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RIASSUNTO 

 

Il tumore del colon-retto è il secondo tumore più letale a causa della diffusione 

metastatica della lesione primaria. Un’ipotesi attuale è che la metastasi sia basata sulla 

transizione epitelio-mesenchimale (in inglese EMT, epithelial to mesenchymal 

transition), un processo biologico in cui le cellule epiteliali perdono gradualmente i loro 

caratteri epiteliali per convertirsi a un programma di tipo mesenchimale. I saggi in vitro 

che selezionano cellule EMT sono fondamentali per poter fare screening genetici che 

selezionano cellule che si sono convertite al programma EMT. Ad esempio, il saggio in 

vitro di anoikis si basa sulla crescita delle cellule in condizioni di mancanza di attacco 

alla matrice ed è stato usato per selezionare cellule con fenotipo più aggressivo; tuttavia 

alcuni tipi di cellule tumorali sono capaci di resistere a queste condizioni di crescita 

rafforzando i contatti cellula-cellula, un comportamento in netto contrasto con il 

fenotipo EMT. Un saggio in vitro sviluppato nel nostro laboratorio, denominato forced 

Single Cell Suspension assay (fSCS) si è rivelato più stringente rispetto al saggio in vitro 

di anoikis e seleziona cellule andate incontro alla EMT. La parte non codificante del 

genoma, nonostante abbia un ruolo fondamentale nella regolazione della EMT e nella 

metastasi (come avviene ad esempio per i miRNA), risulta molto meno studiata rispetto 

alla controparte codificante. I saggi genetici in vitro basati sull’uso di trasposoni 

interrogano il genoma in modo più randomico rispetto ad altri tipi di saggi (ad esempio 

quelli basati sull’uso di retrovirus). Per avvalerci di un saggio in vitro che consenta uno 

screening molto efficiente dei geni che regolano la EMT, abbiamo combinato il saggio di 

fSCS con uno screening genetico in vitro basato sull’uso del trasposone Sleeping Beauty 

in cellule di cancro colo-rettale HCT116. Abbiamo identificato un clone cellulare, 

TN4_20, che mostra le seguenti caratteristiche: maggior resistenza al saggio di fSCS, 

morfologia mesenchimale, espressione di marcatori della EMT (ad esempio Slug ↑, Twist 

↑, Vimentin ↑, E-cadherin ↓, Has-2 ↑), e abilità di generare un maggior numero di colonie 

satelliti nel saggio di evasione in matrigel. Inoltre, in un esperimento pilota condotto in 

vivo, le cellule TN4_20, iniettate in topi mediante iniezione intra-cecale, formano 

metastasi a distanza. Dopo essere risaliti alle posizioni genomiche delle inserzioni del 

trasposone nel DNA genomico delle TN4_20, ci siamo focalizzati sull’inserzione 

localizzata nella 3’UTR (3’ regione non tradotta) del gene BTBD7. Abbiamo scelto di 
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studiare questa inserzione perché BTBD7 è un noto regolatore di EMT e metastasi e 

perché questa inserzione del trasposone è localizzata nel sito bersaglio predetto del 

miR-23b, un miRNA con note funzioni anti-metastatiche. Abbiamo ipotizzato e 

dimostrato che il miR-23b bersaglia il gene BTBD7 e i nostri dati suggeriscono che 

l’inserzione del trasposone nella 3’UTR di BTBD7 interferisce con questa interazione. 

Inoltre, abbiamo dimostrato che l’interazione tra il miR-23b e BTBD7 è importante per 

la resistenza all’ fSCS. I nostri risultati inoltre dimostrano che il silenziamento di BTBD7 

interferisce con la resistenza all’ fSCS sia in cellule HCT116 parentali che TN4_20, e che 

la over-espressione di un costrutto ectopico eGFP-Btbd7 in cellule HCT116 parentali 

conferisce resistenza all’ fSCS e l’abilità di generare un maggior numero di colonie 

satelliti nel saggio di evasione in matrigel. Inoltre, l’over-espressione di eGFP-Btbd7 

induce una riduzione dei livelli di trascritto e di proteina di E-caderina, e un aumento dei 

livelli di Vimentina, entrambi marcatori di EMT. In più, la over-espressione di eGFP-

Btbd7 aumenta i livelli di trascritto e di proteina del fattore di trascrizione Zeb-1. 

In una versione estesa del nostro saggio, attraverso l’esecuzione di round multipli di 

fSCS sia in cellule HCT116 parentali che in cellule HCT116 trasposte con il trasposone 

Piggybac (PB), abbiamo ottenuto gruppi, e non singoli cloni, di cellule resistenti all’ fSCS. 

Abbiamo osservato che cellule che sopravvivono a ogni round di fSCS generano un 

maggior numero di colonie sopravviventi, le quali acquisiscono una morfologia più 

mesenchimale. Inoltre, le colonie di cellule sopravvissute all’ fSCS mostrano ridotti livelli 

di espressione di E-caderina, aumentati livelli di espressione di Vimentina, e un 

aumentato numero di cellule con ridotta espressione di EpCAM, suggerendo che round 

multipli di fSCS determinano un arricchimento di cellule con tratti di EMT e staminalità. 

Inoltre, abbiamo osservato che cellule resistenti all’fSCS mostrano una maggiore 

resistenza al trattamento con 5-fluororacile (5-FU) e un aumentato potenziale 

metastatico in vivo. Infine, round ripetuti di fSCS arricchiscono due famiglie di miRNA, 

cioè miR-30 e miR-302, che sono già stati descritte avere un ruolo nella EMT e nella 

metastasi, e che potrebbero quindi regolare anche la resistenza all’ fSCS. 
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SUMMARY 

 

Colorectal cancer (CRC) is the second most lethal cancer because of the metastatic 

spread of the primary tumor. A current hypothesis is that metastasis relies on epithelial 

to mesenchymal transition (EMT), which is a biological process in which epithelial cells 

gradually loose epithelial features to switch to a mesenchymal program. In vitro assays 

that select EMT cells are fundamental to perform in vitro genetic screens that select cells 

switched to EMT program. For instance, in vitro anoikis assay consists in growing cells in 

low adherence conditions (loss of cell-matrix contacts) and has been used to select more 

aggressive tumor cells; however, some tumor cells survive to loss of cell-matrix contacts 

by strengthening cell-cell contacts, which is counteracting for cells that undergo to EMT. 

An assay that was developed in our lab and was named Forced Single Cell Suspension 

Assay (fSCS) is more stringent compared to in vitro anoikis and selects for cells that 

undergo EMT. The non-coding part of the genome, despite having a fundamental role in 

regulating EMT and metastasis (e.g miRNAs) is less studied respect to the protein-

coding counterpart. Transposon based screens interrogate the genome more randomly 

than other screens (e.g retroviral based screens). To perform an in vitro assay that 

permits the high-throughput screening of EMT genes, we combined fSCS with an in vitro 

Sleeping Beauty (SB) transposon (TN) based screen in HCT116 CRC cells. We identified a 

cell clone, TN4_20, that shows the following features: greatest fSCS resistance, 

mesenchymal morphology, expression of EMT markers (e.g. Slug ↑, Twist ↑, Vimentin ↑, 

E-cadherin ↓, Has-2 ↑), and the ability to generate more satellite colonies in matrigel 

evasion assay. Moreover, in a pilot in vivo experiment, TN4_20 intra-caecal injected mice 

developed distant metastases compared to control. We retrieved the genomic position of 

TN insertions from TN4_20 genomic DNA, and we focused on the TN insertion located 

within the 3’ UTR of BTBD7. We chose to study this insertion because BTBD7 is a known 

EMT and metastasis regulator and because, interestingly, this TN insertion locates 

within the predicted target site of miR-23b, a known anti-metastatic miRNA. We 

hypothesized and demonstrated that miR-23b targets BTBD7 gene, and our data suggest 

that TN insertion impairs miR-23b/BTBD7 interaction. Moreover, we demonstrated that 

the interaction between miR-23b and BTBD7 is important for fSCS resistance. We found 

that Btbd7 silencing impairs fSCS survival in HCT116 parental and in TN4_20, and that 
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the overexpression of ectopic eGFP-Btbd7 in HCT116 parental confers fSCS resistance 

and the ability to generate more satellite colonies in matrigel evasion assay. Moreover, 

the overexpression of ectopic eGFP-Btbd7 induces the down-regulation of E-cadherin at 

the mRNA and protein level, and the up-regulation of Vimentin, both markers of EMT. In 

addition, Btbd7 overexpression up-regulates Zeb-1 transcription factor mRNA and 

protein levels.  

In an extended version of our TN- fSCS based screen, by performing sequential 

rounds of fSCS in both HCT116 Parental and Piggybac (PB) TN-cells, we obtained pools 

of fSCS resistant cells, instead of single clones. We observed that cells that survived to 

each round of fSCS generated more surviving colonies and acquired a greater 

scattered/mesenchymal morphology. Moreover, surviving colonies after fSCS showed 

decreased E-cadherin expression, increased Vimentin expression and increased number 

of cells with EpCAM low (dim), suggesting that multiple rounds of fSCS enriches for 

EMT/stem-cell traits. In addition, we observed that enriched fSCS resistant cells showed 

increased resistance to 5-fluoro-uracil (5FU) treatment and increased in vivo metastatic 

potential. Finally, repeated rounds of fSCS enrich for two families of miRNAs, miR-30 

and miR-302 that were already shown to regulate EMT and metastasis and that may 

potentially regulate fSCS resistance.  
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1. INTRODUCTION  

1.1 COLORECTAL CANCER  

1.1.1 Incidence of Colorectal Cancer 

In the Western world, colorectal cancer (CRC) is a relevant health problem, as it 

represents the third most frequent tumor in industrialized countries. CRC incidence 

among males results to be higher between the ages of 50 and 65 and ranks third after 

lung and prostate tumors. Instead, among females CRC incidence ranks second after 

breast cancer. Approximately one million new cases are registered worldwide per year, 

with 550,000 men and 470,000 women affected [1][2]. Considerably, in 2008 nearly 

600,000 deaths related to CRC have been registered by the World Health Organization, 

thus reaffirming the importance of CRC as a public health problem [3].  

In the Tumor-Node-Metastasis (TNM) staging system, “T” is used to describe how 

deeply the primary tumor has grown into the wall of the intestine, “N” is used to 

describe if cancer has spread to regional lymph nodes, and “M” is used to describe 

cancer that has spread to other organs of the body, most commonly liver and lungs. The 

overall stage of the tumor is determined by combining T, N and M and goes from 0 to IV, 

with higher numbers indicating more advanced cancers and providing the basis for 

therapeutic decisions. 

The diagnosis of CRC usually occurs late, at advanced stages (stage IV), when the 

tumor has spread to distant sites. In the last years, a great effort has been accomplished 

for the improvement of adjuvant chemotherapies, surgical techniques, radiotherapy 

techniques as well as campaigns for primary and secondary prevention. However, it has 

been estimated that half of the patients recently diagnosed with CRC will progress to 

metastatic cancer and that the average survival will be 5 years for 50-60% of these 

patients [4].  

Colorectal cancers are divided into three categories based on occurrence: sporadic 

(60-80%), familial (10-30%) and hereditary CRC (5-6%) (Figure 1). Sporadic CRC 

accounts for the vast majority of CRC and appears in individuals who do not carry 

germline predisposing mutations [5]. Familial CRC are less common and also for this 

category no associated gene has been identified. It has been estimated that the risk of 
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developing CRC is two to three times higher than in the general population if family 

members of primary consanguinity have suffered from sporadic colon cancer. In these 

cases, the risk to develop familial CRC in individuals who are genetically predisposed is 

determined by environmental factors [6].  In Hereditary CRC the inherited cancer risk of 

some CRC cancer–prone families is due to known genetic mutations. The two best 

defined hereditary forms of CRC can be distinguished by the presence or not of 

adenomatous polyps: 1) Familial adenomatous polyposis (FAP), which is caused by 

pathogenic variants of the APC (Adenomatous Polyposis Coli) gene; FAP is characterized 

by the presence of multiple polyps. If these polyps are not treated with preventive 

surgery, the risk to become malignant at the average age of 40 is higher [7]. 2) 

Hereditary nonpolyposis CRC (HNPCC) or Lynch Syndrome is the hereditary CRC variant 

not associated with polyposis. Lynch Syndrome in addition to CRC has also high risk for 

developing other non-digestive cancer and is caused by germline pathogenic variants in 

DNA mismatch repair (MMR) genes (e.g. hMLH1, hMSH2, hMSH6 and hPMS2, see next 

section) [8]. 

 

 

 

Figure 1. The figure represents the fractions of CRC cases arising in various family risk 

settings. Reprinted from Gastroenterology, Vol. 119, No. 3, Randall W. Burt, Colon Cancer 

Screening, Pages 837-853, Copyright (2000), with permission from Elsevier 
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1.1.2 Natural history of CRC 

Colorectal tumors are predominantly epithelial-derived tumors and range from 

benign growths to invasive cancers (i.e. from adenomas to adenocarcinomas). Colorectal 

lesions can be classified into three groups: a) Non-neoplastic/adenomatous polyps 

(hyperplastic, juvenile, hamartomatous, inflammatory, and lymphoid polyps), which are 

not considered as cancer precursors lesions; b) Neoplastic/adenomatous polyps and 

adenomas, which are benign glandular tumors that naturally evolve into malignant 

tumors and c) cancers [9].  

 

 

 

Figure 2: Schematic view of adenoma-carcinoma sequence in CRC.  ©2005 Terese Winslow 

 

Neoplastic polyps, in particular adenomatous polyps, can predispose to the 

development of CRC [10]. Adenomas have variable degrees of dysplasia, that range from 

low-grade (G1, well differentiated), intermediated grade (G2, moderately differentiated) 

and high-grade (G3, poorly differentiated, G4 undifferentiated). Adenomatous polyps 

with high grade dysplasia (G3, G4), high content of villous tissue within the polyp, and 

greater than 1 cm in diameter correlate with an increased risk of malignant progression 

[9][11].  
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The adenoma-carcinoma sequence is a stepwise process in which a benign polyp or 

adenoma develops in an advanced adenoma and then progresses to invasive cancer. CRC 

stages I and II are confined within the wall of the colon; CRC stage III invade submucosa, 

muscle layers and disseminate to regional lymph nodes; finally, CRC stage IV has 

metastasized to one or more distant sites [12][13][14] (Figure 2). Surgical excision 

solves stage I and II tumors and, with the use of adjuvant chemotherapy, more than 73% 

of cases of stage III disease [12][13][15]. Unfortunately, stage IV of CRC is usually 

incurable, although recent advances in chemotherapy have improved survival [12][13]. 

1.1.3 Molecular bases of CRC 

From a molecular perspective, the adenoma-carcinoma sequence in CRCs is 

characterized by the accumulation of genetic abnormalities [16][17]. The loss of 

genomic stability facilitates the acquisition of multiple tumor-associated mutations, 

thereby contributing to the development of CRC [18].  The two major types of genomic 

instability that have been recognized as alternative mechanisms of CRC carcinogenesis 

are: a) Chromosomal Instability (CIN) and b) Microsatellite instability (MSI) [17][18][19]. 

Another type of instability harbored by CRCs is epigenomic instability. Epigenetic 

instability can be classified as global hypomethylation or as the CpG island methylator 

phenotype (CIMP), defined as methylation at three or more specific marker loci [18].   

CIN: Being present in approximately 70-80% of cases, CIN is the most common type 

of genomic instability in CRCs [19]. CIN is characterized by the presence of multiple 

structural or numerical chromosome alterations in tumor cells, which can determine the 

physical loss of a wild-type copy of a tumor-suppressor gene, such as APC, TP53 and 

SMAD4 [17]. A tight association between the clinicopathological changes occurring in 

adenoma-carcinoma sequence and the physical loss of tumor suppressor genes has been 

described in CIN CRCs [20]. The initial step of tumorigenesis leading to adenoma 

formation is the physical loss of APC gene and alteration of the oncogenic Wnt signaling 

pathway [17][19][20]. APC protein is a component of the oncoprotein β-catenin 

degradation complex, which degrades β-catenin and inhibits its nuclear localization. 

Loss of β-catenin degradation and its translocation to the nucleus are sufficient to 

trigger Wnt pathway; in fact, once in the nucleus, β-catenin binds to its nuclear partners 

(members of the T-cell factor–lymphocyte enhancer factor family) and becomes a 

transcription factor which regulates genes involved in cellular activation. In the absence 



14 
 

of functional APC, β-catenin gets rid of degradation and Wnt signaling is inappropriately 

and constitutively activated [17]. According to recent studies, microRNAs (miRNAs) 

represent an alternative mechanism for APC regulation in CRC: miR-135a and miR-135b 

decrease translation of APC in vitro and were also found upregulated in CRC patient 

samples with low APC levels [21]. Progression along the adenoma-carcinoma sequence 

occurs upon accumulation of additional mutations:  intermediate adenomas present 

alterations in small GTPases (e.g. activation of KRAS); late adenomas present the 

additional loss of chromosome 18q carrying SMAD4 locus, a tumor suppressor that acts 

downstream of transforming growth factor-β (TGFβ). Additionally, SMAD4 can be 

regulated also at the post transcriptional level by miR-224, which is found increased in 

advanced CRCs [22]; finally,  invasive cancers present mutations in TP53 [19] 

[20](Figure 3, upper part). 

MSI: Microsatellites are tracts of tandemly repeated DNA motifs (2-5 bp in length), 

typically repeated 5-50 times and widely distributed throughout the genome. MSI 

tumors are characterized by abnormal microsatellite length, which can be measured at 

specific microsatellite marker sites. This is due to deficiency of mismatch repair (MMR) 

system that normally corrects errors occurring in DNA replication. If cells fail to 

recognize mismatches and repair them, the result is microsatellite slippage and elevated 

spontaneous mutation rate (mutator phenotype) [23]. In humans, seven MMR proteins 

work in sequential steps to repair DNA mismatches: hMLH1, hMLH3 (human mut L 

homologues), hMSH2, hMSH3, hMSH6 (human mut S homologues), hPMS1 and hPMS2 

(human post-mitotic segregation).  

Approximately 15% of CRCs develop through the MSI pathway. The defect can be 

inherited, which is the case in Lynch syndrome, or acquired, as in sporadic MSI tumors. 

In patients with Lynch syndrome, the MSI phenotype is caused by germline mutations in 

mismatch repair genes (mostly hMLH1 and hMSH2), whereas sporadic MSI CRCs are 

typically caused by epigenetic silencing of the hMLH1 gene [24][25]. MiRNAs appear to 

be important in the regulation of MSI in CRC: the overexpression of miR-155 

significantly downregulates MMR core proteins (hMSH1, hMSH6 and hMLH1) by 

inducing an MSI in CRC; moreover, an inverse correlation between miR-155 and the 

expression of hMLH1 or hMSH2 was found in human CRC samples [26]. 
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In MSI CRC, which can be sporadic or associated with Lynch Syndrome, loss of MMR 

genes occurs early in adenoma-carcinoma sequence. In addition, affection of Wnt 

signaling, with mutations of CTNNB1 encoding β-catenin, also occurs at early steps (see 

Figure 3, lower part) [19][24]. In intermediate adenomas, BRAF mutations occur in 

place of KRAS mutations; in this context, positive selection of tumor cells with mutated 

microsatellites in hMSH3 and hMSH6 genes has been shown to increase MSI status. 

