

Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Matematica

CORSO DI DOTTORATO DI RICERCA IN: Scienze Matematiche

CURRICOLO: Informatica

CICLO: XXIX

SECURITY ISSUES OF MOBILE AND SMART WEARABLE DEVICES

Coordinatore: Ch.mo Prof. Bruno Chiarellotto

Supervisore: Ch.mo Prof. Mauro Conti

Dottorando: Hossein Fereidooni

University of Padua
Department of Mathematics
Doctorate Degree in Mathematics

Curriculum in Computer Science

Security Issues of Mobile and Smart
Wearable Devices

Candidate Supervisor
Hossein Fereidooni Prof. Mauro Conti

University of Padua, Italy

iii

Acknowledgments

On completion of my Ph.D. thesis I would like to sincerely thank all those who
supported me in realizing and finishing my work. I would never have been able to
finish this dissertation without the guidance of my Ph.D advisor Prof. Mauro Conti
and my committee members, support from my family and wife, and help from my
friends and lab mates.
I would also like to thank my parents. They have brought me tremendous love since
I was born. Finally, I would like to thank my wife Shokoufeh and my daughter
Raha. They were always there cheering me up and accompanied me through good
and bad times. This dissertation is dedicated to them.

v

Abstract

Mobile and smart devices (ranging from popular smartphones and tablets to
wearable fitness trackers equipped with sensing, computing and networking capabil-
ities) have proliferated lately and redefined the way users carry out their day-to-day
activities. These devices bring immense benefits to society and boast improved
quality of life for users. As mobile and smart technologies become increasingly ubiq-
uitous, the security of these devices becomes more urgent, and users should take
precautions to keep their personal information secure. Privacy has also been called
into question as so many of mobile and smart devices collect, process huge quantities
of data, and store them on the cloud as a matter of fact. Ensuring confidentiality,
integrity, and authenticity of the information is a cybersecurity challenge with no
easy solution.

Unfortunately, current security controls have not kept pace with the risks posed
by mobile and smart devices, and have proven patently insufficient so far. Thwarting
attacks is also a thriving research area with a substantial amount of still unsolved
problems. The pervasiveness of smart devices, the growing attack vectors, and the
current lack of security call for an effective and efficient way of protecting mobile
and smart devices.

This thesis deals with the security problems of mobile and smart devices, provid-
ing specific methods for improving current security solutions. Our contributions are
grouped into two related areas which present natural intersections and corresponds
to the two central parts of this document: (1) Tackling Mobile Malware, and (2)
Security Analysis on Wearable and Smart Devices.

In the first part of this thesis, we study methods and techniques to assist security
analysts to tackle mobile malware and automate the identification of malicious ap-
plications. We provide threefold contributions in tackling mobile malware: First, we
introduce a Secure Message Delivery (SMD) protocol for Device-to-Device (D2D)
networks, with primary objective of choosing the most secure path to deliver a
message from a sender to a destination in a multi-hop D2D network. Second, we il-
lustrate a survey to investigate concrete and relevant questions concerning Android
code obfuscation and protection techniques, where the purpose is to review code
obfuscation and code protection practices. We evaluate efficacy of existing code
de-obfuscation tools to tackle obfuscated Android malware (which provide attackers
with the ability to evade detection mechanisms). Finally, we propose a Machine

Learning-based detection framework to hunt malicious Android apps by introduc-
ing a system to detect and classify newly-discovered malware through analyzing
applications. The proposed system classifies different types of malware from each
other and helps to better understanding how malware can infect devices, the threat
level they pose and how to protect against them. Our designed system leverages
more complete coverage of apps’ behavioral characteristics than the state-of-the-art,
integrates the most performant classifier, and utilizes the robustness of extracted
features.

The second part of this dissertation conducts an in-depth security analysis of
the most popular wearable fitness trackers on the market. Our contributions are
grouped into four central parts in this domain: First, we analyze the primitives
governing the communication between fitness tracker and cloud-based services. In
addition, we investigate communication requirements in this setting such as: (i)
Data Confidentiality, (ii) Data Integrity, and (iii) Data Authenticity. Second, we
show real-world demos on how modern wearable devices are vulnerable to false
data injection attacks. Also, we document successful injection of falsified data to
cloud-based services that appears legitimate to the cloud to obtain personal benefits.
Third, we circumvent End-to-End protocol encryption implemented in the most
advanced and secure fitness trackers (e.g., Fitbit, as the market leader) through
Hardware-based reverse engineering. Last but not least, we provide guidelines for
avoiding similar vulnerabilities in future system designs.

vii

Contents

1 Introduction 1
1.1 Research Motivations and Contributions 2

1.1.1 Tackling Mobile Malware . 3
1.1.2 Security Analysis on Wearable Fitness Devices 8

1.2 Publications . 11
1.2.1 Conference and Workshop Publication 11
1.2.2 Book Chapter Publication . 11
1.2.3 Magazine and Journal Publication 11

I Tackling Mobile Malware 13

2 Secure Message Delivery Games for D2D Communications 15
2.1 System Model . 17

2.1.1 Collaborative Detection . 18
2.1.2 Device Confusion Matrix . 19
2.1.3 Route Confusion Matrix . 19
2.1.4 Energy Costs and QoS . 20
2.1.5 Network Profiles . 20

2.2 Secure Message Delivery Games . 21
2.2.1 Game Characterization . 21
2.2.2 Strategies and Payoffs . 21
2.2.3 Nash Equilibrium . 22

2.3 The Secure Message Delivery Protocol 24
2.3.1 SMD Considerations . 24
2.3.2 Routing . 25

2.4 Performance Evaluation . 25
2.4.1 Simulation Parameters . 25
2.4.2 Simulation Results . 28

2.5 Related Work . 29
2.6 Summary . 31

3 Android Code Obfuscation Techniques 33
3.1 Android Overview . 34

3.1.1 Android Architecture . 34
3.1.2 Android Compilation . 35

3.2 Code Obfuscation Techniques . 36
3.2.1 Control Flow Obfuscation . 39
3.2.2 Data Obfuscation . 42
3.2.3 Layout Obfuscation . 45
3.2.4 Preventive Transformations 46
3.2.5 Repackaging Popular Apps 48
3.2.6 Custom Obfuscation Techniques 49

3.3 Custom Code Obfuscation Tools . 51
3.3.1 Proguard . 51
3.3.2 Allatori . 52
3.3.3 Dalvik-obfuscator . 52
3.3.4 DexGuard . 52
3.3.5 APKfuscator . 53

3.4 Code Packers and Protectors . 53
3.4.1 Code Packers . 53
3.4.2 Comparison of Obfuscation and Protection Techniques 55

3.5 Android Bytecode Analysis . 56
3.5.1 Bytecode and De-Obfuscation Tools 56
3.5.2 Stealth Obfuscation . 58

3.6 Existing Surveys and Related Work 60
3.7 Future Research Directions . 62
3.8 Obfuscation Code Examples . 63
3.9 Summary . 64

4 Android Malware Detection 67
4.1 Design and Implementation . 68

4.1.1 Data-set Composition . 69
4.1.2 Feature Extraction . 70
4.1.3 Feature Selection . 73
4.1.4 Classification Models . 74

4.2 Evaluation and Benchmark . 76
4.2.1 Experimental Setup on balanced data-set 77
4.2.2 Experimental Setup on imbalanced data-set 79

4.3 Related Work . 82
4.4 Summary . 84

5 Android Malware Classification 85
5.1 Proposed Classification Framework 87

5.1.1 Dataset Collection and Pre-processing 88
5.1.2 Feature Extraction . 89
5.1.3 Feature Selection . 89
5.1.4 Classification Models . 91
5.1.5 Evaluation metrics . 92

ix

5.2 Malware Family-based Classification 92
5.3 Cumulative Classification . 97
5.4 Related Work . 101
5.5 Summary . 102

II Security Analysis on Wearable Fitness Devices 103

6 Popular Fitness Devices: Security Analysis, Reverse Engineering
and Spoofing 105
6.1 System Model . 107

6.1.1 Analyzed Devices . 107
6.1.2 Adversary Model . 107
6.1.3 Requirement Analysis . 108

6.2 Background Preliminaries . 108
6.3 Evaluation . 110

6.3.1 Experimental Setup . 110
6.3.2 Findings . 121

6.4 Countermeasure & Remedy . 121
6.5 Discussion . 122
6.6 Related Work . 122

6.6.1 Firmware modification attacks 122
6.6.2 Data integrity and privacy attacks 123

6.7 Summary . 124

7 Advanced Fitness Devices: Security Analysis, Reverse Engineering
and Spoofing 125
7.1 Adversary Model . 126

7.1.1 Target Fitbit Devices . 127
7.1.2 End-to-End Communication Paradigms 127

7.2 Protocol Reverse Engineering . 128
7.2.1 MITM Setup . 128
7.2.2 Wireshark Plugin Development and Packet Analysis 129
7.2.3 Microdump . 129
7.2.4 Megadump Synchronization Message 130

7.3 Protocol-based Remote Spoofing . 133
7.3.1 Submission of Fake Data . 134

7.4 Hardware-Based Local Spoofing . 138
7.4.1 Device Tear-Down . 138
7.4.2 Hardware RE to Hunt Debug Ports 140
7.4.3 Connecting Devices to the Debugger 140

7.5 Discussion . 143
7.6 Related Work . 145
7.7 Summary . 146

8 Conclusions 147
8.1 Summary of Contribution . 148

8.1.1 Tackling Mobile Malware . 148
8.1.2 Security Analysis on Wearable Fitness Devices 149

8.2 Open Issues and Future Work . 151

xi

List of Figures

1.1 Example of Mobile and Smart Wearable Devices. 1
1.2 New Android Malware Samples per Year. 5
1.3 Worldwide Wearable Device Forecast. 8

2.1 Example of a D2D network. 17
2.2 Simulation results in presence of a uniform attacker. 28
2.3 Simulation results in presence of a Nash attacker. 29

3.1 Android Architecture. 35
3.2 Compilation of Java code to Android APK. 36
3.3 Obfuscation Classification. 38
3.4 CFG of listing 5.3 . 43
3.5 Bad code injection. 47
3.6 Hiding bytecode in the array of fill-array-data. 50
3.7 APK Obfuscation and optimization methodology. 51
3.8 Code Packing steps. 54
3.9 HoseDex2Jar Packer. 54
3.10 Functioning of Bangcle Packer. 55
3.11 Unpacking procedure during Dynamic analysis. 55
3.12 Disassembly of an APK file . 57

4.1 ANASTASIA system overview . 69

5.1 Framework of proposed classification methodology 88
5.2 Key features extracted from our dataset 90
5.3 Malware number per month . 98
5.4 Malware number per month . 98
5.5 Accuracy measures . 100

6.1 Adversary Model. 108
6.2 Schematic of experimental setup. 109
6.3 Garmin fitness data including CRC bytes. 110
6.4 Garmin detailed data after decoding. 110
6.5 Injecting fabricated steps into Garmin remote servers. 111

6.6 Token secret required to compute HMAC over the data. 112
6.7 Application secret required to compute HMAC over the data. 112
6.8 Injecting 3 million counterfeit steps into the ViFit server. 113
6.9 Data encoded using Protocol buffers. 113
6.10 Decoding data and tampering the step count. 113
6.11 Injecting counterfeit data into the Polar remote server. 114
6.12 The hear-rate data sent after base64 decoding. 114
6.13 The data sent by the tracker to its web server. 115
6.14 Recomputing the SHA1 digest from the data. 115
6.15 MisFit Shine Gathers data belonging to other fitness trackers. 115
6.16 Fitness data sent by MisFit to its server. 115
6.17 Injecting 4 million steps into the Misfit Shine server. 116
6.18 The fitness data sent by Jawbone trackers to their remote server. . . 116
6.19 Injecting 1 million steps into the server. 116
6.20 Injecting half a million steps into the server. 116
6.21 Steps count in plain-text format. 117
6.22 Injecting 1 million steps into Withings’ web server. 117
6.23 Fitness data sent by Miband to its web server. 118
6.24 Counterfeit data (several million steps) in the Mi Fit app. 118
6.25 HTTPS request from the Orbit to its server. 119
6.26 Injecting more than 3 million steps into Runtastic’s web server. . . . 119
6.27 Deploying End-to-end encryption mechanism, using a device-specific

encryption key. 122

7.1 Adversary model considered for (a) devices not implementing encryp-
tion and (b) trackers using encryption. 127

7.2 Schematic illustration of the testbed used for protocol reverse engi-
neering. Linux-based laptop used as wireless Internet gateway and
running MITM proxy. 128

7.3 Generic microdump in plain-text, as displayed by the wireshark dis-
sector we implement. Note the ability to filter by ‘fitbit’ protocol type
in the analyzer. 130

7.4 Megadump frame in plain-text format as transmitted to the Fitbit
server (main window) and the human-readable JSON status response
by the Fitbit Web API (top right). 131

7.5 Megadump Header Structure . 132
7.6 Per-minute Summary . 132
7.7 Megadump Summary Fields . 133
7.8 Megadump Footer Fields . 133
7.9 The result of replaying data from another Fitbit tracker to a different

tracker ID. Figure 7.9a shows the Fitbit user activity screen before
the replay attack, and Figure 7.9b shows the results after the message
is formed by changing the tracker ID, and submitted to the server. . 134

xiii

7.10 Figure 7.10a shows the Fitbit user activity screen before fake data
were submitted, and Figure 7.10b shows the screen after the attack.
In this example, 10000 steps and 10 km were injected for the date of
Sunday, January 15th, 2017 by fabricating a message containing the
data shown in Table 7.1. 136

7.11 Tools for device tear-down and hardware RE. 139
7.12 Fitbit tear-down and connecting Fitbit micro-controller to the debugger.141
7.13 Connecting the tracker to the debugger. 142
7.14 Device key extraction and disabling encryption. 142
7.15 Disabling the Device Encryption. 143
7.16 The results of injecting fabricated data. Figure 7.16a shows the Fitbit

app screenshot, and Figure 7.16b demonstrates the Fitbit web interface.144

xv

List of Tables

2.1 The SMD Protocol Notation. 18
2.2 The importance cost vectors used in our simulations. 26

3.1 Lookup table to split variables [1] . 44
3.2 hidden malware payload inside APK resource. 50
3.3 Comparing packer protection methods 56
3.4 Malware Obfuscation chronology [2–7] 61

4.1 Data-set composition . 70
4.2 Feature Frequency (Top-20 features in terms of importance). 74
4.3 Parameter tuning via Grid-search and Cross-validation 75
4.4 10-fold Cross-validation scores using balanced data-set. 76
4.5 10-fold Cross-validation scores using imbalanced data-set. 76
4.6 Classification Report and Confusion Matrix of SVC-RBF. 77
4.7 Classification Report and Confusion Matrix of Logistic Regression. . 77
4.8 Classification Report and Confusion Matrix of RandomForest. 78
4.9 Classification Report and Confusion Matrix of Naive Baye. 78
4.10 Classification Report and Confusion Matrix of Decision Tree. 78
4.11 Classification Report and Confusion Matrix of K-NN. 78
4.12 Classification Report and Confusion Matrix of Adaboost. 78
4.13 Classification Report and Confusion Matrix of Deep Learning. 79
4.14 Classification Report and Confusion Matrix of XGboost. 79
4.15 Classification Report and Confusion Matrix of XGboost on imbal-

anced data-set. 79
4.16 Performance comparison of our method against state-of-the-art. . . 81

5.1 Dataset composition . 88
5.2 Performance metrics . 92
5.3 Infection risks associated with each malware family 93
5.4 Infection risks associated with each malware family (continued) . . . 94
5.5 Infection risks associated with each malware family (continued) . . . 95
5.6 The number of malware samples, year developed and classification

results of 78 malware families from our experimental dataset 96

5.7 Classification Report (%) for test set (unseen samples) 97
5.8 Cross-Validation result for training set 97

6.1 Fitness trackers used in our experiments. 106
6.2 Test Results. 120

7.1 Data inserted into the packet summary section 137

1

Chapter 1

Introduction

Mobile and smart wearable devices, as shown in Figure 1.1, are rapidly emerging
as popular appliances with increasingly powerful computing, networking, and sensing
capabilities. Perhaps the most successful examples of such devices so far are high-end
smartphones and tablets with powerful processors, 4G network and high-bandwidth
connectivity. In addition, the rise of cloud-computing paradigms, complementary
storage and computing services have led to the ever-increasing popularity of such
devices.

New mobile and smart devices are not only playing a significant role in bringing
paradigms such as wearable computing or the Internet of Things (IoT) to reality,
but also finding innovative and attractive applications in several domains. As an
example, in health-care domain both medical staff and patients are increasingly
reaping the benefits of such devices; from regular smartphones and tablets to the
new generation of smart wearable systems for health monitoring.

Figure 1.1: Example of Mobile and Smart Wearable Devices.

2 Chapter 1. Introduction

Mobile and smart devices often lack stringent security measures, and some at-
tacks are able to exploit existing vulnerabilities in these devices. Many security
issues originate from how securely vendors implemented mechanisms for authentica-
tion and encryption. Recently, there have been several reported attacks in different
domains such as:
• Cars. Fiat Chrysler recalled 1.4 million vehicles after researchers demonstrated

an attack where they could take control of the vehicle remotely.1

• Smart home devices. Researchers at Symantec discovered multiple vulnera-
bilities in several commercially IoT devices, including a smart door lock that
could be opened remotely online without a password.2

• Medical devices. Researchers have found potentially deadly vulnerabilities in
dozens of devices. For instance, insulin pumps, x-ray systems, CT-scanners,
medical refrigerators, and implantable defibrillators.3

• Smart TVs. Hundreds of millions of Internet-connected TVs are potentially
vulnerable to click fraud, botnets, data theft, and even ransomware.4

In this chapter, Section 1.1 explains our research motivations and contributions
and Section 1.2 lists the scientific publications resulted form our research work.

1.1 Research Motivations and Contributions

Often, users are unaware of the security and privacy risks that mobile and smart
devices pose, until after an event creates media waves. End-users expect the devel-
opers to build software and hardware securely. They assume that proper security
controls exist to maintain the safety and privacy of their information. Addressing
the security and privacy concerns associated with the usage of these devices is the
key to unleashing the benefits that wearable devices offer to society. Motivation is
the key to successful attacks and for good security against such attacks. We need to
escalate our security motivation to approach the motivation of adversaries. Ubiqui-
tous mobile and smart devices, the growing attack vectors, and the current lack of
an effective and efficient way of protecting these devices motivated us to do research
in this line of study. This thesis just scratches the surface of the current problems
and more efforts need to be done in this research line.

The research work presented in this dissertation concentrates on security and
privacy issues on mobile and smart devices with a focus on Android-powered smart-
phones and wearable fitness tracking devices. In particular, in this dissertation we
present our research in two main logical parts:

• Tackling Mobile Malware.

• Security Analysis on Wearable Fitness Devices.
1 http://securityaffairs.co/wordpress/38844/hacking/jeep-cherokee-hack-fiat-

recall.html
2 {http://link.springer.com/article/10.1007%2Fs10586-016-0617-2}
3 http://iotsecurityconnection.com/posts/symantecs-take-on-the-risk-of-things
4 https://securelist.com/blog/incidents/73229/malware-on-the-smart-tv/

 http://securityaffairs.co/wordpress/38844/hacking/jeep-cherokee-hack-fiat-recall.html
 http://securityaffairs.co/wordpress/38844/hacking/jeep-cherokee-hack-fiat-recall.html
 {http://link.springer.com/article/10.1007%2Fs10586-016-0617-2}
 http://iotsecurityconnection.com/posts/symantecs-take-on-the-risk-of-things
https://securelist.com/blog/incidents/73229/malware-on-the-smart-tv/

1.1. Research Motivations and Contributions 3

In the following, we briefly introduce each of the above-mentioned parts, and
sum up our contributions.

1.1.1 Tackling Mobile Malware

Since their first release in late 20085, Android smartphones have been replacing
traditional mobile phones. The advent of such high-powered and affordable smart
devices has redefined the way that mobile phone users carry out their day-to-day
activities. The Android operating system is the most widely used on mobile de-
vices and hence is a popular target of attack for cyber criminals. Gartner reported
that worldwide sales of Android smartphones in 2016 has reached more than 296
million devices, which accounted for 86.2% of the market share.6 Due to Android’s
popularity and widespread user-acceptance, the amount of malware targeting the
Android platform has increased significantly in recent years. As such, malicious
applications pose a significant threat to smartphones’ platform security. One major
source of such a threat is the ability to incorporate third-party applications, from
online markets but also by other means.

People use those mobile devices for several types of applications, often involving
personal information (contacts, emails, agenda, pictures, banking, etc.). According
to the Bring Your Own Device (BYOD) policy, adopted by many companies [8],
the very same personal device is also used to access the IT infrastructure of the
company where the smartphone owner is employed. In this scenario, the security of
these devices, as well as the assets that they allow access to, are at stake.

Mobile Malware refers to software programs designed to damage or take any
kind of unwanted actions on a mobile Operating System (OS) such as disrupting
OS operations, gather sensitive information, bypass access controls, gain access to
private information and display unwanted advertising. Malware applications, based
on their harmful function, can be divided into the following categories:7

• Adware: it is a type of malware that automatically delivers advertisements.
Adware has been criticized because it usually includes code that tracks a user’s
personal information and passes it on to third parties.
• Spyware: it is a type of malware that spies and tracks user activity without

their knowledge, also collects information about user’s surfing habits, browsing
history, or personal information (such as credit card numbers). The capabili-
ties of spyware can include keystrokes collection, financial data harvesting or
activity monitoring.
• Virus: a virus is a type of malicious software capable of copying itself and

spreading to other mobile devices and requires user intervention to infect a
device. The user must actually run the software which contains the virus’
code. Macro virus is another type of virus which is spread via Macro code and
is launched when a file or document is opened. The code can be embedded
inside a Microsoft Office document (e.g. Microsoft Word document, Microsoft
Excel).

5 http://www.cnet.com/news/a-brief-history-of-android-phones/
6 http://www.gartner.com/newsroom/id/3415117
7 http://www.malwaretruth.com/the-list-of-malware-types/

 http://www.cnet.com/news/a-brief-history-of-android-phones/
http://www.gartner.com/newsroom/id/3415117
http://www.malwaretruth.com/the-list-of-malware-types/

4 Chapter 1. Introduction

• Worm: It is a type of malware that spreads through to an entire network by
exploiting OS vulnerabilities without user intervention, this is because worms
are self-replicating.

• Trojan: Torjan is a type of malware requiring user intervention to infect a
device. Like virus, user must run the software that contains the Trojan’s code.
However, Trojan is a different from of virus in the sense that it often appears
to be a legitimate software that users might have been searching for. There
exist several types of Trojans:

(i) Trojan Downloader: when launched, downloads additional file(s) that
actually contain the final payload;

(ii) Trojan Injector: when launched, injects malicious code into another pro-
cess, often a legitimate process, to evade detection;

(iii) Trojan Dropper: when launched, drops executable files containing the
malware’s payload.

• Backdoors: a backdoor is a software designed to bypass normal authentication
procedures and compromise the OS.

• Command & Control Bot: Bots are software programs created to automatically
perform specific operations. Bots are commonly used for DDoS attacks,

• Ransomware: it is a type of malware spreads by attackers with the goal of de-
manding a ransom from their victims, most often for financial benefits. Crypto
ransomware will usually go through all of the directories, files and sometimes
network shares of the user’s device. It will open files and then encrypt the
contents of those files. Users are forced to pay the attacker to remove the
restrictions and gain access to their files. This type of payment is usually done
with Bitcoins.

• Rootkit: it is a malware that can evade all anti-malware software and can affect
device’s OS itself. Rootkits often function as keyloggers, and their removal
often requires the user to format their devices.

• Ghostware: it is a malware that deletes itself off the system once identified.
This malware is programmed to remove itself from an infected device, leaving
no tracks for further investigation.

The rapid growth of Android-powered smartphones and their widespread usage
has come hand-in-hand with a similar increase in the number and sophistication
of virulent software targeting Android platforms. All of these make Android OS a
very attractive target to criminals. Security experts recorded of over 3.2 million new
Android malware applications in 2016 (an increase of almost 40 percent compared to
2015). They also counted over 750,000 new malware applications in the first quarter
of 2017 and expect around 3.5 million new Android malware apps for 2017.8

8 https://www.gdatasoftware.co.uk/news/2017/02/threat-situation-for-mobile-
devices-worsens

https://www.gdatasoftware.co.uk/news/2017/02/threat-situation-for-mobile-devices-worsens
https://www.gdatasoftware.co.uk/news/2017/02/threat-situation-for-mobile-devices-worsens

1.1. Research Motivations and Contributions 5

Figure 1.2: New Android Malware Samples per Year.

Nowadays, malicious software detection is mainly performed with heuristic and
signature-based methods struggling to keep up with malware evolution. In fact,
security for smartphones still needs a thorough understanding (as proven by several
attacks, e.g., the ones in [9–12]).

Secure Message Delivery Games for D2D Communications

Device-to-Device (D2D) communication is expected to be a key feature sup-
ported by next generation cellular networks. D2D can extend the cellular coverage
allowing users to communicate when telecommunications infrastructure are highly
congested or absent. In D2D networks, anymessage delivery from a source to a desti-
nation relies exclusively on intermediate devices. Each device can run different kinds
of mobile security software, which offer protection against viruses and other harmful
programs by using real-time scanning in every file entering the device. We investi-
gate the best D2D network path to deliver a potentially malicious message from a
source to a destination. Although our primary objective is to increase security, we
also investigate the contribution of energy costs and quality-of-service to the path
selection. We propose the Secure Message Delivery (SMD) protocol, whose main
functionality is determined by the solution of the Secure Message Delivery Game
(SMDG). This game is played between the defender (i.e., the D2D network) which
abstracts all legitimate network devices and the attacker which abstracts any ad-
versary that can inject different malicious messages into the D2D network in order,
for instance, to infect a device with malware.

Contribution. We propose the Secure Message Delivery protocol [13]. The primary
objective of this protocol is to choose the most secure path to deliver a message from
a sender to a destination in a multi-hop D2D network. SMD can work on top of
underlying physical and MAC layer protocols [14, 15]. Apart from security, SMD
respects the energy costs and Quality-of-Service (QoS) of each route. This happens
by giving certain weights to each of the involved parameters (security, energy, QoS)
with more emphasis to be put on security. We formulate Secure Message Delivery
Games (SMDGs) in order to derive an optimal behavior for the SMD. In these games,
one or more adversaries, abstracted by the attacker, aim at increasing the security
damage, incurred to the defender (i.e., network), by injecting malicious messages
into the D2D network. On the other hand, the defender chooses the “best route”

6 Chapter 1. Introduction

for message delivery. In SMDGs, the utility of the defender is influenced by: (i) the
probability of the delivered message to be correctly classified as malicious or benign
before it is delivered to the intended destination; (ii) the energy cost associated
with message forwarding, and message inspection on relay devices during message
delivery; and (iii) the QoS of the message communications on the chosen D2D path.

Android Code Obfuscation Techniques

Mobile devices have become ubiquitous due to the centralization of private user
information, contacts, messages and multiple sensors. Google Android, an open-
source mobile Operating System (OS), is currently the market leader. Android
popularity has motivated the malware authors to employ a set of cyberattacks lever-
aging code obfuscation techniques. Obfuscation is an action that modifies an ap-
plication code, preserving semantics and intended functionality. Code obfuscation
is a contentious issue. Theoretical code analysis techniques indicate that attaining
a verifiable and secure obfuscation is impossible. However, obfuscation tools and
techniques are popular both among malware developers (to evade anti-malware)
and commercial software developers (protect intellectual rights).

Contribution. We conduct a survey to investigate concrete and relevant questions
concerning Android code obfuscation and protection techniques [16]. The purpose
is to review code obfuscation and code protection practices, and evaluate efficacy
of existing code de-obfuscation tools. In particular, we discuss Android code ob-
fuscation methods, custom app protection techniques, and various de-obfuscation
methods. Furthermore, we review and analyze code protection techniques popu-
lar among malware authors which evade the de-obfuscation efforts. We believe that
there is a need to investigate efficiency of the defense techniques used for code protec-
tion and this would be beneficial to the researchers and practitioners, to understand
obfuscation and de-obfuscation techniques and propose novel solutions on Android.

