
University of Padova

Academic year 2018-2019 (796th)

Department of Information Engineering (DEI)

Doctoral thesis in Information Engineering

Intelligence in 5G networks
Author: Federico Chiariotti

Supervisor: Andrea Zanella

To the people who were there when I needed them most: Giulia, Edoardo,
Martina, Flaminia, Francesco

Abstract

Over the past decade, Artificial Intelligence (AI) has become an important

part of our daily lives; however, its application to communication networks

has been partial and unsystematic, with uncoordinated efforts that often

conflict with each other. Providing a framework to integrate the existing

studies and to actually build an intelligent network is a top research priority.

In fact, one of the objectives of 5G is to manage all communications under

a single overarching paradigm, and the staggering complexity of this task is

beyond the scope of human-designed algorithms and control systems.

This thesis presents an overview of all the necessary components to inte-

grate intelligence in this complex environment, with a user-centric perspec-

tive: network optimization should always have the end goal of improving the

experience of the user. Each step is described with the aid of one or more

case studies, involving various network functions and elements.

Starting from perception and prediction of the surrounding environment,

the first core requirements of an intelligent system, this work gradually builds

its way up to showing examples of fully autonomous network agents which

learn from experience without any human intervention or pre-defined behav-

ior, discussing the possible application of each aspect of intelligence in future

networks.

Contents

1 Introduction 5

2 A review of machine learning techniques 9

2.1 Prediction techniques . 10

2.1.1 Graphical Bayesian models 10

2.1.2 Support Vector Machines 12

2.1.3 Linear regression techniques 14

2.1.4 Random Forest and k-Nearest Neighbors 15

2.1.5 Neural Networks . 15

2.1.6 Kalman filters . 17

2.2 Reinforcement Learning . 19

2.2.1 Markov Decision Processes 21

2.2.2 Q-learning . 22

2.2.3 Deep Q-learning . 25

3 Prediction and anticipatory networking 29

3.1 Predicting the wireless channel 30

3.1.1 State of the art . 30

3.1.2 Studied scenario . 32

3.1.3 Learning parameters and results 34

3.2 Predicting battery usage in smartphones 38

3.2.1 State of the art . 39

3.2.2 Data analysis . 40

3.2.3 Results . 45

3.3 Predicting future cell load . 51

1

3.3.1 State of the art . 51

3.3.2 Spatio-temporal prediction 52

3.3.3 Parameter optimization and results 54

4 A predictive approach to providing Quality of Service 59

4.1 State of the art . 63

4.1.1 Single-path latency-minimization protocols 63

4.1.2 Multi-path aggregation protocols 66

4.2 The LEAP protocol . 67

4.2.1 Congestion control on a single path 70

4.2.2 Integrating single-path congestion control and multi-

path coding . 74

4.2.3 Aggregating flows through coding 75

4.2.4 Scheduling and retransmission 77

4.2.5 Computation of the combined capacity in the two-path

Gaussian case . 78

4.2.6 Implementation considerations 82

4.3 Experimental results . 83

4.3.1 Combining the traces 84

4.3.2 Single-path congestion control 84

4.3.3 Combining multiple paths 90

5 Providing Quality of Experience guarantees with Reinforce-

ment Learning 95

5.1 State of the art . 97

5.1.1 Reinforcement Learning and DASH 100

5.2 System model . 101

5.2.1 Video streaming model 101

5.2.2 Reward function . 103

5.2.3 Defining the Markov Decision Process 104

5.3 Deep Q-learning for DASH adaptation 105

5.4 Simulation and results . 107

5.4.1 Algorithm settings . 110

5.4.2 Results: real traces . 111

5.4.3 Results: synthetic traces 116

5.4.4 Summary of performance 122

6 Optimizing Smart City services with data-driven techniques125

6.1 Bike sharing in Smart Cities 127

6.2 State of the art . 130

6.2.1 Rebalancing bike sharing systems 131

6.2.2 User incentives and pricing 133

6.3 System model . 135

6.3.1 The bike sharing system as a network 135

6.3.2 Downtime at a station 137

6.3.3 Expected number of system failures 140

6.3.4 The incentive problem 140

6.3.5 The incentive model 141

6.3.6 Solving the incentive problem 144

6.4 Dynamic rebalancing . 147

6.4.1 Preliminaries . 148

6.4.2 System-wide rebalancing problem 149

6.4.3 Single-vehicle optimization 151

6.4.4 Multi-vehicle optimization 154

6.4.5 Simulation settings and analysis 155

6.5 Results . 160

6.5.1 Performance . 160

6.5.2 Rebalancing effort . 162

6.5.3 Cost analysis . 163

7 Exploiting Smart City data to optimize the network 167

7.1 Smart Cities and networks . 168

7.2 The SymbioCity concept . 170

7.3 Analyzing traffic data . 175

7.4 State of the art . 178

7.4.1 Handover in HetNets 179

7.4.2 Virtual MME . 180

7.5 Asymmetrical Handover Bias Optimization in HetNets 180

7.6 Adaptive vMME Allocation 188

8 Conclusion 195

8.1 Published works . 196

Bibliography 199

List of Acronyms 221

Acknowledgments 227

4

Chapter 1

Introduction

Although Artificial Intelligence (AI) is already an important part of our daily

lives, seamlessly performing tasks such as speech processing and image recog-

nition without us even noticing, defining exactly what intelligence means is

still a controversial question, particularly so when computers are involved:

machines have already overcome humans’ performance in well-defined tasks

with limited and consistent environments, but replacing humans when cre-

ativity and adaptability are required is a more ambitious proposition. In

order to solve this problem, we need a coherent definition of intelligence

which can be applied to both biological and artificial agents, providing a

framework for research on the theory and applications of AI.

In a 2007 review [1] of the use of the term in psychology, philosophy and

AI research, Legg and Hutter came up with this definition:

Intelligence measures an agent’s ability to achieve goals in a wide

range of environments.

Although the definition is still very broad, it can be formulated mathemati-

cally [2] and it is extremely useful in understanding the trends in the appli-

cation of AI in communication networks and protocol design [3].

An obvious example is Self-Organized Networking (SON) [4], a set of

statistical and learning techniques that is already applied in 4G cellular

networks. SON’s use cases are self-organization, self-optimization and self-

healing: the network needs to be able to provide the best possible service un-

5

CHAPTER 1. INTRODUCTION

der changing propagation and traffic demand conditions, while saving power

and optimizing several of its parameters without human intervention. The

similarity between SON’s goals and the definition of intelligence above should

be clear to the reader: a complex modern cellular network can forgo human

intervention and optimize itself only by being intelligent.

While SON represents a first step towards intelligence in networks, the

various techniques that fall under the definition are not integrated and are

often blind to one another, causing conflicts and suboptimal network set-

tings [5]; while several ad hoc algorithms have been proposed to solve this

issue [6,7], these efforts are still partial and unsystematic. However, moving

towards a more integrated and functional network intelligence is one of the

major goals of 5G, the new generation of cellular networks [8], which puts

a greater emphasis on AI techniques and network awareness [9] to deal with

the increased network complexity.

Several factors contribute to the complication of communication net-

works. Firstly, the ever-growing demand for mobile data traffic, which has

already increased 4,000 fold in the past 10 years [10] and is expected to con-

tinue doing so at a steady rate, strains cellular networks’ capabilities and

requires ever more optimized strategies. The wide variety of applications

and services that 5G will need to support is another major complicating fac-

tor: applications such as live video conferencing, Augmented Reality (AR),

or vehicular networking impose strict latency and throughput requirements

that strain the network’s capabilities. The integration of the Internet of

Things (IoT) and Smart City paradigms into 5G also contributes to make

the network harder to manage, since supporting both human-type and Ma-

chine to Machine (M2M) communications [11] is a complex problem. The

densification of cellular networks by deploying small cells [12] also opens new

possibilities to optimize the access network, but it makes the burden of com-

plexity even heavier, as does the integration of new radio technologies such

as mmWave [13].

The combination of these factors makes it very likely that intelligence

will not only be an improvement for the 5G network, but a vital necessity,

and the vision of a cognition-based network is becoming closer to reality [14].

6

In this kind of network, tools such as Reinforcement Learning (RL) [15] and

unsupervised representation learning [16] will make intelligent, context-aware

decisions with high-level objectives, integrating different technologies and

supporting the demands of very different applications organically. In other

words, network elements will be able to see the big picture and optimize users’

Quality of Experience (QoE) instead of maximizing a simpler Quality of

Service (QoS) metric [17], thanks to their awareness of the environment [18].

In this work, we present our first steps towards the definition of such a

network, providing case studies showing how intelligence can benefit differ-

ent aspects of communication networks. Chapter 2 presents the theoretical

background of this thesis, describing several machine learning algorithms

in the fields of prediction, regression and RL, while the following chapters

describe our work in applying these techniques to future networks and ap-

plications. First, Chapter 3 shows how networks can benefit from prediction

and data-driven approaches by presenting three case studies of prediction of

network variables, which may then be exploited by the network to provide

user-centric optimized services. In Chapter 4, we combine that prediction

with traditional optimization algorithms , showing how this anticipatory ap-

proach can lead to more intelligent decisions on the Transport layer. Going

back to the definition of intelligence, we can state that such a system satisfies

the criteria, and is therefore intelligent, but something is still missing: the

intelligent behavior is designed and pre-programmed into the system, and the

design effort is considerable and needs to be repeated for every problem, con-

sidering all possible aspects and performing extensive testing and theoretical

work. In Chapter 5, we present a use case of RL as a possible way to avoid

this work: RL agents learn optimal behavior by trial and error without any

predefined model, and although they are still not a one-size-fits-all solution,

their performance when dealing with uncertainty in networking scenarios is

impressive. In Chapter 6, we present Smart Cities as one of the main com-

ponents of the 5G system. Bike sharing, one of the most important Smart

City services, is used as an example to show how the introduction of data an-

alytics and intelligence can improve the performance of this kind of systems.

Chapter 7 takes the concept a step further, and presents the idea for a symbi-

7

CHAPTER 1. INTRODUCTION

otic relationship between the Smart City and the underlying communication

network; more specifically, the sensors in a Smart City can provide data to

optimize the network in an intelligent way. As in all the previous chapters,

we provide case studies and examples showing the benefits of intelligence in

realistic settings. Finally, we draw our conclusions in Chapter 8.

8

Chapter 2

A review of machine learning

techniques

In this chapter, we present a review of the machine learning techniques we

use in later chapters; several prediction techniques are described, along with

a review of the theory of RL and the recent developments in the field. The

algorithms we present are commonly used in the literature [3, 19], but this

is by no means an exhaustive survey of the prediction techniques in the

literature [20,21].

Perception is a critical component of intelligence [22]: an agent cannot

develop intelligent strategies to act and accomplish goals in an environment

if it is not aware of the environment’s nature and the effects an action might

have on it. A natural extension of the concept of perception is prediction [23]:

an intelligent agent does not just passively register the environment through

its sense organs or artificial sensors, but it builds a model of reality and

expects certain things to happen in the immediate future.

In a networking context, the possible benefits of predicting factors such

as the future traffic demand or the location of users are clear: considering a

stochastic knowledge of the future can improve the performance of network

optimization algorithms, as the additional information enables more intelli-

gent choices. The concept of anticipatory networking [24] is gaining traction

in the research community, as the highly volatile nature of wireless networks

9

CHAPTER 2. A REVIEW OF MACHINE LEARNING TECHNIQUES

requires foresightedness. Since a prediction might be required at different

layers of the networking stack and for processes with different statistics, it

might have different timescales and dimensions, involving vastly different

amounts of data.

RL represents a further step in the evolution of intelligence in commu-

nication networks: while prediction techniques can be useful in the design

of classical optimization algorithms, RL agents can autonomously learn how

to interact with the environment without the need for an explicitly pre-

programmed behavior. This approach reduces the necessary design effort,

enabling agents to act without a human designing its responses [25], learning

how to make its own decisions like a biological brain [26].

2.1 Prediction techniques

In this section, we describe a variety of prediction tools from the literature;

in Chapter 3 we will use them in a series of case studies of prediction of

network parameters, using different datasets and timescales. Our objective is

to showcase the techniques and how they can be applied in a more systematic

fashion in future networks, automatically generating predictions of all the

relevant network variables and providing a full awareness of the present and

future environment so that each network element can act intelligently in it.

2.1.1 Graphical Bayesian models

The Graphical Bayesian (GB) model can be represented by the graph shown

in Figure 2.1. As the Bayesian model only works for discrete attributes, the

dynamic interval of any continuous process needs to be discretized into M

classes. The memory-n Bayesian model uses the past n samples as features,

resulting in Mn possible combinations of the input vector. The predictor is

essentially a classifier, in which the future sample of the random process is

the correct class.

The multimodal classifier is implemented by a Dirichlet distribution [27]

over the M -dimensional simplex, which is parameterized by a real non-

10

2.1. PREDICTION TECHNIQUES

xt−2 xt−1 xt xt+1

Fig. 2.1: Representation of the graphical Bayesian model with 3-state mem-
ory.

negative vector α:

P (x = (x1, . . . , xM)|α) =
1

B(α)

M∏
i=1

xαi−1
i , (2.1)

where the normalizing constant B(α) is the multivariate Beta function [28].

The random vector x = (x1, . . . , xM) is a probability distribution over the

M classes, such that Xi represents the probability that the given sample is

in the i-th class, with i ∈ {1, . . . ,M} (i.e., the probability distribution of the

next sample of the studied process). The first and second moments of X are

given by:

E[xi] =
αi∑M
j=1 αj

(2.2)

Var[xi] =
αi

∑
j ̸=i αj

(
∑M

j=1 αj)2(
∑M

j=1 αj + 1)
(2.3)

Intuitively, E[xi] is a measure of how probable the class i is with respect

to the totality of the classes, and Var[xi] measures the uncertainty on that

probability. The conjugate distribution of the Dirichlet distribution is the

Dirichlet-multinomial distribution; Bayesian inference can be performed by

generating a new parameter vector α′, defined as

α′
i = αi + ni, (2.4)

where ni is the number of observed transitions to class i. The prediction

can be performed by taking the expected probability distribution of the next

11

CHAPTER 2. A REVIEW OF MACHINE LEARNING TECHNIQUES

sample, given by

P (i) =
α′
i∑M

j=1 α
′
j

. (2.5)

The predicted class then corresponds to the maximum probability value.

2.1.2 Support Vector Machines

Support Vector Machines (SVMs), also called Support Vector Regressions

(SVRs) when used for regression, [29,30], are learning machines that minimize

the following cost function:

C =
∑
i

Eε(fw(x
(i))− x(i)t+1) + λ||w||2, (2.6)

where fw is a function taking as input a memory-n feature vector x(i) =

(xt−n+1, . . . , xt) and predicting a future sample x̂t+1, for a given training

example i. The error z between this predicted sample and the actual sample

at time t+ 1, xt+1, is then fed to an ε-insensitive error function

eε(z) =

⎧⎨⎩|z| − ε if |z| > ε

0 otherwise
, (2.7)

so that fw is constrained to have a maximum absolute prediction error lower

than a given constant ε for all the training data. The second term in (2.6)

accounts for regularization: the trade-off between the minimization of the two

terms is governed by the constant λ (the reader can refer to [31,32] for more

details). In (2.6), all the training examples are assumed to lie in an “ε-tube”

(see Figure 2.2). However, this is not verified in general, and (2.6) can be

modified so as to allow for some tolerance in the prediction errors. Therefore,

for each training example x(i), it is possible to introduce slack variables ξi

and ξ∗i , where ξi > 0 is related to a point for which (x
(i)
t+1 − fw(x(i))) > ε,

and ξ∗i > 0 is related to a point for which (fw(x
(i)) − x(i)t+1) < −ε. Training

examples are thus allowed to lie outside the ε-tube, as in Figure 2.2, provided

12

2.1. PREDICTION TECHNIQUES

Fig. 2.2: Graphical representation of an ε-tube with slack variables.

that the corresponding slack variables are positive: this condition can be

formulated as

−ε− ξ∗i ≤ x
(i)
t+1 − fw(x(i)) ≤ +ε+ ξi. (2.8)

The SVR problem then becomes

min
w

∑
i

(ξi + ξ∗i) + λ||w||2, (2.9)

subject to the constraints ξi, ξ
∗
i ≥ 0, and (2.8). It can be seen that only the

examples outside the ε-tube contribute to the cost, with deviations being

linearly penalized. Computing the dual formulation of (2.9), exploiting the

Karush-Kuhn-Tucker conditions [33, 34], and assuming that fw is simply a

linear function of the inputs, i.e., fw(x
(i)) = wx(i) + b, it can be found that

w =
∑
i

(µi − µ∗
i)x

(i), (2.10)

were µi and µ
∗
i are the Lagrange multipliers. The prediction function then

becomes

fw(x) =
∑
i

(µi − µ∗
i)(x

(i)x) + b. (2.11)

13

CHAPTER 2. A REVIEW OF MACHINE LEARNING TECHNIQUES

In (2.10), the weight vector w is a function of the training examples x(i);

however, only those examples such that µi − µ∗
i ̸= 0, called Support Vectors

(SVs), have to be evaluated in (2.10) and (2.11). Finally, it is possible to

allow the prediction function fw to be non-linear in each training example

x(i), so as to allow better generalization over non-linear target functions.

In fact, in (2.11), the SVs only appear inside scalar products, and (2.10)

does not need to be calculated explicitly. Therefore, it can be proved that <

x(i),x > in (2.11) can be replaced by particular non linear functions k(x(i),x),

known as kernels, which correspond to scalar products between non linear

transformations of x(i) and x. Substituting k(x(i),x) in (2.11), we thus obtain

the optimal prediction function in a non-linear feature space, rather than in

input space:

fw(x) =
m∑
i=1

(µi − µ∗
i)k(x

(i),x) + b. (2.12)

2.1.3 Linear regression techniques

Regression is a statistical method to fit data to a model. The simplest form

of regression is multiple linear regression [35], which finds the linear model

that minimizes a loss function of the error between the model outputs and

the actual data; the least squares function is usually used as the loss function.

β̂ = (XTX)−1XTy, (2.13)

where X is the matrix of independent variables and y is the dependent vari-

able. The parameter vector β̂ represents the fitted model [36].

We do not consider nonlinear regression in this work, although it is often

used for prediction; in our view, the complexity of nonlinear regression makes

more advanced learning techniques such as Neural Networks (NNs) or SVMs

more useful tools. However, given the highly variable nature of networking

data, we consider some regularization techniques that weight the loss function

to constrain the resulting model and avoid overfitting the available data.

• Ridge regression [37] is a shrinkage method that adds a square penalty

14

2.1. PREDICTION TECHNIQUES

to the least squares loss, weighted by a regularization matrix λR.

β̂ = (XTX+ ΓTΓ)−1XTy, (2.14)

where Γ = λRI. Adding the regularization matrix helps reduce over-

fitting by penalizing models with very large parameters and mitigating

the noise introduced by solving the inverse problem.

• Lasso regression [38] is a shrinkage method very similar to ridge re-

gression that uses a linear penalty instead of a square penalty. Lasso

regression does not have a closed-form solution, but it requires the use

of convex optimization techniques.

• Elastic net regression [39] is a linear combination of the lasso and ridge

regularization techniques, and is particularly useful when the number of

predictors is larger than the number of observations and in the presence

of highly correlated predictors.

2.1.4 Random Forest and k-Nearest Neighbors

The Random Forest (RF) method [40] operates by creating multiple decision

trees [41] and giving the mean of the trees’ prediction as an output. The

forest only consider some of the features of each tree, avoiding the risk of

overfitting.

The k-Nearest Neighbors (k-NN) method [42] is a simple learning algo-

rithm, in which the output is the average between the k closest values in the

feature space. There are significant theoretical similarities between RF and

k-NN [43]; both can be viewed as weighted neighborhood schemes, but in

RF the neighborhood of a point depends on the structure of the trees, and

consequently also on the training set.

2.1.5 Neural Networks

The perceptron [44] is a simple method to learn a linear classifier, invented

in 1957. The weighted sum of the inputs is passed through a non-linear

15

CHAPTER 2. A REVIEW OF MACHINE LEARNING TECHNIQUES

activation function, then the output is quantized so that the classifier gives a

binary response. The limited utility of the perceptron was due to its inability

to recognize nonlinear patterns, but the study of NN gained new life when

Multilayer Perceptrons (MLPs) were invented [45], stacking multiple layers

to extend the algorithm’s capabilty to recognize different patterns.

A MLP is a fully connected feed-forward network with one or more hid-

den layers. The neurons can be connected in several ways, which depend

on the implemented architecture. Input neurons get activated directly by

the environment state variables, while other neurons are activated through

weighted connections from neurons residing in previous layers. Given the ar-

chitecture, i.e., the way neurons are connected, and the activation functions,

i.e., how the weighted input is reshaped by each neuron (and subsequently

sent forward to the next layer), the whole system is completely determined

by the connection weights and biases, which are both included in a single

vector w. Neural networks are trained by backpropagation [46], a simple

gradient-based algorithm that updates each weight based on the error of the

predicted output.

The output of any neuron in any layer ℓ ≥ 1 is obtained by first computing

a weighted sum of all the outputs from the previous layer, and then evaluating

it through a nonlinear activation function (the hyperbolic tangent, in our

case). The final output vector, from the neurons in the last layer, is obtained

through a cascade of operations of this type, by passing the output vector

from any layer ℓ ≥ 1 to all neurons in the next layer ℓ+1. A great deal of work

has been carried out on deep learning architectures in the last decade [47,48].

For further details, see, e.g., [49].

This network has no memory, and this means that given an input vector,

the final output vector only depends on the network’s weights. In this case,

if we desire to keep track of a process over time, the input vector has to

be extended to contain this information. This entails a redefinition of the

system state (to account for current and past samples), which corresponds to

a larger number of neurons and to a higher complexity (in terms of training

time and memory space).

On the other hand, Recurrent Neural Networks (RNNs) implement some

16

2.1. PREDICTION TECHNIQUES

Fig. 2.3: Schematic diagram of an LSTM cell.

internal feedback mechanics that introduce memory, i.e., given an input vec-

tor, the network output depends on the network’s weights and on the previ-

ous inputs. A schematic diagram of the LSTM internal structure is shown

in Figure 2.3. The memory is implemented through a Memory Cell that

allows storing or forgetting information about past network states. This is

made possible by structures called gates that handle access to the Memory

Cell. Gates are composed of a cascade of a network with sigmoidal activation

function (σ) and a point-wise multiplication block. There are three gates in

an LSTM cell: 1. the input gate, that controls the new information that

need to be stored in the Memory Cell, 2. the forget gate, that manages the

information to keep in the memory and what to forget, and 3. the output

gate, associated with the output of the cell (ht). In addition, all the data that

pass through a gate is reshaped by an activation function (usually an hyper-

bolic tangent). Optionally, peephole connections can be added to allow all

gates inspect the current cell state, even when the output gate is closed [50].

Backpropagation Through Time (BTT) is usually used in conjunction with

optimization methods to train RNNs [51].

2.1.6 Kalman filters

The Kalman filter [52] is the continuous extension of a Hidden Markov Model

(HMM) [53]; it models a known discrete-time linear dynamic system with a

hidden state xk, which it tries to estimate from the history of a correlated

observation vector yk. The state vector is never observed directly, but the

17

CHAPTER 2. A REVIEW OF MACHINE LEARNING TECHNIQUES

function mapping states to observations at time k is known:

yk = Axk +wk, (2.15)

where A is the matrix defining the linear system mapping states to observa-

tions and wk ∼ N (0, σ2
w) is a white Gaussian noise with a known correlation

matrix Q. The system state change equation is given by:

xk = Bxk−1 + vk, (2.16)

where A is the matrix defining the linear state change system and vk ∼
N (0, σ2

v) is a white Gaussian noise with a known correlation matrix R. The

system is completely defined by the tuple (A,B,Q,R), and the equations

work even when it is time-dependent, as long as the tuple is known at all

times.

The Kalman filter is the optimal estimator, and it works in two phases:

a prediction (a priori) phase during which the filter estimates the future

behavior of the system, and an update (a posteriori) phase during which the

filter incorporates new observations and refines its estimate of the state.

The prediction phase extrapolates the currently known information to

future states by iterating the system equations:

x̂k|k−1 = Bx̂k−1. (2.17)

It is also possible to estimate the error covariance matrix P:

Pk|k−1 = BPk−1B
T +R. (2.18)

It is possible to predict future observations by applying the same method,

and with a known error.

The update phase is based on the concept of innovation, which we denote

by zk and is defined as:

zk = yk −Ax̂k|k−1. (2.19)

18

2.2. REINFORCEMENT LEARNING

The innovation is equivalent to the difference between the actual observation

and the predicted one; its covariance Sk is calculated as

Sk = Q+APk|k−1A
T . (2.20)

The optimal Kalman gain Kk is then given by

Kk = Pk|k−1A
TS−1

k . (2.21)

The update equation for the filter is

x̂k = x̂k|k−1 +Kkzk, (2.22)

and the a posteriori covariance of the state is

Pk = (I−KkA)Pk|k−1(I−KkA)T +KkQKT
k . (2.23)

The main limitations of the Kalman filter are its linearity and the re-

quirement to know the noise covariance matrix perfectly; a Kalman system

designed for the wrong system will often perform poorly. However, it is pos-

sible to use the autocorrelation of the innovation to dynamically estimate

the system noise and correct the filter. The adaptive Kalman filter [54] con-

verges to the optimal Kalman filter starting with no knowledge of Q and

R for any linear time-invariant system. The Autocovariance Least Squares

(ALS) method [55] exploits the same principle, but it is now widely used

because of its faster convergence. It is also possible to extend the Kalman

filter to nonlinear systems using the unscented Kalman filter [56].

2.2 Reinforcement Learning

It is possible to combine one of the previously described prediction techniques

with a classical optimization algorithm to design a foresighted system, and

the possibility to intelligently exploit predictions to optimize a network is a

powerful tool [24]. However, this combination of intelligence and traditional

19

CHAPTER 2. A REVIEW OF MACHINE LEARNING TECHNIQUES

optimization techniques still requires a significant design effort; in order to

call a network element fully intelligent, it should be able to act without a

human designing its responses [25], learning how to make its own decisions

like a biological brain [26].

This is possible through RL, a technique pioneered by Chris Watkins in

the late ’80s [57]. RL is inspired by behavioral psychology and experiments

in animal learning, as agents start with almost no knowledge of the world and

gradually learn the optimal behavior by trial and error. RL is fundamentally

different from the techniques we described in Section 2.1, as the agent takes

an active role in the learning instead of passively estimating a variable, and

its first application was to board games. Since board games are inherently

adversarial and have a rigid structure that can be easily modeled, it is easy to

transpose them as RL problems and to evaluate agents’ performance. In 1995,

the RL algorithm TD-Gammon [58] was the first AI to play backgammon

at the same level as human champions, and it led to several innovations in

high-level strategy. Although the first computer to beat the human chess

world champion, Deep Blue, did not use reinforcement but just a brute-force

look-ahead strategy [59], RL sparked a revolution in the AI field after Mnih et

al. combined it with deep learning, achieving human-level play or better on

several classic arcade games using only visual input [60]. The same techniques

were later used to beat the human world champion of Go, an extremely

complex Chinese board game that was thought to be too complicated for

machines [61]. A later version of the algorithm achieved the same results

without any external training [62], mastering chess beyond human levels as

well. Generalizing experience in one game to others is another step towards

true intelligence [63], since the extensive training that these algorithms need

does not always make them practical.

Although the field is very active and RL tools and algorithms are still

being developed and improved, its applications to networks has already be-

gun [64]: having a general learning agent limits the design effort and improves

performance in several contexts, and we predict that RL is going to be widely

used in 5G.

20

2.2. REINFORCEMENT LEARNING

Fig. 2.4: Schematic diagram of an MDP.

2.2.1 Markov Decision Processes

The model that sparked the RL revolution is the Markov Decision Process

(MDP) [65]: all the successful algorithms we cited above are based on this

underlying model. An MDP, whose basic logic is shown in Figure 2.4, is

defined by an action space A, a state space S, and a reward function ρ :

S × S × A → R. The action at ∈ A, taken when the system is in a given

state st ∈ S, determines the statistical distribution of the next state st+1 and

the reward ρ(st, st+1, at) attained in step t. A policy is a function Π : S → A

that maps states into actions.

The expected long-term utility achieved by an admissible policy Π when

starting from state s0 is defined as

R(s0; Π) = lim
h→+∞

E

[
h∑

t=0

λtρ(st, st+1,Π(st))

⏐⏐⏐⏐s0,Π
]

(2.24)

where λ ∈ [0, 1) is a discount factor that ensures convergence, and P (st+1|st)
is the one-step conditional transition probability of the state process {st}.
The equivalent recursive formulation, first derived by Bellman in [65], is given

by:

R(s0; Π) =
∑
s1∈S

P (s1|s0)ρ(s0, s1,Π(s0)) + λR(s1; Π). (2.25)

21

CHAPTER 2. A REVIEW OF MACHINE LEARNING TECHNIQUES

The optimal policy Π∗(·) is finally found as:

Π∗(s) = argmax
Π

R(s; Π) , ∀s ∈ S . (2.26)

The problem (2.26) can then be solved through dynamic programming algo-

rithms such as Value Iteration (VI) [65], but the computational complexity

becomes rapidly unmanageable as the size of the problem grows. A possible

approach to deal with the curse of dimensionality is to adopt RL tools, such

as Q-learning [66], which gradually converges to the optimal solution through

trial-and-error, as explained next.

2.2.2 Q-learning

Q-learning is a RL algorithm introduced by Watkins in 1992 [66]. It works

by maintaining a table of estimates Q(s, a) of the expected long-term reward

(given by (2.25) in our problem formulation) for each state-action pair (s, a).

The Q-learning algorithm can use various exploration policies to decide

the next action based on the Q-values : the most common are the ε-greedy

policy and Softmax. Both strategies are non-deterministic; the ε-greedy

policy chooses the action with the highest Q-value with probability 1 − ε,

and a suboptimal action at random with probability ε. Softmax chooses an

action according to the softmax distribution of Q-values:

P (at|st) =
exp

(
−Q(st,at)

ξ

)
∑

a∈A exp
(
−Q(st,a)

ξ

) , (2.27)

where the parameter ξ sets the greediness of the algorithm. Greedier algo-

rithms make suboptimal choices less often, but run a higher risk of getting

stuck in local minima since they explore the state space less frequently.

In standard Q-learning, the Q-value Q(st, at) is updated if the learning

agent takes action at in state st. The future reward over the infinite time

horizon is approximated as maxa∈AQ(st+1, a), i.e., the best Q-value of the

future state st+1. If the Q-value matches the real expected long-term reward,

22

2.2. REINFORCEMENT LEARNING

Q-learning coincides with the Bellman formulation in (2.25), which exactly

solves the problem. In practice, since the Q-values are to be learned at

runtime, they only provide an approximation of the real long-term rewards,

but it has been proved that they converge to the optimal rewards for sensible

exploration policies. The Q-learning update function is given by:

R̂(st, at) = ρ(st, st+1, at) + max
a
λQ(st+1, a) (2.28)

Q(st, at) ← Q(at, qt) + α(R̂(st, at)−Q(st, at)) , (2.29)

where the learning rate α sets the aggressiveness of the update and is usually

decremented over time as the learning agent gets closer to convergence. The

choice of the maximum Q-value in the bootstrap approximation (2.28) makes

Q-learning an off-policy learning algorithm, since the greedy policy used in

the long-term reward estimation (update policy) usually differs from the

actual policy the learner uses (exploration policy). As the Q-values converge,

the exploration policy should become greedier until it reaches convergence.

Limits of the Q-learning approach

The Q-learning approach is powerful, but it has some limitations: the algo-

rithm provably converges to the optimal policy if its parameters are chosen

correctly [66], but the convergence speed is an issue in complex problems.

In [67], Kearns and Singh proved that, for an MDP with N states and A ac-

tions, the number of samples necessary for the expected reward to converge

within ε of the optimal policy with probability 1− p is bounded by:

O

(
N Aε−2

(
log

(
N

p

)
+ log

(
log
(
ε−1
))))

. (2.30)

For fixed values of ε and p, the number of training steps is O(NA log(N)),

but the constant factor can be significant. Due to the curse of dimensionality,

the number of states of the MDP tends to be very large for all but the

most trivial problems, making standard Q-learning need a huge amount of

training samples to reach convergence and obtaining a good trade-off between

23

CHAPTER 2. A REVIEW OF MACHINE LEARNING TECHNIQUES

precision and adaptability.

When tackling networking problems, Q-learning has two main drawbacks:

• Continuous state space. The quantities defining the state space may

often have values in some real interval. The definition of an MDP of

manageable size involves a quantization of all the continuous variables

in the state according to a predefined number of levels (dictated by

the quantization step). The smaller the quantization step, the better

the approximation of the actual (continuous) variable and the more

accurate the fit between the MDP and the process it represents gets.

However, the number of states grows very quickly as the quantization

step gets smaller, and the best compromise between representation ac-

curacy and number of states is often difficult to find;

• Curse of dimensionality. This is a direct consequence of the previous

point, since the number of samples required for Q-learning to converge

grows very quickly with the number of states, according to (2.30). Here,

the problem is not only related to the convergence time, but also to

the data availability: optimal policies may be hard to attain due to

the need for too many data samples, which may not be available in

practical settings.

With deep Q-learning we can avoid these issues by approximating the action-

value function Q(s, a) through a NN that returns the (estimated) Q-value

Q(s, a) for any given state and action pair (s, a). The network weights, once

trained, will encode the mapping and replace the tables used by Q-learning.

This allows the model to be fed with continuous variables, avoiding the quan-

tization problem, and has the further desirable property that NNs, if properly

trained, are able to generalize, providing correct answers (i.e., excellent Q-

value approximations) even for points (s, a) that were never processed in the

training phase. In other words, NNs act as universal approximators. This

amounts to a reduction of the number of training samples that are required

to reach a certain performance level; however, with this approach, the RL

logic remains unchanged, and there is no restriction on the NN architecture

to use.

24

2.2. REINFORCEMENT LEARNING

2.2.3 Deep Q-learning

Conventional machine learning techniques are often limited in their ability

to analyze data in their natural form. Usually, a good representation of

the environment requires complex analysis and considerable expertise. This

phase is commonly referred to as feature engineering and aims at finding a

suitable representation of the raw data through a reduced set of features (fea-

ture vector), from which the learning system can extract useful environment

information.

Representation learning consists of a set of mechanisms to automate this

process: the learning machine is fed with raw data and discovers the best

representation for detection or classification on its own. The deep learning

methods we presented in Section 2.1.5 are representation learning techniques

Deep Q-learning combines a Q-learning approach with a deep learning

framework to obtain optimal policies for any MDP. Learning systems of

this kind, referred to as Deep Q-networks (DQNs), have been used in many

complex systems in different research fields with state of the art performance,

although their development is quite recent.

The main difference between the standard Q-learning algorithm, as de-

scribed in Section 2.2.2, and DQNs, is in the way of estimating the Q-value

of each state-action pair, generalized by the function Q(s, a), i.e., an ap-

proximation of the optimal action-value function Q∗(s, a). While standard

Q-learning keeps a table of values and updates each state-value pair sepa-

rately, DQN uses a deep learning approach to approximate the Q-function.

This can be achieved in two different ways:

1. a single deep network, fed with the current system state, is used to

simultaneously estimate the Q-values for all possible actions;

2. one separate deep network is trained for each possible action, approxi-

mating a sub-space of the whole action-state set.

The first approach has the advantage of providing the entire set of Q-values

(always needed to make the final decision) with a single computation.

25

CHAPTER 2. A REVIEW OF MACHINE LEARNING TECHNIQUES

Considering the MDP defined in Section 2.2.1, a loss function L̃ at it-

eration t is evaluated using the 4-tuple et = (st, qt, rt, st+1), which here is

referred to as the agent’s experience at time t. The loss function can be

derived from the Bellman equation in (2.29) [60]:

L̃t(st, at, rt, st+1|wt) =
(
rt + λmax

a
Q̂(st+1, a|w̄t)−Q(st, at|wt)

)2
, (2.31)

where rt is the reward accrued for segment t. Two deep NNs, with the

same architecture, are considered. A first network, with weight vector wt, is

updated for each new segment (at every time step t), and is used to build the

Q-value map Q(st, qt|wt). A second NN, referred to as the target network,

is accounted to increase the stability of the learning system [60], and its

weight vector w̄t is updated every K steps (segments), by setting it equal to

that of the first network and keeping it fixed for the next K − 1 steps, i.e.,

w̄t = wt every K steps. The target network is used to retrieve the mapping

Q̂(st+1, a|w̄t) in (2.31). Another improvement is given by the implementation

of a technique called experience replay [68]. The agent’s experience et =

(st, at, rt, st+1) is stored into a replay memory R = {e1, . . . , et} after each

iteration. In this way, a new loss function Lt that also accounts for the past

experience can be considered. Specifically, a subset RM = {e1, . . . , eM} of

M samples, with ej ∈ R, j = 1, 2, . . . ,M , is extracted uniformly at random

from the replay memory R, and Lt is finally evaluated as an empirical mean

over the samples in set RM :

Lt(wt) =
1

M

∑
ej∈RM

L̃t(ej|wt) . (2.32)

This leads to three main advantages: greater data efficiency, uncorrelated

subsequent training samples and independence between current policy and

samples [60].

The whole process can be divided into two consecutive phases, which take

a different but fixed number of iterations: namely, the update phase, and the

test phase.

26

2.2. REINFORCEMENT LEARNING

Fig. 2.5: Schematic diagram of an update iteration.

Update phase The exploration parameter, namely ε in the case of an ε-

greedy policy or ξ for softmax (see Section 2.2.2), is gradually reduced. We

recall that a smaller value for this parameter means that the policy tends

to prefer the action that is considered to be optimal at the current training

stage. Furthermore, at each iteration the network’s weights are updated

to minimize the loss function in (2.32). The Adam method is used as the

gradient descent optimization algorithm: it implements an adaptive learning

rate to provide a faster and more robust convergence [69].

Test phase The exploration parameter is set to zero, thus obtaining a

greedy policy implementing the actions that are deemed optimal given the

current system state and the mapping Q(st, qt|wt) from the first NN. For this

phase, the weights wt are frozen and are no longer updated for the whole

duration of the test. The target network is not used in the test phase and

all the performance evaluations are based on the results obtained during this

second phase.

A schematic diagram of an update iteration is shown in Figure 2.5. First,

the current environment state st is fed to the deep NN, which outputs an

estimate of the Q-value for each possible action q ∈ A, i.e., the various rep-

resentations in the adaptation set A. Then, an action at is chosen according

to either an ε-greedy or softmax policy. Upon taking action qt, the system

moves to the new state st+1 and a new reward rt is evaluated according to

(5.4). The newly acquired experience et = (st, at, rt, st+1) is stored into the

27

CHAPTER 2. A REVIEW OF MACHINE LEARNING TECHNIQUES

replay memory R. Hence, a batch of M samples is extracted, uniformly

at random, from the replay memory and is used to update the network’s

weights. The loss function in (2.32) is minimized, using the mapping from

the target network, i.e., Q̂(st+1, a|w̄t), whose weights w̄t are updated every

K steps.

28

Chapter 3

Prediction and anticipatory

networking

As we explained in Chapter 2, the possibility to predict the future dynam-

ics of several network parameters can significantly improve the performance

of network optimization efforts [24]. In the context of 5G, the increasing

complexity of cellular networks [70] and the strict QoS requirements of me-

dia applications will make intelligent management unavoidable; predictive

approaches represent a first step towards such a model.

In this chapter, we focus on three case studies, predicting network vari-

ables and discussing their possible usefulness in optimization schemes. First,

we try to estimate the long-term evolution of a wireless channel; this can

make resource allocation easier for applications that work on timescales of

hundreds of milliseconds or seconds, such as video streaming; prediction-

based adaptive streaming systems have already been proposed [71]. Another

aspect of supporting user activity is energy efficiency: nowadays, mobile

devices often have to be recharged during the day to provide the required

dependability [72]. While there is a huge research effort to increase the bat-

tery capacity and recharging speed, another approach looks at techniques

to improve the energy efficiency of the devices, e.g., implementing smart

energy-saving policies [73]. In this respect, an accurate estimate of the resid-

ual charge duration can be useful both to drive the energy-saving policies

29

CHAPTER 3. PREDICTION AND ANTICIPATORY NETWORKING

implemented by the operating system of the device and to let the user adopt

energy-preserving strategies when using their mobile device.

Finally, the third case study looks at predictive approaches from a net-

work perspective: using a publicly available dataset, it tries to predict the

future traffic load for a given cellular base station in an urban scenario, ex-

ploiting spatio-temporal correlations. This could also be used in 5G network

optimization in order to allocate resources foresightedly.

3.1 Predicting the wireless channel

In this section, we present two learning methods to predict the wireless

channel gain on a long-term scale, without any inputs other than the time-

averaged Received Signal Strength Indicator (RSSI). This prediction is per-

formed by the Base Station (BS), which is the only fixed element in the

network; the BS can indirectly learn the mobility patterns of the mobile

users and the fading characteristics of the channel by observing patterns

in their RSSI. Most of the efforts in the literature have focused on Multi-

Input Multi-Output (MIMO) techniques on short time horizons, but several

works [74] [75] have expressed the need for long-term accurate channel gain

predictions. The two machine learning techniques we use in this context are

GB models and SVR machines . The GB model can be used as a baseline, as

it does not try to generalize its experience, but simply considers each class

as a separate classification problem. SVRs are able to find and generalize

patterns in the data, making better predictions with fewer data.1

3.1.1 State of the art

Wireless links are often modeled as Rayleigh fading channels. Most model-

based prediction systems concentrate on short-term predictions of the fading

envelope for wideband channels [77], and cannot be directly used for opti-

mization at the higher layers.

1The work presented in this section was presented at IEEE ICNC 2017 and published
in the conference proceedings [76].

30

3.1. PREDICTING THE WIRELESS CHANNEL

Shen et al. predict future channel quality from receiver-side Channel

State Information (CSI) [78], but the auto-regressive filters they use are only

accurate on a timescale of a few milliseconds. The work in [79] proposes

a prediction method tailored to Orthogonal Frequency Division Modulation

(OFDM) and based on time-domain statistics with a slightly longer range,

but the timescales for accurate predictions are still far below 100 ms.

Another auto-regressive model is proposed by Jarinova [80], but its pre-

dictions are extremely short-range and the order of the filter is a parameter

that needs to be optimized carefully.

Several studies in the literature have attempted to solve the long-term

channel prediction problem with machine learning techniques. A typical

example is Ramanan and Walsh’s channel prediction algorithm for sensor

networks [81]; it is a distributed algorithm that employs message passing

techniques to minimize the Kullback-Leibler divergence between the expected

prior distribution and the actual posterior.

The problem of channel prediction is central in Cognitive Radio (CR)

systems, and Demestichas et al. propose a GB model [82] to solve this

issue. Their GB network predicts the future capacity for each possible CR

configuration, and adapts to channel conditions online, but it is meant for

Modulation and Coding System (MCS) selection rather than for optimization

at higher layers.

Flushing et al. take an empirical approach [83], combining a probing

mechanism with SVR to predict link quality in dense wireless networks.

Thanks to mobility, the probing system can learn about several different

topologies and extend this knowledge to larger, denser networks.

Finally, Liao et al. perform long-term channel prediction [75] using both

spatial and temporal information. The authors propose a Gaussian Process

(GP) regression, training the system through a series of routes on a city map.

Their prediction method is robust against spatial errors, with better perfor-

mance than both SVR and auto-regressive filters. Although their method is

sound for large-scale scenarios, it does not deal with smaller cells and needs

Global Positioning System (GPS) information from clients, which might not

be available.

31

CHAPTER 3. PREDICTION AND ANTICIPATORY NETWORKING

3.1.2 Studied scenario

As we mentioned in Section 3.1, we used a GB model and an SVR to pre-

dict the future RSSI of a wireless channel, without external inputs such as

GPS data. The two learning methods were trained on the same RSSI data,

generated by simulating a realistic urban scenario. The wireless channel we

considered used a 945 MHz downlink carrier frequency (one of the commer-

cial bands used in Long Term Evolution (LTE)), and the users moved in a

Manhattan grid of 100 buildings.

The grid we used is composed of 20 m wide square buildings, with 10

m wide one-way streets at each corner. The evolved Node Base (eNB) is

placed at coordinates (140, 140), on top of a building close to the center of

the simulation area.

Propagation loss and fading The propagation loss was computed with

the open-source system-level network simulator ns–3 [84]. In particular, we

used the LTE module [85] and a radio propagation model called Hybrid

Buildings Propagation Loss Model, which chooses the correct propagation

model based on the reciprocal position of transmitter and receiver (both

outdoors, both indoors, only one indoors). This model also takes into ac-

count the external wall penetration loss (for different types of buildings, i.e.,

concrete with windows, concrete without windows, stone blocks, wood), and

the internal wall penetration loss.

We used the ns–3 simulation to create a square grid of path loss measures

in our urban scenario, with a sampling distance of 33 cm. The path loss

was then approximated as a linear combination of the 4 closest points in the

grid, weighted by the relative distance. The main parameters of the ns–3

simulation are listed in Table 3.1.

The fading and shadowing processes were both simulated from well-known

models. We used the log-normal model for shadowing, with a standard devi-

ation of 4 dB and a correlation distance of 8 m. Doppler fading was modeled

with a Rayleigh distribution, using the parameters listed in Annex B.2 of [86]

and the Welch periodogram method. In the fading calculation, the node

32

3.1. PREDICTING THE WIRELESS CHANNEL

150 200 250

x (m)

120

140

160

180

200

220

240

y
 (

m
)

(a) Pedestrian

100 150 200

x (m)

60

80

100

120

140

160

180

200

y
 (

m
)

(b) Vehicular

Fig. 3.1: Examples of trajectories for the two mobility models.

speed was assumed to be constant, simplifying the computation significantly

with negligible error.