Mutations that affect microsatellites in TGFβ receptor 2 (TGFBR2) [27] and insulin-like 

growth factor 2 receptor (IGF2R) produce an additional positive selection in late 

adenomas. Finally, mutations that affects microsatellites in BAX142, provide a 

mechanism of progression to carcinoma which is not dependent on p53 (see Figure 3, 

lower part) [19].  

 

  

 

Figure 3: Upper part: adenoma-carcinoma model for CIN pathway; Lower part: adenoma-

carcinoma sequence model for MSI pathway. Adapted from: Walther et al, Genetic prognostic and 

predictive markers Nat Rev Cancer 2011 © 2011 Macmillan Publishers 
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1.2 METASTATIC PROGRESSION OF COLORECTAL CANCER 

1.2.1 The metastatic cascade 

Metastasis is a multistep process which causes more than 90% of cancer-related 

deaths. As mentioned above, metastasis is a relevant problem in CRC, since half of 

recently diagnosed CRC patients will progress to metastasis, with an average survival of 

five years for 50-60%[4]. In an anatomic perspective, a tumor that is still confined 

within the walls of intestine and has not invaded the basement membrane is a 

carcinoma in situ (CIS) or a carcinoma stage 0 (see figure 2). To become invasive and 

metastatic, a normal colon epithelial cell must undergo dramatic phenotypic and 

biochemical changes. This changes primarily involve motility and cell shape 

mechanisms, but also growth factor signaling and gene expression [28]. 

 In CRC metastasis, similarly to other tumors, invasive cancer cells leave the primary 

tumor site, travel via the circulation to a distant tissue site, and form a secondary tumor 

[29]. This process can be divided in five steps, which are collectively termed the 

metastatic cascade (Figure 4):  

Detachment and invasion: This step involves the detachment of tumor cells from 

the primary tumor and the invasion of the adjacent tissues.  

The detachment of tumor cells from the epithelium requires the loss of contact with 

their extracellular matrix (ECM). In normal cells, the loss of cell-matrix contacts induces 

a programmed cell death named anoikis. By preventing epithelial cells to survive in the 

absence of ECM contacts, anoikis constitutes an important barrier to metastatic 

dissemination. Therefore, cancer cells to be able to metastasize must overcome anoikis. 

Moreover, it has been observed that tumor cells detaching from their site of origin 

undergo epithelial-mesenchymal transition (EMT), a process involving the loss of 

epithelial traits and the acquisition of a more mesenchymal and motile phenotype [30] 

[31]. This indicates a role for EMT in the initiation of the metastatic cascade. 

To invade the underlying stroma, tumor cells must disrupt the basement membrane. 

To do so, they overexpress proteolytic enzymes, such as matrix metalloproteinases 

(MMPs), which promote the digestion of the basement membrane major components, 

i.e. laminin and collagen IV [28][32]. 
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Intravasation: During intravasation, cancer cells penetrate the endothelial cell 

junctions and enter in the blood and/or lymphatic vessels. In this process, tumor cells 

must undergo dramatic shape changes and cytoskeletal remodeling, thus a critical role is 

played by cytoplasm elasticity and viscosity [32]. Recent findings indicate that the 

relative stiffness and deformation capability of cell organelles plays an important role in 

intravasation processes. The interphase nucleus is the largest organelle in the cell and is 

ten times stiffer than the cytoplasm, thus it is not surprising that its deformability is a 

rate-limiting step in the migration of tumor cells within the endothelium [33][34][35]. 

Moreover, it has been reported that oncogene-mediated alterations in cellular 

actomyosin contractility and small GTPase Rho activity can regulate tumor cell 

deformability and reduce cytoskeletal stiffness, enabling metastatic cells to move 

through tight spaces, such as between endothelial cells [36].  

Circulation: In this step, tumor cells, referred to as circulating tumor cells (CTCs), 

travel via the blood or lymphatic circulation. Several physical and mechanical 

parameters, like blood flow, diameter of blood vessels and the interplay between 

intercellular adhesion and sheer force of the blood flow have the ability to influence the 

trajectory of CTCs [32]. Moreover, during their transit CTCs must withstand toxic 

conditions (e.g. high concentration of oxygen), immunological stress and collision with 

host cells (e.g. blood cells and endothelial cells) [28][32]. These constraints can affect 

CTCs survival and their ability to establish metastatic foci: the main part of CTCs die, 

indicating that metastatic spread is a very inefficient process and that a selection for 

particularly resistant and aggressive tumor cell takes place.  

Extravasation: In this process CTCs arrest, leave the circulation and penetrate the 

endothelium. The arrest of CTCs occurs in two manners depending on vessel diameter: 

a) physical occlusion and b) adhesion. Physical occlusion occurs when the diameter of 

vessel is less than the diameter of the cell. With a diameter greater than 10µm, for 

example, epithelial tumors typically arrest in small vessels and capillaries with a 

diameter of <10 µm [32]. When they are in larger vessels, CTCs arrest by adhering to the 

vessel through the formation of specific bonds. P-L and E-selectin expressed on the 

surface of endothelial cells are particularly important for the arrest of CTCs and 

metastasis [37]; for example, CRC cells directly contact endothelial selectins through 

their surface CD44 variant isoforms, CEA (carcinoembryionic antigen) and PODXL 

(podocalyxin)[38] [39] [40]. Strikingly, metastasis of a CRC xenograft is markedly 



18 
 

inhibited in P-selectin knockout mice [37]. Moreover, the arrest of CRC cells also 

depends on the interaction between integrins expressed on tumor surface and their 

counter-receptors, ICAM1 and VCAM1 (Intercellular and Vascular adhesion molecule 1, 

respectively) on endothelial cells [41].  

Colonization: CTCs that successfully penetrate the endothelium and then infiltrate 

the target organ are called disseminating tumor cells (DTCs). To colonize the target 

organ and form a secondary tumor, DTCs must survive to immune surveillance and 

adapt to a foreign microenvironment [28]. The location of metastatic site does not seem 

to be casual:  CRC preferentially metastatizes to the liver and lungs [42]. The preferential 

localization of metastases at certain organs is explained only in part by the vessel 

anatomy and by the physics of blood flow. This was observed for the first time in 1889 

by Steven Paget [43] who formulated the “seed and soil” theory. According to this 

theory, the so called “premetastatic niche” at a distant site — the soil — is be more 

conducive for DTCs — the seeds — than others, promoting the development of 

metastases. In addition, recent evidences indicate that growth factors secreted by the 

primary tumor itself, such as VEGF (Vascular Endothelial Growth Factor) and 

inflammatory chemokines, “initiate” pre-metastatic niches for the engraftment of tumor 

cells [44][45].  

 

 

 

Figure 4: Schematic view of the metastatic cascade. Adapted from: Wirtz et al. The physics 

of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer. 
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1.2.2 Anoikis: a barrier to metastasis 

As mentioned above, the initial step of metastatic dissemination in carcinomas is the 

detachment of tumor cells from the epithelium (see Figure 4). To do this, cancer cells 

must lose their contacts with the neighboring cells and the ECM. The loss of cell-cell 

contacts and contacts with the ECM in a normal cell triggers a type of programmed cell 

death that has been termed “anoikis”, a Greek word that means “homelessness” [30]. 

Thus, anoikis is critical in maintaining tissue organization and in preventing epithelial 

cells from colonizing elsewhere. Normal epithelial and endothelial cells are very 

sensitive to anoikis, and only upon oncogenic transformation they become anoikis-

insensitive; whereas, normal fibroblast can acquire the capacity to survive the loss of 

ECM contacts by pro-survival signaling triggered by serum growth factors. [46].  

The major cell death pathway involved in anoikis is apoptosis (Figure 5). Apoptosis 

is the most diffused type of programmed cell death in vertebrates, and is divisible into 

two pathways: extrinsic (death receptor-dependent) and intrinsic (mitochondria-

dependent)[47]. Both pathways are initiated upon loss of cell ECM contact and 

ultimately cause activation of cysteine proteases, called caspases, which enzymatically 

destroy the cell in a manner that, unlike necrosis, avoids inflammation. The extrinsic 

pathway is triggered by the binding of membrane-bound death receptors such as Fas 

receptor, TNFR1 (tumor necrosis factor receptor 1), and TRAIL R1/R2 (TNF-related 

apoptosis-inducing ligand receptor-1 or-2), with soluble ligands such as Fas ligand, TNF- 

or TRAIL, respectively. When Fas is stimulated, the Fas-associated death domain (FADD) 

adapter molecule directly triggers procaspase-8 oligomerization and autocleavage into 

active caspase-8 monomers [48]. The intrinsic pathway, relies on the mitochondria and 

is triggered by cell stressors (e.g oxidative stress, DNA damage, UV radiation and viral 

infection). The Bcl-2 family of proteins intracellularly mediates this pathway. The 

common effect of these intrinsic factors is the increase of mitochondrial membrane 

permeability and the release of cytochrome c, that in turn triggers caspase-9 activation 

and cell execution via apoptosis [49].   

Integrins are the main receptors and for cell-cell adhesions and for cell adhesion to 

ECM. Upon engagement with components of the ECM, integrins trigger signal 

transduction pathways that regulate proliferation, cell-survival/apoptosis, shape, 

polarity and differentiation [50]. In the primary tumor, integrins contact the ECM and 
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lead to:  1) local organization of cytoskeleton and 2) the formation of focal adhesion 

complexes. Focal adhesion kinase (FAK) is one of the major components of focal 

adhesion complexes, and its activation leads to cell survival by inducing pro-

proliferative pathways, such as the mitogen-activated protein kinase (MAPK) or 

phosphatidylinositol-3-kinase (PI3K)-Akt. The detachment from the ECM causes the 

disruption of the actin cytoskeleton, which in turn results in: 1) deactivation of FAK,  

that  leads to the attenuation of pro-survival pathways, and 2) release of pro-apoptotic 

Bcl2 family members, such as Bim (Bcl2-interacting mediator of cell death), Bmf (Bcl2-

modifying factor) Bak (Bcl2-homologous antagonist/killer) and Baxx (Bcl2-like protein 

4) that, freed from prior inhibition, induce mitochondrial mediated apoptosis [51][52]. 

Alternatively, integrin disruption leads to increased expression of Fas ligand receptors, 

thus activating extrinsic apoptosis via FADD-mediated caspase activation [51][53]. 

 

 

 

Figure 5: Left: anoikis regulation in normal cells by apoptosis; Right: mechanisms leading to 

anoikis resistance in cancer cells. 
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Autophagy is a process engaged by cells in response to nutrient deprivation, 

starvation, and other stress stimuli (including loss of ECM contacts) and can occur 

during anoikis. Autophagy is context-dependent and can lead to both cell death or cell 

survival in a context dependent manner: due to this ambiguity, the exact role of 

autophagy in anoikis regulation appears to be very complex and is still debated. During 

autophagy, cytoplasmic constituents that have been targeted for degradation are 

isolated from the rest of the cell and included into the autophagosome, a double-

membrane vesicle. Then, the fusion of the autophagosome with a lysosome allows 

degradation and recycling of the contents [54]. Beclin 1 is one of the key molecules that 

initiates, by aggregating with PI3K and Vps34, the autophagic cascade. This includes the 

aggregation of autophagy proteins (Atg) first into an intermediate complex (Atg12-Atg5-

Atg16) and then, upon activation and ligation of LC3/Atg8 (microtubule-associated-

protein 1 light-chain3) to the phospholipid phosphatidylethanolamine (PE) via Atg3, 

Atg4 and Atg7, into a higher complex (Atg12-Atg5-Atg16-LC3-PE) that is ultimately 

responsible for the autophagosome formation. Another key regulator of autophagy is 

mTOR (mammalian Target Of Rapamycin) which is a potent inhibitor of Atg12-Atg5-

Atg16 complex formation [55].  

On one hand, autophagy has been described to act as promoter of cell-death in 

anoikis: indeed, during formation of three-dimensional (3D) mammary epithelial acini, 

central cells die as a result of the loss of contact with ECM; interestingly,  numerous 

autophagic vacuoles are present in these dying cells [56]. On the other hand, numerous 

evidences suggest a requirement for autophagy during anoikis resistance and 

metastasis. For example, autophagy facilitates anoikis resistance of hepatocellular 

carcinoma (HCC) cells and increases HCC invasion and metastasis [57]. Moreover, in an 

organotypic model of invasion through a collagen matrix, the knockdown of the 

autophagic protein Atg12 decreased the invasion capability of glioma cells [58]. 

Consistent with his opposite finding, autophagy and apoptosis have been demonstrated 

to cross-talk, either positively or negatively during anoikis; for example, upon loss of 

ECM and cell-cell contacts apoptosis can impair autophagy through the pro-apoptotic 

protein Bax. In fact, activated Bax can promote the caspase dependent cleavage of the 

autophagic protein Beclin 1 [59]. In this case apoptosis wins over autophagy leading to 

anoikis cell death. 

https://en.wikipedia.org/wiki/Cytoplasm
https://en.wikipedia.org/wiki/Autophagosome
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1.2.3 In vitro anoikis resistance 

The dependence of cell growth on the anchorage to ECM was studied for the first 

time in vitro in 1978 by transferring epithelial cells from standard, adhesive cell culture 

dishes to culture dishes coated with different concentrations of polyHEMA (poly-2-

hydroxyethylmethacrylate)[60]. Standard cell culture dishes are characterized by a 

hydrophilic surface that supports cell attachment and spreading; whereas, polyHEMA is 

a polymer that forms a hydrogel in water [61] and due to its uniformly nonionic nature 

it effectively prevents matrix deposition when used to coat cell culture dishes. However, 

it was only in 1994 that Frisch and Francis thoroughly described the process of cell 

apoptosis induced by loss of ECM anchorage using polyHEMA coated plates and for the 

first time used the term “in vitro anoikis” [30]. Furthermore, they found that epithelial 

cells transformed with H-RAS or V-SRC became resistant to in vitro anoikis. More 

recently, Douma and collegues used in vitro anoiks to perform a cDNA-based gain of 

function genetic screen in order to identify the genes able to overcome anoikis in rat 

intestinal epithelial cells (RIE). In this case, in vitro anoikis was performed with 

commercially available ultra-low attachment plates, and also with this approach RAS 

transformation induced resistance to in vitro anoikis. In particular with this functional 

screen the authors identified Trkb, a neurotrophic tyrosine kinase receptor, as a novel 

regulator of anoikis resistance with metastatic potential in vivo [62]. Consistently, 

human epithelial ovarian cancer displaying enhanced in vitro anoikis resistance were 

associated with greater aggressiveness and tumorigenicity in vivo [63].  

1.2.4 Molecular bases of anoikis resistance 

It has been widely assessed that, for tumor cells to became metastatic, they must 

develop resistance to the pro-apoptotic stimuli that ultimately lead to anoikis. 

Resistance to anoikis can be conferred by different mechanisms, mediated by RTKs 

(receptor tyrosine kinase), by MAPK and other kinases and by small GTPases (such as 

Ras) [53][64]. 

RTKs: RTKs are frequently aberrantly activated in cancer and may contribute to 

anoikis resistance. For example, IGFR1 (insulin growth factor receptor 1) is involved in 

anoikis resistance, as its inhibition reduces the ability of cancer cells to grow in an 

anchorage-independent state in vitro and impairs xenograft tumor formation in vivo 

[65][66]. A reciprocal regulation of EGFR (epidermal growth factor receptor) and ErbB2 
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(a member of EGFR family) has been found to regulate anoikis resistance. When non-

malignant MCF-10A breast cells are forced to grow in suspension, the lack of ECM 

contacts causes a decrease of EGFR levels and an increase of pro-apoptotic Bim levels 

[67]. Interestingly, overexpression of ErbB2 or SRC can compensate deficiencies of 

EGFR, of  α5 integrin and evade Bim-mediated anoikis via ERK signaling [68] [69].  

MAPK and other kinases: Several members of the MAPK family can participate in 

the regulation of anoikis. In addition to ERK, that was already mentioned to regulate this 

process, another anoikis regulating MAPK is TGFβ-activated kinase 1 (TAK1; also known 

as MAP3K7). In particular, the activation of a non-canonical Wnt signaling pathway 

promotes evasion from anoikis, anchorage sphere formation and metastatic potential of 

circulating pancreatic cancer cells, and TAK1 inhibition represses these effects [70]. 

Integrin receptors can propagate downstream signaling through another kinase, ILK 

(integrin-linked kinase); interestingly, ILK can block anoikis in mammary epithelial cells 

via the activation of PI3K/Akt signaling pathway [71].  

Small GTPases: As mentioned above, the transformation of non-tumorigenic 

epithelial cells with H-Ras confers resistance to anoikis [30]. In particular, the 

mechanism by which Ras confers protection during detachment from the ECM involves 

PI3K–AKT signaling pathway [72]. Moreover it was shown that Ras activation can block 

cytochrome c release and caspase 8 activation [73], important for the intrinsic apoptotic 

pathways leading to anoikis. Also the small GTPases RhoG, involved in cytoskeleton 

remodeling and migration, confers anoikis resistance via PI3K-AKT activation small 

GTPases RhoG, involved in cytoskeleton remodeling and migration, confers anoikis 

resistance via PI3K-AKT activation [74]. 

Additional mechanisms that confer resistance to anoikis are the overexpression of β 

catenin [75] and increased cytosolic FLIP, the primary endogenous inhibitor of extrinsic 

apoptosis [76]. 

1.2.5 Epithelial-mesenchymal transition  

Epithelial-mesenchymal transition (EMT) is a de-differentiation process in which a 

polarized epithelial cell gradually loses its epithelial features (polygonal/columnar 

shape, apico-basolateral polarity, strong cell-cell adhesion, expression of: e-Cadherin, 

Claudin, Occludin, Zonula Occludens 1, Cytocheratins) and switches to a mesenchymal 
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phenotype (spindle shaped, anterior/posterior polarization, focal cell-cell contacts, 

expression of: N-cadherin, Vimentin, αSMA, Desmin, Fibronectin). Elevated resistance to 

apoptosis, enhanced migratory capacity, invasiveness, and increased production of ECM 

components are some of features that an epithelial cell acquires during EMT [31]. 

Diverse molecular processes are required for initiation and completion of the EMT 

program. In fact, epithelial cells undergoing EMT change their repertoire of specific cell-

surface proteins, re-organize their cytoskeleton, produce proteases to degrade the 

surrounding ECM and finally convert themselves in  mesenchymal cells that can migrate 

away from the epithelium of origin [31][77]. Moreover, changes in the expression of 

specific miRNAs can occur during EMT. To demonstrate the passage of a cell through 

EMT, some of the molecules that participate to this process are used as EMT biomarkers 

[31].  

EMT can be classified into three different biological types, with very distinct 

functional consequences[31]: a) Type 1, comprising EMT associated with embryo 

formation and tissue organization; b) Type 2, comprising EMT associated with wound 

healing, tissue regeneration and organ fibrosis and, c) Type 3, occurring in cells that 

undergo genetic and epigenetic changes that favor tumorigenic transformation [78]. 

