. �On some tighter inapproximability results�. In:
Technical report ECCC No. 29, Department of Computer Science, University of
Trier, Germany (1998).

[7] P. Bertolazzi, A. Godi, M. Labbé, and L. Tininini. �Solving haplotyping inference
parsimony problem using a new basic polynomial formulation�. In: Computers
and Mathematics with Applications 55 (2008), pp. 900�911.

[8] M. Birattari. �The race Package for R: Racing methods for the selection of the
best�. In: Technical Report TR/IRIDIA/2003-037, IRIDIA, Université libre de
Bruxelles, Belgium (2003).

[9] R. G. Bland. �New �nite pivoting rules for the simplex method�. In:Mathematics
of Operations Research 2(2) (1977), pp. 103�107.

[10] P. Bonizzoni, G. Della Vedova, R. Dondi, and J. Li. �The haplotyping problem:
an overview of computational models and solutions�. In: Genome Sequencing
Technology and Algorithms, 1st ed., S. Kim, H. Tang, and ER Mardis, Eds.
Artech House, Inc (2008), pp. 151�181.

121



122 BIBLIOGRAPHY

[11] S. Bradley, A. Hax, and T. Magnanti. Applied Mathematical Programming. 1977.

[12] D. Brown and I. Harrower. �A new integer programming formulation for the pure
parsimony problem in haplotype analysis�. In: Algorithms in Bioinformatics.
Springer Berlin Heidelberg (2004), pp. 254�265.

[13] D. Brown and I. Harrower. �Integer programming approaches to haplotype in-
ference by pure parsimony�. In: (2006).

[14] D. Catanzaro, A. Godi, and M. Labbé. �A class representative model for pure
parsimony haplotyping�. In: INFORMS Journal on Computing 22(2) (2010),
pp. 195�209.

[15] A Clark. �Inference of haplotypes from PCR-ampli�ed samples of diploid popu-
lations�. In: Molecular Biology and Evolution 7 (1990), pp. 111�122.

[16] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer Programming. 2014.

[17] The Int'l HapMap Consortium. �Integrating ethics and science in the interna-
tional HapMap project�. In: Nature Rev. Genetics 5(6) (2004), pp. 467�475.

[18] CPLEX Optimizer. url: http : / / www - 01 . ibm . com / software / commerce /
optimization/cplex-optimizer/.

[19] L. De Giovanni and M. Labbé. �A column generation approach for pure parsi-
mony haplotyping�. In: (2014). Conference on Operational Research in Compu-
tational Biology, Bioinformatics and Medicine.

[20] Z. Ding, V. Filkov, and D. Gus�eld. �A linear-time algorithm for the perfect
phylogeny haplotyping (PPH) problem�. In: Journal of Computational Biology
13(2) (2006), pp. 522�553.

[21] O. Du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. �Stabilized column
generation�. In: Discrete Mathematics, 194(1) (1999), pp. 229�237.

[22] E. Eskin, E. Halperin, and R.M. Karp. �Large scale reconstruction of haplo-
types from genotype data�. In: Proceedings of the seventh annual international
conference on Research in computational molecular biology (2003).

[23] L. Exco�er and M. Slatkin. �Maximum-likelyhood estimation of molecular hap-
lotype frequencies in a diploid population�. In: Molecular Biology and Evolution,
12(5) (1995), pp. 921�927.

[24] G. Gamrath, T. Fischer, T. Gally, A. M. Gleixner, G. Hendel, T Koch, S. J.
Maher, Miltenberger M., B. Müller, Pfetsch M. E., Puchert C., D. Rehfeldt,
S. Schenker, R. Schwarz, F. Serrano, Y. Shinano, S. Vigerske, D. Weninger, M.
Winkler, Witt J. T., and J. Witzig. The SCIP Optimization Suite 3.2. eng. Tech.
rep. 15-60. Takustr.7, 14195 Berlin: ZIB, 2016.

[25] D. Gus�eld. �Haplotype inference by pure parsimony�. In: Springer Lecture Notes
in Computer Science No.2676 (2003), pp. 144�155.

[26] D. Gus�eld. �Haplotyping as perfect phylogeny: conceptual framework and e�-
cient solutions�. In: Proc. 6th Annual Conference on Research in Computational
Molecular Biology (2002), pp. 166�175.