Mobility model We used two mobility models: pedestrian and vehicular.

In both models, the user goes from point A to point B by choosing the

direction that takes them closer to point B at each intersection.

In the pedestrian model, a person walks at a constant speed of 1.5 m/s

along the side of the nearest building at a distance of 0.5 m. Road crossings

are placed at each intersection, and the pedestrian waits for a random time

Parameter Value

Downlink carrier frequency 945 MHz
Uplink carrier frequency 900 MHz
Resource block bandwidth 180 kHz
Available bandwidth 25 RB
eNB beamwidth 360◦ (isotropic)
TX power used by the eNB 43 dBm
eNB noise figure 3 dB
Number of buildings 100
Floors for each building 5
Radio Environment Map resolution 9 samples/m2

Table 3.1: Path loss computation parameters

33

CHAPTER 3. PREDICTION AND ANTICIPATORY NETWORKING

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
M

S
E

 (
d
B

)

Distance (s)

Pedestrian (1 s step)

Bayesian (memory: 1)
Bayesian (memory: 2)

SVR (memory: 1)
SVR (memory: 3)
SVR (memory: 5)

Fig. 3.2: Prediction error for the pedestrian scenario (1 s window).

between 0 and 5 seconds before crossing to wait for cars.

In the vehicular model, the driver keeps a constant speed of 15 m/s while

driving straight, switching between the 3 lanes by moving at a 45 degree

angle. Before a turn, the driver switches to the correct lane (e.g., they

switch to the right lane before turning right), then slows down to 5 m/s with

a constant deceleration in the 5 meters before the curve and makes a circular

turn. After reaching the destination, the driver stops and reverses to slowly

park on the curb, with a semi-circular trajectory.

The channel data were generated by running the urban scenario 5000

times for the pedestrian model and 10000 for the vehicular model, obtaining

3-4 days of data for the vehicular model and 20 hours for the pedestrian

model (the car reaches its destination faster, so the traces are shorter). Two

example trajectories for both models are shown in Figure 3.1.

3.1.3 Learning parameters and results

Both prediction methods were trained on the full available dataset, with two

different sampling rates: the channel was averaged over a window of 1 s and

0.5 s.

34

3.1. PREDICTING THE WIRELESS CHANNEL

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
M

S
E

 (
d
B

)

Distance (s)

vehicular (1 s step)

Bayesian (memory: 1)
Bayesian (memory: 2)

SVR (memory: 1)
SVR (memory: 3)
SVR (memory: 5)

Fig. 3.3: Prediction error for the vehicular scenario (1 s window).

The Bayesian model used a Gaussian prior, centered on the last known

channel sample; the probability vector for all classes was multiplied by a

factor k to obtain the Dirichlet parameter vector α. Both the prior weight

factor k and the variance σ of the Gaussian distribution were optimized as

hyperparameters by cross-validation. The channel quantization step used to

divide the data into classes was 2 dB.

As regards the SVR learning algorithm, we found the Radial Basis Func-

tion (RBF) kernel: k(zi, zj) = e−γ||zi−zj ||2 to perform best with respect to

other possible kernel choices. In this case, the hyperparameters of the model

are γ and C in (2.9): a grid search on (γ, C) pairs was thus performed, and

the one with the best cross-validation Root Mean Square Error (RMSE) was

selected.

After cross-validation, the performance of both prediction methods was

measured on a previously unknown test set.

Figure 3.2 shows the prediction RMSE for the pedestrian mobility model;

the quality of the prediction is very good even with the simpler model, as

pedestrians are slow and generally highly predictable. As expected, SVR

clearly outperforms the naive Bayesian model, as it is able to generalize

its experience and to better capture the features of the model. The gain

35

CHAPTER 3. PREDICTION AND ANTICIPATORY NETWORKING

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
M

S
E

 (
d
B

)

Distance (s)

Pedestrian (0.5 s step)

Bayesian (memory: 1)
Bayesian (memory: 2)
Bayesian (memory: 3)

Fig. 3.4: Prediction error for the pedestrian scenario (0.5 s window).

of the longer memory is less pronounced for the Bayesian model, as it is

overshadowed by the small size of the dataset (a longer memory means that a

bigger dataset is necessary, and the memory-3 Bayesian model is not plotted,

as its performance is not better than that with memory 2).

In the vehicular scenario, the RMSE is higher and the performance gap

between the two methods is smaller (see Figure 3.3); the Bayesian model even

outperforms the SVR if the prediction is more than 3 seconds ahead, but a

prediction error of more than 7 dB is only slightly better than no prediction

at all (the prediction RMSE when using a memoryless channel model is about

8 dB). This may be due to the high speed of the vehicles (∼ 10 times the

speed of the pedestrians), which makes accurate generalizations about the

evolution of the channel hard.

Figures 3.4 and 3.5 show the performance of the Bayesian method with a

channel sampling window of 0.5 s; due to the computational cost of the SVR

training, its performance in this case has not been evaluated. The figures

show that the trend in the performance of the Bayesian method is essentially

the same, although the error is higher; the performance of the memory-3

Bayesian model shows that a longer memory is beneficial for the pedestrian

model, but loses most of its benefits in the more chaotic vehicular scenario

36

3.1. PREDICTING THE WIRELESS CHANNEL

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
M

S
E

 (
d
B

)

Distance (s)

Vehicular (0.5 s step)

Bayesian (memory: 1)
Bayesian (memory: 2)
Bayesian (memory: 3)

Fig. 3.5: Prediction error for the vehicular scenario (0.5 s window).

unless a bigger dataset is used.

Finally, Figure 3.6 shows the performance of the two predictors when they

are trained with a reduced dataset: the two predictors were trained on 20%

of the available data in the vehicular scenario with a 1 second step. The plot

shows how the performance of the SVR degrades far less than that with the

Bayesian model, thanks to the former’s ability to generalize experience. In

fact, the reduced-dataset SVR performs better than the full-dataset Bayesian

model when the prediction distance is less than 5 seconds.

The training was performed with just a few hours of RSSI data, so a BS

with multiple connected users might be able to quickly gather the necessary

training data and achieve a high-quality prediction in a very short time.

However, the computational cost of the training itself is not negligible; while

SVRs show a clear performance gain in both scenarios, the Bayesian model

might be enough for applications that need a lower precision. It is worth

noting that the SVR can have a satisfactory performance even when trained

using a reduced dataset, as shown in Figure 3.6; this makes it ideal if the

limiting factor is not computational capability, but the size of the available

dataset (e.g., in adaptive systems that are trained online to follow a time-

varying scenario). The quality of the predictions is generally high, and the

37

CHAPTER 3. PREDICTION AND ANTICIPATORY NETWORKING

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
M

S
E

 (
d
B

)

Distance (s)

Vehicular (1 s step)

Bayesian (memory: 2)
Bayesian (memory: 2, reduced dataset)

SVR (memory: 5)
SVR (memory: 5, reduced dataset)

Fig. 3.6: Prediction error for the vehicular scenario (1 s window) including
results using a reduced dataset.

RMSE is almost as low as the results shown in [75], but without the use of

GPS data, thereby reducing the energy consumption.

3.2 Predicting battery usage in smartphones

As of today, most devices predict the battery depletion time by taking into

account the mean duration of a full battery charge and the most recent

battery-draining trend, disregarding time and location information [73]. In

this section, we propose a novel method for the prediction of the battery

depletion time that makes use of a NN to draw a personalized battery-usage

pattern from time and location information provided by the mobile device.

We apply our method to a dataset that includes mobility data collected by

the LifeMap monitoring system at Yonsei University in Seoul [87]. Results

show that our prediction method is by far more accurate than a popular

method, currently employed in commercial mobile devices to predict the

residual duration of the battery charge, and outperforms other machine-

learning methods. We also provide insights on the importance of location

information to the accuracy of such a prediction, and on the computational

38

3.2. PREDICTING BATTERY USAGE IN SMARTPHONES

complexity of the proposed approach.2

3.2.1 State of the art

Several machine learning techniques have been applied to predict the battery

charge duration of mobile devices. Most of the proposed solutions based the

forecast on the current state of the device together with the battery-discharge

history. For example, Zhao et al. [73] use the multiple linear regression

prediction method: the discharge rate is calculated by comparing the current

device status (e.g., CPU load, LCD brightness and I/O device usage) with

the discharge rates that were observed in the past.

In [89], two NNs are trained in order to predict the discharging curve of

batteries. Starting from some considerations on the electro-chemical nature

of rechargeable batteries, the authors derive a non-linear discharging pattern.

In order to model this behavior, they feed the NNs with some key parameters

of the battery and device state, such as time, battery level, battery tempera-

ture, and resource usage in the past. The obtained predictor can estimate the

remaining working time with an accuracy of 3%. However, their model was

implemented and evaluated on a digital multimeter under controlled research

conditions and no testing was performed on real world data. Wen et al. [90]

propose to predict battery lifetime by using an online and offline calculation.

First, a reference discharge curve is derived from a one-time, full-cycle, volt-

age measurement of a constant load, and is suitably transformed to reduce

prediction complexity. Then, the forecasting is performed by mapping the

current discharging data on the reference curve, using linear fitting or Least

Squares methods.

An empirical approach to battery lifetime prediction is proposed in [91].

After analyzing a large dataset containing the discharging patterns of several

users and training a general model, they built a tool to predict smartphone

charge levels by classifying smartphone users based on the comparison of

their discharging patterns with those in the dataset.

2The work presented in this section was presented at IEEE GLOBECOM 2017 and
published in the conference proceedings [88].

39

CHAPTER 3. PREDICTION AND ANTICIPATORY NETWORKING

In [92], Rakhmatov et al. study the problem of battery discharge time

prediction from a theoretical point of view. Starting from the physical work-

ing principles of a lithium-ion electrochemical cell, a high-level model of the

battery is built. The discharging coefficients of the model are estimated by

simulation and statistical fitting of empirical data, and variable and constant

loads are taken into account to improve the estimate of the residual operating

lifetime of the device.

Most of the techniques mentioned above do not take individual users’

discharging patterns and personal behavior information into account, but

instead exploit the depletion discharging curve of a generic smartphone usage

or focus on a short-term prediction mainly employing low-level information.

Although current battery level and resource usage are fundamental to predict

the battery discharge time, we advocate that a much more reliable and long-

term estimation of the battery charge can be obtained by considering some

space-time features of the device usage patterns. Our model will be able

to capture time- and location-dependent user habits which can have a heavy

impact on the battery lifetime [73]. Moreover, it is highly scalable to different

types of devices and batteries and does not require manual tuning or reference

parameters, unlike [90] or [73].

3.2.2 Data analysis

In this section, we discuss the proposed estimation method, the dataset we

used and the selection of input and output parameters. Then, we explain the

preprocessing operations performed on the data to ease the learning task of

the NN.

Dataset and features The dataset from the LifeMap project [87] includes

a wide collection of mobility data that was gathered from the smartphones

of 6 graduate students from Yonsei University over 6 months. More specif-

ically, data about the battery level, position and connectivity level of each

smartphone were retrieved from the operating system and stored every 10

minutes. Data clearly span many charge and discharge cycles, but the bat-

40

3.2. PREDICTING BATTERY USAGE IN SMARTPHONES

tery charge reached a critically low level only on a few such cycles, since in

many occasions the smartphones were recharged during the day, before the

battery charge dropped below critical levels. Therefore, given this limitation

of the dataset, we rely on the expected lifetime of the battery, as we will

explain in the following paragraphs.

To design our predictor, we first need to identify the features, or input

parameters, that have to be extracted from the dataset, and the targets, or

output values, of the machine learning model. The choice of these parameters

is discussed in the following.

Target parameter Since our purpose is to predict the battery discharge

process over time, the output of the estimator should be a projection of the

residual lifetime of the device in the future. To build the training set for our

machine learning algorithm, hence, we need to find the (expected) residual

lifetime of the battery charge in each of the time instants of the discharge

phases where data were collected. For the discharge phases that end with a

non-negligible residual battery level, the expected depletion time is estimated

by linear extrapolation of the charge levels during that cycle. More specifi-

cally, let (t0, t1, . . . tn) be the set of sample times in a given discharge period,

and b(ti) be the value of the battery level (on a 0-100 scale) measured at time

ti, i = 0, 1, . . . , n. If we take the whole discharge cycle into consideration,

the expected depletion time is obtained as:

tdep = t0 − b(t0)
tn − t0

b(tn)− b(t0)
. (3.1)

Finally, the outputs yi used to train our prediction model are obtained for

each discharge cycle as

yi = tdep − ti, 0 ≤ i ≤ n . (3.2)

An example of this analysis is shown in Figure 3.7. We observe that

this estimate is more accurate when b(tn) is small, i.e., when the discharge

cycle ends with an almost complete discharge of the battery, which is quite

41

CHAPTER 3. PREDICTION AND ANTICIPATORY NETWORKING

10,000 20,000 30,000 40,000 50,000 60,000
0

20

40

60

80

100

System time [s]

B
a
tt
er
y
le
v
el

[%
]

Linear fit

Discharge cycle

Fig. 3.7: Example of battery discharge rate estimation.

common for modern devices [72]. The linear estimation of the depletion time

is a limit to the prediction accuracy, but the limit is inherent in the dataset.

Moreover, we observe that the estimate of the residual battery charge

duration is more accurate when it becomes more useful, i.e., when the battery

level is low.

Input features Our model considers multiple inputs in order to estimate

the remaining battery lifetime, namely:

• Battery level: the current status of the battery is clearly essential for

a meaningful prediction.

• Time of the day: this parameter is essential to allow the model to

learn and recognize specific battery usage patterns during the day. For

instance, a user may make a more intensive use of the smartphone while

resting in the evening, rather than during the day, or vice versa. To

capture these aspects, battery usage data need to be coupled with time

information.

42

3.2. PREDICTING BATTERY USAGE IN SMARTPHONES

• Day of the week: along the same rationale, this feature can make the

NN able to recognize patterns of battery usage that depend on the day

of the week. For example, sports activities regularly practiced during

the week may be associated to a lower usage of the smartphone (e.g.,

when left in the locker) or to a higher usage (e.g., due to activity-tracker

applications), depending on the user’s habits.

• Location: this feature can also discriminate different battery consump-

tion patterns, which are often correlated with the user’s location. The

dataset includes data regarding the user movements and labels for each

place that was visited. The locations are classified in 12 categories, such

as home, workplace, leisure place, and so on.

• Movement: finally, we consider a boolean feature indicating whether

the user is moving from one place to another or is static. This allows

us to identify activities typically performed by users while moving on

foot or with public transportation, e.g., phone calls or web browsing.

We advocate that such features should be sufficient to discriminate among

the specific usage patterns of the different users, thus making it possible to

customize the prediction engine.

Preprocessing To efficiently train the machine learning models, we first

need to preprocess the input data [93]. In particular, we standardize features

and outputs by removing the mean and scaling the amplitudes to get unit

variance. By doing so, the distribution of individual features is close to the

normal distribution with zero mean and unit variance.

The performance of these methods has been evaluated in terms of the

coefficient of determination R2, which is a very popular criterion to measure

the performance of statistical models [94]. Denoting by yi and ŷi the actual

and predicted values of the ith output, respectively, and by ȳ the mean of

the actual values, then the coefficient of determination is defined as

R2 = 1−
∑

i(yi − ŷi)2∑
i(yi − ȳ)2

. (3.3)

43

CHAPTER 3. PREDICTION AND ANTICIPATORY NETWORKING

Note that R2 ≤ 1 and the fraction gives the mean squared estimation

error over the variance of the outputs. A perfect predictor will yield R2 = 1,

while a “dummy” prediction that always returns the expected value of the

output, disregarding all inputs, would yield R2 = 0.

In our tests, a NN with at least one month’s worth of training data always

outperformed all other methods and thus turned out to be the most suitable

tool for battery discharge prediction. The parameters of the NN were chosen

by performing an exhaustive search in the parameter space; each setting

was evaluated by cross validation, and successive rounds refined the search

space until convergence. The explored parameters were the size and shape of

the hidden layers of the network, the activation function of hidden neurons

and the regularization parameter α. We always used the “L-BFGS” [95]

solver, an optimizer in the family of quasi-Newton methods, with 200 training

iterations. Table 3.2 shows some of the selected configurations; the identity

activation function is the simple f(x) = x, the logistic function is given by

f(x) = 1/(1 + e−x), and the Rectified Linear Unit (ReLU) is f(x) = x if

x > 0, f(x) = 0 otherwise.

We also report the R2 score on the training and validation sets. The

activation function and network structure strongly impact both the network

prediction performance and the time required to train the network. The time

Architecture α Time [s] R2 (val.) R2 (train)

(100, 100, 100, 100 - identity) 0.01 2.479 0.036 0.040
(300 - logistic) 1e-05 2.212 0.036 0.040
(100, 100, 100, 100 - logistic) 0.01 1.064 0.000 0.000
(300 - ReLU) 0.001 40.875 0.580 0.738
(100, 100, 100 - ReLU) 0.01 54.795 0.656 0.842
(100 - tanh) 0.01 17.947 0.568 0.699
(300 - tanh) 0.01 57.476 0.529 0.642
(100, 100, 100 - tanh) 0.01 76.726 0.754 0.853
(200, 150, 100, 50 - tanh) 0.12 111.439 0.806 0.904

Table 3.2: Performance of the NN for different parameter settings. The
architecture column contains the number of nodes in the hidden layers of the
NN and the activation function.

44

3.2. PREDICTING BATTERY USAGE IN SMARTPHONES

required to perform the prediction is not listed in the table, since it is always

lower than 100 µs.

We found that a distribution of the neurons across several layers allowed

the model to detect more complex battery usage patterns, yielding in general

better performance, as reported in Table 3.2. On the other hand, increas-

ing the number of neurons does not always have a positive impact on the

test score, and usually requires longer training phases (see rows 6 and 7 in

Table 3.2).

The model chosen after cross validation consists of a NN with 4 hidden

layers of 200, 150, 100 and 50 neurons each, respectively, shown in the last

row of Table 3.2. The best performing activation function was the hyperbolic

tangent function, i.e., f(x) = tanh(x). In order to avoid overfitting, the

regularization parameter α has been set to the quite high value of 0.12.

Data processing, model training and performance evaluation have been

carried out by using the Scikit-learn Python framework [96]. The test set

corresponds to 10% of the available data for each user.

3.2.3 Results

We compare our prediction model with a baseline method that is very similar

to the estimation that is adopted in today’s smartphones. This determinis-

tic method consists of taking the last 5 samples of the battery level history

and obtain a linear approximation of the discharge pattern via Least Squares

linear fit [90]. The linear approximation is then used to estimate the remain-

ing charge duration (basically, the same method we used to extrapolate the

charge lifetime in our training dataset). We also compare the performance of

our NN with SVMs, k-NN regression and Linear Regression using the same

input features and training/test sets. The plots shown in Figure 3.8 confirm

that, for all the 6 users of the considered dataset, the machine learning models

in general have better performance than the deterministic baseline method

and, among the considered machine learning techniques, the NN achieves the

best performance.

45

CHAPTER 3. PREDICTION AND ANTICIPATORY NETWORKING

20 40 60 80100120140
−0.5

0

0.5

1

Days of data used for training

R
2

20 40 60 80100120140
−0.5

0

0.5

1

Days of data used for training

R
2

20 40 60 80100120140
−0.5

0

0.5

1

Days of data used for training

R
2

20 40 60 80100120140
−0.5

0

0.5

1

ID= 4

Days of data used for training

R
2

20 40 60 80100120140
−0.5

0

0.5

1

Days of data used for training

R
2

KNN BaseFit

LinReg NN

SVM

20 40 60 80100120140
−0.5

0

0.5

1

ID= 4

Days of data used for training

R
2

Fig. 3.8: Comparison of the performance of several models by averaging
results from 20 random training/testing subsets.

Prediction performance and generalization The fully trained NNs

reached a mean coefficient of determination of 0.7835, with a peak of 0.8620

for a user whose dataset was particularly clean, with fairly regular battery

usage patterns.

As Figure 3.8 shows, the deterministic battery estimation paradigm is

inefficient, as it bases its prediction only on the recent battery history, with-

out considering more general patterns which can instead be accounted for by

using location and time-based information that is available at almost no cost

in every modern mobile device [97]. The clear advantage of such a model,

however, is that it does not require any training.

In order to test the generalization and discrimination capabilities of our

model, we trained the NN using the data of a single user and tested its

prediction performance on the data of any other user. The results of this

test are shown in Table 3.3, where each row reports the R2 obtained for the

different users when the network was trained with the data of the user in the

corresponding row. The last row reports the results obtained when training

46

3.2. PREDICTING BATTERY USAGE IN SMARTPHONES

the network with a mix of the data of all the users. It is clear that the

NN generally performs poorly if trained on a user and tested on a different

one, while the performance is good when training and test data are from the

same user3. Moreover, the low performance values reported in the last row

of the table confirm that our model must be trained only on personal data,

otherwise it cannot learn accurately a user’s personal patterns nor provide

reliable predictions. This proves that our model can learn a user’s behavior

properly but can hardly generalize to other users. In other words, the learnt

model is strictly personal and dependent on the user’s specific habits.

As a consequence, the model needs to be trained with local information

that can be collected only by the smartphone of each user, so that it is not

possible to pretrain the network and deploy it on a general device; the NN

must be trained while the device is being used by its owner and this process

requires some time, as discussed later. On the other hand, the NN does not

need to share information with other users or with service providers in order

to be trained or provide the prediction. Considering the growing concerns

for the user’s privacy in location-based services [98] and the decreasing will-

ingness of the users to share location information [99], these features of the

proposed approach are desirable.

Test user

ID 1 2 3 4 5 6

T
ra
in

u
se
r

1 0.643 -0.0733 -0.293 -2.130 -3.508 0.642

2 -0.268 0.645 -0.581 -4.083 -6.479 -0.048

3 -0.195 -0.074 0.687 -2.490 -3.865 0.514

4 -0.121 -0.068 -0.220 0.664 -3.173 0.714

5 -0.110 -0.067 -0.223 -1.715 0.703 0.729

6 -0.070 -0.101 -0.423 -0.335 0.670 0.761

All 0.308 0.371 -0.167 -4.693 -3.725 -0.711

Table 3.3: R2 values of NNs with about 3 months worth of training data.
Each column reports the results of the testing on a different user, while the
rows specify the user on which the training is performed. For the last row,
the training is carried out by mixing data from all six students.

3Disjoint portions of each dataset are used for training and testing.

47

CHAPTER 3. PREDICTION AND ANTICIPATORY NETWORKING

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

Student ID

R
2

Proposed model

3 samples

Home/Outside

No location

No location and movement

Fig. 3.9: R2 score and 95% confidence intervals on test sets of NNs with
different input vectors for every user (three months of training data).

Of course, during the training phase of the NN, the prediction of the

battery charge lifetime can be obtained with other approaches, in order to

guarantee the availability of the service to the user: when the training is

complete, the prediction will become more precise, being tailored to the

user’s habits.

Effect of incomplete input on the prediction Our input vector con-

sists of the current battery level, the time of the day, the day of the week, the

location of the user, and the motion information. In order to gain insights on

the relevance of the different input features on the prediction accuracy of the

NN, we considered other input vectors, namely a larger input vector obtained

by enriching the Proposed one with the last three samples of the battery level;

then a smaller input vector with a boolean value “home/outside” in place of

the full 12 location categories; then an input vector, named “No location”,

48

3.2. PREDICTING BATTERY USAGE IN SMARTPHONES

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

Student ID

R
2

Proposed model

3 samples

Home/Outside

No location

No location and movement

Fig. 3.10: R2 score and 95% confidence intervals on test sets of NNs with
different input vectors for every user (one month of training data).

without any location-based data; and finally an input vector without loca-

tion and movement data, called “No Location and movement.” Figures 3.9

and 3.10 show the R2 score obtained for the different test users and for each

of these input vectors, when considering one month (left-hand side plot) or

three months (right-hand side plot) of training data.

We observe that, with one month of training data, the location-based NNs

outperform the models with incomplete or no location data available for stu-

dents 2, 3 and 5, while for the other subjects the different input vectors

yield comparable results. However, with three months of training data, the

advantage of a location-based input vector becomes more evident for all the

subjects. Without location information, the “movement” feature becomes

useless or detrimental: if the NN has no information on users’ location, it

should just disregard movement information. We can also notice that, in

general, considering more than the last sample of battery level only brings

49

CHAPTER 3. PREDICTION AND ANTICIPATORY NETWORKING

Tra
inin

g it
era

tion
s

0
50

100
150

200
250

300

log(Number of neurons) 1.0
1.5

2.0
2.5

3.0

R
^
2
 sco

re

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 3.11: R2 metric for the NN as a function of model complexity, expressed
as the logarithm of the total number of neurons and the training time in
epochs.

small improvements in terms of R2. Furthermore, from the confidence inter-

vals in Figures 3.9 and 3.10 we can see that a larger amount of training data

improves the stability of the prediction and reduces its sensitivity to noisy

input data, as expected.

Computational complexity of the prediction Finally, we investigate

the impact on the R2 metric of the number of neurons and training iterations;

a network with 500 neurons is a good trade-off between computational com-

plexity and reliability of the model. Figure 3.11 shows the results of one of

our experiments. Note that with as few as 10 neurons and 100 training itera-

tions, the NN already outperforms the common predictors of mobile devices

that always yield negative R2 score during our experiments (see Figure 3.8).

However, increasing the size of the model makes it more robust to variations

and noise in the training step and improves its performance with respect to

the other ML algorithms we tested. On the other hand, the increased com-

putational costs of very large NNs have diminishing returns, as Figure 3.11

50

3.3. PREDICTING FUTURE CELL LOAD

clearly shows: the NN we used offers a good trade-off between prediction

accuracy and computational complexity.

The computational complexity of the model is reasonable. A training step

of 200 epochs on 144 points, that represent a day’s worth of collected data,

requires 2 seconds of CPU time for training and this can be easily performed

while a device is charging or may be relegated to a moment when the phone

is idle. A single evaluation of the remaining battery lifetime requires less

than 100 µs on a modern CPU, which makes this model highly portable.

Therefore, the proposed model can be used locally, on the users’ smartphone,

and does not need computational offloading on a remote server, confirming

its privacy-oriented character.

3.3 Predicting future cell load

Cell load is one of the most studied factors in the literature, and there are

several algorithms to predict it. The novelty of our work with respect to

previous studies is that we consider machine learning techniques that exploit

temporal and spatial data jointly: a cell’s future load depends not only on

its previous values, but also on the loads of neighboring cells. This joint

approach can improve the prediction accuracy, especially in the noisiest and

most challenging cases. We focus on medium-term prediction with a range

of tens of minutes; such a range is still usable for network optimization, but

is not as noisy and unpredictable as short-term cell load.4

3.3.1 State of the art

In the scientific literature, cell load prediction techniques are studied because

of the potential gain they can provide to the performance of the network

in a wide range of scenarios, such as energy efficient communications and

dynamic network planning. In [101] the authors propose to use prediction

techniques based on traffic matrices collected for groups of BSs under the

4The work presented in this section was presented at MOCAST 2017 and published in
the conference proceedings [100].

51

CHAPTER 3. PREDICTION AND ANTICIPATORY NETWORKING

same coordinator in order to optimize the sleeping time of network elements,

while in [102] a classification and prediction method is applied to temporal

information given by Call Data Records in order to decide when and where

it is appropriate to deploy femtocells. The spatio-temporal relation between

cells is analyzed in [103], where insights on the predictability of the traffic

in a cellular network are given; however, the authors do not attempt to

predict future values of the cell load, but use large-scale traffic patterns to

examine the correlation. The study in [104] uses traffic variations in cell

neighborhoods, using a Markov decision process model, in order to enable

energy saving techniques. There are other studies that consider the spatio-

temporal context in cellular networks, but their focus is on the prediction of

mobility of users [105,106]. These can be then exploited in association with

some knowledge of the network topology, as done in [107].

3.3.2 Spatio-temporal prediction

All the techniques we present are based on the exploitation of spatio-temporal

data, which was first proposed by Ohashi et al. [108]. In order to jointly

consider the spatial and temporal data, we need to define the concept of

spatio-temporal neighborhood. If a cell at a given instant is characterized by

its position in space and time, given by the vector (x, y, t), we define the

distance between two points as

di,j =

√(
xi − xj
d0

)2

+

(
yi − yj
d0

)2

+ α

(
ti − tj
T

)2

, (3.4)

where d0 is the inter-cell distance and T is the time interval between mea-

surements. Note that the spatio-temporal distance between different instants

is non-zero even if the cell is the same, i.e., the spatial distance is 0. The

parameter α ≥ 0 is a weighting factor to combine the spatial and temporal

measures.

The spatio-temporal neighborhood of a point m can then be defined as

the set of the discrete points in the dataset whose distance from m is smaller

52

3.3. PREDICTING FUTURE CELL LOAD

than some radius β:

Nβ
m = {p : dm,p < β} . (3.5)

The points belonging to the spatio-temporal neighborhood are contained in

an ellipsoid in space-time, and, given the same β, a smaller α includes in the

neighborhood points which are further away in time. The cell load values

zp of the points within the neighborhood can be used in the prediction. In

addition to the pure values, we also use as input a series of indicators that

capture some of the most relevant dynamics of the cell load, as in [108].

We implemented three indicators, which are listed below:

• The weighted mean is an average of the cell load values in the neigh-

borhood, weighted by their spatio-temporal distance, and is given by:

ω(Nβ
m) =

1

|Nβ
m|

∑
p∈Nβ

m

zp
dm,p

(3.6)

• The spread is the standard deviation of the cell load values in the

spatio-temporal neighborhood:

σ(Nβ
m) =

√ 1

|Nβ
m|

∑
p∈Nβ

m

(zp − z̄)2, (3.7)

where z̄ is the arithmetic mean of the cell load of all the points in the

neighborhood.

• The weighted tendency is given by the ratio between the weighted

means with two radii β1 < β2 (following [108], we choose β2 = β = 2β1):

τ(Nβ1,β2
m) =

ω(Nβ1
m)

ω(Nβ2
m)

. (3.8)

This indicator summarizes the trend of the cell load as it approaches

the target location. For example, if τ(Nβ1,β2
m) > 1, then the load on the

closest points in time and space is larger than that of farther points.

While in [108] the indicators are added to a purely temporal prediction,

53

CHAPTER 3. PREDICTION AND ANTICIPATORY NETWORKING

Fig. 3.12: Normalized average Internet usage map.

in our work we also use the cell load values of all the points in the spatio-

temporal neighborhood as predictors.

In this example, we tested the performance of all the algorithms described

in Section 2.1, except for Kalman filters: along with several regression tech-

niques, we used SVMs, RF and NNs.

3.3.3 Parameter optimization and results

All the prediction methods we described above were trained and tested using

the Telecom Italia Big Data Challenge 2014 dataset,5 which contains the

records of the Internet usage for a grid of square cells with 200 m sides –

which makes d0 = 200 m in (3.4) – in the city of Milan, Italy, for the last

two months of 2013. The data had a sampling period of 10 minutes, i.e.,

T = 600 s in (3.4). The normalized mean Internet usage is overlaid on a map

5https://dandelion.eu/datamine/open-big-data/

54

3.3. PREDICTING FUTURE CELL LOAD

of the city in Figure 3.12.

For computational reasons, we only predicted the load of a small but

representative subset of cells, namely, the cells with id 2583, 4241, 4856,

5060, 5091, 5259, 5262, 6065 and 7724. These cells were selected because

they are placed in different areas of the city and they show different traffic

patterns. In particular, cells 2583 and 4241 have an average traffic that is

close to the average traffic for the whole city, cells 5060, 5091 and 7724 show

very high peak usage, and cells 4856, 5259, 5262 and 6065 have a very high

average traffic.

The metric we chose for the results was the coefficient of determination

R2 [109], which has been described in Section 3.2.2.

Parameter optimization All the parameters of the prediction algorithms

were optimized by exhaustive search with 10-fold cross-validation, after di-

viding the dataset into training, validation and testing sets. The chosen

values of the parameters are listed in Table 3.4.

The values of the spatio-temporal weighting factor α and of the neigh-

borhood radius β were optimized for each cell and are listed in Table 3.5, for

a number of neighbors from 27 to 46.

Parameter Value Description

λR [1.637e-6, 0.074]∗ Ridge regularization parameter
λL [1e-06, 4.665e-6]∗ Lasso regularization parameter
λR,E [0, 1.105e-5]∗ Ridge regularization (elastic net)
λL,E [0, 4.665e-6]∗ Lasso regularization (elastic net)
C [0.22, 34.081]∗ SVR linear kernel penalization term
Nt 200 Number of RF trees
γ 10−3 NN learning rate
Niter 104 Maximum NN iterations
ε 10−10 NN convergence tolerance
∗These parameters were optimized for each cell.

Table 3.4: Parameters used in the simulation.

55

CHAPTER 3. PREDICTION AND ANTICIPATORY NETWORKING

2583 4241 4856 5060 5091 5259 5262 6065 7724

Cell id

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
2 Algorithms

Linear regression
Ridge
Lasso
Elastic net
Linear SVM
Random Forest
Neural Network

Fig. 3.13: Performance of the tested regression methods.

Prediction results Figure 3.13 shows the prediction accuracy on the test

set for each regression method. The figure clearly shows that the NN is not an

accurate method, probably due to an insufficient training set size, whereas the

other algorithms often have a similar performance. The reason is that the cell

load can be easily predicted in most cells, and therefore the differences among

different algorithms are minimal. On the other hand, in cells with poor pre-

diction accuracy different methods show some performance difference. This

reveals that, when the behavior of the load in a cell is less predictable, the

prediction performance can be improved using different algorithms and ad-

ditional context information. Indeed, the simple linear regression and ridge

regression have a slightly better performance in cells 2583, 4241 and 5091,

Cell id α β Number of neighbors

2583 0.25 2 27
4241, 4856 2.25 3 25
5060 0.09 2 46
5091 0.19 2 28
5259, 5262, 6065 0.12 2 37
7724 0.19 2 28

Table 3.5: Optimal neighborhood definition for each cell.

56

3.3. PREDICTING FUTURE CELL LOAD

Fig. 3.14: Performance of the prediction algorithms for different neighbor-
hood definitions.

which are all located in peripheral areas of the city, close to major traffic

roads or hubs (Via Gianbellino for cell 2583, the A1 highway for cell 4241,

and Linate airport for cell 5091). In locations like these, with high mobility

and bursty traffic, the benefit of combining spatial and temporal information

is intuitive, and the performance improvement can be seen in Figure 3.14.

While only temporal or spatial data are sufficient in the highly predictable

cells, the same 3 cells mentioned above show a marked improvement in the

R2 score when spatio-temporal data are considered jointly. Finally, the use

of temporal indicators does not result in a significant improvement by itself,

but only when combined with the spatio-temporal neighborhood data.

The most accurate prediction methods are also the simplest: both train-

ing and parameter optimization for the linear, ridge, lasso and elastic net

algorithms were significantly faster than for RF, SVR and NN. This offsets

the increased complexity due to the bigger size of the neighborhood caused

by the inclusion of the spatial dimension in its definition.

57

Chapter 4

A predictive approach to

providing Quality of Service

As we mentioned in Chapter 1, video content distribution is an application

which currently faces difficult challenges in providing services to mobile users:

live video conferencing already exists, but high resolution video services still

suffer from glitches and frozen screens in wireless networks. Another rapidly

developing application is AR, which is based on overlaying data and graph-

ics over a live video of the real world, allowing users to use smartphones or

headsets to access information seamlessly from the environment. Looking

further ahead, the visions of the Tactile Internet [110] and the Internet of

Skills [111] promise ultra-realistic immersive Virtual Reality (VR) telepres-

ence using phones and headsets.

Vehicular networking is another field that might greatly benefit from

faster, more reliable wireless connections: smart vehicles will soon need to

send three-dimensional maps of their environment to remote servers for pro-

cessing and receive the relevant safety commands with extremely tight delay

constraints, and autonomous cars and drones will need to communicate even

more to navigate the environment and coordinate with each other, e.g., using

video from multiple vehicles to be aware of things happening behind corners

and obstacles and avoid dangerous blind spots.

The problems these applications currently face are caused by three re-

59

CHAPTER 4. A PREDICTIVE APPROACH TO PROVIDING
QUALITY OF SERVICE

quirements common to all of them: they are throughput-intensive, they need

an extremely low end-to-end latency, and they require the data delivery to

be highly reliable. Although the network infrastructure will soon be able

to support capacity requirements, thanks to the densification of cellular net-

works and the adoption of mmWave technology in 5G and to the deployment

of WiGig [112], the usage of the Transmission Control Protocol (TCP) and

User Datagram Protocol (UDP) in the transport layer of the network stack

excludes the support of latency and reliability guarantees, even when using

new congestion control schemes such as Google’s Bottleneck Bandwidth and

Round-trip propagation time (BBR). The reason is that standard (TCP)

congestion control is almost always focused on maximizing throughput, with

a high self-inflicted queuing delay by design.

Full QoS control, including both throughput and latency, can not be

achieved without evolving from best-effort transmission of application data

to a delivery with pre-defined application-specific targets, defined in terms

of minimum throughput and maximum latency with a given reliability (e.g.,

receiving at least 95% of the packets with a delay of less than 50 ms). In

order to do that, we need to be able to consistently and correctly predict

the future conditions of an end-to-end channel, as well as exploiting multiple

paths to increase the reliability and overall capacity.

The inadequacy of current transport protocols is clear from a review of

the relevant literature: a recent measurement study on commercial video

conferencing systems [113] has shown that latency in video calls is unac-

ceptably high in most practical situations. A number of over the top solu-

tions [114,115] have tried to introduce coding and additional rate control at

the application layer to limit it, but the limits of these workarounds show

the urgent need for a transport layer solution designed to reliably provide

both high throughput and bounded delay. Most of the literature on AR

also shows the strong negative effect of delays over 200 ms on users’ per-

formance on simple tasks [116] and enjoyment of overlay applications [117].

The same considerations are common for both drones [118, 119] and smart

and autonomous vehicles [120,121], for whom the possibility to transmit po-

tentially large amounts of data with very strict latency requirements would

60

represent a significant safety improvement.

The ongoing virtualization of 4G cellular networks and the software-

defined 5G architecture are making the deployment of new protocols tech-

nically possible [122]. Network operators can place server-side and user-side

proxies that will implement such new transport protocols in a backward-

compatible manner. For example, in [123], the authors show how a user-side

proxy can be deployed in an unmodified user handset without any changes

to the operating system kernel by using standard Virtual Private Network

(VPN) framework. Such software-defined architectures enable flexible con-

trol of the trade-off between reliability, throughput and latency based on

application/user-specific inputs. The trade-off consists in the fact that given

a fixed latency, the requirement of a higher minimum rate implies a less re-

liable on-time data delivery, and vice versa. Increasing the latency target

allows the protocol to increase the achievable data rate without compromis-

ing communication reliability.

In this context, we present the Latency-controlled End-to-End Aggrega-

tion Protocol (LEAP), a multi-path transport-layer protocol that provides

end-to-end performance guarantees thanks to multiplexing parallel connec-

tions. LEAP is motivated by the fact that the multiple parallel connections

can be theoretically used to create a logical connection whose capacity is the

sum of the individual paths’, with no negative effects on latency [124, 125],

but the limitations of Multi-path TCP (MPTCP) (even with optimized con-

gestion control schemes such as the Balanced Link Adaptation (BALIA)

algorithm) make it unsuitable for this purpose. Standard smartphones are

already equipped with at least LTE and WiFi interfaces, and new 5G and

WiGig interfaces are expected to be added in the years to come. For back-

ward compatibility reasons, LEAP can operate over a single link, in which

case it still outperforms other latency-controlled protocols in terms of achiev-

able capacity.

More specifically, LEAP exploits multi-connectivity and network coding

to achieve this objective; a QoS-constrained data flow can be split into several

subflows delivered over multiple parallel connections, e.g., WiFi and LTE, or

WiGig and 5G in the near future. The send rate of each subflow is adap-

61

CHAPTER 4. A PREDICTIVE APPROACH TO PROVIDING
QUALITY OF SERVICE

tively controlled to avoid congestion (long queuing delays, more specifically)

and meet the required latency and reliability constraints. In addition, each

subflow carries redundant encoded information generated from payload data

of all parallel subflows: by adding the appropriate amount of redundancy,

excessively delayed or lost data on one subflow can recovered without the

need for retransmissions.

In order to determine the right amount of redundancy and avoid queu-

ing delay, LEAP pro-actively predicts the future QoS-constrained capacity

of each path. The forecasts are done in probabilistic terms to address the

stochastic nature of the transmission capacity of network paths, which is par-

ticularly volatile in case of wireless links: the more accurate the forecasting

algorithm, the higher the utilization of available channel capacity and the

lower the redundancy overhead. Congestion control is performed separately

on each path based on the forecast of future capacity, but the packets are

coded across paths.

Extensive measurements in live networks and comparisons to the legacy

protocols presented in Section 4.1 demonstrate that the proposed scheme can

efficiently balance the fundamental trade-off between the latency, throughput

and reliability requirements in a smooth and consistent manner over a wide

range of QoS constraints, giving a large operational flexibility to applications.

LEAP can be set up to work at different points in the trade-off, depending

on whether the first priority is throughput or latency control. In this way,

it is possible to create the illusion of a reliable connection with a guaranteed

bounded latency by combining several unreliable links. A similar scheme has

been studied in [126] for UDP-based video streaming, in a simple scenario

with a constant and known capacity and a known packet loss probability.

Salsify [127] is another video protocol that integrates a video codec with a

(single-path) transport protocol that guarantees a bounded latency in nor-

mal conditions; it is particularly significant because the integration between

application and transport layer is similar to what we aim to achieve.1

1The results presented in this chapter were presented at IEEE INFOCOM 2018 and
published in the conference proceedings [128], and an extended version of the conference
paper has been submitted to the IEEE Transactions on Networking. There is a pending
patent on the novel aspects of the protocol [129].

62

4.1. STATE OF THE ART

4.1 State of the art

Since the Internet’s inception, the main design goal of network protocols has

been throughput maximization, TCP being the prime example. Its conges-

tion avoidance mechanism uses buffer overflows at the bottleneck to infer

congestion and back off from its probing of the channel, exploiting most of

the available capacity. However, as the only signal of congestion is a buffer

overflow, TCP responds slowly to changes in the network and suffer from

high self-inflicted queuing delays and instability [130].

For example, the default version of TCP on Linux hosts is Cubic [131]:

its main benefit over previous iterations is that it achieves long-term fairness

even between flows with different Round Trip Times (RTTs), as its congestion

control function is not ACK-clocked. However, TCP Cubic suffers heavily

from bufferbloat and self-inflicted queuing delays, as it is entirely buffer-

based.

The inefficiency of loss-based congestion control has only been exacer-

bated by the progressive increase in the size of buffers in cellular networks.

Bufferbloat [132] is a well-studied phenomenon, and TCP queuing delays

can often be measured in seconds; naturally, this is not acceptable for the

future applications with very strict delay constraints we discussed in the

previous section. The presence of large buffers also leads to throughput in-

stability [133], and the deployment of Active Queue Management (AQM)

strategies, touted as the solution to the issue, has proven to be fraught with

complications [134]; later studies have also expressed doubts about perfor-

mance benefits [135].

4.1.1 Single-path latency-minimization protocols

One of the first attempts to enable TCP awareness to latency consists in

TCP Vegas [136]: instead of inferring congestion only when a packet gets

lost because of a buffer overflow, Vegas tries to keep its RTT close to the

minimum measured value. The Vegas congestion control mechanism is more

conservative than Cubic, as it infers congestion from increases in the RTT

and reduces its transmission rate before it builds up a significant queue.

63

CHAPTER 4. A PREDICTIVE APPROACH TO PROVIDING
QUALITY OF SERVICE

While Vegas arguably leads to a better QoS than Cubic or the traditional

TCP Reno, which are both buffer-based and capacity-oriented, it has never

been deployed on a large scale because of the unfairness problem [137]: since

Vegas flows react far earlier to congestion than TCP Reno or Cubic, their

throughput is disproportionately lower in shared channel. The fairness issue

is almost always the biggest obstacle to the deployment of less aggressive

protocols, as the ubiquity of buffer-based TCP versions gives any such scheme

an inherent disadvantage. Another issue is the dependence of the protocol on

the quality of the minimum RTT estimation [138]: if its estimate is incorrect,

the Vegas sender will behave suboptimally.

The BBR congestion control algorithm [139], developed by Google, is

another flavor of TCP that tries to keep right on the edge of congestion by

using increased delay as a congestion signal, periodically emptying the queue

and updating its estimate of the minimum RTT to mitigate the estimate

quality issue. BBR is more aggressive than Vegas, and can fairly share a

connection with Cubic flows. However, it cannot provide delay guarantees;

it also exhibits most of the other limitations of Vegas, with which it shares

the basic underlying principles.

Sprout [140] is a rate-based congestion control mechanism developed in

2013 by Winstein et al.; it uses a HMM to estimate the available capacity,

modeled as the rate of a Poisson process. By counting the received and ac-

knowledged bytes in a fixed slot, it can track the capacity of an unreliable

channel and transmit as much as possible without increasing its own trans-

Protocol Throughput Latency control Complexity Multi-path gain

TCP Cubic High Poor Low Low
TCP Vegas Low Good Low Low
MPTCP BALIA Medium Poor Low Medium
Sprout Low Good Medium Low
Verus High Good High Medium
BBR High Good Low Low
LEAP Adaptable Good Medium High

Table 4.1: Quick comparison of the considered protocols

64

4.1. STATE OF THE ART

mission delay. Sprout can be tuned to be more throughput-oriented or more

delay-oriented by changing the safety margin on the channel prediction. It

provides a reliable performance with high throughput and low delay, but it

requires a private buffer: if any other flow is queued in the same buffer as

the Sprout flow, it will yield almost a [141]ll the capacity to the newcomer.