Type 1: EMT in embryogenesis and organ development 

Type 1 EMT, unlike other types of EMT, is not associated with fibrosis, inflammation 

or induction of an invasive phenotype, and occurs at various stages of embryogenesis, 

including the earliest ones [31]. For example, Type 1 EMT occurs during gastrulation of 

the fertilized egg, when the three germ layers that will give rise to different adult body 

tissues are generated [79]. The canonical Wnt signaling is involved in gastrulation-

associated EMT [80] and acts via proteins of the TGFβ superfamily, e.g. Nodal and Vg1 

[81][82]. Transcription factors such as Snail, Eomes (Eomesdermin) and Mesps 

orchestrate gastrulation associated-EMT; for example, Snail transcription factor induces 

EMT by downregulating E-cadherin expression (see below) [83]. 

Type 2: EMT in inflammation and organ fibrosis 

Type 2 EMT occurs in repair-associated programs. In fact, to intervene in case of 

inflammatory injury and trauma, the organism use this type of EMT to generate 

fibroblasts, which act in cooperation with other cell-types. In the case of organ fibrosis, 

in which the inflammatory stimulus is continuous, type 2 EMT eventually leads to organ 
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destruction [31]. Epithelial cells that undergo EMT associated with chronic 

inflammation are characterized by the expression of Desmin, Colloidin, Vimentin, FSP1 

(fibroblast specific protein 1) and Collagen I [31] [84]. During inflammatory injury in 

mouse kidney, resident fibroblasts and macrophages release growth factors, such as 

TGFβ, EGF, FGF and PDGF (platelet derived growth factor), which induce epithelial cells 

to cooperate with inflammatory cells and to undermine basement membrane integrity 

via degradation of laminin and collagen IV; ultimately, under the influence of 

chemoattractants and growth factor gradients, delaminated epithelial cell migrate in the 

interstitial area [85]. 

1.2.6 Type 3: EMT in tumor invasion and metastasis 

 The EMT program has emerged as a critical mechanism in the induction of the early 

steps of metastatic cascade. In fact, both in vitro and in vivo experimental evidences 

prove that carcinoma cells can switch to mesenchymal phenotype by expressing relative 

mesenchymal markers, such as the above mentioned Vimentin, FSP1 and desmin 

[31][86]. Remarkably, these traits are frequently observed in the cells at the invasive 

front of primary tumors, that more likely will proceed to the subsequent steps of the 

metastatic cascade (see Figure 4) [87]. The molecular mechanisms that contribute the 

achievement of the EMT program can be grouped as follows: 

1) Signaling: Tumor-associated stroma cells release a series of growth factors, which 

can act as EMT-inducing heterotypic signals for tumor cells [31][87]. In particular, 

EGF, HGF PDGF and TGFβ activate several intracellular signaling pathways inducing 

the expression of EMT-transcription factors, notably Snail, Slug (or Snail 2), Zeb 1 

(zing finger E-box binding homeobox 1), Twist and others [87]. High expression of 

EMT-transcription factors correlated with poorer prognosis [88], as in the case of 

Snail in prostate and breast cancer [89], Slug in gastric cancer [90] and Zeb-1 in CRC 

[91]. TGFβ function is context dependent and has a dual role, acting as promoter of 

malignant transformation or as inducer of cell death depending on cell type, growth 

conditions, and the presence of other growth factors [92]. This ambiguity manifests 

also in the regulation of EMT [31]: TGFβ treatment induces EMT, invasion and 

metastasis in diverse murine and human systems, acting as promoter of malignancy 

[93]; in particular, TGFβ-mediated EMT can be triggered by different pathways, 

involving Smad proteins and ALK (anaplastic lymphoid kinase)-5 receptor [94], or 
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alternatively PGE2 (prostaglandin 2) and overexpression of Cox2 (cyclooxygenase 

2)[31][95][96]. However, the pro-EMT and pro-oncogenic function of TGFβ is in 

contrast with its capability to promote apoptosis. A complex regulatory loop has 

been described in EMT induction by TGF-β: if on one hand TGF-β induces Snail, that 

in turn promotes EMT, at the same time it induces apoptosis signaling. Interestingly, 

however, cancer cells use Snail to counteract TGFβ-induced apoptosis, since Snail, in 

addition to inducing EMT, upregulates Akt and anti-apoptotic Bcl-xL [95][97].  

 

2) Cellular Junctions: Cell-surface molecules, important for tissue homeostasis and cell 

polarity, dramatically decrease during EMT [95]. In epithelial cells, the apico-basal 

polarity is assured by the Apical-Junctional-Complex (AJC), that comprises tight 

junctions and adherent junctions [98]. Transmembrane proteins from both tight and 

adherent junctions are down-regulated in EMT. E-cadherin is a transmembrane 

glycoprotein that belongs to the family of  Ca2+ dependent adhesion proteins, and is 

the main protein of the adherent junctions [98][99]. Through its extracellular 

domain, E-cadherin establishes homophilic interactions with adjacent E-cadherins 

expressed in neighboring cells; whereas, through its citoplasmic domain E-cadherin 

contacts intracellular proteins, like catenins (α, β, p120), which link E-cadherin to 

actin cytoscheleton [95][99]. The decrease of E-Cadherin, as well as the increase of 

N-Cadherin are considered the paradigm of the induction of the EMT program 

[31][86][95]. Indeed, Snail, Zeb-1, Zeb-2 and Twist EMT-transcription factors are all 

well-known repressors of E-cadherin transcription. Notably, Snail, Slug, Zeb-1 and 

Zeb-2 have been found to interact with specific E-boxes at the proximal promoter of 

E-cadherin during EMT [100]. 

 

3) miRNAs: Snail, Zeb and Twist transcription factors can epigenetically silence E-

cadherin promoter by recruiting chromatin modifying enzymes, such as histone 

deacetylases HDAC1 and HDAC2  [95][101] [102]. MiRNAs extensively participate in 

the regulation of EMT circuitry, and regulate E-cadherin expression levels either 

directly or indirectly: for example, miR-9 directly targets E-cadherin mRNA, whereas 

members of the miR-200 and miR-205 families (miR-200a, miR-200b, miR-200c, 

miR-141, and miR-429) or members of the miR-34 family (miR-34a, miR-34b and 
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miR-34c) repress E-cadherin transcriptional repressors Zeb-1/Zeb-2 and Snail, 

respectively [103]. 

E-cadherin downregulation has been widely associated with tumor metastasis and 

invasiveness, both in vitro and in vivo. A paradigmatic evidence of this is a study 

conducted in various human carcinoma cell lines with epithelioid or fibroblastoid 

phenotype. In this study, the authors reported that carcinoma cell lines characterized by 

epithelioid phenotype and expressing E-cadherin, are noninvasive; conversely, 

carcinoma cell lines with a fibroblastoid phenotype, and which do not express E-

cadherin, are invasive. Remarkably, the transfection of E-cadherin cDNA reversed 

invasiveness of these carcinoma cell lines [104]. Similar results have been observed in 

vivo; in fact, downregulation of E-cadherin levels in vivo is associated with the 

dedifferentiation, progression, and metastasis of CRC [105]. Finally, Onder and collegues 

found that E-cadherin silencing alone is able to induce EMT, invasiveness and the 

expression of a variety of EMT genes, such as transcription factors Twist and Zeb-1, 

suggesting that E-cadherin loss could be not only a consequence of the EMT program, 

but itself can act as an initiator of the EMT and metastasis processes [106].  

1.2.7 EMT and stemness 

Stem cells are undifferentiated cells which are characterized by two properties: 1) 

self-renewal capability, which consists in the ability of stem cells to perpetuate 

themselves and 2) potency, which is the ability of stem cells to generate differentiated 

cells [107]. Several lines of evidence indicate that tumor growth and proliferation are 

sustained by rare populations of stem cells, referred to as cancer stem cells (CSCs); CSCs, 

like normal stem cells, are capable of self-renewal and differentiation [107]. Moreover, 

in certain cases CSCs contribute to chemotherapy resistance and metastatic relapse 

[108][109][110][111]. 

EMT has been associated to stem-like phenotype and chemoresistance in different 

studies. For example, chemoresistance of ovarian cancer cells  to cisplatin and paclitaxel  

induces EMT and stem-like phenotype via the up-regulation of FOXOM1 [112]. 

Moreover, the induction of EMT drives the acquisition of stem-like and tumorigenic 

properties in mammary epithelial cells [113]. EMT transcription factors have been found 

to induce CSCs properties: Zeb-1 not only induces EMT of pancreatic and CRC cells, but 

also stimulates sphere forming capacity and expression of stem cell transcription 
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factors, such as Sox2 and Bmi1. Zeb-1 mechanism of action involves repression of miR-

200 family members, in particular stemness repressing miR-203 [114]. Moreover, TGF-β 

promotes EMT and stemness traits in liver cancer cells via the up-regulation of Snail-1, 

which induces stem cell transcription factor Nanog and tumor initating stem-like cells 

(TISCs) properties [115]. Yet, it must be mentioned that EMT not necessarily associates 

with stem-like phenotype. In fact, in mammary epithelial cells only transient activation 

of Twist initiates stem-like traits; whereas, permanent Twist-1 activation does not 

preserve stem-like traits [117]. 

1.2.8 Establishment of distant metastasis 

A disseminating tumor cell (DTC), that has survived through all the metastatic steps 

and reached a distant organ, must proliferate to form a detectable metastatic lesion. It 

has been proposed that distant metastases in carcinomas can be divided in two groups 

based on their differentiation state: plasticity type I metastases are differentiated 

malignant lesions and retain the hierarchical organization of the corresponding primary 

tumor; these metastases are hypothesized to rely on cell plasticity, EMT and 

mesenchymal-epithelial transition (MET). Conversely, genetic type II metastases are 

undifferentiated lesions, and are hypothesized to rely on genetic alterations occurring at 

the primary site or along the metastatic cascade, rather than on phenotypic plasticity 

[118]. 

Plasticity Type I: It is important to remark that the term “transition” reflects in part 

the reversibility of the process; in fact, the existence of the inverse process of EMT, 

(MET), in which mesenchymal cells come back to the epithelial state, reveals the 

intrinsic plasticity of EMT. In plasticity type I metastases, EMT programs are turned on 

transiently during the initial steps of the metastatic cascade but then are switched back 

off during the establishment of the macroscopic distant lesion with induction of MET, 

with the recovery of epithelial traits in cells that previously underwent EMT. MET 

normally occurs during embryogenesis and organ development, as plasticity of epithelia 

is required to switch from epithelial to mesenchymal state and viceversa until 

completion of tissue development [119]. Colorectal adenocarcinoma is a good example 

of plasticity type I of metastasis: a de-differentiation similar to an EMT, with loss of E-

cadherin expression has been observed in cells at the invasive front of primary tumor; 

whereas, corresponding liver metastases showed a reversal of this de-differentiated 
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phenotype with re-expression of E-cadherin. These clinical-pathological observations in 

primary and metastatic CRC samples enforce the hypothesis of a requirement for 

transient rounds of EMT-MET to enable metastasis formation [118]. Furthermore, 

analysis of gene expression in invasive cells revealed that EMT traits combine with a 

stem cell-like phenotype [118][120].  

Several evidences suggest that cellular plasticity in type I metastases are governed 

by reciprocal feedback loops between EMT-transcription factors and miRNAs. One 

example is the regulatory loop existing between Zeb transcription family members (Zeb-

1 and Zeb-2) and the miR-200 family [121][122][123]. In fact, Zeb transcription factors 

inhibit miR-200 family members, and miR-200 family members, in turn, repress the 

translation of Zeb transcription factor. Thus, Zeb-1 can use two different mechanisms to 

induce EMT: 1) by inhibiting the expression of epithelial molecules, such as E-cadherin 

and 2) by inhibiting its own repression by miR-200 family. In turn, miR-200 induces 

MET and differentiation in at least two different manners: 1) by inhibiting its own 

repression by Zeb-1 and 2) by inhibiting stem cell factors such as SUZ12 [124] and BMI1 

[125][118]. Not only Zeb-1, but also Snail transcription factor is engaged in a similar 

feedback loop with a miRNA family, in this case miR-34 family. Notably, Snail 

transcription factor is a promoter of EMT, stemness and drug resistance; whereas, miR-

34 family induce MET, differentiation and drug sensitivity and the two sides of the loop 

antagonize reciprocally  [126].  

The necessity for differentiation (and MET) in metastasis formation relies on the fact 

that in tumor cells the capability to proliferate (ideally represented by MET) and the 

capability to disseminate (ideally represented by EMT) are mutually exclusive [118]. In 

support of this, there is the observation that invasive cells that underwent EMT in CRC 

show low levels of Ki67 proliferative marker; conversely, Ki67 levels increase in the 

differentiated regions from both primary tumors and corresponding metastases [127], 

suggesting that MET is necessary to overcome the proliferative arrest induced by EMT 

and stemness. 

What dictates the transition from non-proliferative/EMT/stem-like state to 

proliferative/MET/differentiated state? One hypothesis is that tumor microenvironment 

is involved in the regulation of this switch [118]. DTCs (disseminating tumor cells), i.e. 

tumor cells that infiltrate the target organ after extravasation but do not outgrow, are 
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reversibly in growth arrest at the G0/G1 phase of cell cycle [128]. In support of the 

hypothesis that tumor microenvironment regulates the proliferative state of DTCs,  lung 

resident cells induce dormancy and growth arrest of infiltrated breast cancer through 

BMP (Bone Morphogenetic Protein) production [129]. Conversely, when dormant breast 

disseminated cancer cells get in touch with a fibrotic microenvironment rich in collagen 

I, they reactivate and colonize the lungs via β1 integrin activation of Src and FAK [130]. 

Genetic Type II: genetic type II metastases, different from plasticity type I, are 

undifferentiated lesions and do not seem to depend on cell plasticity to form. Two 

possible scenarios explain why these metastases do not need to re-differentiate [118]:  

i) Intrinsic subtype metastases: In this scenario, primary tumors are intrinsically 

undifferentiated due to specific mutations that may have occurred very early during 

tumor development. This is the case of triple negative breast cancers, that are highly 

aggressive cancers, displaying a high proliferation rate and an early and high metastatic 

rate [131]. Importantly, primary tumors have intrinsic EMT and stem-like phenotype, 

with high levels of Slug, Zeb-1, CD133 and BMI1, low levels of miR-200, and expression 

of cancer stem cell markers CD44highCD24low [118][132][133]. In this case stemness 

traits and EMT traits are associated with intrinsic limitless replicative potential. 

ii) Induced subtype metastases: In this scenario, metastasis can be undifferentiated 

due to the selection for aggressive cells in the primary tumor, typically after repeated 

cycles of chemotherapy. Why do repeated cycles of chemotherapy lead to 

undifferentiated metastases? Uncontrolled proliferation and stem cell features, as self-

renewal capability, are distinctive traits of undifferentiated metastases. These features 

likely derive from genetic alterations developed in the primary tumor; it has been 

hypothesized that repeated cycles of chemotherapy may select for these alterations by 

permitting the maintenance of EMT-stem-like traits [118]. In support of this, breast 

cancer patients with tumors that are initially differentiated, develop undifferentiated-

EMT-stem-like tumors after three months treatment with hormone and chemotherapy 

[134].  
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1.3 INTERROGATING THE HUMAN GENOME 

1.3.1 Molecular complexity of human genome 

Human genome consists of 22 paired chromosomes, termed autosomes, and of two 

sex chromosomes: X chromosome (two in females, one in male), and in males only, one Y 

chromosome. Chromosomes are contained within the cell nucleus, but each 

mitochondrion contains a small circular DNA, termed mitochondrial DNA, which is part 

of the human genome. With a total length of 3 billion base pairs, haploid human genome 

is the largest genome to be extensively sequenced [135].  The final number of human 

protein-coding genes was estimated to fall between 40,000 and 100,000, but the 

completion of the Human Genome Project revised dramatically this view, indicating that 

protein-coding genes were between 20,000 and 25,000 [136]. Most recently, this 

number has been further revised to 20,500 protein-coding genes by using evolutionary 

comparisons [137], indicating that protein coding sequences account for only 1.5% of 

the genome.  

 Thus the genome sequencing project revealed an unexpected problem in our 

understanding of the molecular bases of developmental complexity in higher organisms: 

the fruitfly Drosophila Melanogaster and the nematode Caenorhabditis Elegans appear 

to have only half as many protein-coding genes (12,000-14,000) as humans [135]. The 

increased repertoire of protein isoforms expressed in higher organisms and humans is 

accounted by alternative splicing [138], but the other striking feature of the evolution of 

higher organisms seems to be the increase of the non-coding part of the genome, which 

in humans accounts for more than 98% of the whole genome [135] and includes introns, 

regulatory DNA sequences (promoters and enhancers), transposable elements such as 

LINEs (Long Interspersed Nuclear Elements), SINEs (Short Interspersed Nuclear 

Elements), and non-coding RNA genes. Moreover, 3’ untranslated regions (3’UTR) of 

mRNAs  are considered non-coding RNAs, and their length increases with the complexity 

of the genome [139].  
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1.3.2 Non-coding RNA  

Non-coding RNA, i.e. RNA that is not translated into proteins, represents 

approximately 98% of the transcriptional output of the human genome. Two different 

regions of the genome can originate non-coding RNAs (ncRNAs): 1) the introns of 

protein-coding genes and 2) the exons and introns of non-protein coding genes [140], 

including many that are antisense to or overlapping protein coding genes.  

There are two different types of ncRNA: infrastructural ncRNAs and regulatory 

ncRNAs. Infrastructural ncRNAs have a housekeeping role in RNA processing and 

translation, and include transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small nuclear 

(spliceosomal) RNAs and snoRNAs (small nucleolar RNAs) [141]. Regulatory ncRNAs 

regulate the expression of genes in different organisms and can be further divided in 

small ncRNAs that include miRNAs and piRNAs (piwi-interacting RNAs), and long RNAs, 

or lncRNAs [141].  

MiRNAs: miRNAs (microRNAs) are a class of small ncRNAs which have a role in RNA 

silencing and post-transcriptional regulation of gene expression. The majority of worm 

and human miRNAs genes are isolated as independent genes, but other miRNAs are 

clustered in the genome and can be controlled by the same promoter and are often 

related to each other. Finally, a portion of miRNAs originate from introns of protein 

coding genes [142] [143]. 

MiRNA biogenesis is a strictly regulated process which is divided in different steps. 