Android Malware Detection

The ubiquitous use of Android smartphones continues to threaten the security
and privacy of users’ personal information. Its fast adoption rate makes the smart-
phone an interesting target for malware authors to deploy new attacks and infect
millions of devices. Moreover, the growing number and diversity of malicious ap-
plications render conventional defenses ineffective. Thus, there is a need to not
only better understand the characteristics of malware families but also, to gener-
ate features that are robust and efficient for classification over an extended period
of time. We propose ANASTASIA; a system to detect malicious Android applica-
tions through statically analyzing applications’ behaviours. ANASTASIA provides
a more complete coverage of security behaviors when compared to other state-of-
the-art solutions. We utilize a large number of statically extracted features from
various security behavioral characteristics of an application. We build a Machine
Learning-based detection framework with high performance detection and an ac-
ceptable false positive rate. The significance of our work is to develop a lightweight
malware detection system for Android-powered smartphones that leverages robust,
effective, and efficient features. Besides this, in order to assess our solution, we use a

1.1. Research Motivations and Contributions 7

reliable and updated malware data-set in terms of diversity and number of malware
applications.

Contribution. We present an Android malware detection method that uses several
informative features with good discriminative power to discern benign from malware
apps [17]. To extract these features, we design and build a tool named uniPDroid,
written in Python programming language. Our tool can be used to extract a plethora
of informative features from our extensive dataset. We conduct an extensive static
analysis on a well-labelled data-set of 29,864 Android applications. We use several
Machine Learning classification algorithms including ensemble, eXtreme Gradient
Boosting and Deep Learning to discover the most performant one in terms of ac-
curacy and speed. Our experimental evaluations show that our proposed detection
method is very effective and efficient and obtains a true positive rate in detecting
malware applications as high as 97.3% and false negative rate as low as 2.7%.

Android Malware Classification

Although it is critical to distinguish malicious applications from clean ones, it
is also important to efficiently classify malware into their correct families. Distin-
guishing and classifying different kinds of malware from each other is fundamental
to gaining a better understanding of how malware can infect devices, the threat level
they pose and how to protect against them. Malware authors often redistribute a
repackaged version of existing malware and therefore, by correctly classifying the
original malware, it becomes easier for anti-virus engines to detect repackaged ver-
sions. To address the aforementioned issues, we focus solely on malicious applications
to firstly investigate how to efficiently and accurately classify malware samples into
their correct families, and secondly generate robust feature sets that will stand the
test of time and still be relevant over a period of years; this is tested through the
experimental work referred to as cumulative classification.

Contribution. We present an Android malware classification method that uses
several informative features with good discriminative power to categorize malicious
apps under their respective family names [18]. We extract the features such as in-
tents, permissions used by an app, critical API calls, Linux system commands, and
some other features that might indicate capability of performing malicious activities
by an app. We carry out family-by-family malware classification. To find the class
label associated with each malware sample in our dataset, we have written several
scripts in Bash and Python programming languages. Then, we group 15, 884 An-
droid malware in our repository into 78 different malware families. We accumulate
Android malware apps and then carry out cumulative classification where the clas-
sification results are continuously updated as new malware samples are discovered.
We leverage boosting techniques to obtain as much detection and classification per-
formance as possible for Android malware detection in the wild. Our experimental
evaluations show that our proposed method is effective and efficient with a true
positive rate of 92% in family-by-family classification of malware applications.

8 Chapter 1. Introduction

1.1.2 Security Analysis on Wearable Fitness Devices

Wearable devices for fitness tracking and health monitoring have gained consid-
erable popularity and become one of the fastest growing items in the smart devices
market. Tens of millions of these devices are shipped yearly to consumers who rou-
tinely collect information about their exercising patterns. According to the Inter-
national Data Corporation (IDC)9, the market for wearable devices will experience
an annual growth rate of 20.3%, culminating in 213.6 million units being shipped in
2020, as shown in Figure 1.3.

Figure 1.3: Worldwide Wearable Device Forecast.

Wearable devices (e.g., fitness trackers) are equipped with smart sensors, and
make use of a web connection, usually using Bluetooth to connect wirelessly to
smartphones. They use these sensors to connect to users, and they help users to
achieve goals such as staying fit, active, losing weight, burning calories, capturing
and monitoring vital signs and other health information.

Smartphones push this health-related data to vendors’ cloud platforms, enabling
users to analyze summary statistics on-line and adjust their habits. Third-parties
including health insurance providers now offer discounts and financial rewards in
exchange for such private information and evidence of healthy lifestyles. Given the
associated monetary value, the authenticity and correctness of the activity data
collected becomes imperative.

As fitness wearables grow more sophisticated, they collect more and more infor-
mation about user health and movements which pose a threat towards users’ security
and privacy. Wearable devices raise unique security and privacy vulnerabilities, as
shown by some recent studies [19–22]. However, security and privacy on wearable
fitness trackers will be of paramount importance. But security and privacy remain
a challenge. In particular, many of the small, lightweight and mass-produced de-
vices that comprise IoT are not conducive to robust security protections. Given
the current poor state of security on connected devices, they will demonstrate an
increasingly attractive target to criminals who look for easy targets to attack.

9 http://www.idc.com/getdoc.jsp?containerId=prUS41530816

 http://www.idc.com/getdoc.jsp?containerId=prUS41530816

1.1. Research Motivations and Contributions 9

Security Analysis, Reverse Engineering and Spoofing Popular Fitness
Devices

Data collected by fitness trackers have been used as evidence in court trials in
the US, as reported by Forbes Magazine [23] in 2014. Police and attorneys have
started to recognize wearable devices as the human body’s “black box”, the NY
Daily News [24] wrote in April 2016. Some health insurance companies recently
started to offer discounts if the insured persons provide personal data from their
fitness trackers. This could attract scammers who manipulate the tracked data
to fraudulently gain financial benefits or even influence a court trial. We analyze
a representative sample’s different wearable fitness tracking devices with diverse
security and protection mechanisms including devices from top manufacturers and
less well-known brands.

Contribution. We provide researchers and practitioners with an overview of the
current technologies employed in fitness tracking products and highlight the needs
for massive improvement in order to ensure customer privacy and secure operation
of fitness tracking products and services [25]. We analyze communications between
the tracker’s associated fitness app (installed on the smartphone) and the cloud ser-
vice, as fitness trackers typically utilize the user’s smartphone to upload data to
the cloud service. We investigate the requirements that must be taken into account
while handling critical data, such as i) Data Confidentiality, 2) Data Integrity, and
3) Data Authenticity. We also consider several criteria to analyze the safety and
robustness of fitness trackers’ communication protocols (between fitness app and
cloud service) such as Use of End-to-End data encryption, Data In-transit Encryp-
tion (e.g., HTTPS protocol), Data at Rest Encryption (e.g., Encrypted Data-base),
Existence of Proprietary Encoding, Presence of Data Integrity Checking Mechanisms,
and Use of SSL Certificate Pinning.

We reveal that several products have significant deficiencies with regard to above-
mentioned requirements. We show that designing and deploying efficient and ef-
fective security controls in a robust and concrete way are overlooked by wearable
manufactures. We document successful injection of fabricated data (along with
Proof-of-Concept attack) and demonstrate malicious users to obtain financial ben-
efits can forge activity records that appear valid to cloud services, which are not
backed by genuine activity history.

Security Analysis, Reverse Engineering and Spoofing Advanced Fitness
Devices

As we explain in Chapter 6, we selected a representative subset of different fitness
trackers to conduct security analysis. Preliminary results suggest all devices suffer
from serious security flaws and are subject to MITM attacks. Fitbit trackers are the
only exception, as they use end-to-end encryption. Hence they seem to be the most
secure fitness trackers on the market, motivating us to choose Fitbit as the target
of our security study.

Given the value fitness data has towards litigation and income, researchers
analyzed potential security and privacy vulnerabilities specific to activity track-
ers [26–29]. Rahman et al. investigated the communication protocol used between

10 Chapter 1. Introduction

early Fitbit wearables and web servers, as well as possible attacks [26]. Cyr et al.
studied the different layers of the Fitbit Flex ecosystem and argued correlation and
MITM attacks are feasible [27]. Recent work documents firmware vulnerabilities
found in Fitbit trackers [28], and the reverse engineering of cryptographic primitives
and authentication protocols [29]. The identified weaknesses have been meanwhile
patched by the vendor. However, as rapid innovation is the primary business ob-
jective, security considerations remain an afterthought rather than embedded into
product design. Therefore, wider adoption of wearable technology is hindered by
distrust [30,31].

Contribution. We undertake an in-depth security analysis of some of the most
popular Fitbit trackers [32]. We reveal serious security and privacy vulnerabilities
present in a representative sample of Fitbit devices which, although difficult to un-
cover, can be exploited at scale once identified. Specifically, we analyze the primitives
governing the communication between trackers and cloud-based services, implement
an open-source tool to extract sensitive personal information in human-readable
format, and demonstrate malicious users can inject spoofed activity records to gain
personal benefits. To circumvent end-to-end protocol encryption implemented in the
latest firmware, we perform hardware-based RE and document successful injection
of falsified data that appears legitimate to the Fitbit cloud.

1.2. Publications 11

1.2 Publications

Part of the research presented in this dissertation during my PhD program culmi-
nated in peer-reviewed conference, workshop, book chapter and journal publications.
In the following, sections 1.2.1, 1.2.2, and 1.2.3 list the publications, in chronological
order, including published and currently submitted works that have resulted from
this PhD thesis.

1.2.1 Conference and Workshop Publication

[C1] Hossein Fereidooni, Jiska Classen, Tom Spink, Paul Patras, Markus Mietti-
nen, Ahmad-Reza Sadeghi, Matthias Hollick, Mauro Conti. Breaking Fitness
Records without Moving: Reverse Engineering and Spoofing Fitbit. In Pro-
ceedings of the 20th International Symposium on Research in Attacks, Intru-
sions and Defenses (RAID 2017), in press, Atlanta, Georgia, USA, September
18-20, 2017.

[C2] Hossein Fereidooni, Tommaso Frassetto, Markus Miettinen, Ahmad-Reza
Sadeghi, and Mauro Conti. Fitness Trackers: Fit for Health but Unfit for Se-
curity and Privacy. In Proceedings of the 2nd IEEE International Workshop
on Safe, Energy-Aware, & Reliable Connected Health (CHASE 2017 workshop:
SEARCH 2017), Philadelphia, Pennsylvania, USA, July 17-19, 2017.

[C3] Hossein Fereidooni, Mauro Conti, Alessandro Sperduti, Danfeng Yao,. ANAS-
TASIA: ANdroid mAlware detection using STAtic analySIs of Applications.
In Proceedings of 8th IFIP International Conference on New Technologies,
Mobility & Security (NTMS 2016), Cyprus, November 21-23, 2016.

[C4] Emmanouil Panaousis, Tansu Alpcan, Hossein Fereidooni, Mauro Conti,. Se-
cure Message Delivery Games for Device-to-Device Communications. In Pro-
ceedings of 5th International Conference, on Decision and Game Theory for
Security (GameSec 2014), Los Angeles, CA, USA, November 6-7, 2014.

1.2.2 Book Chapter Publication

[B1] Hossein Fereidooni, Veelasha Moonsamy, Mauro Conti, Lejla Batina. Efficient
Classification of Android Malware in the wild using Robust Static Features.
In Protecting Mobile Networks and Devices: Challenges and Solutions, CRC
Press - Taylor & Francis, 2016 (Editors: Weizhi Meng, Xiapu Luo, Jianying
Zhou, Steven Furnell).

1.2.3 Magazine and Journal Publication

[J1] Parvez Faruki, Hossein Fereidooni, Vijay Laxmi, Mauro Conti, Android Code
Protection via Obfuscation Techniques: Past, Present and Future Directions.
Under Submission at: “Computer Science Review” Journal (Elsevier), 2016.

12 Chapter 1. Introduction

13

Part I

Tackling Mobile Malware

15

Chapter 2

Secure Message Delivery Games

for D2D Communications

Nowadays, the vast demand for anytime-anywhere wireless broadband connec-
tivity has posed new research challenges. As mobile devices are capable of commu-
nicating in both cellular (e.g., LTE) and unlicensed (e.g., IEEE 802.11) spectrum,
the Device-to-Device (D2D) networking paradigm has the potential to bring several
immediate gains. Networking based on D2D communication [33–36] not only fa-
cilitates wireless and mobile peer-to-peer services but also provides energy efficient
communications, locally offloading computation, offloading connectivity and high
throughput.

Another emerging feature of D2D is the establishment and use of multi-hop
paths to enable communications among non-neighboring devices. In multi-hop D2D
communications, messages are delivered from a source to a destination via inter-
mediate devices, independently of operators’ networks. Relay by device has been
proposed by the Telecommunication Standardization Advisory Group (TSAG) in
the International Telecommunication Union Telecommunication Sector (ITU-T).

A key question inmulti-hop D2D networks is, which route should the originator of
a message choose to send it to an intended destination? To motivate the application
of our model, we emphasize in the need for localized applications. In particular, these
applications run in a collaborative manner by groups of devices at a location where
telecommunications infrastructures:

• are not presented at all, e.g., underground stations, airplanes, cruise ships,
parts of a motorway, and mountains;

• have collapsed due to physical damage to the base stations or insufficient
available power, e.g., areas affected by a disaster such as earthquake;

• are over congested due to an extremely crowded network, e.g., for events in
stadiums, and public celebrations.

16 Chapter 2. Secure Message Delivery Games for D2D Communications

Furthermore, relay by device can be leveraged for commercial purposes such as ad-
vertisements and voucher distributions for instance in large shopping centers. This is
considered a more efficient way of promoting businesses than other traditional meth-
ods such as email broadcasting and SMS messaging due to the immediate identifi-
cation of the clients in a surrounding area. Home automation and building security
are another two areas that multi-hop message delivery using D2D communications
is likely to overtake our daily life in the near future. Lastly,multi-hop D2D could be
leveraged towards the provision of anonymity against cellular operators as proposed
in [37].

Due to the large number of areas D2D communications are applicable to, devices
are likely to be an ideal target for attackers. Malware for mobile devices evolves in
the same trend as malware for PCs. It can spread for instance through a Multi-
media Messaging System (MMS) with infected attachments, or an infected message
received via Bluetooth aiming at stealing users’ personal data or credit stored in
the device. An example of a well-known worm that propagates through Bluetooth
was Cabir [38], which consists of a message containing an application file called
caribe.sis. Mabir, a variant of Cabir, was spread also via MMS by sending out
copies of itself as a .sis file. Van Ruitenbeek et al. [39] investigated the effects of
MMS viruses that spread by sending infected messages to other devices. In addition,
Bose and Shin [40] examined the propagation of malware that spread via SMS or
MMS messages and short-range radio interfaces while Polla et al. [41] have made a
thorough survey on mobile malware.

Contribution. In this chapter, we assume that each device has some host-based
intrusion detection capabilities (e.g., antivirus). Therefore, a device would be able
to detect malicious application-level events as in [42]. We assume that each device
has its own detection rate which contributes towards the overall detection rate of
the routes that this device is on. To increase the level of security of a message
delivery, the route with the highest detection capabilities must be selected to relay
the message to the destination. Apart from security, energy consumption is of
crucial importance because devices (e.g., smartphones) usually impose strict energy
constraints. This becomes more important due to the limited CPU and memory
capabilities that devices have, which entail higher energy cost as opposed to cases
where no message inspection takes place.

In this chapter, we propose the Secure Message Delivery (SMD) protocol. The
primary objective of this protocol is to choose the most secure path to deliver a
message from a sender to a destination in a multi-hop D2D network. SMD can
work on top of underlying physical and MAC layer protocols [14, 15]. Apart from
security, SMD respects the energy costs and Quality-of-Service (QoS) of each route.
This happens by giving certain weights to each of the involved parameters (security,
energy, QoS) with more emphasis to be put on security.

We formulate Secure Message Delivery Games (SMDGs) in order to derive
an optimal behavior for the SMD. In these games, one or more adversaries,
abstracted by the attacker, aim at increasing the security damage, incurred to
the defender (i.e., network), by injecting malicious messages into the D2D net-
work. On the other hand, the defender chooses the “best route” for message delivery.

2.1. System Model 17

Figure 2.1: Example of a D2D network.

In SMDGs, the utility of the defender is influenced by: (i) the probability of
the delivered message to be correctly classified as malicious or benign before it is
delivered to the intended destination; (ii) the energy cost associated with message
forwarding, and message inspection on relay devices during message delivery; and
(iii) the QoS of the message communications on the chosen D2D path.

The remainder of this chapter is organized as follows. In Section 2.1 we present
the system model whilst Section 2.2 formulates the SMDGs and it provides their
solutions. In Section 2.3 the SMD routing protocol for D2D networks is described.
We present some preliminary simulation results in Section 2.4 for different number
and types of malicious messages distributions, and different D2D network profiles.
Section 2.5 summarizes the most relevant related work within the intersection of
game theory, security and mobile distributed networking. Section 2.6 concludes this
chapter by summarizing its main contributions, limitations and highlighting our
plans for future work.

2.1 System Model

This section presents our system model and its different components. We assume
a multi-hop Device-to-Device (D2D) communication network that extends a cellular
network (e.g., LTE Advanced) as illustrated in Figure 2.1.

Data transmission takes place in the application layer in the form of data units
called messages. Any device can be the source (s) of a message and each message
has a final destination (d). When d is not within the transmission range of s, a route
must be established to allow message delivery. Therefore, there is an apparent need
for the devices to collaborate to relay messages towards d.

We refer to the i-th mobile device by si, and define the set of all legitimate mobile
devices in a mobile network as S , {si}. When the l-th type of message, denoted
by ml, has to be delivered to a destination device (d), a route must be chosen by s

to serve that purpose. Formally, we denote route j by rj . The devices on rj must
forward ml towards d. We define the set of all routes from s to d as R , {rj}, and
the set of all devices that constitute rj is expressed by Sj .

18 Chapter 2. Secure Message Delivery Games for D2D Communications

We denote the set of all different types of messages1 by M. This equals the
union of the set of all malicious undetected messages (Mm), and the set of all
benign messages (Mb). Therefore, M , Mm ∪Mb. An attack is defined as the
attempt of the attacker to harm d through the delivery of a malicious message.
When ml stays undetected prior to be delivered to d, we say that it causes harm
Hl, which is associated with the damage caused to an asset that the device holds
(e.g., data loss). We also assume that any false alarm has loss equivalent to F .
The security effectiveness of a device against a malicious message is denoted by
δ(si,ml), and it is equivalent to the detection rate of an attack. The vector ∆(si) ,
〈δ(si,m1), . . . , δ(si,mψ)〉 defines all the different values of security effectiveness of
si with regard to the different messages. For more convenience, Table 1 summarizes
the notation used in this work.

S Set of devices si device i

ml message l h?
Maximum possible
route length in hops

s Message source d Message destination
PA Attacker PD Defender
R Set of routes from s to d rj j-th route from s to d

Sj Set of devices on rj M Set of messages
Mm Set of malicious messages Mb Set of benign messages

δ(si,ml)

Security effectiveness
of si
against ml

∆(si) Security effectiveness vector of si

σi Security energy cost of si fi Forwarding energy cost of si

εi
Total message delivery
energy cost of si

ej Total energy cost on rj

T

Lifetime of a Nash
message delivery
plan

E

Vector of energy
costs, ∀ rj from s

to d
hj Number of hops on rj H Vector of hops, ∀ rj from s to d

C(si) Confusion matrix of si C(rj) Confusion matrix of rj
F False alarm loss Hl Security damage if ml undetected
ws Security cost weight wfa False alarm cost weight
we Energy cost weight wq QoS cost weight
D Payoff matrix of PD A Payoff matrix of PA

djl
Utility of PD for
(rj ,ml)

ajl
Utility of PA for
(rj ,ml)

D∗ Nash message delivery plan r∗ Nash route

Table 2.1: The SMD Protocol Notation.

2.1.1 Collaborative Detection
In our model, the aim of the devices is to detect malicious messages injected

through an entry point into the D2D network. We assume that each device that
1Very often, we use the terms types of messages, and messages interchangeably according to the

context.

2.1. System Model 19

receives a message is responsible for inspecting it by using its detection capabilities
to the best level possible. Based on the results of the detection, the device updates
the confusion matrix of the route. This is a right stochastic matrix, which holds
the probability of the different messages being detected correctly, being confused
with other messages or being identified as benign. This matrix type was initially
proposed in [43] (p. 100).

Each device that receives a message, follows exactly the same procedure until
the message arrives at d. At this point, the confusion matrix should have taken the
most accurate detection values (ideally is the identity matrix) due to all inspections
undertaken by the devices on this route. Collaborative detection of a malicious
message along a path requires forwarding state information, which includes results
of the inspections previously conducted on the message. This prevents unnecessary
duplication of inspections, thus saving energy.

2.1.2 Device Confusion Matrix
Given the set of messagesM, the linear mapping C(si):M→M describes the

detection capability of si for a message received. This capability is modeled using a
stochastic device confusion matrix as follows:

C(si) , [C(si)
uv]ψ×ψ, where 0 ≤ C(si)

uv ≤ 1, ∀u, v ∈ {1, . . . , ψ}. (2.1)

A confusion matrix value C
(si)
uv denotes the probability of a message u being

reported as message v. If mu 6= mv, then the device confuses one message for
another. Such misinterpretation is beneficial for the attacker because the attack
associated with the message is not mitigated. If mu ∈ Mm, and mv ∈ Mb, C

(si)
uv is

the probability of the D2D network failing to report an attack. If mu ∈ Mb, and
mv ∈ Mm, then C

(si)
uv is the probability of a false alarm. One of the objectives

of the D2D network must be the confusion matrix to become the identify matrix
(no confusion) by the time a message is delivered to d. In another sense, if
the confusion matrix is the identity matrix, every single malicious message can
be detected before it infects d. However this case is not likely to be achieved in
practice due to, for instance, 0-day vulnerabilities, and other misclassification errors.
To motivate the computation of confusion matrices we present the following example.

Example 1. Assume S = {s1, s2}, and M = {m1, m2, m3}. Also, m1,m2 ∈
Mm, and m3 ∈Mb. We also set the false alarm rate equal to 0.05 for both devices.
The security effectiveness vectors are ∆(s1) = 〈0.5, 0.8〉 and ∆(s2) = 〈0.75, 0.6〉.
We also assume that none device confuses a malicious message for another mali-
cious message and therefore C(rj)

uv = 0, ∀u 6= v, mu,mv ∈ Mm. Then the devices
confusion matrices are the following:

C(s1) =

 0.5 0 0.5
0 0.8 0.2

0.05 0.05 0.9

 , C(s2) =

 0.75 0 0.25
0 0.6 0.4

0.05 0.05 0.9

 . (2.2)

2.1.3 Route Confusion Matrix

Similarly, given the set of messages M, the linear mapping C(rj) : M → M
describes the final detection capability of the D2D network on rj . This is the route

20 Chapter 2. Secure Message Delivery Games for D2D Communications

confusion matrix for rj derived from the confusion matrices of the devices that
constitute this route. In the problem we examine, the order of detectors does not
matter. Therefore, the confusion matrix for each combination can be computed
prior to the message delivery.

An advanced way of deriving the route confusion matrix values is to use a boost-
ing meta-algorithm such as Adaboost [44]. If we consider that each device detector is
a weak classifier then boosting makes classifiers focusing on data that was previously
misclassified. The underlying concept of Adaboost is that several weak classifiers
can yield a strong classifier. The confusion matrix of a route is a representation of
the weighted classifiers on the devices. It is worth mentioning here that boosting is
effective only when all devices trust each other. For the boosting scheme to work
there is a need for a broadcasting system which updates the classifiers and pre-sets
confusion matrices for the combination of detectors. Nevertheless, such a system
has to be implemented anyway for updating virus signatures and anomaly detector
parameters. Thus, the update of the classifiers can be piggybacked on top of them.

A“naive” alternative to boosting can be a linear combination algorithm where
each device contributes linearly to the final route detection capability by some weight
determined by characteristics of the route (e.g.,#hops).

2.1.4 Energy Costs and QoS

Each time a device receives a message it spends energy: (i) to detect any sign of
malice (security energy cost, σi) and (ii) to forward a message towards d (forwarding
energy cost, fi). The former is determined by all required intrusion detection tasks
undertaken during message inspection. The second is related to the energy spent
for relaying the message towards the next-hop on the route from s to d. We denote
by εi the secure message delivery cost incurred to a device during message delivery.
Formally, we have that ∀si ∈ S : εi , σi + fi.

The total route energy cost on rj , when a message is delivered over rj , is denoted
by ej, and it is derived by ej =

∑
si∈Sj

εi. The energy costs of all routes between s

and d are given by the vector E , 〈e1, . . . , eξ〉.
Apart from security and energy efficiency, QoS is an important consideration

when deciding upon message delivery. We denote by hj the number of hops on rj .
In this research work, we measure the QoS of a route as hj/h?, where h? , NS − 1,
and NS is the total number of devices in the D2D network. The number of hops of
all routes r1, . . . , rξ from s to d are given by H , 〈h1, . . . , hξ〉.

In this work, we assume a best effort message delivery service without acknowl-
edgments. Along with having higher end-to-end delay due to this assumption, as
the number of hops increases the probability of a message to be lost is higher. This
is due to mobility, which is meant to be common in D2D networks. It is worth
noting here that our model does not consider real-time multimedia communications
because they require higher bandwidth than what a typical multi-hop D2D network
provides.

2.1.5 Network Profiles
To allow the expression of different network profiles, we have defined an im-

portance costs vector [ws, wfa, we, wq]. By ws, we denote the security importance

2.2. Secure Message Delivery Games 21

weight which accounts for the level of importance the defender gives to some ex-
pected security damage (e.g., data theft); wfa is the importance of the false alarm
cost (i.e., cost for dropping an innocent message); we is the importance that the
defender places into the energy cost which can influence the network lifetime and
speed up network fragmentation; and wq is the importance of the QoS for the de-
fender which accounts for the message success delivery rate and end-to-end delay.
This vector allows the network designer to define their network profile based on their
requirements, measured in terms of security, energy preservation, and QoS.

2.2 Secure Message Delivery Games

In this section, we use game theory to model the interactions between a D2D
network (the defender) and any adversarial entity (the attacker). The latter aims at
launching an attack against a device by sending a malicious message to it through
the network’s entry point as depicted in Fig. 2.1. Formally, we define the set of
players as P , {PD, PA}.

The objective of PD is to securely deliver a message to the intended destination
d. By secure delivery we refer to the message being relayed through the network and
collaboratively inspected by the devices on its way to d, in order to mitigate any
security risk inflicted by PA. Therefore the security objective of PD is to correctly
detect and filter out malicious messages before they reach their destination. Every
request for message delivery to d defines a Secure Message Delivery Game (SMDG).

2.2.1 Game Characterization

The SMDG is a non-cooperative two-person zero-sum game. The explanation
to the zero-sum nature of SMDG is that we have assumed that the attacker aims
at inflicting the highest possible damage to the defender. We could model a game
where the benefit of the attacker is smaller than the loss of the defender. However,
we have left this for future work along with the investigation of different attacker
profiles that are associated with different payoffs. The defender primarily aims at
delivering the message securely to d while the attacker aims at infecting d with some
malware attached to a malicious message as we mentioned previously. The SMDG
is a repeated game since players make their decisions once for a pair of 〈d, T 〉, where
T is a predefined timeout, and d is the destination device for which the game is
played. Afterwards, they repeat the game for either every other destination or when
T expires. The value of T may depend on the devices’ mobility. For instance, high
mobility dictates small T in order valid routes to be discovered.

In SMDG, the players make their decisions concurrently without any order of
play. However, an order of play can be imposed as an alternative where the at-
tacker becomes the leader and the defender the follower of a Stackelberg game.
Nevertheless, this consideration is out of the scope of this research work

2.2.2 Strategies and Payoffs

The pure strategies of PD consists of all routes from s to d. Therefore, the
action set of PD is defined as AD , R = {r1, r2, . . . , rξ}. On the other hand, the

22 Chapter 2. Secure Message Delivery Games for D2D Communications

pure strategies of PA are the different messages that PA can choose to send to d. A
message can be one of the following:

{malicious1, . . . , maliciousn, harmless, surveillance} (2.3)

Then, the finite action set of the attacker is defined as:

AA ,M = {m1, . . . ,mψ} = {m1, . . . ,mn} ∪ {harmless, surveillance}.

We denote by Gd , 〈D,A〉 an ξ×ψ bi-matrix game where the PD (i.e., row player)
has a payoff matrix D ∈ Rξ×ψ and the payoff matrix of PA (i.e. the column player)
is denoted by A ∈ Rξ×ψ.