Furthermore, based on our experiments, Sprout does not seem to be able to

efficiently track the capacity of real 802.11 links, even without cross traffic.

This limits its applicability with the ubiquitous WiFi technology.

Verus [142] is another low-delay congestion control protocol that explicitly

takes into account the bursty nature of wireless networks. Verus maintains

an estimate of the delay profile, i.e., the experienced relation between send

rate and transmission delay, which is used to forecast the channel capac-

ity. According to our empirical results, it can efficiently use the capacity of

802.11 channels, but it has two major issues: its strong reaction to packet

losses, and its computational complexity. The load Verus imposes on a sender

to build and maintain the delay profile at every packet acknowledgment is

probably untenable in an uplink scenario, and can still be severely taxing in

the downlink: our experiments, using a laptop with a 2014 Intel i7-4700QM

processor, show that the protocol requires one full core at 20 Mb/s and two

at 40 Mb/s, with a linear scaling factor. This makes Verus problematic for

high-throughput scenarios, since the delay profile is critical to its adaptation

mechanism.

Other congestion control algorithms have been developed over UDP, lim-

iting the application layer rate in order to avoid errors and exploiting the

well-known Real-time Transport Protocol (RTP) to send control information.

In 2011, Tos and Ayav developed a rate control algorithm [143] that tries to

keep the packet loss rate of an RTP flow constant using a Proportional-

Integral-Derivative (PID) controller. A similar more recent protocol [144]

based on source rate adaptation deals specifically with haptic feedback and

control, and it uses a TCP-like algorithm to adapt to congestion and limit

delay. However, these works do not explicitly consider latency, and they may

incur the same problems as TCP Cubic in terms of queuing delay.

65

CHAPTER 4. A PREDICTIVE APPROACH TO PROVIDING
QUALITY OF SERVICE

4.1.2 Multi-path aggregation protocols

In general, the above-mentioned protocols for single-path connectivity offer

by design best-effort services, as the unpredictability of the capacity offered

by network connections makes it difficult to support pre-defined QoS, partic-

ularly when wireless channels are involved. The multi-path scenario is even

more challenging due to the head-of-line blocking phenomenon [145] - any

outage or retransmission on any of the paths can negatively affect all the

other paths.

As a result, most current multi-path protocols inherit the best-effort

paradigm of their single-path predecessors (see Figure 4.13). Nevertheless,

intelligent techniques can be used to compensate for the head-of-line block-

ing problem and other issues related to multi-flow fairness. For example,

MPTCP [146] uses advanced schedulers such as BALIA [147] as well as cou-

pled [148] and semi-coupled [149] congestion control mechanisms to address

shared bottleneck scenarios.

To further improve latency, the problem of lengthy retransmissions must

be addressed, together with the high unreliability of multi-path sessions due

to wireless link heterogeneity [150]. MPTCP with Systematic Coding (SC-

MPTCP) is a hybrid solution [124] that uses Forward Error Correction (FEC)

to reconstruct missing packets in a MPTCP flow and avoid head-of-line block-

ing, operating on the multi-path level without changing the underlying TCP

congestion control mechanism. Other recent solutions [125,151] use different

coding schemes to achieve the same objective. While these solutions are able

to reduce the head-of-line blocking issue, they cannot change the fundamen-

tal nature of TCP: self-inflicted queuing can still cause an unacceptable delay

in the data transmission.

For a more thorough survey of the research on multi-path congestion

control and MPTCP, we refer the reader to [152]. A quick comparison of the

protocols considered in this section and their main strengths and weaknesses

is presented in Table 4.1.

66

4.2. THE LEAP PROTOCOL

Send rate

ACKs

Capacity of link 1

C
D
F

Send rate

ACKs

Capacity of link 2

C
D
F

Useful data rate

0.2

0.4

0.6

0.8

pe

Aggregated send rate
L
ink

1

L
in
k
2

2. Multi-path

aggregation

1. Sender-side

capacity forecast

from ACKs

4. Receiver feedback

3. Multi-path

encoding and

scheduling

Receiver

(path 2)

Receiver

(path 1)

System
atic packe

t encod
ing

Systematic packet encoding

Aggregated capacity of the two links

C
D
F

Information packets

Redundant packets

Fig. 4.1: Overview of the basic one-way cross-path coding (hosts can act
both as a sender and a receiver)

4.2 The LEAP protocol

The proposed protocol exploits multi-path data delivery and a redundant

data format to achieve reliable low-latency data transmission. More specif-

ically, the protocol transmits over each path at the highest achievable rate

associated with the pre-defined latency target. FECis used to compensate

any violations of the latency constraints such as a packet delay beyond the

application deadline due to channel fluctuations or estimation errors. The

basic idea of FEC is to send extra redundant packets that contain the infor-

mation necessary to retrieve any of the original packets that may be missing

or late, in order to avoid a lengthy retransmission and immediately send

the information to the application layer. In this work, we use packet-level

systematic coding, i.e., a code that sends the original packets first and then

appends a number of encoded ones to retrieve errors. Systematic codes are

functionally equivalent to other linear codes, but have the added benefit of

a lower complexity since most of the data will be retrieved without any de-

coding operations.

The basic assumption when designing the protocol is that an interactive

application in quasi-real time, such as low-latency live video streaming or

360°AR with fast switching of viewing angles, will write data to the socket at

regular intervals. The application needs to be adaptive, since the low latency

67

CHAPTER 4. A PREDICTIVE APPROACH TO PROVIDING
QUALITY OF SERVICE

threshold requires it not to exceed network bandwidth; applications with a

fixed throughput can be downgraded to best-effort service. LEAP can tell

the application what the predicted sustainable rate is, and the application

can scale down its sending rate (e.g., by using video compression). An ap-

plication that cannot adapt its sending rate will have to forgo its reliability

constraint, as no protocol can guarantee to send a fixed throughput with a

fixed maximum latency at a given probability in volatile network conditions;

these conditions are similar to the ones applied in [127] on a single path.

LEAP can replace both TCP and UDP: in case the application needs in-

order data delivery, a retransmission scheme can be added to cover the losses

that the coding is not able to recover from. If the application can tolerate

some missing information, LEAP simply delivers the information with the

given reliability; as of today, rate control in UDP is left to applications,

while our work would provide a reliable framework for them to work with,

allowing them to set their constraints and simply follow the rate indications

from the transport protocol. In both cases, the objective is to maximize

the throughput without violating the latency and reliability constraints: all

data packets should be delivered within the deadline T with a minimum

probability ps.

Although FEC has been explored as a way to reduce retransmissions on a

single path, with unsatisfactory results [153], the concept becomes radically

different on the multi-path level: encoding packets on a single paths only

protects the flow from errors, and increases the risk on congestion. If the

capacity of the path is unexpectedly low, the redundancy packets will do

nothing but slow down the transmission further. However, when a block of

packets is encoded across two or more paths the connection diversity factor

comes into play: as long as the paths do not share a bottleneck, any loss

of capacity on one flow can be recovered by a surplus on one of the others.

The presence of FEC packets still increases the overhead of the flow, but

it now serves the more important purpose of ensuring the timely delivery

of the data, instead of just protecting the flow from random packet losses.

However only time-critical data should be protected with FEC, in order to

avoid unnecessary congestion; best-effort traffic from activities such as web

68

4.2. THE LEAP PROTOCOL

browsing and bulk data transfer, which do not require strict latency bounds,

can be sent using a standard retransmission mechanism.

The logic of the protocol is schematically exemplified in Figure 4.1 for a

simpler two-path case:

1. After sending a batch of packets on each of the available paths in slot

n− 1, the sender receives acknowledgments from the receiver and uses

the feedback to estimate the unconstrained capacity of each end-to-end

channel in the next slot n; the details of this estimation process will be

clarified in Section 4.2.1, as LEAP operates in discrete time slots, un-

like most congestion control mechanisms. Because of the requirements

of block coding, packets are sent in discrete batches, which share a

common deadline (e.g., a video frame or a HyperText Transfer Proto-

col (HTTP) object). The natural way to estimate capacity is then on

a time slot basis, where the duration of a slot is equivalent to the dead-

line T . This requirement makes it hard to reuse existing congestion

control mechanisms, which are based on a fluid model and react poorly

to intermittent source traffic; for this reason, and because we need an

estimate not just of the instantaneous capacity but also of its distribu-

tion, we will design a new congestion control mechanism that fits our

requirements. The size of the next batch of packets on each path is

then determined, tracking the evolution of the unconstrained capacity

and estimating the probability distribution of the latency-constrained

capacity, i.e., the number of packets that can be received within the

deadline. This distribution is then used in step 2.

2. The distributions of all the available paths are aggregated into a multi-

path Cumulative Distribution Function (CDF), which can be used to

find the correct coding rate. The K original packets are encoded into

N packets, where N is the total batch size for all the aggregated paths.

The coding rate Rc = K
N

represents the efficiency of the channel uti-

lization, so that 1 − Rc is a measure of the coding overhead. Rc also

determines the strength of the coding, i.e., how many losses can be

tolerated while still recovering the original K packets. In our case, the

69

CHAPTER 4. A PREDICTIVE APPROACH TO PROVIDING
QUALITY OF SERVICE

coding rate is determined by the required reliability threshold ps (set to

90% in Figure 4.1) or, equivalently, by the error probability pe = 1−ps.

3. In the third step, the packets are encoded using a systematic packet-

level code, and the coded packets are scheduled and sent over the avail-

able paths. The inter-packet interval is computed as a function of the

batch size in order to ensure capacity allocation fairness between dif-

ferent hosts.

4. Finally, the receiver gets the packets and periodically sends acknowl-

edgment packets, which are then used by the sender to refine the path

distribution estimates and begin the cycle anew. If the receiver sus-

pects that any losses might be due to causes other than congestion, it

can report that to the sender explicitly.

The four phases can be implemented independently, as long as their func-

tions are the ones stated above; it is even possible to recycle the TCP

decision-making logic and signaling in phases 3 and 4. We now present a

more detailed description of our implementation, with a discussion of each

phase.

4.2.1 Congestion control on a single path

In the first phase of the protocol logic, we need an estimate of the capacity

of each path, along with a congestion control mechanism that can avoid

overshooting the path capacity and maximize the packets delivered within

the deadline T . In our discrete-time model, packets are sent in batches; the

sender transmits si(n) packets on path i during slot n2. If we assume a

minimum RTT τ < T and that the slot begins at time t, the sender will

receive feedback starting from time t + τ . Since FEC works well for tight

deadlines but it adds redundancy, if the RTT is lower than T/2, we may

simply fall back to retransmissions.

2From here on, we will omit the slot number from the notation whenever possible to
improve readability

70

4.2. THE LEAP PROTOCOL

S

R

S

Send burst si(n) si(n+ 1)

ai(n) ui(n) li(n) qi(n) ai(n+ 1) ui(n+ 1)

ACKs late ACKs ACKs

τ/2 τ/2

τ/2 τ/2 τ/2 τ/2

Fig. 4.2: Schematic of the reception of a packet batch

We denote by di ≤ si the number of packets delivered within the deadline,

i.e., before time t+ T . Out of these di packets, we indicate by ai and ui the

number of packets that are acknowledged and unacknowledged, respectively,

by the time t + T , so that di = ai + ui. The reception and acknowledgment

of packets is shown in Figure 4.2, where ai is indicated in green and ui in

yellow.

A number li = si − di of packets will be delivered to the receiver in the

next time interval τ/2 (orange in Figure 4.2), but a certain number qi may

still be in flight when the next batch of packets arrives to the bottleneck (red

in Figure 4.2), thus causing a delay its delivery.

Most versions of TCP, including New Reno, Cubic and Vegas, react very

strongly to losses [154], as it considers them to be always due to congestion;

the consequent decrease in the sending rate makes it underestimate the ca-

pacity of links with high losses at the lower layers. LEAP does not explicitly

consider lost packets, as it works on a tight deadline: in most practical sce-

narios, the deadline is too short to completely fill the buffer at the bottleneck

and experience losses because of congestion. For this reason, if we have a loss

in the middle of the flow, with packets before and after it arriving before the

deadline, lower layer factors are the most likely culprits: if routers implement

sensible queuing policy, we would expect to see a significant increase in the

delay of the packets before any congestion loss, and any packets after the loss

would definitely arrive after our deadline. Since we do not want lower layer

losses to impact our sending rate, we can disregard any losses in the middle

of the flow (i.e., with packets before and after the lost one arriving within

the deadline) to be, considering only losses at the end of the flow (i.e., with

71

CHAPTER 4. A PREDICTIVE APPROACH TO PROVIDING
QUALITY OF SERVICE

no packets with a higher index arriving within the deadline). The number

of masked losses ei(n) is included in the ACK packets, and the sender can

decide what to do with them: aggressive senders can mask them entirely,

while more conservative ones can mask them partially, weighting the number

of masked packets by a factor λ ∈ [0, 1]. The value λ = 0 corresponds to the

standard TCP practice of considering every loss as a congestion event. Each

ACK packet contains three fields: the number of acknowledged packets in

the current batch ai(n), the number of late or missing packets ei(n), and a

timestamp. The capacity estimate Ci(n) is then given by:

Ci(n) =
ai(n) + λei(n)

T − τ
. (4.1)

This instantaneous estimate of the capacity can be extremely noisy, since

quick fluctuations in the channel can have strong effect on it; in order to

get a reliable estimate of the capacity, we need a filter to remove noise and

track the capacity evolution effectively. For this purpose, LEAP uses an

adaptive Kalman filter [52] (see Section 2.1.6), which is updated after each

deadline T and is based on the feedback Ci(n) returned by the receiver at

the end of the slot. The Kalman filter is not necessarily the most precise

way to track the path capacity, but it has three important properties that

make it a good fit for the purpose: (i) it is computationally light, avoiding

the issues of more complex estimators like the Verus delay profile, and fully

general and independent of the features of each link in the path; (ii), it

returns a probabilistic estimate by design, and that estimate can be used

directly in the multi-path block; and (iii), it is entirely transparent to the

lower layers, requiring no cross-layer information. Cross-layer mechanisms

would improve performance, but they would need to be adapted to each

individual technology and, as such, are reserved for future study. In order

to apply the Kalman theory, we consider the following update equations for

the estimate µc,i(n) of the path capacity and for the feedback process:

µc,i(n+ 1) = µc,i(n) + wi(n) (4.2)

Ci(n) =
µc,i(n) + vi(n)

T
, (4.3)

72

4.2. THE LEAP PROTOCOL

where w and v are two independent white Gaussian processes with zero

mean and variance Qi and Ri, respectively. The process noise wi tracks

permanent changes such as user mobility and long-term cross-traffic, while

the measurement noise v models temporary disturbances such as short-lived

cross-traffic flows and the fast fading of the wireless channel. The input to

the Congestion Kalman Filter (CKF) is Ci(n), as defined in (4.1), multiplied

by the slot duration T to obtain an estimate of the distribution of ri(n). The

output of the CKF is a probability distribution, described by its mean µc,i(n)

and its standard deviation σc,i(n) (the variance of the output of the filter is

simply Qi +Ri).

The traditional Kalman filter assumes perfect knowledge of Qi and Ri,

while we track and adapt them dynamically. Since they are not known a

priori in our case, and they may vary over time as the network environment

changes, we use the Least Squares method to estimate them from the estimate

error signal’s autocorrelation as in [55].

In order for the bottleneck buffer to be stable, the sender cannot transmit

at a rate higher than the capacity of the channel. The batch size si(n + 1)

is then effectively limited by the mean µc,i(n), as it is the best estimate of

the capacity. In order to control the aggressiveness and fluctuations of the

send batch size around the estimated link capacity mean, the actual batch

size can be set to a smaller value:

si(n+ 1) = µc,i(n)− ασc,i(n), (4.4)

where α is a parameter that controls the aggressiveness of the protocol and

can be adjusted dynamically. The use of a non-zero α can help avoid unstable

behavior caused by frequently overshooting the available capacity, and future

work will include a thorough examination of its effects in different network

scenarios.

Since the estimation mechanism needs at least a few packets to avoid

excessive fluctuations, a minimum of smin packets will always be transmitted

in each slot, irrespective of the estimated capacity; this is equivalent to a

baseline link probing in order to get an accurate estimate of the capacity.

73

CHAPTER 4. A PREDICTIVE APPROACH TO PROVIDING
QUALITY OF SERVICE

The use of a Kalman filter and cumulative acknowledgments is not manda-

tory for the protocol, but its performance in a real setting was satisfactory,

as discussed in Section 4.3.2. A possible alternative is to simply recycle

TCP’s congestion control logic and signaling: packets are sent over multiple

single-path TCP connections, and the coding rate is calculated according to

the estimated distribution of the available constrained capacity. In this case,

the benefit would be limited, as TCP’s queuing delay issues would still limit

LEAP’s ability to deliver data within the deadline, but its implementation

is possible even when a user-side proxy [123] is not available.

4.2.2 Integrating single-path congestion control and

multi-path coding

In order to avoid fluctuations and separate the estimate of the capacity Ci(n)

from the estimate of the number of delivered packets di(n), LEAP uses a

second Kalman filter, called Delivery Kalman Filter (DKF), to estimate the

path’s delivery CDF. The value of di(n) is still unknown to the sender at the

end of slot n, as Figure 4.2 shows: only ai(n) packets have been acknowledged,

while di(n) = ai(n) + ui(n) packets were delivered on time. For this reason,

the DKF is temporarily updated with an estimated value, given by:

d̂i(n) = ai(n) +
τ

2
µc,i(n). (4.5)

The mean µd,i(n) and standard deviation σd,i(n) of the DKF after this tem-

porary update are used in (4.9) to decide the coding rate for slot n + 1, as

they are the best available estimate of the CDF of the number of packets

that can be transmitted successfully on path i at that moment.

The state of the DKF before the temporary update is saved and updated
τ
2
seconds after the end of slot n, i.e., when a new ACK containing the value

of ui(n) has also been received. As all the ACKs for the di(n) packets have

arrived by that time, the real value of di(n) is used to update the state of

the DKF for the next slot.

There is another trade-off to consider in the design of the acknowledgment

74

4.2. THE LEAP PROTOCOL

+ ×

T

Congestion
Kalman
Filter

×
+

+

−

×

+

Multi-path
Encoder

α

Delivery
Kalman
Filter

ei(n)

ai(n) d̂i(n)

τ
2

ai(n)

si(n+ 1)
Ci(n) r̂i(n)

µc,i(n)

σc,i(n)

µd,i(n) σd,i(n)

Fig. 4.3: Block diagram of the sender congestion control logic, implementing
(4.2), (4.3) and (4.5)

mechanism: while retransmission-based protocol need an explicit confirma-

tion of the reception of each packet, LEAP can just transmit one ACK packet

very TACK seconds. A higher ACK frequency will reduce the error in the es-

timate of d̂i(n), but with a higher impact on the uplink channel, although

still lower than TCP’s. Acknowledgment packets might even be aggregated

and sent on a single path (if possible, one with a scheduled medium access

scheme), but we leave this to future research.

A complete schematic of the congestion control mechanism for LEAP

is depicted in Figure 4.3; the delayed update of the DKF is not shown for

simplicity.

4.2.3 Aggregating flows through coding

In our design, the multi-path scheduler decides the coding rate Rc for the

given channel capacity estimates to ensure the reliable delivery with a maxi-

mum failure rate of pe. LEAP models the capacity of each path as a random

variable.

If the sender transmits si packets on path i in slot n, and the path’s

capacity is modeled as a random value ri with a given probability distribution

with mean µd,i and variance σ2
d,i, the number di of packets delivered within

the deadline is given by:

di = max(0,min(si, ri)), i ∈ {1, 2, . . . ,m}. (4.6)

75

CHAPTER 4. A PREDICTIVE APPROACH TO PROVIDING
QUALITY OF SERVICE

Notice that the distribution of the capacity might admit negative capacity

values, which are clearly unrealistic in practical settings. For ease of model-

ing, we overlook this incongruence (which generally has negligible probability

to occur). However, according to (4.6), di is always non negative. The distri-

bution of ri is depicted in step 1 of Figure 4.1. The probability of delivering

di packets on path i given that the transmitted batch size was of si > 0

packets is then given by:

P (di|si) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 di < 0

0 di > si

Pd,i (1) di = 0

1− Pd,i (si + 1) di = si

Pd,i (di + 1)− Pd,i (di) otherwise

, (4.7)

where Pd,i(x) is the CDF of the capacity distribution with mean µd,i and

variance σ2
d,i [155].

If we assume that the receiver is able to decode the batch if it receives

at least K of the N =
∑m

i=1 si packets, and that the capacity of each path

is independent from the others’, the probability ps of successfully decoding

the batch within the deadline for a multi-path transmission with m paths is

given by:

ps = P

(
m∑
i=1

di ≥ K

⏐⏐⏐⏐ m∑
i=1

si = N

)
(4.8)

ps =

s1∑
d1=0

. . .
sm∑

dm=0

m∏
i=1

P (di|si)H

(
m∑
i=1

di −K

)
, (4.9)

where H(x) is the Heaviside step function. This calculation is step 2 of the

protocol schematic in Figure 4.1.

The value of ps is hard to compute in the general case, but numerical

solutions can be computed efficiently [156, 157] if we assume that capacity

is Gaussian; since the output of the Kalman filter is a mean and variance,

it would completely describe a normally distributed capacity. This channel

76

4.2. THE LEAP PROTOCOL

model is not perfectly realistic, as discussed in Section 4.3.2, but it is a

good enough approximation which simplifies our calculations significantly.

In Section 4.2.5, we provide an efficient method for calculating it in the two-

path Gaussian case, which can be extended to three or more paths.

4.2.4 Scheduling and retransmission

In order to receive as many packets as possible within the deadline, the

packets are sent at the beginning of each slot with a constant rate Rs. The

sending rate is calculated as:

Rs =
T

2si(n)

(
1− 1

log(si(n))

)
. (4.10)

If we consider a minimum sending window of 10 packets, 1− 1
log(si(n))

is always

positive; setting a different minimum rate would require setting a minimum

value or changing the base of the logarithm. The packets are sent in the

first half of the slot, i.e., over a total time of T/2, and the logarithmic factor

helps new clients increase their sending rate and get a fair share of the channel

capacity: the packets of the new flows will likely fill in the space between

the packets of the on-going flows that, in turn, will estimate a lower capacity

and make room for the newcomers in the next slots.

Finally, we consider the failure case of the multi-path coding: retrans-

mission. Unlike traditional TCP-based protocols, LEAP is not designed to

retransmit packets often: since the coding rate adaptation takes them into

account, most of the losses should be recovered using the redundant packets,

and even late batches are just transmitted with a higher latency most of the

time.

However, in cases of sudden and total link outage (caused by, e.g., a

handover or a burst of cross-traffic), the coding might not be enough to

recover all the lost packets; if batch n (transmitted at time t) suffers from an

unrecoverable loss, the sender needs to wait until the end of the next slot (i.e,

time t + 2T) to avoid useless retransmissions. If batch n still has not been

acknowledged by this time, the sender should include the missing packets at

77

CHAPTER 4. A PREDICTIVE APPROACH TO PROVIDING
QUALITY OF SERVICE

the beginning of batch n + 2. In this way, any information packet whose

reception is delayed more than 2T − τ
2
is considered lost, and retransmitted

if it cannot be recovered using the redundancy. As the retransmission is

part of a standard batch, the retransmitted packets have all the protection

of the redundant multi-path transmission, and there is no requirement to

retransmit packets on the same path they were originally sent through.

LEAP’s congestion control mechanism does not inherently require re-

transmissions, and applications that can deal with missing data in the stream

(e.g., UDP-based applications which discard any late data and just rely on

new measurements without filling the gap) can simply not use this protocol

option.

4.2.5 Computation of the combined capacity in the

two-path Gaussian case

As we mentioned in Section 4.2.3, the combined capacity in the two-path case

can be computed more efficiently under some assumptions; we now derive its

CDF exploiting some properties of Gaussian random variables. We assume

that we have two paths, whose capacity is distributed as two doubly censored

Gaussian random variables. The CDF of a doubly censored Gaussian random

variable, identified by the mean µ and variance σ of its uncensored version

and by its limits a and b is expressed as:

P (X ≤ x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 x < a

Q
(
x−µ
σ

)
a ≤ x < b

1 x ≥ b

. (4.11)

In order to compute the sum of two doubly censored Gaussian random

variables, we need to introduce the doubly truncated Gaussian random vari-

78

4.2. THE LEAP PROTOCOL

able with limits a and b, whose CDF is given by:

P (X ≤ x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 x < a
Q(x−µ

σ)−Q(a−µ
σ)

Q(b−µ
σ)−Q(a−µ

σ)
a ≤ x < b

1 x ≥ b

. (4.12)

In our case, the inferior limit of both distributions is 0, as capacity is

inherently non-negative, and the superior limit for path i is the amount of

sent packets si. From now on, we indicate the value of Q
(

x−µi

σi

)
as Qi(x)

to make the notation lighter. The probability distribution of the overall

capacity D is then given by the sum of the capacities of the two paths, which

can be computed as a piecewise function. To reduce the number of cases, we

assume that s1 ≤ s2, but the computation in the other case is identical. We

define the two random variables as D1 and D2.

Sum of two doubly truncated Gaussian random variables The Prob-

ability Distribution Function (PDF) of the sum of two doubly truncated

Gaussian random variables T1 and T2 is not simple, but it can be computed in

this way. First, we define φa(x) as the aggregated PDF of the non-truncated

Gaussian variables for the two flows:

φa(x) =
e
− (x−µ1−µ2)

2

2(σ2
1+σ2

2)√
2π(σ2

1 + σ2
2)
. (4.13)

Then, we define the scaling factor F ([s1, s2]) that rescales the two doubly

truncated Gaussian variables:

F ([s1, s2]) = (Q1(s1)−Q1(0))(Q2(s2)−Q2(0)) (4.14)

79

CHAPTER 4. A PREDICTIVE APPROACH TO PROVIDING
QUALITY OF SERVICE

We performed a symbolic integration to find the actual PDF, which we will

define with the aid of four auxiliary functions:

g1(d) = Q

(
(d− µ2)σ

2
1 + µ1σ

2
2

σ1σ2
√
σ2
1 + σ2

2

)
(4.15)

g2(d) = Q

(
(µ1 − d)σ2

2 − µ2σ
2
1

σ1σ2
√
σ2
1 + σ2

2

)
(4.16)

g3(d) = Q

(
(d− s1 − µ2)σ

2
1 − (µ1 − s1)σ2

2

σ1σ2
√
σ2
1 + σ2

2

)
(4.17)

g4(d) = Q

(
(s2 − µ2)σ

2
1 + (−d+ s2 + µ1)σ

2
2

σ1σ2
√
σ2
1 + σ2

2

)
. (4.18)

Then, we can distinguish three cases. If the value d is between 0 and s1, the

PDF is given by:

r(d, [s1, s2]) =
2ϕa(d)

F ([s1, s2])
[g1(d)− g2(d)] (4.19)

If the value d is between s1 and s2, the PDF is given by:

r(d, [s1, s2]) =
2ϕa(d)

F ([s1, s2])
[g3(d)− g2(d)] (4.20)

If the value d is larger than s2, the PDF is given by:

r(d, [s1, s2]) =
2ϕa(d)

F ([s1, s2])
[g3(d)− g4(d)] (4.21)

The computation of the CDF R(d, [s1, s2]), which is needed to calcu-

late the CDF of the capacity, can only be performed numerically, but it is

considerably more efficient than computing the whole capacity distribution

numerically or by Monte Carlo.

Computation of the combined capacity CDF We can compute the

combined CDF by distinguishing between three different intervals of d.

80

4.2. THE LEAP PROTOCOL

Case 1: 0 ≤ d ≤ s1 If the examined value d is lower than s1, we can

distinguish two cases:

• One of the two paths (or both) has a capacity Di ≥ d

• None of the two paths have a capacity higher than d, and neither of

the paths has a capacity Di = 0

The probability of the first case is simply given by the joint probability of

the two events D1 > d and D2 > d:

Pa = Q1(d) +Q2(d)−Q1(d)Q2(d). (4.22)

The second case is slightly more complex, as the probability can be considered

as the sum of two doubly truncated Gaussians, both limited to the interval

[0, d], rescaled to ensure that the overall probability sums to one.

Pb = Q1(0)Q2(0)(1−Q1(d))(1−Q2(d))R(d, [d, d]). (4.23)

The overall probability is given by the joint probability of the two disjoint

cases, so it is simply:

P (D ≤ d) = Pa + Pb. (4.24)

Case 2: s1 < d ≤ s2 If the examined value d is between s1 and s2, the two

cases change slightly:

Pa =Q2(d)−Q1(s1)Q2(d) (4.25)

Pb =Q1(s1)Q2(d− s1) +Q1(0)Q2(0)(1−Q1(s1))(1−Q2(d))R(d, [s1, d]).

(4.26)

In both cases, the limit of the first path is no longer d, but s1, and the

gap must be covered by the second path, hence the additional term in Pb;

however, the derivation is mostly the same.

81

CHAPTER 4. A PREDICTIVE APPROACH TO PROVIDING
QUALITY OF SERVICE

Case 3: s1 ≤ s2 < d In this case, d is larger than s1 and s2, and one single

path cannot cover the whole required capacity any longer:

Pa = 0 (4.27)

Pb = Q1(0)Q2(0)(1−Q1(s1))(1−Q2(s2))R(d, [s1, s2])

+Q1(s1)Q2(d− s1) +Q1(d− s2)Q2(s2)−Q1(s1)Q2(s2).
(4.28)

4.2.6 Implementation considerations

The ossification of the transport layer is largely due to deployment issues:

since protocols need to be implemented in the OS kernel, the adoption of new

protocols requires a very broad consensus, and middleboxes often discard any

packet that does not match any of the well-known transport protocols. How-

ever, recent proposals such as the Quick UDP Internet Connections (QUIC)

protocol [153] avoided this problem by working entirely in user-space and tun-

neling over a UDP socket. Our implementation of LEAP exploits the same

principle, tunneling traffic through a local VPN [123] and adding its headers

to the payload of a UDP packet, which is then sent over the appropriate

connection. The Linux implementation in user space can exploit optimized

libraries for the encoding and decoding, and its computational load is very

light.

The necessary fields in a LEAP header are limited to 12 bytes, as shown

in Figure 4.4: the maximum size of a batch in this version of the protocol is

65536 packets, which corresponds to a maximum supported data rate of 7.65

Gb/s with a 100 ms deadline and a maximum packet size of 1500 bytes. The

“options” field can be used to extend the header, but this would increase

the header size and, consequently, the protocol overhead. At the moment

the total size of the header, combined with the UDP standard header, is 20

bytes, which is exactly the same size as a standard TCP header.

82

4.3. EXPERIMENTAL RESULTS

0 8 16 24 32

Batch index i (32 bits)

Batch size Ni(16 bits) Packet index j (16 bits)

Information packets Ki (16 bits) Options (16 bits)

Fig. 4.4: Contents of a LEAP header

4.3 Experimental results

The LEAP protocol was evaluated against and compared to Sprout, Versus,

TCP Vegas and TCP Cubic, which are described in Section 4.1, both in

terms of single-path congestion control performance and of multi-path reli-

ability and throughput. The protocols were tested with one and two clients

connecting through the downlink to a Linux server, which acted as a source

of traffic. The server was a Debian x64 system running the standard 3.16

kernel, with TCP Vegas, Cubic and BBR; the implementations of Sprout and

Verus were downloaded from the repositories provided by the authors. We

set up live experiments in the following three scenarios.

Ethernet In the first scenario, the shared bottleneck connection was lim-

ited to 30 Mb/s using the NetEm [158] Linux utility, which was also used to

set the minimum RTT τ to 50 ms. The cross-traffic had an average rate

of 10 Mb/s, and was sent over UDP following a packet trace. The sending

rate variations were Gaussian, with zero mean and a standard deviation of

2 Mb/s every 50 ms. There was an additional noise that was changed every

20 ms, with a standard deviation of 5 Mb/s.

802.11n The client was connected to the server through an 802.11n con-

nection; the client was set at approximately 5 meters from an Apple Airport

Plus access point, connected to the server by an Ethernet 100 Mb/s cable.

In this scenario, there was no controlled cross-traffic, since the abundance

of cross-traffic from more than a dozen other interfering networks on the 2.4

GHz band in the office environment proved to be challenging enough. Like

in the first scenario, NetEm was used to bring the minimum RTT to 25 ms.

83

CHAPTER 4. A PREDICTIVE APPROACH TO PROVIDING
QUALITY OF SERVICE

LTE A single client was connected to the server through a commercial

LTE service in Ireland. Since the minimum measured RTT was 55 ms, we

increased the deadline for this scenario to 100 ms for all protocols. In this

case, we did not inject any cross-traffic, since the normal background traffic

on the LTE access network proved to be challenging enough.

4.3.1 Combining the traces

In order to be independent of the scheduler, which can significantly affect

the throughput and latency of MPTCP flows [159], we evaluated most of the

protocols using an idealized scheduler over single-path traces. First, we gath-

ered packet traces for all protocols running in single-path mode. Then, we

simulated a multi-path flow combining two of the traces. By simply looking

at the send times of the packet and the corresponding acknowledgments, we

were able to measure the equivalent delay of each packet and calculate the

aggregated throughput.

This procedure is equivalent to using a simple round-robin scheduler and

an uncoupled congestion control, but with an infinite receiver buffer: by

joining two separate single-path traces, we avoid any head-of-line blocking

issues. For this reason, the multi-path performance of the protocols is an ide-

alized upper bound to the actual performance that can be achieved, except

for LEAP; since LEAP is free from the head-of-line blocking issue, its perfor-

mance is the same in a real multi-path environment, and this was confirmed

empirically.

However, comparing idealized versions of the protocols would not be a

meaningful performance comparison; for this reason, we added MPTCP Cu-

bic (with uncoupled congestion control) and MPTCP BALIA [147] to the

multi-path results. As the results show, both real MPTCP implementations

perform worse than the ideal version.

4.3.2 Single-path congestion control

Over a single path, the difference between capacity- and latency-oriented

protocols are evident: while TCP Cubic has a high throughput but a poor

84

4.3. EXPERIMENTAL RESULTS

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Throughput (Mb/s)

C
D
F

TCP Cubic

TCP Vegas

Sprout

Verus

LEAP

Fig. 4.5: Single-path congestion control evaluation: CDF of the raw uncon-
strained sending rate [Ethernet scenario with controlled UDP cross-traffic]

latency performance, latency-oriented protocols have a slightly lower raw

throughput but a far lower latency. Without the multi-path aggregation,

LEAP behaves much like other latency-oriented protocols such as TCP Vegas.

Figure 4.5 shows the CDF of the raw throughput of each protocol in the

controlled Ethernet experiment. Somewhat expectedly, TCP Cubic has the

largest raw throughput, but the difference between the protocols is barely

Algorithm Parameter Value

Sprout Tick duration 20 ms
Deadline 100 ms
HMM states 256
Maximum throughput 40 Mb/s

Verus K 2

LEAP α 0.5
λ 1
T 100 ms
TACK 5 ms
smin 10

Table 4.2: Adaptation algorithm parameters

85

CHAPTER 4. A PREDICTIVE APPROACH TO PROVIDING
QUALITY OF SERVICE

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Throughput (Mb/s)

C
D
F

TCP Cubic

TCP Vegas

Sprout

Verus

LEAP

Fig. 4.6: Single-path congestion control evaluation: CDF of the latency-
constrained sending rate [Ethernet scenario with controlled UDP cross-traffic]

perceivable: in this relatively controlled scenario, all the protocols manage

to exploit the available capacity fairly well. When we consider the low-

latency throughput, i.e., the throughput delivered within the deadline of

50 ms, whose CDF is shown in Figure 4.6, Cubic’s queuing problem becomes

evident: almost all packets are delivered beyond the deadline. Sprout shows

the best performance in this setting, but all the other delay-based algorithms

show little difference: Verus tends to have a higher capacity but with a

higher variance, while LEAP’s CDF curve is steeper, which indicates a more

constant throughput.

Fairness is another key performance index for a transport protocol, which

Algorithm Average Jain Fairness Index (JFI) Relative goodput

LEAP 0.996 1.010
TCP Cubic 0.818 0.997
TCP Vegas 0.894 0.965
Verus 0.889 0.897
Sprout 0.514 0.006

Table 4.3: Performance of the protocols in the Ethernet scenario with two
competing clients

86

4.3. EXPERIMENTAL RESULTS

−2 −1 0 1 2 3 4
0

5

10

15

20

25

Time (s)

T
h
ro
u
gh

p
u
t
(M

b
/s
)

LEAP flow 1

LEAP flow 2

Fig. 4.7: Single-path congestion control evaluation: convergence of the band-
width allocation between two flows

should be able to guarantee that two flows share a bottleneck link fairly. In

order to test this, we performed a test in the Ethernet scenario, comparing all

protocols and calculating the JFI after convergence, as well as the relative

goodput. The latter is simply the total throughput of the two competing

flows, normalized by the throughput of a single flow operating alone in the

same channel conditions; in order to be efficient, a protocol’s performance

with multiple flows should not be far worse than with a single one. Table 4.3

lists the results of the experiments; LEAP achieves almost perfect fairness

without any decrease in throughput; TCP Cubic, TCP Vegas and Verus ex-

perience a slightly lower fairness, along with a small throughput decrease,

but still have acceptable performance. As its authors themselves remarked,

and as we noted in Section 4.1, Sprout’s performance when sharing a bottle-

neck buffer is extremely bad, as the throughput of the two competing flows is

reduced to a trickle. LEAP is the only protocol that preserves both fairness

and channel utilization; our first experiments confirm that this property is

also verified for a higher number of clients.

Another important factor is the rate of convergence to the fair allocation;

the steady-state capacity fairness means nothing if the flows take too long

to reach it. As Figure 4.7 shows, LEAP has a relatively quick convergence;

87

CHAPTER 4. A PREDICTIVE APPROACH TO PROVIDING
QUALITY OF SERVICE

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Throughput (Mb/s)

C
D
F

TCP Cubic

TCP Vegas

Sprout

Verus

LEAP

Fig. 4.8: Single-path congestion control evaluation: CDF of the raw uncon-
strained sending rate [802.11 scenario with live office traffic]

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Low-latency throughput (Mb/s)

C
D
F

TCP Cubic

TCP Vegas

Sprout

Verus

LEAP

Fig. 4.9: Single-path congestion control evaluation: CDF of the latency-
constrained sending rate [802.11 scenario with live office traffic]

even with the presence of fast-varying UDP cross-traffic, the two flows reach

almost perfect fairness in about a second (20 adaptation steps) and proceed

to maintain a stable, fair and efficient capacity allocation.

In the 802.11 scenario, Verus and LEAP adapt much better than the other

protocols to the wireless channel: as Figure 4.8 shows, the two protocols have

88

4.3. EXPERIMENTAL RESULTS

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Throughput (Mb/s)

C
D
F

TCP Cubic

TCP Vegas

Sprout

Verus

LEAP

Fig. 4.10: Single-path congestion control evaluation: CDF of the raw uncon-
strained sending rate [LTE scenario]

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Throughput (Mb/s)

C
D
F

TCP Cubic

TCP Vegas

Sprout

Verus

LEAP

Fig. 4.11: Single-path congestion control evaluation: CDF of the latency-
constrained sending rate [LTE scenario]

a significantly higher capacity than either TCP Vegas or Sprout (which is

penalized by its underlying assumptions, which do not consider the impact

of acknowledgment traffic on the half-duplex channel). TCP Cubic has a

similar throughput, but with a higher variance.

Figure 4.9 shows the same pattern for the low-latency throughput: LEAP

89

CHAPTER 4. A PREDICTIVE APPROACH TO PROVIDING
QUALITY OF SERVICE

−3σ −2.5σ −2σ −1.5σ −σ −0.5σ
0

0.2

0.4

0.6

Normalized throughput

C
D
F

Real (802.11)

Real (LTE)

Predicted

Fig. 4.12: CDF of the number of delivered packets, normalized and compared
to the estimated capacity

shows the best performance, with a slight edge over Verus given by its steeper

CDF, which makes the throughput more stable and predictable, while TCP

Vegas and Sprout have a significantly lower goodput. TCP Cubic does not

manage to transmit almost any packets with a low latency.

The results for the LTE scenario are shown in Figure 4.10 and 4.11:

LEAP outstrips all other protocols in terms of low-latency throughput, and

even comes close to Cubic’s performance in terms of raw capacity.

Finally, Figure 4.12 shows the quality of the Gaussian prediction by the

CKF: the filter slightly underestimates the variance of the LTE channel,

and overestimates the variance of the WiFi channel, but the quality of the

approximation is more than satisfactory to perform the coding calculations.

Future works may employ more realistic distributions and even tailor them

for each specific connection, increasing the efficiency of the adaptive coding

scheme.

4.3.3 Combining multiple paths

The benefits of LEAP become clear in the multi-path scenario: as previously

discussed in Section 4, LEAP can achieve a far higher reliability (up to 99.7%)

90

4.3. EXPERIMENTAL RESULTS

0.01 0.1 1
0

5

10

15

20

Cubic

Sprout

Verus
MPTCP Balia

MPTCP Cubic

Vegas

LEAP

pe (fraction of slots with late packets)

A
ve
ra
ge

th
ro
u
gh

p
u
t
(M

b
/s
)

Fig. 4.13: Position of the considered protocols in the throughput/reliability
trade-off in the multi-path scenario [802.11+LTE]

over a multi-path scenario than any of the state of the art protocols we

consider.

Figure 4.13 shows that LEAP can effectively control the throughput-

latency trade-off, achieving a higher throughput than either TCP Vegas or

Sprout at the same reliability level and managing to reduce the missed dead-

lines by a factor of 30 , albeit with a lower throughput, over two parallel paths

over the 802.11n and LTE interfaces. LEAP can maintain a given latency

deadline of 100 ms with up to 99.3% reliability (green line) while other pro-

tocols fail in the best case at least 10% of the time. In the studied scenario,

LEAP achieves a goodput of 8 Mb/s for a 95% reliability target and 4 Mb/s

with a 99% reliability target. Reliability is defined as the number of slots in

which all packets are successfully delivered within the user-defined deadline;

some of the other protocols achieve somewhat higher throughput than LEAP

but have no control over the throughput-vs-latency trade-off. LEAP can be

set up to work at different points in the trade-off, depending on whether the

first priority is throughput or latency control. Verus manages to get a higher

throughput with the same amount of late packets, but its reliability is not

adjustable, and it is unsuited for applications which require 90% or more

packets to be delivered on time. Furthermore, late packets often come one

91

CHAPTER 4. A PREDICTIVE APPROACH TO PROVIDING
QUALITY OF SERVICE

0.01 0.1 1
0

20

40

60

Cubic

Sprout

Verus

Vegas

LEAP

pe (fraction of slots with late packets)

A
ve
ra
ge

th
ro
u
gh

p
u
t
(M

b
/s
)

Fig. 4.14: Position of the considered protocols in the throughput/reliability
trade-off in the multi-path scenario [802.11+Ethernet]

in bursts, and a transmission failure often means that more than half of the

packets in a slot are lost.

In order to highlight the benefits of LEAP, we provide both results from

combining two separate TCP traces, without any head-of-line blocking, and

from actual MPTCP sessions. As the figure shows, the real throughput of an

MPTCP session is far lower than the expected one, decreasing by almost 25%

if we use the BALIA semi-coupled congestion control mechanism and over

70% using the Cubic protocol on both paths. The LEAP protocol can achieve

a higher throughput than MPTCP, even while delivering most packets with

a controlled latency: while MPTCP Cubic delivers only 1% of packets within

100 ms, with an average throughput of 5.4 Mb/s, LEAP achieves the same

throughput with a 98% reliability on its latency control.

Figure 4.14 shows the results for the mixed scenario, when an 802.11 link

is aggregated with an Ethernet link. The relative predictability of the Ether-

net link plays in LEAP’s favor: when privileging reliability over throughput,

the protocol manages to get 13.3 Mb/s with 99.7% reliability. Verus also

halves its failure rate, but its reliability is still not controllable.

Finally, Figure 4.15 shows the evolution of LEAP’s throughput in the

mixed scenario: the application-layer data rate (with a reliability level of

92

4.3. EXPERIMENTAL RESULTS

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Throughput (Mb/s)

C
D
F

TCP Vegas (75% reliability)

LEAP (95% reliability)

LEAP (uncoded)

Fig. 4.15: Evolution of the capacity over time in the multi-path scenario
[802.11+Ethernet]

95%) is represented in green, while the actual measured throughput is plotted

in blue. The low-latency throughput of TCP Vegas in the same scenario is

shown in violet for comparison. The throughput of the two protocols is

essentially similar, with an average of 28 Mb/s for LEAP and 32 for Vegas,

but LEAP achieves a far higher reliability. The throughput of LEAP is also

more stable, with no total outages. This is a result of the combination of

multiple paths through coding: the raw uncoded send rate of LEAP is far

higher than Vegas’s throughput, and the FEC is what makes the overall flow

reach a 95% reliability.

93

Chapter 5

Providing Quality of

Experience guarantees with

Reinforcement Learning

Video streaming has been the dominant source of Internet traffic for the last

few years; right now, videos make up 55% of all mobile traffic, and this figure

is predicted to rise to 75% in the next five years [10]. Its importance in the

Internet ecosystem and the difficulty of providing QoE guarantees make it an

ideal setting for intelligent techniques, as its strict requirements can strain

even the increased capabilities of new generation networks.