First, RNA polymerase II transcribes a precursor, termed primary miRNA (pri-miRNA), 

that contains hundred to thousands of nucleotides, and is 5’ capped and polyA [144]; 

interestingly, the pri-miRNA can contain a cluster of miRNA or a single miRNA in a 

folded hairpin stem structure. The nuclear “microprocessor complex”, formed by the 

RNAse III enzyme Drosha and by the double stranded RNA binding domain protein 

DGCR8 (DiGeorge Critical Region 8)/Pasha, cleaves the pri-miRNA into a 70 nucleotides 

precursor known as pre-miRNA [145]. At this point, a Ran-GTP dependent nuclear 

export factor, Exportin 5, transports pre-miRNA from the nucleus to the cytoplasm, 

where it is processed through a series of cuts by the RNAse III Dicer in association with 

TRBP (HIV-transactivating response RNA-binding protein) and PACT (Protein kinase 

dsRNA dependent activator). The result of this processing, in humans, is the production 

of 18-25 nucleotides miRNA:miRNA duplex [146]. The RNA duplex is unwound to form 
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two single strands under the mediation of Ago-2 (Argonaut 2) protein, a key factor in the 

assembly and function of miR-RISC (miRNA-RNA induced silencing complexes). MiRNAs 

downregulate target gene expression by two mechanisms dictated by the level of 

complementarity between miRNA and mRNA. More in detail, it is suggested that 

specificity in choosing target transcript relies on complementarity between the 3’UTR 

(3’ Untranslated Region) of target mRNA and the nucleotide sequence form position 2 to 

8 at the 5’ end of miRNA, referred to as “seed sequence” [143]; yet, it has been reported 

that many functional miRNA binding sites are located outside the 3’UTR of mRNAs 

[147]. MiRNA with close to perfect complementarity, bind to target mRNAs and induce 

cleavage and degradation of the transcript by decapping and deadenylation of the mRNA 

[148]. Most commonly, miRNAs mediate repression of translation without affecting 

mRNA expression levels, due to imperfect sequence complementarity between miRNA 

and mRNA [143]. Alternatively, miRNAs can direct targeted mRNAs to storage 

structures known as processing bodies (p-bodies); interestingly, this process may lead 

to the reversal of miR-induced mRNA repression through the release from the storage 

bodies and the re-entry into polysomes under stress conditions [149].  

MiRNAs regulate an enormous number of cell functions, ranging from tissue and cell 

development to disease and cancer. Some mammalian miRNAs, for example, exhibit 

developmentally regulated expression profiles in a variety of tissues, such as brain [150] 

and many others [151] or appear to be specifically expressed in embryonic development 

[152]. As described above, miR-200 and miR34 families are engaged in a feedback 

regulation loop with Zeb and Snail transcription factors in the control of EMT and cell 

differentiation [121][122][123][126].  All  known relationships between miRNAs and 

human diseases are listed in the publicly available database miR2disease [153]. For 

example, reduced expression of miR-1 and miR-133 have been found implicated in 

cardiac disease, such as cardiac hypertrophy [154].  

Evidence is accumulating that miRNAs play an important role in cancer progression 

and metastasis [155]. In breast cancer miRNA signatures  can distinguish primary 

tumors with metastases from metastasis-free tumors [156]. MiRNAs regulate CRC in 

different manners: as already mentioned, members of the miR-135 family affect Wnt 

signaling by downregulating APC protein in the earliest steps of transformation of CIN 

CRC [21]; whereas, the overexpression of miR-155 significantly downregulates MMR 

genes by inducing an MSI in CRC [26]. CRC invasion, intravasation and metastasis is 
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stimulated by miR-21 through the regulation of tumor suppressor Pdcd4 [157]; 

interestingly, high expression of miR-21 in 5-FU (5-fluorouracil) treated CRC patients 

correlate with poor therapeutic outcome [158].  

piRNAs: piRNAs (piwi-interacting RNAs) are another class of small non-coding 

RNAs expressed in animal cells. Compared to miRNAs, piRNAs are longer (26-31 

nucleotides) and show lack of conservation and  increased complexity [159]. The 

majority of piRNAs map to multiple sites in the genome, and appear to be organized in 

clusters ranging from several to hundreds of kilobases; 95% of these clusters are located 

in pericentromeric and telomeric heterochromatin regions [160]. piRNAs function has 

been well described in animal gonads, where their role is to repress transposons for the 

maintenance of genome integrity. In fact, when piRNAs are lost, the consequent  

transposons de-repression has dramatic consequences, such as genome damage and 

impairment of fertility [161]. The biogenesis of piRNAs is not completely understood, 

but involves the formation of single stranded RNA precursors transcribed from piRNA 

clusters [160]. Different from miRNAs, piRNAs do not depend on RNAse III but are 

processed by the endonuclease Zucchini [162]. After maturation, piRNA interacts with a 

subclass of Argonaute proteins called Piwi proteins and form piRNAs silencing 

complexes (piRISCs) to target RNA transcripts by means of RNA-RNA base pairings 

[162]. In this section it is worth mentioning siRNAs (small interfering RNAs), that are 

double stranded RNAs which, similarly to miRNAs and piRNAs, act within the RNA 

interference pathway by using the same processing machineries [163]. Even if siRNAs 

have been first discovered in plants, the presence of endogenous siRNAs has been 

reported also in human genome [163][164][165]; typically, siRNAs are introduced 

artificially in cells to perform knock-down experiments. A comparison of miRNAs, 

piRNAs and siRNA biogenesis and mechanism of action is depicted in Figure 6.  
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Figure 6 Comparison between miRNAs, siRNAs and piRNAs. Adapted from: Keira et al., 

Small RNAs: a new frontier in mosquito biology. 2013 Trends in Parasitology 

 

LncRNAs: LncRNAs (long non-coding RNAs), differently from small ncRNAs 

(miRNAs, and piRNAs), are longer than 200 nucleotides; they are transcribed by RNA 

polymerase II and are subjected to 5’ capping, splicing, polyadenylation and chemical 

base modification [166]. LncRNAs have been classified accordingly to their genomic 

position [167], including intergenic, enhancers and intronic lncRNAs. 

Intergenic lncRNAs (or lincRNAs) are located between two protein-coding genes, 

and account for the majority of lncRNAs. Interestingly, the promoters  of lincRNAs are 

enriched for active histone modifications such as H3K4me3, H3K9Ac and H3K27Ac, that 

are the same of mRNAs [168][169]. LincRNAs can function through different 

mechanisms: cis or trans transcriptional regulation, if lincRNA function is limited to 

neighboring genes or involves genes located at distant sites, respectively; translational 

control, splicing regulation and other functional mechanisms. For example, HOTAIR (Hot 

transcript antisense RNA), recruits PRC2 (Polycomb Repressive Complex 2) to silence 

developmental genes in distal chromosome, thus acting in trans [170]. Another example 
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of greatly studied intergenic lncRNA is Xist (X-inactive specific transcript) that 

coordinates mammalian X-chromosome inactivation by mediating epigenetic 

modifications [171][170]. 

Enhancer lncRNAs are transcribed from enhancer regions. This class of lncRNAs 

shows the ability to in cis activate neighboring genes, as in the case of LUNAR1 lncRNA 

that regulates the expression of the nearby IGF1-R (insulin growth factor 1 receptor) by 

mediating a chromosome looping [166].  

Intronic lncRNAs are typically located within introns of protein-coding genes. 

According to the direction of transcription, intronic  lncRNAs can be divided in: 1) sense 

lncRNAs, which are transcribed from the sense strand of protein-coding genes and can 

overlap introns and part of the exon; 2) antisense lncRNAs, which are transcribed from 

the antisense strand of protein-coding genes and can overlap an exon [167]. An example 

of antisense lncRNA is Bace1-AS (B secretase antisense); this lncRNA, in fact, is antisense 

to the gene Bace I (B secretase), displays base pair complementarity to Bace I and 

protects it from RNase H enzymatic degradation [172]. 

  

1.3.3 Transposons and transposon-like repetitive elements 

 Transposons are pieces of DNA able to jump around the genome through a 

mechanism known as transposition. Transposons and transposon-like repetitive 

elements occupy a large part of human genome (44%), but only a small proportion (less 

than 0.05%) has conserved its activity [173]. The impact of transposons on the evolution 

of primate genomes is enormous in term of structure and function [174]. 

Based on their mode of transposition, transposons are divided into two major 

classes. Class I transposons, also called retrotransposons, transpose through a “copy and 

paste mechanism” by reverse transcription of an RNA intermediate and class II, also 

called DNA transposons, which instead transpose through a “cut and paste” mechanism. 

Class I can be further divided in two subclasses: class I.1 includes retrotransposons, that 

are characterized by the presence of LTRs (Long Terminal Repeats) and encode 

products with structural homology to the retroviral gag- and pol-encoded proteins; class 

I.2 comprises the non-LTR retrotransposons that, similar to class I.1 retrotransposons, 

encode gag- and pol-like proteins but do not have LTRs. This class includes LINEs (Long 
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Interspersed Nuclear Elements), that are present in the genome as highly repeated 

sequences, 6-7 Kb in length, are transcribed by the RNA polymerase II and contain an 

open reading frame for the transcription of the reverse transcriptase of retroviruses. 

SINEs (Short Interspersed Nuclear Elements), or Alu-like sequences are highly repeated 

sequences 100-300 base long transcribed by the RNA polymerase III, that transpose via 

an RNA intermediate [175]. SINEs are not formally considered to be class I because they 

do not encode the reverse transcriptase.  Interestingly, they are considered to be 

originated from the reverse transcription of cellular RNAs such as tRNAs  [175][176]. 

Retrotransposons now account for approximately one third of the human genome, but 

had greatly proliferated during the past 80 million years of primate evolution. By 

generating insertion mutations, alterations in gene expression and genomic instability, 

and also by contributing to genetic innovations, retrotransposons influence human 

genome [174]. 

Class II transposons, also called DNA transposable elements, make up ~3% of the 

human genome and transpose via a “cut and paste” mechanism by excising themselves 

from the genome, moving as DNA and pasting themselves into new genomic sites. 

Differently from retrotransposons, the transposition mechanism requires a DNA rather 

than a RNA intermediate [176]. DNA transposons are characterized by the presence of 

two small inverted repeats (IRs) flanking one or more open reading frames that encode 

a transposase, which is the enzyme necessary for the transposition mechanism. It is 

believed that DNA transposons were active during early primate evolution, although 

they are currently not mobilizing in the human genome [174].  

DNA transposons can be divided in three major groups that share this basic design: 

Ac-like transposons, P-like transposons, and the Tc1/mariner-like superfamily of 

transposons, that comprises Tc1, mariner-like (Sleeping Beauty) and Pogo transposons 

[175] [177]. 

Members of the Tc1/mariner-like superfamily are the most widespread transposons 

in nature, being present in ciliates, animals, plants and fungi [177]. Tc1/mariner 

transposons are typically of about 1300-2400 bp in length, and contain a single gene 

encoding a transposase flanked by terminal IRs. The members of this superfamily show 

sequence similarity as well as similar molecular mechanisms of transposition 

[176][177]. 
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The length of the IRs and number of transposase binding sites can vary among the 

members of the superfamily (Figure 7). For example, the members with the simplest 

structure, such as Tc1 and Himar1 (a mariner transposon), possess IRs less than 100 bp 

in length with one single binding site per repeat [178]. Other members with a more 

complex structure, such as Tc3 transposons, present IRs 400 bp in length with two 

binding sites per repeat [177]. Instead, IR/DR transposons such as Sleeping Beauty, 

possess a 15-20 bp direct repeats (DRs) at the end of their IRs, that are 200-250 bp in 

length [179].  

 

 

 

Figure 7: Tc1/mariner superfamily members differ in the length of IRs and in the number of 

transposase binding sites. Adapted from Plasterk et al., Resident aliens: theTc1/mariner 

superfamily of transposable elements. 1999 Trends in Genetics 

 

Tc1/mariner transposons use similar mechanisms to transpose within the genome, 

generally involving a staggered double strand cut operated by the transposase enzyme 

at the ends of the transposon. This staggered cut causes the formation of characteristic 

“footprint” when cellular DNA repair processes intervene to repair the gap. Importantly, 

Tc1/mariner transposons have a preference for the integration into TA sequences; since 

the frequency of transposition at a certain TA site is determined by the sequence 

flanking the TA sites, it is believed that transposase recognizes some bases next to the 

TA sequence [180].  
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1.4  Functional screens used in mammalian cells: gene 
trap mutagenesis 

The genome sequencing projects allowed the identification of almost all genes 

responsible for the biological complexity of various organisms. Yet, due to the enormous 

flux of information provided by genome sequencing, the assignment of a function to each 

of the identified genes results difficult [181]. Genetic screens represent a mean to 

identify gene functions, and have been successfully used in model organisms such as 

yeast, Drosophila, Caenorhabditis Elegans and mouse [182][183][184][185].   

Also mammalian cell cultures arose as tools to elucidate gene function, as they 

permit to study in vitro biological processes such as apoptosis, senescence, cell 

proliferation and differentiation [186]. Genetic screens can be divided in forward and 

reverse genetic screens. In forward screens the starting point is a mutagenesis step that 

is followed by the detection of the genes responsible for a particular phenotype. Reverse 

screens, instead, analyze the phenotype of an organism following the disruption of a 

known gene [186] [187].  

Similarly to the screens in model organisms, forward screens in cell cultures rely on 

mutagenesis, selection by functional assays of altered phenotype and identification of 

the causative mutation. Typically, mutations can be generated by chemicals or by 

introduction of genetic material.  

Chemicals induced mutations are typically obtained with the use of mutagenizing 

agents such as N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) and ethyl metane 

sulphonate (EMS) [186]. Mutations generated by introduction of genetic material, 

instead, can be obtained with the use of retroviruses and DNA transposons. 

Alternatively, other types of forward screens based on the introduction of genetic 

material involve the use of cDNA libraries, SiRNAs, Sh-RNAs (short hairpin RNA) and 

miRNAs.  

Retroviruses have been widely used in forward screens, in particular in gain-of-

function screens. Oncogenic mutations can be can efficiently induced by slow 

transforming retroviruses via the insertion of the provirus into the genome; then, the 

determination of the site of insertion of the provirus will permit to identify these 

mutations [188]. Also DNA transposons have been extensively used in forward genetic 

screens. In fact, mutations can be generated by inserting DNA transposons into the 
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genome; subsequently, the mutated gene can be retrieved by using DNA transposons as 

tags [186]. 

An alternative approach in forward screens consists in the introduction of genetic 

material with the use of cDNA libraries, siRNA, Sh-RNA and miRNAs [186][189][190]. 

These screens have been used for both gain of function and loss of function approaches, 

based on the type of functional assay used for the selection of the phenotype. For 

example, in gain of function screens, a cDNA library of expression plasmids is introduced 

into the cells, followed by specific selective regimens [191]. In mammalian cells, these 

screens require iterative rounds of selection and usually only few functional gene 

products are identified by clone sequencing. Thus, gain-of-function screens are powerful 

tools to identify genes sufficient to confer a particular phenotype [186]. Oncogenes are 

typically identified with cDNA based gain of function screens: TYRO3 tyrosine kinase 

receptor for example, was identified as a pro-tumorigenic factor in melanoma cells 

through a genome-wide gain-of-function screen [192]. In recessive loss of function 

screens, instead of screening a collection of genes, a candidate cDNA suspected to be 

responsible for a phenotype is tested and cells are selected for the absence of specific 

properties [186]. For example, in a collection of cells that were unresponsive to NFKb 

after treatment with TNF (tumor necrosis factor), a recessive-loss-of-function screen 

identified RIP (transducer receptor-integrating protein) to transmit TNF-dependent 

apoptosis signals [193].  

For the aim of this Thesis work we have decided to use transposon based genetic 

screen. 
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1.4.1 Transposon based screens 

DNA transposons are precise and easily controllable DNA delivery vehicles capable 

of driving insertional mutagenesis, thus emerging as genetic tools for various 

applications, including genetic screens. The enormous potentiality of transposons 

resides in the fact that under laboratory conditions it is possible to virtually place any 

sequence of interest between the two IRs and trans-supplement transposase in the form 

of an expression plasmid [176]. Importantly, the desired insertion frequencies can be 

obtained by adjusting the amounts of the delivered plasmids [176]. Moreover, by 

transiently providing the transposase source, transposons can be remobilized from 

insertion sites, by allowing the monitoring of excision and re-integration events.  

The most used transposons in mutagenesis screens are Sleeping Beauty (SB) and 

piggyBac (PB). SB belongs to the TC1/mariner-like superfamily and is an ancestral 

transposon found in salmonid fishes that was presumed to be active more than 10-15 

million years ago, but has become inactive due to the accumulation of mutations during 

evolution. SB transposon was “kissed to life” in vitro by molecular reconstruction based 

on site-directed mutagenesis and now is widely used as genetic tool [177][194]. SB 

transposon presents a preference for integration in TA sites, in particular palindromic 

AT repeats [195].  

PB transposon is a member of a group of short-inverted-repeat elements, 

characterized by their specificity for TTAA target sites and originally identified in 

Cabbage Looper [196]. PB transposon is 2,5 kB in length and has 13 bp identical TIRs 

(Terminal Inverted Repeats) with additional asymmetric internal 19 bp IRs. Similar to 

other DNA transposons, PB encodes a transposase that facilitates insertion and precise 

excision [196][197].   

A great number of large scale transposon-based mutagenesis screens, for example, 

have been performed in embryonic cells with both SB and PB by transfecting transposon 

donor and transposase expression plasmids [198][199]. In recent years, however, PB 

transposons have become very popular as genetic tools due to some advantages 

compared to SB. First, PB can carry larger foreign DNA cargos (up to 9.1 kilobases) 

without significantly decreasing integration frequencies; SB transposons, conversely, 

show a 30% decrease of transposition frequency for every 1 kilobase increase in size 
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from their original 1.7 kilobases length [176][200]. Second, PB has a stronger 

transposition activity and usually leaves no footprint after excision [176] [201].  

One of the main applications of transposon-based screens, as in the case of other 

screens, is gene trapping. Transposon based DNA delivery for insertional mutagenesis 

can be combined with various types of mutagenic cassettes. For example, 5’-gene trap 

cassettes include polyadenylation sequences and splicing acceptors to disrupt 

transcription of genes when the vector inserts in introns [176]. Typically, cassettes also 

encode a reporter gene, such as GFP (Green Fluorescent Protein), β galactosidase or 

antibiotic resistance, that is expressed only in case of correct splicing between exons of 

the trapped gene and splicing acceptor sites carried by the transposon vector [202].  

Transposon based screens have been extensively used in oncogene trapping [176]. 

Transposon vectors can be fitted with oncogene trap cassettes, containing strong viral 

enhancers/promoters, splicing acceptor site and polyA sites, to induce gain-of-function 

mutations. The function of viral enhancers and promoters is to permit the 

overexpression of a full-length or a truncated protein product of the trapped gene; 

whereas, splice acceptor and polyA sites lead to gene truncation with dominant 

phenotypes [203].  

An interesting application of transposon-based screens is the customization of 

tissue-specific screens for cancer development studies. To this aim, a possible strategy is 

to establish mouse lines that conditionally express the transposase from tissue specific 

promoters [204]. For example, a transposon based screen was used to help distinguish 

between CRC inducer and passenger mutations. In particular, mice harboring mutagenic 

SB transposon were crossed with mice expressing SB transposase in gastrointestinal 

tract epithelium. Retrieval of transposon insertions from the mice which developed 

intestinal lesions allowed the identification of 17 candidate genes that had never been 

implicated previously in CRC [205].  

 

1.4.2 Toward the interrogation of non-coding genome 

Our understanding over how much of the genome is functional was, until recently, 

restricted to the protein-coding sequences. This is underlined by the presence of a great 

number of genetic screens aimed to perturb protein-coding regions and their relative 
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protein products, mainly due to the use of protein-coding gene (PCG) traps [186] [187]. 