PD chooses as one of their pure strategies one of the rows of the payoff bi-matrix
(D,A) , (dj,l, aj,l)(rj ,ml)∈[ξ]×[ψ]. For any pair of strategies, (rj ,ml) ∈ [ξ]× [ψ], PD,
PA have payoff values equivalent to dj,l and aj,l, respectively. The payoff of the
defender for a given pair of players’ pure strategies (rj ,ml) follows:

UD(rj ,ml) , dj,l , −ws(1− C
(rj)
ll)Hl − wfa(1− C(rj)

ll)F − weej − wqhj . (2.4)

Generally, the first term is the expected security damage (e.g., data theft) inflicted
by the attacker due to malicious messages being undetected while the second term
expresses the expected cost of the defender due to false alarms. This accounts for
benign messages that are dropped due to being detected as malicious. The next
to last term is the energy cost of the defender when message delivery takes place
over rj while the last term expresses the expected QoS experienced on this route.
Since players act independently, we can enlarge the strategy spaces, so as to allow
the players to base their decisions on the outcome of random events. Therefore
we consider the mixed strategies of both PD and PA. The mixed strategy D ,
[q1, . . . , qξ] of the defender is a probability distribution over the different routes from
s to d, where qj is the probability of delivering a message via rj . We refer to a mixed
strategy of PD as themessage delivery plan. On the other hand, the attacker’s mixed
strategy A , [p1, . . . , pψ] is a probability distribution over the different messages,
where pl is the probability of choosing ml.

When considering mixed strategies, the defender’s objective is quantified by the
utility function:

UD(D,A) =

ξ∑
j=1

ψ∑
l=1

qjdj,l pl = −ws[
∑

ml∈Mm

∑
rj∈R

qj (1− C(rj)
ll) plHl] −

wfa [
∑

ml∈Mb

∑
rj∈R

qj (1− C(rj)
ll) pl F] − weDET − wqDHT , (2.5)

where j ∈ {1, . . . , ξ}, l ∈ {1, . . . , ψ}.

Because SMDG is a zero-sum game, the attacker’s utility is given by UA(D,A) =
−UD(D,A). This can be interpreted as, the attacker can cause the maximum
damage to the defender.

2.2.3 Nash Equilibrium

SMDG is a two-person zero-sum game with finite number of actions for both
players, and according to Nash [45] it admits at least a Nash Equilibrium (NE) in

2.2. Secure Message Delivery Games 23

mixed strategies. Saddle-points correspond to Nash equilibria as discussed in [43]
(p. 42).

The following result, from [46], establishes the existence of a saddle (equilibrium)
solution in the games we examine and summarizes their properties.

Theorem 1 (Saddle point of the SMDG). The Secure Message Delivery Game
defined admits a saddle point in mixed strategies, (D∗,A∗), with the property that

D∗ = arg max
D

min
A

UD(D,A), ∀A and A∗ = arg max
A

min
D

UA(D,A), ∀D.

Then, due to the zero-sum nature of the game the following holds:

max
D

min
A

UD(D,A) = min
A

max
D

UD(D,A).

The pair of saddle point strategies (D∗,A∗) are at the same time security strategies
for the players, i.e., they ensure a minimum performance regardless of the actions of
the other. Furthermore, if the game admits multiple saddle points (and strategies),
they have the ordered interchangeability property, i.e., the player achieves the same
performance level independent from the other player’s choice of saddle point strategy.

Our results can be extended to non-zero sum, bi-matrix games. In the latter
case, the existence of a NE is also guaranteed, but the additional properties hold
only in the case where the attacker’s utility is a positive affine transformation (PAT)
of the defender’s utility.

Definition 1. The Nash message delivery plan, denoted by D∗, is the probability
distribution over the different routes, as determined by the NE of the SMDG.

The minimax theorem states that for zero sum games NE and minimax solutions
coincide. Therefore, D∗ = arg minD maxA UA(D,A). This means that regardless of
the strategy the attacker chooses, the Nash message delivery plan is the defender’s
security strategy that guarantees a minimum performance.

We can convert the original matrix game into a linear programming (LP) problem
and make use of some of the powerful algorithms available for LP to derive the
equilibrium. For a given mixed strategy D of PD, PA can cause a maximum damage
to PD by injecting a message m̂ into the D2D network. In that case, the utility of
PD is minimized and it is denoted by UD(D, m̂) (i.e.,Umin

D = UD(D, m̂)). Formally,
PD seeks to solve the following LP:

max
D

UD(D, m̂)

subject to

UD(D,m1)− UD(D, m̂)e ≥ 0
...

UD(D,mψ)− UD(D, m̂)e ≥ 0

De = 1

D ≥ 0

⇒

∑ξ
j=1 qjdj,1 − UD(D, m̂)e ≥ 0

...∑ξ
j=1 qjdj,ψ − UD(D, m̂)e ≥ 0

De = 1

D ≥ 0

In this problem, e is a vector of ones of size ξ.

24 Chapter 2. Secure Message Delivery Games for D2D Communications

2.3 The Secure Message Delivery Protocol

In this section, we present the Secure Message Delivery (SMD) routing protocol
whose routing decisions are taken according to the Nash message delivery plan. SMD
increases security in a D2D network by mitigating the risk of adversaries harming
legitimate devices via, for instance, malware attached to messages. SMD has been
designed based on the mathematical findings of the SMDG and its main goal is to
maximize UD(D,A).

According to SMD, each time a request for message delivery to d is issued, s has
to compute the Nash message delivery plan by solving an SMDG for this destination.
To this end, the device uses its latest information about confusion matrices, QoS
and energy costs. Then, the message is relayed and collaboratively inspected by the
devices on its way to d. The objective of the network (i.e., PD) is to correctly detect
and filter out malicious messages before they infect d.

2.3.1 SMD Considerations

The SMD protocol takes routing decisions that increase the probability of de-
tecting malicious messages. Apart from security, SMD utilizes standard approaches
to take into account (i) the energy costs resulting from message forwarding and
inspection, and (ii) the QoS of the chosen route. According to SMD, the devices
maintain routing tables with at least three metrics per route:
• the route confusion matrix,

• the total expected energy cost on this route and,

• the shortest path in terms of number of hops (i.e., QoS).

If the only factor affecting the routing decision was security, then the route with
the highest detection capability would be always chosen. This would result to a
faster depletion of this route’s energy as opposed to when a combination of different
routes is chosen. Consequently, the D2D network would suffer fragmentation across
the entire topology and consequently security would be reduced. This is the moti-
vation behind considering energy costs upon path selection. Nevertheless, while the
shortage of a device’s battery can be solved by, for example, by using mobile solar
cells as discussed in [35], and QoS might not be so much of a concern for message
communications, secure message delivery remains a critical issue.

The formulation of the defender’s utility function allows a device to decide how
important the expected QoS and energy costs are compared to the expected security
damage. For instance, the defender can decide to set the energy costs equal to 0
when a constant source of energy supply is available or to give a higher importance
to security losses than QoS.

Due to the best effort nature of the communications (as a result of the multi-hop
environment) the higher the number of hops (i.e., QoS) of a route the more likely a
message is to be lost during its delivery via that route. QoS accounts for a successful
message delivery rate and therefore the defender might never really want to ignore
it. In general, SMD allows network designers to customize the protocol based on
the network profile of the D2D network. In any case, all defender’s preferences are
reflected to the Nash message delivery plan.

2.4. Performance Evaluation 25

2.3.2 Routing
Getting inspired by the functionalities of the well-known Dynamic Source Rout-

ing (DSR) [47] routing protocol, SMD consists of two main stages. 2

SMD - Stage I.
In the first stage, s broadcasts a Route REQuest (RREQd) to discover routes towards
d. Each device that receives a RREQd acts similarly by broadcasting it towards d and
caches relevant information (i.e., originator of the request, ID of the RREQd). When
d receives a RREQd, it prepares the RREPd and sends it back towards s by using the
reverse route which is built during the delivery of RREQd to d. Each RREPd carries
information about the route. This information includes the route confusion matrix
(E1), the total energy costs due to inspection and forwarding on this route (E2),
and the total number of hops (E3). All three fields are updated while the RREPd is
traveling back to s.

Each device, involved in route discovery, that receives RREPd, it updates E1 by
using boosting (e.g., Adaboost) or simply a linear combination algorithm without
learning features. The same device (e.g., si) updates E2 by adding its total energy
cost εi to the route energy cost. Lastly, E3 is increased by 1 in every hop from s to
d. According to SMD, after s sends a RREQd it has to await for some timeout Treq. 3

Within this period s aggregates RREPd messages and updates its routing table with
information from those messages.

SMD - Stage II.
In the second stage, s uses its routing table to solve the SMDG by computing the
Nash message delivery plan D∗. The latter has a lifetime equivalent to T , as defined
earlier. Then, s probabilistically selects a route according to D∗ to deliver the
message to d. The chosen route is called the Nash route and it is denoted by r∗.
Note that for the same d and before T expires, s uses the same D∗ to derive r∗, upon
a message delivery request. Algorithm 1 summarizes the main SMD functionalities.

It is worth noting here that the complexity of the SMD protocol measured in
terms of the number of messages exchanged in performing route discovery isO(2NS),
where NS is the total number of devices in the D2D network.

2.4 Performance Evaluation

2.4.1 Simulation Parameters

In this section, we evaluate the performance of SMD by simulating 30 devices and
6 routes between s and d. 4 The number of devices per route is selected randomly
and the maximum number of devices per route has been set to 10. The number of
malicious messages vary from 2 to 20 with an incremental step of 2.

We consider different network profiles to assess the performance of the SMD pro-
tocol. Note here that the network profile refers to the preference of the D2D network

2In the DSR protocol a node rebroadcasts a RREQ message only the first time that it is received.
In addition, the route is accumulated in the message and reversed by the receiver.

3Setting the time-out T is out of scope in this work.
4Numeric analysis: https://github.com/manpan/game_theoretic_routing

https://github.com/manpan/game_theoretic_routing

26 Chapter 2. Secure Message Delivery Games for D2D Communications

Data: s, d,ml

Result: ml delivered
Stage 1:
s seeks for a route to d by broadcasting RREQd
if device si receives RREQd then
if si 6= d then

s← si
Execute Stage 1

else
Send an RREPd back towards s using the reverse route rj

end
end
Stage 2:
if device si receives RREPd then
if si 6= s then

Update C(rj), ej, hj
Attach 〈C(rj), ej, hj〉 to the RREPd
Relay RREPd back towards s

else
Cache 〈C(rj), ej, hj〉 to the routing table
break;

end
end
s: Derive the Nash message delivery plan D∗

s: Choose r∗ probabilistically as dictated by D∗

s: Deliver ml to d over r?

ALGORITHM 1: SMD Stages.

in terms of security (i.e., risk appetite), QoS (i.e., delay in message delivery), energy
cost (i.e., spent for message inspection and message forwarding), and false alarm
(probability of dropping benign messages) as determined by the cost importance
vector.

We have used a uniform random generator to create the security effectiveness
values for all devices. From these values the simulator creates all devices’ confusion
matrices. Then, we derive the route confusion matrices by using the Algorithm
2. Note that Algorithm 2 is executed by each device at the step of Algorithm 1
where C(rj) is updated. This is a linear algorithm (less efficient than boosting due
to lack of learning features) which allows us to get some preliminary results about
the performance of SMD. This algorithm implements a weighted method according
to which each device contributes to the route security effectiveness by

(Device security effectiveness) × (1/Maximum number of hops in the network).

Network Profile ws wfa we wq Network Profile ws wfa we wq

Security 10 0.5 0 0 Security & Energy
Efficiency

5 0.5 5 0

Security & QoS 5 0.5 0 5 Security & QoS &
Energy Efficiency

4 0.5 3 2.5

Table 2.2: The importance cost vectors used in our simulations.

2.4. Performance Evaluation 27

Data: C(si), C(rj)

Result: Updated C(rj)
uv

for u ∈M do
for v ∈M do

if u ∈Mm then
if v == u then

C
(rj)
uv ← C

(si)
uv /h? + C

(rj)
uv

end
if v ∈Mb then

C
(rj)
uv ← 1− C(rj)

uu

else
// probability a malicious message u to be confused

with another malicious message

C
(rj)
uv ← 0

end
end
if u ∈Mb then

if v /∈Mb then
// fa: device false alarm rate

C
(rj)
uv ← fa/h

? + C
(rj)
uv

froutea ← C
(rj)
uv

else
// froutea : route false alarm rate

C
(rj)
uv ← 1− froutea

end
end

end
end

ALGORITHM 2: How a device si updates the route confusion matrix.
The final route detection capability not only depends on the detection capability

of each device on the route but also on the number of devices. As a result of this, the
longer a route is the better its final security effectiveness. After the route confusion
matrices have been derived, the simulator computes the Nash message delivery plan
for each of the network profiles presented in Table 2.2.
We evaluate the performance of SMD by measuring the defender’s expected cost
when s uses SMD instead of a shortest path routing protocol. According to the
latter, s chooses the path with the minimum number of hops to d. For each message
delivery and protocol used we compute the defender’s total expected cost which
includes security, false alarm, energy and QoS costs.

We have considered 10 Cases each representing a different attacker’s action set
akin to different number of available malicious messages namely; 2, 4, . . . , 20. For
each Case we have simulated 1,000 message deliveries for a fixed network topology
and we refer to the run of the code for the pair 〈Case,#message deliveries〉 by the
term Experiment. We have repeated each Experiment for 25 independent network
topologies to compute the standard deviation. We do that for all 10 Cases and each
type of attacker profile.

In this work we consider 2 different attacker profiles; Uniform and Nash. A
Uniform attacker chooses any of the available messages with the same probability

28 Chapter 2. Secure Message Delivery Games for D2D Communications

whilst a Nash attacker plays the attack mixed strategy given by the NE of the
SMDG. Therefore, we have totally simulated

10 (Cases) × 1,000 (Message deliveries) × 25 (Runs of each experiment) × 2
(Attacker profiles) = 500,000 Message deliveries.

Per message delivery, the simulator chooses an attack sample from the attack prob-
ability distribution which is determined by the attacker profile. The simulator ag-
gregates the cost values of each Experiment for both SMD and the shortest path
routing protocol.

2.4.2 Simulation Results

We have plotted the improvement on the total expected defender’s cost when
SMD is chosen as opposed to the shortest path routing protocol. The plots illustrate
different number of available malicious messages, attacker profiles and importance
cost vectors, in Figures 2.2 and 2.3.

From both figures we notice that SMD outperforms the shortest path rout-
ing protocol with the highest improvement to be achieved under the “Security”
network profile. From Fig. 2.2 we notice that the average values of this improve-
ment fluctuate approximately within the range [30%, 43%]. The second best per-
formance is achieved under the “Security & QoS” network profile and it is only
slightly better than the improvement we get under the “Security and Energy
Efficiency” profile. The lowest improvement is noticed under the “Security &
QoS & Energy Efficiency” network profile with the mean values to be within
the range [10%, 18%].

Figure 2.2: Simulation results in presence of a uniform attacker.
We notice the same trends for a Nash attacker as illustrated in Fig. 2.3. One

difference in the results is that under the network profile Security & QoS the
difference in improvement compared to the Security & Energy Efficiency
is more pronounced as opposed to the scenarios with a Nash attacker. We also notice
that for all network profiles SMD improves the defender’s expected cost in a greater

2.5. Related Work 29

Figure 2.3: Simulation results in presence of a Nash attacker.

degree in the presence of a Uniform Attacker rather than a Nash attacker although
the defender chooses the Nash routing plan in either cases (since it minimizes the
maximum potential cost inflicted by the attacker). This is due to the attacker maxi-
mizing the minimum defender’s expected cost at the NE as stated in Theorem 1. On
the other hand, the uniform attacker follows a naive distribution to inject different
messages into the D2D network and therefore achieving a worse performance than
the Nash attacker.

As a generic comment, the more focused objectives SMD has the higher the
improvement of the defender’s expected cost is, compared to a shortest path protocol.
We also notice that the standard deviation is large in all Experiments. This can be
explained by looking at the results from the different Experiments in more detail. By
doing so, we noticed that occasionally the same routes are chosen by both SMD and
the shortest path routing protocol. This can be explained by the number of available
routes being only 6 in our simulations here. The generic trends demonstrate the
improvement that SMD introduces even without the use of a boosting algorithm.
These preliminary results are promising and we have plans for further investigations
when a boosting algorithm (e.g., Adaboost) is used and a larger number of devices
and routes are given. In addition, we are planning to examine different mobility
levels and see how these affect the expected defender’s cost under different network
profiles with SMD. 5

2.5 Related Work

The papers we discuss in this section have used game theory in favor of secu-
rity in mobile distributed networks. These address different challenges including

5Since we have not used a network simulator in this work and our Python simulations did not
consider a specific mobility, mobility parameters (e.g., average speed) have not been investigated.
The routes were shuffled every a while.

30 Chapter 2. Secure Message Delivery Games for D2D Communications

secure routing and packet forwarding [48–52], trust establishment [48, 53], intrusion
detection [53–57], and optimization of energy costs [58–61].

In [48], Sun et al. presented an information theoretic framework to evaluate
trustworthiness in ad hoc networks and to assist malicious detection and route se-
lection. According to their mechanism, a source node chooses a route to send a
message to a destination by looking up the packet-forwarding nodes’ trustworthi-
ness, and selecting the most trustworthy route. Yu et al. examined, in [49], the
dynamic interactions between “good” nodes and adversaries in mobile ad hoc net-
works (MANETs) as secure routing and packet forwarding games. They have derived
optimal defense strategies and studied the maximum potential damage, which incurs
when attackers find a route with maximum number of hops and they inject malicious
traffic into it. Extension of the previous work is presented in [51], where Yu and Liu
examined the issues of cooperation stimulation by modeling the interactions among
nodes as multi-stage secure routing and packet forwarding games. In [50], the same
authors focused on a two-player packet forwarding game stating that nodes must not
help their opponents more than their opponents has helped them back. Felegyhazi
et al. have studied in [52] the Nash equilibria of packet forwarding strategies with
TFT (Tit-For-Tat) punishment strategy in a repeated game.

In [58], the authors presented a Bayesian hybrid detection approach to preserve
the energy spent for intrusion detection. In the proposed static game, the defender
fixes the prior probabilities about the types of his opponent. The dynamic game
allows the defender to update his belief about his opponent’s type based on new ob-
served actions and the game history. The authors formulated the attacker/defender
game model in both static and dynamic Bayesian game contexts, and investigated
the equilibrium strategies of the two players. Lui et al. in [59] put forwarded a
more comprehensive game framework and they used cross-feature analysis on fea-
ture vectors constructed from the training data to determine the actions of a poten-
tial attacker in each stage game. They proposed to use the equilibrium monitoring
strategies to operate between a lightweight IDS and a heavyweight IDS. In [61],
Marchang et al. proposed a game-theoretic model of IDS for MANETs. They have
used game theory to model the interactions between the IDS and the attacker to
determine whether it is essential to always keep the IDS running without impacting
its effectiveness in a negative manner.

In [56], Patcha et al. provided a mathematical framework to analyze intrusion
detection in MANETs. They model the interaction between an attacker and an
individual node as a two player non-cooperative signaling game. The sender could
be a regular or a malicious node. A receiving node equipped with an intrusion
detection system (IDS) detects a “message/attack” with a probability depending on
his belief, and the IDS updates the beliefs according to this message. However, it
is not explained how the IDS updates the beliefs according to this message. The
same authors have also reinforced the suitability of using game theory for modeling
intrusion detection by giving a theoretically consistent model in [57]. They used the
concept of multi-stage dynamic non-cooperative game with incomplete information
to model intrusion detection in a network that uses host-based IDSs. A cooperative
approach is proposed in [54] by Otrok et al. to detect and analyze intrusions in
MANETs. The authors used the Shapley value to analyze the contribution of each
node to the network security and proposed pre-defined security classes to decrease

2.6. Summary 31

false positives. They also considered cache poisoning and malicious flooding attacks.
Santosh et al. in [55], employed game theoretic approaches to detect intrusions and
identify anomaly behaviors of nodes in MANETs. The authors aimed at building
an IDS based on a cooperative scheme to detect intrusions in MANETs using game
theoretic concepts.

In [53], Cho et al. developed a mathematical model to analyze and reveal the
optimal rate to perform intrusion detection related tasks. They enhanced the system
reliability of group communication systems in MANETs given information regarding
operational conditions, system failures, and attacker behaviors. They have also
discussed to prolong the system lifetime and cope with inside attacks. They proposed
that intrusion detection should be executed at an optimal rate to maximize the mean
time to failure of the system.

Finally in [60], Panaousis and Politis present a routing protocol that respects the
energy spent by intrusion detectors on each route and therefore prolonging network
lifetime. However, this protocol does not investigate the effect of different malicious
messages. It rather takes a simplistic approach according to which the attacker
either attacks or not a route.

As we have seen in this section, a substantial amount of game theoretic models
for security in distributed mobile networks (e.g., mobile ad hoc networks) have been
proposed in the literature. However, none of them addresses all aspects of security,
QoS and energy efficiency at the same time. Motivated by this observation, our
work contributes to the existing literature by bringing together these three aspects,
under a generic but also customizable model provided by the SMDGs. Furthermore,
our work defines the adversary’s pure strategies to be a set of different malicious
messages. And this is not an aspect of investigation of papers identified by our
literature review. It is worth noting that we consider the work undertaken, in this
chapter here, as the first step towards a more complex and advanced game theoretic
secure message delivery protocol for D2D networks.

2.6 Summary

In this chapter we have investigated secure message delivery for device-to-device
networks in a hostile environment with possible malicious behavior. We have formu-
lated Secure Message Delivery Games (SMDGs) to study the interactions between
the defender (i.e., device-to-device network), and different adversaries, which are
abstracted by the player called attacker. The defender seeks the “best route” to
deliver a message from a source device to a destination device whilst the latter aims
to harm the destination with mobile malware attached to a message. The defender
solves an SMDG to derive the Nash message delivery plan (i.e., Nash mixed strat-
egy). Then, the defender probabilistically chooses a route according to this plan
and delivers the message to the destination. Due to the multi-hop nature of the net-
work, intermediate devices relay the message towards the destination. Apart from
forwarding, the relaying devices are responsible for the inspection of the message
to identify malicious signs and therefore providing security for the D2D message
communications.

We have proposed the Secure Message Delivery (SMD) routing protocol which
takes routing decisions according to the Nash message delivery plan. Apart from

32 Chapter 2. Secure Message Delivery Games for D2D Communications

security, the protocol respects energy costs and end-to-end delay with the ability
to be customized to consider each objective at a different degree. We have under-
taken simulations to show how much SMD improves the defender’s expected utility
compared to a shortest path routing protocol. We believe this improvement will
be more pronounced when we implement boosting techniques for the computation
of the final intrusion detection capabilities (i.e., confusion matrices) of the routes.
We have also plans to take into account the remaining energy of each route in the
utility function of the defender, and investigate the impact of mobility to the results.
Lastly, future work will consider a network-wide extension of the per-message game
where the attacker aims to spread a mobile malware while the defender is attempting
to stop it.

33

Chapter 3

Android Code Obfuscation Techniques:

Past, Present and Future Directions

Android mobile device OS is currently the market leader [62] [63]. The availabil-
ity of Internet, Global Positioning System (GPS) and custom apps have increased
the popularity of the mobile devices. The official Android market, Google Play
is the dominant app distribution platform accessible to all Android devices [64].
Google Play also allows installation of third-party developers and app stores [65].
The elevated Android popularity has allured the malware authors already employing
obfuscation and protection techniques [66]. The malware authors are propagating
encrypted and obfuscated premium-rate SMS malware, evading Google Play secu-
rity [67]. On the other hand, app developers are concerned about code misuse; hence
they employ code obfuscation, encryption and custom protection techniques. The
weak code protection techniques lower the code integrity and escalate the risk of pla-
giarism and malware attacks. For instance, a rooted device facilitates identification
of app internals and evades device security.

In software engineering lexicon, reverse engineering is defined as a set of meth-
ods for obtaining APK source from the executable code. The code obfuscation is
employed by malware authors to evade anti-malware. In particular, the architecture-
neutral compiled Java code is amenable to reverse engineering. The app developers
are concerned about safety and protection of the developed intellectual algorithms
and data. Malware authors use obfuscation, code encryption, dynamic code loading,
and native code execution evading the Google Play protection [68].

Code obfuscation is reported as a reasonable and easy alternative compared to
the other protection techniques [69] [70]. Code obfuscation is a set of purposeful
techniques to render the code unreadable. Code obfuscation transforms the code by
changing its physical appearance, preserving the intended program logic and behav-
ior. Furthermore, code obfuscation can also protect the software from being reverse
engineered [71]. Hence, malware developers have already leveraged the obfuscation
by developing recent malware apps evading the Play stores and commercial anti-

34 Chapter 3. Android Code Obfuscation Techniques

malware [72,73]. Android permits app distribution from third-party developers and
other third party app stores. Application developers employ obfuscators to protect
the proprietary logic and sensitive algorithms to avoid the misuse. The code obfus-
cation techniques can be used to: (i) protect the intellectual property; (ii) prevent
piracy; and (iii) prevent app misuse. The obfuscation techniques employed by mal-
ware authors evade the existing commercial anti-malware solutions. The Android
development environment has an in-built obfuscator Proguard [74] for app code
protection.

A De-obfuscator is very important if the app source code is misplaced, or un-
available. De-obfuscation can also be used to verify correct execution of obfuscated
app. A popular app may be a Trojan with hidden malicious payload. Zhou et
al. [75] studied 49 Android malware families, and reported more than 86% repack-
aged malware among 1260 APK. However, manual analysis is time consuming task
against 2 million Google Play apps reported in June 2016 [76]. Several tools and
techniques like code obfuscation, data encryption, encoding are available for source
code protection.

Android is the dominant mobile platform among users and developers [62]. The
open nature of Android allows apps from third-party developers and other third-
party markets. The popularity is an opportunity for plagiarists to clone, obfus-
cate and hijack the popular apps with their Trojanized versions. Code obfuscation
and protection techniques can protect the intellectual property. However, they are
equally popular among malware developers.

The remainder of this chapter is organized as follows. In Section 3.1, we discuss
basics of Android platform, execution mechanism, and its difference with Java de-
velopment model. Section 3.2 covers types and purpose of code obfuscation with an
in-depth description of app protection techniques. Section 3.3 elaborates obfusca-
tion and optimization tools used by malware authors. In Section 3.4, we discuss the
code protection techniques used by code packers. In Section 3.5, we explore the re-
verse engineering tools used for de-obfuscating the protected code, while Section 3.6
explores related work. Section 3.7 elaborates the recent trends in obfuscation and
possible future research directions. Finally, in Section 3.9, we conclude this chapter.

3.1 Android Overview

Android OS is developed, maintained by Google, and propagated by the Open
Handset Alliance (OHA) [77,78]. In the following, we discuss Android OS architec-
ture and app compilation procedure.

3.1.1 Android Architecture

The Android software stack is formed of four different layers as illustrated in
Figure 3.1: (i) linux kernel; (ii) native user-space; (iii) application framework; and
(iv) application layer. The base of Android is Linux kernel adapted for limited
processing capability, restricted memory and constrained battery availability. The
Android platform customized “vanilla” kernel for resource constrained mobile de-
vices. The Binder driver for inter-process communication (IPC), Android shared

3.1. Android Overview 35

memory (ashmem), and wakelocks are important modifications to suit the Android
devices.

Figure 3.1: Android Architecture.

Native Space and Application Framework layers form the Android middleware.
The bottom layer blocks are the components developed in C/C++. However, the top
two layers are implemented in Java. Native components are directly executed on the
processor, bypassing the DVM. Figure 3.1 illustrates Hardware Abstraction Layer
(HAL), which facilitates low level device driver implementation [79]. Application
Framework provides interaction to the developer. The source code is converted into
a single Dalvik executable .dex which is interpreted by DVM. User apps are at the
top most layer.

There are many known open-source and commercial tools to reverse engineer the
Android apps. Thus, unprotected apps may unknowingly give away the source code
to the attackers for misuse. Android runs the APK files on Dalvik Virtual Machine
(DVM), a register-based virtual machine to suit the mobile devices [78]. The JVM is
stack-based whereas, Dalvik is register-based VM [80]. JVM employs Last In First
Out (LIFO) stack with PUSH and POP operations. The DVM stores register-based
operands in the CPU registers and requires explicit addressing. Figure 3.2 illustrates
the procedure of converting Java source code to an APK archive.

3.1.2 Android Compilation

dx is Android SDK tool that converts Java source code to Dalvik bytecode [81].
It merges multiple class files into a single .dex file. Android manifest stores name
and version of the app, libraries, declared permissions, assets, and other uncompiled
resources. The content is merged into a single archive, an Android application
PacKage (APK) [78]. Many open-source and proprietary tools are available for
reverse engineering the application. The unprotected apps may unknowingly give
away their source code to the attacker, permitting visibility to the internals of the
APK. The easy availability of source may lead to loss of revenue, reputation issues,
access to intellectual property, and legal liabilities.

36 Chapter 3. Android Code Obfuscation Techniques

Figure 3.2: Compilation of Java code to Android APK.

The Android KitKat 4.4 introduced Android RunTime (ART) to replace the
DVM. The new runtime is proposed to improve the Android OS performance. We
briefly compare the Dalvik and ART to underline their importance.