Since its inception in 2011, Dynamic Adaptive Streaming over HTTP

(DASH) [160] has become the dominant standard for video transmission, as

it relies on the existing HTTP server and Content Delivery Network (CDN)

infrastructure and is not affected by firewalls and Network Address Trans-

lation (NAT). The DASH standard leaves complete freedom to the client in

the choice of the adaptation policy: videos are divided into short segments

(usually a few seconds long), which are encoded at different compression lev-

els to generate an adaptation set of representations at different bitrates. The

server makes all the segments in the adaptation set available to the client

as HTTP resources, as well as a Media Presentation Description (MPD) file

containing all the information about the video segments and their locations.

95

CHAPTER 5. PROVIDING QUALITY OF EXPERIENCE
GUARANTEES WITH REINFORCEMENT LEARNING

The client sequentially downloads each segment, switching between represen-

tations according to its adaptation logic in an attempt to optimize the QoE

for the current video and network conditions.

The research on DASH adaptation algorithms is still ongoing, and most

commercial systems employ very basic heuristic approaches, leading to an-

noying quality variations [161, 162] and to an inefficient use of network re-

sources. In order to maximize the user QoE, the adaptation logic needs to

take into account both the video content, which affects the perceived quality

of the downloaded representations, and the playout buffer state. In fact, a

major factor in video QoE is rebuffering [163], i.e., the temporary freezes

in the video playout as the client waits until the next segment is down-

loaded [164].

In this challenging scenario, RL has emerged as an elegant and viable

solution to the video adaptation problem. As we explained in Section 2.2, RL-

based algorithms learn from past experience by trial-and-error, and gradually

converge to the optimal policy [15]. The biggest design issue in these systems

is that the state space of the corresponding MDP is very large. On the other

hand, the number of states needs to be small to ensure quick convergence and

make online solutions react timely to changes in the environment statistics.

In this chapter, we advocate the use of deep Q-learning, which we pre-

sented in Section 2.2.3, to learn excellent video adaptation strategies, while

compactly and effectively capturing the experience acquired from the envi-

ronment. The use of deep neural networks leads to several advantages, such

as: i) the ability to deal with very large state spaces efficiently, effectively

coping with the curse of dimensionality issue of RL algorithms, ii) the pos-

sibility of compactly representing the acquired experience through a set of

weights, iii) the attainment of much better QoE performance, that is here

quantified in terms of both the instantaneous visual quality of each segment

and the quality variations across video segments, as well as the frequency

of freezing/rebuffering events. We hence propose D-DASH, a framework for

DASH video streaming that, combining deep neural networks with a care-

fully designed reinforcement learning mechanism, yields better QoE than

prominent state-of-the-art rate-adaptation algorithms. More specifically, we

96

5.1. STATE OF THE ART

formulate the DASH video streaming problem within a Deep Q-learning

framework, detailing our design choices, that include: the choice of a re-

ward function that effectively takes into account video quality variations and

freezing/rebuffering events, the use of a learning architecture featuring two

twin neural networks and a replay memory to get an improved stability and

a faster convergence, and the use of a pretraining phase (on synthetic traces)

to speed up the convergence of D-DASH when confronted with real traces.

Our results shed some light on the importance of tracking a certain

amount of channel memory in the learning architecture, especially for com-

plex network scenarios, and the superiority of the proposed deep Q-learning

designs: in all our experiments, these have shown a higher average quality

with smaller fluctuations across video segments, and a much lower percentage

of rebuffering events.1

5.1 State of the art

In this section, we provide an overview of the most relevant works on DASH

client-side adaptation strategies in the literature. As measuring QoE itself is

a subject of intensive research in the field, there is not a single set of reference

performance metrics [166]. In-depth reviews of the factors that impact QoE

and the way they are measured in different streaming systems can be found

in [167, 168]. Among such elements, in this work we focus on the following

three factors. The first, and most obvious, is the instantaneous picture qual-

ity, which can be assessed through different techniques. Notable ones are:

objective metrics such as the bitrate, no-reference metrics, which gauge the

video distortion solely from the received frames (i.e., no external quality refer-

ence is provided) [169], or full-reference metrics such as Structural Similarity

Index (SSIM) [170], a perception-based metric which measures the distor-

tion between the input and output of the video encoder at the transmitter

side. These approaches are adopted by various DASH adaptation algorithms

in the literature [168, 171, 172]. The second factor, which is often the most

1The work presented in this chapter was published in the IEEE Transactions on Cog-
nitive Networking [165].

97

CHAPTER 5. PROVIDING QUALITY OF EXPERIENCE
GUARANTEES WITH REINFORCEMENT LEARNING

pressing concern in adaptive video streaming, is represented by rebuffering

events: their length and frequency strongly affect user QoE, as demonstrated

by Hoßfeld et al. in [163]. The third factor is video quality stability: users

notice frequent transitions in the video quality and might be annoyed by

them [173]; in DASH video streaming, quality changes are not due to packet

loss, but to switches between different adaptations (i.e., sudden changes in

the quality of the video).

The literature on adaptation logics for DASH is vast, and we refer the

reader to [174] for a comprehensive overview of existing techniques. For

the purpose of this work, adaptation logics can be divided into two broad

categories: 1) heuristics and 2) dynamic programming based. One of the

earliest adaptation algorithms to go beyond simple buffer-based control loops

was the Fair, Efficient, and Stable adapTIVE algorithm (FESTIVE) [175]:

this scheme does not address QoE explicitly, but rather uses a stability cost

function and a limit on the frequency of bitrate increases to privilege stability

over instantaneous video quality. FESTIVE has the added advantage of being

fairer than commercial protocols in terms of QoE, as well as of reducing

the number of rebuffering events because of its conservative approach when

increasing the bitrate.

Probe and Adapt (PANDA) [176] is another landmark algorithm in the

DASH adaptation literature. It uses a proactive probing strategy to evaluate

the channel capacity and changes its rate estimate according to an additive-

increase approach to prevent fluctuations due to non-persistent cross-traffic

and on-off effects. In stationary conditions, its bitrate estimate equals the

TCP throughput. PANDA then uses a hysteresis threshold to avoid frequent

switches between adjacent representations. A similar but simpler heuristic,

called QoE-driven Rate Adaptation Heuristic for Adaptive video Streaming

(QoE-RAHAS), was presented by Petrangeli et al. in 2014 [177].

Both PANDA and FESTIVE tend to be extremely conservative in their

decisions, and they often end up underutilizing the available capacity unless

the network conditions are extremely stable. Heuristics are hard-pressed to

efficiently exploit the available capacity and still limit rebuffering events and

quality switches, unless they are designed with knowledge of the network

98

5.1. STATE OF THE ART

statistics, thus enabling the adoption of a dynamic programming approach

to optimally solve the adaptation problem.

Li et al. use finite-horizon dynamic programming [176], modeling the

adaptation problem as a fairness problem between future segments, with

an added penalty for quality switches. Adding the adaptation logic on top

of PANDA’s switching strategy, the authors manage to significantly improve

video quality without losing the algorithm’s buffer and quality stability prop-

erties. In order to reduce the computational load, the authors assume that

the available capacity remains constant throughout the optimization horizon.

However, this assumption could prove to be unrealistic in wireless channels,

which can suffer from outages and quick capacity variations due to mobility,

fading and cross-traffic.

Yin et al. developed a system [178] that uses Model Predictive Control

(MPC) to make decisions based on a look-ahead approach, with a QoE model

similar to that considered in this work. More specifically, they rely on a

throughput predictor to make optimal choices for a finite time horizon of five

future segments. This approach is equivalent to dynamic programming and

has the same critical dependency on the quality of the throughput predictor:

if the predicted channel statistics are inaccurate, the adaptation logic will

make suboptimal decisions.

An interesting paper by Bokani et al. [179] uses a Markov Decision Process

(MDP) model to determine the optimal adaptation policy with dynamic

programming. The main issue of this solution is the computational load:

the model is too complex to be solved at runtime. The authors propose

several solutions to mitigate the complexity issue, but the performance of

these heuristics is either unsatisfactory or requires to store a large amount

of offline computational results in the device’s memory. A more recent work

by Zhou et al. [180] proposes a pseudo-greedy heuristic to tackle the same

problem, with the same kind of limitations. Other works use MDPs in more

specific situations, such as streaming for multi-homed hosts [181] and cloud-

assisted adaptive streaming [182].

99

CHAPTER 5. PROVIDING QUALITY OF EXPERIENCE
GUARANTEES WITH REINFORCEMENT LEARNING

5.1.1 Reinforcement Learning and DASH

There are several works in the literature that use RL to overcome dynamic

programming’s two biggest drawbacks: computational load, and the need to

know the statistics of the network and video content in advance. RL-based

algorithms learn the network statistics from experience, and their compu-

tational complexity is low. The main limitation of RL is the amount of

experience it needs to make good decisions: as the number of states of the

MDP grows, so does the necessary training time. Specifically, adaptive RL

algorithms need to have a very coarse state granularity to effectively react

to changes in the environment. Hence, there is a fundamental trade-off be-

tween adaptability and descriptive power: to be adaptable, the algorithm

will need to visit and update each state frequently, i.e., to have a small num-

ber of states. However, having fewer states means that the knowledge of the

environment is inevitably poorer (and, probably, so will be the algorithm’s

choices).

Two works by Claeys et al. represent the two opposite extremes in

this trade-off: the algorithm in [183] has a complex reward function and

a 6-dimensional state definition, and its training requirements are daunting,

while the algorithm presented in [184] is lean and converges very quickly, but

has a very rough state definition and a suboptimal performance. Another

lean Q-learning algorithm that uses a similar MDP model was presented by

Mart́ın et al. in 2015 [185].

In 2015, Van Der Hooft et al. presented an interesting hybrid between RL

and standard algorithms [186]: their system is based on Microsoft Smooth

Streaming (MSS), but adapts the parameters of the heuristic to reflect the

network conditions, improving its performance. The algorithm is still not

QoE-aware, and the simple buffer-based MSS heuristic is suboptimal, but

hybrid solutions such as this might be an interesting approach to overcome

some of RL’s main drawbacks.

In another recent work [187], the authors try to overcome the basic

trade-off between efficiency and adaptability by parallelizing the learning

process: since the problem has a well-known structure, experience in one sit-

100

5.2. SYSTEM MODEL

uation can be used to learn how to act in others. This ad-hoc generalization

scheme relies on the specific structure of the problem, but it is a step in the

right direction.

As it will become apparent in the next sections, our D-DASH framework

makes it possible to better exploit the observed data, learning from experi-

ence faster than other algorithms in the literature and quickly adapting the

video encoding policy to the current working context.

5.2 System model

We consider a DASH client that downloads a video sequence segment by

segment. The decision-making process follows a slotted time model, where

t = 1, 2, . . . is the video segment number. For any given segment t, the client

is free to choose which representation to download from a given adaptation

set A. Each representation, in turn, is uniquely associated with a certain

video quality level of the segment, which we indicate by qt.

In order to apply the RL approach to the problem, we need to model

our system as an MDP; this is possible if we model the video content as a

sequence of scenes with exponentially distributed duration, like in [188]. We

consider the download of each segment as a step of the MDP, and the action

space of the problem can be intuitively mapped to the adaptation set A; by

a slight abuse of notation, but for the sake of a compact notation, we use qt

to also indicate the action of downloading a segment t with visual quality qt.

The solution of the video adaptation MDP is the policy that maximizes

the QoE perceived by the user; we now describe our model of the problem as

an MDP, presenting our assumptions regarding the video streaming service

and then introducing the reward function that accounts for the QoE factors

described in Section 5.1.

5.2.1 Video streaming model

Each video segment is characterized by a certain quality-vs-rate trend, which

we describe by means of the function Ft(qt) that gives the size of the segment

101

CHAPTER 5. PROVIDING QUALITY OF EXPERIENCE
GUARANTEES WITH REINFORCEMENT LEARNING

t with quality qt. We assume Ft(·) to be known before downloading segment

t, as it can be made available to the client as part of the MDP or predicted

from previous scenes, since the correlation between subsequent segments is

usually high.

Denoting by Ct the average channel capacity experienced during the

downloading of the segment t, we easily obtain the total downloading time

τt as

τt =
Ft(qt)

Ct

. (5.1)

We indicate by T the (constant) playout duration of a video segment.

Moreover, we define the buffer (time) for segment t, denoted by Bt, as the

lapse of time between the starting of the download of segment t and the

instant the segment is due to start its playout at the client. Rebuffering

events (during which the video playout freezes) occur whenever the playout

buffer empties before the next segment has been completely downloaded, i.e.,

when τt > Bt. Conversely, when τt < Bt ≤ T the download of the segment t

is completed before its planned playout time and the download of the next

segment can start immediately, thus adding an extra Bt − τt time budget to

the buffer of segment t+ 1. Accordingly, the rebuffering time for a generic

segment t is given by:

ϕt = max(0, τt −Bt) , (5.2)

while the buffer for the next segment is computed as

Bt+1 = T +max(0, Bt − τt) . (5.3)

The buffer is limited to 20 seconds, as most commercial video streaming

systems limit video buffering to save memory and network capacity.

102

5.2. SYSTEM MODEL

5.2.2 Reward function

As discussed in Section 5.1, the QoE of a video client depends on the visual

quality of the current segment, the quality variation between segments, and

the playout freezing events due to rebuffering. In the following, we introduce

a reward function that captures these aspects and, in turn, can be used to

derive policies that maximize the QoE of video streaming customers.

In this work, we chose SSIM as the instantaneous quality metric of a video

sequence, so that qt is the average SSIM of the video frames in segment t.

SSIM is one of the most common objective metrics in the literature and

has been shown to correlate well with the perceived QoE [189]. As it is

a full-reference metric (i.e., its computation requires a full knowledge of the

uncompressed segment [190]), it cannot be calculated by the streaming client,

but its values when varying the video representation can be conveniently

pre-computed, stored on the video server, and included as a field in the MPD.

This puts the computational burden for calculating the SSIM onto the server

side, even though, as reported in [191] the Ft(qt) characteristic of a video

sequence can be automatically estimated from the size of the encoded frames

by using a properly-trained deep neural network, thus making it possible

to skip the computationally intensive frame-by-frame comparison with the

original video sequence at the server. Other approaches are possible, for

example computing the quality qt of video frames at the client through a

no-reference metric [169]. Although we do not consider this possibility in our

model, it is also viable and would require the implementation of an additional

software entity at the client to estimate the quality of the received frames.

The impact of inaccurate quality estimates, via no-reference metrics, is left

to future investigations.

We finally define the reward function for segment t as follows:

r(qt−1, qt, ϕt, Bt+1) = qt−β∥qt− qt−1∥−γϕt− δ[max(0, Bthr−Bt+1)]
2 . (5.4)

The first term on the right-hand side accounts for the benefit of a higher qual-

ity qt of the video, while the following two negative terms are penalty factors

due to quality variations in consecutive frames and rebuffering events, respec-

103

CHAPTER 5. PROVIDING QUALITY OF EXPERIENCE
GUARANTEES WITH REINFORCEMENT LEARNING

tively. The right-most term is a further penalty that is applied whenever the

buffer level is below a (preset) threshold Bthr and it has been introduced to

further reduce the chance of highly-damaging rebuffering events. The coeffi-

cients β, γ, and δ are weighting factors that regulate the relative importance

of the three penalty terms. Note that, neglecting the right-most penalty term

(i.e., setting δ to zero), the reward function (5.4) is the same used in [187]

and [178], and similar to that proposed and validated by De Vriendt et al.

in [173].

The weights β, γ and δ are here used to select different points in the

trade-off between a high instantaneous quality, a constant quality level, and

a smooth playback. The desired operational point might depend on sev-

eral factors, including user preferences and video content, and tuning these

parameters is outside the scope of this work.

5.2.3 Defining the Markov Decision Process

As we mentioned above, the action space clearly corresponds to the set A

of possible representations of the video segments that can be chosen by the

client. Accordingly, the action at step t corresponds to the choice of the

quality qt of the next segment to be downloaded. Therefore, from a state

st ∈ S, an agent implementing a policy Π(·) will require the downloading of

the segment t with quality qt = Π(st). The state space should be as small as

possible, to reduce the complexity of the MDP, but at the same time each

state should contain enough information to permit a precise evaluation of

the utility function for each possible action qt ∈ A. Considering the reward

function (5.4) as a natural option for the utility function of the MDP, the

state should hence include the video quality qt−1 of the last (the (t− 1)-th)

downloaded segment, the current buffer Bt state, the quality-rate character-

istic Ft(qt) of the next segment (the t-th), and the future channel capacity Ct

from which, given the chosen action qt, it is possible to determine the down-

load time τt of the next segment, the rebuffering time ft and the next buffer

state Bt+1 using (5.1), (5.2), and (5.3), respectively. However, the future

capacity Ct of the channel can only be known in a statistical sense, from the

104

5.3. DEEP Q-LEARNING FOR DASH ADAPTATION

past observations. We then define the vector Ct = [Ct−n, Ct−n+1, . . . , Ct−1]

of the previous n channel capacity samples, where n is assumed to be larger

than the coherence time of the channel. In this case, the process Ct exhibits

the Markov property, since the knowledge of samples that are further away in

the past do not add any information to that contained in the current channel

vector Ct. Summing up, the state of the MPD at step t can be described by

the 4-tuple st = (qt−1,Ct, ϕt, Bt).

Given the state st and the action qt, we can finally define the utility

function of our MDP as

ρ(st, st+1, qt) = r(qt, qt−1, ϕt, Bt+1). (5.5)

5.3 Deep Q-learning for DASH adaptation

Depending on the definition of the video adaptation MDP, standard Q-

learning algorithms can either be fast to converge and adaptable in an online

setting [184, 185] or efficient after convergence [183]: the number of states

necessary to accurately represent the environment makes Q-learning slow

and unwieldy.

Our objective is to use an RL algorithm that converges quickly and that is

capable of generalizing based on experience, i.e., that can cope with previously

unseen channel/quality patterns, and that approximate well the optimal poli-

cies that would be obtained by solving the MDP. To achieve this, referring

to s′ as the state of the system upon taking action q and by r the actual

reward accrued from that action, we advocate using the 4-tuple (s, a, r, s′) to

update Q(s, a) and, along the same lines of [187], to concurrently improve the

Q-values associated with other states and actions. We obtain this through

deep Q-learning, as it provides a natural and effective way to generalize the

knowledge acquired during specific transitions and reuse it for other states

and actions.

Two different types of deep network architectures have been tested in

this study (see Figure 5.1): 1. a fully connected feed-forward network, and

in particular an MLP network with one and two hidden layers, respectively

105

CHAPTER 5. PROVIDING QUALITY OF EXPERIENCE
GUARANTEES WITH REINFORCEMENT LEARNING

Fig. 5.1: Network architectures considered in D-DASH: an MLP network with
one (1a) and two (1b) hidden layers; a RNN based on an LSTM cell (2).
For this plot, the channel memory was assumed n = 2, i.e., Ct = [Ct−2, Ct−1].

referred to as MLP1 and MLP2 in the following, and 2. a recurrent neural

network based on a Long-Short Term Memory (LSTM) cell [192]. An LSTM

with deep hidden-to-output function has been implemented [193]. Accord-

ingly, the LSTM output is processed by another fully connected layer to

provide the final Q-values. We remark that the number of previous compo-

nents considered in the capacity vector Ct of the input state differs in the

two cases: feed-forward networks (MLP1 and MLP2) require to be fed with

the whole vector Ct, whereas recurrent networks only need the last channel

capacity sample Ct−1 as input, as the feedback loop inside the LSTM cell

keeps track of the channel memory. The dimension of vector Ct has to be

fixed beforehand for the feed-forward networks, and cannot be adapted after

the definition of the network. In this work, we consider 2 history samples for

MLP1 and MLP2, and 5 history samples for a “long history” (lh) version of

MLP2, referred to as MLPlh.

The LSTM has the advantage of automatically learning what to store

inside the memory cell, and what to forget. Here, in addition to standard

LSTM, we also consider an LSTM cell with peephole connections, referred

to as LSTMph.

Due to the continuous changes of the target function and training data,

we do not expect serious overfitting issues. However, a dropout regular-

ization technique has been applied to MLP2 (termed MLPdo) to verify this

assumption. Dropout is a well-known and simple method to prevent neural

networks from overfitting [194]. It amounts to randomly dropping neurons

and their connections, with a certain probability. A 20% dropout probability

106

5.4. SIMULATION AND RESULTS

Fig. 5.2: Reference quality-rate curves.

is considered in the training of MLPdo.

The network’s weights are updated in order to approximate the optimal

action-value function Q∗(s, q) using typical gradient descent optimization

methods: the numerical results shown in this work have been obtained by

using the Adam method [69], in conjunction with back-propagation.

5.4 Simulation and results

In this work, we assume segments belonging to the same representation set

have a constant size and variable quality; this is a common assumption in the

relevant literature. In real systems, the encoding parameters of the video are

often constant, with segments of varying size [195]; however, the performance

of the learning algorithms should not be significantly affected by this factor,

and the model presented in Section 5.2 is fully general.

To evaluate the performance of the proposed algorithms, we carried out

extensive trace-based simulations, where the different components of the sys-

tem have been modeled in a realistic manner from real data traces. More

specifically, the video model was derived from real videos from the EvalVid

107

CHAPTER 5. PROVIDING QUALITY OF EXPERIENCE
GUARANTEES WITH REINFORCEMENT LEARNING

database.2 The video traces were characterized in terms of their quality-rate

function where, as previously explained, we used SSIM [170] as the instanta-

neous video quality metric. Then, we derived the SSIM-rate characteristics

of a large number of videos in the dataset, from which we extracted a lim-

ited number of reference SSIM-rate curves. Following [196], such curves have

been represented as 4th-degree polynomials function of the bitrate, so that

the quality (SSIM) of a given video sequence encoded at rate f/fmax ∈ (0, 1]

is given by

q ≃ d0 +
4∑

k=1

dk(log(f/fmax))
k, (5.6)

where fmax is the full-quality video segment size, and f ≤ fmax is the actual

segment size. The vector d = [d0, . . . , d4] offers then a synthetic represen-

tation of the complexity of a video scene. The chosen reference curves are

shown in Figure 5.2, and the values of each reference curve’s vector d are

listed in Table 5.1. These reference curves were combined into scenes with

exponentially distributed duration, a model validated by Rose in [188], with

an average of 10 seconds (i.e., 5 segments). In this way, we generated a large

number of realistic video traces for our tests. In our numerical results, we

picked 8 different values for the segment size f : if q is the segment quality, f

is defined as f = Ft(q), where Ft(·) is the inverse of (5.6), see also Table 5.2

for the considered adaptation set. In the learning system, each video seg-

ment is characterized by a vector dt, which is summarized by an index Dt,

as shown in Table 5.2.

To model the transport capacity of the HTTP connection we considered

three datasets: a) real traces of HTTP video streaming sessions over LTE

[197]; b) synthetic traces obtained through the network simulation platform

ns--3; c) Markovian traces obtained by means of a simple Markov model.

The learning algorithms were first trained on the Markovian channel model

(pretrain phase), then shown a small number of realistic traces (either real or

synthetic) as an actual training (train phase). The neural networks’ weights

2http://www2.tkn.tu-berlin.de/research/evalvid/cif.html

108

http://www2.tkn.tu-berlin.de/research/evalvid/cif.html

5.4. SIMULATION AND RESULTS

were then frozen and their exploration parameter was set to zero to carry out

a fair comparison against state of the art algorithms from the literature using

other traces from the same dataset (test phase). The pretrain phase lasted for

500 synthetic videos, while the train phase only lasted for 40 actual videos.

The final test phase was performed over 100 actual video episodes; each video

episode in all phases lasted 400 segments of T = 2 s each. The purpose of

the pretrain phase is to teach the learning agent the basic mechanics of video

streaming in a highly variable and realistic network scenario. The rationale

is that the solution so obtained should represent a sensible starting point

for the learning process when confronted with real traces, leading to a much

shorter training time.

The Markov model for the pretrain phase used the same settings as

in [187]; the capacity evolution was controlled by a random walk model

among a set of levels, with a state change probability of 0.5. The possi-

ble capacity levels Ct are listed in Table 5.1. We remark that the Markovian

traces were only used in the pre-training phase, while the performance eval-

uation was carried out by considering realistic traces, either from real HTTP

measurements or generated by ns–3.

Each component of the reward function in (5.4) was scaled into the range

between 0 and 1 to avoid numerical convergence issues.

Parameter Value

T 2 s
fmax 20 Mb
Ft(·)/T {0.25, 0.5, 1, 2, 3, 4, 6, 10} Mb/s
Ct (pretrain) {0.4, 0.75, 1.5, 2.5, 3.5, 4.5, 5.75, 7.25, 9, 12.5} Mb/s
Dt = 1 (Akiyo) dt = [0.99947,−0.01015,−0.02888,−0.02427, 0.00415]
Dt = 2 (News) dt = [0.99970,−0.01064,−0.02291,−0.02531, 0.00074]
Dt = 3 (Bridge - far) dt = [1.00033,−0.01051,−0.05385,−0.08211, 0.01361]
Dt = 4 (Harbor) dt = [0.99977,−0.00505, 0.00554,−0.01726, 0.00022]
Dt = 5 (Husky) dt = [0.99984, 0.00998, 0.07590,−0.01138, 0.00040]

Table 5.1: Simulation parameters

109

CHAPTER 5. PROVIDING QUALITY OF EXPERIENCE
GUARANTEES WITH REINFORCEMENT LEARNING

5.4.1 Algorithm settings

The algorithms from the literature selected as benchmarks were the paral-

lel Q-learning and the simple rate-based heuristic from [187], MPC [178],

which is a dynamic programming-like solution, and FESTIVE [175], which

is among the most conservative heuristic-based algorithms, thus generally

guaranteeing good stability and a low number of rebuffering events. One of

FESTIVE’s aims is providing a stable quality for multiple clients, which is

beyond the scope of this work, so its performance should be evaluated accord-

ingly. Another point that bears consideration is the computational complex-

ity of MPC: the authors themselves state that a real-time implementation

would require pre-computed tables, which leads to memory occupation. We

also implemented the PANDA [176] and QoE-RAHAS [177] algorithms, but

their performance was significantly worse than all the other algorithms’ for

any configuration of their parameters in the simulation environment, so we

did not show them in any of the plots.

The standard Q-learning algorithm used a Softmax policy; the other

learning algorithms were tested with both policies, and the best-performing

one was chosen in each case. The policy for each algorithm is listed in Ta-

ble 5.2.

The hyperparameters of the learning algorithms were optimized by per-

forming an exhaustive search and selecting the combinations that performed

best in the pretrain phase; the values of the parameters for all algorithms

are listed in Table 5.2, except for the exploration parameter (either ε or ξ,

depending on the exploration mode), which followed the profile shown in Fig-

ure 5.3 over the three phases. The settings and model for FESTIVE and the

standard Q-learning algorithm are the same used in [175] and [187] respec-

tively, except where otherwise stated. In Figure 5.3, each video episode has

M = 400 segments, the standard Q-learning algorithm uses preset thresholds

to quantize the video quality and capacity measurements, which are listed in

Table 5.2.

We adapted the MPC parameters to reflect our definition of QoE and

provide a fair comparison, as its basic model is very similar to ours and

110

5.4. SIMULATION AND RESULTS

Fig. 5.3: Profile of the exploration rate during the training and testing phases.

using the same QoE function provides a more meaningful comparison.

5.4.2 Results: real traces

Our simulations aimed to assess the performance of the D-DASH framework

with regard to the three major video quality metrics, i.e., instantaneous

quality, its stability and the frequency of rebuffering events. We compared

D-DASH based algorithms against existing approaches from the literature,

while also investigating their convergence speed.

Figure 5.4 shows a smoothed version of the reward over the three phases

of the simulation for the MLP1 and MLP2, using standard Q-learning and the

rate-based heuristic as a comparison. The tests were performed by freezing

the learner state and setting a greedy policy (i.e., always taking the action

with the highest expected reward) after each video episode. The benefits of

the Deep-Q approach appear evident at a first glance; standard Q-learning

gets a lower reward at convergence, as well as taking more than 200 episodes

to overtake the rate-based heuristic and failing to adapt quickly enough to

the real traces in the train phase.

The two D-DASH algorithms achieve higher rewards after just a few

111

CHAPTER 5. PROVIDING QUALITY OF EXPERIENCE
GUARANTEES WITH REINFORCEMENT LEARNING

Fig. 5.4: Reward for the standard Q-learning, D-DASH and rate-based algo-
rithm (using real traces as test set). The pretrain phase takes the first 500
video episodes, the training phase is enclosed within the two vertical lines
and the test phase takes the remaining points, after the second line.

videos: MLP2 converges in the first 50 videos, while MLP1 already reaches

its peak performance after the first video episode. The same trend can be

seen in the train phase, where both schemes maintain a significant advantage

on the simple heuristic and standard Q-learning.

One of the main advantages of smart QoE-aware adaptation schemes is

a better buffer management: while most classical algorithms try to keep the

buffer as stable as possible, the D-DASH algorithms can use the buffered

segments when the available capacity drops and build up the buffer when

it is convenient to do so. Figure 5.5 shows an example taken from the test

phase: while FESTIVE keeps an extremely stable buffer (except for a sudden

drop after about 200 segments, due to a sharp change in the capacity), the

MLP2 algorithm has a large dynamic range, building up the buffer when

capacity is high and using it up to cover temporary outages. The other

D-DASH algorithms make a similar use of the buffer, as well as standard

Q-learning. MPC also maintains a high and stable quality throughout the

video, but it incurs in several rebuffering events because of its optimistic

throughput prediction, as Figure 5.5 shows.

112

5.4. SIMULATION AND RESULTS

The benefits of the smarter buffer use are clearly visible in the quality

Algorithm Parameter Value

FESTIVE Target buffer 15 s
Buffer randomness 0.25 s
α 10
kS (switch memory) 10
kC (throughput memory) 5

MPC Maximum buffer 30 s
γ 2
µ 50
K 5

All learners β 2
γ 50
δ 0.001
λ (where not specified) 0.9
Policy (where not specified) Softmax
Maximum buffer 20 s
Bthr (safe buffer) 10 s

Q-learning α 0.1
Ct quantization thresholds (Mb/s) {0.5, 1, 2, 3, 4, 5, 6, 8, 10}
qt quant. thresholds (SSIM×100) {84, 87, 9, 92, 94, 96, 98, 99, 99.5}

MLP1 Hidden neurons Nh 256
Learning rate 0.001
Batch size M 1000
K 20

MLP2 Hidden neurons Nh1, Nh2 128, 256

MLPdo Learning rate 10−4

MLPlh Batch size M 1000
K 20
Policy ε-greedy

LSTM Number of units Nc 128

LSTMph Learning rate 0.001
Batch size M 100
K 200

Table 5.2: Adaptation algorithm parameters

113

CHAPTER 5. PROVIDING QUALITY OF EXPERIENCE
GUARANTEES WITH REINFORCEMENT LEARNING

Fig. 5.5: Evolution of the buffer during a video episode in the test phase.

graph of Figure 5.6: MLP2 can avoid sharp drops in the video quality without

triggering rebuffering events.

In the next figures we compare the performance of the different algorithms

in the test phase, in terms of image quality (SSIM), rebuffering, and quality

stability.

Figure 5.7 shows the achieved SSIM: all the learning solutions, including

standard Q-learning, achieve a higher SSIM than FESTIVE and the rate-

based heuristic; aside from the higher median, the bottom 5% of the videos

still have an average SSIM of over 0.97, while FESTIVE and the rate-based

heuristic go below that threshold for a significant fraction of the videos. It

should be noted that FESTIVE has a lower average SSIM than the rate-

based heuristic, since it privileges stability over instantaneous quality. MPC

performs about as well as the learning-based algorithms, but with a slightly

larger variance.

Figure 5.8 shows the average difference between the SSIM of one seg-

ment and the next. As expected, FESTIVE keeps the quality more stable

than the rate-based heuristic. Similar performance is obtained by standard

Q-learning, which also keeps a higher average SSIM. The two Deep-Q algo-

rithms outperform FESTIVE and Q-learning, but the best quality stability is

114

5.4. SIMULATION AND RESULTS

Fig. 5.6: Evolution of the SSIM during a video episode in the test phase.

achieved by MPC, with an average SSIM variation always lower than 0.006,

while that of the other algorithms reaches 0.008 for at least one video.

Finally, Figure 5.9 shows the frequency of rebuffering events for each al-

gorithm: since FESTIVE is extremely conservative, there were no rebuffering

events over the whole test phase. However, even the most aggressive learning

algorithms (standard Q-learning and MLPdo) do not experience rebuffering

events often. The LSTM and LSTMph algorithms experience at least one

rebuffering in 25% of the videos, but they never have more than three, and

one rebuffering over a whole 400 segment video episode can be considered

acceptable. MPC pays for its higher stability by having an average of 5

rebuffering events per video, far higher than any of the other algorithms’.

MPC’s reliance on an imperfect throughput predictor shows its limits when

dealing with highly variable environments.

We also included another version of MLP2, called MLPlh, which uses the

last 5 throughput samples as input instead of the last 2. Its aim is to show

the benefits of a longer memory in the presence of long-term correlation. We

observe that, with real channel capacity traces, the performance of MLPlh are

basically the same of LSTM, probably because the correlation of the empirical

115

CHAPTER 5. PROVIDING QUALITY OF EXPERIENCE
GUARANTEES WITH REINFORCEMENT LEARNING

Fig. 5.7: Boxplot of the average SSIM for the 100 video episodes in the test
phase (real traces).

channel data considered in this study is low, so that the extra memory in

the LSTM is not necessary. Finally, the use of dropout techniques (MLPdo)

to avoid overfitting does not provide any improvement, as expected.

Its relative simplicity, low rebuffering rate and quick convergence arguably

make MLP1 the best adaptation algorithm in this scenario: aside from some

very rare rebuffering events, it is an improvement over the state of the art

in all the considered QoE metrics over real capacity traces. Nevertheless, as

shown in the following section, any network with a limited memory shows its

limitations when a more complicated scenario is analyzed, and the presence of

long-term correlation in the channel capacity makes a more complex approach

necessary.

5.4.3 Results: synthetic traces

After running the adaptation algorithms over real capacity traces, we gen-

erated a set of traces with the ns–3 simulator to gauge the effects of TCP

cross-traffic on the algorithms’ performance. The traces were generated by

measuring the throughput of a saturated TCP flow sharing a bottleneck with

a capacity of 10 Mb/s and a latency of 50 ms with 19 other TCP clients. Each

116

5.4. SIMULATION AND RESULTS

Fig. 5.8: Boxplot of the average SSIM variation for the 100 video episodes in
the test phase (real traces).

of the cross-traffic clients generated TCP traffic as an on/off source: the off

period was exponentially distributed with a mean of 2 seconds, while the on

time was set to 4 seconds. This traffic model was designed to introduce long-

term correlations in the available capacity [198], which are notoriously hard

to handle for adaptation algorithms. In this part of the study, we only tested

the MLP2 (both with the short and long memory) and LSTM algorithms for

clarity, since the performance of the other variants was similar.

Figure 5.10 shows the average SSIM over the test phase using the syn-

thetic traces. In this situation, the advantage of the D-DASH algorithms is

more marked: the MLP2 and LSTM are able to maintain an average SSIM

above 0.98 for all the considered videos; standard Q-learning and MPC also

perform better than the Rate-Based heuristic and FESTIVE.

Figure 5.11 shows the net advantage of a long memory when dealing with

long-term correlations: although the average SSIM of LSTM and MLPlh

is the same as that of MLP2 they can achieve it with half of the quality

variation. Even if MLPlh performs slightly better than LSTM, it considers a

fixed amount of memory. The LSTM network has the additional capability

to automatically adapt to different memory requirements, without increasing

117

CHAPTER 5. PROVIDING QUALITY OF EXPERIENCE
GUARANTEES WITH REINFORCEMENT LEARNING

Fig. 5.9: Boxplot of the frequency of rebuffering events for the 100 video
episodes in the test phase (real traces).

Fig. 5.10: Boxplot of the average SSIM for the 100 video episodes in the test
phase (synthetic traces).

the state space dimension. The D-DASH algorithms and standard Q-learning

all perform significantly better than FESTIVE and the Rate-Based heuristic

on this metric. As with the real traces, MPC is the best at keeping a stable

quality among the considered algorithms.

118

5.4. SIMULATION AND RESULTS

Fig. 5.11: Boxplot of the average SSIM variation for the 100 video episodes
in the test phase (synthetic traces).

Fig. 5.12: Boxplot of the frequency of rebuffering events for the 100 video
episodes in the test phase (synthetic traces).

Figure 5.12 shows the real advantage of the D-DASH framework in this

scenario: while standard Q-learning has almost the same average SSIM as

LSTM, MLPlh and MLP2, and actually has smaller quality fluctuations than

the latter, it can only achieve this at the cost of relatively frequent rebuffer-

119

CHAPTER 5. PROVIDING QUALITY OF EXPERIENCE
GUARANTEES WITH REINFORCEMENT LEARNING

Fig. 5.13: Evolution of the SSIM during a video episode in the test phase,
using the synthetic traces.

ings: a quarter of the video episodes have at least one rebuffering event, while

this only happens for a few episodes with MLP2 and never for LSTM. FES-

TIVE is also able to avoid rebuffering events, while the Rate-based heuristic

is not. MPC still suffers from a high number of rebuffering events, totaling

an average of 3 events per video episode.

Figure 5.13 shows the higher stability of LSTM with respect to MLP2:

for the sake of a higher stability LSTM avoids some of the quality increases.

For this complex channel, LSTM is able to predict more accurately when

a certain quality increase is likely to be sustainable, i.e., without having to

shortly move back to the previous quality setting. Finally, a comparison of

the convergence speed between standard Q-learning and D-DASH, performed

during the pretrain phase, is provided in Figure 5.14: D-DASH algorithms

converge much faster, making a better use of the video examples that are

supplied during the learning phase.

Memory allocation

Since adaptation algorithms are client-side, their memory footprint is an

important consideration. The number of variables required for D-DASH,

120

5.4. SIMULATION AND RESULTS

Fig. 5.14: Comparison of the convergence speed between standard Q-learning
and D-DASH implementations (MLP1 and MLP2). The shaded area repre-
sents the interquartile range.

and also for the classic Q-learning (NQ), are as follows:

NQ = NsNa (5.7)

NMLP1 = (Vs + 1)Nh + (Nh + 1)Na (5.8)

NMLP2 = (Vs + 1)Nh1 + (Nh1 + 1)Nh2 + (Nh2 + 1)Na (5.9)

NLSTM = 4(Vs +Nc + 1)Nc + (Nc + 1)Na (5.10)

where Ns is the cardinality of the state set, Vs is the number of state vari-

ables and Na is the cardinality of the action set. Note that Vs and Na also

corresponds to the number of inputs and outputs of the neural networks,

respectively (see also Figure 5.1). Nh, Nh1 and Nh2 are the number of hidden

layer’s neurons in the MLP networks, and Nc are the number of units in the

LSTM cell. According to (5.8), (5.9) and (5.10), considering the values in

Table 5.2 and 32 bit floating-point representation for storing real variables,

the memory space required for MLP1, MLP2 and LSTM is about 14.4 kB,

143.4 kB and 276.5 kB, respectively. We remark that these values are fixed

given a specific network implementation, in the sense that they do not de-

121

CHAPTER 5. PROVIDING QUALITY OF EXPERIENCE
GUARANTEES WITH REINFORCEMENT LEARNING

(a) real traces (b) synthetic traces

Fig. 5.15: Summary of performance of video adaptation algorithms: (a) real
traces, (b) synthetic traces (exhibit long-term correlation).

pend on the number of states. On the other hand, classic Q-learning space

requirement directly depends on the cardinality of the state set, which is

closely related to the quantization granularity of continuous state variables,

as discussed in Section 2.2.2. The granularity that was used for the results

in this work leads to a total memory space of 32 kB for Q-learning. The

memory footprint needed by each of the presented methods appears reason-

able considering the hardware of modern client devices. Note that, even if

the number of variables for Q-learning is lower than those required by the

D-DASH algorithms, their generalization capabilities and the concurrent up-

date of the network’s weights allow for a more efficient utilization of the

experience acquired in the learning phase. This behavior can be seen in

Figure 5.14, where the convergence speed of D-DASH is considerably lower.

5.4.4 Summary of performance

A summary of the performance of video adaptation techniques is shown in

Figure 5.15. For a convenient visual comparison, the three metrics have been

scaled and normalized with respect to the LSTM performance, according to

the following criteria (the normalization term has been omitted for simplic-

122

5.4. SIMULATION AND RESULTS

ity):

Quality = 0.98− SSIM (5.11)

Stability = 1 / Quality Variation (5.12)

Freezing Prevention = 0.015− Frequency of rebuffering (5.13)

The proposed deep-Q learning based schemes significantly outperform exist-

ing Q-learning and standard techniques from the literature. As Figure 5.15a

shows, with real traces MPC achieves a more stable, albeit slightly lower,

quality than either MLP2 or LSTM, but it fails to avoid rebuffering events

and results in a far worse QoE for the user. Other state of the art algorithms,

such as FESTIVE, which is not shown in the plot for readability, manage

to avoid rebuffering events but perform much worse in the other two met-

rics. Our algorithms are the only ones reaching high scores on all the three

considered metrics, i.e., video quality, stability and rebuffering avoidance.

Furthermore, the D-DASH algorithms converge faster compared to standard

Q-learning schemes, which require hundreds of video episodes to reach an

acceptable performance. In fact, they approach optimal policies after just a

few videos, or even just a couple in the case of the MLP1 scheme. This also

makes it possible to consider an online version that adapts to video and net-

work conditions, learning how to deal with each new situation as it arises and

memorizing it for future use. The longer memory of the LSTM algorithm

proved to be very valuable on channel traces with long-term correlation:

when the channel correlation stretches to over 10 seconds, LSTM shows sig-

nificantly better performance than other schemes in all the three metrics, as

Figure 5.15b shows. Also in this case, MPC obtains a higher stability than

LSTM, but it pays for it by having several rebuffering events per episode.

123

Chapter 6

Optimizing Smart City services

with data-driven techniques

The Smart City [199] paradigm extends the IoT vision [200] by focusing on

an urban scenario in which the data collected from sensors are exploited to

optimize services delivered to citizens, improve city management and quickly

react to events within the city. Today, the idea is getting a lot of attention

from the research community, the industry and city institutions [199, 201].

This popularity is due to the huge expectations for its vision, which promises

to offer better services to citizens with lower costs for public administrations.1

Communications networks play a crucial role in this framework [202], as

shown in Figure 6.1, and they are already used as the underlying infrastruc-

ture for several modern city services; this is only going to increase with the

integration of the IoT into the 5G paradigm, and we will discuss the Smart

City scenario from a network perspective in Chapter 7. For example, pres-

sure bands and induction coils are often placed underneath the tarmac of the

main city roads to monitor the intensity of the traffic entering and exiting

the city; “dome” cameras are used for surveillance and traffic monitoring of

intersections or critical areas; weather stations collect environmental data in

different parts of the city to monitor temperature, humidity, rain intensity,

and air pollution; road signs and smartphone applications provide real-time

1 Pike Research on Smart Cities: http://www.pikeresearch.com/research/smart-
cities.

125

http://www.pikeresearch.com/research/smart-cities.
http://www.pikeresearch.com/research/smart-cities.

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

Fig. 6.1: A representation of a Smart City environment which highlights the
role of the communication infrastructure in providing connectivity to Smart
City devices.

information about available parking places and public transport services,

while other apps are used for car and bike sharing services.

The services enabled by the Smart City range from human-oriented ser-

vices targeting a better quality of life, to machine-oriented services handling

the management of the Smart City itself [203]. The final goal of Smart Cities

is to build smart communities [204] consisting of humans and machines inter-

acting both in the physical and virtual realms, but the significant complexity

of such a vision makes data-driven and intelligent techniques a necessity to

optimize services.

126

6.1. BIKE SHARING IN SMART CITIES

6.1 Bike sharing in Smart Cities

Bike sharing is a key component of the emerging Smart City paradigm [203]:

bike sharing services offer more flexibility than standard public transporta-

tion, while also reducing both traffic and its impact on the environment [205]

and improving public health [206].

Bike sharing is a perfect example of a Smart City-enabled service. Al-

though bike sharing schemes have existed since the 1960s [207], issues with

theft, vandalism and wrongful use prevented their widespread adoption [208]

until the arrival of smart biking systems. With the possibility of electron-

ically unlocking bicycles and identifying users, smart bike sharing systems

solved or mitigated these issues: by requesting users’ credit card information

before lending the bikes, bike sharing companies can charge users for damages

or theft, with a strong deterrent effect. The use of technology also allowed

cities to provide a better service, embedding sensors to obtain real-time data,

which can be used to plan and manage the bike sharing docking stations and

adapt to the needs of the users. Many services provide live maps of the

available bikes, and ways to detect broken bikes remotely to quickly repair

or substitute them are being studied [209]. Over the past few years, bike

sharing schemes were implemented in most major world cities, with almost

universal success.

Such services leverage technology to identify users, track the paths they

cover, and provide real-time information on the current bike availability

through, e.g., smartphone applications. Sensors embedded in the bikes en-

able the collection of real-time data that can be used in the short term to

dynamically adapt the service to the current needs of users, and, in the

long-term, to enhance the system by adding bikes or stations where they are

needed most and plan new bike lanes to cover the most common routes [210].

Despite the great success of bike sharing all across the world, smart shar-

ing systems are not perfect, and improving their efficiency is an active re-

search goal. Finding a way to maintain availability during rush hour is one

of the most important issues faced by modern bike sharing systems: traffic

is not homogeneous across stations and time, and there may be empty and

127

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

full stations, preventing users from either taking or depositing a bike, respec-

tively. This dishomogeneity requires the development of smart techniques

to manage large bike sharing systems, so that bikes are available where and

when needed, and users are not dissatisfied with the service. An effective

way to deal with this problem consists in relocating bikes from overcrowded

stations to those with a shortage of bikes. This technique is commonly known

as rebalancing. Operators can, e.g., deploy a fleet of trucks to move the bikes

across stations and reach a configuration that minimizes the probability of

stations being either empty or completely full. The design of an efficient

rebalancing scheme requires addressing two major challenges: identifying

where bikes need to be at a given moment to meet the demand, and selecting

the most efficient path to relocate bikes within the required time [211].