Non-protein-coding DNA has been regarded for long time as junk DNA; yet, its extent 

increases proportionally with developmental complexity [135]. Today, we know that 

over 90% of the genome is transcribed in ncRNAs that can be intergenic, intronic or 

overlapping with PCGs [206]. In the last few years, it has been shown that RNA per se 

plays regulatory functions; whereas, ncRNAs regulate expression of homeotic and 

metabolic genes [207]. Moreover ncRNA display precise tissue expression patterns and 

are differentially expressed in diseases, such as cancer [208]. These findings, together 

with genome wide association studies that have mapped disease associated variations to 

non-coding regulatory regions, are in favor of ncRNAs functional properties. All these 

notions underlie the importance of developing appropriate genetic tools to explore the 

non-coding part of the genome. 

Chemical mutagens based screens, cDNA library based screens and retroviral based 

screens all present some limitations: 1) mutations induced by chemical mutagens (such 

as MNNG and EMS) are difficult to recover [186]; 2) the success in the expression of a 

cDNA library depends on the quality and source of cDNA libraries; moreover, cDNA 

expression libraries may bias toward shorter cDNAs [186]; 3) retroviruses carry strong 

enhancers in their LTRs, and can influence the expression of genes located hundreds of 

kb away [209]; moreover, retroviruses preferentially target the 5’end of expressed 

genes, thus limiting the number of candidate cancer genes accessible to retroviral 

mutagenesis [188][210].  

For these reasons, transposon based screens are more appropriate tools for randomly 

interrogating the genome. Indeed, despite showing a preference for inserting into 

specific target site (AT for SB transposon and TTAA for PB transposon), transposons 

insert in the genome fairly randomly and show the potentiality to insert anywhere in the 

genome, comprising non-coding regions [176]. Indeed, transposon based screens have 

identified not only oncogenes but also non-coding regions promoting tumorigenesis. 

This is the case of a PB based screen in pancreatic cancer cells that identified a non-

coding region (Ncruc) that is upstream to the Cdkn2a protein-coding gene. Interestingly, 

transposon insertions were associated with reduced levels of Cdkn2a, demonstrating the 

power of PB insertional mutagenesis in identifying a cancer relevant, non-coding 

genomic segment with cis regulatory function [211].  
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Figure 8: PCG splicing and PCG 

trap transposon insertion  

White boxes=exons;  
TE=transposable element; 
Black arrows=TE IRs; 
Grey boxes=termination signal; 
Bent black arrows=promoter 
sequence; 
SA=splicing acceptor site 
SD=splicing donor site 

 

Since the insertion of transposons occurs preferentially in intron or intergenic regions, 

in order to target protein-coding genes (PCGs) (fig. 8A), researchers created protein-

coding genes traps within transposons (PCG-trap-TE, TE=transposable elements) by 

inserting splicing acceptor and donor sites (SA and SD), transcription stop signals 

(polyA), or promoters [176][212] (fig. 8B, C).  
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However, ncRNAs of unknown existence and function may reside within introns of 

PCGs or nearby PCGs (fig. 9 A). In the case scenario of a yet unknown ncRNAs that is 

within the intron of PCG (fig. 9 B), the PCG-trap-TE by landing within or near the 

unknown ncRNA sequence will modify both the PCG and the ncRNA by premature 

termination (fig. 9).  This, in a functional screen, will not allow to discriminate if the 

observed effect is due to mutation of the PCG or of an unknown ncRNA, which remains 

undetected. 

For these reasons, and for our ambition to interrogate the non-coding part of the 

genome, in this Thesis work we have decided to use a TN-based screen in which the TE 

will not contain neither SA, SD, polyA or promoters, but only the coding sequence of a 

selection gene (e.g. neomycin; ncRNA-TE) (fig. 9C); therefore, in the case of an intronic 

unknown ncRNA (fig. 9A), ncRNA-TE will still disrupt the sequence of the ncRNA where 

it inserts, but without exerting any effect on the surrounding PCG that will undergo 

regular splicing; consequently, the phenotype generated will be specific for the ncRNA 

and not due to modification of the surrounding PCG (fig. 9C). 

 

 

Figure 9: ncRNA can be 

found within PCG introns 

(9A); effect of classical PCG-

trap-TE and of a modified 

ncRNA-TE for the discovery 

of unknown ncRNAs 
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2. AIM AND OBJECTIVES 

Metastasis is the major cause of cancer-related deaths in many types of cancer, 

including colorectal cancer (CRC). Understanding the molecular mechanism driving 

metastasis is fundamental for the identification of alternative routes to contrast this 

dreadful disease. 

The overall aim of this work is to identify genetic elements that orchestrate tumor 

plasticity and are necessary for CRC metastasis, by mainly focusing on transcribed non-

coding regions (i.e. ncRNAs). 

This research project stems on three interconnected considerations: 1) the 

hypothesis that metastasis requires plasticity of tumor cells that switch from an 

epithelial to a mesenchymal program (EMT) and back to an epithelial state (MET); 2) the 

part of the genome that does not encode for proteins (i.e. non-coding) represents more 

than 98% of the whole genome and has expanded during the evolution more than the 

protein coding part. According to such evidence, evolution appears to rely on protein 

regulation rather than on protein number and diversity; 3) functional genetic screens 

are great tools to interrogate the whole genome and recover genetic elements that 

control a specific phenotype. Yet, forward genetic screens have mainly been used to 

target the protein coding part of the human genome. 

The above aim will be accomplished by combining forced Single Cell Suspension 

Assay (fSCS), an in vitro assay able to select cells with EMT traits, with an in vitro 

transposon (TN) based screen that randomly interrogates the genome of HCT116 CRC 

cell line. Retrieval of TN insertion from the genome of transposed fSCS selected cell and 

characterization of the genomic region mutated by the TN will help identifying crucial 

genomic regions regulating CRC metastasis. 
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3. MATERIALS AND METHODS 

Cell lines and Cultures  

 HCT116, HT29, SW480 and SW420 colorectal cancer cell lines were obtained from 

the American Type Culture Collection (ATCC, Manassas, VA, USA) and were maintained 

in RPMI 1640 medium, containing 10% fetal bovine serum (FBS)( #FA30WS1810500, 

Carlo Erba). No antibiotics were used for cell cultures unless required for selection of 

transfected/transduced cells. Cell lines were maintained at 37°C, under 5% CO2 in 

humidified incubators and routinely tested for mycoplasma contamination using 

MycoAlert detection Kit (Lonza, Cologne, Germany). Only mycoplasma negative cells 

were used for experiments. 293FT cells (Invitrogen) were used for lentivirus production 

and were grown in DMEM supplemented with 10% FBS, 2 mM glutamine, Sodium 

Piruvate and non-essential amino acids (all from Life Technologies, Grand Island, NY, 

USA).   

Lentivirus Production and Transduction 

For lentivirus production, 293FT cells (Invitrogen) were plated 24h prior to 

transfection in order to be at 60-80% confluence. Standard calcium phosphate protocol 

was used to transfect pWZL Twist-ER (Plasmid # 18799, Addgene) or pLKO.1-sh vectors 

(Plasmid #10878), together with pLP1, pLP2, and pVSV-G at a 1.25: 1: 1 : 0.125 ratio. 

16h post transfection medium was changed and 72h later lentivirus containing 

supernatant was collected, centrifuged and 0.4 um filtered to remove cell debris, and 

finally concentrated using centricon 10’000 MW cut off (Millipore). Transducing units 

per ml of supernatant were determined by limiting dilution titration in HCT116 cells. A 

MOI (multiplicity of infection) of about 5 was used for transducing cells using Polybrene 

(Sigma-Aldrich) at a final concentration of 8 μg/ml to increase transduction efficiency. 

48h after transduction blasticydin selection was started. 

Cell transfection 

Lipofectamine 2000 reagent (#1668019 Life Technologies) was used to transfect  

plasmids or miRNAs precursors in HCT116, HT29, SW480 or SW620 cells. Cells were 

plated 24h prior to transfection in order to be at 60-80% confluence. Accordingly to 

Lipofectamine 2000 protocol, 24h later cells were washed and incubated with RPMI 
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1640 culture medium in the absence of antibiotics. The appropriate amount in μg of 

plasmid vectors or miRNAs precursors at the final concentration 100nM were incubated 

with Opti-MEM (Gibco, Life Technologies) and then mixed with Lipofectamine 2000 

reagent plus Opti-MEM. This mixture was incubated for 20 minutes at room 

temperature and then incubated on cells for 24h.  

Used plasmids or miRNAs precursors: 

pT2 vector, carrying the Sleeping Beauty transposon and pCMV-SB100x, carrying the 

Sleeping Beauty transposase with high enzymatic activity (PMID: 19412179) were 

provided by Dr. Ivics (Max Delbrück Center for Molecular Medicine, Berlin, Germany) 

and Dr. Largaespada (University of Minnesota, USA). We modified the pT2 transposon 

vector in order to carry the coding sequence of eGFP under the control of CMV 

promoter, but in the absence of any polyA signal piggyBAC transposon system; empty 

eGFP vector (pEGFP-N1 Clontech); eGFP-Btbd7 (gently provided by Dr. Kenneth M. 

Yamada, National Institute of Health, Bethesda, Maryland, USA); Piggy Bac (PB) 

transposon system (purchased by System Bioscience). In particular, we used 

PBHR100A-1 as donor vector and PB210PA-1 as vector supplying the Super PB 

transposase; scramble (#AM17110, Life Technologies) and miR-23b precursors 

(#AM17100, Life Technologies). 

Cell Treatments 

4-Hydroxytamoxifen (4-OHT, Sigma) treatment was performed as follows: HCT116 

Twist-ER cells and HT29 Twist-ER cells plated 24 hours earlier in 6 cm or 10 cm plates 

were exposed to 4-OHT at the final concentration of 0.1 μM in RPMI 1640 complete 

medium. Cells were continuously exposed to this treatment for 72 hours, during which 

time the medium was changed every day and cell cultures were eventually passaged by 

trypsinization after confluency was reached.  At the end of the treatment period, cells 

were immediately used for in vitro Anoikis and Forced Single Cell Suspension (fSCS) 

assays and for protein and RNA extraction. 

Cell response to chemotherapy was done by treating exponentially growing cells, 

plated in 24 multiwell plates, with 2 ug/ml of Fluorouracil (5-FU) for 24h in complete 

medium. Cell viability was assed 24 h later by MTT (M2003, Sigma) staining. MTT stock 

solution was added to cells at a final concentration of 0.28 mg/ml and incubated for 2 h 
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at 37° C. Supernatant was then discarded and cells were air-dried. Reduced MTT, 

measure of cellular metabolic activity and index of cell viability, was dissolved by adding 

200 ul of DMSO and measured by reading the absorbance at 580 nm with Infinite M1000 

microplate reader (Tecan, Männedorf, Switzerland). 

EpCAM detection 

Human epithelial adhesion molecule (EpCAM) was used as a marker of cellular 

differentiation and was measured by FACS using APC Mouse Anti-Human EpCAM (BD 

Biosciences). To this end cells were detached from culture dishes using 2mM EDTA 

(Ethylenediaminetetraacetic Acid, Sigma) in PBS, pelleted and suspended in 10% FBS at 

a final concentration 10x10^6 cells/ml. Following 30 min blocking at room temperature, 

100 ul of cell suspension was stained at room temperature with 5 μl of antibody for 30 

min. Cells were washed with ice cold PBS and analyzed using the 633 excitation laser of 

the BD FACSCantoTM flow cytometer system. 

In vitro Anoikis and Forced Single Cell Suspension (fSCS) Assays 

For the in vitro anoikis assay, 1x10^5 cells were suspended in serum free RPMI 1640 

containing 1% BSA and cultured on ultra-low attachment six-well plates (ULA 3471, 

Corning) for 24 h. ULA plates have a covalently bound hydrogel layer that inhibits 

cellular attachment like polyhema coating with the advantage of better standardization 

of the assay. Next, cells were collected and washed with PBS without calcium phosphate, 

treated for 5 minutes with trypsin for the disruption of cell aggregates, plated on 

standard 10 cm dishes in complete medium and let grow for 8-10 days. For the fSCS 

assay, as for the anoikis assay, 1x10^5 cells were suspended in serum free RPMI 1640 

containing 1% BSA and cultured on ultra-low attachment six-well plates (ULA 3471, 

Corning) but with the addition of 1mM EDTA which chelates calcium, a co-factor 

necessary for intercellular interactions, by preventing cell-cell contacts during cell 

culture on ULA plates. Time of culture on ULA plates was adjusted according to cell type 

to obtain the lowest amount of growing colonies: 24 hours for HCT116 and SW620, 36 

hours for HT29 cells and 48 hours for SW480. Next, cells were collected, washed with 

PBS and plated on standard 10 cm dishes for 8-10 days. For both assays, survived cells, 

that grew and form colonies on 10 cm dishes were stained with Crystal Violet. Crystal 

violet stained dishes were acquired using GelDoc. Cell colonies were counted either 
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manually our automatically using Fiji [213]. Fiji was also used to determine colony 

circularity index, b 

To obtain fSCS resistant pools from both parental and transposed HCT116 cells, two 

sequential rounds of fSCS were performed on ULA T75 flasks. By pooling together and 

expanding the cells surviving after the first round (T1) and by subjecting them again to 

fSCS assay T2 progeny was generated, with the same process used for T1. This was 

repeated three more times to obtain T3, T4 and T5 fSCS selected pools of cells. Early T3 

cells represent T2 cells 7 days immediately after fSCS assay, before being further pooled 

and expanded. 

Western Blotting  

To obtain protein extracts, cells that had been previously scraped with ice cold PBS 

and pelleted were incubated for 20 min on ice in NP40 lysis buffer (0.5% NP40, 50 mM 

HEPES, 250 mM NaCl, 5 mM EDTA, 0.5 mM EGTA, 1 mM DTT) supplemented with 

Protease Inhibitors (Complete, Roche, Mannheim, Germany) and Phosphatase Inhibitor 

Cocktail 1 (P5726, Sigma Aldrich), while vortexing every 5 min. Cell lysates were 

clarified by centrifugation at maximum speed for 20 min. Proteins were quantified using 

the Protein Assay Dye Reagent Concentrate (Biorad, Hercules, CA, USA). For 

immunoblotting analysis, 40 μg of proteins were separated using 4-20% SDS-PAGE 

Criterion-TGX-stain free Precast Gels (Biorad) and transferred to Nitrocellulose 

membranes (Biorad). Membranes were blocked with 5% non-fat dried milk in TBS-0.1% 

Tween20, and incubated overnight with the following primary antibodies: BTBD7, e-

CADHERIN, ZEB-1, VIMENTIN, TWIST, CAVEOLIN, TUBULIN, GAPDH, VINCULIN. 

Incubation with secondary antibodies, ECL IgG-HRP-linked anti-rabbit, anti-mouse or 

anti-goat (GE Healthcare) was performed at room temperature for one hour at a dilution 

of 1:3000-1:5000. According to signal intensity, either ECL Western Blotting Detection 

Reagents RPN 2106 (GE Healthcare Lifesciences, Little Chalfont, UK) or Luminata Forte 

Western HRP Substrate (Merck Millipore, Darmstadt, Germany), were used for 

secondary antibody detection using Chemidoc MP imager (Biorad). Bands were 

analyzed and quantified using Image Lab v5.2 (Biorad). 
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RNA extraction, cDNA synthesis, and Quantitative Real Time PCR 
(qRT-PCR) 

RNA was extracted using the Isol-RNA Lysis Reagent (5 Prime, Hamburg, Germany) 

according to protocol instructions. Extraction was followed by PCA (Phenol: Chloroform: 

Isoamyl Alcohol 5:24:1, Sigma Aldrich), procedure that reduces salt contamination, and 

by DNase digestion (Turbo-Dnase, Ambion, Thermo Fisher Scientific). RNA quality was 

assessed using agarose gel electrophoresis after RNA exposure to 70°C for 5 min. cDNA 

was synthesized from 1 μg of RNA, using the AMV Reverse Transcriptase (Promega) 

with random primers (Promega). cDNA was diluted 10 times and used for qRT-PCR 

using iQ SYBR Green Supermix (Biorad) with the appropriate primers. For detection of 

miRNAs, we used reagents, primers and probes from Applied Biosystems. performing 

miRNA specific reverse transcriptase reactions and qReal-Time PCR according to the 

manufacturer instructions. 

qRT-PCR reactions were carried out either in a 96-well optical reaction plates using 

Two-Color Real-Time PCR Detection System MyiQ2 (Biorad) or in 384-well optical 

reaction plates using Applied Biosystems 7900HT Fast Real-Time PCR System (Thermo 

Fisher Scientific), according to manufacturer 's protocol. The 2−ΔΔCt method was used 

to calculate the relative abundance of RNA genes, measuring GAPDH or U6 RNA 

expression as housekeeping control. Primers used in this work were designed using 

Primer 3 Plus [214] were purchased from Sigma-Aldrich and are listed in 

Supplementary Table 3. 

Genomic DNA extraction 

Genomic DNA was extracted using Gentra Puregene Cell Kit (Qiagen Sciences, 

Maryland, USA), according to manufacturer’s instructions. DNA quality was assessed 

using agarose gel electrophoresis. DNA concentration (absorbance at 260nm) and purity 

(ratio between absorbance at 260nm and absorbance at 280nm) were determined by 

using a spectrophotometer (Nanodrop, Thermo Scientific).  

Linker-Mediated PCR 

To identify the genomic position of TN insertion in HCT116 transposed cells, we 

performed LM-PCR according to [215] . In brief, genomic DNA from transposed cells was 

digested at 37° C digested with BfaI (for cloning off the left IRDR) or NlaIII (for cloning 

off the right IRDR). Linkers were ligated to NlaIII- (right-side) or BfaI- (left side) 
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digested genomic DNA using T4 DNA ligase. A secondary digestion (XhoI, right side; 

BamHI, left side) was performed to destroy concatamer-generated products. Primary 

and secondary PCR was performed using primers specific for linker and SB transposon 

sequences along with Fusion and barcode sequences. PCR amplicons were sequenced 

using the GS FLX (Roche). To purify digested DNA and PCR products we used QIAquick 

PCR purification kit from Qiagen following the directions provided by the kit. Final PCR 

products were ligated in pCR.2.1 Topo TA vector (Thermo Scientific) and transformed 

into DH5a competent cells. Two separate PCRs and nested PCRs were performed to 

obtain the left and the right boundaries of pT2-CMV-EGFP insertions in the genome. 