• Dalvik: Dalvik VM is the core of Android Dalvik bytecode execution. The
Dalvik runtime is based on the Just-In-Time (JIT) compilation that remains
independent of the machine code. When a user runs an Android app, the .dex
code is compiled to the machine code. Dalvik VM performs JIT compilation
and optimization during the app runtime to improve performance. However,
the presence of JIT adds latency and memory pressure. Though mobile devices
are improving their resources, the new runtime is more efficient in comparison
to Dalvik VM.

• Android RunTime (ART): The Android KitKat version 4.4 introduced an op-
tional runtime Android RunTime (ART) to experimentally replace the DVM to
improve performance. In ART, the APK the bytecode is converted to machine
code at install time. Ahead-of-time compilation (AOT), a pre-compilation
technique, saves the machine code in persistent storage. It loads the machine
code at runtime, saving the CPU and memory as compared to DVM. In par-
ticular, the .dex file is compiled as .oat file in ELF format. The ART reads
the .dex file using .dexFile, openDexFileNative from libart.so li-
brary. In case the oat file is not available, the runtime invokes dex2oat
tool and compiles .dex to .oat [82]. Otherwise, ART loads the .oat file in
memory cache map. Once the .oat file is loaded, ART creates OatFile data
structure to store the information. The ART reduces app startup time as code
is converted to native at install time, which improves battery life. However,
the installation takes more time and space.

3.2 Code Obfuscation Techniques

Code obfuscation or mutation techniques alter the code appearance in the ex-
isting binary from one generation to another, to evade the anti-malware. Malware
authors employ obfuscation techniques to protect malicious logic to evade the anti-
malware [83]. The app developers also use obfuscation and code protection methods

3.2. Code Obfuscation Techniques 37

to protect the code against reverse engineering. Plagiarist and malware authors
employ obfuscation to evade the security tools. Malware authors also employ ob-
fuscation to plagiarize the popular and paid apps. Obfuscation provides significant
protection and obscures explicit details. Some obfuscation techniques operate di-
rectly on the source code; some obfuscate the bytecode. Collberg et al. classify the
obfuscation techniques as: (i) Control-flow; (ii) Data; (iii) Layout; and (iv) Pre-
ventive obfuscation [84, 85]. Figure 3.3 illustrates detailed outline of existing code
obfuscation and protection techniques discussed subsequently. An obfuscator pro-
tects the proprietary software and prevents its reverse engineering. The obfuscated
program maintains the semantics of the original app. The original and obfuscated
version produce the same output when executed. The malware authors use code
protection and obfuscation techniques to protect malware logic, algorithms and hide
the suspicious information such as strings, domain names and server address to delay
malware being detected.

A de-obfuscator restores the original app from the obfuscated code with reverse
engineering tools. The reconstruction of the source may not be possible. For ex-
ample, identifier renaming obfuscated variables cannot be restored to their original
names once changed by the obfuscator. According to [86], code obfuscation or trans-
formation is the most suitable technical protection for type-safe language like Java.
According to Udupa et al. [87], surface obfuscation affects the syntax of the target
program. However, it is not possible to hide the code semantics. If an identifier is re-
named, the program output remains the same. The deep transformation obfuscates
the control flow of target program [88].

Definition: Collberg et al. define the obfuscating transformation as the con-
version τ of a source app A into the target app A′ [84] :

A
τ−→ A′.

Transformed app A′ is an obfuscated version of the original program A if:

• App A “does not terminate, or ends with an error condition, then A′ may or
may not terminate” [84].

• Otherwise, A′ must terminate and generate the output similar to A [89].

Android apps are distributed as archive APK files available from: (i) Google
Play; (ii) Third-party app marketplaces; and (iii) Android debug bridge. Once
installed, the apps from the devices can be also accessed with Android Developer
Tools (ADT). These APK files can be reverse engineered to the Dalvik bytecode
from classes.dex, the app executable file. In the following subsection, existing
code obfuscation approaches are detailed according to the outline made in Figure 3.3.

38
C
h
ap

ter
3.

A
n
d
roid

C
od

e
O
b
fu
scation

T
ech

n
iqu

es

Figure 3.3: Obfuscation Classification.

3.2. Code Obfuscation Techniques 39

3.2.1 Control Flow Obfuscation

The main idea behind Control flow obfuscation is to break the program flow
control. The obfuscation mangles the functional blocks and breaks the recursive
disassemblers. The functional blocks that do not belong together are intermingled
to confuse the reverse engineering. The control flow transformation changes the
execution paths of a program, while maintains intended functionality. The control
flow obfuscation can be categorized as Aggregation, Computation and Ordering
obfuscation techniques. The techniques can be further classified into following sub-
categories as illustrated in Figure 3.3.

Control flow computation: The control flow obfuscation techniques hide
the control flow and append additional code and complicate APK disassembly. The
code insertion can be an additional method or irrelevant code [90]. However, the
recent compilers remove unused code for execution efficiency during the code opti-
mization phase. To counter this, one can insert irrelevant bytecode such as PUSH
or POP within the high-level code. Hence, it is not removed. Computation control
obfuscation can be broken down as described in the following:

1. Inserting Dead or Irrelevant Code: The dead code block can never be reached;
hence, is never executed. Inserting dead-code statements increases size of
code and analysis time. A programmer can insert code block that is never exe-
cuted [91]. For example, one can include extra methods or irrelevant statement
blocks [92]. For instance, the code snippet before the Add Dead-code Switch
Statements (ADSS) [78] obfuscation is illustrated in listing 3.1. The Java
bytecode switch construct can be used to insert control switch that is never
executed [93]. However, the switch increases the connectedness and complex-
ity of the method. Thus, the obfuscation evades the decompiler that cannot
remove the dead switch. Listing 3.2 illustrates the ADSS obfuscation [93].

1 //before ADSS obfuscation
2 if (writeImage != null) {
3 try {
4
5 File file = new File("out");
6 ImageIO.write(writeImage, "png", file);
7 }
8 catch (Exception e) {
9 System.exit(1);

10 }
11 }
12 System.exit(0);

Listing 3.1: before obfuscation,
from [94,95]

1 // ADSS obfuscated code
2 if(obj != null) {
3 try {
4 ImageIO.write((RenderedImage)obj,png,
5 new File(out));
6 }
7 catch(Exception exception2) {
8 i += 2;
9 System.exit(1);

10 }
11 }
12 label_167:
13 { while(lI1.booleanValue() == ___)
14 { switch (i) {
15 default: break;
16 case 3: break label_167;
17 System.exit(1);
18 continue;
19 }
20 }
21 System.exit(0);
22 }

Listing 3.2: ADSS obfuscated,
from [94,95]

40 Chapter 3. Android Code Obfuscation Techniques

2. Extend Loop condition: Rewriting the test condition as a complex loop func-
tion introduces obfuscation in the code. It can be accomplished by extending
the loop condition with the addition of more test cases having no effect on
the result. The code in Listing 3.4 illustrates the extension of a simple if
condition.

1 // Before loop extension
2
3 int x = 1;
4
5 if (x > 200)
6 {
7 ...
8 x ++;
9 Foo(x)

10 }

Listing 3.3: code before Loop ex-
tension

1 // After loop extension obfuscation
2
3 int x = 1;
4 while (x> 200 || x%200==0)
5 {
6 ...
7 x ++;
8
9 // calling function

10 Foo(x)
11
12 }

Listing 3.4: Loop extension ob-
fuscation

3. Reducible to Non-Reducible flow-graph obfuscation (RNR) [89]: A reducible
flow graph can be made complex by turning it reducible to non-reducible. The
Java bytecode has a goto instruction. However, the Java language does not
have a corresponding goto statement [96]. Hence, a plagiarist can misuse the
goto bytecode and obfuscate with an arbitrary control-flow transformation.
Java language can only express a structured control flow. Hence, “the control
flow graphs produced by the Java programs is always reducible. However,
Java bytecode can express this as non-reducible flow graphs, thus obfuscating
reducible flow graph to non-reducible” [96]. According to [84], this is achieved
by converting a structured loop into a loop with multiple headers. Listing 3.5
and 3.6 illustrate the effect of RNR obfuscation.

1 // Before:
2
3 Statement 1;
4 while (condition1)
5 {
6
7 Statement2;
8 }

Listing 3.5: before RNR Obfusca-
tion.

1 // After:
2 Statement 1;
3 if(condition2) {
4 Statement2;
5 while(condition1){
6 Statement2;
7 }
8 else {
9 while(condition1){

10 Statement2;
11 }
12 }

Listing 3.6: RNR Obfuscated
code.

4. Add Redundant Operands: Appending insignificant terms within the code dur-
ing basic calculations hinders reverse engineering. For example, let us assume
an integer variable p which stores the product of two integer variables a and
b. The code listings 3.7 and 3.8 illustrates the code snippets before and after

3.2. Code Obfuscation Techniques 41

redundant operators obfuscation. The transformed code generates exactly the
same output. However, the obfuscated snippet appears complex during the
analysis.

1 //original code
2
3 public int sum{
4
5 int a,b = 5, 7;
6 int p;
7 p = a * b;
8 System.out.println(‘‘Product =’’ + p);
9

10 }

Listing 3.7: before redundant op-
erators

1 //Redundant Operators Obfuscation
2
3 public int sum{
4 int a,b = 5,7;
5 double i,j = 0.0005, 0.0007;
6 double p;
7 p = (a * b) + (i*j);
8 System.out.println(‘‘Product =’’+ (int) p);
9 }

Listing 3.8: redundant operators

5. Parallelize Code: The introduction of threads can affect the readability due
to increased code complexity. The parallelization improves the performance.
However, the motivation in this case is to hide the correct code flow. Collberg
et al. [84] suggested the following techniques: (i) Creating dummy processes;
or (ii) Splitting sequential sections of a program into multiple concurrent and
parallel processes.

Control-flow Aggregation (CFA): The CFA alters the program statements
grouping [97]. CFA can be further classified into:

1. Inline and Outline methods: In Java, replacing a method call by its actual
body (inlining) make the code complicated and difficult to understand. Code
optimizers use these techniques. It also is a useful obfuscation transformation.
Code inlining removes procedural abstraction from the program. Conversely,
outlining selects a group of statements in a procedure and re-use them to gener-
ate a sub-procedure. For instance, inlining two procedures A and B necessitates
the calling one after the other and outlining a portion of the combined code
inside a new procedure.

2. Method Interleaving (MI): Identifying an interleaved method is a difficult re-
verse engineering task. MI merges the body and parameter list of different
methods. Furthermore, method interleaving inserts additional parameters to
differentiate calls from individual methods [84,89,96].

3. Method Cloning (MC): A reverse engineer examines the body and signature
of a subroutine to determine code functionality, a necessary step for reverse
engineering. One can create function clones and further introduce repetitive
calls to such functions.

4. Loop Transformations (LT): In [84], authors observed that some transforma-
tions increase the code complexity. Such obfuscation techniques break down
the iteration space to fit the inner loop cache [89]. The availability of compile-
time loop bounds turns the loop to a compound body with several loops known
as loop fission [89].

42 Chapter 3. Android Code Obfuscation Techniques

Control-flow ordering (CFO): Control flow ordering obfuscation changes the
execution order of the code statements. For instance, loops can be iterated backward
rather than forward. Control ordering obfuscations can be categorized into:

1. Reorder Statements and Expressions (RSE): Changing the order of statements
and expressions has a significant effect on the Dalvik bytecode. It can disrupt
the link between Java source and corresponding Dalvik bytecode [91].

2. Reorder Loop (RL): RL transformation can be run backward to confuse the
analysis. Code Listing 3.9 and 3.10 illustrate the usage of loop reversal obfus-
cation.

1 // Original code
2 x = 0;
3 while (x < maxNum){
4 i[x] += j[x];
5 x++;
6 }

Listing 3.9: before loop reversal

1 // Loop reversal to change the control flow
2 x = maxNum;
3 while (x > 0)
4 {
5 x--;
6 i[x] += j[x];
7 }

Listing 3.10: loop reversal obfuscation

Control-Flow Flattening (CFF): CFF transforms the source code such that
static analysis cannot determine the targets of branches. In this technique, the
basic blocks of a program have same predecessor and successor. During execution,
the actual control flow is controlled by a dispatch variable. A switch block has
dispatch variable and a jump table to switch indirectly towards intended successor.
At runtime, the value of dispatch variable decides which code block to be executed
next.

Figure 3.4(a) illustrates the control-flow graph of Listing 5.3 and Figure 3.4(b)
shows the flattened control flow of the mentioned program. Compilers primarily use
such methods during code optimization. However, malware authors leverage this
technique to hide the semantic as well as syntax structure of a malware APK. This
obfuscation technique prevents or at least delays manual analysis.

1 public int fill(int a , int b)
2 {
3 int diff = 0;
4 if (a > b) { diff = a-b ;
5 do
6 { b ++;
7 } while (a ! = b) ;
8 }
9 else { diff = b-a ;

10 do { a ++;
11 } while (a ! = b) }
12 return diff ;
13 }

Listing 3.11: control flow flattening

3.2.2 Data Obfuscation

Data obfuscation techniques can modify the structure of an APK. They can be
classified into following sub-categories as illustrated in Figure 3.3.

3.2. Code Obfuscation Techniques 43

Figure 3.4: CFG of listing 5.3

Data aggregation: This obfuscation changes the data grouping. In the follow-
ing, we list some sub-categories of this technique:

1. Merging Scalar Variables: Scalar variable merging technique combines mul-
tiple scalar variables in a single one. For example, m scalar variables Var1,
Var2,Var3,..,Vark can be merged into a single array variable Varm. Variables,
in a way similar to arrays or integers, can be merged or even promoted as
objects [84, 89, 96]. For example, we can merge two 32-bit integers X, Y in Z,
a 64-bit variable.

2. Class Transformations (CT): Class transformations can be leveraged to make
the program analysis difficult. One good way of achieving this is to use in-
heritance and interfaces to create deep class hierarchies to build a complex
distributed application. Further, one or more dummy classes/methods can
confuse the reverse engineer.

3. Array Transformations (AT): Array transformation is an effective obfuscation
technique to convert the readable string information as unreadable [89]. The
AT: (i) splits an array; (ii) merge two or more arrays; (iii) flattens an array
dimensions; or (iv) folds or increases the array dimensions.

Data Storage and Encoding (DSE): The DSE affects how the data is stored
and interpreted. Such methods obscure the data structures within the programs.
Data storage obfuscation converts a local variable into a global. Furthermore, data
encoding obfuscations replaces an integer variable i with an expression x*i+y. In
the following, we discuss such techniques.

1. Change Encoding (CE): Programmers follow some standard conventions to
write code. The encoding transformation techniques exploit this fact. The
more transformations we employ, the less likelihood to understand the code.
In fact, changing encoding reshapes the data into less natural forms. For
example, we can replace all the references initializing an index variable i,
with the expression i= x*i+y, where x=6 and y=5. When the code needs
to use the index value, the obfuscator inserts the expression (i-5)/6.
Finally, instead of incrementing the variable by one, add six to the value. The
obfuscation scales and offsets the index from the desired value to compute the

44 Chapter 3. Android Code Obfuscation Techniques

real index. Listings 3.12 and 3.13 illustrates encoding.

1 //Before:
2 int i = 1;
3 while (i <= 100)
4 {
5 result = arr[i-1];
6 i++;
7 }

Listing 3.12: before encoding ob-
fuscation

1 //After:
2 int i = 11;
3 while (i <= 605)
4 { result = arr[(i-5)/6];
5 i+=6;
6 }

Listing 3.13: After encoding ob-
fuscation

The data modification techniques can be used to evade the string based mal-
ware detectors. A simple example illustrated in Listing 3.14 and 3.15 demon-
strates data modification obfuscation.

1 // original declaration
2 int a = 30 .

Listing 3.14: before integer obfus-
cation

1 // obfuscating integer declaration
2 class bar {
3 public int getValue () {
4 return 30; }
5 }
6 Foo f = new bar () ;
7 int a = f.getValue () ;

Listing 3.15: after integer obfus-
cation

2. Split Variables (SV): Boolean variables can be replaced by a boolean expres-
sion. The relevant example is illustrated in Table 3.1. Variable b in the original
code is expressed asf(b1, b2). In this example, function F is XOR. However, it
can be generalized to any function with any number of variables. This also
adds another layer of obfuscation due to the fact that some assignments of
a value have different results. Let us say b = True. We can further split
the variable into b1 = 0 and b2 = 1 in the lookup Table 3.1 and convert it
to original Boolean value. To split the variable b into b1 and b2, we have to

b1 b2 b=F (b1 ⊕ b2)
0 0 Incorrect
0 1 Correct
1 0 Correct
1 1 Incorrect

Table 3.1: Lookup table to split variables [1]

define: (i) a function, F (b1, b2) that maps b1 and b2 to variable b, (ii) to the
inverse function, F -1(b) that maps b to b1 and b2, and (iii) new operations
defined on b1 and b2. b has been split into two shorter integer variables b1
and b2. If b1=b2=0 or b1=b2=1 then b is false, otherwise, b is True. Boolean
b are masked as arithmetic operations on the integers b1 and b2 with the split
variable technique [1].

3.2. Code Obfuscation Techniques 45

3. Convert Static to Procedural Data: Strings store critical information such as
copyright information, license key, and software expiry date. If the static
string information is converted to procedural data, reverse engineering becomes
complicated. A simple method is to convert the string to a program which
computes the string [98].

Data Ordering: This obfuscation alters the data ordering. Ordering trans-
formation randomizes data declaration order within a program. “An array stores
a list of integer numbers. The array has the i-th element in the list at position
i. A function f(i) can be used to determine the position of the i-th element in
the list” [83, 86]. Randomizing the declaration order impedes reverse engineering
process [86,92].

1. Reorder Methods: randomize the declarations of methods within the code to
harden the reverse engineering.

2. Reorder Arrays: randomize the order of parameters to methods and use a
mapping function to reorder data within arrays.

3. Reorder Instance Variables: randomize the declarations of instance variables
within the class.

1 // original code
2 int a = 7 + 70/2 + 1 ;
3 int b = "testing".length();

Listing 3.16: before aggregation

1 // obfuscated code
2 int a = 43;
3 int b = 7;

Listing 3.17: aggregation obfus-
cation

3.2.3 Layout Obfuscation

Layout transformation is used to modify the source and binary structure of a
program. Different layout transformation techniques are illustrated in Figure 3.3.
The Layout Obfuscation can be classified as: (i) identifier scrambling; (ii) output
format changes; (iii) comments, or debug information.

Replacing the identifier names with mandarin non-alphabetical characters
increases the code complexity. For example, in code Listing 3.18 the SmsManager
Class encrypts the string before sending it over the network. However, the original
identifiers names are amenable to reverse engineering. To avoid code inference,
oBad Trojan employs identifier mangling obfuscation in Listing 3.19.

1 package iAmDriving{
2 public class LetsNavigate{...}
3 }
4 package iAmConnecting {
5 public class MyBluetoothHandle{..}
6 }
7 package userIsActive{
8 public class MainActivity{...}
9 }

Listing 3.18: before obfuscation

1 package d {
2 public class d { ... }
3 }
4 package e {
5 public class e { ... }
6 }
7 package f {
8 public class f { ...}
9 }

Listing 3.19: identifier renam-
ing [88]

46 Chapter 3. Android Code Obfuscation Techniques

Listing 3.19 replaces the strings by a single character. Identifier mangling
reduces the meta-information by replacing them with random alphabets. Random
names do not carry any information about the object or the behavior. Hence, the
interpretation becomes difficult. Proguard obfuscator within the Android SDK
implements a similar approach. oBad Trojan leverages the identifier mangling
with character permutations of “o, O”, “c, C”, “i, I” and “l, L” in lower and upper
case [73]. Listing 3.20 illustrates the identifier renaming obfuscation.

1 public final class CcoCIcIf {
2 private static final byte [] COcocOlo;
3 private static boolean CcoCIcI;
4 private static long OoCOocll;
5 private static long OoCOocll;
6 private static String cOIcOOo;
7 private static final OoCOocll lOIlloc;
8 private static ArrayList occcclc;
9 private static final occccl coclClII;

10 private static Thread ooCclcC;
11 }

Listing 3.20: oBad Trojan Identifier scrambling Obfuscation [88].

3.2.4 Preventive Transformations

Preventive transformation techniques are employed to evade the commercial de-
bugging and de-compilation tools. Preventive obfuscation takes advantage weak or
non-existent mapping between the high-level language and its corresponding byte-
code to inject illegal, unused or rarely used bytecode. Changes in Java bytecode
crashes the decompiler due to the presence of new instructions. Figure 3.3 illus-
trates the preventive obfuscation techniques.

Anti Debugging: This technique is a preventive obfuscation that inserts some
validation code to identify the presence of a debugger. Once it identifies being
executed in the debugger, the app behaves benign without revealing the malicious
behavior.

Anti De-compilation: The transformation prevents reverse engineering of
Dalvik or Java bytecode to high-level programming constructs. The obfuscator
employs goto constructs valid with the bytecode which are not a part of Java
language.

Bytecode Encryption: Bytecode Encryption changes the structure of data.
Low et al. [86] suggest that encryption methods as an alternative to defeat decom-
pilation. Code transformers encrypt the data with innovative methods to decrypt
the encrypted content.

Android Manifest Obfuscation: Another technique to obfuscate data in An-
droid application is Manifest Obfuscation. However, Android middleware verifies
the manifest meta-data; some obfuscation techniques have been observed aiming at
producing errors during the binary decoding [88]. In the process of APK file creation,
the manifest is compiled into a binary XML file. DexGuard [99], the commercial
extension of ProGuard [74] can obfuscate and optimize the binary XML files to avoid
detection.

3.2. Code Obfuscation Techniques 47

String Encryption: String Obfuscation hides the plain text strings that reveal
sensitive information. The sensitive plaintext information can be misused. The
strings must be available in plaintext form at runtime. Hence, the developer prefer to
encrypt the plaintext string. String Obfuscation can be employed with an invertible
encryption function employing AES, DES or XOR encryption. Resultant output
replaces the original plaintext. The conversion creates byte sequence equivalent to
a string as data array stored inside private class fields [91]. The strings are brought
back to the original state at runtime. Hence, the strings are retrieved as plaintext
when required. Dynamic analysis is useful as it extracts runtime information. Code
listings 3.21 and 3.22 illustrates code snippet before and after string encryption.
The encrypted code converts readable string information into an array of strings
with ASCII characters and obscures the code readability.

1 //original code
2 public void onClick(DialogInterface arg1,
3 int arg2) {
4 try { Class.forName("java.lang.System")
5 .getMethod("exit", Integer.TYPE)
6 .invoke(null, Integer.valueOf(0));
7 return;
8 } catch:(Throwable throwable) {
9 throw throwable.getCause();

10 }
11 }

Listing 3.21: before encryption [100]

1 //String encryption
2 public void onClick(DialogInterface arg1,
3 int arg2)
4 { try {
5 Class.forName(COn.ËŁ(GCOn.ËŃ[0xA],
6 COn.ËŃ[0x09], GCOn.ËŃ[0xB]))
7 .getMethod(COn.ËŁ(i1, i2, i2 | 6),
8 Integer.TYPE)
9 .invoke(null, Integer.valueOf(0));

10 return;
11 } catch:(Throwable throwable) {
12 throw throwable.getCause();
13 }
14 }

Listing 3.22: string encrypted [100]

Bad Code Injection: Figure 3.5 illustrates recursive goto sequences with an
indirect recursion. This transformation thwarts the existing static analysis tools
(disassemblers, decompilers) by inserting bytecode statements not available with
high-level language. Some instructions may be valid in Java. However, their corre-
sponding Dalvik instructions may not be available. For example, Java language does
not have goto construct. However, when a loop or switch constructs are converted
to Dalvik, the goto statement is generated. Hence, goto can be injected in the
Dalvik bytecode. In particular, a dummy method with recursive goto statements
can be used.

Figure 3.5: Bad code injection.

48 Chapter 3. Android Code Obfuscation Techniques

Reflection: Reflection is a powerful Java programming technique to extend
additional functionality such as verifying backward compatibility or dynamically
load methods. It is used in debugging and testing tools [101]. Java Reflection
application programming interface (API) allows a program to access the class
information during execution to [101, 102]: (1) create new objects; (2) invoke
a method; or (3) modify the code control-flow. Reflection can be alternatively
employed as data obfuscation technique. Code listings 3.23 and 3.24 illustrate the
importance of reflection obfuscation.

Reflections is used in Android for a variety of purposes such as:

1. Invoking hidden API methods: Certain Android framework features are
intentionally hidden from the developers during compilation. The hidden API
may not support all Android devices, or the stable version is yet to be made
public.

2. Providing backward compatibility: New Android versions incorporate ad-
ditional features and get released in the incremental higher versions. A devel-
oper may use reflection to verify if a particular feature present in older version
exists with the new version. If available, then only calls that feature/method.

3. Interacting with JSON data: Data from server is loaded in JavaScript
Object Notation format (JSON) from the web. Hence, it is parsed using
reflections in Android.

4. Libraries: Native libraries can be loaded in an APK using reflection API.
Some applications employ custom native libraries for improved performance.

1 // A Standard Call in Java
2 Crypto cryptModule = new Crypto();
3 privateKey = cryptModule.getPrivateKey();

Listing 3.23: before obfuscation

1 // Invoke using reflection
2 Object reflectedClassInstance =
3 Class.forName (pe.mnit.secureApp.Crypto).
4 newInstance();
5
6 Method methodToReflect =
7 reflectedClassInstance.getClass().
8 getMethod(getPrivateKey);
9

10 Object invokeResult = methodToReflect.invoke
11 (reflectedClassInstance);

Listing 3.24: code reflection obfuscation

3.2.5 Repackaging Popular Apps

Repackaging Android APK is a popular practice among the malware authors. In
particular, malware authors reverse engineer the popular apps. The app is reverse
engineering, malware payload is inserted and released at less monitored Android
third-party app markets. In [103], authors discuss a set of methods to replace
the app developer library by the plagiarist ad-libraries to divert the advertisement
revenues. Thus, a developer is robbed off the advertisement revenue.

Repackaging is the one of the widely used Obfuscation technique employed by
malware authors on Android platform [104]. Zhou et al. [75, 105] reported 86%

3.2. Code Obfuscation Techniques 49

repackaged malware among the 1260 Android Malware Genome dataset. Another
study reported 5-13% repackaged and malicious applications among the well-known
six third-party app stores [75]. The other third-party app stores do not have robust
app verification and vetting. Hence, there is a higher chance of plagiarized and
repackaged apps. Furthermore, authors in [104] reported around 30% plagiarized,
and cloned apps even at the Google Play. The repackaging process typically employs
following steps:

• Identify the most popular, free and paid apps at the Google Play, Download
the APK.

• Employ disassembly tools like apktool [106] and reverse engineer the app.

• Insert malicious component as bytecode or Java source with help of
dxtool [81], from Android IDE.

• Integrate malicious component in the APK.

• Re-organize AndroidManifest.xml and resources with additional compo-
nent(s).

• Re-assemble the APK using apktool.

• Disperse repackaged malware APK at unofficial or regional app markets.

Repackaging is used by malware authors as a technique to evade commercial
anti-malware. Repackaged apps create an imbalance in-app distribution markets,
hurt the developer reputation, and inflict monetary loss to the developers [66, 107].
Malware authors also employ repacking to divert the advertisement revenues by
replacing the original advertisements with their own. AndroRAT APK Binder [108]
is a remote Trojan embedded inside popular with a motive to control the device
remotely. Malware authors coerce affected device to send premium SMS or call
premium rate numbers, record call, or acquire a device location. Furthermore the
remote Trojan copies files without user consent.

3.2.6 Custom Obfuscation Techniques

Malware authors have been very active in developing customized obfuscation to
defeat the anti-malware. In this section, we discuss following custom techniques pri-
marily used by malware writers to protect the malicious code. Apvrille et al. [3] list
some interesting techniques used by malware authors to defeat application analysis
and reverse engineering:

Using very long class names: Decompilers tend to crash when the class
names are too long or written in non-ASCII format [109]. Few malicious apps
have demonstrated use of very long class names to defeat reverse engineering tools
Android/Mseg.A!tr.spy [110] reported in the wild has successfully evaded com-
mercial anti-malware with this technique.

Hide Packages, JAR inside raw resources: Malware developers hide the
malicious executable package inside the resource files to avoid code inspection. For
example, Android/SmsZombie.A!tr hides malicious package within a jpeg file
a33.jpg, in the assets directory [2]. Android/Gamex.A!tr conceal an encrypted

50 Chapter 3. Android Code Obfuscation Techniques

malicious package within asset logos.png, again an image file [2]. Table 3.2 enlists
interesting malicious apps using the discussed techniques [3].

Android malware name Purpose of Obfuscation
Gamex.A!tr The asset log-os.png is a ZIP. However, it has the capa-

bility of being a valid ZIP file (for instance, when XOR’ed
with the right key).