However, exploiting a fleet of vehicles to rebalance the network entails a

high economic cost for fuel, drivers, and truck cost and upkeep. An emerging

strategy to reduce such cost is to give incentives to the users themselves,

so that they are encouraged to walk for part of their path to reach a less

congested station, thus reducing the heterogeneity in the traffic demand.

Such incentives may be provided through a smartphone application, and

may consist in cash prizes or privileges for service utilization, like reserving a

bike, premium tickets for other transportation modes, etc. However, this is

out of the scope of this thesis, and here we are solely interested in the effects

that such incentives bring to the system. For a more in-depth review of the

various types of incentives and their effects, we refer the readers to the vast

body of literature on gamification [212,213].

The basic concept behind the two paradigms is simple, and we show it in

Figure 6.2: since the demand of bikes tends to drive the system towards an

unacceptable state with empty stations where the demand for bikes is higher

and full stations where users deposit bikes, as shown in the left panel, there

are two ways to restore the system and improve its availability. Standard

rebalancing takes the system back to a more stable state by moving bikes,

i.e., altering the state directly as shown in the middle panel; incentive-based

traffic shaping acts on the demand without changing the state, so that the

bike sharing system is steered towards acceptable states, as shown in the

128

6.1. BIKE SHARING IN SMART CITIES

right panel.

In this section, we introduce an analytical model for bike sharing network

rebalancing, which includes the effect of both user incentives and traditional

truck-based rebalancing. First of all, we model the occupancy of each station

as a Birth-Death Process (BDP), with time varying birth and death rates

(i.e., arrivals and departures, respectively); this model is fitted with data

from the New York City’s CitiBike bike sharing system,2 which is publicly

available and contains historical data since 2013. This allows us to infer the

target network configuration, i.e., the one that minimizes the probability of

a stations being unusable. We then consider a combined approach to reach

the desired status of the bike sharing network and limit the user dissatisfac-

tion: the users of the service are given incentives to choose routes that help

moving the network state away from dangerous states, and, when the incen-

tives are not themselves sufficient, trucks are deployed to move bikes across

stations and restore system availability. The rebalancing scheme we propose

is dynamic, so that bike reallocation is adaptive rather than performed at

predetermined times. Therefore, it requires to determine whether the gain

obtained with rebalancing overcomes the cost of employing the trucks, and

the path they should cover.

The results of our numerical evaluation show that combining incentives

and traditional rebalancing can yield great benefits in terms of performance,

while at the same time reducing operating costs. By combining strong incen-

tives and a dynamic rebalancing strategy, we were able to almost halve both

the downtime and the number of failed trips due to empty or full stations.3

Notation. Matrices are represented with bold characters. The i-th row of

a matrix A is denoted as Ai, and the j-th element of the i-th row is denoted

as Ai,j.

2https://www.citibikenyc.com/system-data
3The work in this section is the combination of several published papers: the data anal-

ysis was presented at MOCAST 2018 and published in the conference proceedings [214],
the model was first published in MDPI Sensors [211], and a paper describing the incen-
tive scheme has been submitted for publication to the IEEE Transactions on Intelligent
Transport Systems.

129

https://www.citibikenyc.com/system-data

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

Fig. 6.2: Diagram showing the rebalancing and user incentives paradigms in
optimizing bike sharing systems

6.2 State of the art

The widespread implementation of bike sharing systems raised an increas-

ing research interest, bolstered by the availability of real data from publicly

open bike sharing services in many cities. The analysis of historical data

enables the design of models and frameworks that give insights on how and

when the service is used, and help improve the system. Several works pro-

pose analytical schemes, which are generally based on Markov chains [211]

or queuing theory [215]. Other studies use a different approach, exploiting

machine learning tools to learn the bike traffic pattern directly from the

observed data [216]. Whilst the former approaches provide parameterized

models that can be readily adapted to the various peculiarities of different

bike sharing systems, the latter ones allow to include information that is

troublesome to consider in an analytical model but has a significant effect on

the service usage, such as weather conditions [214]. Traffic analysis is also

useful to construct clusters of stations with similar demand patterns [217],

which may help the rebalancing optimization.

The historical data analysis is necessary to understand the needs of the

users, but the heterogeneous user behaviors and unexpected or rare events

(e.g., a snow storm, a bus strike, or a city event that attracts many tourists)

make it challenging to accurately predict the traffic pattern [218]. To coun-

130

6.2. STATE OF THE ART

teract the uneven bikes usage across stations and time, external intervention

is necessary to prevent or limit system failures and ensure bike availability.

As we explained above, this can be achieved by either incentivizing users to

modify their behavior or employing trucks to move the bikes across stations.

In the following, we provide a high-level overview of the vast body of liter-

ature about rebalancing and pricing schemes. Interested readers can refer

to [219] and [220] for comprehensive surveys on the state of the art literature

about bike sharing systems.

6.2.1 Rebalancing bike sharing systems

The most common rebalancing approaches can be classified as static, where

the rebalancing is performed according to a predetermined schedule, likely

when the system use is minimum (e.g., at night); or dynamic, in which the

rebalancing occurs during the daytime, when needed.

In the literature, static rebalancing problems are often tackled through

Mixed Integer Programming (MIP) techniques. For example, Ref. [221] uses

a branch-and-cut algorithm on a relaxed MIP model together with a taboo

search to obtain upper bounds to the NP-hard problem of redistributing

bikes among stations with the minimum traveling distance [222]. A similar

method is used by Ho and Szeto in [223] inside an iterative procedure, result-

ing in a better solution. Several MIP techniques are used in [224], where a

convex penalty objective function aims at minimizing both the user dissatis-

faction and the costs of moving the vehicle fleet. The numerical experiment

shows significant service quality improvements for networks with up to 100

stations with two repositioning vehicles. The authors also take into account

the time needed to load and unload bikes. Constraint programming is used

in [225], where a large neighborhood search approach is used to tackle the

problem of balancing the bike sharing system. In [226], the authors propose

a three-step mathematical programming based heuristic, which consists of

clustering stations based on geographical and inventory considerations, and

then constructing an appropriate traversal route. Differently from other ap-

proaches, rebalancing is not limited within clusters, but the routing vehicles

131

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

can travel through a sequence of clusters. Similarly, [215] proposes a static

rebalancing scheme where each vehicle is assigned a ’self-sufficient’ cluster of

stations. Stations are in fact grouped in such a way that the target network

configuration can be achieved by performing only within-cluster pickups and

deliveries. Clusterization is useful to organize rebalancing paths more eas-

ily, but adopting such a technique in a dynamic rebalancing context is not

trivial, since each rebalancing operation may involve different stations and

clusters should continuously be identified. In [227], Dell’Amico et al. propose

a metaheuristic that uses a destroy and repair approach to solve the static

rebalancing problem, improving on the simple branch-and-cut approach that

the same authors presented in [228], both in the quality of the solution and

in the convergence time. These works are particularly interesting, as they

consider the variability of the demand for bikes during the day and the dif-

ferent features of the stations, distinguishing between three different types

of stations with similar traffic patterns.

Static approaches, however, may not be sufficient to avoid network fail-

ures during the day. To overcome this issue, dynamic rebalancing aims at

redistributing bikes throughout the day according to the current network

state. Clearly, this is much more challenging, since it includes a scheduling

component based on the users’ activity during the rebalancing operation,

and also a routing problem.

In [229], upper and lower bounds for the solution of a pickup-and-delivery

problem are obtained by using Dantzig–Wolfe [230] and Benders [231] de-

compositions, respectively, but the study does not deal with a time-varying

demand and, even in this simple scenario, the optimality gap of the approx-

imation is large. An exact solution to the static rebalancing problem using

Benders’ cuts for given target levels is instead provided in [232].

In [233], the loading instructions for the rebalancing vehicles are derived

from an optimization function that weighs the unfulfilled user demand with

the target filling level. Furthermore, each truck is assigned a capacity so that

there is a maximum number of bikes it can load. An accurate simulation

model is proposed in [216]: it simulates the bike sharing system in space

and time to determine the optimal repositioning flows and time intervals

132

6.2. STATE OF THE ART

between relocation operations, by explicitly considering the route choice for

trucks among the stations. Some studies also determine the optimal size of

the rebalancing fleet [234]. An MDP is used in [235] to solve a stochastic

inventory routing problem for bike sharing systems. The objective is to

minimize the number of expected violations of due dates, where a due date is

the deadline within which a station has to be served by a rebalancing vehicle

in order to satisfy the requests and, hence, avoid failures. The paper shows

the importance of using both long-term and short-term relocation strategies.

The former tries to estimate the target level that can deal with predicted

demand, while the latter assigns a priority level to each station based on

its urgency of being rebalanced. The short-term approach is similar to the

one proposed in this paper, since we dynamically serve only those stations

that are going to experience a failure in a short time horizon. An interesting

framework is presented in [236], where rebalancing comprises two different

strategies to tackle the bike imbalance during night and day, respectively: (i)

static rebalancing overnight to move the network to an optimal configuration

that minimizes the probability of stations becoming either empty or full in the

following day, and (ii) clustering optimization to handle rush-hour usage and

ensure that users are never too far from an available bike or dock. The joint

use of the two strategies brings a larger improvement than considering the

nightly rebalancing only. This result encouraged us in choosing a dynamic

approach.

For a more detailed discussion on the rebalancing problem and other open

research issues in bike sharing systems, we refer the reader to [219] and [220].

6.2.2 User incentives and pricing

The main cause of service failures in bike sharing systems is the unevenness

of traffic patterns: depending on the type of district a station is in (e.g.,

residential, industrial, or commercial), and on the facilities it is close to (e.g.,

subway stations, shops, university buildings), its peak hours and the balance

between pickups and drop-offs will be significantly different. Rebalancing,

i.e., redistributing bikes across the network, can mitigate the problem by

133

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

bringing the system back to a state with a lower risk of service failures. How-

ever, moving bikes around has a high operating cost; there are no academic

papers estimating the daily rebalancing cost, but a calculation by Better Bike

Share4 based on public budget data from Denver’s B-Cycle system estimates

a rebalancing cost of about $1.50 per ride.

An emerging strategy to reduce the rebalancing trips and still improve

the bike sharing service consists in developing pricing strategies to incentivize

users to return bikes at neighboring stations so as to strategically minimize

the number of imbalanced stations. As Smart Cities often seek to be also

green cities, such a solution has been gaining increasing interest thanks to

its low cost and impact on the environment.

An analytical model for a pricing heuristic was proposed in [237]: when

a user arrives at a station to take a bike, it randomly select two possible des-

tinations and the system directs it toward the least loaded one. This study,

however, considers an homogeneous scenario, in which all stations have the

same parameters, which is very far from a real deployment. A more realistic

scenario is used in [238], which models the incentive problem as a Stackelberg

game that relies on the key idea of price discrimination. Users are in fact

divided into leisure travelers and commuters, and the former are stimulated

to redistribute the bikes as needed to limit the system failures, while the lat-

ter category is encouraged to avoid traveling during peak periods. In [239],

vehicle-enabled rebalancing is followed by a dynamic pricing mechanism; this

framework is similar to ours, although the two schemes are performed in

the reverse order and [239] assumes deterministic customer arrivals and lin-

earized customer reaction to incentives. Interestingly, the results show that

incentives are much more effective during weekends, when users are fewer

and likely do not have timing constraints, while an external intervention is

needed during weekdays, especially when the commuting rush hour is more

prominent.

A field trial of a pricing mechanism has been deployed for 30 days in

Mainz, Germany, based on the architecture proposed in [240]. Users are

4http://betterbikeshare.org/2016/08/16/much-bike-share-ride-cost-

system-lets-math/

134

http://betterbikeshare.org/2016/08/16/much-bike-share-ride-cost-system-lets-math/
http://betterbikeshare.org/2016/08/16/much-bike-share-ride-cost-system-lets-math/

6.3. SYSTEM MODEL

engaged in the bike repositioning process through a smartphone application,

and the incentives they are given are dynamically adapted based on the

current system state through an online learning framework. New York City’s

CitiBike system, which we analyze in this work, has also implemented an

experimental opt-in incentive scheme called Bike Angels5, which mixes cash

and service-related rewards; the system operates over a very simple heuristic

point-based model which divides the station into 4 categories, but it has

already reduced the number of rebalancing trips by 10%, according to a

recent statement by the company that operates CitiBike 6. The success of

the program confirms the potential of the idea, and it has encouraged further

studies on data-driven approaches to incentive programs, some specifically

targeting Bike Angels and New York [241].

6.3 System model

Rebalancing schemes are necessary to move the bikes across stations and

reach a configuration that minimizes the probability of stations being either

empty or completely full. The ultimate goal is to reduce the user dissatisfac-

tion due to the impossibility of using the bike sharing service. In this work,

we try to achieve this goal by minimizing either the expected downtime or

the number of expected failures.

In the following, we describe how we model the bike sharing system and

how to derive the expected downtime and the number of expected failures.

6.3.1 The bike sharing system as a network

We model the bike sharing system as a fully connected directed graph G =

(V , E), where V is the set of stations and the set of edges E = V ×V contains

all possible routes between stations. Each node v ∈ V has a capacityMv ∈ N,
corresponding to the maximum number of bikes that can be docked at the

station; naturally, the occupancy mv(t), i.e., the number of bikes that are

5https://www.citibikenyc.com/bikeangels/
6https://www.motivateco.com/in-the-news-slate-on-citi-bikes-bike-

angels-program/

135

https://www.citibikenyc.com/bikeangels/
https://www.motivateco.com/in-the-news-slate-on-citi-bikes-bike-angels-program/
https://www.motivateco.com/in-the-news-slate-on-citi-bikes-bike-angels-program/

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

docked at the station at time t, can only take a value in the set Mv ≜

{0, 1, . . . ,Mv}. Each edge is associated to a distance metric, which might

depend on the edge’s direction to account for traffic, one-way streets, and

different routes between the two nodes. It is then possible to define a distance

matrix d whose element du,v represents the distance from station u to station

v.

For the sake of mathematical tractability, we assume that the operating

day is divided into discrete time frames of length Tr, and that rebalancing

can be done only at the beginning of such frames. Hence, for each time frame

k, we need to derive the desired state m⋆
v(kTr) for each station v ∈ V , defined

as the state that minimizes the expected downtime of the station, i.e., the

fraction of time the service will be unavailable at that station.

To avoid scalability issues, we model the process of departures and ar-

rivals at each station as an independent Markov-Modulated Poisson Process

(MMPP) [242], whose arrival and departure rates follow historic patterns.

Consequently, the occupancy of station v follows a finite Markov BDP mv(t)

limited by the station’s capacity Mv. To simplify the analysis of the his-

torical data and reduce the computational effort, we consider the BDP to

be discrete with time step Tp [243, 244]. The birth and death processes are

Poisson distributed with time-varying rates, namely λv(t) and µv(t), that

are assumed to be independent of the current state mv(t). According to the

discrete model, the birth and death rates are piecewise constant during time

frames of duration Tr, which is chosen as a whole multiple of the slot dura-

tion Tp used for the dynamics of the BDP. In practice, the continuous time t

is mapped into a couple (k, n) where k = ⌊t/Tr⌋ ∈ {0, 1, . . .} corresponds to
the frame index, and n = ⌊(t− kTr)/Tp⌋ ∈ {0, 1, . . . , Tr/Tp} is the slot index
within frame k. In our previous work [211], we verified this model against

real data from the New York CitiBike system, which proved to follow the

discrete time BDP with Poisson birth and death rates extremely well.

136

6.3. SYSTEM MODEL

6.3.2 Downtime at a station

In this section, we derive the expected downtime at a station, which is the

time during which users can neither pick up nor drop bikes at that station.

More specifically, we define the expected downtime T of a station v over a

finite time horizon NTp as the total time period during which the station is

either in state mv(t) = 0 or mv(t) =Mv. We can then consider two matrices

λ and µ, with size |V|×N , that contain the arrival and departure rates of all

stations during the considered time window, respectively. The v-th row λv

of matrix λ contains the arrival rates of station v; row µv is defined similarly

for the departures.

Since the two conditions of empty and full stations are mutually exclusive,

T can be expressed as the weighed sum of the expected time Te that the

station will spend in the empty state plus the expected time Tf such station

will spend in the full state:

T (mv;λv,µv) = αeTe(mv;λv,µv) + αfTf (mv;λv,µv), (6.1)

where αe and αf are weighting constants that define the relative importance

of each failure mode, and mv is the current station’s occupancy. Although,

rigorously, both Te and Tf , and thus T , depend on the birth and death rates

of the BDP during the considered period, we will omit such dependency from

the notation for the sake of readability (unless misleading). Te and Tf are

defined as follows:

Te(mv) =
N−1∑
ℓ=0

p(mv(ℓTp) = 0|mv(0)) (6.2)

Tf (mv) =
N−1∑
ℓ=0

p(mv(ℓTp) =Mv|mv(0)). (6.3)

To compute Te and Tf , we thus need to calculate the probability that station

v will be empty or full at any given time. Since we model the occupancy of a

station as a discrete-time BDP, this can be done using the ℓ-step transition

probability. We denote as P (ℓTp; {λv}ℓ1, {µv}ℓ1) the transition matrix of a

137

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

station at time ℓTp, and as Pi,j(ℓTp;λv,µv)the corresponding element in the

i-th row and j-th column, which is the probability that the considered station

transitions from state i to state j. Vector {λv}ℓ1 contains the elements from

1 to ℓ of the arrival rate vectors, which are the arrival rates of the first ℓ

time slots; analogously for {µv}ℓ1. The Markov property then allows us to

write (6.2), (6.3) as:

Te(mv) =
N−1∑
ℓ=1

TpPmv ,0(ℓTp; {λv}ℓ1, {µv}ℓ1) (6.4)

Tf (mv) =
N−1∑
ℓ=1

TpPmv ,Mv(ℓTp; {λv}ℓ1, {µv}ℓ1) (6.5)

Note that the transition matrix depends on the birth and death rates, which,

as explained in Sec. 6.3, are not constant but piecewise constant with a step

Tr. For each time window ℓTp with ℓ > 1, applying the Markov property

results in:

Pi,j(ℓTp; {λv}ℓ1, {µv}ℓ1) =∑
h∈Mv

(
Pi,h((ℓ− 1)Tp; {λv}ℓ−1

1 , {µv}ℓ−1
1) · Ph,j(Tp; {λv}ℓℓ, {µv}ℓℓ

)
, (6.6)

Note that {λv}ℓℓ contains only the ℓ-th element of vector λv, which corre-

sponds to element λv,ℓ of the arrival rate matrix; analogously for {µv}ℓℓ. It

follows that, to compute (6.4) and (6.5), it is sufficient to derive the single-

step transition matrix in one time slot and then apply (6.6) recursively.

Therefore, we now proceed to compute the one-step transition probability

Pi,j(Tp;λv,ℓ, µv,ℓ) in an arbitrary slot ℓ of length Tp from state i to state j.

We assume that the state of station v in the next slot only depends on

the total number of departures and arrivals, and not on their order. This

is not rigorously true, because some orderings could yield a system failure,

with the station being empty or full, but the probability of this happening

is negligible. The number of arrivals and departures at station v during

the considered subframe are modeled as two random variables, Av and Dv,

138

6.3. SYSTEM MODEL

respectively. We model the demand for bikes (i.e., potential departures) and

empty stalls (i.e., potential arrivals) as Poisson processes, with means µv,ℓTp

and λv,ℓTp, respectively. The one-step transition probability from state i to

state j is then equal to the probability that the difference between arrivals

and departures is j − i:

Pi,j(Tp;λv,ℓ, µv,ℓ) = Pr(Av −Dv = j − i)

=
∞∑

h=−∞

Pr(Av = j − i+ h)Pr(Dv = h)

=
+∞∑

h=max{0,j−i}

(λv,ℓTp)
−(j−i+h) (µv,ℓTp)

−h

h! (j − i+ h)!
.

(6.7)

The last sum in (6.7) follows a truncated Skellam distribution pSk(·) [245],
which depends on two hyperparameters. In our previous work [211], we

explain how to deal with the truncation in the range [0,Mv], which allows to

explicitly write the one-step transition probabilities:

Pi,j(Tp;λv,ℓ, µv,ℓ) = pSk(j−i;λv,ℓTp, µv,ℓTp), 0<j<Mv,ℓ

Pi,0(Tp;λv,ℓ, µv,ℓ) =
0∑

k=−∞

pSk(k − i;λv,ℓTp, µv,ℓTp)

Pi,Mv,ℓ
(Tp;λv,ℓ, µv,ℓ) =

∞∑
k=Mv,ℓ

pSk(k − i;λv,ℓTp, µv,ℓTp).

(6.8)

The one-step transition matrix at the beginning of a frame with birth and

death rates λv,ℓ and µv,ℓ is defined in (6.8), which yields the transition prob-

abilities at each slot ℓ within that frame. Finally, the Markov property is

used to take into account previous slots and compute the desired probability

as in (6.6). This is then used to calculate Te (see (6.4)) and Tf (see (6.5)),

and therefore the expected downtime of the station.

139

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

6.3.3 Expected number of system failures

We also consider a model where the relevant variable to be minimized is not

the downtime, but the number of expected failures, which corresponds to the

downtime multiplied by the expected traffic rate. Failures in fact happen

during a station’s downtime and represent the number of users that cannot

use the service. In this case, the objective is not to keep the system available

as long as possible, but to make it work effectively at rush hour, even if its

availability during off hours is slightly reduced. The number of expected

failures F is defined as the sum of the number of trips Fe that are canceled

because the station the user is at is empty, and the number of times Ff that

a user is forced to deposit their bike at a station that is not their preferred

one because it is full. This can be expressed as:

F (mv;λv,µv) = αeFe(mv;λv,µv) + αfFf (mv;λv,µv)) (6.9)

Fe(mv;λv,µv) =
N∑

n=1

µv,nTpPmv ,0(n,λv,µv) (6.10)

Ff (mv;λv,µv) =
N∑

n=1

λv,nTpPmv ,Mv(n,λv,µv). (6.11)

where, as for the downtime T , αe and αf are weights that can be tuned to

change the relative importance of each type of failure. The derivation of

the transition probabilities is the same as described in Section 6.3.2, and the

computation of Fe and Ff follows the same steps as that of Te and Tf .

6.3.4 The incentive problem

The basic idea behind the incentives is that some users would be willing

to walk to a nearby (and less congested) station, or deposit their bike at a

station slightly farther from their destination, in exchange for a small reward.

In the following, we introduce our incentive model to characterize the

contribution given to the system by its own users, and then explain how to

solve it.

140

6.3. SYSTEM MODEL

6.3.5 The incentive model

As stated above, we assume that we can convince users to slightly change

their route by introducing an incentive. This behavior changes the arrival

and departure rate at each station, so that the original matrices λ and µ be-

come λ′ and µ′. The incentive optimization problem consists in determining

the new arrival and departure rate matrices, which minimize the expected

downtime T at a station (see Section 6.3.2 and (6.6)). The optimization

objective can be stated as

λ∗,µ∗ = argmin
λ′,µ′

∑
v∈V

T (mv,λ
′
v,µ

′
v). (6.12)

where we explicitly highlighted the dependence of T on the arrival and de-

parture rates.

Naturally, we need to set constraints to keep the estimated effects of

the incentives realistic, as well as to prevent outcomes that are negative

to the system. It is reasonable to assume that using positive incentives

will not damp the demand, as users who do not care about the reward will

simply ignore the incentive and take the trip they originally planned. In this

work, we also assume the incentives to be small enough that the number of

additional users who take rides they would not have just to get the reward

is negligible. In this case, the total demand of the network will not change,

but it will simply be shifted from one place to another. We can express this

as a constraint to the optimization problem:

V∑
v=1

λv,n =
V∑

v=1

λ′v,n ∀n (6.13)

V∑
v=1

µv,n =
V∑

v=1

µ′
v,n ∀n. (6.14)

where n is the time slot index.

Secondly, we can assume that only a fraction of users will be swayed

by the rewards: the effectiveness of the incentive η ∈ [0, 1] is defined as the

maximum fraction of users who will choose to accept the incentive and walk to

141

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

a close-by station instead of taking the bike from their preferred one. Hence,

the larger η, the greater the impact of the incentives. Clearly, the demand

should never become negative at any station, so additional constraints should

be added: ⏐⏐⏐⏐λ′v,n − λv,nλv,n

⏐⏐⏐⏐ ≤ η ∀v, n (6.15)⏐⏐⏐⏐µ′
v,n − µv,n

µv,n

⏐⏐⏐⏐ ≤ η ∀ v, n (6.16)

λ′v,n ≥ 0 ∀ v, n (6.17)

µ′
v,n ≥ 0 ∀ v, n (6.18)

Finally, the incentives will never convince users to walk very far, and they

are not meant to do so: our objective is to improve the efficiency of the

system with minimal disruption to users’ habits and mobility, so we need

to limit the distance we expect them to go. For this reason, we assume

we can convince a user to walk to another station only if it is within a

radius dthr from the position of their preferred station. This corresponds to

a set of conditions limiting the “shift” in the traffic to the neighborhood set

Uv = {u ∈ V : du,v ≤ dthr}. This can be translated to the following set of

constraints: ∑
u∈Uv

λ′u,n ≥ λv,n ∀ v, n (6.19)∑
u∈Uv

λu,n ≥ λ′v,n ∀ v, n (6.20)∑
u∈Uv

µ′
u,n ≥ µv,n ∀ v, n (6.21)∑

u∈Uv

µu,n ≥ µ′
v,n ∀ v, n. (6.22)

The four constraints above express a simple concept: none of the original

demand at station v should be outside of the neighborhood Uv, i.e., the

sum of the demand in the neighborhood after the incentives should be larger

than the initial demand at station v (see (6.19) and (6.21)), and none of the

142

6.3. SYSTEM MODEL

Algorithm 6.1 Incentive optimization algorithm

1: function setIncentives(λ,µ, η,d, dthr, ε,m,M)
2: λ′ = λ; ▷ Initialize arrival rate matrix
3: µ′ = µ; ▷ Initialize departure rate matrix
4: for v ∈ V do
5: T ′

v ← T (mv,λ
′
v,µ

′
v); ▷ Expected downtime

6: end for
7: i = 1; ▷ Initialize station counter
8: while i < V do ▷ Visit all stations (at least once)
9: if i == 1 then
10: v ← Sort by decreasing T ′;
11: end if
12: Uvi ← findNeighborhood(vi,d, dthr);
13: [λ′,µ′,T ′, changed]← shiftTraffic(vi, Uvi ,

λ′,µ′,λ,µ, η,d, dthr, ε,m,M);
14: if changed then
15: i← 1; ▷ Repeat the optimization
16: else
17: i++; ▷ Go on with the next station
18: end if
19: end while
20: return λ′,µ′;

demand at station v after the incentives are applied should have come from

outside the neighborhood (see (6.20) and (6.22)). If the four constraints are

applied to all neighborhoods (one for each station v), they ensure that a

node’s traffic is never shifted outside its neighborhood, and that traffic from

outside is never shifted to it.

Then, the objective function of the incentive problem is (6.12), and the

complete set of constraints is given by (6.13)-(6.22).

If we want to minimize expected failures instead of downtime, the solution

becomes:

λ∗,µ∗ = argmin
λ′,µ′

∑
v∈V

F (mv,λ
′
v,µ

′
v), (6.23)

with the same set of constraints (6.13)-(6.22).

143

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

6.3.6 Solving the incentive problem

The method we use to solve the incentive problem is reported in Algo-

rithm 6.1, and assumes that we can only affect the rate for the next frame (of

duration Tr), without looking farther ahead. It takes as input the original

arrival and departure rates matrices λ and µ, the incentive effectiveness η,

a matrix d containing the distances between all the station pairs, the cover-

age radius dthr that defines a neighborhood, the step ϵ used to compute the

traffic shifts among neighbor stations, a vector m with the current state of

all stations, and a vector M with the capacity of all stations. The algorithm

returns the new arrival and departure rates matrices, λ′ and µ′, after the

incentives have been applied. First of all (Line 5), we compute the time T ′
v

that any station v ∈ V spends in the empty state; we then proceed with the

incentive optimization. We sort the stations by decreasing order of expected

downtime, obtaining a sorted array v (Line 10). Starting from the first sta-

tion in v, we apply function shiftTraffic (Line 13), which determines the

optimal traffic demand within the neighborhood of the considered station. If

any traffic change happened (i.e., the boolean variable ’changed’ is set to 1),

then the optimization is repeated from scratch (Line 15 in the while loop),

because the change may influence the traffic rates of stations whose neigh-

borhoods have already been optimized. Otherwise, if no shift happened, the

station counter i is increased by one, so that function shiftTraffic is ap-

plied to the next station in vector v (Line 17). This is repeated until all

stations have been visited and no traffic shifts happened (Line 8).

The shiftTraffic function is in Algorithm 6.2: it is called every time

a neighborhood needs to be optimized, and its basic idea is equivalent to

gradient descent. The function shifts small portions of traffic to or from the

central node, checking every possible configuration and selecting the one that

results in the lowest total expected downtime. The operation is then repeated

until a local minimum is reached or a constraint is violated. It is based on

an iterative algorithm, which is a variation on the gradient method [246].

The rationale behind our algorithm is to analyze possible traffic shifts in the

neighborhood Uv of the target station v and identify the best possible shift,

144

6.3. SYSTEM MODEL

Algorithm 6.2 Shift traffic function

1:2: function shiftTraffic(v, Uv,λ
′,µ′,λ,µ,

η,d, dthr, ε,m,M)
3: done, changed ← false;
4: while !done do ▷ Optimization cycle
5: for u ∈ Uv do ▷ All the nodes in the neighborhood
6: T ′

u ← Te(λ
′
u, µ

′
u,mu,Mu); ▷ Time in empty state

7: end for
8: T ∗ ← sum(T ′); ▷ Total time in empty state
9: ∆λ∗,∆µ∗, u∗, w∗ ← 0;
10: for ∆λ ∈ {−ε, 0, ϵ} do ▷ Possible variations on λ
11: for ∆µ ∈ {−ε, 0, ϵ} do ▷ Possible variations on µ
12: λ′′v ← λ′v +∆λ; ▷ New arrival rate
13: µ′′

v ← µ′
v +∆µ; ▷ New departure rate

14: T ′′ ← T ′; ▷ Time in empty state (vector)
15: for u ∈ Uv do ▷ All nodes in neighborhood
16: λ′′u ← λ′u −∆λ; ▷ Update neighbor arrivals
17: for w ∈ Uv do
18: µ′′

w ← µ′
w −∆µ; ▷ Update neighbor dep.s

19: if checkConstraints(λ′′,µ′′,
λ,µ, η,d, dthr) then

20: T ′′
u ← Te(λ

′′
u, µ

′′
u,mu,Mu);

21: T ′′
v ← Te(λ

′′
v, µ

′′
v,mv,Mu);

22: T ′′
w ← Te(λ

′′
w, µ

′′
w,mw,Mu);

23: if sum(T ′′)< T ∗ then ▷ Less failures
24: changed ← true; ▷ Update config.
25: T ∗ ← sum(T ′′);
26: ∆λ∗ ← ∆λ;
27: ∆µ∗ ← ∆µ;
28: u∗ ← u;
29: w∗ ← w;
30: end if
31: end if
32: end for
33: end for
34: end for
35: end for
36: if !changed then ▷ Reached a minimum
37: done = true; ▷ Finished

145

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

38: else
39: λ′v = λ′v +∆λ∗;
40: λ′u∗ = λ′u∗ −∆λ∗;
41: µ′

v = µ′
v +∆µ∗;

42: µ′
w∗ = µ′

w∗ −∆µ∗;
43: T ′′

u∗ = Te(λ
′
u∗ , µ′

u∗ ,mu∗ ,Mu∗);
44: T ′′

v = Te(λ
′
v, µ

′
v,mv,Mu);

45: T ′′
w∗ = Te(λ

′
w∗ , µ′

w∗ ,mw∗ ,Mw∗);
46: end if
47: end while
48: return λ′,µ′,T ′, changed;

i.e., the change in the traffic pattern that leads to a reduced aggregate time

in the empty state for the stations in Uv.

To this aim, we introduce ϵ, which is the step size for variations in the

arrival and departures rates. Since the total aggregated traffic within the

neighborhood should remain constant, any increase in the arrival (depar-

ture) state of station v corresponds to an equivalent decrease in the arrival

(departure) state of a neighboring station. For every possible configuration

analyzed by the algorithm, we check whether the constraints (6.13)-(6.22) are

satisfied. Algorithm 6.3 includes the checkConstraints function, which

is used to check the validity of problem solutions; its code corresponds to the

constraints in (6.17)-(6.22).

We would like to remark that the iterative algorithm in function shift-

Traffic is guaranteed to converge to a local minimum, so its output might

not be the globally optimal solution. In general, T is not a convex function

of λ and µ (see (6.1)), but the non-convexities are outside of the range of

values we examine, and the function always has a unique global minimum

if η < 1, so the local minimum corresponds to the global minimum. Imple-

mentations in other systems or with perfect incentives should consider this

non-convexity.

146

6.4. DYNAMIC REBALANCING

Algorithm 6.3 Incentive optimization constraint check

1: function checkConstraints(λ′,µ′,λ,µ, η,d, dthr)
2: for v ∈ V do
3: Uv =findNeighborhood(v,d, dthr);
4: if λ′v < 0 or µ′

v < 0 then
5: return false; ▷ Constraints (6.17), (6.18)
6: end if
7: if |λ′v − λv| > ηλv or |µ′

v − µv| > ηµv then
8: return false; ▷ Constraints (6.15), (6.16)
9: end if
10: l,m, l′,m′ ← 0; ▷ Initialize counters
11: for u ∈ Uv do ▷ All nodes in the neighborhood
12: l← l + λu; ▷ Update total old arrival rates
13: l′ ← l′ + λ′u; ▷ Update total new arrival rates
14: m← m+ µu; ▷ Update total old departure rates
15: m′ ←m′+µ′

u; ▷ Update total new departure rates
16: end for
17: if λ′v > l or λv > l′ then
18: return false; ▷ Constraints (6.19), (6.20)
19: end if
20: if µ′

v > m or µv > m′ then
21: return false; ▷ Constraints (6.21), (6.22)
22: end if
23: end for
24: return true; ▷ All constraints satisfied

6.4 Dynamic rebalancing

Our network optimization aims at minimizing the system downtime, com-

puted as described in Section 6.3.2. Part of this optimization is achieved by

giving incentives to users, as modeled in Section 6.3.4, but may not be in

itself sufficient to reach the target network configuration, i.e., the one that

minimizes either the downtime or the expected number of failures. Dynamic

rebalancing consists in moving bikes across stations using a fleet of trucks,

changing the current network state in order to minimize the system failures.

This is performed after the incentives have been applied, and requires to de-

cide when and how to do the rebalancing. In fact, using a truck fleet has a

147

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

monetary cost (fuel, drivers, etc.), so that the gain obtained with it has to

overcome such cost. It is also necessary to identify the stations to rebalance,

and the corresponding path to visit them. Clearly, the when and how aspects

are intertwined.

In the following, we define the mathematical problem and solve it for

two distinct scenarios: we in fact consider both the benchmark case of a

single vehicle and the more realistic case of multiple vehicles with a limited

capacity.

6.4.1 Preliminaries

Dynamic rebalancing schemes do not change the system at preset times every

day, but rather rebalance the network whenever the expected system-wide

downtime is larger than prebNTp, i.e., when the system is expected to be

unavailable for a fraction preb of the considered time horizon NTp:∑
v∈V

T (mv,λ
′
v,µ

′
v) >

preb
NTp

, (6.24)

where we explicitly wrote the dependence of the expected downtime T on

the arrival and departure rates λ′
v and µ′

v to highlight that they are those

modified by the incentives.

The rebalancing fleet consists of R trucks, which all start from a deposit

node z, so that we can define a new graph G ′ = (V ′, E ′), where V ′ = V ∪ {z}
and E ′ = V ′ × V ′. We assume each truck to have a capacity C limiting the

number of bikes it can load; since stations should not be visited twice, we

cannot change their state by more than C bikes. The rebalancing should

shift the network from its current state to the unique optimal one, which, as

described in Section 6.3.2, is the one in which every station has the minimal

expected downtime. Let ∆m∗
v be the difference between the optimal and the

current state of station v:

∆m∗
v = argmin

δ∈{(mv−C)†,(mv−C+1)†...,(mv+C)†}
T (mv + δ) (6.25)

148

6.4. DYNAMIC REBALANCING

where (x)† ≜ max(0,min(Mv, x)) is used to ensure that, after the truck takes

or deposits bikes, the number of bikes at station v neither is negative nor

exceeds the station capacity Mv. The difference in the state is also limited

by the capacity of the trucks: if the current state is more than C bikes away

from the optimum, the optimal state is the one closest to it. The difference

∆m∗
v yields the best achievable state.

6.4.2 System-wide rebalancing problem

We can now define the system-wide rebalancing problem. The objective is

to minimize the total distance that the trucks have to cover:

e⋆ = argmin
e

∑
u∈V ′

∑
v∈V ′

eu,vdu,v, (6.26)

where e⋆ is a matrix over E ′ whose values are either 0 or 1:

eu,v ∈ {0, 1} ∀(u, v) ∈ E ′. (6.27)

If eu,v = 1, then the edge from station u to v is covered by the rebalancing

trucks, otherwise it is not. Note that there might be multiple optimal solu-

tions e∗, and if the graph distances are not directed (i.e., du,v ≡ dv,u ∀u, v ∈
V ′) there are always at least two optimal solutions, which correspond to

following the same route in opposite directions.

Since the solution e⋆ represents a path, or a series of paths, each outgoing

edge should be balanced by an incoming edge; in this way, the trucks all start

and end at the same point, i.e., the deposit node z. This corresponds to the

following constraints: ∑
u∈V ′

eu,v =
∑
u∈V ′

ev,u ∀v ∈ V ′ (6.28)

ev,v = 0 ∀v ∈ V ′. (6.29)

The constraint in (6.29) prohibits edges from a node to itself to be part of

the solution, for obvious reasons. Furthermore, each node (except for the

149

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

deposit) should be visited at most once by a rebalancing truck, in order to

avoid loops and inefficient routes:∑
u∈V ′

eu,v ≤ 1 ∀v ∈ V . (6.30)

As regards the deposit node, its outgoing degree is equal to the number of

used trucks R. The route of each truck corresponds to a series of successive

connected nodes. For each truck i ∈ {1, . . . , R}, we define the successor sv(i)
of node v as the next node visited by truck i, so that ev,sv(i) = 1. Note that

there exists at most a unique sv(i) for each truck i and node v ∈ V ′. Naturally,

nodes that are not successors of any other do not have any successors, as a

consequence of (6.28). We define the route ri of the i-th truck as a vector of

length l(ri):

ri(0) = z (6.31)

ri(1) = sz(i) (6.32)

ri(j) = sri(j − 1) ∀ j > 1 (6.33)

ri(l(ri)) = z. (6.34)

The last node in the route is the deposit station itself; (6.34) makes it a

closed loop. No station that is not part of a route should be visited, i.e.,

all stations in the solution should be connected to the starting point z. We

express this constraint as:

∑
u∈V ′

eu,v = 0 ∀ v ∈ V : v /∈
R⋃
i=1

ri. (6.35)

Since the number of bikes on a truck cannot exceed its capacity at any point

in its route, we formulate the load of truck i after visiting the j-th node in

its route as:

ci,j = ci,0 +

j∑
k=1

∆m∗
ri(k)

(6.36)

150

6.4. DYNAMIC REBALANCING

where ci,0 is the initial load as the truck leaves the deposit. We can formu-

late an additional constraint to ensure that no trucks have an overload or a

negative load at any point in their route, following the work in [227]:

0 ≤ ci,j ≤ C ∀i, ∀j ∈ {0, . . . , l(ri)}. (6.37)

In order to adhere to a more realistic model, we can also limit the maximum

distance a single truck can cover before the rebalancing operation is too late:∑
j∈{1,...,l(ri)}

dri(j−1),ri(j) ≤ dmax ∀i ∈ {1, . . . , R}. (6.38)

Finally, we set a constraint to only consider solutions that reduce the ex-

pected downtime to a fraction pthr of the total running time of the system:

∑
v∈V

T

(
mv(t) +

∑
u∈V ′

eu,v∆m
∗
v

)
≤ pthr. (6.39)

where ∆m∗
v represents the difference between the optimal and the current

state of station v, as defined in (6.25).

The rebalancing optimization problem is then defined by the objective

function in (6.26). The constraints are given by (6.27)-(6.30), (6.35), and (6.37)-

(6.39). In the following, we solve it for two distinct scenarios: the simpler

but less realistic case of a single truck (R = 1), and the complicated but

more general case of multiple vehicles (R > 1).

6.4.3 Single-vehicle optimization

The first version of the problem we consider is simpler and slightly less real-

istic, and corresponds to the scenario in our previous work [211]: in this case,

R = 1, C = ∞, dmax = ∞. Since there is a single truck, Constraint (6.30)

is also applied to the deposit node z. We use Algorithm 6.4 to solve this

problem.

151

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

Algorithm 6.4 Single-vehicle rebalancing algorithm

1: function rebalance(T ,m,∆m∗,T ∗,d, preb, pthr)
2: S ← [z]; ▷ Start with deposit node
3: T ← sum(T); ▷ Total downtime time
4: l← 0; ▷ Total distance covered by the truck
5: m′ ←m; ▷ Initialize new network state
6: if T ≤ preb, then ▷ Check Constraint (6.24)
7: return l,m; ▷ Do not rebalance
8: end if
9: for u ∈ V do
10: for v ∈ V do
11: eu,v ← 0; ▷ Initialize path matrix
12: end for
13: end for
14: while |S| < |T | and T > pthr do
15: v, rv, dv ← 0;
16: for u ∈ (V \ S) do ▷ Find node to rebalance
17: lu ←greedyRoute(S,d)−l;
18: ru ← Tu−T ∗

u

du
; ▷ Gain of rebalancing u

19: if ru > rv then ▷ More gain than previous option
20: v ← u; ▷ Update node to rebalance
21: rv ← ru; ▷ Update rebalancing reward
22: lv ← lu; ▷ Update path length
23: end if
24: end for
25: if rv > 0 then ▷ Reward is not a cost
26: S ← [S; v]; ▷ Add node v to rebalancing set
27: m′

v ← mv +∆m∗
v; ▷ Update state of v

28: Tv ← T ∗
v ; ▷ Update downtime of v

29: T ← sum(T); ▷ Update total downtime
30: l← l + lv; ▷ Update total covered distance
31: ev|S|−1,v ← 1; ▷ Update path matrix
32: else
33: break;
34: end if
35: end while
36: return e, l,m′;

152

6.4. DYNAMIC REBALANCING

Algorithm 6.5 Single-vehicle greedy routing algorithm

1: function greedyRoute(S,d)
2: R← [z]; ▷ Start with deposit node
3: r ← z; ▷ Last node visited
4: l← 0; ▷ Length of rebalancing path
5: while |R| < |S| do
6: v∗ ← argminv∈(S\R) dv,z + dr,v − dr,z;
7: R← [R; v∗]; ▷ Add node v∗ to route
8: l← l + dv∗,z + dr,v∗ − dr,z;
9: r ← v∗;
10: end while
11: return l

It takes as input the vector T with the downtimes of all stations, the

current network state m, the vector ∆m⋆ containing the desired state shift

for each possible station (see (6.25)), a vector T ⋆ with the target downtimes

for all stations, the distance matrix d, the threshold preb that triggers the

rebalancing (see (6.24)), and the minimum fraction of downtime reduction

pthr (see (6.39)). It computes the path matrix e defined in (6.26), the length

l of the rebalancing path, and the new system state m′.

The algorithm works by iteratively updating the set S of stations to

rebalance until either all stations have been visited or the total downtime

drops below the threshold pthr (Line 14). Each iteration determines the

station u (among the unvisited ones) to add to S in a greedy way. Such

station is the one which yields the largest reward among all unvisited stations

(Lines 18 and 19 in the for cycle). The station, however, is added to S only

if it brings a positive reward (Lines 25-31); otherwise, the algorithm stops.

An auxiliary function greedyRoute is used (Line 17 calls Algorithm 6.5)

to compute the length of the rebalancing path when a station is added. It

determines a path that starts from the deposit node z (Line 2) and visits

all stations in S (Line 5) selecting, at each iteration, the next station as the

closest one to the last node visited (Line 6).

For a more detailed description of the algorithm, we refer the reader

to our previous work [211]. We highlight that, although this scenario is

not realistic, it has a very low computational complexity when compared

153

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

to the multi-vehicle optimization, and represents a useful benchmark for

performance comparison.

6.4.4 Multi-vehicle optimization

In this case, we consider the full problem as defined in Section 6.4.2, and use

a variation on Dell’Amico et al.’s Destroy and Repair procedure [227]. If we

constrain the possible solutions to those including all nodes in the graph, the

model exactly matches the one defined in [227]; however, the metaheuristic

they define is flexible enough to be used even if not all nodes are included. We

now recap the steps the algorithm follows, with a discussion of the differences

we implemented. A more complete discussion of each step can be found in

the original paper proposing it.

1. Nodes are added to the solution iteratively using Clarke and Wright’s

Savings algorithm [247]. Basically, each node is added as a new separate

route, so the edges ez,v and ev,z are added to the solution. In our case,

instead of stopping after all nodes are included in the solution, the

algorithm stops when the relative downtime drops below pthr. After

that, the Savings algorithm tries to merge routes, evaluating both the

gain in terms of total covered distance and the loss of flexibility due

to the merging. Flexibility is a measure of the slack in a route, which

becomes less flexible when the truck is almost empty or almost full at

any point.