DNA sequencing of minipreps (Promega) from topo TA clones containing LM-PCR 

products was done by direct Sanger sequencing, using BigDye Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems, Fostercity, CA, USA). All primers and linkers used 

are listed in the following table: 
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hEcad-5 TGCCCAGAAAATGAAAAAGG 
hEcad-3 GTGTATGTGGCAATGCGTTC 
hNcad-5 ACAGTGGCCACCTACAAAGG 
hNcad-3 CCGAGATGGGGTTGATAATG 
hVim-5 GAGAACTTTGCCGTTGAAGC 
hVim-3 GCTTCCTGTAGGTGGCAATC 
HAS1-5 CGCTAACTACGTCCCTCTGC 
HAS1-3 CCAGTACAGCGTCAACATGG 
HAS2-5 GCCTCATCTGTGGAGATGGT 
HAS2-3 ATGCACTGAACACACCCAAA 
hSlug-5 GGGGAGAAGCCTTTTTCTTG 
hSlug-3 TCCTCATGTTTGTGCAGGAG 
hSnail-5 CCTCCCTGTCAGATGAGGAC 
hSnail-3 CCAGGCTGAGGTATTCCTTG 
hTwist-5  GGAGTCCGCAGTCTTACGAG 
hTwist-3  TCTGGAGGACCTGGTAGAGG 
ZEB1-5 CAGGCAGATGAAGCAGGATG 
ZEB1-3 GACCACTGGCTTCTGGTGTG 
ZEB2-5 GCGCTTGACATCACTGAAGG 
ZEB2-3 ACCTGCTCCTTGGGTTAGCA 
pT2-up TCACTATAGGGCGAATTGGAG 
pT2-within CCAAGCTGTTTAAAGGCACA 
pT2-down TGTGGAATTGTGAGCGGATA 
Bfa-Linker-S GTAATACGACTCACTATAGGGCTCCGCTTAAGGGAC  
AS-Bfa-Linker-AS  [Phos]TAGTCCCTTAAGCGGAG[AmC3] 
Nla-Linker-S GTAATACGACTCACTATAGGGCTCCGCTTAAGGGACCATG  
Nla-Linker-AS [Phos]GTCCCTTAAGCGGAGCC[AmC3] 
IRDR-R-primary  GCTTGTGGAAGGCTACTCGAAATGTTTGACCC 
IRDR-L-primary  CTGGAATTTTCCAAGCTGTTTAAAGGCACAGTCAAC 
Linker-primary  GTAATACGACTCACTATAGGGC 
IRDR-R-nested CCACTGGGAATGTGATGAAAGAAATAAAAGC  
IRDR-L-nested GACTTGTGTCATGCACAAAGTAGATGTCC  
Linker-nested AGGGCTCCGCTTAAGGGAC  
BTBD7A_5(CDS) AGTCAAATGCCTGGTTACGG 
BTBD7A_3(CDS) TGTCTGGCACATTGGACATT 
BTBD7upA_5(3'UTR) GTTTCCAATTTGCCTTCTGC 
BTBD7up A_3(3'UTR) GGCTTTGAGGCTTTTCAGTG 

 

Statistical Analysis 

Graphs presented in figures were obtained using GraphPad Prism v6.0d software 

and statistical analysis were done using JMP® v9.0.1 software. Data were examined using 

the two-tailed Student t test or un-paired two-tailed ManneWhitney U test. Differences 

were considered significant at p < 0.05.  
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Animal experiments 

Animal experiments were reviewed and approved by the CRO (National Cancer 

Institute of Aviano) Institutional Animal Care and Use Committee and were conducted 

according to committee’s and the Italian Ministry of Health guidelines. For all animal 

experiments, we used 4-week-old athymic nude mice (Charles River, UK Foxn1nu, 

females), except for orthotopic intracaecal injections in which were used 6-week-old to 

8-week-old mice severe combined immunodeficiency (SCID) mice (Charles River, UK). 

In vivo extravasation assay 

In vivo extravasation assay was performed as described in [230]. Cell suspensions 

were first stained with DiI (molecular Probes) 1:200 in serum free medium for 30’ at 

37°C. Then, 1,5x10^6 cells were suspended in 200 μl of PBS containing 0.1% Fluorescein 

and retro-orbitally inoculated in previously anesthetized nude mice to reach blood 

circulation. Fluorescein was used to detect the homogeneity of injection using the in vivo 

imaging system (Ivis Lumina, from Xenogen) at time 0, and it was not detectable any 

longer 72h later, when mice were sacrificed for analyses. Mice were humanly culled by 

cervical dislocation. During mice necroscopy lungs were inflated through the trachea 

with 1 ml of ice cold 4% PFA. Lungs were immediately observed at the stereomicroscope 

and pictures of whole lungs from both top and bottom were taken. Cryostat-cut sections 

were then obtained from OTC lung inclusions (see below). 

Orthotopic intracaecal injections 

Orthotopic mice injection were performed in collaboration with Dr. Alex Mirnezami 

(Cancer Research UK Centre, Southampton, UK). 6-week-old to 8-week-old severe 

combined immunodeficiency (SCID) mice (Charles River, UK) were anaesthetized prior 

to midline laparotomy and exteriorization of the caecum. A 1:1 suspension of cells and 

Matrigel was injected submucosally into the caecal wall under magnified vision, raising a 

bleb on the caecum. For each animal, 0.5×106 cells (TN4-sorted or TN4_20) were 

implanted orthotopically, with the entire experiment conducted in duplicate. Primary 

tumors grew in all animals. When showing signs of disease or >10% weight loss, mice 

were humanely culled, and colon, liver and lungs were harvested.  
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Histopathology and Immunohistochemistry 

For orthotopic injection experiments, formalin-fixed organs were embedded in 

paraffin, and standard techniques were used by our institutional pathology facility to 

stain tissue sections with hematoxylin and eosin staining. Stained organ sections were 

evaluated also by one of CRO’s pathologists.  

Fluorescence Microscopy 

To study the cellular localization of ectopic eGFP-Btbd7, three control clones 

expressing eGFP only (Empty clone #1, #2 and #3) versus three positive clones 

expressing eGFP-Btbd7 (eGFP-Btbd7 clone #1, #2, #3) were grown on glass coverslips, 

fixed with PFA 4% and observed using a confocal laser-scanning microscope (TSP2 

Leica) interfaced with a Leica DMIRE2 fluorescent. To detect the presence of DiI stained 

HCT116 P0 AND HCT116 P2 infiltrated into the lungs of mice following in vivo 

extravasation assay, lung sections from OCT inclusions were fixed with PFA 4% and 

nuclei were counterstained with TOPRO (Molecular Probes). Stained tissue specimens 

were observed using a confocal laser-scanning microscope (TSP2 Leica) interfaced with 

a Leica DMIRE2 fluorescent.  
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4. RESULTS 

4.1 In vitro Forced Single Cell Suspension Assay (fSCS) is a 
more stringent assay compared to in vitro anoikis 
resistance 

To develop an in vitro assay that selects for metastatic features in epithelial CRC cell 

lines, we tested loss of cell matrix contact by growing cells on ultralow attachment 

plates as described in [216] and in materials and methods section of this Thesis (in vitro 

anoikis). We observed that both microsatellite stable (MSS; HT29, SW480, SW620) and 

microsatellite unstable (MSI; HCT116) CRC cells survived to low adherence condition 

with minimal cell death (untreated=anoikis, fig. 4.1B, upper part). In addition, by 

observing cells kept in low adhesion conditions, we noted that most cells formed cell 

aggregates, strengthening cell-cell contacts. Interestingly, this observation is consistent 

with [216], in which it was reported that transformed cells survived to in vitro anoikis 

by enforcing cell-cell contacts and by forming big cell aggregates in suspension; 

moreover, the same happened in cells transduced with the cDNA encoding Trkb, a 

neurotrophic tyrosine kinase receptor that was identified as regulator of anoikis 

resistance. Thus, we hypothesized that a physiological method to overcome loss of 

survival signal from ECM is obtained by increasing cell-cell contacts. To sum up, our 

results indicate that, at least in our hands and with the cells used, the in vitro anoikis 

assay, i.e. cell culture in absence of cell matrix-contact, is not sufficiently stringent to 

induce cell death and to select cells with more aggressive features. EMT and tumor 

metastasis rely on loss of epithelial cell-cell contacts [31][86][87]. Therefore, we 

hypothesized that by preventing cell-cell contacts in addition to loss of cell matrix 

contacts, we could impair cell survival and obtain a stronger selective pressure. In order 

to achieve this, we incubated HCT116 cells in low adherence in the presence of EDTA, 

which impairs Ca2+-dependent cell-cell contacts. Thus, to determine the opportune 

EDTA concentration to use, we incubated HCT116 cells on ultralow attachment plates in 

the presence of several concentrations of EDTA (0.5mM; 1mM; 2mM; 5mM and 10mM); 

24h later, we plated cells on culture dishes in complete growth medium and let them 

grow for additional 7-10 days; finally, we stained surviving cell colonies with crystal 

violet. We observed that the lowest EDTA concentration (0.5mM) was not stringent 

enough because, similar to untreated, almost all cells were still alive; conversely, higher 
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concentrations of EDTA (2mM, 5mM and 10mM) were too harsh, as all the cells died; 

only 1mM EDTA seemed to confer the perfect selective pressure, as it impaired cell 

survival but was not too stringent to prevent the recovery of survived cells (fig. 4.1A). 

Thus, the incubation in low adherence conditions with added 1mM EDTA seemed to 

confer the desired selective pressure without preventing the recovery of survived cells.  

 

 

 

 

Figure 4.1: Comparison between in vitro anoikis and fSCS. A) HCT116 cells were incubated 

in low adherence conditions with different concentrations of EDTA (untreated, 0.5mM, 1mM, 

2mM, 5mM and 10mM) in order to obtain a selective pressure; B) comparison between in vitro 

anoikis and fSCS with 1mM EDTA in several CRC cell lines. 
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Therefore, CRC cells were incubated on ultralow attachment plates in the presence 

of 1mM EDTA and, similarly to what previously described, 24-48 h later (depending on 

cell lines), we plated cells on culture dishes in complete growth medium, let them grow 

for additional 7-10 days and we stained surviving cell colonies with crystal violet. 

Interestingly, we noticed that: 1) compared to anoikis conditions, cells cultured on low 

adherence in the presence of 1 mM EDTA do not form any longer tight cell aggregates; 2) 

this assay, that we named forced Single Cell Suspension (fSCS), massively impaired cell 

survival without preventing the recovery of survived cells (fig.4.1B, lower part; 

untreated=anoikis; EDTA=fSCS). To further reinforce our hypothesis that cells survived 

to anoikis by strengthening cell-cell contacts, we also used other means (enzymatic, i.e. 

hyaluronidase treatment, or physical) to prevent cell contacts and keep cells separated 

Also in these conditions we observed a decrease in cell colony formation, similar to that 

obtained with the use of EDTA (data not shown). 

To sum up, we set up a novel in vitro assay, namely fSCS, that stands on the 

combination of loss of cell-matrix and cell-cell contacts, and that is more stringent, 

compared to in vitro anoikis, in killing cells and selecting those with more aggressive 

features. 

 

4.2 Forcing cell to a single cell suspension is a selective 
pressure for EMT features  

To validate the pro-EMT selective pressure of fSCS, we verified whether EMT 

induction confers resistance to fSCS. EMT was obtained in HCT116 (MSI) and HT29 

(MSS) by TWIST-ER overexpression and TWIST nuclear translocation by exposure to 4-

hydroxy-tamoxifen (4OHT). Indeed, upon exposure to 4OHT, TWIST-ER overexpressing 

cells showed a more mesenchymal morphology and the expression of EMT markers, 

such as decreased levels of E-cadherin and increased levels of Slug and Vimentin (fig. 

4.2A).  

Thus, we performed fSCS in HCT116 and HT29 TWIST-ER cells exposed or not to 

4OHT and we observed a greater survival in 4OHT treated cells compared to untreated 

cells in both cell lines (fig. 4.2B), indicating that TWIST, and therefore EMT, confers 

resistance to fSCS. This experiment proves that the EDTA addition is not toxic per se and 

that the fSCS negative selective pressure is not too strong to prevent the recovery of 

EMT cells.  
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Figure 4.2: EMT cells gain resistance to fSCS. A) EMT induction in HCT116 and HT29 

following overexpression of Twist-ER and treatment with 4OHT was demonstrated by 

mesenchymal morphology and expression of EMT markers; B) HCT116 and HT29 cells that 

underwent EMT gained resistance to fSCS. 

 

4.3 A transposon-based forward genetic screen confers 
fSCS resistance by insertional mutagenesis 
 
4.3a HCT116 mutagenesis by transposition 

To investigate in an unbiased manner which genetic elements generate resistance to 

fSCS in CRC cell lines, we used the SB DNA transposon (TN) system (pT2BH vector 

carrying the TN and the pSB100 vector expressing the SB transposase)[194]. We 

adapted the pT2BH vector to carry the eGFP reporter coding sequence under the control 

of a CMV promoter (pT2-CMV-eGFP) (fig. 4.3): different from TNs traditionally used in 

genetic screens for gene trap, our modified SB TN does not include splicing acceptors, 
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splicing donors or polyA sites [176], thus it simply acts by insertional mutagenesis. In 

this manner, in the case of an intronic unknown ncRNA (see fig.9 in the introduction 

section of this Thesis), the TN will disrupt the sequence of the ncRNA where it inserts, 

but without exerting any effect on the surrounding PCG. After transfection of pT2-CMV-

eGFP and pSB100 plasmids in HCT116 cell line, we expanded them, and after 14 days we 

sorted a pool of eGFP expressing cells by FACS (TN4_sorted). This was our initial pool of 

transposed cells demonstrated by the fact that eGFP expression was stable over time. 

 

 

 

 

Figure 4.3: Transposition of HCT116 cells with a modified Sleeping Beauty 

transposon. HCT116 cells were co-transfected with a modified pT2BH (pT2-CMV-EGFP) 

transposon that contains two IR/DRs sequences, a CMV promoter and an EGFP expression 

cassette and with pSB100x transposase, that allows the transposition. 

 

4.3b Functional selection by fSCS 

Next, we used TN4_Sorted cells to perform fSCS assay and we collected single cell 

clones that survived to fSCS (see scheme depicted in figure 4.4A). Collected surviving 

clones (~100 per cell line) were challenged again for fSCS resistance. Only 4 displayed 

overt fSCS resistance, and among these, TN4_20 was the most strikingly resistant clone 

(Fig. 4.4B and 4.5A).  
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Figure 4.4: Functional selection by fSCS. A) overview scheme of the TN-f SCS based 

screening process; B) collected surviving clones after two rounds of fSCS 

 

We further characterized TN4_20. From a morphological point of view, we observed 

that TN4_20 cells displayed a more mesenchymal shape (fig. 4.5A), with cells being more 

elongated and growing in a scattered fashion instead as compact and cuboidal. By qRT-

PCR we detected that TN4_20 expressed some of the EMT markers (e.g. SLUG ↑, TWIST ↑, 

VIMENTIN ↑, HAS-2 ↑ (fig. 4.5B). We observed that E-cadherin reduction, another EMT 

trait, was not statistically significant by qRT-PCR (fig. 4.5B); yet, we observed a 

reduction of E-cadherin levels by Western Blotting, suggesting that E-cadherin 

regulation in TN4_20 occurs at a post-transcriptional level (fig. 4.5B). 

In addition, by performing motility assay with 3D matrices cell inclusion, we 

observed that TN4_20 showed the ability to generate many more satellite colonies in 

matrigel evasion assay compared to TN4_Sorted cells (fig. 4.5C). Moreover, we have 

conducted a pilot in vivo experiment in mice to verify whether fSCS resistance was 

associated with increased metastatic potential. To this aim, we performed orthotopic 

intra-caecal injection of TN4_Sorted and TN4_20 cells. We observed that after 60 days, 

only TN4-20 injected mice developed distant metastasis to the lungs compared to TN4-

Sorted injected mice that did not (2/2 vs 0/2) (fig 4.5D). All together, these results 
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indicate that the fSCS based selection process allowed us to identify a cell clone, TN4_20, 

that shows EMT and invasiveness traits and in vivo metastatic potential.  

 

 

 

 

Figure 4.5: Characterization of TN4_20 clone. A) Left, TN4_20 clone displayed a more 

scattered and mesenchymal morphology compared to HCT116 parental and TN4_Sorted cells; A) 

Right, TN4_20 clone showed increased resistance to fSCS; B) TN4_20 clone expressed EMT 

markers (SLUG ↑, TWIST ↑, VIMENTIN ↑ E-CADHERIN ↓, HAS-2 ↑); C) and D) TN4_20 clone 

showed increased capability evade in Matrigel evasion assay and increased metastatic potential 

in vivo, respectively. 
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4.3c Fishing for the TN insertion responsible for fSCS 
resistance 

To retrieve the genomic positions in which the  pT2-CMV-eGFP TN had inserted in 

the TN4_20 clone, we used linker mediated PCR [215]. We identified seven distinct TN 

insertion sites, that were randomly distributed within the TN4_20 genome (Table 1). In 

fact, TNs were found in introns, in regulatory intergenic regions (i.e. promoter region) 

and in the 3’UTR region of a protein-coding gene, namely BTBD7 (BTB/POZ containing 

domain protein 7). Among the seven insertions found we decided to focus on the TN 

insertion located within the 3’ UTR of BTBD7 for two reasons. First,  BTBD7 is known to 

regulate salivary gland branching by EMT induction [217] as well as tumor invasiveness 

and metastasis in cancer [218][219]; second, the TN insertion inside the BTBD7 3’UTR 

located within the predicted target site of miR-23b, a known anti-metastatic miRNA 

[220][221].  

 

Position (hg19) 
Closest Transcripts and Biotype 

(Genecode V19) 
Description 

Chr13  :94,910,954-910,955 GPC6 (protein-coding) Intronic 

Chr1  :212,405,256-212,405,257 RP11 15I11 (lincRNA) Intronic 

Chr19  :3,501,100-3,501,101 DOHH (protein-coding) Promoter 

Chr1   :235,641,751-235,641,752 B3GALNT2 (protein-coding) Intronic 

Chr1  :45,885,179-45,885,180 TESK2 (protein-coding) Intronic 

Chr5  :12,473,909-12,473,910 Upstream: CNND2 (protein-coding); 

Downstream: CT49 (lincRNA) 

Intergenic (with 

LINE L1PREC2) 

Chr14  :93,705,840-93,705,841 BTBD7 (protein-coding) 3’UTR 

 

Table 1: SB TN insertion sites retrieved in TN4_20 genome by linker mediated PCR 
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We confirmed by PCR that TN is located in the 3’UTR of BTBD7 gene (fig. 4.6).  

 

 

 

 

Figure 4.6: Retrieval of TN insertion in the 3’UTR of BTBD7 gene. A) Schematic 

representation of the exact position of pT2-CMV-EGFP TN insertion in the 3’UTR of BTBD7 gene; 

B) pT2-CMV-EGFP TN insertion in the 3’UTR of BTBD7 was confirmed by PCR: as expected, 

primers “Up 5’+Up 3’ ” and “Down 5’+Down 3’ ”, which were designed to recognize genomic DNA 

out of TN insertion (see A), worked in both HCT116 and TN4_20; whereas, primers “Up 5’+IRDR-

L” and “IRDR-R+ Down 3’ ”, which were designed recognize TN IR/DRs left and right, 

respectively (see B), worked only in TN4_20. 
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Figure 4.7 A: Hypothetic model. Upper part (=TN4_Sorted): miR-23b downregulates 

Btbd7 levels by interacting with its seed sequence in the 3’ UTR of BTBD7 gene; Lower part 

(=TN4_20): TN insertion in the 3’UTR of BTBD7 impairs miR-23b capability to interact with its 

seed sequence, and Btbd7 levels remain unchanged. 

 

Based on these notions, we hypothesized that the TN4_20 clone gained fSCS resistance 

because the TN insertion that occurred within BTBD7 3’UTR disrupted the interaction 

between miR-23b and BTBD7, leading to BTBD7 deregulation (fig. 4.7A).  