[27] D. Gus�eld. �Inference of haplotypes from samples of diploid populations: com-
plexity and algorithms�. In: Journal of Computational Biology 8(3) (2001).



BIBLIOGRAPHY 123

[28] Y. T. Huang, K. M. Chao, and T. Chen. �An approximation algorithm for hap-
lotype inference by maximum parsimony�. In: Journal of Computational Biology,
12(10) (2005), pp. 1261�1274.

[29] R. R. Hudson. �Generating samples under the Wright-Fisher neutral model of
genetic variation�. In: Bioinformatics 18(2) (2002), pp. 337�338.

[30] B. Korte and J. Vygen. Combinatorial Optimization. Springer, 2012.

[31] G. Lancia, M.C. Pinotti, and R. Rizzi. �Haplotyping populations by pure parsi-
mony: complexity of exact and approximation algorithms�. In: INFORMS Jour-
nal on computing 16(4) (2004), pp. 348�359.

[32] G. Lancia and R. Rizzi. �A polynomial case of the parsimony haplotyping prob-
lem�. In: Operations Research Letters, 34(3) (2006), pp. 289�295.

[33] G. Lancia and P. Sera�ni. �A set-covering approach with column generation
for parsimony haplotyping�. In: INFORMS Journal on Computing 21(1) (2009),
pp. 151�166.

[34] M. E. Lübbecke. �Column generation�. In: Wiley Encyclopedia of Operations
Research and Management Science (2010).

[35] M. E. Lübbecke and J. Desrosiers. �Selected topics in column generation�. In:
Operations Research 53(6) (2005), pp. 1007�1023.

[36] M. López-Ibáñez, J Dubois-Lacoste, T Stützle, and M. Birattari. �The irace
package, Iterated Race for Automatic Algorithm Con�guration�. In: Technical
Report TR/IRIDIA/2011-004, IRIDIA, Université libre de Bruxelles, Belgium
(2011).

[37] S. Martello and P. Toth. Knapsack problems. Algorithms and computer imple-
mentations. John Wiley and Sons, 1990.

[38] T. Niu, Z. S. Qin, X. Xu, and J. S. Liu. �Bayesian haplotype inference for multiple
linked single-nucleotide polymorphisms�. In: The American Journal of Human
Genetics (2002), pp. 157�169.

[39] A. Pessoa, E. Uchoa, M. P. de Aragão, and R Rodrigues. �Exact algorithm over
an arc-time-indexed formulation for parallel machine scheduling problems�. In:
Mathematical Programming Computation, 2(3-4) (2010), pp. 259�290.

[40] A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. �In-out separation and col-
umn generation stabilization by dual price smoothing�. In: International Sympo-
sium on Experimental Algorithms. Springer Berlin Heidelberg. (2013), pp. 354�
365.

[41] J.-C. Picard. �Maximal closure of a graph and application to combinatorial prob-
lems�. In: Management Science 22 (1976), pp. 1268�1272.

[42] J.-C. Picard and M. Queyranne. �A network �ow solution to some nonlinear
0-1 programming problems, with applications to graph theory�. In: Networks 12
(1982).

[43] R Development Core Team. �R: a language and environment for statistical com-
puting�. In: (2008). url: http://www.R-project.org.



124 BIBLIOGRAPHY

[44] L. M. Rousseau, M. Gendreau, and D. Feillet. �Interior point stabilization for
column generation�. In: Operations Research Letters, 35(5) (2007), pp. 660�668.

[45] D. M. Ryan and B. A. Foster. �An integer programming approach to scheduling�.
In: Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew
Scheduling (1981), pp. 269�280.

[46] L. Tininini, P. Bertolazzi, A. Godi, and G. Lancia. �CollHaps: a heuristic ap-
proach to haplotype inference by parsimony�. In: Computational Biology and
Bioinformatics, 7(3) (2010), pp. 511�523.

[47] A. Violin. �Mathematical programming approaches to pricing problems�. PhD
thesis. Université Libre de Bruxelles, Belgium and Università di Trieste, Italia,
2014.

[48] P. Wentges. �Weighted Dantzig-Wolfe decomposition for linear mixed-integer
programming�. In: International Transactions in Operational Research, 4(2) (1997),
pp. 151�162.