2. A local search is performed using several heuristics in succession: nodes

are swapped, added or removed to routes, trying to find a solution with

a lower cost. Our local search includes seven heuristics, performed in

sequence as in [227]. The seven heuristics basically try to explore the

solution space by swapping nodes, joining routes, or crossing them over

so that the first and second parts of two routes are mixed. The idea

behind the local search is to explore possible solutions that are close to

the current one.

154

6.4. DYNAMIC REBALANCING

3. A Random removal procedure is performed, as described by Ropke and

Pisinger [248], taking some of the nodes out of the solution. This partly

randomizes the solution, allowing the algorithm to explore other points

in the solution space and avoiding getting stuck in local minima.

4. Dell’Amico et al.’s Repair procedure is performed, adding random

nodes until pthr is crossed again. Each node is added to the solution by

iteratively trying to place it in all possible positions in all routes, then

selecting the best possible one. If the solution is worse than the one

before the removal of nodes and repair operation, the older one is kept

in memory as the best solution.

5. Steps 2 to 4 are repeated until convergence.

If no acceptable solution exists (i.e., rebalancing all nodes still results

in a downtime higher than pthr), we still rebalance the system in order to

minimize the expected downtime: this corresponds to a rebalancing oper-

ation involving all nodes, which can be calculated with Dell’Amico et al.’s

unmodified Destroy and Repair algorithm.

Notice that the solutions proposed for both for the single- and the multi-

vehicle rebalancing problems can be straightforwardly applied to the number

of expected failures F as defined in (6.9) rather than to the downtime T .

6.4.5 Simulation settings and analysis

In this work, we used the publicly available dataset from New York City’s

CitiBike network, which we briefly described in Section 6.1. A map of the

city, with the positions of the docking stations, is shown in Figure 6.3.

The service publishes monthly reports with all the recorded rides, the

start and destination times and stations, the unique identifiers of the bikes,

and some records about the service subscribers, such as year of birth and

gender. In this study, we use the data from July 2013 (the earliest available

period) to July 2017. Since several stations were added during the considered

time frame, we limit ourselves to the 280 stations that were present for a

sufficiently long time to extract the demand data.

155

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

-74.1 -74.08 -74.06 -74.04 -74.02 -74 -73.98 -73.96 -73.94 -73.92 -73.9

40.64

40.66

40.68

40.7

40.72

40.74

40.76

40.78

40.8

40.82

Fig. 6.3: Map of the bike-sharing stations: red points identify the stations
considered in our study.

The traffic pattern intuitively depends on several factors, such as the

time of the year (fewer people tend to use bikes in winter than in summer),

whether it is a weekday or weekend (people may tend to use bikes at more

regular times on weekdays and for shorter periods), and the position of the

considered station (and the facilities nearby), as shown in Figure 6.4, which

reports the traffic pattern for a station close to CUNY Baruch College during

the month of July 2015.

On weekdays, the rush hours around 8 a.m. and 5 p.m. can be identified

by the spikes in the demand for bikes; since the station is probably used by

many students and workers, there are more arrivals than departures in the

morning and more departures than arrivals in the evening. On Fridays, there

is a more homogeneous pattern in the afternoon, likely because many people

leave work early, and the demand is much lower during the weekend. These

patterns highlight that both the day of the week and the hour need to be

considered when calculating the arrival and departure rates.

156

6.4. DYNAMIC REBALANCING

0 6 12 18 24
0

10
20
30
40

E
ve
n
ts

p
er

h
o
u
r

0 6 12 18 24
0

10
20
30
40

0 6 12 18 24
0

10
20
30
40

0 6 12 18 24
0

10
20
30
40

0 6 12 18 24
0

10
20
30
40

hour

E
ve
n
ts

p
er

h
o
u
r

0 6 12 18 24
0

10
20
30
40

hour

0 6 12 18 24
0

10
20
30
40

hour

arrivals

departures

Monday Tuesday Wednesday Thursday

Friday Saturday Sunday

Fig. 6.4: Traffic patterns for the month of July 2015 at station 537 (Lexington
Ave. and East 24th St.)

Another important factor which is more difficult to predict is the weather,

as rain and snow may significantly affect the use of the bike sharing system:

predictions of future bike traffic can become more accurate by including

weather patterns [249]. Table 6.1 lists the effect of temperature, rain, and

snow on the daily bike traffic citywide. The cross-correlation between tem-

perature and traffic is particularly strong, as users tend to bike more during

the warmer months. Rain does not affect the system too heavily, as the de-

mand only drops by 10% on rainy days; snow has a stronger deterrent effect

on bikers, as it makes it more difficult to ride.

Weather pattern R2 Demand drop

Temperature 0.45 –
Rainfall 0.06 10%
Snowfall∗ 0.13 49%
Snow on the ground∗ 0.10 36%

∗ In the case of snow and snowfall, the
drop in the demand is calculated only
on the winter months (from December to
March)

Table 6.1: Effects of weather variables on the daily bike demand

157

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

-74.04 -74.03 -74.02 -74.01 -74 -73.99 -73.98 -73.97 -73.96 -73.95

Longitude

40.68

40.69

40.7

40.71

40.72

40.73

40.74

40.75

40.76

40.77

40.78

L
a

ti
tu

d
e

Fig. 6.5: Map of the demand for the month of May 2017 in the Lower Man-
hattan and Brooklyn area, color-coded from green (low demand) to red (high
demand). The most common routes are plotted in teal, with a darker shade
representing a more frequently taken route.

In order to account for the combined effect of snow and low temperature,

we only considered the winter months (from December to March), and the

demand still dropped by almost half on snowy days and by more than a

third when there was snow on the ground. However, this aspect is difficult

to predict and its integration in an analytical model is challenging.

This fits with the simplifying assumptions in Section 6.3. We assume

that the Poisson rates λv(·) and µv(·) for the arrival and departure process,

respectively, are piecewise constant at steps of duration Tr equal to one hour.

Hence, we can extract the value of the arrival and departure rates for each

period Ω, defined as the hour, day, and month of the year, for all the stations

in the network.

There are some other issues that need to be mentioned. Stations that

158

6.4. DYNAMIC REBALANCING

are empty or full prevent customers from taking or returning bikes, so that

the observed trip data may actually differ from the true demand and rather

represent a lower bound for it, causing a censoring problem. In addition, the

bike demand may increase thanks to the rebalancing operations, as people

would see that the system is becoming more efficient. Unfortunately, we

have no way to gauge the real demand from the available data, and the effect

of the current rebalancing operations prevents the extrapolation of the real

state of the system at any given time. However, the framework we propose

is general and can be easily adapted to different datasets. Thus, although

the numerical evaluation could be affected by the censoring issue, the model

and the proposed solution have general validity.

To obtain the data for the performance evaluation, we first fitted the

real data from the CitiBike dataset to our model (see Section 6.3), obtaining

the parameters for the BDP that models each station. The frame duration

that dictates the changes in the birth and death rates was chosen as Tr = 1

hr, while the slot duration was taken as Tp = 15 min. The demand map

for the month of May 2017 is shown in Figure 6.5. While in our previous

work [211,214] we directly used the real data to gauge our model, here we need

to take into account that incentives affect the arrival and departure rates,

which should be consistent with the application of the incentives. Since real

data does not satisfy this requirement, we generated artificial traces based

Parameter Value

η {0,0.05,0.1,0.2}
dthr 250 m
ε 0.01

preb 0.2
pthr 0.05
dmax 40 km
R {25,50}

Tr 1 h
Tp 15 min

Table 6.2: Incentive and rebalancing algorithm parameters

159

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

on the model derived from the real dataset. Note, however, that the model

resembles the real data with extreme accuracy.

In general, the rebalancing strategies we consider are still not entirely real-

istic; in particular, the rebalancing operation is assumed to be instantaneous,

while a real route covering multiple stations and a distance of several kilo-

meters would take most of an hour. However, this assumption is extremely

common in the literature, and we plan to remove it in future works.

6.5 Results

In our simulations, we used the traffic patterns from the first two weeks of

May 2017 to simulate traffic across the whole system as described above.

The parameters of the simulation are listed in Table 6.2; we considered both

the idealized version of the rebalancing algorithm, which we will call Single

from here on, and Dell’Amico et al.’s Destroy and Repair algorithm, or D&R

for short. We also used two different settings for the latter algorithm, com-

paring its performance with trucks whose capacity is 25 and 50 bikes. All

the versions of the algorithm were tested using both a Static and a Dynamic

strategy; in the static case, rebalancing is performed on all stations that are

not in the optimal state twice a day, at 3 a.m. and 3 p.m.. We considered

every possible combination of the rebalancing and incentive algorithm set-

tings for a total of 28 possible configurations (including the baseline options

with no incentives or no rebalancing).

6.5.1 Performance

In this section, we consider two measures of a bike sharing optimization

algorithm’s performance: namely, the fraction of time a station spends either

empty or full and the number of resulting failed trips. Although empty and

full stations and the resulting failures might have different effects, we do not

show them separately, as in all scenarios the fraction of downtime and failures

due to empty stations was close to 0.6. For the same reason, we only show

the performance of the Static and Dynamic strategies without showing each

160

6.5. RESULTS

None Static Dynamic

Rebalancing strategy

0

0.05

0.1

0.15

A
ve

ra
ge

 d
ow

nt
im

e

No incentive

=0.05

=0.1

=0.2

Fig. 6.6: Bar plot showing the fraction of downtime for the various rebalanc-
ing and incentive schemes

algorithm, as the performances were extremely similar for all versions.

Figure 6.6 shows the average fraction of downtime for the different con-

figurations: the dynamic strategy clearly has an edge over the static one,

although naturally both perform better than leaving the system without any

rebalancing. Interestingly, the strongest incentives can effectively substitute

the static strategy without incentives, and they allow the static strategy to

outperform the dynamic one without incentives. Another important trend is

the diminishing effect of incentives: with both rebalancing strategies, going

from no incentives to η = 0.05 results in a larger performance improvement

than going from η = 0.05 to η = 0.2.

Figure 6.7 shows the average fraction of failed trips for the different con-

figurations; in this case, the effectiveness of incentives is even clearer, as using

them can provide a significant performance boost to both rebalancing strate-

gies. However, using incentives without rebalancing is not very effective,

since the system will often be in “dangerous” states, with multiple stations

that are either almost full or almost empty, and the effect of slightly chang-

161

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

None Static Dynamic

Rebalancing strategy

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

A
ve

ra
ge

 fr
ac

tio
n

of
 fa

ile
d

tr
ip

s

No incentive

=0.05

=0.1

=0.2

Fig. 6.7: Bar plot showing the fraction of failed trips for the various rebal-
ancing and incentive schemes

ing the traffic pattern is not strong enough to compensate. The diminishing

returns of incentives are also even stronger here, since increasing η past 0.05

only brings a negligible performance improvement.

6.5.2 Rebalancing effort

Naturally, the dynamic rebalancing strategy has its costs: as Figure 6.8

shows, the dynamic strategy always results in more rebalancing actions than

the static one. However, the incentives also have a strong positive effect here:

aside from improving performance, they also significantly reduce the number

of rebalancing actions by making the system more stable and keeping it below

the rebalancing threshold.

This effect is also evident in the reduction of the total distance that

the rebalancing trucks cover every day, shown in Figure 6.9: although they

have almost no effect on the static system, incentives significantly reduce

the distance for the dynamic strategy, although with sharply diminishing

returns. This figure also shows the price of using a realistic scheme such

162

6.5. RESULTS

Static Dynamic (single) Dynamic (D&R) Dynamic (D&R, high cap.)

Rebalancing strategy

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
D

a
ily

 r
e
b
a
la

n
c
in

g
 a

c
ti
o
n
s

No incentive

=0.05

=0.1

=0.2

Fig. 6.8: Average number of rebalancing actions every day

as D&R, with trucks with finite capacity covering routes of limited lengths:

the distance the trucks have to cover to rebalance the system increases by

an order of magnitude with respect to the idealized Single algorithm. It is

interesting to note that increasing the capacity R of the rebalancing trucks

has a negligible effect on the total distance for the Static D&R scheme, while

it significantly reduces it for Dynamic D&R. This is probably due to the fact

that the dynamic scheme deploys the truck at high-congestion times, when

the system is badly out of balance and some stations need a lot of bikes,

straining the capacity of trucks.

Figure 6.10 confirms this analysis, as it shows that the number of deployed

trucks per rebalancing action slightly decreases for the Static D&R scheme

when capacity is doubled, while the effect on the dynamic scheme is more

significant; interestingly, the incentives seem to have almost no effect on this.

6.5.3 Cost analysis

As mentioned above, the best estimate we have for the cost of rebalancing

operation is 1.50$ per user ride; after multiplying the cost by the number

163

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

Static (single) Dynamic (single) Static (D&R) Dynamic (D&R)

Rebalancing strategy

0

500

1000

1500

2000

2500

3000

3500

4000

D
ai

ly
 c

ov
er

ed
 d

is
ta

nc
e

(k
m

)

No incentive

=0.05

=0.1

=0.2

No incentive (high cap.)

=0.05 (high cap.)

=0.1 (high cap.)

=0.2 (high cap.)

Fig. 6.9: Average distance covered daily by the rebalancing trucks

of daily rides, we get an average daily cost of 75000$ for static rebalancing.

We evaluate the cost of rebalancing the system dynamically by comparing

the total number of deployed trucks. The daily cost of static rebalancing

slightly decreases to 68800$ if the capacity of the trucks is increased to 50

bikes, but the cost of dynamic rebalancing is significantly higher, since the

improved performance of the system does not come for free: dynamic rebal-

ancing would cost 170800$ a day. Larger trucks would reduce the cost of

dynamic rebalancing significantly, as in that scenario the rebalancing costs

decrease to 105000$ per day.

The cost analysis for the incentive scheme is based on the value of the

prizes awarded by the CitiBike Angels program7: the rewards cost the com-

pany between 0.05 and 50 cents per incentivized ride, so we consider a 0.30$
average cost, using a conservative estimate of users’ prize choices. The aver-

age daily incentive cost is just 450$ if η = 0.05, 1500$ if η = 0.1, and 2300$
if η = 0.2. Since the cost is two orders of magnitude smaller than rebal-

ancing, even raising incentives significantly would still be significantly more

7https://www.citibikenyc.com/bikeangels/rewards

164

6.5. RESULTS

Single (static or dynamic) Static (D&R) Static(D&R, high cap.) Dynamic (D&R) Dynamic (D&R, high cap.)

Rebalancing strategy

0

5

10

15

20

25

30

35
A

v
e
ra

g
e
 n

u
m

b
e
r

o
f
d
e
p
lo

y
e
d
 t
ru

c
k
s

No incentive

=0.05

=0.1

=0.2

Fig. 6.10: Average number of deployed trucks in a rebalancing action

cost-effective. We remind the reader that, unlike the Angels program, the

incentives we model do not need users to take trips that go in the opposite

direction of the main flow of traffic during rush hour (targeting the so-called

reverse commuters), but simply encourage users to walk a short distance to a

less congested station instead of riding, and they could be extremely enticing

to users even without the promise of higher rewards.

The combination between rebalancing and incentives gives interesting re-

sults: Figures 6.11 and 6.12 show the effectiveness of the optimization as a

function of its daily operating cost. While using incentives always increases

the effectiveness of the optimization, it has no effect on the cost of the schemes

that entail no rebalancing or a static rebalancing strategy. However, their

effect on the costs of the dynamic strategy is striking: by significantly reduc-

ing the number of rebalancing actions the system needs to perform, the cost

of the optimization is reduced by more than a third.

165

CHAPTER 6. OPTIMIZING SMART CITY SERVICES WITH
DATA-DRIVEN TECHNIQUES

0 20 40 60 80 100 120 140 160 180

Daily system cost (k$)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
e
la

ti
v
e
 d

o
w

n
ti
m

e
 r

e
d
u
c
ti
o
n

=0
=0.05

=0.1

=0.2

=0

=0.05

=0.1

=0.2

=0

=0.05

=0.1

=0.2

=0

=0.05

=0.1
=0.2

=0

=0.05
=0.1

=0.2

No rebalancing

Static (D&R)

Static (D&R, high cap.)

Dynamic (D&R)

Dynamic (D&R, high cap.)

Fig. 6.11: Cost effectiveness of different configurations in terms of downtime
reduction

0 20 40 60 80 100 120 140 160 180

Daily system cost (k$)

0

0.1

0.2

0.3

0.4

0.5

R
e
la

ti
v
e
 f
a
il
e
d
 t
ri
p
 r

e
d
u
c
ti
o
n

=0.1
=0.2

=0.05
=0.1=0.2

=0
=0.05
=0.1
=0.2

=0

=0.05

=0

=0.05

=0.1
=0.2

=0

=0.05
=0.1

=0.2

=0

Fig. 6.12: Cost effectiveness of different configurations in terms of failed trip
reduction

166

Chapter 7

Exploiting Smart City data to

optimize the network

As we described in Chapter 6, Smart City services can be significantly im-

proved by applying machine learning and data-driven techniques; however,

the data that Smart City sensors provide are also a valuable source of infor-

mation for network optimization.

If Smart City data were used to expand the awareness of the network,

the relationship between the network and the Smart City sensors would truly

become symbiotic: the sensors would rely on the 5G network to relay their

information to the management servers and be the backbone of the city

services, while the network itself would be able to process a considerable

wealth of information from the Smart City and adapt itself more intelligently

to its environment. In this chapter, we describe the SymbioCity concept we

first advocated for in [250], presenting two case studies that exploit the traffic

data from the Transport for London (TfL) Urban Traffic Control (UTC)

network [251] in order to dynamically optimize network parameters such as

(i) the handover range expansion bias for Heterogeneous Networks (HetNets)

and (ii) the number of virtualized Mobility Management Entities (MMEs)

deployed city-wide.

Since handovers will be one of the major issues in 5G ultra-dense net-

works, the techniques we propose will reduce the handover completion time

167

CHAPTER 7. EXPLOITING SMART CITY DATA TO OPTIMIZE THE
NETWORK

and the well-known ping-pong effect [252,253] without losing the benefits of

micro cell offloading. The ability to choose the point in the trade-off between

handover frequency and offloading capability is going to be a key element in

the design of self-organizing 5G networks.1

7.1 Smart Cities and networks

In order for the Smart City to function, data need to flow from the sensors

to the central controller [202] and from the controller to the actuators and

smartphone apps that provide the services to citizens [256]. This communi-

cation largely relies on existing communication infrastructures, which have

been deployed for other uses and will have to make space for these new ser-

vices and applications [70]. As of today, the wireless access to sensor nodes

scattered over the city is mostly provided by cellular systems, which were

originally deployed to offer traditional human-based voice and data services.

This puts a significant strains on these networks [257], and efforts to separate

the services, either virtually by using network slicing or multi-tenancy [258]

or physically by deploying dedicated technologies, are under way.

The access technologies that are currently used in the Smart City context

can be roughly divided into the following three main families:

• Cellular systems. The almost ubiquitous service coverage and the com-

mercial and technological maturity of cellular systems make them a nat-

ural solution to provide connectivity to IoT end-devices. Indeed, many

telecom operators include bundles for M2M data traffic in their com-

mercial offer, aiming to corner the market on this new type of services.

However, current cellular network technologies have been designed for

traditional human-initiated wideband services, which are significantly

different in terms of traffic demands from Smart City services, and as

1The work in this section is the combination of several published papers: the concept
of a SymbioCity was published in the Transactions on Emerging Telecommunications
Technologies [250], while the first case study was presented at the IEEE International
Symposium on Wireless Communication Systems (ISWCS) 2017 and published in the
conference proceedings [254] and both case studies were published together in the IEEE
Internet of Things Journal [255].

168

7.1. SMART CITIES AND NETWORKS

the volume of M2M traffic grows the issues caused by this are becoming

evident [11].

• Short-range multi-hop technologies. Short-range technologies have al-

most complementary characteristics with respect to cellular technolo-

gies: they operate in the unlicensed 2.4 GHz frequency band and

are explicitly designed for communications with nearby devices, of-

fering a very limited coverage area (a few meters). Examples of stan-

dards in this category are IEEE 802.15.4 [259], Bluetooth Low Energy

(BLE) [260], and Z-Wave [261]. Most short-range technologies actu-

ally support multi-hop packet delivery, but the management of these

so-called mesh networks can be tricky and appears particularly imprac-

tical when extended to a wide urban area. Nonetheless, short-range

technologies can still be used to provide local coverage (e.g., within

buildings) or access to the main delivery network by means of oppor-

tunistic point-to-point relaying.

• Low-Power Wide-Area (LPWA). LPWA technologies have been re-

cently proposed as the ultimate solution to provide data access to

the IoT peripheral nodes. Specifically designed for M2M connectiv-

ity, they generally provide very low bitrates, low energy consumption,

and wide geographical coverage. Some relevant LPWA technologies

are LoRaWAN, Sigfox, and Ingenu [262, 263]. The evolution of such

technologies has so far been entirely separate from mainstream cellu-

lar systems, although one of the objectives of 5G is the convergence

of basically all services into a common platform. The Narrowband

IoT (NB-IoT) standard is a possible way to achieve this convergence;it

can take advantage of the widespread presence of the existing cellu-

lar infrastructure to support an LPWA network. As of today, LPWA

networks are growing in popularity and commercial interest, although

their transmission capacity remains limited and no single technology

can claim to be the de facto standard for machine-type communica-

tions.

169

CHAPTER 7. EXPLOITING SMART CITY DATA TO OPTIMIZE THE
NETWORK

Fig. 7.1: The SymbioCity vision: knowledge extracted from Smart City data
is exploited by the network to configure itself and improve the efficiency of
SON techniques.

7.2 The SymbioCity concept

Smart Cities can provide useful services and information to both city man-

agers and citizens [203]; however, services are still developed in a vertical

and ad hoc fashion, lacking interoperability and often relying on dedicated

servers and communication technologies [264]. This unstandardized and un-

systematic design strategy hinders the development of the Smart City and

does not fully exploit the IoT paradigm [200], making it harder to manage

the existing services and to design and implement new ones.

As we explained in Section 7.1, Smart City sensors communicate using ei-

ther dedicated low power networks or standard cellular networks [265]. Both

solutions have their advantages and drawbacks; using cellular networks re-

quires no additional infrastructure investment (place & play concept), but

170

7.2. THE SYMBIOCITY CONCEPT

dedicated networks separate the M2M traffic from traditional human com-

munications [11], making network management easier.

In SON [266–268], the core and access network monitor some key per-

formance metrics (such as inter-cell interference, traffic load, packet error

rate, etc.) and automatically optimize the network configuration. any SON

scheme depends on the capability of the system to dynamically adapt its be-

havior to the variations of the operational context. Unfortunately, inferring

the operational context is a complex process, in particular when observations

are limited to the state of the communication system itself, with no outside

information. Since one of the 5G design guidelines is the usage of big-data-

driven optimization [9,269] at various scales (e.g., fog computing [270]), any

additional source of information would significantly improve the efficiency of

SON schemes. In our vision, the flow of information and support between the

network and the Smart City sensors goes both ways: while the network allows

the Smart City to collect data and perform actions remotely, the information

provided by the Smart City sensors can be used to improve the performance

of communication systems, as shown in Figure 7.1. In a nutshell, the addi-

tional context information that can be obtained from the Smart City services

can be exploited by network operators to improve the QoS for all customers,

thus increasing the efficiency of the communication system. We called this

new paradigm SymbioCity, to emphasize the symbiotic relationship between

Smart City services and the underlying enabling technologies [271].

Despite the number and variety of access technologies that are currently

available to support Smart City services, they will still be hard-pressed to

sustain the massive deployment of the envisioned services. Many of their

shortcomings, however, can be avoided or mitigated by employing different

kinds of network optimization techniques. We now list the ones that we

believe would most benefit from the integration of Smart City data:

• Cell breathing. Green communications and networking have become

an important topic of research in the past few years; for example, cell

breathing, i.e., shutting down cells with low load, is an effective scheme

to reduce the environmental footprint of the network is . Furthermore,

adapting the cell coverage is a way to control the interference and trade

171

CHAPTER 7. EXPLOITING SMART CITY DATA TO OPTIMIZE THE
NETWORK

connection speed for cell capacity.

• HetNets. Future networks can provide high-speed wireless access by ex-

ploiting densification: instead of having a few powerful base stations,

network operators can place several pico and/or femto base stations

closer to the users, complementing the macro cell and exploiting the

spectrum more efficiently. This kind of network is called a HetNet.

However, the deployment of HetNets raises new problems. As net-

works tend to become more dense, handovers become more frequent

and need to be carefully managed to avoid load imbalances or resource

starvation [141]; avoiding inter-cell interference [272] is also crucial.

Therefore, the HetNet paradigm has the potential to increase the ca-

pacity of the communication system in a certain area, but it requires

more sophisticated management mechanisms [273,274] to fully exploit

its potential.

• Context-aware content distribution. The massive diffusion of smart-

phones and tablets has contributed to the increase of the demand for

mobile multimedia content. This demand can be further exacerbated

by the diffusion of video surveillance services at the urban level. Among

the different techniques proposed to address this challenge, a promis-

ing approach consists in proactively caching the most popular content

in different locations, closer to the final users, thus reducing the la-

tency and the traffic over the core network. However, content caching

should account for the users’ mobility and the nature of the events that

generate the traffic demand.

• Vehicular networking The strictly hierarchical structure of traditional

wireless networks can be augmented by direct communications between

cars and other IoT objects or traditional Internet devices. Accurate

and up-to-date knowledge about the traffic patterns [275] is essential

to make these approaches effective.

• Access & scheduling protocols. Massive access is going to be a problem

for the current cellular networks because of the predicted surge in M2M

172

7.2. THE SYMBIOCITY CONCEPT

traffic [11,276]. This problem calls for new access schemes and schedul-

ing mechanisms that need to predict, or at least quickly react to, the

waves of access requests from multiple devices. A possible approach

is to dynamically adapt the settings of some protocol parameters to

avoid network collapse. Other 5G applications, such as low-latency

transmissions, also need special solutions due to the very restrictive

constraints they impose [277]. These advanced access and scheduling

protocols need to be enhanced with context awareness and predictive

capabilities. Multi-homing. In most mobility scenarios, handovers and

cell load variations can make the capacity experienced by a mobile

user suddenly change; the integration of different access technologies

and the appropriate protocols can provide users with a smoother ex-

perience while allowing the network to rebalance the load [278], as we

described in Chapter 4.

Network Slicing. Different services within the Smart City ecosystem

would also require different solutions in terms of user mobility sup-

port, handover management, multimedia management (proactive con-

tent caching), storing, routing, multi-homing, broadcasting, etc. Net-

work slicing [279,280] is a possible way to provide multiple features over

a single network is n. Through network slicing, functionalities such as

specific mobility functions or anchor point migration will be configured

according to different types of provided services. In addition, other

aspects such as path configuration and load balancing need to be care-

fully set in order to handle Smart City services while maintaining a

high degree of freedom in handling mobility issues. Through slicing,

the network will be able to differentiate the service offered to M2M

traffic, which typically requires low delay and jitter and high packet

delivery ratio, and human-type traffic, more sensitive to bandwidth

and delay. This technique can also be used to adapt the network’s re-

sponse to changing requirements, giving a higher priority to emergency

services and redistributing the load across the backhaul links [281,282].

Table 7.1 shows a summary of the possible benefits of a fully developed

173

CHAPTER 7. EXPLOITING SMART CITY DATA TO OPTIMIZE THE
NETWORK

SymbioCity for various network optimization schemes. The networking ap-

plications of the Smart City data range from SON to service resilience in

stressful situations such as big events and natural disasters.

The first and foremost type of Smart City data is location: Smart City

services can help the network gauge the position of users, allowing it to

optimize cell breathing, coordinate interference and handovers in HetNets,

and support M2M traffic and low-delay applications at the same time. On

a longer timescale, the city’s event calendar can make the network aware of

large concentrations of people in advance, allowing service providers to take

measures to mitigate the interruption of service that has plagued such events

since mobile phones first became popular.

Another interesting development is the integration of location, traffic,

parking and public transport data to enable a true city-wide vehicular net-

work. The high speed and unpredictability of cars have always made long-

distance vehicular communication extremely complex, but recent efforts to

integrate V2V and V2I communication have had some success, and a Smart

City-based approach to the problem might be the last piece of the puzzle.

Parked cars, buses, and strategically placed access points can form the back-

bone of such a vehicular network, and Smart City data are necessary to

keep it from collapsing. City infrastructure, public transport, taxis and car

sharing services can also be exploited to give users multiple paths to the

Internet, giving them more resilience to channel outages and a more robust

transmission [278].

Some of these factors are already taken into account by network planners,

but the lack of a systematic infrastructure makes these optimizations hap-

Smart City Services Smart network techniques
SON Cell

breathing
HetNet
management

Context-aware
content distr.

Device to Device (D2D), Vehicle to Vehicle (V2V),
Vehicle to Infrastructure (V2I), Infrastructure to Vehicle (I2V)

Access &
scheduling

Multi-homing Service
resilience

Network
Slicing

Crowd mapping strong strong strong strong strong
Traffic map strong medium strong medium medium medium medium
Parking monitoring medium weak strong medium medium
Building automation medium weak medium medium strong
Logistics strong strong strong
Public transport/taxis medium medium medium medium strong strong
Patrolling
(dome cameras)

medium medium strong

Bike/car sharing medium medium medium medium
City event calendar strong strong strong strong medium

Table 7.1: Table of the possible usefulness of Smart City parameters for
network optimization.

174

7.3. ANALYZING TRAFFIC DATA

hazard and extremely dependent on human intervention. In our vision, the

SymbioCity should be able to integrate far more diverse data, in real time

and without human intervention. While the actual optimization logic will be

completely automated, its goals will not: in an environment as complex as a

city, network and city planners can have very different objectives and even

change them dynamically. For example, in a very polluted city, it might be

wise to optimize the network to be more eco-friendly and reduce power usage

at night, while using resources to improve vehicular communication during

rush hour and mitigate traffic jams. A modular, fully interoperable structure

should also be able to integrate new data and applications with ease: since

the city expands and adapts to its population, the SymbioCity should grow

with it, adapting its functions to the changing environment.

7.3 Analyzing traffic data

In the two case studies we present, we use traffic data from the city of London,

provided by TfL. The TfL UTC network is composed of more than 10000

road sensors, placed at all critical crossings around the city. The Split Cycle

Offset Optimization Technique (SCOOT) optimizer uses the traffic flow data

from the sensors to adapt the traffic light times to the traffic situation in

real time. TfL released the raw sensor data of the first three months of 2015

for the North and Central regions of London, and we use those data in our

optimization.

The sensors are actually very basic presence-detectors: every Ts = 250

ms, each sensor returns a 1 if it detects a vehicle in close proximity, and a

0 otherwise. The resulting binary signal (see Figure 7.2) is packetized and

sent to a central collector through different types of technologies.

These values are not directly provided by TfL. However, they can be

roughly estimated using the binary signals generated by the detectors. In-

deed, when a vehicle of length L moving at speed v passes over a sensor, the

detector will generate a run of about n = L
vTs

ones, followed by a few zeros

corresponding to the inter-vehicle spacing.

It is then possible to estimate the speed by counting n and assuming a

175

CHAPTER 7. EXPLOITING SMART CITY DATA TO OPTIMIZE THE
NETWORK

Fig. 7.2: Scheme of a traffic detector. Source: TfL.

reference vehicle length of L = 4 m:

v =
L

nTs
(7.1)

Figure 7.3 shows the evolution of the average speed measured by a single

sensor over a whole day (namely, January 23, 2015): as expected, the speed

of the vehicles is higher at night because of the lighter traffic, while during

rush hour (from 8 a.m. to 9 a.m. and from 5 p.m. to 6 p.m.) the average

speed drastically decreases. The spatial distribution of traffic is shown in

Figure 7.4.

For the second part of our data analysis, we assume that the Macro eNBs

are placed using a standard regular hexagonal tiling, with sides of 100 m.

We associate the detection of a car by a sensor in a cell with a handover,

and, given a time interval Tper equal to 1 hour, we estimate the number of

handovers Hm as the total number of detections from the different sensors

in cell m during Tper . Since the timescale is long and each vehicle is likely

detected only once when crossing the area (because of the relatively low den-

sity of sensors), the number of vehicles counted in the area in the period Tper

is roughly equal to the number of cell handovers performed by the vehicles

crossing that area in the considered time interval. This assumption is not

necessarily realistic for a single cell, but it is a valid approximation on the

city-wide scale and for timescales of minutes or hours. Moreover, we assume

that on average each vehicle carries an LTE device. This is a working assump-

tion based on the available data, and the integration of additional data such

as bus position and usage can be easily accommodated by the framework.

After computing Hm for all eNBs, the cells are partitioned into N areas,

176

7.3. ANALYZING TRAFFIC DATA

0 5 10 15 20

Time [hour]

0

1

2

3

4

5

6

7

8

9

10
S

p
e

e
d

 [
m

/s
]

Fig. 7.3: Hourly average speed for 23 January 2015 at the intersection be-
tween Homerton High St. and Daubeney Rd.

with N ∈ {1, 2, 3, 4}, each controlled by a different Virtual MME (vMME).

Given the estimated number of handovers at peak hours, 4 vMMEs should

be enough to maintain network stability. The results in Section 7.6 confirm

this hypothesis. These groups are obtained using a clustering algorithm that

divides the cells amongN vMMEs so that each vMME handles approximately

the same number of handovers. An example of this is shown in Figure 7.5.

We define Ii as the total number of handovers for vMME i, and Si,j as

the number of handovers from vMME i to vMME j. Ii is given by

Ii =
∑
m∈Ai

Hm (7.2)

where Ai is the set of cells controlled by vMME i. Si,j can be approximated

with this formula:

177

CHAPTER 7. EXPLOITING SMART CITY DATA TO OPTIMIZE THE
NETWORK

Fig. 7.4: Map of traffic in London from 12 p.m. to 1 p.m. of 23 January
2015. Free intersections are shown in green, heavily congested ones in red.

(a) N = 2 (b) N = 3 (c) N = 4

Fig. 7.5: Partition for a different number N of vMMEs. The colors indicate
the areas controlled by each vMME.

Si,j =
∑
m∈Ai

∑
n∈Aj

Im
6
em,n (7.3)

where the variable em,n ∈ {0, 1} indicates the number of sides that cells m

and n have in common.

7.4 State of the art

Mobility patterns are some of the most valuable pieces of information that

the Smart City can provide to the network. Mobility affects ultra-dense

network performance significantly, as suboptimal handover strategies both

(i) increase the Radio Access Network (RAN) and the Core Network (CN)

178

7.4. STATE OF THE ART

signaling and (ii) reduce the overall throughput. The research on mobil-

ity models [283,284] and their integration in communication protocols (e.g.,

Medium Access [285] or interference coordination [286]) is already ongoing,

and using real Smart City data as input for these techniques would reduce

the uncertainty compared to purely statistical approaches.

7.4.1 Handover in HetNets

In order to support the ever growing traffic demand within the limits of

the available spectrum, cellular networks are becoming denser and denser.

Micro-, femto- and pico cells have been a hot topic of research for the last

ten years [287] and are now being deployed all over the world. The main

challenges that the network densification is causing are (i) interference coor-

dination and (ii) cell association and mobility management. The SON ap-

proach is one of the most promising candidates for addressing these complex

issues [288].

We now concentrate on handover management; while handover algorithms

are well-studied and several decision criteria have been proposed in the lit-

erature [289], the most common ones are based on Received Signal Strength

(RSS). 3GPP defines a baseline handover procedure for LTE in [290], and

most studies concentrate on optimizing its parameters. The handover is trig-

gered if the difference between the serving and the neighbor cell RSS is larger

than a threshold value for at least one Time-to-Trigger (TTT). This param-

eter is meant to avoid unnecessary handovers due to fluctuations caused by

fast fading, but it introduces a delay in the association with the optimal

eNB, whose impact becomes more significant as the User Equipment (UE)

speed increases [291, 292]. An analytical model for optimizing the TTT is

introduced in [253].

Using the TTT to reduce ping-pong effect inevitably leads to a higher

handover delay. In order to overcome this trade-off, we need to exploit other

parameters, such as the hysteresis threshold. Biasing this threshold towards

femto cells is already a standard practice to favor offloading from the Macro

tier [287], and it is possible to adapt the bias based on the user mobility to

179

CHAPTER 7. EXPLOITING SMART CITY DATA TO OPTIMIZE THE
NETWORK

reduce the handover delay problem caused by the TTT. In [293], the authors

present a heuristic that reacts to late or early handovers and adapts the bias

for each pair of neighboring cells. Another work jointly adapts the TTT and

bias in a reactive manner [294].

7.4.2 Virtual MME

One of the main architectural trends in the evolution towards 5G is Network

Function Virtualization (NFV): instead of using specialized and costly hard-

ware in both the core and the access network, most of the processing is virtu-

alized and run on general-purpose machines in the cloud [70]. This allows a

larger flexibility and adaptability to the instantaneous load of the control and

user planes. The initialization cost of a new Virtual Machine (VM) is orders

of magnitude smaller than the cost of the equivalent worst-case dimensioned

hardware. A broad overview of the issues and other potential benefits of

NFV is presented in [295]. Although the research is still ongoing, prelimi-

nary results [296] show that it is possible to increase the energy efficiency of

the network without significant performance losses.

In the second part of this work, we focus on handover management in

virtualized MMEs. A first model of the performance of the different virtu-

alized CN functions is presented in [297], and the MME is identified as a

critical element for scalability of control plane functionalities. Virtualization

can also enable distributed MME designs [298].

An optimized design of a virtualized MME is given in [299], where the

number of vMME instances is adapted to the traffic load in an M2M scenario,

using a traffic model for CN-related events.

7.5 Asymmetrical Handover Bias Optimiza-

tion in HetNets

In this simulation we provide a technique to dynamically set the handover

range expansion bias of Femto eNBs (FeNBs) in order to improve the capacity

provided to the UE by the only Macro eNB (MeNB).

180

7.5. ASYMMETRICAL HANDOVER BIAS OPTIMIZATION IN
HETNETS

We focus on a scenario consisting of a MeNB with transmission power

PM
TX and a FeNB with transmission power P F

TX placed at a distance dMF

from each other. The two tiers transmit at different carrier frequencies (off-

band HetNets) to avoid cross-tier interference [300]: fM
0 for the MeNB and

fF
0 for the FeNB. Both tiers use the same bandwidth B. The parameters we

used in the simulation are summarized in Table 7.2.

We consider the following channel model, with Friis path loss and log-

normal shadowing:

PRX(t) = PTX(t)
ΨSHα(t)

PL(f0, β, d)
, (7.4)

where ΨSH is the shadowing gain, which is distributed as N (0, σ) when

measured in dB, α(t) is the multi-path fading gain, and PL(f0, β, d) is the

path loss attenuation with exponent β.

The Signal to Noise Ratio (SNR) at time t is denoted by γF (t) and γM(t)

for the FeNB and the MeNB respectively, and it is defined as:

γM(t) =
PH
RX

N0B
H ∈ {M,F}, (7.5)

where N0 is the noise power spectral density.

Parameter Value Description

PM
TX 46 dBm MeNB transmission power

PF
TX 26 dBm FeNB transmission power

N0 −143.82 dBW/MHz Noise power spectral density
fM
0 900 MHz MeNB carrier frequency
fF
0 1800 MHz FeNB carrier frequency
B 20 MHz Bandwidth [MHz]
dM−F 40 m Distance between MeNB and FeNB
dF−UE 10 m Distance between MeNB and FeNB
σ2
M 8 dB MeNB log-normal shadowing variance

σ2
F 4 dB FeNB log-normal shadowing variance

β2
M 4.28 MeNB path loss exponent

β2
F 3.76 FeNB path loss exponent

TTT 256 ms Handover Time-to-Trigger

Table 7.2: Parameters used in the simulation (taken from [290,301]).

181

CHAPTER 7. EXPLOITING SMART CITY DATA TO OPTIMIZE THE
NETWORK

Fig. 7.6: UE trajectory in the considered scenario.

For the sake of simplicity, we assume that one UE is attached in the

MeNB, moving as in Figure 7.6 with constant speed v. The UE speed at any

time is derived from the TfL data as explained in Section 7.3; the average

speed over the whole day is shown in Figure 7.3. We consider the UE to

move at the average speed of the traffic around it.

The SNR that the UE can perceive while moving depends on its distance

from the Macro and Femto eNBs. As we can see in Figure 7.7, the SNR from

the FeNB is higher than that from the MeNB when the UE is close to the

FeNB. The coverage area of the FeNB is defined as the area in which its SNR

is higher than any other cell’s.

In this scenario, the UE has to start a handover procedure towards the

FeNB when the condition

P F
RX(t) + γth > PM

RX(t) (7.6)

holds for a period of time equal to the TTT, as specified in [302]. Note that

in the simulation we have assume γth = 0 for the sake of simplicity. We hence

set TTT = 256 ms [290], which is high enough to avoid the ping-pong effect

but small enough to minimize the handover delay.

This TTT value improves the performance of the system considerably

when the traffic is moving slowly, but reduces the Theoretical Spectral Ef-

ficiency ν = log2(1 + γ) when the UE speed is too high. This is because a

fast-moving UE exploits the advantages of the FeNB for just a short time,

while it remains in the FeNB for TTT seconds after the condition (7.6) is

reversed.

182

7.5. ASYMMETRICAL HANDOVER BIAS OPTIMIZATION IN
HETNETS

0 2 4 6 8 10

Time [s]

40

50

60

70

80

90

100

110

120

S
N

R
 [
d
B

]

SNR Macro eNB

SNR Femto eNB

Fig. 7.7: γM(t) and γF (t) with a UE speed of 10 m/s. Multi-path fading is
not considered in this figure for reasons of visual clarity.

To make sure that the UE starts the handover towards the FeNB as soon

as (7.6) is verified, an asymmetrical handover bias can be applied to P F
RX .

When the handover is towards the FeNB, the bias needs to be positive to

anticipate the beginning of the procedure, while when the handover is from

the FeNB to the MeNB, the bias must be negative. We define the SNR

difference in position x as

∆(x) = γ̄F (x)− γ̄M(x). (7.7)

where γ̄F (x) and γ̄M(x) are the average SNRs of the two eNBs in position x.

Moreover, the trajectory of the UE draws a chord within the coverage area

of the FeNB, with linear coordinates −r and r with respect to the central

point of the chord, as shown in Figure 7.6. The optimal value of the bias is

then given by

B1 = ∆(−r − vTTT) (7.8)

B2 = −∆(r − vTTT). (7.9)

If the FeNB uses the optimal bias, the handover will be performed exactly

183

CHAPTER 7. EXPLOITING SMART CITY DATA TO OPTIMIZE THE
NETWORK

0 1 2 3 4 5 6 7

Time [s]

65

70

75

80

85

90

95

100

105

110

115

S
N

R
 [
d
B

]

SNR no Bias

SNR with Bias

Fig. 7.8: γM(t) and γF (t) with a UE speed of 16 m/s. Multi-path fading and
shadowing are not considered in this figure for reasons of visual clarity.

on the edge of its coverage area. Note that the handover bias is linearly pro-

portional to the UE’s speed. By applying B1 and B2 to P F
RX , (7.6) becomes

P F
RX(t) +B1 > PM

RX(t) (7.10)

while the condition to leave the FeNB is

PM
RX(t) +B2 > P F

RX(t) (7.11)

The difference between γ̄(x) with or without bias can be viewed in Figure

7.8. Since the Theoretical Spectral Efficiency ν depends logarithmically on

γ̄(x), using the handover bias will increase ν, fully exploiting the FeNB.

However, the bias from (7.10) and (7.11) does not take shadowing and

fading into account: while this is optimal in an ideal situation, real channels

often experience deep fading, and a bias value tailored to the path loss dif-

ference between the two base stations does not protect the UE from them.

In order to avoid resetting the timer every time the fading envelope exceeds

the path loss-based bias, we can add an additional bias term Bf , which does

184

7.5. ASYMMETRICAL HANDOVER BIAS OPTIMIZATION IN
HETNETS

not depend on the speed of the UE.

Bf = 10 log10

(
min

{
B : p

(
ψMαM

ψFαF

≥ B

)
≤ 1− pthr

})
(7.12)

B′
i = Bi +Bf , i ∈ {1, 2} (7.13)

The parameter pthr in (7.12) represents the amount of protection against

deep fading offered by the extra bias term Bf : a higher value of pthr will reset

the TTT timer less often, but a higher bias will lead to stronger ping-pong

effects. For this reason, we limit the total handover bias B′
i, i ∈ {1, 2} to a

maximum of 7 dB. The value of Bf is shown in Table 7.3 for different pthr,

which correspond to different percentiles. In the performance evaluation we

used pthr=0.68, which is equivalent to one standard deviation in the normal

approximation.

The improvement obtained by setting an asymmetric handover bias can

be seen in Figure 7.9. This figure is obtained calculating the average ν over

100 Monte Carlo simulations with independent shadowing and fading for a

UE speed from 4 m/s to 20 m/s.

In the simplest case, in which there is no FeNB and the UE is always

attached to the MeNB, νMeNB is essentially independent of the UE speed.

The second case is a legacy handover with no bias: as the plot shows, νnoBias

decreases drastically as speed increases, as the delay in the handover caused

by the TTT wastes most of the performance improvement from the FeNB. If

the UE speed is higher than 6 m/s, the handover is so late that the UE would

do better to disregard the existence of the FeNB completely: as soon as the

UE finishes the handover process, it has to start it again since it has already

moved outside of the FeNB coverage area. The improvement given by the

pthr 0.5 0.68 (σ) 0.75 0.95 (2σ) 0.99 (3σ)

Bf [dB] 0 3.8 5.4 13.7 21.4

Table 7.3: Values of Bf for different threshold probabilities.