SmsZombie.A!tr Hides malicious package in a33.jpg.
DroidCoupon.A!tr The malicious payload is stored in a png file in resources.

The rage in cage exploit, escalates device privileges.

Table 3.2: hidden malware payload inside APK resource.

NOP to modify bytecode control flow: No Operation (NOP) is an assembly
language instruction, that does nothing at all. A sequence of NOP instructions wastes
the CPU cycles and adds to the code complexity. Malware authors can leverage NOP
instruction to modify the bytecode flow without revealing the program control-flow.
NOP insertion modifies code syntax to evade anti-malware. This approach is easy
and commonly used.

Path Obfuscation: Path obfuscation is used to achieve the cloning transfor-
mation [111]. The idea is to change the path such that there are different methods,
but the same meaning. This technique is used within URLs to obfuscate the HTTP-
based attacks [111].

Hiding bytecode: Hiding bytecode obfuscates APK with a variable length fill-
array-data-payload instruction to hide the original bytecode [112]. This technique
can be detected by looking for Dalvik bytecode employing goto obfuscation followed
by fill-array-data opcode, illustrated in Figure 3.6. The bytecode is hidden in the
fill-array-data which remains invisible to the disassemblers.

Figure 3.6: Hiding bytecode in the array of fill-array-data.

String table: A string table can be used to hide strings. In this technique,
a malicious app builds a string table as an array of characters. The table hides
suspicious strings. The reverse engineering tools fails to identify strings. Listing 3.25
illustrate use of string table as an obfuscation technique.

3.3. Custom Code Obfuscation Tools 51

3.3 Custom Code Obfuscation Tools

Obfuscation techniques, though not invincible, are very popular among malware
writers. Figure 3.7 illustrates the steps employed by obfuscation methods to trans-
form and optimize the code.

1 package Eg9Vk5Jan;
2 class x18nAzukp {
3 final private static char[][] OGqHAYqtswt8g;
4 static x18nAzukp()
5 { v0 = new char[][48];
6 v1 = new char[49];
7 v1 = {97, 0, 110, 0, 100, 0, 114, 0, 111, ...
8 v0[0] = v1;}
9 protected static String rLGAEh9gGn73A(int p2) {

10 return new String(Eg9Vk5Jan.x18nAzukp.
11 OGqHAYqtswt8g[p2]);
12 } ...
13 new StringBuilder(x18nAzukp.rLGAEgGn73A(43))

Listing 3.25: String Table

Figure 3.7: APK Obfuscation and optimization methodology.

3.3.1 Proguard

Proguard obfuscator is a part of Android software development kit (SDK) [74].
Proguard is a Java source code transformer. Google recommends Proguard to pro-
tect Android APK. Proguard has an in-built optimizer, shrinker and a weak obfus-
cator. The Obfuscator “tool removes unused or unnecessary code, merges the iden-
tical code blocks, employs peep hole optimization, removes debug information,
renames objects and restructures the original code” [100].

52 Chapter 3. Android Code Obfuscation Techniques

1 //original code listing
2 public static String exec(String cmd,
3 Boolean root) {
4 BufferReader mybufferReader;
5 DataStream

testdataOutputStream;
6 Process process;
7 String string = "sh";
8 if(root.booleanValue()) {
9 string = "su";

10 }
11 StringBuild teststringBuilder =
12 new StringBuilder();
13 try {
14 process = Runtime.getRuntime()
15 .exec(string);
16 dataOutputStream = new DataOutputStream
17 (process.getOutputStream());
18 dataOutputStream.writeBytes(cmd + "\n");
19 mybufferReader = new BufferedReader(
20 new InputStreamReader(process
21 .getInputStream()));
22 }

Listing 3.26: before obfuscation [100]

1 // Proguarded output
2
3 public static String a(String arg6,
4 Boolean arg7) {
5 Process process;
6 String string = "mksh";
7 if(arg7.booleanValue()) {
8 string = "su";
9 }

10
11 testStringBuilder stringBuilder =
12 new StringBuilder();
13 try {
14
15 process = Runtime.getRuntime()
16 .exec(string);
17
18 DataOutputStream dataOutputStream =
19 new DataOutputStream(process
20 .getOutputStream());
21 dataOutputStream
22
23 .writeBytes(String.valueOf(arg6) + "\n");
24
25 BufferedReader bufferedReader =
26 new BufferedReader(
27 }

Listing 3.27: Proguarded code [100]

3.3.2 Allatori

Allatori [113] is a commercial product from Smardec. Besides identifier renaming,
Allatori tool can also modify the source code. Allatori is a code optimizer, shrinker,
obfuscator and a watermarking tool. The tool obscures the loops within the program
such that reverse engineering tools are easily evaded. Such an approach increases
the code size and makes the program logic less readable. Moreover, Allatori also
encrypts the strings and decrypts them at runtime. Allatori has the following notable
features: (i) reduced .dex file size; (ii) improves APK execution speed; (iii) decreases
memory usage; (iv) removes debug code; and (v) employs simple obfuscation.

3.3.3 Dalvik-obfuscator

dalvik-obfuscator is an open-source bytecode transformation tool [114]. The
analyst must provide an APK file as input to obtain the obfuscated app version.
Dalvik-obfuscator employs the popular junk byte injection approach on the x86
platform. Dalvik-obfuscator is composed of a set of tools/scripts to obfuscate and
manipulate .dex files. The obfuscator iterates through all the methods, insert junk
bytes and unconditional branch in the code block, to ensure it is never executed.

3.3.4 DexGuard

DexGuard [99] is a professional code optimizer and obfuscator developed by
Eric Lafortune. It performs code optimization, code shrinking, and encryption.
Dexguard converts the class and methods names into non-ASCII values and strings
are encrypted with the encryption algorithms. DexGuard has following features in
addition to Proguard: (i) Reflection obfuscation at runtime; (ii) Encrypt strings

3.4. Code Packers and Protectors 53

1 // original code
2
3 public void onClick(
4 DialogInterface arg3, int arg4)
5 {
6 System.exit(0);
7
8 } .

Listing 3.28: before obfuscation

1 // Dexguard obfuscated code
2 public void onClick(
3 DialogInterface arg7, int arg8) {
4 try {
5
6 Class.forName
7 ("java.lang.System").getMethod("exit",Integer.
8 TYPE).invoke(null, Integer.valueOf(0));
9 return;

10 } catch:(Throwable throwable) {
11 throw throwable.getCause();
12 }
13 }

Listing 3.29: Dexguarded [100]

within an array; (iii) assets, resource and library encryption; (iv) encrypts Java
class names; and (v) identifies APK tampering.

3.3.5 APKfuscator

APKfuscator is a dead code injection obfuscator [115]. Available as an open-
source, APKfuscator employs quite a few variations of dead code injection. APK-
fuscator functions on bytecode level and leverages the Unix filesystem restriction
that does not allow a class name to exceed 255 characters. APKfuscator employs
three variations of dead code injection: (i) insert illegal opcodes; (ii) use legitimate
opcodes into “bad” objects; and (iii) inject code inside the .dex header by exploit-
ing a discrepancy between the claims of the official .dex documentation and DEX
verifier.

3.4 Code Packers and Protectors

Android code Packers insert new malicious DEX file and encrypt the
classes.dex in the existing .dex file within an APK. The new .dex is decrypted
in memory during runtime using DexClassLoader, a Java class loader [3, 7, 116].
Packers were developed for Android platform to protect the legitimate app from
unwanted tampering and modifications. However, malware developers use packers
to obfuscate the dalvik bytecode and evade anti-malware scanners.

3.4.1 Code Packers

Packing encrypts the executable code to prevent static analysis. The unpacker
routine brings the code in readable form. Malware developers employ executable
code packers to evade reverse engineering of malicious DEX. The runtime unpacking
routine brings the code into its original form. The code protectors can also be
used in conjunction with existing obfuscation techniques to harden static analysis.
Figure 3.8 illustrates working of code packers.

APK Protect1: is a professional code packing tool with anti-debug, anti-
decompile and anti-disassembly support [117]. The packer performs code obfuscation
with string encryption with Base64 encoding. It employs Java reflections to load

1https://sourceforge.net/projects/apkprotect/ (accessed August, 2016.)

54 Chapter 3. Android Code Obfuscation Techniques

Classes.dex

Reconfigure

XML File

New

DEX File

Packed

DEX File

Unpacking Code

Pack

DEX File

Build

New APK

Figure 3.8: Code Packing steps.

the code dynamically. APK Protect has following features: (i) debugger detection;
(ii) app encryption; (iii) code reflections; (iv) anti-debugging; (v) anti-disassembly;
and (vi) anti-decompilation.

HoseDex2Jar2: is an executable packer to encrypt .dex, repackage encrypted
file, and store inside 112 header bytes of the target .dex. Figure 3.9 illustrate
code packing procedure with HoseDex2Jar. The code packer performs: (i) .dex
repackaging; and (ii) code encryption.

Figure 3.9: HoseDex2Jar Packer.

Bangcle:3 is an online APK packing tool [7]. The developer must register at the
Bangcle and use Bangcle Assistant tool to upload the package. The app must be up-
loaded with the Keystore to retrieve the protected APK. The packing process changes
the APK name, inserts new assets, native libraries and modifies the Android man-
ifest. Figure 3.10 illustrates the code packing procedure. Bangcle packer provides
(i) online APK wrapping; (ii) resists reverse engineering; (iii) online anti-debugging,
anti-tamper and anti-decompilation service.

PANGXIE4: is a Proof-of-Concept (PoC) packer armed with anti-debugging
and anti-tampering techniques [100]. The packer encrypts the .dex bundled inside
the assets of an APK. Though, PANGXIE evades static analysis, the obfuscator
increases the APK size. Figure 3.11 illustrates the code unpacking procedure based
on runtime execution.

2 https://github.com/strazzere/dehoser (accessed August, 2016.)
3https://www.crunchbase.com/organization/bangbang-security/entity (accessed August,

2016.):
4 http://www.packers.com/ (accessed August, 2016.)

3.4. Code Packers and Protectors 55

Figure 3.10: Functioning of Bangcle Packer.

APK FILE

Stub Dex File

Injected Code

Packed File during

Static Analysis

APK FILE

Stub Dex File

Injected Code

In Memory during

Execution

File System

Decrypted

Dex File

Figure 3.11: Unpacking procedure during Dynamic analysis.

3.4.2 Comparison of Obfuscation and Protection Techniques

In the following, we evaluate the effectiveness of Packers based on following
attributes illustrated in Table 3.3.

Code Obfuscation: This technique prevents the analysis of the code either at
source code or bytecode level [118]. The Android Integrated Development Environ-
ment (IDE) has Proguard, an in-built obfuscator to transform the Java class names,
fields, and method names [74]. Additionally, the persistent methods like control-
flow obfuscation, reorder program flow, readable string encryption, and dynamic
code loading has been employed by recent malware [119,120]. Furthermore, the app
developers also use Java Reflection methods and invoke the native code functionality
using Java Native Interface (JNI) to hinder static analysis.

Dynamic Code Modification: Android user apps, developed in Java are con-
verted to Dalvik bytecode using Dx tool [116], part of Android SDK. Dalvik Virtual
Machine (DVM) verifies the bytecode, and executes it in the VM. It is difficult for a
programmer to modify bytecode from VM during runtime. Malware developers use
Java Native Interface (JNI) methods to modify and load the bytecode at runtime
DVM [121]. ART pre-compiles the .dex file as oat in the ELF format. To avoid
precompilation, the native code modifies the instructions of .dex and .oat data
structures.

56 Chapter 3. Android Code Obfuscation Techniques

Packer Protection Techniques

Packer Code
Obfuscation

Dynamic
Code

Loading

Dynamic
Code

Modification

Debugger
Detection

Append
shared

Libraries

Additional
Class

insertion

DVM
Support

ART
Support

APKProtect 4 4 4 4 4 4 4 7

Ali 4 4 4 4 4 4 4 7

Baidu 4 4 4 4 4 4 4 4

Bangle 4 4 7 4 4 4 4 4

Ijiami 4 4 7 4 4 4 4 4

HoseDex2jar 4 4 7 4 7 7 4 7

Pangxie 4 7 7 7 7 4 4 7

Table 3.3: Comparing packer protection methods

Dynamic Code Loading: Android permits loading of external .jar or a .dex
at runtime. The executable code appears different compared to its static visuals.
Malware authors leverage this facility by encrypting the malicious executable, then
decrypting and loading them in the VM at runtime.

Anti-debugging: Android kernel has in-built GNU debugger (gdb) to attach
process for debugging. Packers get attached to Ptrace [122] tool to evade gdb un-
der the assumption that only a single process can be attached to the target process
for monitoring. Hence, the gdb cannot attach itself to the APK; preventing the APK
debugging. Advanced Packers identify Java Debug Wire Protocol (JDWP) threads
being attached to an APK. Furthermore, the Packers can identify themselves being
monitored within emulated environment. Table 3.3 illustrates a comparison of the
crucial methods prevalent among the leading Packers based upon their properties.
The Android Packers are a new phenomenon and evolving quickly. We examined
known malicious apps on portals and packed with stand alone Packers during Octo-
ber and November 2015. Table 3.3 shows that all of the Packers use one or more code
obfuscation techniques and append shared library. The comparison shows that few
Packers support ART. Except Bangcle and Ijiami, other packers are not equipped
to perform runtime modifications.

3.5 Android Bytecode Analysis

In this section, we discuss various Dalvik bytecode de-obfuscation tools and tech-
niques. To de-obfuscate an APK, the reverse engineered bytecode must be available.
Hence, we discuss the Dalvik bytecode, as it is the nearest readable intermediate
code for disassembly and analysis [123]. Figure 3.12 illustrates the process of byte-
code extraction and analysis of a normal Android APK file. This process is followed
by analysts and malware authors for their respective purpose.

3.5.1 Bytecode and De-Obfuscation Tools

In the following, we briefly discuss open-source and commercial de-obfuscation
tools.

3.5. Android Bytecode Analysis 57

Dexdump: Dexdump is a part of the Android software development kit
(SDK) [124]. Dexdump is a Dalvik executable (dex) file dissection tool that can be
used to disassemble Dalvik bytecode. Dexdump is a linear sweep disassembler that
finds a valid instruction at the last byte of the instruction being analyzed. Linear
sweep disassembler can be circumvented easily by inserting the junk bytes to prevent
the disassembly.

Smali: Smali is a Dalvik bytecode assembler [125]. The package contains baks-
mali to disassemble the assembled code. Hence, both smali and baksmali can be
used to disassemble, modify and reassemble the Android apps [126]. Baksmali per-
forms recursive disassembly by following the address of jump towards the current
instruction.

AndroidManifest

apktool.yml

assets

lib

res

Smali

Java

Compiler

dx

Converter

Resources

aapt

Converter

Java Source

Code

.xml file

Manifest file

Resources

.dex file

.Class file

Encoded

.xml file

Encoded

Manifest

Resource

table

Unsigned

APK File

Resources

.dex file

Encoded

.xml file

Encoded

Manifest

Resource

table

Signed

.apk

JarSigner

Intermediate code

Dalvik bytecode

APK Tool

Disassembly

APK Re-assembling

Figure 3.12: Disassembly of an APK file

Androguard: Androguard is a stable, open-source tool for static analysis of
APK files [127]. Androguard has a recursive disassembler and semantic analysis
methods to identify similarity, dissimilarity, call graph analysis and signature of
malicious apps. It provides a graphical preview of call graphs to assist the human
analyst to detect cloned and repackaged APK files.

APKInspector: APKInspector is static, bytecode analysis tool. APKInspector
leverages Ded [128], Smali/Baksmali [125], APKtool [106] and Androguard [127] to
reverse engineer APK bytecode. APKInspector performs: (i) meta-data analysis; (ii)
sensitive permission usage; (iii) generates bytecode control-flow graph; (iii) generates
call-graph with call-in and call-out structures.

dex2jar: dex2jar disassembler reverse engineers dalvik bytecode and creates
corresponding .jar files. The tool is capable of handling dex and odex file types.
dex2jar provides various API to extend the functionality [129]. dex2jar facilitates
retargeting and conversion of dex to jar from the APK bytecode. The tool facilitates
conversion back todex bytecode, once java bytecode is modified.

Dare: Dare tool retargets the .dex bytecode from classes.dex to java
.class employing type inference algorithm [130]. The java bytecode can be mod-

58 Chapter 3. Android Code Obfuscation Techniques

ified with existing techniques used by Java developers and decompilation tools.
Octeau et al. [131] evaluated Dare tool and reported its more accurate than dex2jar.

Dedexer: Dedexer [132] converts .dex to Jasmin, an intermediate code similar
to Java bytecode. Dedexer facilitates conversion of single file for each class; hence
generates easy to read directory format [101, 102]. However, unlike the apktool,
Dedexer cannot regenerate disassembled class files.

JEB: JEB [133] is a professional APK reverse-engineering tool. The decompiler
creates a graphical visualization of the target APK file. The app elements such as
components, androidmanifest, images, developer certificate, plain string are visual-
ized from the GUI with good cross references. The professional version is capable
of converting complex .dex bytecode to source by exploiting the rich dalvik se-
mantics. JEB can also deobfuscate simple code transformation methods [106, 129].
Additional functionality is possible due to availability of API. Analysts can extend
the decompiler for custom features.

IDA Pro: IDA Pro [134] is popular x86 disassembler. IDA 6.0 supports Dalvik
disassembly. IDA has a complete GUI with options to extend the functionality with
supported API plugins to extend analysis functionality. IDA Pro has an additional
capability to disassemble specific parts of the code in a file selected by the user.
Dalvik bytecode can be represented as a graph making it easy to follow the control
flow within a program.

Dexter: Dexter is a free online analysis service [135] and static analysis tool to
process an input APK file. It provides rich information about: (i) APK permission;
(ii) obfuscated code and packages; and (iv) mapping between broadcast receivers
and the data-store.

Dexguard: Dexguard is a set of scripts to perform automated strings de-
obfuscation and recovery of the dex file [136]. This tool is a mix of static and
dynamic analysis consisting of (i) dex File reader; (ii) Dalvik disassembler; (iii)
Dalvik emulator; and (iv) dex File parser.

Radare2: Radare2 [137] is an interactive bytecode disassembly and analysis
tool with precise control during reverse engineering procedure. Radare2 decompiles
the code using open-source decompiler boomerang [138]. This tool is a recursive
disassembler that allows a user to specify starting address for decompilation. The
hybrid approach makes Radare2 more efficient against smart obfuscation techniques
in comparison to other approaches.

3.5.2 Stealth Obfuscation

Malware writers employ different code protection techniques to delay the mal-
ware reverse engineering. Android malware evolution is following the trends similar
to Windows, reported in various studies. The Packers can be employed to protect
the existing code appear genuine and evade blacklisting signature approach. In the
following, we discuss popular techniques employed to hide malware code. Bremere
et al. [139] demonstrated the possibility of bytecode injection within a class with
virtual function. Such techniques can be used by attackers to:

1. develop a benign app capable of bytecode interpretation and loading.

2. read the bytecode from APK or a remote host.

3.5. Android Bytecode Analysis 59

3. inject the malicious bytecode inside a benign app.

At present, such techniques are limited to returning integer values. However,
malware authors can misuse the extended version to inject malicious bytecode at
runtime. In [4], authors demonstrated a Proof-of-Concept code to hide Dalvik meth-
ods from existing reverse engineering tools. Furthermore, they demonstrated meth-
ods to identify such hidden methods. Malware authors can place malicious logic
inside hidden methods and evade anti-malware. Furthermore, authors developed
Hidex, a tool [140] to detect invisible methods.

In [2], the authors demonstrated various methods to manipulate AES or DES
algorithm output and represented the malware payload as custom PNG, JPG or
an audio file. Furthermore, the authors demonstrated that, such payloads remain
undetected from existing anti-malware. Cyber criminals may be interested in hiding
malware APK inside the assets or resource folders. Besides, malware author can
develop a genuine APK, and include malicious JPG image inside app assets. The
malicious app loads the asset at runtime to execute malicious behavior. Following
protection, obfuscation, and optimization techniques can be interesting to malware
researchers:

1. employ Proguard to protect app logic: Proguard renames variables, without
disturbing the class names. Hence, it is easy to identify the obfuscated classes,
since the methods are modified without changing class names.

2. Strings encoded with Base64: malware authors exploit various forms of string
transformations such as string encryption within arrays, non-ASCII charac-
ter replacement or, hidden resource files inside Base64 encrypted strings with
Base64 encoding methods. Thus, binary data can be hidden with Base64
encoded strings.

3. Dynamic loading: Dynamic code loading can be used to download malicious
code at runtime. Malware authors upload genuine APK at market place. The
malware code is dynamically loaded at runtime as discussed in Table 3.4. The
anti-malware have the same privileges like any other app inside Android Sand-
box. Hence, dynamic code loading is extensively used for malware loading.

4. Native Code: identify native code presence with class definition filtering. Ad-
ditionally, identify the app code which access system related information and
resources interacting with Android framework.

5. Reflection: identify reflection methods, fields and class names to load them at
runtime.

6. Header size: bytecode injection inside the classes.dex header can be ex-
ploited by taking advantage of discrepancy between the dalvik bytecode doc-
umentation and the file.

7. Encoding: it verifies the presence of mixed endianness with a flag check.

8. Cryptographic code: javax.crypto and java.security.spec packages
provide facilities to implement encryption/decryption in classes and interface
application to study misuse of cryptographic functionality.

60 Chapter 3. Android Code Obfuscation Techniques

Malware authors have misused the existing code protection and obfuscation
methods to evade the commercial anti-malware. Table 3.4 summarizes malware
obfuscation chronology and illustrates the methods and tools used by to obfuscate
APK files. Malware writers leveraged custom encryption, string encryption, and URL
encryption. They encrypted network communications and encoded URLs. The re-
cent malware apps exploit sophisticated techniques like steganography and code
obfuscation tools to harden the malware reverse engineering.

In 2013, malware developer used Dexguard to evade the anti-malware. The
malware writers pushed Javascript payloads inside the resource folder and encrypted
non-Dalvik code in the obfuscated apps. Some malware samples developed in the
year 2014 employed online Packing tool services apart from string encryption and
obfuscation. Additionally, malware writer encrypted data.xml files inside APK
archive to evade anti-malware and harden reverse engineering. Dendroid [72] is a
stealth remote administration toolkit employing hidden behavior sending premium-
rate SMS, voice calls, recording audio video without user consent. The Trojan
evades the existing commercial anti-malware techniques. Elish et al. [141] proposed
user-intention based anomaly detector to detect such stealth malicious apps.

3.6 Existing Surveys and Related Work

Shabtai et al. [142] proposed an Android threat taxonomy on Android platform.
In [143], the authors survey different attack vectors, and discuss the attack taxon-
omy on Android. In [75], authors, carried out Android malware characterization of
49 Android malware families. The authors reported simple obfuscation techniques
employed by malware such as Anserver, and Bgserv. Enk et al. [144] discussed the
existing research, primarily targeting Android platform.

The authors reviewed the Android platform security and app analysis methods.
Furthermore, the authors discussed limitations of analysis techniques like rule-based
detection, ex-filtration of sensitive information and inter-application privilege es-
calation attacks. However, the code obfuscation and protection techniques are not
covered in the proposed analysis techniques. The proposed review gives an extensive
insight into the obfuscation techniques and code protection methods. Furthermore,
the review compares various code obfuscation and de-obfuscation techniques em-
ployed by malware authors and anti-malware industry.

Tangil et al. [145] discuss evolving mobile malware, their infection and distribu-
tion techniques and related case studies. The authors perform a comprehensive study
of greyware and malware app detects between 2010 and 2013. Furthermore, the au-
thors discuss various research problems, briefly discussing the impact of malware
detection. In [66], authors discuss the Android security issues, malware penetration
and various defense methods for app analysis and mobile platform security. Further-
more, the authors briefly review obfuscation techniques. However, they concentrate
more on malicious repackaging, a common problem with Android apps.

In [91], authors focus on developing efficient Dalvik bytecode obfuscation tech-
niques. They study the Google Play apps to identify the feasibility of availing the
source code with reverse engineering tools. Authors propose efficient obfuscator de-
sign to defeat the existing de-obfuscation tools (i.e., smali, dedexer, ded). Schulz

3.6. Existing Surveys and Related Work 61

Malware Year Obfuscation/Encryption/
Protection/Optimization Method Tool/Technique used

SlemBunk 2015 Code Obfuscation Class, Method and Field Obfuscation

Trojan.Dropper.RealShell 2015 Custom APK Obfuscation Stores files in Assets Folder

Dendroid.A!tr 2014 Obfuscated with Dexguard Dexguard Tool

SmsSend.ND 2014 Packed with APKProtect Packer Code Packing Tool

Freejar.B 2014 Packed with Bangcle Packing service Online code packing Service

RuSMS.AO 2014 Strings obfuscated, using Adobe Airpush like name Custom string encryption

SmsSpy.HW!tr.spy 2014 “data.xml” file is encrypted with Blowfish algorithm Custom symmetric encryption

Agent.BH!tr.spy 2014 Sends encrypted emails using TL security Custom encryption

Rmspy.A!tr 2013 Obfuscated with Dexguard Dexguard obfuscator

oBad 2013 Obfuscated with Dexguard Dexguard obfuscator

Android.Ginmaster 2013 Custom String encryption Custom encryption

Android/GinMaster.L 2013 String obfuscation with string table in array Custom encryption

Stels.A!tr 2013 Custom encoding URL text with Base64 Custom encoding

Pincer.A!tr.spy 2013 Caeser cipher to hide text and telephone No. Symmetric encryption algorithm

GinMaster.B 2013 Encrypts IMEI, IMSI and strings with Triple DES Custom symmetric encryption

FakeDefend.A!tr 2013 Encrypted fake infections with AES algorithm Block cipher encryption

FakePlay.B!tr 2013 Non Dalvik, Javascript payload in resources Non Dalvik code encryption

SmsSend.N 2012 Obfuscated with Proguard Proguard obfuscator

Plankton.B!tr 2012 Obfuscated with Proguard Proguard obfuscator

DroidKungFu.D!tr 2012 Obfuscated with Proguard Proguard obfuscator

FakeInst.A!tr.dial 2012 PNG file stores SMS text body and phone numbers Steganography

NotCompatible.Android!tr.bdr 2012 Encrypted C&C URL in resource folder with AES Block Cipher encryption

DroidKungFu.G!tr 2012 ELF payload stored as “mylogo.jpg ” Non Dalvik code encryption

Pjapps.A!tr 2011 Encoded URL URL encryption

Android/SmsSpy.HW!tr 2011 Encrypted with symmetric key Blowfish algorithm Symmetric encryption

Android/RootSmart 2011 Symmetric key encryption DES, AES and Blowfish Block cipher encryption

BaseBridge.A!tr 2011 String encrypted in an array Encrypted strings

Android/Geinimi 2010 Encrypted with Data Encryption Standard Symmetric encryption

Table 3.4: Malware Obfuscation chronology [2–7]

et al. [88] performed Android bytecode de-obfuscation feasibility. The authors eval-
uated analysis methods to automate de-obfuscation of Dexguard obfuscated code.
Rastogi et al. [119] evaluated commercial anti-malware against trivial code obfus-
cation techniques. Faruki et al. [123] compare the performance of anti-malware,
and static analysis tools against popular x86 transformation attacks. Harrison et
al. [146] evaluated different Android obfuscation tools. They evaluate the limitations
of reverse engineering tools against app repackaging.

Schrittwieser et al. [147] evaluate smartphone code protection techniques. The
authors analyze and evaluate software de-obfuscation techniques. The survey is
more general targeting software protection techniques and analysis methods. How-
ever, our target is, Android specific obfuscation techniques. The proposed review
is a comprehensive discussion on source code obfuscation, code protection, Android
specific obfuscation, and code protection tools. To the best of our knowledge, we
are the first to investigate Android code protection and malware obfuscation tech-
niques. We evaluate Collberg taxonomy [118], and expand source code, and bytecode
obfuscation tools and techniques.

62 Chapter 3. Android Code Obfuscation Techniques

3.7 Future Research Directions

Malware such as Android/DroidCoupon.A!r, and AndroidSmsZombie.A!.tr hide
the malicious native payloads as JPG, or PNG files [148], [3]. However, the assets
are payloads just named as graphic files. Making fake payload with such tricks is
prevalent on Android malware applications. Furthermore, authors in [2] developed a
Proof-of-Concept (PoC) AngeCryption [2] to illustrate the possibility of encrypting
any given input stored as an image (JPG, PNG). In particular, an attacker can
develop a benign APK file to hide a malicious image inside resource or asset to
evade the anti-malware. The unsuspected image containing malicious payload can
be used to execute the malicious code. Such an attack may not be noticed at all, as
the APK does not contain obfuscated, protected or wrapped content.