Consistently, we checked Btbd7 protein expression levels in TN4_20. Supporting our 

hypothesis (see fig 4.7A), we found increased Btbd7 protein levels in TN4_20 cells 

compared to TN4_Sorted cells; yet, BTBD7 mRNA levels were not affected (fig. 4.7B). 
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Figure 4.7B: Btbd7 protein levels increased in TN4_20. (Left), confirming the hypothesis 

depicted in fig. 4.7 A, Btbd7 protein levels were increased in TN4_20; (Right) BTBD7 mRNA 

levels were not affected. 

 

4.4 miR-23b targets BTBD7 gene and this interaction is 
important in fSCS resistance 

To further prove that miR-23b targets BTBD7 3’UTR, we transfected synthetic miR-

23b precursor in HCT116 parental cells and observed downregulation of Btbd7 protein 

levels only in miR-23b transfected cells (fig. 4.8A). Then, to confirm the hypothesis that 

TN insertion within the 3’UTR of BTBD7 disrupted the interaction between miR-23b and 

BTBD7 (see fig. 4.7A), we transfected miR-23b also in TN4_20 cells. Consistently, we 

observed that miR-23b overexpression did not affect Btbd7 expression levels in TN4_20 

(fig.4.8B). 
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Figure 4.8 A and B: miR-23b targets BTBD7 gene and negatively regulates Btbd7 

expression levels. A) Confirming the hypothesis in fig 4.7A, overexpression of miR-23b in 

HCT116 decreased Btbd7 protein levels; B) Overexpression of miR-23b in TN4_20 did not affect 

Btbd7 protein levels. 

 

Next, to investigate the relevance of the interaction between BTBD7 and miR-23b in 

fSCS phenotype, we transfected miR-23b precursor in HCT116 parental, TN4_sorted and 

TN4_20 cells and performed fSCS assay. We observed that miR-23b prevented fSCS 

survival in HCT116 parental and TN_Sorted but not in TN4_20 cells (fig 4.8C). 

Additionally, we found that miR-23b prevented fSCS resistance also in other CRC cell 

lines (HT29, SW480) (4.8D). 
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Figure 4.8 C and D: The interaction between Btbd7 and miR-23b is relevant for fSCS 

resistance. C) miR-23b overexpression affected fSCS resistance in HCT116 and TN4_Sorted but 

not in TN4_20; D) miR-23b overexpression affected fSCS resistance in several CRC cell lines. 

 

Thus, these data suggest that miR-23b targets BTBD7 by negatively regulating Btbd7 

protein levels and that the interaction between miR-23b and Btbd7 is important for fSCS 

resistance. In agreement, we showed that miR-23b overexpression did not impair either 

Btbd7 expression levels or fSCS resistance in TN4_20 cells, in which this interaction is 

putatively abolished due to TN insertion. 

 

4.5 Btbd7 expression is necessary for fSCS resistance 

To investigate whether Btbd7 expression is important for fSCS survival, we silenced 

BTBD7 by using Sh-RNA (short hairpin RNA). First, we tested five different Sh-RNAs 

directed against BTBD7 gene (Sh- BTBD7_1, Sh-BTBD7_2, Sh-BTBD7_3, Sh-BTBD7_4, Sh-

BTBD7_5) in HCT116 parental cells. We observed that all the tested Sh-RNAs are 

effective in silencing Btbd7 expression both at the mRNA and at the protein level (fig. 

4.9A), and we chose to use Sh-BTBD7_1 for further experiments.  
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Figure 4.9 A: BTBD7 silencing in HCT116. Five different Sh-RNAs against BTBD7 were 

tested in HCT116 and validated by qRT-PCR (left) by using primers targeting BTBD7 3’UTR or 

BTBD7 CDS (coding sequence) and by Western Blotting (right). 

 

Then, we transduced HCT116 parental and TN4_20 cells with Sh-BTBD7_1 and 

performed fSCS assay. We observed that the depletion of Btbd7 impairs the fSCS 

resistance in both HCT116 parental and TN4_20 cells (fig 4.9B), indicating that Btbd7 

expression is a necessary for fSCS survival. 
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Figure 4.9 B: Btbd7 expression is necessary for fSCS resistance. (Left), silencing of 

Btbd7 with Sh-BTBD7_1 reduced fSCS resistance of HCT116 and TN4_20; (Right), quantification 

of fSCS survived colonies. 

 

4.6 Btbd7 overexpression induces fSCS resistance, EMT and 
invasiveness 

To further assess the importance of Btbd7 in fSCS resistance and in EMT phenotype, 

we generated HCT116 clones stably overexpressing ectopic eGFP-Btbd7 (fig. 4.10A, 

eGFP-Btbd7clone#1, eGFP-Btbd7 clone#2 and eGFP-Btbd7 clone#3 were compared with 

empty clone #1, empty clone #2, empty clone #3). Interestingly, we observed that 

ectopic eGFP-Btdb7 shows a diffuse cytoplasmic localization; moreover, consistent with 

[217], we noticed the absence of eGFP-Btbd7 from the nucleus (fig.4.10B). 

  



71 
 

 

 

 

Figure 4.10 A and B Overexpression of ectopic Btbd7. A) Three clones stably 

overexpressing ectopic eGFP-Btbd7 protein were obtained in HCT116 (eGFP-Btbd7 clone#1, 

eGFP-Btbd7 clone#2, eGFP-Btbd7 clone #3); B) Localization of ectopic eGFP-Btbd7 protein in 

eGFP-Btbd7 clones compared to empty clones. 
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Next, we asked whether Btbd7 overexpression has an effect on fSCS survival and cell 

invasiveness. To this aim, we subjected eGFP-Btbd7 overexpressing cells to the fSCS 

assay and to matrigel evasion assay, and we observed increased fSCS resistance and 

increased matrigel evasion capability in these cells compared to control (fig. 4.10C). 

 

 

 

 

Figure 4.10C Overexpression of ectopic Btbd7 induced fSCS resistance C) eGFP-Btbd7 clone 

#3 showed increased fSCS resistance and Matrigel evasion capability compared to empty clone 

#1. 

 

As already mentioned, Btbd7 has been found to regulate EMT and metastasis 

[217][218][219], and our data are consistent with these findings. However, the 

mechanism of action of Btbd7 has never been described. To shed light on Btbd7 

molecular function, we investigated which are the genes related to Btbd7 
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overexpression. We analyzed by qRT-PCR a panel of EMT genes in eGFP-Btbd7 

overexpressing cells and, consistent with literature observations, we observed E-

cadherin downregulation and Vimentin upregulation (fig. 4.11A). Moreover, we noticed 

a significant upregulation of Zeb-1 transcription factor, that has never been described 

before, but not of Twist or Slug transcription factors (fig. 4.11A). 

 

 

 

 

Figure 4.11 Btbd7 overexpression induced the expression of EMT proteins. A) eGFP-

Btbd7 clones express EMT markers  by q-RT-PCR.  

 



74 
 

Also at the protein level we found a decrease of E-cadherin and an increase of Zeb-1 

levels (fig. 4.11B). These data indicate that Btbd7 may induce EMT and fSCS resistance 

by regulating E-cadherin and Zeb-1 expression levels. Moreover, the observation that 

the changes of E-cadherin and Zeb-1 protein levels are accompanied by changes of their 

mRNA levels suggests that Btbd7 could regulate the expression of E-cadherin and Zeb-1 

at a transcription level. In contrast to this view, however, we observed that ectopic 

eGFP-Btbd7 does not localize to the nucleus (see fig.4.10B), suggesting its inability to act 

directly as a transcriptional gene regulator. This suggests the existence of intermediate 

interactors or of downstream effectors of Btbd7 contributing to the regulation of EMT 

genes expression. In alternative, it is possible that Btbd7 induces EMT by acting first on 

protein levels; then, given that EMT is capable of auto-maintaining, Zeb-1 and E-

cadherin mRNAs levels may change due to the induction of EMT transcriptional 

program.  

 

 

 

 

Figure 4.11 Btbd7 overexpression induced the expression of EMT proteins. B) Western 

Blotting analysis of Zeb-1 and E-caderin proteins in eGFP-Btbd7 clones. 
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4.7 Bioinformatic analysis of Btbd7 protein: a help to shed 
light on Btbd7 function? 

To explore more in detail Btbd7 molecular function, we took advantage of 

bioinformatic tools and publicly available protein databases. First, to investigate the 

relevance of Btbd7 biological function, we analyzed its degree of conservation across 

species. To this aim, we performed a local alignment of Btbd7 in a non-redundant protein 

sequences database by using BLASTp. We found that Btbd7 protein shows more than 

95% of alignment identity (E-value 0.0), not only in Primates, such as Gorilla gorilla 

gorilla, Pan paniscus, and Pan troglodytes, but also other Mammals, such as Camelus 

bactrianus and Canis lupus familiaris, indicating that the protein is conserved between 

species (fig 4.12A). Then, we repeated the local alignment in BLASTp by introducing the 

“RefSeq protein-Homo sapiens” restriction, in order to align Btbd7 exclusively with 

human proteins. With this approach, we were able to identify two isoforms of Btbd7, 

namely “Btbd7 isoform 2” and “Btbd7 isoform 3”, that show 99% of alignment identity 

with Btbd7 (E-value 0.0). These alternative isoforms, that in UniProt publicly available 

database are referred to as “Btbd7 isoform 3” and “Btbd7 isoform 5”, respectively, result 

to be shorter, since they lack some protein regions respect to the main isoform (fig. 

4.12B, upper part).  Interestingly, this alignment also identified several human proteins 

that, despite having less than 50% of alignment identity with Btbd7, share the same 

BTB/POZ and BTB/Kelch domains of Btbd7 (fig 4.12B, lower part), indicating that 

BTB/POZ and BTB/Kelch domains are conserved domains in humans. Consistently, the 

use of other bioinformatic tools for the study of protein structure, such as Pfam and 

PROSITE, confirmed that Btbd7 possesses 2 BTB/POZ domains and 1 BTB/Kelch domain 

(fig 4.12D). The BTB (BR-C, ttk and bab)/POZ (pox virus and zinc finger) domain, is 

present near the N-terminus of zinc finger proteins, in proteins that contain the Kelch 

domain, and in pox virus proteins. Interestingly, this domain mediates BTB/POZ 

homomeric and heteromeric dimerization, and in some zinc finger proteins, mediates 

transcriptional repression [222]. The BTB/Kelch domain, also known as BACK domain 

(BTB And C-terminal Kelch) is located C-terminal to a BTB domain and N-terminal to a 

Kelch domain in several Kelch and Kelch like proteins. Importantly, together with the 

BTB/POZ domain, it can participate in dimerization and interaction with other proteins, 

such as Cullin 3 (Cul 3) E3 ubiquitin ligase complex and ubiquitinate target proteins 

[223]. Actually, we noted that publicly available UniProt database (ID Q9P203) indicates 
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Cul 3 as a potential interactor of Btbd7; further analyses are required to investigate if 

Btbd7 interacts with Cul 3 (i.e. co-immunoprecipitation assays).  

Thus, these results indicate that Btbd7 biological function is relevant, since it 

presents a remarkable degree of conservation not only in Primates, but also in other 

Mammals; moreover, a further analysis revealed that Btbd7 possesses two distinct 

domains, namely BTB/POZ and BTB/Kelch, that are conserved in humans and that, in 

association with each other, may be involved in the interaction with Cul 3, a E3 ubiquitin 

ligase, thus opening a new road to unravel the mechanism of action of Btbd7. 

 

 

Figure 4.12 A Alignement of Btbd7 protein in a non-reduntant protein database. Btbd7 

shows a remarkable degree of conservation between species (Primates and other Mammals), 

suggesting the relevance of its function. 
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 Figure 4.12 B and C: Btbd7 protein possesses BTB/POZ and BTB/Kelch conserved 

domains. B) Alignment of Btbd7 protein with Refseq restriction indicated that BTB/POZ and 

BTB/Kelch domains of Btbd7 are conserved domains in human proteins; C) Btbd7 possesses 2 

BTB/POZ and 1 BTB/Kelch domains. 
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To obtain information on Btbd7 post-translational modifications, we consulted 

UniProt database (ID=Q9P203). We noted that Btbd7 protein presents a post-

translational modification that consists in a lipidation, in particular N-myristilation, on 

the glycine at aa position 2 (data not shown). This post-translational modification has 

been described to target proteins to lipid rafts [224], that are membrane sub-domains 

rich in cholesterol and sphingolipids; interestingly, lipid rafts have been found to 

regulate EMT and tumor plasticity [225]. Moreover, Caveolin-1, a marker of caveolae, i.e. 

particular subtypes of lipid rafts, has an important role in the suppression of EMT [226]. 

Thus, we asked if Btbd7 function is related to lipid rafts, with particular attention to 

Caveolin-1 protein. First, to assess if Caveolin-1 negatively correlates with EMT, we 

checked its expression levels in TN4_20 clone, and we observed that it is decreased 

compared to control cells (fig. 4.13A). Then, in a preliminary experiment, we silenced 

Caveolin-1 in HCT116 parental cells; we observed that, especially in HCT116 Sh-Cav_2, 

cells acquired a scattered and mesenchymal morphology; moreover, we observed that 

Caveolin-1 silencing induces a decrease of E-cadherin protein levels, suggesting that the 

loss of Caveolin-1 may contribute to the induction of EMT phenotype (fig. 4.13B). Then, 

to investigate if there is a correlation between Caveolin-1 and Btbd7 expression, we first 

checked Caveolin-1 expression levels in HCT116 Sh-BTBD7_1 cells, and we found that 

upon Btbd7 silencing, Caveolin-1 increased (fig. 4.13C). Then, we checked Caveolin-1 

expression levels in miR-23b overexpressing cells and we observed that, when Btbd7 is 

downregulated by miR-23b, Caveolin-1 is increased (fig. 4.13D), thus suggesting an 

inverse correlation between Btbd7 and Caveolin-1 expression. Given these results, we 

hypothesized that Caveolin-1 interacts with Btbd7 by negatively regulating its function. 

As for Cul3, a co-immunoprecipitation assay is required to assess if Btbd7 and Caveolin-

1 actually interact. 

To sum up, the use of the publicly available UniProt database indicated that Btbd7 is 

myristilated and may be addressed to lipid rafts. This prompted us to investigate the 

role of lipid rafts and Caveolin-1 in Btbd7 function. We found that Caveolin-1 silencing 

correlates with EMT induction; moreover, although we have not yet confirmed our 

hypothesis that Caveolin-1 and Btbd7 interact, we evidenced an inverse correlation 

between Caveolin -1 and Btbd7 expression.  

 



79 
 

 

 

 

Figure 4.13 Btbd7 negatively correlates with Caveolin-1 and Caveolin-1 is a negative 

regulator of EMT. A) Caveolin-1 was decreased in TN4_20; B) silencing of Caveolin-1 induced  

mesenchymal morphology and decreased E-cadherin protein levels; C) Caveolin-1 was increased 

by miR-23b overexpression, a condition in which Btbd7 is decreased; D) Caveolin-1 was 

increased upon Btbd7 silencing. 
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4.8 Multiple rounds of fSCS assay enrich for cells with 
EMT/stem-cell traits and that are chemo-resistant 

In order to scale-up our functional screen to a genome-wide level, we introduced a 

series of changes to our screening process that are depicted in Table 2. First, we used PB 

TN instead of SB TN. In fact, as mentioned in the Introduction section of this Thesis, PB 

TN presents some advantages compared to SB, such as the increased transposition 

efficiency and the absence of any footprint leaved after TN excision [176][201]. Second, 

we performed multiple, sequential rounds of fSCS in order to obtain pools of fSCS 

resistant cells instead of single clones. 

 

 
VERSION 1 of the 

screen 

Version 2 of the 

screen 
AIM 

Transposition Sleeping Beauty TN PiggyBAC TN -Higher Transposition 

efficiency 

Assay One Round fSCS Multiple Rounds fSCS -Progressive enrichment 

in fSCS resistant cells 

Functional recovery Single Cell Cloning Pool of Resistant Cells -Study the genetics of 

fSCS resistant cells at a 

genome wide level 

TN insertion recovery Linker Mediated PCR Deep Sequencing -Small RNA signature of 

fSCS resistant cells; 

-High throughput 

retrieval of TN insertions 

 

Table 2: Comparison between version 1 and version 2 of the fSCS-TN based screen 

 

To perform multiple rounds of fSCS, HCT116 parental and HCT116 PB transposed-

cells were subjected to fSCS; after the first round, surviving cells (T1) were pooled 

together, expanded and subjected again to the fSCS assay to generate their progeny (T2) 

(being T0 the cells that never underwent fSCS) (fig. 4.14A). Interestingly, we observed 

that cells surviving to each additional round of fSCS were able to generate increasing 

numbers of surviving colonies, and these colonies had a greater scattered/mesenchymal 

morphology compared to the one generated by T0 cells (fig. 4.14A and 4.14B). 
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Figure 4.14 A and B: Updated version of fSCS based functional screen. A) Scheme of 

updated version of fSCS-TN based screen, with repeated and sequential rounds of fSCS: at each 

round the number of survived colonies increased; B) quantification of the number of survived 

colonies and of the colony morphology. 

 

 In particular, both in HCT116 parental and HCT116 PB-transposed cells we 

observed that the surviving colonies that were generated after fSCS assay of T2 cells 

(early T3) displayed EMT markers, such as lower E-Cadherin and higher Vimentin 

mRNA levels (fig. 4.14C). Given that EMT traits can be coupled to stemness traits 

[118][120], we investigated whether T3 cells display stemness traits. Since EpCAM 

expression is directly correlated with epithelial-cell differentiation [227], we used FACS 

analysis to evaluate EpCAM expression levels in T3 cells. Interestingly, we observed a 

greater number of cells with EpCAM low (dim) expression, i.e. with reduced EpCAM 
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expression (fig. 4.14D), suggesting that multiple rounds of fSCS enriches for EMT/stem-

cell traits.  

Finally, given that EMT has been found to regulate chemoresistance [228] [229], we 

asked if fSCS enrichment has an effect on chemotherapy response. We treated T2 and T0 

cells with two different doses of 5-fluorouracil (5FU), and observed that T2 showed a 

greater survival to 5FU treatment compared to T0 cells (fig.4.14E). In conclusion, our 

results indicate that multiple rounds of fSCS can enrich for resistant cells with 

EMT/stem-cell features and with increased chemoresistance. 

 

 

 

 

Figure 4.14 C, D, E: Repeated rounds of fSCS assay enrich for cells with EMT/stemness 

and chemoresistance traits. C) early T3 colonies, collected immediately after fSCS, expressed 
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EMT markers compared to T0 and T2 exponentially growing cells; D) early T3 colonies, collected 

immediately after fSCS, presented stemness traits (EpCAM low) compared to T0 and T2 

exponentially growing cells E) Repeated rounds of fSCS conferred chemoresistance to T0 and T2 

exponentially growing cells. 