185

CHAPTER 7. EXPLOITING SMART CITY DATA TO OPTIMIZE THE
NETWORK

4 6 8 10 12 14 16 18 20

Speed [m/s]

22.8

23

23.2

23.4

23.6

23.8

24

24.2

24.4

T
h
e
o
re

ti
c
a
l
S

p
e
c
tr

a
l
E

ff
ic

ie
n
c
y
 [
b
/s

/H
z
]

Pico Cell Off

No Bias

Loss-based Bias

Fading-aware Bias

Fig. 7.9: Theoretical Spectral Efficiency as a function of vehicular traffic
speed v.

fading-aware bias is clear: the FeNB can be exploited if the speed is lower

than 16 m/s, and there is a clear performance gain compared to the legacy

scheme. The path loss-based bias shows a smaller performance improvement

with respect to the legacy scheme, and handing over to the FeNB is already

detrimental to the UE at 10 m/s. This is due to the handover happening

too late, as even a large bias is not enough to balance the variations of the

channel due to fading. In general, νBias decreases when the speed increases,

since the time in the FeNB coverage area gets shorter, but the FeNB is always

fully exploited. Note that the effect of the 7 dB cap is only relevant at a speed

of 20 m/s.

The presence of the FeNB is detrimental to vehicular UEs in the legacy

scenario (no handover bias) if the speed of traffic passes 6 m/s, since νnoBias ≤
νMeNB. However, setting the optimal asymmetrical handover bias allows net-

work operators to keep the FeNB switched on until the speed reaches 16

m/s, benefiting both pedestrian and vehicular UEs, in any situation, since

νBias ≥ νMeNB at any speed.

We also performed a sensitivity analysis by adding a normally distributed

186

7.5. ASYMMETRICAL HANDOVER BIAS OPTIMIZATION IN
HETNETS

0 5 10 15 20

Time [hours]

0.5

1

1.5

2

2.5

3

3.5

P
a
th

 l
o
s
s
-b

a
s
e
d
 B

ia
s
 [
d
B

]

B
1

B
2

Fig. 7.10: Optimal path-loss handover bias throughout the day for 23 January
2015.

error with standard deviation σv to the velocity estimate used to determine

the bias and performing multiple independent simulations. The metric we

consider is the maximum value ∆ν of the difference in the spectral efficiency

for all the considered velocities. As shown in Table 7.4, the effects of the

errors in the speed estimation are negligible when compared to the random-

ness of the channel (represented by the standard deviation σ̂ in the table).

This makes the system robust to small variations of the speed of the flow of

traffic, as well as protecting it from imprecisions due to vehicles of different

lengths, i.e., the parameter L in (7.1).

The optimal asymmetrical handover bias over the course of a day for

a specific intersection can be calculated from the TfL data as explained in

σv/v 0.1 0.2 0.3

∆ν 0.05σ̂ 0.07σ̂ 0.09σ̂

Table 7.4: Effect of errors in the speed estimate on the system performance.
σ̂ is the standard deviation of ν across independent channel realizations.

187

CHAPTER 7. EXPLOITING SMART CITY DATA TO OPTIMIZE THE
NETWORK

Section 7.3; the speed evolution shown in Figure 7.3 results in the bias shown

in Figure 7.10. As expected, the handover bias is higher at nighttime, as the

average speed of traffic is far higher than during the day. For this reason we

can fix a threshold for the handover bias beyond which FeNB can be shut

down in order to save energy, leaving all traffic to the MeNB. If we fix this

threshold to 3 dB, then the FeNB will only turn off in the middle of the

night, when the load on the MeNB is very light.

7.6 Adaptive vMME Allocation

As already mentioned in Section 7.4, NFV allows to dynamically allocate

the resources needed by a cellular network. In traditional mobile networks

a single dedicated MME is usually used to manage millions of end users,

as those in the London metropolitan area [299]. With the NFV approach,

instead, it is possible to change the number of vMME instances on the fly,

adapting to the number of handovers that are expected to happen in a certain

interval.

In this application, we use data processed as in Section 7.3 to determine

the number of handovers that happen in the London area during a typical

day. We distinguish between the two kind of handovers that may happen in

LTE networks [303], i.e., intra-MME (X2–based) and inter-MME (S1–based)

handovers, since they require different procedures and different interactions

with the MMEs. The X2–based handover happens when the UE remains

in an area managed by the same MME and changes the eNB to which it is

attached. The S1–based procedure, instead, is used when the UE performs

a handover between two eNBs managed by different MMEs. The two proce-

dures are described in detail in [303]. In this paper, we consider the duration

of handover procedure as the interval from the instant in which the source

eNB (SeNB) triggers the handover to the instant in which SeNB receives

the RELEASE RESOURCES command. During this period the UE firstly expe-

riences a degraded channel, then receives packets with an increased latency,

thus the Quality of Service perceived by the final user decreases. The goal

of this application is to minimize the duration of these intervals, while using

188

7.6. ADAPTIVE VMME ALLOCATION

as few vMME instances as possible.

In particular, we model the duration of an X2–based handover handled by

vMME i as a function of the number of vMMEs N and of the total number

of handovers Ii that involve that vMME during an interval Tper:

tX2
HO(N, Ii) = 3tSe−Te + 2tTe−SM

(N) + tHR + τ(Ii) (7.14)

while the time required to complete an S1–based handover that involves

vMMEs i and j also depends on the number of handovers Ij that are served

by the target vMME j:

tS1HO(N, Ii, Ij) =τ1(Ii) + 3τ2(Ij)+

4tSe−SM
(N) + 4tTe−TM

(N)+

2tSM−TM
(N) + max{tTM−SM

(N)+

tSM−Se(N) + tHR, tTM−Se(N)}+

max{tTM−SM
(N) + τ1(Ii), tTM−Se}

(7.15)

In (7.14) and (7.15), tA−B(N) with A,B ∈ {Te, Se, SM , TM}2 is the latency

between the element A and the element B of the network. Unless both A

and B represent eNBs, then

tA−B(N) = ttx +
dN(A,B)

vf
, (7.16)

with ttx = 5 ms a factor that models the time spent in middleboxes and

tPROP = dN(A,B)/vf is the propagation delay, given by the ratio of the

distance between the two devices and the speed of light inside optical fibers3

(i.e., vf = 2 ·108 m/s). The dependence on the number of vMMEs N is in the

distance dN(A,B) between two network elements, that changes according to

the allocation of eNBs to the vMMEs. Instead, tTe−Se is the latency time

between two adjacent eNBs and does not depend on the relative position

2Te stands for Target eNB, Se stands for Source eNB, TM stands for Target MME and
SM stands for Source MME

3We assume that the backhaul network uses fiber-optic links.

189

CHAPTER 7. EXPLOITING SMART CITY DATA TO OPTIMIZE THE
NETWORK

N=1 N=2 N=3 N=4

×106

0

1

2

3

4

5

6

7

8
Hours 02-03

I

Sij

N=1 N=2 N=3 N=4

×106

0

1

2

3

4

5

6

7

8
Hours 12-13

I

Sij

N=1 N=2 N=3 N=4

×106

0

1

2

3

4

5

6

7

8
Hours 21-22

I

Sij

Fig. 7.11: Average number of X2–based and S1–based handovers per vMME
instance, for a different N and different time slots, during 01/23/2015.

between the eNBs and the MMEs, therefore, as in [304], it is modeled as a

constant latency tTe−Se = 2.5 ms. tHR is the duration of the interval from

which the UE actually disconnects from the SeNB and connects to the TeNB.

In [305], tHR is estimated to be in the order of 50 ms.

Finally, τ(Ii) is the time that a vMME takes to elaborate the received

command. In [299] the process of handover requests is modeled as a Markov

process. We adopt the same approach and in particular we model the vMME

as an M/D/1 queue, assuming a Poisson arrival process with arrival rate

λ = Ii/Tper and a deterministic service time Ts. Given these assumptions, it

is possible to compute the value of τ as the system time of a M/D/1 queue:

τ =
1

µ
+

ρ

2 · µ · (1− ρ)
, (7.17)

where µ = 1/Ts and ρ = λT are the service rate and the loading factor of

the vMME. The study in [297] uses the value Ts = 110 µs as service time

of a vMME, requiring considerable computational resources. Since our work

only considers vehicular UEs, and the adaptive nature of our system, over-

dimensioning each vMME would be a waste of resources: a number of slow

vMMEs can provide the same performance as a single powerful vMME during

rush hour, and the additional vMMEs can be turned off at less congested

190

7.6. ADAPTIVE VMME ALLOCATION

Time [hour]

0 5 10 15 20

S
e
rv

ic
e
 T

im
e
 [
s
]

0

0.005

0.01

0.015

0.02

0.025

N=1

N=2

N=3

N=4

Fig. 7.12: Average service time τ for different N , during 01/23/2015.

times, with a substantial reduction in server management costs and energetic

requirements. For this reason, we limit the processing power of our vMMEs

dedicated to vehicular handovers to the value of µ = 1000 handovers per

second.

Since our goal is to find the optimal number of vMMEs N that minimizes

the total duration of the handovers, we consider the objective function

JTper(N) =
N∑
i=1

(Ii−
∑
j ̸=i

Si,j)t
X2
HO(N, Ii)+

N∑
i=1

N∑
j=1,j ̸=i

Si,jt
S1
HO(N, Ii, Ij)+C(N),

(7.18)

where the sums consider all the handovers in a time slot Tper of one hour, and

C(N) is a penalty function representing the operational cost of N vMMEs.

We consider it to be a linear function of the number of vMMEs N , i.e.,

C(N) = kN .

The optimization problem uses the vehicular traffic data elaborated in

Section 7.3 to compute the value of Ii, Si,j and λ(Ii) = Ii/Tper for each

vMME i, j ∈ {1, · · · , N} and computes

191

CHAPTER 7. EXPLOITING SMART CITY DATA TO OPTIMIZE THE
NETWORK

Time [hour]

0 5 10 15 20

J
(N

)
×105

0

1

2

3

4

5

6

7

8

9

10

1 vMME

2 vMMEs

3 vMMEs

4 vMMEs

Fig. 7.13: Objective function J(N), for N ∈ {1, 2, 3, 4}, during 01/23/2015.

Nopt = min
N

JTper(N) (7.19)

for each interval Tper during a certain day.

In the following results we consider the data of January 23rd, 2015. Fig-

ure 7.11 shows the average number of handovers inside a single vMME in

different time slots. Notice that since we consider only the inter MME han-

dovers for the London area MMEs, then Sij is zero for N = 1. The number

of handovers in different time slots changes greatly, from 1.5 · 106 per hour

during the night to more than 7 · 106 at midday. This justifies a dynamic

allocation of resources; a single and dedicated MME that targets the worst

case scenario at midday would be wasted during the night. Instead the adap-

tive approach allows to use less powerful vMMEs, which are able to serve a

smaller number of handover requests, and have lower operational expenses

than dedicated hardware [295], but can be instantiated on the fly according

to the control traffic intensity.

In Figure 7.12, the average service time of the vMME instances is shown

for different values of N . It can be seen that during the night the values

have a small difference, but one or two vMME instances are not enough to

192

7.6. ADAPTIVE VMME ALLOCATION

Time [hour]

0 5 10 15 20

N
u
m

b
e
r

o
f
v
M

M
E

s

0

1

2

3

4

C(N)=N*0

C(N)=N*10000

C(N)=N*50000

C(N)=N*100000

Fig. 7.14: Nopt for different costs C(N), during 01/23/2015.

handle the load during the day. Figure 7.13, instead, shows the value of the

objective function J(N) throughout the whole day, assuming a cost factor

k = 0. In this case, one vMME instance is enough only from midnight to 5

a.m., and more instances (up to 3) must be allocated during the day to meet

the vehicular handover traffic load.

If we increase the value of k, as shown in Figure 7.14, the optimal num-

ber of vMMEs changes. At certain times using a lower number of vMMEs

becomes more convenient, because of the operational cost which is now ac-

counted for.

The adaptation of the number of vMMEs significantly improves the effi-

ciency of the system: while a worst-case dimensioned system would need 3

vMMEs at all times, the average number of active vMME instances for the

most aggressive adaptive system (k = 0) is 2.42, while a more conservative

system (k = 100000) only uses an average of 2.17 vMMEs.

193

Chapter 8

Conclusion

In this thesis, we presented an overview of how intelligence can be applied

to the networking stack. First, we defined intelligence as “an agent’s ability

to achieve goals in a wide range of environments” [1]; then, we applied this

definition in a communications context and described the necessary steps to

apply it.

The first step towards intelligence was prediction: by generating a pre-

diction of the future environment, a system can make more informed choices,

as we demonstrated in Chapter 4. Secondly, we present how RL can be a

general solution to several problems in the field; all our considerations are

supported by several case studies at different layers of the protocol stack.

Thirdly, we presented examples of how data integration in a Smart City en-

vironment can enhance the solutions we discuss, benefiting both the Smart

City services and the network. Finally, we presented how intelligence is fully

general, and the concepts and techniques we described can be applied to

improve networks of all kinds, not just in communications.

Naturally, the topic of intelligent networking is too complex and vast to

tackle at once, but we provide a framework to guide the discussion of future

intelligent networking protocol and make some tentative steps towards a

truly intelligent network. Over the next few years, we hope to extend it and

move towards an intelligent network that can support new applications and

technologies and fulfill the promises of 5G.

195

CHAPTER 8. CONCLUSION

8.1 Published works

The work presented in this thesis has led to the following publications, di-

vided by chapter and presented in chronological order:

Chapter 3

• F. Chiariotti, D. Del Testa, M. Polese, A. Zanella, G. M. Di Nunzio, and M.

Zorzi, “Learning Methods for Long-term Channel Gain Prediction in Wireless Net-

works,” in International Conference on Computing, Networking and Communica-

tions (ICNC), pp. 162-166, IEEE, Jan. 2017.

• E. Lovisotto, E. Vianello, D. Cazzaro, M. Polese, F. Chiariotti, D. Zucchetto, A.

Zanella, and M. Zorzi, “Cell Traffic Prediction Using Joint Spatio-temporal Infor-

mation,” in 6th International Conference on Modern Circuits and Systems Tech-

nologies (MOCAST), pp. 1-4, IEEE, Apr. 2017.

• M. Gentil, A. Galeazzi, F. Chiariotti, M. Polese, A. Zanella, and M. Zorzi, “A Deep

Neural Network Approach for Customized Prediction of Mobile Devices Discharg-

ing Time,” in IEEE Global Communications Conference (GLOBECOM), pp. 1-6,

IEEE, Dec. 2017.

Chapter 4

• F. Chiariotti, S. Kucera, and A. Zanella, “Method for Explicit Quality-of-Service

Support in 5G Networks,” Patent Application PCT/EP2017/082279 (pending),

Dec. 2017.

• F. Chiariotti, S. Kucera, A. Zanella, and H. Claussen, “LEAP: A Latency Control

Protocol for Multi-Path Data Delivery with Pre-Defined QoS Guarantees,” in IEEE

International Conference on Computer Communications (INFOCOM) Workshop

on Cloud Computing Systems, Networks, and Applications (CCSNA), pp. 166-171,

IEEE, Apr. 2018.

• F. Chiariotti, S. Kucera, A. Zanella, and H. Claussen, “LEAP: A Latency Control

Protocol for Multi-Path Data Delivery with Pre-Defined QoS Guarantees,” submit-

ted to IEEE/ACM Transactions on Networking.

Chapter 5

• F. Chiariotti, S. D’Aronco, L. Toni, and P. Frossard, “Online Learning Adaptation

Strategy for DASH Clients,” in 7th International Conference on Multimedia Systems

(MMSys), pp. 8:1-8:12, ACM, May 2016.

196

8.1. PUBLISHED WORKS

• M. Gadaleta, F. Chiariotti, M. Rossi and A. Zanella, “D-DASH: A Deep Q-Learning

Framework for DASH Video Streaming,” IEEE Transactions on Cognitive Commu-

nications and Networking, vol. 3, no. 4, pp. 703-718, Dec. 2017.

Chapter 6

• F. Chiariotti, C. Pielli, A. Zanella, and M. Zorzi, “A Dynamic Approach to Re-

balancing Bike-Sharing Systems,” MDPI Sensors, vol. 18, no. 2, art. 512, Jan.

2018.

• F. Chiariotti, C. Pielli, A. Cenedese, A. Zanella, and M. Zorzi, “Bike Sharing as

a Key Smart City Service: State of the Art and Future Developments,” in 7th In-

ternational Conference on Modern Circuits and Systems Technologies (MOCAST),

pp. 1-6, IEEE, May 2018.

• F. Chiariotti, C. Pielli, A. Zanella, and M. Zorzi, “A Dynamic Approach to Re-

balancing Bike-Sharing Systems,” submitted to IEEE Transactions on Intelligent

Transport Systems.

Chapter 7

• M. Dalla Cia, F. Mason, D. Peron, F. Chiariotti, M. Polese, T. Mahmoodi, M.

Zorzi, and A. Zanella, “Mobility-aware Handover Strategies in Smart Cities,” in

International Symposium on Wireless Communication Systems (ISWCS), pp. 438-

443, Aug. 2017.

• F. Chiariotti, M. Condoluci, T. Mahmoodi, and A. Zanella, “SymbioCity: Smart

Cities for Smarter Networks”. Transactions on Emerging Telecommunications Tech-

nologies, vol. 29, no. 1, pp. 1-16, Jan. 2018.

• M. Dalla Cia, F. Mason, D. Peron, F. Chiariotti, M. Polese, T. Mahmoodi, M.

Zorzi, and A. Zanella, “Using Smart City Data in 5G Self-Organizing Networks,”

IEEE Internet of Things Journal, vol. 5, no. 2, pp. 645-654, Apr. 2018.

Additional works not presented in this thesis

• F. Chiariotti, C. Pielli, N. Laurenti, A. Zanella, and M. Zorzi, “A Game-theoretic

Analysis of Energy-depleting Jamming Attacks,” in International Conference on

Computing, Networking and Communications (ICNC), pp. 100-104, IEEE, Jan.

2017.

• R. Coutinho, F. Chiariotti, D. Zucchetto, and A. Zanella, “Just-in-time Proac-

tive Caching for DASH Video Streaming,” in 17th Annual Mediterranean Ad Hoc

Networking Workshop (Med-Hoc-Net), pp. 1-6, IEEE, June 2018.

197

CHAPTER 8. CONCLUSION

• F. Chiariotti, C. Pielli, N. Laurenti, A. Zanella, and M. Zorzi, “A Game-Theoretic

Analysis of Energy-Depleting Jamming Attacks with a Learning Counterstrategy,”

submitted to Hindawi Wireless Communications and Mobile Computing.

• D. Talon, L. Attanasio, F. Chiariotti, M. Gadaleta, A. Zanella, and M. Rossi, “Com-

paring DASH Adaptation Algorithms in a Real Network Environment,” submitted

to IEEE Wireless Communications and Networks Conference (WCNC), IEEE, Apr.

2019.

• R. Zanol, F. Chiariotti, and A. Zanella, “Drone Mapping Through Multi-agent Re-

inforcement Learning,” submitted to IEEE Wireless Communications and Networks

Conference (WCNC), IEEE, Apr. 2019.

• M. Polese, F. Chiariotti, A. Zanella, and M. Zorzi, “A Survey of Recent Advances

in Transport Layer Protocols,” submitted to IEEE Communications Surveys &

Tutorials.

198

Bibliography

[1] S. Legg and M. Hutter, “A collection of definitions of intelligence,” Frontiers in
Artificial Intelligence and applications, vol. 157, pp. 17–24, June 2007.

[2] S. Legg and M. Hutter, “Universal intelligence: A definition of machine intelligence,”
Minds and Machines, vol. 17, pp. 391–444, Dec. 2007.

[3] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, “Machine learning
paradigms for next-generation wireless networks,” IEEE Wireless Communications,
vol. 24, pp. 98–105, Apr. 2017.

[4] S. Glisic, “Self-Organizing Networks,” in Advanced Wireless Networks: Technology
and Business Models, Third Edition, pp. 478–485, Wiley Online Library, May 2016.

[5] O. Iacoboaiea, B. Sayrac, S. B. Jemaa, and P. Bianchi, “SON conflict diagnosis
in heterogeneous networks,” in 26th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC), pp. 1459–1463, IEEE, Aug.
2015.

[6] O. C. Iacoboaiea, B. Sayrac, S. Ben Jemaa, and P. Bianchi, “SON conflict resolution
using reinforcement learning with state aggregation,” in 4th Workshop on All Things
Cellular: Operations, Applications, & Challenges, pp. 15–20, ACM, Aug. 2014.

[7] N. Zia, S. S. Mwanje, and A. Mitschele-Thiel, “A policy based conflict resolution
mechanism for MLB and MRO in LTE self-optimizing networks,” in Symposium on
Computers and Communication (ISCC), pp. 1–6, IEEE, June 2014.

[8] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong, and J. C.
Zhang, “What will 5G be?,” IEEE Journal on Selected Areas in Communications,
vol. 32, pp. 1065–1082, June 2014.

[9] A. Imran, A. Zoha, and A. Abu-Dayya, “Challenges in 5G: how to empower SON
with big data for enabling 5G,” IEEE Network, vol. 28, pp. 27–33, Nov. 2014.

[10] Cisco Visual Networking Index, “Global mobile data traffic forecast update, 2015–
2020,” Cisco White Paper, Feb. 2016.

[11] A. Biral, M. Centenaro, A. Zanella, L. Vangelista, and M. Zorzi, “The challenges
of M2M massive access in wireless cellular networks,” Digital Communications and
Networks, vol. 1, pp. 1–19, Feb. 2015.

[12] J. Hoadley and P. Maveddat, “Enabling small cell deployment with HetNet,” IEEE
Wireless Communications, vol. 19, pp. 4–5, Apr. 2012.

199

BIBLIOGRAPHY

[13] Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave com-
munications (mmWave) for 5G: opportunities and challenges,” Wireless Networks,
vol. 21, pp. 2657–2676, Nov. 2015.

[14] M. Zorzi, A. Zanella, A. Testolin, M. D. F. D. Grazia, and M. Zorzi, “Cognition-
based networks: A new perspective on network optimization using learning and
distributed intelligence,” IEEE Access, vol. 3, pp. 1512–1530, Aug. 2015.

[15] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press
Cambridge, Sep. 1998.

[16] Y. Dong, N. V. Chawla, and A. Swami, “Metapath2vec: Scalable representation
learning for heterogeneous networks,” in 23rd ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD), pp. 135–144, ACM, Aug. 2017.

[17] D. Laselva, M. Mattina, T. E. Kolding, J. Hui, L. Liu, and A. Weber, “Advance-
ments of QoE assessment and optimization in mobile networks in the machine era,”
in Wireless Communications and Networking Conference Workshops (WCNCW),
pp. 101–106, IEEE, Apr. 2018.

[18] D. Sabella, P. Serrano, G. Stea, A. Virdis, I. Tinnirello, F. Giuliano, D. Garlisi,
P. Vlacheas, P. Demestichas, V. Foteinos, et al., “A flexible and reconfigurable
5G networking architecture based on context and content information,” in 26th
European Conference on Networks and Communications (EuCNC), pp. 1–6, IEEE,
June 2017.

[19] J. Ma and J. C. Cheng, “Estimation of the building energy use intensity in the
urban scale by integrating GIS and big data technology,” Applied Energy, vol. 183,
pp. 182–192, Dec. 2016.

[20] F. Herrema, V. Treve, R. Curran, and H. Visser, “Evaluation of feasible machine
learning techniques for predicting the time to fly and aircraft speed profile on fi-
nal approach,” in 7th International Conference for Research in Air Transportation,
pp. 1–8, June 2016.

[21] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis, “Optimal and
autonomous control using reinforcement learning: A survey,” IEEE transactions on
neural networks and learning systems, vol. 29, pp. 2042–2062, June 2018.

[22] M. A. Fischler and O. Firschein, Intelligence: the eye, the brain, and the computer.
Addison-Wesley, Jan. 1987.

[23] A. Clark, “Expecting the world: Perception, prediction, and the origins of human
knowledge,” The Journal of Philosophy, vol. 110, pp. 469–496, Sep. 2013.

[24] N. Bui, M. Cesana, S. A. Hosseini, Q. Liao, I. Malanchini, and J. Widmer, “A
survey of anticipatory mobile networking: Context-based classification, prediction
methodologies, and optimization techniques,” IEEE Communications Surveys &
Tutorials, vol. 19, pp. 1790–1821, July 2017.

[25] L. Guang, J. Plosila, and H. Tenhunen, “From self-aware building blocks to self-
organizing systems with hierarchical agent-based adaptation,” in International Con-
ference on Hardware/Software Codesign and System Synthesis, p. 23, ACM, Oct.
2014.

[26] P. S. Churchland and T. J. Sejnowski, The computational brain. MIT press, 2016.

200

BIBLIOGRAPHY

[27] D. Geiger and D. Heckerman, “A characterization of the Dirichlet distribution with
application to Learning Bayesian Networks,” in 11th Conference on Uncertainty in
Artificial Intelligence (UAI), pp. 196–207, ACM, Aug. 1995.

[28] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert,
C. W. Clark, B. R. Miller, and B. V. Saunders, “Beta function,” in NIST Digital
Library of Mathematical Functions.

[29] V. N. Vapnik, The Nature of Statistical Learning Theory. Springer Science & Busi-
ness Media, June 2013.

[30] H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola, and V. Vapnik, “Support
Vector Regression Machines,” Advances in Neural Information Processing Systems,
pp. 155–161, Sep. 1997.

[31] A. J. Smola and B. Schölkopf, “A tutorial on Support Vector Regression,” Statistics
and computing, vol. 14, pp. 199–222, Aug. 2004.

[32] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,
pp. 273–297, Sep. 1995.

[33] W. Karush, “Minima of functions of several variables with inequalities as side con-
straints,” Master’s thesis, Dept. of Mathematics, Univ. of Chicago, 1939.

[34] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Traces and Emergence
of Nonlinear Programming, pp. 247–258, Springer Basel, Nov. 2013.

[35] D. F. Andrews, “A robust method for multiple linear regression,” Technometrics,
vol. 16, pp. 523–531, Nov. 1974.

[36] S. Weisberg, Applied linear regression. John Wiley & Sons, 2005.

[37] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for nonorthog-
onal problems,” Technometrics, vol. 12, pp. 55–67, Feb. 1970.

[38] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the
Royal Statistical Society, Series B (Methodological), vol. 58, pp. 267–288, Jan. 1996.

[39] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,”
Journal of the Royal Statistical Society, Series B (Methodological), vol. 67, pp. 301–
320, Apr. 2005.

[40] T. K. Ho, “The random subspace method for constructing decision forests,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 832–844,
Aug. 1998.

[41] W. N. Venables and B. D. Ripley, “Tree-based methods,” in Modern Applied Statis-
tics with S, pp. 251–269, Springer, Mar. 2002.

[42] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric re-
gression,” The American Statistician, vol. 46, pp. 175–185, Aug. 1992.

[43] Y. Lin and Y. Jeon, “Random forests and adaptive nearest neighbors,” Journal of
the American Statistical Association, vol. 101, pp. 578–590, June 2006.

[44] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and
organization in the brain.,” Psychological review, vol. 65, p. 386, Nov. 1958.

201

BIBLIOGRAPHY

[45] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, p. 533, Oct. 1986.

[46] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks: perceptron,
madaline, and backpropagation,” Proceedings of the IEEE, vol. 78, pp. 1415–1442,
Sep. 1990.

[47] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444,
Mar. 2015.

[48] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks,
vol. 61, pp. 85–117, Jan. 2015.

[49] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, Nov. 2016.

[50] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise timing with
LSTM recurrent networks,” Journal of Machine Learning Research, vol. 3, pp. 115–
143, Aug. 2002.

[51] P. J. Werbos, “Backpropagation through time: what it does and how to do it,”
Proceedings of the IEEE, vol. 78, pp. 1550–1560, Oct. 1990.

[52] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal
of Basic Engineering, vol. 82, pp. 35–45, Mar. 1960.

[53] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in
speech recognition,” Proceedings of the IEEE, vol. 77, pp. 257–286, Feb. 1989.

[54] R. Mehra, “On the identification of variances and adaptive Kalman filtering,” IEEE
Transactions on Automatic Control, vol. 15, pp. 175–184, Apr. 1970.

[55] M. R. Rajamani and J. B. Rawlings, “Estimation of the disturbance structure from
data using semidefinite programming and optimal weighting,” Automatica, vol. 45,
pp. 142–148, Jan. 2009.

[56] E. A. Wan and R. Van Der Merwe, “The unscented kalman filter,” Kalman filtering
and neural networks, pp. 221–280, Oct. 2001.

[57] C. J. C. H. Watkins, Learning from delayed rewards. PhD thesis, King’s College,
Cambridge, 1989.

[58] G. Tesauro, “Temporal difference learning and td-gammon,” Communications of the
ACM, vol. 38, pp. 58–68, Mar. 1995.

[59] M. Campbell, A. J. Hoane Jr, and F.-h. Hsu, “Deep blue,” Artificial intelligence,
vol. 134, pp. 57–83, Jan. 2002.

[60] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, pp. 529–533, Feb. 2015.

[61] J. X. Chen, “The evolution of computing: AlphaGo,” Computing in Science &
Engineering, vol. 18, pp. 4–7, July 2016.

[62] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, et al., “Mastering chess and shogi by self-play
with a general reinforcement learning algorithm,” arXiv preprint arXiv:1712.01815,
Dec. 2017.

202

BIBLIOGRAPHY

[63] I. Bratko, “AlphaZero–what’s missing?,” Informatica, vol. 42, Mar. 2018.

[64] J. Boyan and M. Littman, “A distributed reinforcement learning scheme for net-
work routing,” in International Workshop on Applications of Neural Networks to
Telecommunications, pp. 55–61, Psychology Press, June 2013.

[65] R. Bellman, “A Markovian decision process,” Indiana University Mathematics Jour-
nal, vol. 6, pp. 679–684, Jan. 1957.

[66] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, pp. 279–292,
May 1992.

[67] M. Kearns and S. Singh, “Finite-sample convergence rates for Q-learning and in-
direct algorithms,” Advances in Neural Information Processing Systems, vol. 11,
pp. 996–1002, Apr. 1999.

[68] L.-J. Lin, “Reinforcement learning for robots using neural networks,” tech. rep.,
DTIC Document, 1993.

[69] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Inter-
national Conference on Learning Representations (ICLR), vol. 5, pp. 1–15, May
2015.

[70] P. K. Agyapong, M. Iwamura, D. Staehle, W. Kiess, and A. Benjebbour, “Design
considerations for a 5G network architecture,” IEEE Communications Magazine,
vol. 52, pp. 65–75, Nov. 2014.

[71] S. Mekki and S. Valentin, “Anticipatory quality adaptation for mobile streaming:
Fluent video by channel prediction,” in 16th International Symposium on a World
of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–3, IEEE, June
2015.

[72] G. P. Perrucci, F. H. P. Fitzek, and J. Widmer, “Survey on energy consumption en-
tities on the smartphone platform,” in IEEE 73rd Vehicular Technology Conference
(VTC Spring), pp. 1–6, May 2011.

[73] X. Zhao, Y. Guo, Q. Feng, and X. Chen, “A system context-aware approach for
battery lifetime prediction in smart phones,” in ACM Symposium on Applied Com-
puting (SAC), pp. 641–646, Mar. 2011.

[74] S. Zhou and G. B. Giannakis, “How accurate channel prediction needs to be for
transmit-beamforming with adaptive modulation over Rayleigh MIMO channels?,”
IEEE Transactions on Wireless Communications, vol. 3, pp. 1285–1294, July 2004.

[75] Q. Liao, S. Valentin, and S. Stanczak, “Channel gain prediction in wireless networks
based on spatial-temporal correlation,” in 16th International Workshop on Signal
Processing Advances in Wireless Communications (SPAWC), pp. 400–404, IEEE,
June 2015.

[76] F. Chiariotti, D. Del Testa, M. Polese, A. Zanella, G. M. Di Nunzio, and M. Zorzi,
“Learning methods for long-term channel gain prediction in wireless networks,” in
International Conference on Computing, Networking and Communications (ICNC),
pp. 162–166, IEEE, Jan. 2017.

[77] L. Dong, G. Xu, and H. Ling, “Prediction of fast fading mobile radio channels
in wideband communication systems,” in Global Telecommunications Conference
(GLOBECOM), vol. 6, pp. 3287–3291, IEEE, Nov. 2001.

203

BIBLIOGRAPHY

[78] Z. Shen, J. G. Andrews, and B. L. Evans, “Short range wireless channel predic-
tion using local information,” in 37th Asilomar Conference on Signals, Systems and
Computers, vol. 1, pp. 1147–1151, IEEE, Nov. 2003.

[79] I. C. Wong, A. Forenza, R. W. Heath, and B. L. Evans, “Long range channel predic-
tion for adaptive OFDM systems,” in 38th Asilomar Conference on Signals, Systems
and Computers, vol. 1, pp. 732–736, IEEE, Nov. 2004.

[80] D. Jarinová, “On autoregressive model order for long-range prediction of fast fading
wireless channel,” Telecommunication Systems, vol. 52, pp. 1533–1539, Mar. 2013.

[81] S. Ramanan and J. M. Walsh, “Distributed estimation of channel gains in Wireless
Sensor Networks,” IEEE Transactions on Signal Processing, vol. 58, pp. 3097–3107,
June 2010.

[82] P. Demestichas, A. Katidiotis, K. A. Tsagkaris, E. F. Adamopoulou, and K. P.
Demestichas, “Enhancing channel estimation in Cognitive Radio systems by means
of Bayesian networks,” Wireless personal communications, vol. 49, pp. 87–105, Apr.
2009.

[83] E. F. Flushing, J. Nagi, and G. A. Di Caro, “A mobility-assisted protocol for su-
pervised learning of link quality estimates in wireless networks,” in International
Conference on Computing, Networking and Communications (ICNC), pp. 137–143,
IEEE, Jan. 2012.

[84] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in Modeling and
Tools for Network Simulation, pp. 15–34, Springer, June 2010.

[85] N. Baldo, M. Miozzo, M. Requena-Esteso, and J. Nin-Guerrero, “An open source
product-oriented LTE network simulator based on ns-3,” in 14th International Con-
ference on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
pp. 293–298, ACM, Oct. 2011.

[86] 3GPP Technical Specification 36.104, “Evolved Universal Terrestrial Radio Access
(E-UTRA); Base Station (BS) radio transmission and reception,” LTE ETSI TS,
Mar. 2018.

[87] J. Chon and H. Cha, “LifeMap: A smartphone-based context provider for location-
based services,” IEEE Pervasive Computing, vol. 10, pp. 58–67, Apr. 2011.

[88] M. Gentil, A. Galeazzi, F. Chiariotti, M. Polese, A. Zanella, and M. Zorzi, “A deep
neural network approach for customized prediction of mobile devices discharging
time,” in Global Communications Conference (GLOBECOM), pp. 1–6, IEEE, Dec.
2017.

[89] O. Gérard, J.-N. Patillon, and F. D’Alché-Buc, “Discharge prediction of rechargeable
batteries with neural networks,” Integrated Computer-Aided Engineering, vol. 6,
pp. 41–52, Jan. 1999.

[90] Y. Wen, R. Wolski, and C. Krintz, “Online prediction of battery lifetime for em-
bedded and mobile devices,” in International Workshop on Power-Aware Computer
Systems, pp. 57–72, Springer, Dec. 2003.

[91] E. A. Oliver and S. Keshav, “An empirical approach to smartphone energy level
prediction,” in 13th International Conference on Ubiquitous Computing (UbiComp),
pp. 345–354, Sep. 2011.

204

BIBLIOGRAPHY

[92] D. N. Rakhmatov and S. B. Vrudhula, “An analytical high-level battery model for
use in energy management of portable electronic systems,” in IEEE/ACM interna-
tional conference on Computer-aided design, pp. 488–493, IEEE, Nov. 2001.

[93] S. B. Kotsiantis, D. Kanellopoulos, and P. E. Pintelas, “Data preprocessing for
supervised leaning,” International Journal of Computer, Electrical, Automation,
Control and Information Engineering, vol. 1, pp. 4091 – 4096, Dec. 2007.

[94] R. Anderson-Sprecher, “Model comparisons and R2,” The American Statistician,
vol. 48, pp. 113–117, Apr. 1994.

[95] G. Andrew and J. Gao, “Scalable training of L1-regularized log-linear models,” in
24th International Conference on Machine Learning, pp. 33–40, ACM, June 2007.

[96] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, Oct. 2011.

[97] Y. Chon, H. Shin, E. Talipov, and H. Cha, “Evaluating mobility models for tempo-
ral prediction with high-granularity mobility data,” in International Conference on
Pervasive Computing and Communications, pp. 206–212, IEEE, Mar. 2012.

[98] A. Acquisti, L. Brandimarte, and G. Loewenstein, “Privacy and human behavior in
the age of information,” Science, vol. 347, pp. 509–514, January 2015.

[99] H. Almuhimedi, F. Schaub, N. Sadeh, I. Adjerid, A. Acquisti, J. Gluck, L. F. Cranor,
and Y. Agarwal, “Your location has been shared 5,398 times!: A field study on
mobile app privacy nudging,” in 33rd Annual ACM Conference on Human Factors
in Computing Systems, pp. 787–796, ACM, Apr. 2015.

[100] E. Lovisotto, E. Vianello, D. Cazzaro, M. Polese, F. Chiariotti, D. Zucchetto,
A. Zanella, and M. Zorzi, “Cell traffic prediction using joint spatio-temporal in-
formation,” in 6th International Conference on Modern Circuits and Systems Tech-
nologies (MOCAST), pp. 1–4, IEEE, Apr. 2017.

[101] R. Li, Z. Zhao, X. Zhou, and H. Zhang, “Energy savings scheme in Radio Access
Networks via compressive sensing-based traffic load prediction,” Transactions on
Emerging Telecommunications Technologies, vol. 25, pp. 468–478, Nov. 2012.

[102] S. E. Hammami, H. Afifi, M. Marot, and V. Gauthier, “Network planning tool
based on network classification and load prediction,” in Wireless Communications
and Networking Conference (WCNC), pp. 1–6, IEEE, Apr. 2016.

[103] U. Paul, A. P. Subramanian, M. M. Buddhikot, and S. R. Das, “Understanding
traffic dynamics in cellular data networks,” in 30th International Conference on
Computer Communications (INFOCOM), pp. 882–890, IEEE, Apr. 2011.

[104] R. Li, Z. Zhao, X. Chen, J. Palicot, and H. Zhang, “TACT: a transfer actor-critic
learning framework for energy saving in cellular Radio Access Networks,” IEEE
Transactions on Wireless Communications, vol. 13, pp. 2000–2011, Apr. 2014.

[105] S. Scellato, M. Musolesi, C. Mascolo, V. Latora, and A. T. Campbell, “NextPlace: a
spatio-temporal prediction framework for pervasive systems,” in International Con-
ference on Pervasive Computing, pp. 152–169, Springer, May 2011.

205

BIBLIOGRAPHY

[106] H. Gao, J. Tang, and H. Liu, “Mobile location prediction in spatio-temporal con-
text,” in Nokia Mobile Data Challenge Workshop, vol. 41, pp. 1–4, June 2012.

[107] W.-S. Soh and H. S. Kim, “QoS provisioning in cellular networks based on mobility
prediction techniques,” IEEE Communications Magazine, vol. 41, pp. 86–92, Jan.
2003.

[108] O. Ohashi and L. Torgo, “Wind speed forecasting using spatio-temporal indicators,”
in 20th European Conference on Artificial Intelligence (ECAI), pp. 975–980, IOS
Press, Aug. 2012.

[109] N. R. Draper and H. Smith, Applied regression analysis. John Wiley & Sons, May
1998.

[110] M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, “5G-enabled tactile
internet,” IEEE Journal on Selected Areas in Communications, vol. 34, pp. 460–
473, Mar. 2016.

[111] M. Dohler, T. Mahmoodi, M. A. Lema, M. Condoluci, F. Sardis, K. Antonakoglou,
and H. Aghvami, “Internet of Skills, where Robotics meets AI, 5G and the Tactile In-
ternet,” in 26th European Conference on Networks and Communications (EuCNC),
pp. 1–5, IEEE, June 2017.

[112] C. J. Hansen, “WiGiG: Multi-gigabit wireless communications in the 60 GHz band,”
IEEE Wireless Communications, vol. 18, pp. 6–7, Dec. 2011.

[113] C. Yu, Y. Xu, B. Liu, and Y. Liu, ““Can you SEE me now?” A measurement study
of mobile video calls,” in International Conference on Computer Communications
(INFOCOM), pp. 1456–1464, IEEE, Apr. 2014.

[114] J. Wu, B. Cheng, C. Yuen, N.-M. Cheung, and J. Chen, “Trading delay for distortion
in one-way video communication over the internet,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 26, pp. 711–723, Apr. 2016.

[115] A. A. Khalek, C. Caramanis, and R. W. Heath, “Delay-constrained video transmis-
sion: Quality-driven resource allocation and scheduling,” IEEE Journal of Selected
Topics in Signal Processing, vol. 9, pp. 60–75, Feb. 2015.

[116] M. Li, K. Arning, L. Vervier, M. Ziefle, and L. Kobbelt, “Influence of temporal
delay and display update rate in an augmented reality application scenario,” in 14th
International Conference on Mobile and Ubiquitous Multimedia, pp. 278–286, ACM,
Nov. 2015.

[117] N. Narendra, P. K. Reddy, K. Kumar, A. Varghese, P. Swamy, G. Chandra, and
P. Balamuralidhar, “Mobicostream: Real-time collaborative video upstream for mo-
bile augmented reality applications,” in International Conference on Advanced Net-
works and Telecommuncations Systems (ANTS), pp. 1–6, IEEE, Dec. 2014.

[118] S. Shailendra, K. Aniruddh, B. Panigrahi, and A. Simha, “Multipath TCP path
scheduler for drones: A segregation of control and user data,” in 18th International
Symposium on Mobile Ad Hoc Networking and Computing, p. 40, ACM, July 2017.

[119] P. Millan, L. Orihuela, I. Jurado, and F. R. Rubio, “Formation control of au-
tonomous underwater vehicles subject to communication delays,” IEEE Transac-
tions on Control Systems Technology, vol. 22, pp. 770–777, Mar. 2014.

206

BIBLIOGRAPHY

[120] P. Fernandes and U. Nunes, “Platooning with IVC-enabled autonomous vehicles:
Strategies to mitigate communication delays, improve safety and traffic flow,” IEEE
Transactions on Intelligent Transportation Systems, vol. 13, pp. 91–106, Mar. 2012.

[121] M. di Bernardo, A. Salvi, and S. Santini, “Distributed consensus strategy for pla-
tooning of vehicles in the presence of time-varying heterogeneous communication
delays,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, pp. 102–
112, Feb. 2015.

[122] C. Liang and F. R. Yu, “Wireless network virtualization: A survey, some research
issues and challenges,” IEEE Communications Surveys Tutorials, vol. 17, pp. 358–
380, Mar. 2015.

[123] K. Fahmi and S. Kucera, “Multiple path transmission of data,” Sep. 2016. EU
Patent EP16306173.2.

[124] M. Li, A. Lukyanenko, S. Tarkoma, Y. Cui, and A. Ylä-Jääski, “Tolerating path
heterogeneity in multipath TCP with bounded receive buffers,” Computer Networks,
vol. 64, pp. 1–14, May 2014.

[125] Y. Cui, L. Wang, X. Wang, H. Wang, and Y. Wang, “FMTCP: A fountain code-
based Multipath Transmission Control Protocol,” IEEE/ACM Transactions on Net-
working, vol. 23, pp. 465–478, Apr. 2015.

[126] D. Jurca, P. Frossard, and A. Jovanovic, “Forward error correction for multipath
media streaming,” IEEE Transactions on circuits and systems for video technology,
vol. 19, pp. 1315–1326, Sep. 2009.

[127] S. Fouladi, J. Emmons, E. Orbay, C. Wu, R. S. Wahby, and K. Winstein, “Salsify:
Low-latency network video through tighter integration between a video codec and
a transport protocol,” in 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), USENIX Association, 2018.

[128] F. Chiariotti, S. Kucera, A. Zanella, and H. Claussen, “LEAP: A latency control
protocol for multi-path data delivery with pre-defined QoS guarantees,” in Inter-
national Conference on Computer Communications Workshops (INFOCOM WK-
SHPS), pp. 166–171, IEEE, Apr. 2018.

[129] F. Chiariotti, S. Kucera, and A. Zanella, “Method for explicit Quality-of-Service
support in 5G networks,” Dec. 2017. EU Patent request PCT/EP2017/082279.

[130] A. Veres and M. Boda, “The chaotic nature of TCP congestion control,” in 19th An-
nual Joint Conference of the IEEE Computer and Communications Societies (IN-
FOCOM), vol. 3, pp. 1715–1723, IEEE, Mar. 2000.

[131] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,”
ACM SIGOPS Operating Systems Review, vol. 42, pp. 64–74, July 2008.

[132] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the internet,” Queue, vol. 9,
p. 40, Nov. 2011.

[133] G. Raina and D. Wischik, “Buffer sizes for large multiplexers: TCP queueing theory
and instability analysis,” in Next Generation Internet Networks, pp. 173–180, IEEE,
Apr. 2005.

207

BIBLIOGRAPHY

[134] Y. Gong, D. Rossi, C. Testa, S. Valenti, and M. D. Täht, “Fighting the bufferbloat:
on the coexistence of AQM and low priority congestion control,” Computer Net-
works, vol. 65, pp. 255–267, June 2014.