AngeCryption has demonstrated a PoC on the latest Android OS version. Thus,
a malicious dex file can be embedded inside an image. Furthermore, it can be
obfuscated with obfuscation tool. The dynamic code loading techniques can be used
to execute the malicious payload. At present, methods to detect such attacks are not
available. The functioning of such payloads cannot be determined before runtime
image decryption. The suggested remedy that we aim to investigate in the future
are: (i) keep tab on an APK that decrypts its resource or assets (such apps can be
analyzed dynamically to identify suspicious behavior); (ii) analyze image decryption
to an APK as malicious.

The Android devices have constrained processing and limited storage. Obfusca-
tion techniques does have an adverse impact on battery consumption. The power
management is an important issue to identify impact of code level modifications.
The Android Obfuscation has a APK statistical significance [149]. An important
future work is to consider a large set of obfuscated APK empirical evaluation. The
same can be extended to different mobile OS and devices. Since the developers
do not have access to tools like CARAT [150], they cannot identify the impact on
energy consumption. The ability to identify the impact is important for resource
constrained Android devices.

The Android apps have a lot of user interaction and string usage. The mal-
ware authors use string encryption and obfuscation techniques to hide the plaintext
strings. In this chapter, we have discussed notable malicious apps using such en-
cryption techniques. The authors can implement inter-component communication
based inter-procedural static analysis to reconstruct the encrypted strings to ob-
tain insight into the string information. Furthermore, authors in [151] empirically
evaluated third-party library and obfuscated code usage. To monitor the apps, we
propose to identify the third-party libraries to identify APK cloning. The common
use of Google advertisement network, Facebook ad libraries impacts the categoriza-
tion. As a part of future work, we plan to delink the library code from APK files
and evaluate obfuscated code.

The existing academic code obfuscation research is heavily concentrated more
towards analysis of obfuscated malicious applications [152] [153] [154] [155]. The
relevant literature evaluates obfuscation techniques prominently among malicious
applications. The real identification of obfuscated code among the normal programs
which is important for software protection, is ignored. The non-malicious code
reverse engineering is largely unexplored. Targeting program obfuscation and related

3.8. Obfuscation Code Examples 63

techniques for protecting the digital rights is an interesting future direction. Inspite
of the existing research on obfuscation, evaluation matrices to verify the existing
obfuscation technique resilience are not available. Formal analysis techniques to
evaluate obfuscation and de-obfuscation techniques is still not available. Hence, we
summarize code obfuscation, de-obfuscation tools and techniques to understand the
effect in isolation. It would be interesting to combine different class of obfuscation
techniques, and evaluate existing de-obfuscation tools.

3.8 Obfuscation Code Examples

In the following, we discuss FakeInstaller, stealth Android malware employ-
ing different class of obfuscation to evade anti-malware. Listing 3.30 reverse engi-
neered code of FakeInstaller [133,156,157] at line number 1 checks for the pres-
ence of emulator, an alibi for development environment, or automated analysis sys-
tem. In line number 9, class and method names are obfuscated to erase the program
semantics. For example, a random string value “VQIf3AInVTTnSaQI+R]KR9aR9”,
is decrypted to Android android.telephony.SmsManager class. This class is
loaded using reflection API at runtime to evade static analysis. The class sends
premium-rate SMS without explicit user consent. The string “BaRIta*9caBBV]a”
is decrypted to SendTextMessage method. Furthermore, in line number 21
getMethod sends the SMS using the text from the parameters p1 and p2, de-
clared in line number 1. Here, the use of multiple obfuscation, evasion and code
protection techniques successfully evades the static analysis.

1 // Fakeinstall obfuscated code
2 public static boolean gdadfjrj(String p1,String p2){ [...]
3 // Anti analysis check to evade emulator
4 if (zhfdghfdgd()) return;
5
6 // Get class instance
7 Class clz = Class.
8
9 forName(gdadfjrj.gdafbj("VQIf3AInVTTnSaQI+R]KR9aR9"));

10 Object localObject = clz.getMethod(gdadfjrj.gdadfjrj("]a9maFVM.9"), newClass[0])
11 .invoke(null, new Object[0]);
12 // Get the method name
13 String s = gdadfjrj.gdadfjrj("BaRIta*9caBBV]a");
14
15 // Build parameter list
16 Class c = Class.forName(gdadfjrj.gdadfjrj("VQIf3AInVTTnSaQI+R]KR9aR9"));
17 Class[] arr = new Class[]
18 {nglpsq.cbhgc, nglpsq.cbhgc, nglpsq.cbhgc, c, c };
19
20 // Reflection for invoking the method to send SMS
21 clz.getMethod(s, arr).invoke(localObject, newObject[] { p1, null, p2, null,null });

Listing 3.30: Fakeinstall Obfuscation [156,157]

The partial code snippet in Listing 3.31 is a variant of zitmo [158]. As illustrated,
when the SMS is received, framework callback onReceive() is invoked to stop
the broadcast to default SMS app. The abortBroadcast() method aborts the
current broadcast. Then, an intent that carries the SMS is launched inside the
MainService, a background service task. Further, the stored SMS from the intent
is accumulated in the array called “pdus”. The sender identification and message
parts are extracted by getOriginatingAddress() and getMessageBody()
methods. Furthermore, the available values of the “pdus” object are stored inside

64 Chapter 3. Android Code Obfuscation Techniques

variables s1, s2 along with the device Id using method getDeviceId(). The
information is encoded inside the UrlEncodedFormEntity object. Further, the
constant URL string is then encoded with setEntity() to post the data using
execute() method.

1 public class mysmsReceiver extends BroadcastReceiver
2 {
3 public void onReceive (context pcontext, intent pintent)
4 {
5 bundle localBundle=pintent.getExtras();
6 if((localBundle != null)&&(localBundle.containsKey("pdus")))
7 {
8 abortBroadcast();
9 Intent.targetService=newIntent(pcontex, MainService.class);

10 targetService.putExtra("pdus",localBundle);
11 pcontex.startService(ts);
12 }
13 }
14 }
15
16 public class MainService extends Service
17 {
18 public int onStartCommand(Intent pintent, int pintent1, int pintent2){
19 Bundle localBundle=pintent.getBundle("pdus");
20
21 SmsMessage localSMS=SmsMessage.createFromPdu("pdus");
22 String S1 = localSMS.getOriginatingAddress();
23 String S2 = localSMS.getMessageBody();
24 String S3 = localTM.getDeviceId();}
25
26 public void postRequest(urlEncodedFormEntity UEFE)
27 {
28 String address="http://stringthrifty.com/security.jsp";
29 ...
30 DefaultHttpClient().execute(localHP, BRH);
31 }
32 }

Listing 3.31: SMS Obfuscation & IMEI exfiltration [158]

3.9 Summary

Android, currently the most popular mobile OS platform is eight-year-old. The
growth and commercial value has attracted the research community and malware
authors alike. Since the mobile OS is fast evolving, code protection techniques are
implemented by the app developers to harden the reverse engineering of the code
propriety. On the other hand, malware authors are using the protection techniques
to delay the code reverse engineering.

In this survey, we address important and specific questions about obfuscation
and code protection techniques on mobile platform. In the existing obfuscation re-
search, evaluation techniques to assess resilience of obfuscation are still not available.
Code analysis and de-obfuscation techniques have similar limitations. We performed
review of the existing code obfuscation and analysis techniques isolated from one
another. We discuss the details of code protection, optimization and obfuscation
technique.

Furthermore, we explore custom code protection techniques employed by mal-
ware authors to hide malicious payloads. Obfuscation tools and techniques also
depends on availability of resources for reverse engineering. Existing tools (e.g., An-
droguard, JEB, dex2jar) de-obfuscate custom code examples; however, they fail to
decode real-world programs. The complexity of a problem may outdo the existing

3.9. Summary 65

resources. Hence, simple obfuscation techniques can be effective on resource con-
strained devices. This is one of the reason of its popularity among malware authors.
The ongoing challenge between code protection and analysis techniques is growing.
Specific obfuscation methods are effective in certain situations. Given time and
effort, existing obfuscation techniques can be decoded by human analyst.

66 Chapter 3. Android Code Obfuscation Techniques

67

Chapter 4

Android Malware Detection

using Static Analysis of Applications

Smartphones are continuously replacing more traditional mobile phones. Peo-
ple use those mobile devices for several types of applications, often involving personal
information (contacts, emails, agenda, pictures, banking, etc.). According to BYOD
policy, adopted by many companies [8], the very same personal device is also used
to access the IT infrastructure of the company where the smartphone owner is em-
ployed. In this scenario, the security of these devices as well as the assets that they
allow access to are at stake. In fact, the security for smartphones still needs a thor-
ough understandingThe effective way of enforcing security on those devices is still
subject of investigation and there are further room for improvement. To address
this issue, we can leverage various techniques to analyze and detect Android mal-
ware applications. The techniques used to detect Android malware are similar to
the ones used on other platforms. Detection techniques are essentially broken into:
(i) static analysis by analyzing a compiled file, (ii) dynamic analysis by analyzing
the runtime behavior, and (iii) hybrid analysis by combining both techniques [159].
Static analysis refers to extract and analyze information about an application from
the binary, source code or other associated files. Static analysis can be performed
before running the application for the first time. However, the mentioned method is
limited because of the obfuscation techniques and might not be able to deal with the
malware which changes its code without changing functionality (e.g., polymorphic
malware).

Dynamic analysis relies on executing code in virtual environment or sand-
box to monitor the interaction of applications with the operating system. This
approach might have certain drawback: (i) it is not clear what the monitoring pe-
riod is required to detect certain events, (ii) it is not clear which conditions trigger
the malicious behavior. In addition, (iii) dynamic analysis might be more resource-
consuming and computationally expensive rather than static analysis. In a nutshell,
static analysis is beneficial on memory-limited Android-powered devices because the

68 Chapter 4. Android Malware Detection

malware is not executed and only analyzed. For these reasons, we will concentrate
on the lightweight approach, we advocate the static analysis.
Machine Learning techniques to detect mobile malware have been already inves-

tigated leveraging a few characteristics of the mobile applications (e.g., only call
graph [160], only permissions [161], or only API calls and permission [162]), and
the results obtained seem promising. Classification approaches have been proposed
to model and approximate the behaviors of Android applications and discern ma-
licious apps from benign ones. The detection accuracy of a classification method
depends on the quality of the features (e.g., how specific the features are) [141].
Grace et al. [163] proposed a classification method with pure static features (data
and control-flow analysis) that gives a false negative rate of 9%. Zhou et al. in [164]
extracted hybrid features (e.g., a combination of static and dynamic features) ob-
taining a better FN rate of 4.2%.
We present a detection approach to hunt malicious Android applications that

achieves a higher detection performance than previously reported classification meth-
ods. In particular, our main contributions are follows:

Contribution: We present a detection approach to hunt malicious Android
applications that achieves a higher detection performance than previously reported
classification methods. In particular, our main contributions are as follows:

• We presented an Android malware detection method that uses several informa-
tive features with good discriminative power to discern benign from malware
apps. To extract these features, we designed and built a tool named uniPDroid,
written in Python programming language.

• We performed an extensive static analysis on a well-labeled data-set of 29,864
Android applications.

• We used several Machine Learning classification algorithms including ensem-
ble, eXtreme Gradient Boosting and Deep Learning to discover the most per-
formant one in terms of accuracy and speed. Our experimental evaluations
show that our proposed detection method is very effective and efficient. It ob-
tained a true positive rate in detecting malware applications as high as 97.3%
and false negative rate as low as 2.7%.

The rest of this chapter is organized as follows. Section 4.1 illustrates the
design and implementation of our proposal: ANASTASIA. In this section, we explain
system architecture. Also, we give a description of data-set composition and feature
extraction procedure. Then, we describe all the details to build our classifiers. We
evaluate our proposed method and compare its performance against several malware
detection schemes in the literature in Section 6.3. In Section 5.4, we overview the
related work. Finally, we conclude this chapter in Section 6.7.

4.1 Design and Implementation

In this section, we describe design and implementation of the ANASTASIA.
The goal of our system is to effectively and efficiently detect malicious Android appli-
cations. To this end, we extended Androguard tool [127] and built the uniPDroid, a

4.1. Design and Implementation 69

Figure 4.1: ANASTASIA system overview

static analysis tool written in Python programming language. Our proposed method
uses this tool to extract several informative features representing characterization
of the application and leverages several Python Machine Learning libraries to build
the most performant classifier to perform classification task. The main components
of the ANASTASIA are illustrated in Figure 4.1. In particular, the system con-
sists of two modules: (i) Feature Extraction Module, and (ii) Machine Learning
Classification Module. The feature extraction module includes three components.
The uniPDroid.py is the main component within this module extracting infor-
mative features from an app while Androguard and Anadrolyze.py are aux-
iliary components providing support for performing feature extraction task. The
Machine Learning classification module leverages several Machine Learning pack-
ages to perform classification task. The main component within this module is the
anastasia.py. The Scikit-learn, Keras and REP packages provide different
classification algorithms and some helper functions for performance evaluation.

4.1.1 Data-set Composition

In this section, we detail how our data-set has been composed. In order to
conduct an extensive analysis on malware detection, we collected a set of relatively
large well-labeled malware applications. The data-set that we used during our eval-
uation is composed of 29,864 Android apps collected from several work in the lit-
erature [164–167], hence consisting of apps released over period of seven years from
year 2009 to 2015. Table 5.1 shows the details of the data-set composition.

For reproducibility purposes, and to allow the research community to build our experiments
and improve the research on malware detection, we make the data-set and details implementation
of Machine Learning approach available upon request.

70 Chapter 4. Android Malware Detection

Repository Malware Benign Total
Genome 1,260 – 1,260
Drebin 5,560 – 5,560
M0Droid 193 200 393
VirusTotal 11,664 10,987 22,651
Resulting
data-set

18,677 11,187 29,864

Table 4.1: Data-set composition

4.1.2 Feature Extraction

In this section, we describe the feature engineering conducted in this work. We
aimed at extracting as many features as possible in order to allow the Machine Learn-
ing algorithms to select the most informative features to perform the classification
task. An Android package is a .zip file including META-INF, assets, libraries, re-
sources, Android-Manifest.xml, classes.dex, and resources.arsc files.
Android applications are written in Java, compiled to Java bytecode, and then
converted into platform-specific Dalvik bytecode. This bytecode can be efficiently
disassembled and provides us with useful information about data used in an ap-
plication. Using uniPDroid tool, we mainly extracted the features from bytecode
and converted these features into binary feature vectors including 560 features. We
collected a feature set from disassembled code as follow:
• Intents: inter-process and intra-process communication on Android is mainly

performed through intents. The intent is an abstract description of an op-
eration to be performed and allowing information about events to be shared
among different components and applications. We extract all intents used in
Androd app as a feature set because malwares often listen to specific intents.
For instance, BOOT_COMPLETED is a typical example of an intent message
involved in malicious apps, which is used to trigger malicious activity directly
after rebooting the smartphone. Listing 1 shows the snippet used to extract
intents from an app.

1 from androguard.core.bytecodes.dvm import *
2 from androguard.core.bytecodes.apk import *
3 from androguard.core.analysis.analysis import *
4
5 a = APK("app.apk")
6 d = dvm.DalvikVMFormat(a.get_dex())
7 z = d.get_strings()
8 for i in range(len(z)):
9 if z[i].startswith(’android.intent.action.’):

10 intents = z[i]
11 intentList.append(intents)

Listing 4.1: Example of a Python script
for extracting intents from Dalvik byte-
code

• Used permissions: a significant part of Android’s built-in security is the per-
missions system. Permissions allow an application to access potentially danger-
ous API calls. Many applications need several permissions to function properly

4.1. Design and Implementation 71

and user must accept them during installation. Since the used permissions in
.dex file provides a more general view on the behavior of an application rather
than permissions declared in manifest file. We extract and include them to the
feature set (e.g., INTERNET, ACCESS_FINE_LOCATION, INSTALL_PACKAGES).
Listing 2 describes the permissions extraction process.

1 ...
2 # the APK
3 a = APK("app.apk")
4 # the classes.dex
5 d = dvm.DalvikVMFormat(a.get_dex())
6 # the analyzed classes.dex
7 dx = analysis.uVMAnalysis(d)
8
9 Permission_dexFile = dx.get_permissions([])

10 for i in Permission_dexFile:
11 permList.append(i)

Listing 4.2: Example of a Python script
for extracting permissions from Dalvik
bytecode

• System Commands: system commands are used in the malware to run root
exploit code or download and install additional executable files. Since system
command can provide us with valuable information to detect malicious behav-
ior, we extract and include them in the feature set. The authors in [168] listed
the most commonly used system commands in malicious apps (e.g., chmod,
su, mount, sh, killall, reboot, mkdir, ln, ps). These com-
mands are executed after the malware achieves root privilege on the device.
Listing 3 shows how the system commands are extracted from Dalvik bytecode.

1 ...
2 a = APK("app.apk")
3 d = dvm.DalvikVMFormat(a.get_dex())
4 z = d.get_strings()
5 # to back trace unix commands
6 suspicious_cmds=["su","mount","reboot","mkdir"
7 ,...]
8 for i in range(len(z)):
9 for j in range(len(suspicious_cmds)):

10 if suspicious_cmds[j]==z[i]:
11 cmdList.append(suspicious_cmds[j])

Listing 4.3: Example of a Python script
for extracting system commands from
Dalvik bytecode

• Suspicious API calls: some of the API calls are able to access to sensi-
tive resources or information of the smartphone. These type of API calls
are frequently seen in malware samples and can result in malicious behav-
ior. In order to obtain a deeper understanding of the functionality of an
application, we collected these API calls and gathered in the feature set
(e.g., openFileOutput, sendTextMessage, getPackageManager,
Cipher.getInstance, getDeviceId, Runtime.exec). The authors

72 Chapter 4. Android Malware Detection

in [168] mentioned the most commonly used API calls in malicious apps. List-
ing 4 shows the snippet to extract suspicious API calls.

1 a = APK("app.apk")
2 d = dvm.DalvikVMFormat(a.get_dex())
3 z = d.get_strings()
4 suspicious_APIs=["getSimSerialNumber",
5 "getSubscriberId","getDeviceId",...]
6 for i in range(len(z)):
7 for j in range(len(suspicious_APIs)):
8 if suspicious_APIs[j]==z[i]:
9 APIsList.append(suspicious_APIs[j])

Listing 4.4: Example of a Python script
for extracting suspicious API calls form
Dalvik bytecode

• Malicious Activities: we considered different malicious behaviors seen in mal-
ware applications. We investigated whether an Android app is capable of
performing such malicious activities through Dalvik bytecode analysis. We
considered different kinds of information that malicious apps are able to har-
vest from smartphones. In Listing 5, we described how to search for features
might be able to perform malicious activities (29 features were extracted). We
include these features in our feature set in order to discern benign applications
from malicious ones. Here, due to space limit, we have listed some of these
features:

? Reading the current state.

? Reading the IMEI.

? Loading Native, Dynamic, and Reflection Code.

? Executing Linux system commands.

? Reading the SMS inbox, and the mails.

? Opening and querying Data-Base.

? Accessing to files on SD card.

? Reading location information through GPS/WiFi.

? Reading the WiFi credentials.

? Intercepting data network activities and

? Making phone calls.

? Retrieving information of the application installed.

? Disabling incoming SMS notifications.

? Recording audio and capturing video.

? Opening a TCP/UDP Socket.

? Performing encryption and message digest algorithms.

4.1. Design and Implementation 73

1 ...
2 # Searching for Doing Cipher
3 a = APK("app.apk")
4 d = dvm.DalvikVMFormat(a.get_dex())
5 dx = analysis.uVMAnalysis(d)
6 getIN=dx.tainted_packages.search_methods
7 ("Ljavax/crypto/Cipher","getInstance",".")
8 ScrKey=dx.tainted_packages.search_methods
9 ("Ljavax/crypto/spec/SecretKeySpec","<init>",".")

10 Cipherini=dx.tainted_packages.search_methods
11 ("Ljavax/crypto/Cipher","<init>", ".")
12 CipherDO=dx.tainted_packages.search_methods
13 ("Ljavax/crypto/Cipher","doFinal", ".")
14 if ((getIN)and(Cipherini)and(CipherDO))or(ScrKey):
15 potential_misBhve.append(’Does Cipher’)

Listing 4.5: Example of a Python script for ex-
tracting potential misbehaviour from Dalvik byte-
code

4.1.3 Feature Selection

A large number of features, some of which redundant or irrelevant might
present several problems such as misleading the learning algorithm, and increasing
model complexity. To mitigate above-mentioned problems feature selection tech-
niques are used. The benefits of performing feature selection before modeling the
data are to reduce over-fitting, to improve accuracy, and to reduce training time. We
used a technique leveraging ensemble of randomized decision trees (i.e., Extra Trees-
Classifier) for determining the feature importances [169]. We exploited Extra-Trees
Classifier to compute the relative importance of each attribute to inform a feature
selection process as reporetd in Listing 6. We used a meta-transformer, SelectFrom-
Model [169], for selecting features based on importance weights. This feature trans-
former can be used along with any estimator that has a feature_importances
attribute after fitting. The features are considered unimportant are discarded, if the
corresponding feature importance values are below the provided threshold parameter
(e.g., Mean).

1 #To build a forest
2 clf = ExtraTreesClassifier(n_estimators=600)
3 clf = clf.fit(X_train, y_train)
4 #To compute the feature importances
5 importances=clf.feature_importances_
6 # To reduce 560 features to 101
7 model = SelectFromModel(clf, prefit=True)
8 X_train_new = model.transform(X_train)

Listing 4.6: Example of a Python script
used for feature selection process

In Table 4.2, we list the 20-top features in terms of importance and their fre-
quency in both malware and benign applications in our data-set (29,864 samples).

74 Chapter 4. Android Malware Detection

Feature Type Malware Benign
getSubscriberId API call 6755 1000
READ-CONTACTS Permission 2568 7109
getLine1Number API call 4914 1118
READ-PHONE-STATE Permission 9572 5412
sendTextMessage API call 3578 489
USE-CREDENTIALS Permission 355 3650
SEND-SMS Permission 3703 580
SEND-MULTIPLE Intent 2427 6754
SEND Intent 5546 8985
PACKAGE-ADDED Intent 4940 1403
getSimSerialNumber API call 4042 703
startActivityForResult API call 6729 9691
getDeviceId API call 9268 6511
ACCESS-WIFI-STATE Permission 7130 4261
Dynamic-Code-Loading Mal. Act. 2658 5251
ln Linux Cmd 506 3295
WRITE-BOOKMARKS Permission 1346 286
SEARCH Intent 400 2736
DIAL Intent 4395 2981
GET-TASKS Permission 3849 1710

Table 4.2: Feature Frequency (Top-20 features in terms of importance).

4.1.4 Classification Models

Our objective is to build a promising model to classify unknown Android apps
as either benign or malware. To this end, we have employed several algorithms for
the classification such as XGboost [170], Adaboost [171], RandomForest [172], SVM
with RBF kernel [173], K-NN [174], Logistic Regression, Naive Baye, Decision Tree
classifiers [169], and Deep Learning [175].
Since Deep Learning is a growing trend in Machine Learning, we briefly introduce

this technique. Deep Learning refers to artificial neural networks that are composed
of many layers. There are two key parameters while building the Deep Learning
model: (i) the number of layers and, (ii) the number of neurons in each layer.
The first layer is a type of visible layer called an input layer. This layer contains
an input node for each of the entries in our feature vector. Input layer’s nodes
connect to a series of hidden layers. In the most simple terms, each hidden layer
is an unsupervised Restricted Boltzmann Machine (RBM) where the output of
each RBM in the hidden layer sequence is used as input to the next layer. Finally,
we have our another visible layer called the output layer. This layer contains the
output probabilities for each class label.
In our experiment, we used a Deep Neural Network with sigmoidal activation

function that consists of six hidden layers having 3200, 1600, 800, 400, 200, and
100 neurons, respectively. The layers are dense layer which means regular fully
connected layer. During the training procedure, we used Stochastic Gradient
Descent (SGD) as an optimizer and binary_crossentropy (aka logloss) as a

4.1. Design and Implementation 75

optimization score function.
Having the best hyper-parameter selected, we evaluated the performance of

all classification algorithms through 10-fold Cross-validation to find out the most
performant classifier. In the following, we explain the details of selecting the most
performant classifier to incorporate in our detection framework.
We have decided to employ algorithms from different classifiers because we

aimed at finding the most performant classifier in terms of accuracy and speed.
To perform a learning task allowing classification of apps into the malware and
benign classes, we have to tune hyper-parameters of classification algorithms.
Many Machine Learning classification algorithms have hyper parameters and these
parameters modify the nature of the model (e.g., the flexibility to learn patterns).
So, proper settings of these parameters can be critical to optimize the performance
of the model for a specific data source.
We tuned the hyper-parameters of above-mentioned classifiers through Grid-

search and Cross-validation processes implemented in Scikit-learn Machine Learning
package [169]. Since the classifiers during Cross-validation might over-fit, we did
not train the classifiers on all data points, we trained the classifiers on training
data-set and did not used testing data-set. Table 4.3 shows the best parameters.

Classifier The best parameters
SVM kernel=“rbf”, C=1, gamma=0.001
DT max_depth=6
LR C=1
NB - -
RF n_estimators=600, max_depth=8
KNN n_neighbors=5

Adaboost n_estimators= 600, learning_rate=1
XGboost n_estimators=600, eta=0.1,

max_depth=12
Deep

Learning
nEpoch=600, lr=0.1, decay=1e-6,

momentum=0.9,
num_hidden_layers=6,

layer_size=[3200,1600,800,400,200,100]

Table 4.3: Parameter tuning via Grid-search and Cross-validation

Cross-Validation on balanced data-set: We prepared a balanced data-set
including 11,000 malware and 11,000 benign samples. We shuffled and split the
data-points into training and testing sets of 20,000 and 2,000 samples, respectively.
We conducted 10-fold cross validation on training set (including 20,000 samples).
In 10-fold cross-validation, the data (here, our training set) is randomly partitioned
into 10 equal size subsamples. Of the 10 subsamples, a single subsample is retained
as the validation data for testing the model, and the remaining 9 subsamples are
used as training data. The process is then repeated 10 times, with each of the 10
subsamples used exactly once as the validation data. The 10 results from the folds

76 Chapter 4. Android Malware Detection

can then be averaged to produce a single estimation. Table 4.5 shows the results
obtained for each classification algorithm.

Classifier F1-Score
SVM 0.93 (+/- 0.01)
DT 0.82 (+/- 0.02)
LR 0.91 (+/- 0.01)
NB 0.85 (+/- 0.02)
RF 0.95 (+/- 0.01)
KNN 0.93 (+/- 0.01)

Adaboost 0.95 (+/- 0.01)
Deep Learning 0.95 (+/- 0.002)

XGboost 0.96 (+/- 0.01)

Table 4.4: 10-fold Cross-validation scores using balanced data-set.

Cross-Validation on imbalanced data-set: We also provided an imbalanced
data-set consisting of 18,766 malware and 11,187 benign samples. After shuffling
the data-points, we split the data into training and testing sets, each one 26,864
and 3,000 samples, respectively. In this experiment, we carried out 10-fold cross
validation on training set (including 26,677 samples). Table 4.5 shows the results
obtained for each classification algorithm.

Classifier F1-Score
SVM 0.94 (+/- 0.01)
DT 0.83 (+/- 0.02)
LR 0.91 (+/- 0.01)
NB 0.87 (+/- 0.01)
RF 0.96 (+/- 0.01)
KNN 0.94 (+/- 0.01)

Adaboost 0.95 (+/- 0.01)
Deep Learning 0.96 (+/- 0.003)

XGboost 0.97 (+/- 0.01)

Table 4.5: 10-fold Cross-validation scores using imbalanced data-set.

Our analysis shows that XGBoost model lead to a better accuracy compared
to the other models. We have exploited this classifier in our malware detection
framework.

4.2 Evaluation and Benchmark

In this section, we report on the experimental evaluation of our malware de-
tection system. Our aim is to answer these research questions:

• Q1: How well are accuracy scores of our methodology in terms of F1-score,
Recall and Precision in both balance and imbalance class of problems?

4.2. Evaluation and Benchmark 77

• Q2: How much general accuracy can our classifier obtain?

• Q3: How much are the true positive rate, the false positive rate, and false
negative rate achieved by our proposed method?

We remind that we have provided two different kinds of data-set in terms of
class distribution, balanced and imbalanced data-sets. Our aim is to see how robust
is our proposed approach and how well performs in both balanced and imbalanced
class of problems. We conducted the experiment on a machine equipped with In-
tel(R) Core i7-4510U 3.1 GHz and 8GB of physical memory. The operating system
is Ubuntu 14.04 LTS (64bit).