 

4.9 Multiple rounds of fSCS assay confer cells an increased 
in vivo metastatic potential 

Next, to evaluate the in vivo metastatic potential of fSCS enriched cells, we subjected 

HCT116 parental T0 (that never underwent fSCS) and HCT116 parental T2 (that 

underwent 2 rounds of fSCS) cells to the in vivo extravasation assay.  This in vivo assay 

aims to analyze the ability of tumor cells to achieve survival in the circulation and early 

colonization of the lungs following their injection in the blood circulation [230]. We 

quantitated cells that extravasated and dispersed in the lung parenchyma 72h after the 

inoculation (fig.4.15A and B) and found that the amount of T2 cells present in the lungs 

was higher compared to T0 cells. Additional immunostainings of mice lung for CD31 

should be performed to actually confirm that cells found in the lungs have extravasated 

from the lumen vessel and have infiltrated the parenchyma. These data suggest that the 

“fSCS enrichment” confers to the cells the capacity to survive in the circulation, 

extravasate and start growing with overall greater metastatic potential (fig.4.15).  
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Figure 4.15 A and B: Multiple rounds of fSCS confer an increased in vivo metastatic 

potential. 72 hours after the injection in blood circulation, the capability of T2 cells to infiltrate 

the lungs is increased compared to T0 cells: A) Stereo-microscope acquired images (#4 mice T0 

vs #4 mice T2); B) Lung section of T0 or T2 injected mice: white arrows indicate DII labeled T0 

or T2 cells.  
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4.10 Two miRNA families involved in the regulation of EMT 
and metastasis are enriched by multiple rounds of 
fSCS 

Last, we investigated whether fSCS-resistance, despite which TN-insertion or 

selection process triggered it, is regulated by few unique genetic elements (i.e. hubs). We 

reasoned that miRNAs are ideal hubs, since one miRNA can have multiple targets [143]. 

In order to identify miRNAs (and eventually other small RNAs) whose expression levels 

are significantly altered in cells that resist to fSCS compared to exponentially growing 

conditions we collected high quality RNA from HCT116 parental and HCT116 PB-TN T0, 

T2 (exponentially growing) and early T3 cells (colonies post fSCS) (fig. 4.16A) and used 

it for Next Generation Sequencing (NGS). We found that two families of miRNAs, miR-30 

family (comprising miR-30a-3p, miR-30a-5p, miR-30c-2-3p) and miR-302 family 

(comprising miR-372-3p, miR-373-3p, miR-302-3p) are up-regulated upon fSCS 

enrichment (fig.416B). Interestingly, both miRNAs families are involved in the 

regulation of EMT and metastasis [231][232]. In summary, the analysis of miRNA 

signature in fSCS resistant cells allowed us to identify two miRNA families, namely miR-

30 and miR-302 family, that have been previously described to regulate EMT and 

metastasis and that potentially regulate fSCS resistance.  
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Figure 4.16: Multiple rounds of fSCS enrich for two families of miRNAs involved in the 

regulation of EMT and invasiveness. A) High quality RNA for Deep Sequencing from T0 and T2 

cells (both Paretal and TN) and early T3 (both Parental and TN); B) two miRNAs families, miR-

30 and miR-302 were found enriched with multiple rounds of fSCS. 
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5. DISCUSSION 

Metastasis is a multistep process that ultimately leads to the formation of a new 

tumor lesion at a distant site [29]. During the first step of the metastatic cascade tumor 

cells have to detach from extracellular matrix (ECM) and from each other. Epithelial 

mesenchymal transition (EMT) is believed to occur at this step, since a loss of epithelial 

traits (e.g. adherens junctions) may represent a prerequisite for cells to detach from 

neighboring cells, to invade surrounding tissue and to proceed along the metastatic 

cascade. On the other hand, anoikis that is a type of cell death occurring upon cell 

detachment from the ECM, is an important barrier to metastasis, preventing survival of 

shed epithelial cells. 

In vitro anoikis that consists in growing cells in the absence of cell-matrix contacts, 

has been used to select and study more aggressive tumor cells [62][63]. However, many 

tumor cells can easily overcome this form of cell death and protect themselves by 

strengthening cell-cell contacts and by forming big, viable suspension cell aggregates 

(i.e. HCT116 cells)[62]. In this Thesis work, we have set up a novel in vitro assay, named 

forced Sigle Cell Suspension (fSCS) assay, which consists in growing cells in low-

adherence conditions with the concomitant inhibition of cell-cell contacts e.g with EDTA 

or enzymatically, a situation resembling an EMT. Our data indicate that: 1) fSCS is more 

stringent compared to classic in vitro anoikis, since a smaller fraction of cancer cells 

survive to it compared to in vitro anoikis; in addition, cells that survive to this constraint 

are more aggressive tumor cells (fig.4.1C) 2) fSCS effectively selects cells with a EMT 

phenotype: in fact, when EMT program is elicited by the overexpression of Twist 

transcription factor, EMT-switched cells gain resistance to fSCS (fig. 4.2B).  

Moreover, the results of this Thesis give a contribution to the understanding of the 

molecular mechanisms regulating CRC EMT and metastasis. The unbiased interrogation 

of HCT116 genome through a modified TN based screen combined with fSCS assay, 

allowed us to identify: 1) a cell clone, TN4_20, that presents EMT and invasiveness traits 

as well as metastatic potential, confirming the effectiveness of fSCS to select EMT cells 

(fig. 4.5); 2) a novel interaction, revealed by TN insertion, between a non-coding RNA, 

miR-23b (with a known anti-metastatic function) and a protein-coding gene, BTBD7 

(with a known pro-EMT and pro-metastatic function) (table 1 and figs 4.7 and 4.8). The 

fact that both miR-23b and BTBD7 gene were already described to regulate EMT and 



88 
 

metastasis [217][218][219][220][221] encouraged us about the effectiveness of our TN-

fSCS based screen to detect regions of the genome that potentially regulate EMT and 

metastasis. Complementarily, even if we did not identify non-coding regions regulating 

EMT and metastasis in CRC, we unraveled the undescribed interaction between miR-23b 

and BTBD7 gene, that is important for fSCS phenotyoe.  As a future perspective, we plan 

to study the relevance of BTBD7 and miR-23b also in CRC patients. To this aim, we will 

study by qRT-PCR whether miR-23b and BTBD7 are differentially expressed in a panel 

of samples comprising 10 normal colon mucosa, 10 primary CRC without metastasis 

(M0), 10 primary CRC with metastasis (M1) and 10 liver metastases. Samples have 

already been obtained from the tissue bank of CRO, Aviano. As validation, we will use a 

UK selected cohort of CRC samples. 

We also investigated the molecular function of Btbd7 protein; although there is still 

much of its mechanism of action that needs to be determined, our results demonstrate 

that Btbd7 is necessary for fSCS resistance with an important role in the regulation of 

EMT and metastasis. Moreover, our data suggest that Btbd7 may regulate fSCS 

resistance and EMT by down-regulating the expression of E-cadherin (already shown by 

other groups) [217][218][219]  and/or by up-regulating the expression of Zeb-1 EMT 

transcription factor (never described before)(fig. 4.11). Does Btbd7 directly act on E-

cadherin or does it act on Zeb-1? On one hand, it is well described that E-cadherin is 

regulated at the transcriptional level by several EMT transcriptional repressors, such as 

Zeb-1; on the other hand, however, it has been shown that the loss of E-cadherin protein 

alone is able to induce an EMT phenotype [106], and the expression of transcription 

factors like Zeb-1. Thus, Btbd7 protein could induce EMT:  1) by up-regulating Zeb-1 

transcription factor that in turn represses E-cadherin expression or 2) by down-

regulating E-cadherin expression, that, accordingly to Onder et al., could up-regulate 

EMT transcription factors, such as Zeb-1. Further analysis are necessary to discriminate 

between these two possibilities. One strategy may be the use of Tetoff inducible 

regulation of Btbd7 expression, as described in [217], in order to study, at several time 

points, the reciprocal variations on Btbd7, E-cadherin and Zeb-1 mRNAs and protein 

levels. Another unclear point in Btbd7 function resides in the fact that the changes of E-

cadherin and Zeb-1 protein levels are accompanied by changes of their mRNA levels, 

suggesting that Btbd7 affects directly or indirectly their transcription level. However, 

this is in contrast with the observation that ectopic Btbd7 does not localize in the 
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nucleus (fig. 4.10B), thus suggesting that other intermediate interactors or downstream 

effectors participate in the regulation of gene expression that follows Btbd7 activation. 

This contradiction may be alternatively explained with the hypothesis that Btbd7-

mediated EMT induction relies first on changes in protein levels; then, given that EMT is 

capable of auto-maintaining itself, the changes of mRNA levels may occur secondly.  

As alternative approach to decipher the Btbd7molecular function, we used 

bioinformatic tools and publicly available protein Databases (figs 4.12 and 4.13). When 

we used Blastp bioinformatic tool for the local alignment of Btbd7 protein in a non-

redundant protein database, we found, as expected, that Btbd7 is conserved in Primates 

(Gorilla gorilla gorilla, Pan paniscus, and Pan troglodytes); more interestingly, Btbd7 

protein resulted to be conserved also other Mammals (Camelus bactrianus and Canis 

lupus familiaris), thus suggesting the biological relevance of Btbd7 function. Blastp 

bioinformatic tool permits to restrict the local alignment to human proteins with “RefSeq 

protein-Homo sapiens” restriction option. By repeating the local alignment of Btbd7 with 

this restriction option, we were able to identify two Btbd7 shorter isoforms. 

Interestingly, this alignment also identified several proteins that show a low level of 

similarity to Btbd7 (less than 50%), except for the Btbd7 BTB/POZ and BTB/Kelch 

domains, thus suggesting that BTB/POZ and BTB/Kelch domains are conserved in 

human proteins. In fact, BTB/POZ is a protein-protein interaction domain that,  alone or 

in association with BTB/Kelch domain, is present in several human proteins and 

regulates  functions ranging from transcription repression, cytoskeletal regulation, 

tetramerization and gating of ion channels, ubiquitination and degradation of proteins 

[222][233]. Interestingly, when BTB/POZ domain is located N-terminal to the 

BTB/Kelch domain (as in Btbd7), it can participate in dimerization and interaction with 

Cul3,  a E3 ubiquitin ligase [223]. Given these observations, we hypothesized that Btbd7 

may interact with Cul3 and, as already described for proteins sharing its same 

arrangement of BTB/POZ and BTB/Kelch domains, may be implicated in the 

ubiquitination of target proteins for proteosomal degradation. In agreement, we noted 

that UniProt protein database indicates Cul3 as a putative interactor of Btbd7. This in an 

interesting point, since the expression levels of some EMT transcription factors, such as 

Snail-1, Slug and (more slightly) Zeb-1 have been demonstrated to be regulated by 

ubiquitination and proteasomal degradation [234]. A co-immunoprecipitation assay of 
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both endogenous Btbd7 and/or ectopic eGFP-Btbd7 with Cul3 may be a good approach 

to assess if these proteins actually interact.  

Moreover, the use of Uniprot database revealed that Btbd7 protein is subjected to a 

post-translational modification, namely a N-myristylation at the aa position 2. We were 

immediately struck by this post-translational modification, since it has been described 

to address proteins to lipid rafts, which are particular membrane sub-domains rich in 

cholesterol and sphingolipids that may regulate EMT [224]. Moreover, Caveolin-1, a 

marker of caveolae, i.e. lipid rafts subtypes, is a negative regulator of EMT [226]. Given 

these notions, we asked if Btbd7 function is related to lipid rafts, and in particular to 

Caveolin-1. On one hand our data confirmed, at least in part, that Caveolin-1 has a role in 

EMT negative regulation. In fact, we found that: 1) Caveolin-1 is downregulated in 

TN4_20, that is fSCS resistant clone with EMT traits; 2) Caveolin-1 silencing induces a 

more mesenchymal and scattered cell morphology with reduction of E-cadherin protein 

levels. On the other hand, we found that Caveolin-1 expression seems to negatively 

correlate with Btbd7 expression, in fact: 1) Caveolin-1 expression is increased in cells in 

which Btbd7 is silenced and 2) Caveolin-1 is increased when Btbd7 is dowregulated by 

miR-23b overexpression. Given these results, we hypothesized that Caveolin-1 may 

negatively regulate Btbd7 function; in particular, we hypothesized that Caveolin-1 

interacts with Btbd7. Co-immunoprecipitation and/or co-localization experiments are 

required to demonstrate the direct interaction between Caveolin-1 and Btbd7; thus, for 

now, we can only speculate on a role of Caveolin-1 in the regulation of Btbd7. To better 

address Btbd7 mechanism of action future area of research should be: 1) the use of 

biochemical approach to investigate if Btbd7 is actually myristylated; 2) to investigate if 

Btbd7 is actually addressed to lipid rafts; 3) to assess if Btbd7 and Caveolin-1 interact 

(e.g with a co-immunoprecipitation assay). 

In conclusion, the use of bioinformatic tools provided us with some interesting 

inputs to further investigate Btbd7 function; even though we did not unravel its precise 

mechanism of action, we hypothesized two possible roads: 1) Btbd7, similar to others 

BTB/POZ and BTB/Kelch proteins, is engaged in the interaction with E3 ubiquitin ligase 

and is involved in the ubiquitination of target proteins, such as Zeb-1 transcription 

factor. This hypothesis may appear in contrast with the observation that Btbd7 seems to 

regulate Zeb-1 expression at a transcription level.  However, as already mentioned, it is 

possible that the EMT program, once activated, is capable of auto-maintaining itself and 
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that the increase of Zeb-1 mRNA expression is secondary to Zeb-1 protein induction; 2) 

Btbd7 may be directed to lipid rafts by N-myristylation and regulated (directly or 

indirectly) Caveolin-1, a lipid rafts protein that acts as negative regulator of EMT. 

A mass spectrometry based analysis of Btbd7 interactors could be a very useful 

approach to discriminate between these two hypotheses and may help to understand if 

they are interconnected.  

Some tumors  (including colon adenocarcinoma) form highly differentiated 

metastases; this observation can be explained by a plasticity model in which 

EMT/stemness state alternates with MET/differentiated state: an EMT is required for 

tumor cells to detach and migrate from the primary site, whereas they must come back 

to epithelial state (MET) in order to grow and colonize distant sites [118]. Thus, 

switching back and forth between repeated EMT/MET may be a prerequisite for 

metastasis formation. Our results show that repeated and sequential rounds of fSCS are 

able to generate pools of cells that are fSCS resistant. Regardless of the presence of TN 

insertion (in this case achieved by PB TN), the fSCS resistant colonies increase each 

round, acquiring a more scattered/mesenchymal morphology (T1= one round of fSCS; 

T2= two rounds; T0= never underwent to fSCS). Interestingly, early T3 cells, which are 

the early surviving cells obtained by performing an additional round of fSCS with T2, 

present increased EMT and stemness traits (decrease of E-cadherin, increase of 

Vimentin, increase of EpCAM dim/low population); whereas these traits are absent in 

expanded T1 and T2 (fig.4.14).  

In some way, these observations may be linked to the EMT/MET model described in 

[118]. We hypothesize that T1 expanded and T2 cells, that are exponentially growing 

cells, may have lost their EMT traits to undergo a MET and can grow in the culture dish, 

similarly to transformed tumor cells that must undergo MET to grow at distant sites. 

Indeed, T1 and T2 cells do not do not show a change in the classic EMT markers (except 

a slight increase in Vimentin expression) nor show a decrease in EpCAM expression. 

Conversely, early T3 cells, that are fSCS surviving colonies that did not generate a full 

progeny (thus, they are not exponentially growing), may still be in a EMT and stemness 

state, resembling tumor cells that temporary undergo EMT during metastatic 

transformation. Our hypothesis needs to be further confirmed by the analysis of 
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exponentially growing T3 (late T3), which should display a decrease of EMT/stemness 

traits and an increase of MET/differentiated traits. 

To sum up, we hypothesize that performing multiple rounds of fSCS may 

recapitulate two distinct phases of tumor cell plasticity: the early EMT/stemness phase, 

that is recapitulated by cells collected as surviving colonies that are still not in the 

exponentially growing phase, and the late MET/differentiated phase, recapitulated by 

cells collected in the exponentially growing phase. Thus, each pool of exponentially 

growing fSCS resistant cells (late, MET) should be generated by corresponding fSCS 

surviving colonies (early, EMT).  

Extravasation is the step of the metastatic cascade following survival in the 

circulation is, in which CTCs (circulating tumor cells) leave lymphatic or blood 

circulation and penetrate the endothelium to invade the target organ. In vivo 

extravasation assay with T0 versus T2 cells, showed increased extravasation capability 

of T2 fSCS resistant cells compared to T0 cells. (fig.4.15). This preliminary result is an 

interesting indication that fSCS selection process enriches for more aggressive tumor 

cells, but needs to be further confirmed by challenging the capability of T2 cells to form 

distant macro-metastatic lesions. Given that T2 cells were generated by the fSCS 

enrichment process that selects cells with more EMT/stemness/chemoresistance traits, 

we strongly expect that T2 cells will be able to form distant macrometastases.  

What are the genetic elements regulating fSCS resistance? In the first version of our 

functional screen, we answered to this question by identifying and studying the TN 

insertions occurred in one of the cell clones, TN4_20, that emerged from the selection 

process. In this manner, we dissected the molecular mechanism happening in a specific 

cell clone. In our extended version of the screen, however, we aimed to scale-up the 

identification of the genetic elements regulating fSCS to a genome-wide level. To this 

aim, on one hand we focused on small-RNAs, in particular miRNAs common signatures. 

Indeed, our expectation is that fSCS may be regulated by few unique genetic elements 

(i.e. the hubs), and that miRNAs represent the perfect hubs, because a single miRNA can 

target multiple mRNAs. Deep sequencing analysis revealed that fSCS selective process 

enriches for two families of miRNAs, namely miR-30 and miR-302 (fig.4.16). Similar to 

miR-23b and BTBD7 in the previous version of the screen, also miR-30 and miR-302 

families were already found to be implicated in EMT and metastasis [231][232], thus 
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providing a further confirmation of the effectiveness of our fSCS selective process in the 

identification of genetic elements regulating EMT. However, a further analysis of the 

relevance of these miRNA families for fSCS is required. After confirming by q-RT-PCR 

that miR-30 and miR-302 family members are upregulated in fSCS resistant cells, a 

possible strategy to assess their role in fSCS resistance will be the overexpression of 

these miRNAs in parental cells, in order to understand whether they confer resistance to 

fSCS. In addition to differences in the expression of these two miRNA families, by 

allowing 2 mismatches when performing deep sequencing data alignment, we observed 

that fSCS induces also isomiRs. IsomiRs are isoforms of the same miRNA that differ from 

the canonical sequence for the 5’ and/or 3’ end. Most commonly, isomiRs present 

variations in the length of 3’ end, which consist in shorter sequences or, conversely, in 

sequences with added nucleotides which potentially act as localization signals. 

Interestingly, TCGA (The Cancer Genome Atlas) data show that isomiRs distinguish 

tumor from normal tissue better than classic miRNAs expression [235]. Thus, we plan 

to: 1) re-analyze deep sequencing data we have generated from fSCS resistant cells using 

customized pipelines specific for the identification of differences in isomiRs; 2) analyze 

isomiRs expression profile in TCGA dataset to evaluate the differential expression of 

isomiRs between CRC (primary and metastatic) and normal samples. 

Finally, even if fSCS resistant cells increase at each round and acquire EMT and 

stemness traits regardless of Piggy Back TN insertion, we plan to scale up retrieval of TN 

insertions from the pool of TN-T2-cells and by these means to identify the insertions (i.e. 

triggers) that most likely regulate fSCS-resistance and are responsible for EMT/stem cell 

and chemo-resistance traits.   
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