[135] N. Khademi, D. Ros, and M. Welzl, “The new AQM kids on the block: An exper-
imental evaluation of CoDel and PIE,” in International Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pp. 85–90, IEEE, Apr. 2014.

[136] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion avoidance
on a global Internet,” IEEE Journal on Selected Areas in Communications, vol. 13,
pp. 1465–1480, Oct. 1995.

[137] J. Mo, R. J. La, V. Anantharam, and J. Walrand, “Analysis and comparison of
TCP Reno and Vegas,” in 18th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), vol. 3, pp. 1556–1563, IEEE, Mar.
1999.

[138] Y. Lei, R. Zhu, and W. Wang, “A survey on tcp protocol and rtt estimation,” in
6th World Congress on Intelligent Control and Automation, vol. 1, pp. 4410–4414,
June 2006.

[139] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson, “BBR:
Congestion-based congestion control,” Queue, vol. 14, p. 50, Oct. 2016.

[140] K. Winstein, A. Sivaraman, and H. Balakrishnan, “Stochastic forecasts achieve high
throughput and low delay over cellular networks,” in 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), pp. 459–471, Apr. 2013.

[141] F. Guidolin, I. Pappalardo, A. Zanella, and M. Zorzi, “A Markov-based framework
for handover optimization in HetNets,” in 13th Annual Mediterranean Ad Hoc Net-
working Workshop (Med-Hoc-Net), pp. 134–139, IEEE, 2014.

[142] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, and C. Görg, “Adaptive congestion
control for unpredictable cellular networks,” in ACM SIGCOMM Computer Com-
munication Review, vol. 45, pp. 509–522, ACM, Aug. 2015.

[143] U. Tos and T. Ayav, “Adaptive RTP rate control method,” in 35th Annual Computer
Software and Applications Conference Workshops (COMPSACW), pp. 7–12, IEEE,
July 2011.

[144] V. Gokhale, J. Nair, and S. Chaudhuri, “Congestion control for network-aware tele-
haptic communication,” ACM Transactions on Multimedia Computing, Communi-
cations, and Applications (TOMM), vol. 13, p. 17, May 2017.

[145] S. Ferlin, T. Dreibholz, and Ö. Alay, “Multi-path transport over heterogeneous wire-
less networks: Does it really pay off?,” in IEEE Global Communications Conference
(GLOBECOM), pp. 4807–4813, IEEE, 2014.

[146] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP extensions for multipath
operation with multiple addresses,” IETF RFC 6824, Jan. 2013.

[147] A. Walid, J. Hwang, Q. Peng, and S. Low, “Balia (Balanced Linked Adaptation)–A
New MPTCP Congestion Control Algorithm,” in 90th IETF Meeting, July 2014.

[148] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley, “Multi-path TCP: a
joint congestion control and routing scheme to exploit path diversity in the internet,”
IEEE/ACM Transactions on Networking, vol. 14, pp. 1260–1271, Dec. 2006.

208

BIBLIOGRAPHY

[149] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design, implementation
and evaluation of congestion control for Multipath TCP,” in 8th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI), vol. 11, pp. 8–8,
Mar. 2011.

[150] Y.-C. Chen, Y.-s. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and D. Towsley, “A
measurement-based study of Multipath TCP performance over wireless networks,”
in ACM Conference on Internet Measurement, pp. 455–468, ACM, Oct. 2013.

[151] A. Garcia-Saavedra, M. Karzand, and D. J. Leith, “Low delay random linear coding
and scheduling over multiple interfaces,” IEEE Transactions on Mobile Computing,
Nov. 2017.

[152] C. Xu, J. Zhao, and G.-M. Muntean, “Congestion control design for multipath
transport protocols: a survey,” IEEE Communications Surveys & Tutorials, vol. 18,
pp. 2948–2969, Apr. 2016.

[153] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang,
F. Kouranov, I. Swett, J. Iyengar, et al., “The QUIC transport protocol: Design
and Internet-scale deployment,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pp. 183–196, ACM, Aug. 2017.

[154] A. A. Abouzeid, S. Roy, and M. Azizoglu, “Stochastic modeling of TCP over lossy
links,” in 19th Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), vol. 3, pp. 1724–1733, IEEE, Mar. 2000.

[155] J. L. Folks and R. S. Chhikara, “The inverse Gaussian distribution and its statistical
application–a review,” Journal of the Royal Statistical Society, Series B (Method-
ological), pp. 263–289, Jan. 1978.

[156] W. C. Horrace, “Some results on the multivariate truncated normal distribution,”
Journal of Multivariate Analysis, vol. 94, pp. 209–221, May 2005.

[157] V. Francis, “On the distribution of the sum of n sample values drawn from a trun-
cated normal population,” Supplement to the Journal of the Royal Statistical Society,
vol. 8, pp. 223–232, Jan. 1946.

[158] S. Hemminger, “Network emulation with NetEm,” in Linux Conf, pp. 18–23, Apr.
2005.

[159] H. Shi, Y. Cui, X. Wang, Y. Hu, M. Dai, F. Wang, and K. Zheng, “STMS: Improving
MPTCP throughput under heterogeneous networks,” in USENIX Annual Technical
Conference (ATC), USENIX Association, 2018.

[160] ISO/IEC 23009-1:2014, “Dynamic adaptive streaming over HTTP (DASH) – Part 1:
Media presentation description and segment formats,” International Organization
for Standardization, May 2014.

[161] R. K. Mok, E. W. Chan, and R. K. Chang, “Measuring the quality of experience of
HTTP video streaming,” in 12th IFIP/IEEE International Symposium on Integrated
Network Management (IM), pp. 485–492, IEEE, May 2011.

[162] T. Hoßfeld, M. Seufert, C. Sieber, and T. Zinner, “Assessing effect sizes of influence
factors towards a QoE model for HTTP adaptive streaming,” in 6th International
Workshop on Quality of Multimedia Experience (QoMEX), pp. 111–116, IEEE, Sep.
2014.

209

BIBLIOGRAPHY

[163] T. Hoßfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and C. Lorentzen, “Initial
delay vs. interruptions: between the devil and the deep blue sea,” in 4th Interna-
tional Workshop on Quality of Multimedia Experience (QoMEX), pp. 1–6, IEEE,
Jul. 2012.

[164] Z. Li, A. C. Begen, J. Gahm, Y. Shan, B. Osler, and D. Oran, “Streaming video
over HTTP with consistent quality,” in 5th ACM Multimedia Systems Conference
(MMSys), pp. 248–258, ACM, Mar. 2014.

[165] M. Gadaleta, F. Chiariotti, M. Rossi, and A. Zanella, “D-DASH: A deep Q-learning
framework for DASH video streaming,” IEEE Transactions on Cognitive Commu-
nications and Networking, vol. 3, pp. 703–718, Dec. 2017.

[166] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang, “Devel-
oping a predictive model of quality of experience for internet video,” SIGCOMM
Computer Communication Review (CCR), vol. 43, pp. 339–350, Aug. 2013.

[167] P. Juluri, V. Tamarapalli, and D. Medhi, “Measurement of quality of experience of
video-on-demand services: A survey,” IEEE Communications Surveys & Tutorials,
vol. 18, pp. 401–418, Jan. 2016.

[168] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia, “A survey
on quality of experience of HTTP Adaptive Streaming,” IEEE Communications
Surveys & Tutorials, vol. 17, pp. 469–492, Mar. 2015.

[169] M. Shahid, A. Rossholm, B. Lövström, and H.-J. Zepernick, “No-reference image
and video quality assessment: a classification and review of recent approaches,”
EURASIP Journal on Image and Video Processing, vol. 2014, pp. 1–32, Dec. 2014.

[170] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assess-
ment: from error visibility to structural similarity,” IEEE Transactions on Image
Processing, vol. 13, pp. 600–612, Apr. 2004.

[171] C. Kreuzberger, B. Rainer, H. Hellwagner, L. Toni, and P. Frossard, “A comparative
study of DASH representation sets using real user characteristics,” in 26th Interna-
tional Workshop on Network and Operating Systems Support for Digital Audio and
Video, p. 4, ACM, May 2016.

[172] S. Cicalo, N. Changuel, R. Miller, B. Sayadi, and V. Tralli, “Quality-fair HTTP
adaptive streaming over LTE network,” in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 714–718, IEEE, May 2014.

[173] J. De Vriendt, D. De Vleeschauwer, and D. Robinson, “Model for estimating QoE
of video delivered using HTTP adaptive streaming,” in IFIP/IEEE International
Symposium on Integrated Network Management (IM), pp. 1288–1293, IEEE, May
2013.

[174] J. Kua, G. Armitage, and P. Branch, “A survey of rate adaptation techniques for
Dynamic Adaptive Streaming over HTTP,” IEEE Communications Surveys & Tu-
torials, Mar. 2017.

[175] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and stability in
HTTP-based adaptive video streaming with FESTIVE,” in 8th International Con-
ference on Emerging Networking Experiments and Technologies (CoNEXT), pp. 97–
108, ACM, Dec. 2012.

210

BIBLIOGRAPHY

[176] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran, “Probe and
adapt: Rate adaptation for HTTP video streaming at scale,” IEEE Journal on
Selected Areas in Communications, vol. 32, pp. 719–733, Apr. 2014.

[177] S. Petrangeli, N. Bouten, E. Dejonghe, J. Famaey, P. Leroux, and F. De Turck,
“Design and evaluation of a dash-compliant second screen video player for live events
in mobile scenarios,” in Integrated Network Management (IM), 2015 IFIP/IEEE
International Symposium on, pp. 894–897, IEEE, May 2015.

[178] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic approach for
dynamic adaptive video streaming over HTTP,” ACM SIGCOMM Computer Com-
munication Review, vol. 45, pp. 325–338, Aug. 2015.

[179] A. Bokani, M. Hassan, and S. Kanhere, “HTTP-based adaptive streaming for mobile
clients using Markov Decision Process,” in 20th International Packet Video Work-
shop, pp. 1–8, IEEE, Dec. 2013.

[180] C. Zhou, C.-W. Lin, and Z. Guo, “mDASH: A Markov Decision-based rate adapta-
tion approach for dynamic HTTP streaming,” IEEE Transactions on Multimedia,
vol. 18, pp. 738–751, Apr. 2016.

[181] J. Lee and S. Bahk, “On the MDP-based cost minimization for video-on-demand
services in a heterogeneous wireless network with multihomed terminals,” IEEE
Transactions on Mobile Computing, vol. 12, pp. 1737–1749, Sep. 2013.

[182] S. Colonnese, F. Cuomo, T. Melodia, and R. Guida, “Cloud-assisted buffer manage-
ment for HTTP-based mobile video streaming,” in 10th ACM Symposium on Per-
formance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks, pp. 1–8,
ACM, Nov. 2013.

[183] M. Claeys, S. Latré, J. Famaey, T. Wu, W. Van Leekwijck, and F. De Turck, “Design
of a Q-learning-based client quality selection algorithm for HTTP adaptive video
streaming,” in Adaptive and Learning Agents Workshop (ALA), pp. 30–37, May
2013.

[184] M. Claeys, S. Latré, J. Famaey, T. Wu, W. Van Leekwijck, and F. De Turck, “Design
and optimisation of a (FA) Q-learning-based HTTP adaptive streaming client,”
Connection Science, vol. 26, pp. 25–43, Jan. 2014.

[185] V. Mart́ın, J. Cabrera, and N. Garćıa, “Q-learning based control algorithm for HTTP
adaptive streaming,” in International Conference on Visual Communications and
Image Processing (VCIP), pp. 1–4, IEEE, Dec. 2015.

[186] J. van der Hooft, S. Petrangeli, M. Claeys, J. Famaey, and F. De Turck, “A learning-
based algorithm for improved bandwidth-awareness of adaptive streaming clients,”
in IFIP/IEEE International Symposium on Integrated Network Management (IM),
pp. 131–138, IEEE, May 2015.

[187] F. Chiariotti, S. D’Aronco, L. Toni, and P. Frossard, “Online learning adaptation
strategy for DASH clients,” in 7th International Conference on Multimedia Systems
(MMSys), pp. 8:1–8:12, ACM, May 2016.

[188] O. Rose, “Statistical properties of MPEG video traffic and their impact on traf-
fic modeling in ATM systems,” in 20th Conference on Local Computer Networks,
pp. 397–406, IEEE, Oct. 1995.

211

BIBLIOGRAPHY

[189] S. Chikkerur, V. Sundaram, M. Reisslein, and L. J. Karam, “Objective video quality
assessment methods: A classification, review, and performance comparison,” IEEE
transactions on broadcasting, vol. 57, pp. 165–182, June 2011.

[190] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical evaluation of recent
full reference image quality assessment algorithms,” IEEE Transactions on image
processing, vol. 15, pp. 3440–3451, Nov. 2006.

[191] M. Zorzi, A. Zanella, A. Testolin, M. D. F. De Grazia, and M. Zorzi, “Cognition-
based networks: a new perspective on network optimization using learning and
distributed intelligence,” IEEE Access, vol. 3, pp. 1512–1530, Aug. 2015.

[192] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,
vol. 9, pp. 1735–1780, Nov. 1997.

[193] X. Li and X. Wu, “Constructing long short-term memory based deep recurrent neural
networks for large vocabulary speech recognition,” in International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 4520–4524, IEEE, Apr. 2015.

[194] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting.,” Journal of
Machine Learning Research, vol. 15, pp. 1929–1958, Jan. 2014.

[195] P. Juluri, V. Tamarapalli, and D. Medhi, “QoE management in DASH systems
using the segment aware rate adaptation algorithm,” in Network Operations and
Management Symposium (NOMS), 2016 IEEE/IFIP, pp. 129–136, IEEE, Apr. 2016.

[196] A. Testolin, M. Zanforlin, M. D. F. D. Grazia, D. Munaretto, A. Zanella, M. Zorzi,
and M. Zorzi, “A machine learning approach to QoE-based video admission control
and resource allocation in wireless systems,” in 13th Annual Mediterranean Ad Hoc
Networking Workshop (Med-Hoc-Net), pp. 31–38, June 2014.

[197] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface, T. Bostoen,
and F. De Turck, “HTTP/2-Based Adaptive Streaming of HEVC Video Over
4G/LTE Networks,” IEEE Communications Letters, vol. 20, pp. 2177–2180, Nov.
2016.

[198] H. X. Nguyen, P. Thiran, and C. Barakat, “On the correlation of TCP traffic in
backbone networks,” in IEEE International Symposium on Circuits and Systems
(ISCAS), vol. 5, pp. V–481, IEEE, May 2004.

[199] M. Batty, K. W. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani, M. Wa-
chowicz, G. Ouzounis, and Y. Portugali, “Smart Cities of the future,” The European
Physical Journal Special Topics, vol. 214, pp. 481–518, Nov. 2012.

[200] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing as a service
model for Smart Cities supported by Internet of Things,” Transactions on Emerging
Telecommunications Technologies, vol. 25, pp. 81–93, Jan. 2014.

[201] P. Neirotti, A. De Marco, A. C. Cagliano, G. Mangano, and F. Scorrano, “Current
trends in Smart City initiatives: Some stylised facts,” Cities, vol. 38, pp. 25–36,
June 2014.

[202] L. Filipponi, A. Vitaletti, G. Landi, V. Memeo, G. Laura, and P. Pucci, “Smart
City: An event driven architecture for monitoring public spaces with heterogeneous
sensors,” in 4th International Conference on Sensor Technologies and Applications
(SENSORCOMM), pp. 281–286, IEEE, July 2010.

212

BIBLIOGRAPHY

[203] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of Things
for Smart Cities,” IEEE Internet of Things Journal, vol. 1, pp. 22–32, Feb. 2014.

[204] F. Xia and J. Ma, “Building smart communities with cyber-physical systems,” in
Proceedings of 1st international symposium on From digital footprints to social and
community intelligence, pp. 1–6, ACM, Sep. 2011.

[205] E. Fishman, S. Washington, and N. Haworth, “Bike share’s impact on car use:
evidence from the United States, Great Britain, and Australia,” Transportation
Research Part D: Transport and Environment, vol. 31, pp. 13–20, Aug. 2014.

[206] D. Rojas-Rueda, A. de Nazelle, M. Tainio, and M. J. Nieuwenhuijsen, “The health
risks and benefits of cycling in urban environments compared with car use: health
impact assessment study,” British Medical Journal, vol. 343, p. d4521, Aug. 2011.

[207] S. Shaheen, S. Guzman, and H. Zhang, “Bikesharing in Europe, the Americas, and
Asia: past, present, and future,” Transportation Research Record: Journal of the
Transportation Research Board, pp. 159–167, Oct. 2010.

[208] P. Midgley, “The role of smart bike-sharing systems in urban mobility,” Journeys,
vol. 2, pp. 23–31, May 2009.

[209] M. Kaspi, T. Raviv, and M. Tzur, “Detection of unusable bicycles in bike-sharing
systems,” Omega, vol. 65, pp. 10–16, 2016.

[210] J. Bao, T. He, S. Ruan, Y. Li, and Y. Zheng, “Planning bike lanes based on sharing-
bikes’ trajectories,” in Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 1377–1386, ACM, 2017.

[211] F. Chiariotti, C. Pielli, A. Zanella, and M. Zorzi, “A dynamic approach to rebal-
ancing bike-sharing systems,” Sensors, vol. 18, p. 512, Feb. 2018.

[212] R. Kazhamiakin, A. Marconi, M. Perillo, M. Pistore, G. Valetto, L. Piras,
F. Avesani, and N. Perri, “Using gamification to incentivize sustainable urban mo-
bility,” in 1st International Smart Cities Conference (ISC2), pp. 1–6, IEEE, Oct.
2015.

[213] J. Hamari, J. Koivisto, and H. Sarsa, “Does gamification work?–a literature review
of empirical studies on gamification,” in 47th Hawaii International Conference on
System Sciences (HICSS), pp. 3025–3034, IEEE, Jan. 2014.

[214] F. Chiariotti, C. Pielli, A. Cenedese, A. Zanella, and M. Zorzi, “Bike sharing as a key
smart city service: State of the art and future developments,” in 7th International
Conference on Modern Circuits and Systems Technologies (MOCAST), pp. 1–6,
IEEE, May 2018.

[215] J. Schuijbroek, R. C. Hampshire, and W.-J. Van Hoeve, “Inventory rebalancing and
vehicle routing in bike sharing systems,” European Journal of Operational Research,
vol. 257, pp. 992–1004, Mar. 2017.

[216] L. Caggiani and M. Ottomanelli, “A dynamic simulation based model for optimal
fleet repositioning in bike-sharing systems,” Procedia-Social and Behavioral Sciences,
vol. 87, pp. 203–210, Oct. 2013.

[217] P. Vogel, T. Greiser, and D. C. Mattfeld, “Understanding bike-sharing systems using
data mining: Exploring activity patterns,” Procedia-Social and Behavioral Sciences,
vol. 20, pp. 514–523, Jan. 2011.

213

BIBLIOGRAPHY

[218] A. Faghih-Imani and N. Eluru, “Incorporating the impact of spatio-temporal in-
teractions on bicycle sharing system demand: A case study of new york citibike
system,” Journal of Transport Geography, vol. 54, pp. 218–227, June 2016.

[219] G. Laporte, F. Meunier, and R. W. Calvo, “Shared mobility systems,” 4OR, vol. 13,
pp. 341–360, Dec. 2015.

[220] H. M. Espegren, J. Kristianslund, H. Andersson, and K. Fagerholt, “The static bicy-
cle repositioning problem-literature survey and new formulation,” in International
Conference on Computational Logistics, pp. 337–351, Springer, Sep. 2016.

[221] D. Chemla, F. Meunier, and R. W. Calvo, “Bike sharing systems: Solving the static
rebalancing problem,” Discrete Optimization, vol. 10, pp. 120–146, May 2013.

[222] P. Toth and D. Vigo, “Exact solution of the vehicle routing problem,” in Fleet
management and logistics, pp. 1–31, Springer, Dec. 2012.

[223] S. C. Ho and W. Szeto, “Solving a static repositioning problem in bike-sharing
systems using iterated tabu search,” Transportation Research Part E: Logistics and
Transportation Review, vol. 69, pp. 180–198, Sep. 2014.

[224] T. Raviv, M. Tzur, and I. A. Forma, “Static repositioning in a bike-sharing system:
models and solution approaches,” EURO Journal on Transportation and Logistics,
vol. 2, pp. 187–229, Aug. 2013.

[225] L. Di Gaspero, A. Rendl, and T. Urli, “Balancing bike sharing systems with con-
straint programming.,” Constraints, vol. 21, pp. 318–348, Apr. 2016.

[226] I. A. Forma, T. Raviv, and M. Tzur, “A 3-step math heuristic for the static reposi-
tioning problem in bike-sharing systems,” Transportation research part B: method-
ological, vol. 71, pp. 230–247, Jan. 2015.

[227] M. Dell’Amico, M. Iori, S. Novellani, and T. Stützle, “A destroy and repair algo-
rithm for the bike sharing rebalancing problem,” Computers & Operations Research,
vol. 71, pp. 149–162, July 2016.

[228] M. Dell’Amico, E. Hadjicostantinou, M. Iori, and S. Novellani, “The bike sharing re-
balancing problem: Mathematical formulations and benchmark instances,” Omega,
vol. 45, pp. 7–19, June 2014.

[229] C. Contardo, C. Morency, and L.-M. Rousseau, Balancing a dynamic public bike-
sharing system. Cirrelt Montreal, Mar. 2012.

[230] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear programs,” Opera-
tions research, vol. 8, pp. 101–111, Feb. 1960.

[231] J. F. Benders, “Partitioning procedures for solving mixed-variables programming
problems,” Numerische mathematik, vol. 4, pp. 238–252, Dec. 1962.

[232] G. Erdoğan, M. Battarra, and R. W. Calvo, “An exact algorithm for the static rebal-
ancing problem arising in bicycle sharing systems,” European Journal of Operational
Research, vol. 245, pp. 667–679, Sep. 2015.

[233] C. Kloimüllner, P. Papazek, B. Hu, and G. R. Raidl, “Balancing bicycle sharing sys-
tems: an approach for the dynamic case,” in European Conference on Evolutionary
Computation in Combinatorial Optimization, pp. 73–84, Springer, Apr. 2014.

214

BIBLIOGRAPHY

[234] C.-C. Lu, “Robust multi-period fleet allocation models for bike-sharing systems,”
Networks and Spatial Economics, vol. 16, pp. 61–82, Mar. 2016.

[235] J. Brinkmann, M. W. Ulmer, and D. C. Mattfeld, “Short-term strategies for stochas-
tic inventory routing in bike sharing systems,” Transportation Research Procedia,
vol. 10, pp. 364–373, Jan. 2015.

[236] E. O’Mahony and D. B. Shmoys, “Data Analysis and Optimization for (Citi) Bike
Sharing.,” in 29th AAAI Conference on Artificial Intelligence, pp. 687–694, Jan.
2015.

[237] C. Fricker and N. Gast, “Incentives and redistribution in homogeneous bike-sharing
systems with stations of finite capacity,” EURO journal on transportation and lo-
gistics, vol. 5, pp. 261–291, Aug. 2016.

[238] L. Li and M. Shan, “Bidirectional incentive model for bicycle redistribution of a
bicycle sharing system during rush hour,” Sustainability, vol. 8, p. 1299, Dec. 2016.

[239] J. Pfrommer, J. Warrington, G. Schildbach, and M. Morari, “Dynamic vehicle redis-
tribution and online price incentives in shared mobility systems,” IEEE Transactions
on Intelligent Transportation Systems, vol. 15, pp. 1567–1578, Aug. 2014.

[240] A. Singla, M. Santoni, G. Bartók, P. Mukerji, M. Meenen, and A. Krause, “Incen-
tivizing users for balancing bike sharing systems.,” in 29th AAAI Conference on
Artificial Intelligence, pp. 723–729, Jan. 2015.

[241] H. Chung, D. Freund, and D. B. Shmoys, “Bike angels: An analysis of citi bike’s
incentive program,” in 1st ACM SIGCAS Conference on Computing and Sustainable
Societies (COMPASS), pp. 5:1–5:9, ACM, June 2018.

[242] W. Fischer and K. Meier-Hellstern, “The markov-modulated poisson process
(mmpp) cookbook,” Performance evaluation, vol. 18, pp. 149–171, 1993.

[243] A. Krinik and C. Mortensen, “Transient probability functions of finite birth-death
processes with catastrophes,” Journal of Statistical Planning and Inference, vol. 137,
pp. 1530–1543, May 2007.

[244] F. W. Crawford and M. A. Suchard, “Transition probabilities for general birth-
death processes with applications in ecology, genetics, and evolution,” Journal of
mathematical biology, vol. 65, pp. 553–580, Sep. 2012.

[245] J. G. Skellam, “The frequency distribution of the difference between two Poisson
variates belonging to different populations,” Journal of the Royal Statistical Society,
Series A, vol. 109, p. 296, Jan. 1946.

[246] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge University Press,
Mar. 2004.

[247] G. Clarke and J. W. Wright, “Scheduling of vehicles from a central depot to a
number of delivery points,” Operations research, vol. 12, pp. 568–581, Aug. 1964.

[248] S. Ropke and D. Pisinger, “An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows,” Transportation science, vol. 40,
pp. 455–472, Nov. 2006.

[249] T. H. T. Nguyen, T. T. Le, T. P. D. Chu, L. T. Nguyen, and V. H. Le, “Multi-source
data analysis for bike sharing systems,” in International Conference on Advanced
Technologies for Communications (ATC), Oct. 2017.

215

BIBLIOGRAPHY

[250] F. Chiariotti, M. Condoluci, T. Mahmoodi, and A. Zanella, “Symbiocity: Smart
cities for smarter networks,” Transactions on Emerging Telecommunications Tech-
nologies, vol. 29, p. e3206, Jan. 2018.

[251] P. Hunt, D. Robertson, R. Bretherton, and M. C. Royle, “The SCOOT on-line traffic
signal optimisation technique,” Traffic Engineering & Control, vol. 23, Apr. 1982.

[252] P. Muñoz, R. Barco, and I. de la Bandera, “On the potential of handover param-
eter optimization for self-organizing networks,” IEEE Transactions on Vehicular
Technology, vol. 62, pp. 1895–1905, Feb. 2013.

[253] F. Guidolin, I. Pappalardo, A. Zanella, and M. Zorzi, “Context-aware handover
policies in HetNets,” IEEE Transactions on Wireless Communications, vol. 15,
pp. 1895–1906, Mar. 2016.

[254] M. Dalla Cia, F. Mason, D. Peron, F. Chiariotti, M. Polese, T. Mahmoodi, M. Zorzi,
and A. Zanella, “Mobility-aware handover strategies in Smart Cities,” in Inter-
national Symposium on Wireless Communication Systems (ISWCS), pp. 438–443,
IEEE, Aug. 2017.

[255] M. Dalla Cia, F. Mason, D. Peron, F. Chiariotti, M. Polese, T. Mahmoodi, M. Zorzi,
and A. Zanella, “Using Smart City data in 5G Self-Organizing Networks,” IEEE
Internet of Things Journal, vol. 5, pp. 645–654, Apr. 2018.

[256] C. G. Cassandras, “Smart cities as cyber-physical social systems,” Engineering,
vol. 2, pp. 156–158, June 2016.

[257] M. Nakamura and L. Du Bousquet, “Constructing execution and life-cycle models for
Smart City services with self-aware IoT,” in International Conference on Autonomic
Computing (ICAC), pp. 289–294, IEEE, July 2015.

[258] M. Condoluci, F. Sardis, and T. Mahmoodi, “Softwarization and virtualization in 5G
networks for Smart Cities,” in International Conference on Cyber physical systems,
IoT and sensors Networks (CYCLONE), pp. 179–186, EAI, Oct. 2015.

[259] I. 802.15.4-2011, “IEEE Standard for Local and metropolitan area networks–Part
15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs),” IEEE, June 2011.

[260] Bluetooth SIG, “Bluetooth Core Specification 4.2,” Dec. 2014.

[261] ITU-T G.9959, “Short range narrow-band digital radiocommunication transceivers
- PHY, MAC, SAR and LLC layer specifications,” International Telecommunication
Union, Jan. 2015.

[262] R. Sanchez-Iborra and M.-D. Cano, “State of the art in LP-WAN solutions for
industrial IoT services,” Sensors, vol. 16, p. 708, May 2016.

[263] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, “Long-range communications
in unlicensed bands: The rising stars in the IoT and smart city scenarios,” IEEE
Wireless Communications, vol. 23, pp. 60–67, Oct. 2016.

[264] M. Condoluci, G. Aaniti, T. Mahmoodi, and M. Dohler, “Enabling the IoT machine
age with 5G: Machine-type multicast services for innovative real-time applications,”
IEEE Access, vol. 4, pp. 5555 – 5569, May 2016.

[265] M. Amani, T. Mahmoodi, M. Tatipamula, and H. Aghvami, “Programmable policies
for Data Offloading in LTE Network,” in International Conference on Communica-
tions (ICC), pp. 3154–3159, June 2014.

216

BIBLIOGRAPHY

[266] H. Silk, M. Homer, and T. Gross, “Design of Self-Organizing Networks: creating
specified degree distributions,” IEEE Transactions on Network Science and Engi-
neering, vol. 3, pp. 147–158, July 2016.

[267] P. P. Patel and R. H. Jhaveri, “Soft computing techniques to address various issues
in wireless sensor networks: A survey,” in International Conference on Computing,
Communication and Automation (ICCCA), pp. 399–404, Apr. 2016.

[268] O. K. Tonguz andW. Viriyasitavat, “A Self-Organizing Network approach to priority
management at intersections,” IEEE Communications Magazine, vol. 54, pp. 119–
127, June 2016.

[269] K. Zheng, Z. Yang, K. Zhang, P. Chatzimisios, K. Yang, and W. Xiang, “Big data-
driven optimization for mobile networks toward 5G,” IEEE Network, vol. 30, pp. 44–
51, Jan. 2016.

[270] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in
the internet of things,” in ACM 1st MCC workshop on Mobile cloud computing,
pp. 13–16, Aug. 2012.

[271] J. Al-Jaroodi and N. Mohamed, “Service-oriented architecture for big data analytics
in smart cities,” in 18th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID), pp. 633–640, May.

[272] R. Irmer, H. Droste, P. Marsch, M. Grieger, G. Fettweis, S. Brueck, H.-P. Mayer,
L. Thiele, and V. Jungnickel, “Coordinated multipoint: Concepts, performance, and
field trial results,” IEEE Communications Magazine, vol. 49, pp. 102–111, Feb. 2011.

[273] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and
L. Dittmann, “Cloud RAN for mobile networks—a technology overview,” IEEE
Communications surveys & tutorials, vol. 17, pp. 405–426, Mar. 2015.

[274] M. A. Lema, T. Mahmoodi, and M. Dohler, “On the performance evaluation of en-
abling architectures for uplink and downlink decoupled networks,” in IEEE GLOBE-
COM Workshops, pp. 1–6, Dec. 2016.

[275] I. Pappalardo, G. Quer, B. D. Rao, and M. Zorzi, “Caching strategies in heteroge-
neous networks with D2D, small BS and macro BS communications,” in Interna-
tional Conference on Communications (ICC), pp. 1–6.

[276] M. Polese, M. Centenaro, A. Zanella, and M. Zorzi, “M2M massive access in LTE:
RACH performance evaluation in a Smart City scenario,” in International Confer-
ence on Communications (ICC), pp. 1–6, IEEE, 2016.

[277] G. P. Fettweis, “The tactile internet: applications and challenges,” IEEE Vehicular
Technology Magazine, vol. 9, pp. 64–70, Mar. 2014.

[278] A. Gladisch, R. Daher, and D. Tavangarian, “Survey on mobility and multihoming
in future internet,” Wireless personal communications, vol. 74, pp. 45–81, Jan. 2014.

[279] “5G White Paper.” White Paper, Feb. 2015.

[280] M. Jiang, M. Condoluci, and T. Mahmoodi, “Network slicing management & prior-
itization in 5G mobile systems,” in European Wireless, pp. 1–6, May 2016.

[281] T. Mahmoodi and S. Seetharaman, “Traffic jam: Handling the increasing volume of
mobile data traffic,” IEEE Vehicular Technology Magazine, vol. 9, pp. 56–62, Sep.
2014.

217

BIBLIOGRAPHY

[282] T. Mahmoodi and S. Seetharaman, “On using a SDN-based Control Plane in 5G
mobile networks,” in Wireless World Research Forum, 32nd Meeting, pp. 1–6, May
2014.

[283] P. I. Bratanov and E. Bonek, “Mobility model of vehicle-borne terminals in urban
cellular systems,” IEEE Transactions on Vehicular Technology, vol. 52, pp. 947–952,
July 2003.

[284] A. S. Hassani, A. R. Momen, and P. Azmi, “Mobility model of vehicular terminals in
cellular networks,” in 2nd International Conference on Information Communication
Technologies, vol. 2, pp. 2434–2437, 2006.

[285] Q. Dong and W. Dargie, “A survey on mobility and mobility-aware MAC protocols
in Wireless Sensor Networks,” IEEE Communications Surveys & Tutorials, vol. 15,
pp. 88–100, Feb. 2013.

[286] S. Vasudevan, R. N. Pupala, and K. Sivanesan, “Dynamic eICIC – a proactive
strategy for improving spectral efficiencies of heterogeneous LTE cellular networks
by leveraging user mobility and traffic dynamics,” IEEE Transactions on Wireless
Communications, vol. 12, pp. 4956–4969, Oct. 2013.

[287] J. G. Andrews, H. Claussen, M. Dohler, S. Rangan, and M. C. Reed, “Femtocells:
Past, present, and future,” IEEE Journal on Selected Areas in Communications,
vol. 30, pp. 497–508, Mar. 2012.

[288] O. G. Aliu, A. Imran, M. A. Imran, and B. Evans, “A survey of self organisation
in future cellular networks,” IEEE Communications Surveys & Tutorials, vol. 15,
no. 1, pp. 336–361, 2013.

[289] D. Xenakis, N. Passas, L. Merakos, and C. Verikoukis, “Mobility management for
femtocells in LTE-advanced: key aspects and survey of handover decision algo-
rithms,” IEEE Communications Surveys & Tutorials, vol. 16, pp. 64–91, July 2014.

[290] 3GPP Technical Specification 36.331, “Evolved Universal Terrestrial Radio Access
(E-UTRA); Radio Resource Control (RRC); Protocol specification,” LTE ETSI TS,
July 2014.

[291] Y. Lee, B. Shin, J. Lim, and D. Hong, “Effects of time-to-trigger parameter on han-
dover performance in SON-based LTE systems,” in IEEE 16th Asia-Pacific Confer-
ence on Communications (APCC), pp. 492–496, 2010.

[292] I. Pappalardo, A. Zanella, and M. Zorzi, “Upper bound analysis of the handover
performance in HetNets,” IEEE Communications Letters, vol. 21, pp. 418–421, Feb.
2017.

[293] K. Kitagawa, T. Komine, T. Yamamoto, and S. Konishi, “A handover optimization
algorithm with mobility robustness for LTE systems,” in IEEE 22nd International
Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1647–1651,
2011.

[294] S. Nie, D. Wu, M. Zhao, X. Gu, L. Zhang, and L. Lu, “An Enhanced Mobility
State Estimation Based Handover Optimization Algorithm in LTE-A Self-organizing
Network,” Procedia Computer Science, vol. 52, pp. 270–277, June 2015.

[295] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba,
“Network function virtualization: State-of-the-art and research challenges,” IEEE
Communications Surveys & Tutorials, vol. 18, pp. 236–262, Sep. 2015.

218

BIBLIOGRAPHY

[296] I. Chih-Lin, J. Huang, R. Duan, C. Cui, J. X. Jiang, and L. Li, “Recent progress
on C-RAN centralization and cloudification,” IEEE Access, vol. 2, pp. 1030–1039,
Aug. 2014.

[297] A. S. Rajan, S. Gobriel, C. Maciocco, K. B. Ramia, S. Kapury, A. Singhy, J. Er-
manz, V. Gopalakrishnanz, and R. Janaz, “Understanding the bottlenecks in vir-
tualizing cellular core network functions,” in 21st International Workshop on Local
and Metropolitan Area Networks, pp. 1–6, IEEE, Apr. 2015.

[298] X. An, F. Pianese, I. Widjaja, and U. G. Acer, “dMME: Virtualizing LTE mobility
management,” in 36th Conference on Local Computer Networks (LCN), pp. 528–536,
IEEE, Oct. 2011.

[299] P. Andres-Maldonado, P. Ameigeiras, J. Prados-Garzon, J. J. Ramos-Munoz, and
J. M. Lopez-Soler, “Virtualized MME design for IoT support in 5G systems,” Sen-
sors, vol. 16, no. 8, p. 1338, 2016.

[300] P. Bhat, S. Nagata, L. Campoy, I. Berberana, T. Derham, G. Liu, X. Shen, P. Zong,
and J. Yang, “LTE-advanced: an operator perspective,” IEEE Communications
Magazine, vol. 50, pp. 104–114, Feb. 2012.

[301] R. Tanbourgi, S. Singh, J. G. Andrews, and F. K. Jondral, “Analysis of non-coherent
joint-transmission cooperation in heterogeneous cellular networks,” in IEEE Inter-
national Conference on Communications (ICC), pp. 5160–5165, June 2014.

[302] 3GPP Technical Specification 36.839, “Evolved universal terrestrial radio access (E-
UTRA); Mobility enhancements in heterogeneous networks,” LTE ETSI TS, Jan.
2013.

[303] S. Sesia, I. Toufik, and M. Baker, LTE, The UMTS Long Term Evolution: From
Theory to Practice. Wiley Publishing, 2009.

[304] Next Generation Mobile Networks Alliance, “Optimised backhaul requirements,”
Aug. 2008.

[305] 3GPP Technical Specification 36.881, “Study on latency reduction techniques for
LTE,” LTE ETSI TS, Sep. 2015.

219

List of Acronyms

ADAM Adaptive Moment Estimation.

AI Artificial Intelligence.

ALS Autocovariance Least Squares.

AQM Active Queue Management.

AR Augmented Reality.

BALIA Balanced Link Adaptation.

BBR Bottleneck Bandwidth and Round-trip propagation time.

BDP Birth-Death Process.

BLE Bluetooth Low Energy.

BS Base Station.

BTT Backpropagation Through Time.

CDF Cumulative Distribution Function.

CDN Content Delivery Network.

CKF Congestion Kalman Filter.

CN Core Network.

CR Cognitive Radio.

CSI Channel State Information.

D2D Device to Device.

221

List of Acronyms

DASH Dynamic Adaptive Streaming over HTTP.

DKF Delivery Kalman Filter.

DQN Deep Q-network.

eNB evolved Node Base.

FEC Forward Error Correction.

FeNB Femto eNB.

FESTIVE Fair, Efficient, and Stable adapTIVE algorithm.

GB Graphical Bayesian.

GP Gaussian Process.

GPS Global Positioning System.

HetNet Heterogeneous Network.

HMM Hidden Markov Model.

HTTP HyperText Transfer Protocol.

I2V Infrastructure to Vehicle.

IoT Internet of Things.

JFI Jain Fairness Index.

k-NN k-Nearest Neighbors.

LEAP Latency-controlled End-to-End Aggregation Protocol.

LPWA Low-Power Wide-Area.

LSTM Long-Short Term Memory.

LTE Long Term Evolution.

M2M Machine to Machine.

MCS Modulation and Coding System.

222

List of Acronyms

MDP Markov Decision Process.

MeNB Macro eNB.

MIMO Multi-Input Multi-Output.

MIP Mixed Integer Programming.

MLP Multilayer Perceptron.

MME Mobility Management Entity.

MMPP Markov-Modulated Poisson Process.

MPC Model Predictive Control.

MPD Media Presentation Description.

MPTCP Multi-path TCP.

MSS Microsoft Smooth Streaming.

NAT Network Address Translation.

NB-IoT Narrowband IoT.

NFV Network Function Virtualization.

NN Neural Network.

OFDM Orthogonal Frequency Division Modulation.

PANDA Probe and Adapt.

PDF Probability Distribution Function.

PID Proportional-Integral-Derivative.

QoE Quality of Experience.

QoE-RAHAS QoE-driven Rate Adaptation Heuristic for Adaptive video
Streaming.

QoS Quality of Service.

QUIC Quick UDP Internet Connections.

223

List of Acronyms

RAN Radio Access Network.

RBF Radial Basis Function.

ReLU Rectified Linear Unit.

RF Random Forest.

RL Reinforcement Learning.

RMSE Root Mean Square Error.

RNN Recurrent Neural Network.

RSS Received Signal Strength.

RSSI Received Signal Strength Indicator.

RTP Real-time Transport Protocol.

RTT Round Trip Time.

SC-MPTCP MPTCP with Systematic Coding.

SCOOT Split Cycle Offset Optimization Technique.

SNR Signal to Noise Ratio.

SON Self-Organized Networking.

SSIM Structural Similarity Index.

SV Support Vector.

SVM Support Vector Machine.

SVR Support Vector Regression.

TCP Transmission Control Protocol.

TfL Transport for London.

TTT Time-to-Trigger.

UDP User Datagram Protocol.

UE User Equipment.

224

List of Acronyms

UTC Urban Traffic Control.

V2I Vehicle to Infrastructure.

V2V Vehicle to Vehicle.

VI Value Iteration.

VM Virtual Machine.

vMME Virtual MME.

VPN Virtual Private Network.

VR Virtual Reality.

225

Acknowledgments

After three years and more than 200 pages, it’s time to give thanks where

they are due. They say it takes a village, and at least in my case it was

actually true, so here it is.

First, I’d like to thank Andrea Zanella for all his advice and help, which

went way beyond the requirements of the job; I was lucky to have him as

my advisor. The second person who deserves credit is Stepan Kucera, who

helped me and believed in me more than I did while I was working with him.

Michele Zorzi, Michele Rossi, Nicola Laurenti, Giorgio Di Nunzio, Angelo

Cenedese, Holger Claussen, and Leonardo Badia also gave me precious advice

throughout these three years and helped me get my work published.

Of course, this work would not have been possible without all my other co-

authors: Chiara Pielli, Michele Polese, Matteo Gadaleta, Daniel Zucchetto,

Massimo Dalla Cia, Federico Mason, Davide Peron, Davide Del Testa, Rita

Coutinho, Laura Toni, Stefano D’Aronco, Pascal Frossard, Davide Talon,

Luca Attanasio, Massimo Condoluci, Toktam Mahmoodi, Riccardo Zanol,

Davide Cazzaro, Mattia Gentil, Alessandro Galeazzi, Enrico Lovisotto, and

Enrico Vianello.

On the personal side, I’ll start with my family, who had to shoulder a

lot of the weight of this PhD. The people who took me the rest of the way

would take several pages to name one by one, but I’ll try to at least list them

by group: all my colleagues-slash-drinking mates during these three years,

Giulia, Babi and all of ADI Padova, who were like a second family, Ottavia,

Marta, and Arianna, who listened to my Irish woes over pints every Saturday

night in Donnybrook, Elena, Irene and Nicola, who are still my go-to friends

after all this time, Kristi, Robert and Luca, who welcomed me on the other

227

side of the pond, all the FELDs team, Giorgia, Nicola, and Leo (hope to see

you guys soon!), the Pantiera drinking team, and Daina and the rest of my

Liguria friends. Last but not least, I’d like to thank all my virtual friends

from HD, who feel as real as any of the others even though I’ve only seen

some of them in a Telegram video message.

I’m sure I forgot someone, but if you’re in here, at least a small piece of

this thesis is yours. Thank you.

	Introduction
	A review of machine learning techniques
	Prediction techniques
	Graphical Bayesian models
	Support Vector Machines
	Linear regression techniques
	Random Forest and k-Nearest Neighbors
	Neural Networks
	Kalman filters

	Reinforcement Learning
	Markov Decision Processes
	Q-learning
	Deep Q-learning

	Prediction and anticipatory networking
	Predicting the wireless channel
	State of the art
	Studied scenario
	Learning parameters and results

	Predicting battery usage in smartphones
	State of the art
	Data analysis
	Results

	Predicting future cell load
	State of the art
	Spatio-temporal prediction
	Parameter optimization and results

	A predictive approach to providing Quality of Service
	State of the art
	Single-path latency-minimization protocols
	Multi-path aggregation protocols

	The LEAP protocol
	Congestion control on a single path
	Integrating single-path congestion control and multi-path coding
	Aggregating flows through coding
	Scheduling and retransmission
	Computation of the combined capacity in the two-path Gaussian case
	Implementation considerations

	Experimental results
	Combining the traces
	Single-path congestion control
	Combining multiple paths

	Providing Quality of Experience guarantees with Reinforcement Learning
	State of the art
	Reinforcement Learning and DASH

	System model
	Video streaming model
	Reward function
	Defining the Markov Decision Process

	Deep Q-learning for DASH adaptation
	Simulation and results
	Algorithm settings
	Results: real traces
	Results: synthetic traces
	Summary of performance

	Optimizing Smart City services with data-driven techniques
	Bike sharing in Smart Cities
	State of the art
	Rebalancing bike sharing systems
	User incentives and pricing

	System model
	The bike sharing system as a network
	Downtime at a station
	Expected number of system failures
	The incentive problem
	The incentive model
	Solving the incentive problem

	Dynamic rebalancing
	Preliminaries
	System-wide rebalancing problem
	Single-vehicle optimization
	Multi-vehicle optimization
	Simulation settings and analysis

	Results
	Performance
	Rebalancing effort
	Cost analysis

	Exploiting Smart City data to optimize the network
	Smart Cities and networks
	The SymbioCity concept
	Analyzing traffic data
	State of the art
	Handover in HetNets
	Virtual MME

	Asymmetrical Handover Bias Optimization in HetNets
	Adaptive vMME Allocation

	Conclusion
	Published works

	Bibliography
	List of Acronyms
	Acknowledgments