4.2.1 Experimental Setup on balanced data-set

Apart from XGBoost classifier, the most performant classifier according to
10-fold CV results, we trained others classifiers on training set (20,000 samples) and
then tested their performance against testing set (2,000 unseen samples). We did this
to double-check that XGBoost classification algorithm outperforms other classifiers.
We computed accuracy measures, time taken to build the model (TTrain), time taken
to evaluate the model over testing set (TTest), and Confusion Matrix associated with
each classifier on balanced data-set. We summarize the major experimental findings
as follows:
• We obtained accuracy scores in terms of F1-score, Recall and Precision 96%,

96% and 96%, respectively.
• We achieved False Positive Rate (FPR) of 3.8%.
• 51 samples out of 2,000 malware samples are categorized wrongly as benign

samples leading to False Negative Rate (FNR) of 5%.
• 955 samples out of 994 malware samples are classifed correctly as malware

resulting in True Positive Rate (TPR) of 95%.

Tables from 4.6 to 4.14 show the results achieved from this experiment.

P
re
ci
si
on

R
ec
al
l

F
1-
sc
or
e

Su
pp

or
t

T
T
ra
in

T
T
es
t

Benign 92 96 94 994
Malware 96 92 94 1006
Total 94 94 94 2000 191.33 1.06

Predicted Label
Benign Malware

A
ct
u
al Benign TN: 959 FP: 35

Malware FN: 80 TP: 926

Table 4.6: Classification Report and Confusion Matrix of SVC-RBF.

P
re
ci
si
on

R
ec
al
l

F
1-
sc
or
e

Su
pp

or
t

T
T
ra
in

T
T
es
t

Benign 90 90 91 994
Malware 91 90 91 1006
Total 91 91 91 2000 0.58 0.001

Predicted Label
Benign Malware

A
ct
u
al Benign TN: 904 FP: 90

Malware FN: 97 TP: 909

Table 4.7: Classification Report and Confusion Matrix of Logistic Regression.

78 Chapter 4. Android Malware Detection

P
re
ci
si
on

R
ec
al
l

F
1-
sc
or
e

Su
pp

or
t

T
T
ra
in

T
T
es
t

Benign 95 96 95 994
Malware 96 95 95 1006
Total 95 95 95 2000 12.92 0.55

Predicted Label
Benign Malware

A
ct
u
al Benign TN: 952 FP: 42

Malware FN: 54 TP: 952

Table 4.8: Classification Report and Confusion Matrix of RandomForest.
P
re
ci
si
on

R
ec
al
l

F
1-
sc
or
e

Su
pp

or
t

T
T
ra
in

T
T
es
t

Benign 85 86 85 994
Malware 86 85 85 1006
Total 85 85 85 2000 0.06 0.003

Predicted Label
Benign Malware

A
ct
u
al Benign TN: 850 FP: 144

Malware FN: 148 TP: 858

Table 4.9: Classification Report and Confusion Matrix of Naive Baye.

P
re
ci
si
on

R
ec
al
l

F
1-
sc
or
e

Su
pp

or
t

T
T
ra
in

T
T
es
t

Benign 84 91 88 994
Malware 91 83 87 1006
Total 88 87 87 2000 0.08 0.001

Predicted Label
Benign Malware

A
ct
u
al Benign TN: 909 FP: 85

Malware FN: 167 TP: 839

Table 4.10: Classification Report and Confusion Matrix of Decision Tree.

P
re
ci
si
on

R
ec
al
l

F
1-
sc
or
e

Su
pp

or
t

T
T
ra
in

T
T
es
t

Benign 94 93 93 994
Malware 93 94 93 1006
Total 93 93 93 2000 1.0 6.12

Predicted Label
Benign Malware

A
ct
u
al Benign TN: 923 FP: 71

Malware FN: 63 TP: 943

Table 4.11: Classification Report and Confusion Matrix of K-NN.

P
re
ci
si
on

R
ec
al
l

F
1-
sc
or
e

Su
pp

or
t

T
T
ra
in

T
T
es
t

Benign 94 96 95 994
Malware 96 94 95 1006
Total 95 95 95 2000 70.6 0.48

Predicted Label
Benign Malware

A
ct
u
al Benign TN: 952 FP: 42

Malware FN: 61 TP: 954

Table 4.12: Classification Report and Confusion Matrix of Adaboost.

4.2. Evaluation and Benchmark 79

P
re
ci
si
on

R
ec
al
l

F
1-
sc
or
e

Su
pp

or
t

T
T
ra
in

T
T
es
t

Benign 95 95 95 994
Malware 95 95 95 1006
Total 95 95 95 2000 58562 1.4

Predicted Label
Benign Malware

A
ct
u
al Benign TN: 948 FP: 46

Malware FN: 54 TP: 952

Table 4.13: Classification Report and Confusion Matrix of Deep Learning.

P
re
ci
si
on

R
ec
al
l

F
1-
sc
or
e

Su
pp

or
t

T
T
ra
in

T
T
es
t

Benign 95 95 96 994
Malware 96 95 96 1006
Total 96 95 96 2000 60.6 0.29

Predicted Label
Benign Malware

A
ct
u
al Benign TN: 956 FP: 38

Malware FN: 51 TP: 955

Table 4.14: Classification Report and Confusion Matrix of XGboost.

4.2.2 Experimental Setup on imbalanced data-set

In this experiment, we trained the classifiers on training set (26,677 samples)
and then tested their performance against testing set (3,000 unseen samples). Due to
space limit, we just mentioned the results obtained by the most performant classifier
in Table 14.5. We summarize the major experimental findings as follows:

• We obtained accuracy scores in terms of F1-score, Recall and Precision 97%,
97% and 97%, respectively.

• We achieved FPR of 5%.

• 51 samples out of 3,000 malware samples are categorized wrongly as benign
samples leading to FNR of 2.7%.

• 1,035 samples out of 1,100 malware samples are classifed correctly as malware
resulting in TPR of 97.3%.

P
re
ci
si
on

R
ec
al
l

F
1-
sc
or
e

Su
pp

or
t

T
T
ra
in

T
T
es
t

Benign 96 97 96 1100
Malware 97 97 97 1900
Total 97 97 97 3000 72 0.4

Predicted Label
Benign Malware

A
ct
u
al Benign TN: 1035 FP: 65

Malware FN: 51 TP: 1849

Table 4.15: Classification Report and Confusion Matrix of XGboost on imbalanced
data-set.

80 Chapter 4. Android Malware Detection

There exist a great deal of literature focusing on malware detection using
dynamic and static analysis of Android applications. In the following, we put our
emphasis on some of malware detection schemes outperforming others while using
static analysis approach. In Table 4.16, we compare our proposed method with the
most performant approaches in the literature.
The comparison is based on evaluation metrics such as precision, recall, F-1 score,

accuracy scores (e.g., Cross-validation and test), TPR, FNR, FPR as well as data-set
size used in the experiments.
We have to point out that in order to show the improved accuracy of our technique

compared to other approaches, it would be more convincing to compare the different
approaches on exactly the same data-set.
Most of the methods we mentioned in our comparison table have used the same

APK files or at least have some APK samples in common. The difference steams
from extracting different features from those APK files. The resulting feature sets
provided by these methods differ in terms of type of features and number of features.
For instance, DroidMat uses permissions, intents, app components, and API calls as
features to perform classification task at hand. Drebin exploits permissions, H/W
and app components, filtered intents, API calls, and URLs.
DroidAPIMiner leverages permissions and API calls. Puma just uses permissions

as features. AndroSAT have extracted permissions, app components, and some API
calls from Java source code and SMALI files. ADAGIO exploits function call graph
extracted from apps. AndroTracker uses intents, permissions, API calls, system
commands.

It is worth mentioning that our proposed method (in terms of precision, re-
call, and F1-score) outperforms other state-of-the-art approaches. However, some
of the schemes that we investigated have not reported these performance metrics
in their experiments. As for testing accuracy score, DroidMat test score is just 1%
higher than our method, while their testing set size is not comparable with ours,
specifically in terms of number of malware samples. The test accuracy score (general
accuracy) of DroidAPIMiner is 3% better than our method. However, for evaluating
the performance on such an imbalanced data-set, the authors should have mentioned
precision, recall and F1-score. In addition to this, DroidAPIMiner was built on a
KNN classification algorithm that induces runtime overhead much higher than our
proposed method. It takes on average about 10 sec for K-NN classification algorithm
used in DroidAPIMiner to classify an APK file as either benign or malicious [176].

4.2.
E
valu

ation
an

d
B
en

ch
m
ark

81

Detection scheme Malware
apps

Benign
apps

Total
apps

CV
Acc.

Test
Acc

Pre.
score

Rec.
score

F-1
score

TPR FNR FPR

Puma, 2012 [177] 249 1,811 2,060 86.4% N/A N/A N/A N/A 91% N/A 19%
Androsat, 2014 [178] N/A N/A 1,932 95% N/A N/A N/A N/A N/A N/A N/A

AndroTracker,
2015 [179]

4,554 51,179 55,733 98% N/A N/A N/A N/A N/A N/A N/A

Allix et. al, 2014 [180] 1,200 51,800 52,000 91% N/A 94% 91% 91% N/A N/A N/A
DroiMat, 2012 [181] 238 1,500 1,738 N/A 97% 96% 87% 92% 87% 13% 0.4%
Sato et. al, 2013 [182] 130 235 365 N/A 90% N/A N/A N/A N/A N/A N/A
Drebin, 2014 [165] 5,560 123,453 129,016 N/A 93.8% N/A N/A N/A N/A N/A 1%
Madam, 2016 [183] 2,784 N/A 2,784 N/A 96.9% N/A N/A N/A N/A N/A 0.2%

DroidScribe,
2016 [184]

5,246 N/A 5,246 N/A 94% N/A N/A N/A N/A N/A N/A

DroidAPIMiner,
2013 [176]

3,978 16,000 19,978 N/A 99% N/A N/A N/A 97% 3% 2.2%

Droid-Sec, 2014 [185] 300 200 N/A N/A 96.5% N/A N/A N/A N/A N/A N/A
ADAGIO, 2013 [160] 12,158 135,792 147,950 N/A 89% N/A N/A N/A N/A N/A 1%
ANASTASIA* 11,000 11,000 22,000 96% 96% 96% 96% 96% 95% 5% 3.8%
ANASTASIA+ 18,677 11,187 29,864 97% 97% 97% 97% 97% 97.3%2.7% 5%

* Balanced data-set
+ Imbalanced data-set

Table 4.16: Performance comparison of our method against state-of-the-art.

82 Chapter 4. Android Malware Detection

4.3 Related Work

Machine Learning techniques hav e been recently applied to detection of mal-
ware for mobile devices [161,181,186]. The authors in [187] applied clustering tech-
niques in malware detection of Android applications. They extract the features of
the applications from application’s XML-file which contains permissions requested
by apps then use unsupervised Machine Learning techniques to detect malware ap-
plications automatically. Arp et al. [165] presented Drebin, an on-device malware
detection tool utilizing Machine Learning based on features like requested hardware
components, permissions, names of app components, intents, and API calls. Gascon
et al. [160] presented a method that disassembles applications and extracted their
function call graphs using the Androguard framework. They also proposed learning-
based method for the detection of malicious Android applications. Their method
employed an explicit feature map inspired by the neighborhood hash graph kernel
to represent applications based on their function call graphs.
Saracino et al. [183] proposed Madam which is a malware detection system analyz-

ing features at four different levels (e,g,. user, package, application and kernel). The
proposed system extracts features such as sensitive API calls, SMS and system calls
through dynamic analysis of an application and it also collects statically derived
features such as permissions, the application’s metadata and market information.
DroidScribe [184] leveraged a purely dynamic analysis approach for malware classi-
fication. The authors classify malware into different families by monitoring system
calls, Android Inter-Component Communication (ICC) through the Binder protocol
and network transactions generated by an application.
Allix et al. [188] have used several Machine Learning classifiers and built a set of

features such as Control Flow Graph of applications to classify benign from malware
applications. The authors focused exclusively on the history aspect of data-sets used
in their experiments than malware detection performance. Karim et al. [141] pro-
posed a classification approach to detect malware by extracting a data dependence
graph representing inter-procedural flows of data. The authors extracted a data-flow
feature on how user inputs trigger sensitive API invocations. The authors of [189]
suggested a solution to detect Android Malware Collusions by constructing Inter-
Component Communication (ICC). The authors constructed ICC maps to capture
pairwise communicating ICC channels of 2,644 Android apps. Britton et al. [190]
extracted the frequencies of all possible n-byte sequences in the Android applica-
tion’s bytecode as features and trained several classification algorithms to classify
benign apps from malicious ones. The authors used the data-set consists of 3,869
Android applications.
Suarez-Tangil et al. proposed DroidSieve [191], an Android malware detection

framework that uses static analysis to derive a number of features known to be
characteristic of Android malware. DroidSieve uses more than 100,000 benign apps
and over 17,000 malware apps and identifies two major classes of features: (i) syn-
tactic features which are extracted from the code and metadata of the application
(e.g., API calls, or permissions) and (ii) resource-centric features which are derived
from resources used by the application (e.g., certificates, or embedded native ELF
executables). DroidSieve’s architecture supports a variety of learning algorithms
such as: Extra Trees, Random Forests, and eXtreme Gradient Boost (XGBoost),

4.3. Related Work 83

and Support Vector Machine (SVM) to perform classification tasks.
We recall that what would distinguish our work from other approaches in lit-

erature are: (i) the data-set used in the experiment, (ii) the number of features
extracted from Android apps, and (iii) considering efficient and effective features to
detect malware apps. In this research work, we extracted as many informative and
discriminative features as possible from an Android app, while the features used in
aforementioned papers are not as comprehensive as ours to detect as much malware
apps as possible. In addition to this, we have used a reliable and malware data-set to
conduct our experiment, whereas most of data-sets used in above-mentioned papers
are not as updated as ours in terms of diversity and number of malware (e.g., having
past and recently developed malware applications).

84 Chapter 4. Android Malware Detection

4.4 Summary

In this chapter, we proposed ANASTASIA, a Machine Learning-based
malware detection using static analysis of Android applications. To this end, we
designed a tool, uniPDroid, to extract as many informative features as possible from
Android applications. We trained several classification algorithms to find out the
most performant ones in terms of accuracy and speed. We performed an extensive
Grid-search analysis along with Cross-validation to tune the hyper-parameter
of classifiers to obtain as much detection performance as possible. We selected
the most performant classifier via 10-fold Cross-validation to incorporate in our
framework. We obtained accuracy score of 97% in detection of unseen malware
for both balanced and imbalanced data-sets proving the robustness of features
extracted . In addition to this, we achieved true positive rate as high as 97.3% and
false negative rate as low as 2.7%.

85

Chapter 5

Android Malware Classification

using Robust Static Features

Since its first release in late 20081, Android smartphones have continuously been
replacing the traditional mobile phones. The advent of such high-powered and af-
fordable smart devices has redefined the way mobile phone users carry out their
day-to-day activities. From checking emails to doing online banking, mundane tasks
once conducted on a desktop only are now being executed “on the go". Accord-
ing to Gartner2, worldwide sale of Android smartphones in 2015 has reached more
than 271 million devices, which accounted for 82.2% of the market share. Due to
its popularity, the number of malware targeting the Android platform has increased
significantly in recent years. As such, malicious applications pose a significant threat
to the smartphone platform security. In the first half of 2014, F-Secure3 reported
that 295 new threat families or new variants of known families were collected. It is
also worth mentioning that 294 out of these 295 families run on Android platform.
Additionally, in the first quarter of 2015, Kaspersky’s mobile security products de-
tected 103, 072 new malicious applications, a three-fold increase from last quarter of
2014 [192].

On one hand, these statistics further prove that Android continues to be a fa-
vorite target for majority of the mobile threats, as smartphones continue to replace
traditional phones. On the other hand, the security of Android platform still requires
thorough understanding, as demonstrated by the plethora of attacks in [9–12]. Thus,
effective ways of enforcing security on such devices are still subject to investigation
and there exists further room for improvement. To address the aforementioned
security issue, we can leverage various techniques to analyze and detect Android
malicious applications, as described in previous chapter.

1http://www.cnet.com/news/a-brief-history-of-android-phones/
2http://www.gartner.com/newsroom/id/3115517
3https://www.f-secure.com/documents/996508/1030743/Threat_Report_H1_2014.pdf

86 Chapter 5. Android Malware Classification

In the early days, malware detection and classification mechanisms employed
only either static or dynamic analysis for feature extraction and malware predic-
tion. However, as malicious programs continued to evolve in complexity and to
deploy sophisticated attacks, there was a need for more robust frameworks. Thus,
applying a hybrid method, which is a combination of static and dynamic analysis as
shown in [193], when building the feature vector space is considered as one way of
dealing with this problem. It should be noted that selecting a hybrid method when
dealing with smartphone malware is not a popular method as this technique requires
high computational resources and could impact negatively on the desired seamless
interaction between the user and the device. Static analysis technique is beneficial
on memory-limited Android-powered devices since the malware is not executed and
only analyzed. Additionally, static analysis makes use of reverse engineering tools
to extract information from an application. For these reasons, we will focus on
the lightweight approach and thus, advocate for static analysis through the use of
machine learning.

Although it is critical to distinguish malicious applications from clean ones, it
is also important to efficiently classify malware into their correct families. Malware
authors often redistribute repackaged version of existing malware and therefore, by
correctly classifying the original malware, it becomes easier for anti-virus engines to
detect repackaged versions. Moreover, the features used to classify malware should
also be robust and relevant over a long period of time as out-of-date features would
allow malware samples to evade detection and classification mechanisms. To address
the aforementioned issues, we focus solely on malicious applications to firstly inves-
tigate how to efficiently and accurately classify malware samples into their correct
families, and secondly generate robust feature sets that will stand the test of time
and still be relevant over a period of years; this is tested through the experimental
work referred to as cumulative classification.

In this chapter, we propose a malware classification method to: (i) leverage an
extensive coverage of applications’ behavioral characteristics than the state-of-the-
art; (ii) integrate decision-making through multiple classifiers; and (iii) utilize the
robustness of extracted features to detect and classify newly-discovered malware.
Specifically, we utilize a large number of features, extracted statically, from our
extensive dataset comprising of 15, 884 samples. In order to build our classifier,
we utilize the eXtreme Gradient boost (XGboost4) classifier, which is an ensemble
method where weaker learners are combined to make a stronger learner. XGboost
contains a modified version of the Gradient Boosting algorithm and can automati-
cally do parallel computation with OpenMP, and it is much faster than the existing
Gradient Boosting algorithm. Our aim is to maximize the accuracy scores of our
classifier in terms of F1-score, Recall and Precision.

Contribution : The work described in this chapter brings the following contri-
butions:

• We presented an Android malware detection and classification method that
uses several informative features with good discriminative power to categorize
malicious apps under their respective family names. We designed and built

4https://github.com/dmlc/xgboost

5.1. Proposed Classification Framework 87

a tool named uniPDroid, written in Python programming language to ex-
tract the features such as Intents, permissions used by an app, critical API
calls, Linux system commands, and some other features that might indicate
capability of performing malicious activities by an app.

• We performed an extensive static analysis on a well-labelled dataset of 15, 884
Android applications. The dataset includes malware developed within a seven-
year period, from year 2009 to 2015 and collected from different well-known
and reliable repositories.

• We used several ML classification algorithms to discover the most highly per-
forming one in terms of accuracy and speed. We leveraged boosting techniques
to obtain as much detection and classification performance as possible for An-
droid malware detection in the wild. Our experimental evaluations show that
our proposed detection method is very effective and efficient. It obtained a
true positive rate in detecting malware applications as high as 92%.

This chapter is organized as follows: Section 5.1 provides an extensive description
of the proposed classification framework, including the dataset collection and pre-
processing, feature extraction and selection, and evaluation metrics used. We then
present the experimental work for malware family-based classification in Section 5.2,
and cumulative classification in Section 5.3 and analyze and discuss the empirical
results. in Section 5.4, we present the related work in the area of malware detection
and classification and conclude in Section 5.5.

5.1 Proposed Classification Framework

This section provides extensive details on how the experimental dataset was
collected and pre-processed, feature extraction and selection, and a description of
the classification models and evaluation metrics used for the empirical results. In
Section 5.1.1, we describe the composition of our experimental dataset, followed
by an explanation of the different types of features extracted in Section 5.1.2. In
Section 5.1.3, we elaborate on the methodology used for selecting the most rep-
resentative features used by our classification model. Section 5.1.4 explains the
classification model used in our experiments. Finally, in the last subsection, we
provide more details on the evaluation metrics used for our empirical results.

88 Chapter 5. Android Malware Classification

Figure 5.1: Framework of proposed classification methodology

5.1.1 Dataset Collection and Pre-processing

In this subsection, we provide further detail on the composition of our exper-
imental dataset. In order to conduct an extensive analysis, we collected a set of
well-labeled Android malicious applications. The dataset used in our evaluation
is composed of 15, 884 malicious applications collected from the following existing
work in the literature: [166,167,194,195], as we explained them in previous chapter.
Table 5.1 shows the details of the dataset composition.

Repository No. of samples
Genome [194] 1,260
Drebin [195] 5,560
M0Droid [167] 193
VirusTotal [166] 8,871

Total 15,884

Table 5.1: Dataset composition

To perform malware classification using supervised machine learning classifica-
tion algorithm (for example, XGBoost classifier), we are required to provide a well-
labelled dataset. To find the class label associated with each malware sample in our
dataset, we wrote several scripts in Bash and Python programming languages. We
submitted each malware sample to Virustotal [166] and made a query to get the
malware family name, as shown in listings 5.1 and 5.2. Virustotal then returned an
analysis report for the given file in the form of JSON object as depicted in Listing
3. We then parsed the JSON object and performed text processing to extract the
related family names. The names were then used as class labels since there is no
agreed-upon malware naming convention among antivirus (AV) companies.

In order to decide on the family name for each class label, we took into account
the family names of top eight AV engines5. Leveraging these top eight AVs and

5http://www.av-comparatives.org/wp-content/uploads/2014/03/security_survey2014_en.pdf

5.1. Proposed Classification Framework 89

based on majority voting role, we extracted the selected malware family names.
The AVs that we exploited are among the top AV engines used on the Android
platform and are namely: MicroWorld-eScan, BitDefender, Kaspersky, Avira, AVG,
Emsisoft, AVware, and F-Secure. The reason for considering only these eight AVs
is because (i) they are among top AV engines dedicated to the Android Platform;
(ii) we observed that these AV outperform others in most cases, particularly when
detecting malware; and (iii) we did not further complicate the text processing phase
by increasing the number of AV engines.

1 #imports
2 import simplejson
3 import urllib
4 import urllib2
5
6 url = "https://www.virustotal.com/vtapi/v2/file/report"
7 parameters = {"resource":APK-hasH-name,"apikey":apikey}
8 data = urllib.urlencode(parameters)
9 req = urllib2.Request(url, data)

10 response = urllib2.urlopen(req)
11 json-object = response.read()
12 print json-object

Listing 5.1: Example of a Python script for sub-
mitting malware samples to Virustotal

1 {"scans": {
2 "Kaspersky":{"detected":true,"version":"15.0","result":"Trojan-Spy.AndroidOS.Adrd.a",.},
3 "BitDefender":{"detected":true,"version":"7.2","result":"Android.Trojan.Adrd.A",..},
4 "Emsisoft":{"detected":true,"version":"3.5.642","result":"Android.Trojan.Adrd.A",.. },
5 "F-Secure":{"detected":true,"version":"11.0.190.45","result":"Trojan:Android/Adrd.A",..},
6 "Avira":{"detected":true,"version":"8.3.2.4","result":"ANDROID/Spy.Adrd.D.Gen",..},
7 .
8 .
9 "AVG":{"detected":true,"version":"16.0.0.4489","result":"Android/Adr",..},

10 "resource": "4de0d8997949265a4b5647bb9f9d42926bd88191", "total": 54, "positives": 38,
11 "md5": "77b0105632e309b48e66f7cdb4678e02",...}

Listing 5.2: Example of a JSON file produced by Virustotal

5.1.2 Feature Extraction

Android applications are written in Java, compiled to Java bytecode, and then
converted into platform-specific Dalvik bytecode. This bytecode can be efficiently
disassembled and provides us with useful information about features used in an
application. We mainly extracted the features from bytecode and converted these
features into binary feature vectors, which are made up of 560 features. Each feature
vector is comprised of the features described in previous chapter, since we found these
features effective and efficient while preforming classification tasks .

5.1.3 Feature Selection

To avoid from problems such as misleading the learning algorithm, over-fitting,
and increasing model complexity, we benefited from feature selection algorithm ex-
plained in previous chapter to select the most important features for classification
tasks. Figure 5.2 shows the most important features (101 binary features) that we
used to train and evaluate our classification algorithms.

90
C
h
ap

ter
5.

A
n
d
roid

M
alw

are
C
lassifi

cation

Figure 5.2: Key features extracted from our dataset

5.1. Proposed Classification Framework 91

5.1.4 Classification Models

XGBoost [170] is the abbreviation for eXtreme Gradient Boosting. Gradient
refers to the use of gradient descent, which can be used as a way to find a local
minimum of a function and Boosting is a technique which consists of the fact that
a set of weak learners is stronger than a single strong learner. XGboost algorithm
uses a differentiable loss function to calculate the adjustments needed to be made
to a consecutive successor learner in an iterative learning sequence. The algorithm
can automatically do parallel computations with OpenMP and it is much faster
than existing Gradient Boosting algorithm. Listing 5.1.4 provides an excerpt of the
source code for XGBoost.

1 import numpy as np
2 import xgboost as xgb
3 from sklearn.metrics import classification_report
4
5 def train():
6 data_train = np.genfromtxt(open("train.csv","r"), delimiter=",")
7 y_train = data_train[:,0]
8 X_train = data_train[:,1:]
9 xg_train = xgb.DMatrix(X_train, label=y_train)

10 data_test = np.genfromtxt(open("test.csv","r"), delimiter=",")
11 y_test = data_test[:,0]
12 X_test = data_test[:,1:]
13 xg_test = xgb.DMatrix(X_test, label=y_test)
14 # setup parameters for xgboost
15 param = {}
16 param[’objective’] = ’multi:softmax’
17 param[’eta’] = 0.1
18 param[’max_depth’] = 6
19 param[’num_class’] = 78 # Number of classes starting from 0
20 watchlist = [(xg_train,’train’), (xg_test, ’test’)]
21 num_round = 260
22 bst = xgb.train(param, xg_train, num_round, watchlist);
23 # get prediction
24 y_pred = bst.predict(xg_test);
25 print classification_report(y_test, y_pred)
26
27 if __name__ == ’__main__’:
28 train()

Listing 5.3: Example of code for the Machine Learning classifier,
eXtreme Gradient Boosting

The different parts of the proposed classification methodology, explained in pre-
vious subsections, can be summarized in Figure 5.1. We extended the Androguard
tool [127] and built uniPDroid, a static analysis tool written in Python program-
ming language. Our proposed method uses this tool to extract several informative
features representing characteristics of the application and leverages several Python
ML libraries to build the best performing classifier, XGBoost, in order to perform
classification task. In particular, the system consists of two modules: (i) Feature
Extraction Module, and (ii) Machine Learning Classification Module. The feature
extraction module includes three components. The uniPDroid.py is the main
component within this module extracting informative features from an application
while Androguard and Androlyze.py are auxiliary components providing sup-
port for performing feature extraction task. The ML classification module leverages
several ML packages to perform classification. The main component within this
module is the MalClassifier.py. The Scikit-learn and REP packages pro-

92 Chapter 5. Android Malware Classification

vide different classification algorithms and some helper functions for performance
evaluation.

5.1.5 Evaluation metrics

Table 5.2 introduces the metrics that we considered in order to assess the perfor-
mance of the ML classification algorithms in class imbalance problem, that is, the
total number of a class of positive data is far less than the total number of negative
data. The highest precision means that an algorithm returns substantially more
relevant results than irrelevant ones, while the highest recall means an algorithm
returns the most of the relevant results. The F1-score combines precision and re-
call: it is the harmonic mean of precision and recall. We elaborate further on our
empirical results in next sections.

Metric Description Formula
Precision Measure of exactness or quality TP

TP+FP

Recall Measure of completeness or quantity TP

TP+FN

F1-score Harmonic mean of precision and recall 2×Precision×Recall
Precision+Recall

Table 5.2: Performance metrics

5.2 Malware Family-based Classification

In this experiment, we carried out family by family malware classification. To
this end, we grouped 15, 884 Android malware in our repository into 204 different
malware families. To perform an efficient and effective classification task and have
sufficient samples to feed our proposed ML classification algorithm, we discard mal-
ware families that include less than 10 samples and consequently, ended up with 78
malware families. We shuffled and split the whole data points into training and test-
ing sets, 80% and 20% respectively. We leveraged XGBoost classification algorithm
to perform classification task over the 78 different malware families. Tables 5.3,
5.4, and 5.5 show the malware families used in our experiments as well as the in-
fection risks associated with each malware family.6 Before conducting classification
task, in order to achieve a high accuracy in performance, we fine-tuned the hyper-
parameters of our classification algorithm through Grid-Search procedure combined
with 5-fold Cross-Validation over the training set. Having the best parameters se-
lected, we trained our classifier on the training set (13, 000 samples) and tested its
performance against 3, 000 unseen samples in classifier point of views. Table 5.6
shows the classification results (F1-score) for each malware family and Table 5.7
illustrates the overall accuracy measures in terms of Precision, Recall, and F1-score
over the 78 malware families.

6We would have to remind that the major criteria that are used to classify malware are prop-
agation, harm done, and resiliency. Different kind of malware apps do have certain propagation
mechanism, do certain type of harm on the system and use specific techniques to stay resilient.
Different malware families might have the same risk infection and harm the system in a similar
manner but they differ in terms of propagation mechanism and resiliency techniques. that is way
in the following tables malware families with the same infection risk are classified differently (in
different groups).

5.2. Malware Family-based Classification 93

Family
Name Infection Risks

AdFlex An advertisement library may compromise your personal in-
formation

ADRD Steals private information

Adwo An advertisement library may compromise your personal in-
formation

Agilebinary A Spyware accessing the file system and retrieving app data

AirPush A very aggressive Ad-Network and compromises your per-
sonal information

Andup Steals personal information

AppQuanta An advertisement library may compromise your personal in-
formation

Asroot Uses Asroot root exploit

AutoSMS Attempts to steal sensitive data by seizing incoming SMS
messages and forwards them to a remote site

BaseBridge Sends premium-rate SMS to predetermined numbers
Boxer Sends SMS to premium-rated numbers

Cobbler A monitoring tool and wipes the SD card’s contents and
everything stored on the device

DDLight Collects information about the device and sends back to a
remote server

Dianjin An advertisement library which may compromise your per-
sonal information

Dianle Interrupts the normal operations and gains access to private
information

Dougalek Steals personal information and uploads these data to a re-
mote server

Downloader Gains root access and downloads additional malicious apps
DroidSheep Captures and hijacks unencrypted web sessions

Dropper Interrupts the normal operations and gains access to private
information

Ewalls Steals information from the mobile device
Exploid Exploits vulnerabilities to gain root privileges on devices

FakeApp Downloads configuration files to display advertisements and
collects information from the compromised device

FakeBank Opens a back door and steals information from the compro-
mised device

FakeDoc Installs additional applications

FakeInstall Pretends to be an installer for legitimate app, sends
premium-rate SMS

FakeTimer Sends personal information to a remote server and opens
pornographic websites

Table 5.3: Infection risks associated with each malware family

94 Chapter 5. Android Malware Classification

Family
Name Infection Risks

Feejar Sends SMS to premium-rated numbers
Geinimi Opens a back door and transmits private information
Gepew Attempts to replace installed apps with trojanized versions
GingerBreak A root exploit for Android 2.2 and 2.3
GingerMaster Utilizes a Root Exploit and provides root-level access
GoldDream Steals information from Android devices
GoneSixty Steals private information

Hamob An advertisement library may compromise your personal in-
formation

HiddenAds Does not have an icon and runs in a stealth mode and dis-
plays various advertising messages

Igexin An advertisement library may compromise your personal in-
formation

InfoStealer Secretly collects and uploads sensitive information
JSmsHider Opens a backdoor and sends information to a specific URL
Kmin Attempts to send data to a remote server

Kuguo An advertisement library may compromise your personal in-
formation

KungFu Forwards confidential information to a remote server

LeadBolt An advertisement library may compromise your personal in-
formation

Lovetrap Sends SMS to premium-rated numbers and steals informa-
tion

Mecor Monitors and compromises your personal information
Metasploit Exploits vulnerabilities to gain root privileges on devices

Minimob Compromise personal information and distributes via spam
email

Mobclick Aggressively pushes unwanted ads and steals personal infor-
mation

MobileTX Steals information from the compromised device and may
send SMS to a premium-rate number

Mseg Steals private data and secretly send SMS to premium-rated
numbers

MTK Interrupts the normal operations and gains access to the pri-
vate information

Mulad Generates income by injecting ads into legitimate free apps

NickiSpy Gathers information from infected user’s smartphone and
uploads the data to a specific URL

Table 5.4: Infection risks associated with each malware family (continued)

5.2. Malware Family-based Classification 95

Family
Name Infection Risks

NoiconAds Compromises personal information
Pentr A Spyware and hack-tool enables penetration testing
RuFraud Sends SMS to premium rated numbers

SecApk An advertisement library that compromises your personal
information

SLocker Encrypts images, documents and videos in the SD Card to
later ask for a ransom to decrypt the files

SMSKey Interrupts the normal operations and gains access to the pri-
vate information

SmsPay Mimics a legitimate app and requires an activation fee
through SMS

SMSReg Registers the infected user to non-free services

SMSSend Reaps profit by silently sending SMS to premium-rate num-
bers

SmsSpy Attempts to steal sensitive data by seizing incoming SMS
and forwards them to a remote site

SMSZombie Exploits a vulnerability in the mobile payment system used
by China Mobile

SndApps Compromises your personal information
SpyHasb Monitors phone calls, SMS, and GPS locations
SpyPhone Steals personal data

Steek A fraudulent app advertising an online income solution and
steals privacy related information and sends SMS

Tekwon Interrupts the normal operations and gains access to the pri-
vate information

Utchi An advertisement library may compromise your personal in-
formation

Vdloader Steals personal information

Viser Opens back door by use of the system loopholes to introduce
some adware, browser extensions, spyware or ransomware

Wallap Promises access to a wide collection of wallpapers and uses
ads libraries to generate revenue

Waps An advertisement library may compromise your personal in-
formation

Wapz An advertisement library may compromise your personal in-
formation

Youmi An advertisement library may compromise your personal in-
formation

YZHCSMS Sends SMS to a premium-rate number

Zdtad An advertisement library may compromise your personal in-
formation

Zsone Sends SMS to premium rated numbers

Table 5.5: Infection risks associated with each malware family (continued)

96 Chapter 5. Android Malware Classification

Family
Name

Sa
m
pl
es

Y
ea
r

D
ev
el
op

ed

P
er
ce
nt
ag
e

of
ap

ps

C
la
ss
ifi
ca
ti
on

F
1-
sc
or
e
(%

)

AdFlex 68 2013 0.40 86
ADRD 59 2010 0.37 100
Adwo 388 2011 2.4 83

Agilebinary 10 2010 0.06 100
AirPush 787 2010 4.9 93
Andup 18 2013 0.11 100

AppQuanta 39 2013 0.24 100
Asroot 12 2009 0.07 100

AutoSMS 46 2013 0.28 75
BaseBridge 608 2010 3.8 97

Boxer 21 2010 0.13 77
Cobbler 15 2011 0.09 100
DDLight 124 2011 0.78 100
Dianjin 91 2012 0.57 91
Dianle 54 2012 0.33 77

Dougalek 22 2012 0.13 93
Downloader 75 2012 0.47 83
DroidSheep 11 2011 0.06 100
Dropper 123 2014 0.77 95
Ewalls 43 2009 0.27 100

Family
Name

Sa
m
pl
es

Y
ea
r

D
ev
el
op

ed

P
er
ce
nt
ag
e

of
ap

ps

C
la
ss
ifi
ca
ti
on

F
1-
sc
or
e
(%

)

Exploit 41 2010 0.25 100
FakeApp 104 2011 0.65 80
FakeBank 84 2014 0.52 96
FakeDoc 130 2011 0.81 100

FakeInstall 1729 2011 10.8 98
FakeTimer 21 2012 0.13 100

Feejar 12 2014 0.07 50
Geinimi 152 2010 0.95 100
Gepew 13 2014 0.08 100

GingerBreak 14 2011 0.08 67
GingerMaster 489 2011 3 90
GoldDream 126 2011 0.8 77
GoneSixty 15 2011 0.09 100
Hamob 35 2012 0.22 80

HiddenAds 44 2014 0.28 91
Igexin 42 2011 0.26 91

InfoStealer 209 2010 1.3 91
JSmsHider 11 2009 0.07 100

Kmin 187 2010 1.1 99
Kuguo 84 2012 0.52 50

Family
Name

Sa
m
pl
es

Y
ea
r

D
ev
el
op

ed

P
er
ce
nt
ag
e

of
ap

ps

C
la
ss
ifi
ca
ti
on

F
1-
sc
or
e
(%

)

KungFu 1051 2011 6.6 98
LeadBolt 178 2011 1.1 77
Lovetrap 11 2010 0.07 100
Mecor 10 2015 0.06 100

Metasploit 23 2014 0.14 100
Minimob 14 2013 0.09 40
Mobclick 101 2010 0.63 71
MobileTX 69 2011 0.43 100

Mseg 20 2011 0.12 67
MTK 97 2013 0.61 100
Mulad 1008 2012 6.3 99

NickiSpy 11 2010 0.07 100
NoiconAds 882 2014 5.5 99

Pentr 13 2011 0.08 67
RuFraud 21 2011 0.13 93
SecApk 59 2012 0.37 50
SLocker 22 2014 0.13 100
SMSKey 34 2011 0.21 100
SmsPay 1331 2010 8.4 88
SMSReg 1916 2010 12.3 88

Family
Name

Sa
m
pl
es

Y
ea
r

D
ev
el
op

ed

P
er
ce
nt
ag
e

of
ap

ps

C
la
ss
ifi
ca
ti
on

F
1-
sc
or
e
(%

)

SMSSend 487 2010 3 84
SMSSpy 207 2010 1.3 89

SMSZombie 18 2012 0.11 100
SndApps 23 2011 0.14 100
SpyHasb 13 2010 0.08 100
SpyPhone 23 2010 0.14 91
Steek 28 2011 0.17 91
Tekwon 16 2013 0.10 86
Utchi 26 2012 0.16 100

Vdloader 17 2012 0.10 77
Viser 36 2012 0.22 100
Wallap 88 2012 0.55 92
Waps 570 2011 3.5 78
Wapz 231 2012 1.5 75
Youmi 588 2010 3.7 82

YZHCSMS 59 2010 0.37 100
Zdtad 396 2015 2.5 99
Zsone 31 2011 0.19 86

Table 5.6: The number of malware samples, year developed and classification results
of 78 malware families from our experimental dataset

5.3. Cumulative Classification 97

Table 5.6 shows the results of classification per malware family, number of sam-
ples, the year that those samples have been developed, and the percentage of malware
families represented in our dataset. According to the table, the malware families such
as SMSReg, FakeInstall, SMSPay, Kungfu, and Mulad have the biggest share
of malware samples in the entire dataset, 12.3%, 10.8%, 8.4%, 6.6%, and 6.3% re-
spectively.

The worst classification results, 40%, belongs to Minimob family with 14 sam-
ples. It is obvious that by increasing the number of samples in the training set,
our proposed ML classification algorithm will be expected to perform the training
procedure better. It can be noted in Table 6, as the size of the training set for
each malware family increases (that is, number of samples in each family), the accu-
racy (F1-score) gets better. In other words, with a few amount of samples it is not
reasonable to expect to achieve good prediction accuracies from the classification
algorithm.

Additionally, the average accuracy in terms of precision, recall, and F1-score for
all 78 malware families are reported in Table 5.7. We conducted a 10-fold Cross-
Validation experiment to compute Mean Error Rate for both training and testing
sets. Table 5.8 shows the results obtained from this experiment. For the 10-fold
cross-validation, the data is randomly partitioned into 10 equal size subsamples.
Of the 10 subsamples, a single subsample is retained as the validation data for
testing the model (Testcv), and the remaining 9 subsamples are used as training data
(Traincv). The process is then repeated 10 times, with each of the 10 subsamples
used exactly once as the validation data. The 10 results from the folds can then be
averaged to produce a single estimation.

Precision Recall F1-score Support
Avg / Total 92 92 92 3000

Table 5.7: Classification Report (%) for test set (unseen samples)

Traincv Mean Error Rate Testcv Mean Error Rate
CV 10-Fold 0.033359 (+/- 0.000760) 0.091460 (+/- 0.007298)

Table 5.8: Cross-Validation result for training set

Comparing the F1-score, as shown in Table 5.7, which has been obtained from
evaluating our proposed classifier against unseen samples with Testcv, Mean Error
rate and the prediction from Cross-Validation (which is equal to 92% accuracy), we
can draw this conclusion that our ML classification algorithm is never over-fitted
and is able to predict unseen samples with high accuracy rate.

5.3 Cumulative Classification

In this experiment, we accumulated Android malware apps and carried out cu-
mulative classification where the classification results are continuously updated as

98 Chapter 5. Android Malware Classification

new malware samples are discovered. The number of malware used in our exper-
iment is 15, 884 samples. Figure 5.3 depicts the number of malware collected by
month within the period 2009 and 2015 and Figure 5.4 shows the cumulative graph
of the malware apps collected each month for that same period. In our cumulative
classification, we used 56 different malware groups.

Figure 5.3: Malware number per month

Figure 5.4: Malware number per month

To generate the first malware group, MG1, we take the malware apps from
June 2009 and September 2010 which comprises of 124 samples in order to have
an initial set of samples enough to perform classification. The second data group,
MG2, contains the malware from June 2009 up to October 2010; this is achieved
by adding malware belonging to upcoming month to previous months to generate
the next malware group). For MG3, we take the malware from June 2009 up to

5.3. Cumulative Classification 99

November 2010. The process is repeated until all the malware in the dataset are
incorporated into the malware groups. Finally, we ended up with having 56 groups,
MG1,..., MG56 altogether, as shown in Figure 5.4.

We trained the classification algorithm, XGBoost, on each malware group, MGi
and tested its performance against malware belonging to upcoming months. We
should take this point into account that malware belonging to the next month is
unseen for the classification algorithm. We computed accuracy measures in terms
of Precision, Recall, and F1-score, Figure 5.5. The aim was to investigate how
features of old malware samples can be of help to classify new variant of both
known and unknown malware families.

We performed cumulative classification to investigate how well the old malware
can help us to detect new malware. In the other word, how old malware can con-
tribute to detecting new variant of both known and unknown malware families. As
for the accuracy measures obtained from cumulative classification, Figure 5.5, at
some points (e.g., February 2015) accuracy measures drops. The reason for such a
decrease in classifier performance is that we have trained the ML algorithm in certain
time on data-points belonging to past up to that time and we evaluate its perfor-
mance against future data-points. In the testing dataset, there exist some samples
which are considered as zero-day malware in the wild (that is, recently developed
malware). The ML classification algorithm has not been trained on such samples
and has no idea about these malware samples which have completely different pat-
terns in terms of features. Consequently, the classifier cannot predict the correct
label of these samples based on its past experience. As it can be seen, in next round
of cumulative classification by adding the old samples and enriching the training set
we let the classifier learn more about past data and as a result the classifier might
perform better during classification stage.

100
C
h
ap

ter
5.

A
n
d
roid

M
alw

are
C
lassifi

cation

Figure 5.5: Accuracy measures

5.4. Related Work 101

5.4 Related Work

Machine Learning (ML) techniques have been extensively used for detection
and classification of malware on mobile devices [161, 186, 196]. In the remainder of
this section, we present some of the existing work in the area of Android malware
classification.

Sahs et al. [197] presented an ML-based framework for Android malware de-
tection using Support Vector Machines (SVM) algorithms. The authors exploited
a single-class SVM model derived from benign samples. They used the Android
permissions in the Manifest files and CFGs of applications from the dataset.
Crowdroid [198] collects behavioral-related data directly from users via crowd-
sourcing and evaluates the data with a clustering algorithm.

Shabtai et al. [199] proposed a new method for categorizing Android applications
through ML techniques. To represent each application, their method extracts dif-
ferent feature sets including the frequency of occurrence of the printable strings, the
different permissions of the application itself, and the permissions of the application
extracted from the Android Market. Abela et al. [200] presented AMDA, an auto-
mated malware detection system for the Android platform. The authors extracted
features such as system calls form benign and malware applications to provide base-
line behavior datasets to feed machine learners. Test applications are then passed
through the behavior-based module for identification of presence of malicious pay-
loads. Similarly, RobotDroid [201] is a framework that detects smartphone mal-
ware based on SVM active learning algorithm. The authors in [202] designed an
anomaly detection system that extracts the strings contained in application files in
order to detect malware. Their proposed method is based on features that were
extracted from string analysis of the application.

Martinelli et al. [203] proposed CAMAS, a framework for the analysis and classifi-
cation of malicious Android applications, through pattern recognition on execution
graphs. They extracted a subset of frequent subgraphs of system calls that are ex-
ecuted by most of the malware. The resulting vector of the subgraphs is given to
a classifier that returns its decision in terms of whether or not a malware has been
detected. DroidAnalytics [204] is a malware analytic system for malware collec-
tion, signature generation and association based on similarity scores by analyzing
the low-level system at the application, class or method level.

The authors in [205] proposed another detection method for Android malware.
In particular, they used only manifest files to detect malware. The proposed method
extracts six types of information from manifest files such as Permission, Intent (ac-
tion, priority and category), Process name and Number of redefined permission and
then uses them to detect Android malware. DroidMat presented by Wu et al. [196],
exploits permissions, intents, inter-component communication, and API calls to dis-
tinguish malicious apps from benign ones. The detection performance was evaluated
on a dataset of 1, 500 benign and 238 malicious applications and compared with the
Androguard risk ranking tool, with respect to detection metrics such as accuracy
rate.

The work in [162] presented a machine learning approach including SVM, De-
cision Trees (DT), and Bagging predictor to detect malicious Android applications.
They trained and tested a classifier by using extracted permissions and API calls as

102 Chapter 5. Android Malware Classification

features to identify whether an application is potentially malicious or not. Koundel
et al. [206] designed a Naive Bayes classifier to classify applications using various
attributes of an application, such as the permissions used by an application, bat-
tery usage and rating acquired by the application on Android market. MAMA [207]
presents Manifest analysis for malware detection in Android. It extracts several
features from the Android Manifest of the applications to build machine-learning
classifiers such as K-Nearest Neighbors, DT, SVM and Bayesian networks.

The literature presented in this section provides an overview of the existing work
in the field of Android malware versus cleanware detection and ML-based classifica-
tion methodologies. In our work, we focused solely on Android malware, proposing
a novel ML-based methodology that can efficiently, and with high accuracy, assign
malware samples to their correct family names. We argue that it is not only impor-
tant to detect malicious applications, but also to label them correctly as malware
authors often repackage existing malware. Hence, re-detecting these repackaged
samples becomes easier if the correct family names are used. Additionally, we an-
alyzed the robustness of our extracted features used by the proposed methodology
by performing a cumulative malware classification. We verified how efficient are
features extracted from old malware samples in terms of detecting and classifying
newly discovered malware.

5.5 Summary

In this chapter, we proposed an ML-based malware detection and classification
methodology together with the application of static analysis on an extensive dataset
of Android applications. To this end, we designed a tool, uniPDroid, to extract as
many informative features as possible from our dataset. We considered mainly fea-
tures from the Dalvik bytecode. The features extracted were converted into feature
vectors, each containing 560 binary features. We then applied feature selection on
the aforementioned extracted features, which led to the selection of 101 informative
binary features suitable to feed our proposed classification methodology.

Moreover, we performed an extensive Grid-search analysis along with a 10-fold
Cross-validation to tune the hyper-parameters of the classification algorithm to max-
imize the prediction accuracy. We performed Family-by-Family classification and
obtained an average accuracy score of 92% in classification of unseen malware. In
addition to this, we conducted a cumulative classification in order to investigate how
well old malware can contribute to the detection of new variants of both known and
unknown (zero-day) malware. We achieved reasonable accuracy rate, hence proving
the robustness of the features extracted.

103

Part II

Security Analysis on Wearable

Fitness Devices

105

Chapter 6

Security Analysis, Reverse Engineering

and Spoofing Popular Fitness Devices

There have been several research work in the literature analyzing security and
privacy of wearables. Researchers in some of these work attacked to data in-
tegrity and user privacy through the analyzing Bluetooth or HTTP(S) communi-
cations [208], [209], [28], and [210]. In other papers, they exploited vulnerabilities in
Firmware update process to either manipulate the Firmware or inject crafted version
of the Firmware into wearable, [211], and [212]. Since the data collected by fitness
trackers are used by third party service providers for different type of data analytics,
the integrity of the data must be protected such that a malicious user or third-party
attacker cannot manipulate the data. Hence, we analyzed the security of a set of
fitness trackers that use coding and data integrity check mechanisms and are known
to be more secure than their counterparts in the market. We monitored and ana-
lyzed communications between the fitness devices and associated back-end services
in the cloud and investigated the feasibility of tampering with data collected by the
health trackers before it is uploaded to the cloud. We conducted false data injection
attacks into remote servers for these wearables. To the best of our knowledge, false
data injection attack for wearables employing proprietary coding and data integrity
check mechanisms has not been done previously in the literature.

Contribution: We conduct an in-depth security analysis of some of the most
popular Fitness trackers in the market. We reveal serious security-related vulnerabil-
ities in these devices which can be exploited once identified. Specifically, we analysis
the primitives governing the communication between trackers and cloud-based ser-
vices. We show that designing and deploying security controls such as end-to-end
encryption, data integrity check ,and digital signature in a robust and concrete way
are overlooked by wearable manufactures. We document successful injection of fab-
ricated data (along with Proof-of-Concept attack) and demonstrate malicious users
can inject spoofed activity records to obtain personal benefits.

106
Chapter 6. Popular Fitness Devices: Security Analysis, Reverse Engineering

and Spoofing

Tracker Name App Name Sync. St
ep

s
C
ou

nt

C
al
or
ie
s
B
ur
ne
d

H
ea
rt
-r
at
e

D
is
ta
nc

e

E
le
va
ti
on

/S
ta
ir
s

Sl
ee
p
T
im

e

A
ve
ra
ge

P
ri
ce

$

Garmin Vivosmart HR Garmin Connect BLE 3 3 3 3 3 3 150
Garmin Vivofit2 Garmin Connect BLE 3 3 3 3 7 3 100
Garmin Vivofit Garmin Connect BLE 3 3 7 3 7 3 55
Polar Electro Loop Polar Flow BLE 3 3 3 3 7 3 50
ViFit MEDISANA VitaDock+ USB 3 3 3 3 7 3 34
Xiaomi MiBand Mi Fit BLE 3 3 7 3 7 3 16
Jawbone UP3 JAWBONE UP3 BLE 3 3 3 3 7 3 180
Jawbone Move UP JAWBONE UP BLE 3 3 7 3 7 3 50
Misfit Shine Misfit BLE 3 3 7 3 7 3 25
Mio Link Mio GO BLE 7 7 3 7 7 7 100
Withings Pulse Health Mate BLE 3 3 3 3 3 3 80
Runtastic Orbit Runtastic Me BLE 3 3 7 3 7 3 80
Sony Smartband 2 SmartBand 2 BLE/NFC 3 3 3 3 7 3 130
Razor Nabu X Nabu BLE 3 3 7 3 7 3 50
Technaxx 39 My Fitness BLE 3 3 7 3 7 3 40
Technaxx 37 My Fitness BLE 3 3 7 3 7 3 35
Oregon Dynamo 2+ Ssmart Fit BLE 3 3 3 3 7 3 130

Table 6.1: Fitness trackers used in our experiments.

6.1. System Model 107

The rest of this chapter is organized as follows. Section 6.1 explains our system
model. Also, we give a description of the adversary model and requirement analysis.
Section 6.2 describes some Background preliminaries. In Section 6.3, we describe
evaluation and experimental setup and elaborate our findings and technical details.
We mention countermeasures and remedies in Section 6.4. Section 6.6 illustrates
Related work. Finally, we conclude the chapter in Section 6.7.

Responsible Disclosure: we contacted each fitness tracker company in ad-
vance of publishing our work. In each case, we informed the respective company
about security vulnerabilities that we discovered in their products. We disclosed the
security vulnerabilities to them to fix the identified problems before we publish our
findings and we received a positive response from some of these companies.

6.1 System Model

In this section, we consider attacks targeting the communication between the
smartphone and the manufacturer’s cloud service. The attack aims to either (a)
disclose fitness data, or (b) tamper with the data in order to inject counterfeit data
into the cloud service. Other attacks such as Bluetooth attacks have already in the
literature and are out of our scope. The fitness trackers we use in our experiments
fall into two categories: (i) some of them have cloud services offered by device man-
ufacturers and (ii) some others have no cloud services and process the fitness data
locally on the smartphone. We concentrate on the former category and investigate
how the data is transmitted over the Internet, how security practices are employed
to safeguard fitness information.

6.1.1 Analyzed Devices

We test 17 fitness trackers shown in Table 6.1. Some of these device do not
transmit user fitness data to the cloud, others transmit every logged fitness event
over the Internet. We select our devices as a representative subset of the fitness
trackers. The set included devices from less known manufacturers as well as devices
from the most popular brands from top vendors.

6.1.2 Adversary Model

We consider an adversarial setting in which entities like mobile devices and users
are untrusted but the cloud is considered to be trustworthy. We assume an active
adversary model that adversary (malicious user) can view and manipulate all the
data uploaded to the server. The user is considered to have full control over his
tracker and smartphone and being motivated by possible financial gain. This adver-
sary has both means and motives to try to attack the system. This control allows the
adversary to eavesdrop on communications between tracker and the remote server.
Figure 7.1 shows the adversarial setting.

108
Chapter 6. Popular Fitness Devices: Security Analysis, Reverse Engineering

and Spoofing

Figure 6.1: Adversary Model.

6.1.3 Requirement Analysis

We conduct a Man-In-The-Middle (MITM) attack that targets the communica-
tion between the tracker’s associated fitness app (installed on the smartphone) and
the cloud service, as fitness trackers typically utilize the user’s smartphone to upload
data to the cloud service.

We analyze several requirements to handle critical data collected by fitness track-
ers such as: i) Data Confidentiality, 2) Data Integrity, and 3) Data Authenticity.
In our experiments, we take several criteria into account to investigate the safety
and robustness of fitness trackers’ communication protocol (between fitness app and
cloud service) such as (i) Use of End-to-End data encryption, (ii) Data In-Transit
Encryption (e.g., HTTPS protocol), (iii), Data At Rest Encryption (e.g., Encrypted
Data-base), (iv) Existence of Proprietary Encoding, (v) Presence of Data Integrity
Check Mechanisms, and (vi) Use of SSL Certificate Pinning.

6.2 Background Preliminaries

In this preliminary section, we will give definitions, descriptions, concerning the
communication requirement analysis described in Section 6.1.3.

• End-to-end encryption (E2EE): In E2EE, the data is encrypted on the sender’s
device and only the recipient is able to decrypt it. Nobody in between (e.g.,
an Internet Service Provider or a hacker) can read the data or tamper with it.
The cryptographic keys used to perform encryption and decryption are stored
exclusively on the endpoints.

• Data In-Transit Encryption: Data in-transit is data actively moving from one
device to another such as across the internet or through a private network.
Data protection in transit is the protection of this data while traveling using
HTTPS protocol. HTTPS typically use one of two secure protocols to encrypt
communications - Secure Sockets Layer (SSL) or Transport Layer Security
(TLS). Both the TLS and SSL protocols use an asymmetric Public Key In-
frastructure (PKI) system. An asymmetric system uses two keys to encrypt
communications, a public key and a private key. Anything encrypted with the
public key can only be decrypted by the private key and vice-versa.

6.2. Background Preliminaries 109

• Data At Rest Encryption: Data at rest is data that is not actively moving
from device to device such as data stored on a hard drive. Data protection
at rest is protection of data stored in databases, cloud, computer hard drives
using robust and strong Encryption algorithms (e.g., AES).

• Data Encoding: Encoding is the process of changing data representation such
as binary, hex, decimal, Base64 and so on. Encodings are not meant to con-
ceal data, but may do so, if the encoding-decoding algorithm is secret until
somebody reverse-engineers the algorithm.

• Data integrity check: Data integrity refers to the accuracy and consistency of
data stored in a database or other construct. There are several data integrity
assurance techniques, for instance, Checksumming and Cyclic Redundancy
Check (CRC). Checksums can be computed for the data and can be stored
persistently. Data integrity can be verified by comparing the stored and the
newly computed values on the data read. Checksums are generated using a
hash function such as MD5 [213], SHA1 [214], and HMAC [215]. A hashing
algorithm computes a fixed size message digest. Keyed-Hash Message Authen-
tication Code (HMAC) [19] is a specific type of a hashing function where the
hash generated is cryptographically protected. It is currently one of the pre-
dominant means of ensuring that secure data is not corrupted in transit over
insecure channels.
Cyclic Redundancy Check (CRC): CRC check is an easily implemented tech-
nique to obtain data reliability in network transmissions. This technique is
used to protect blocks of data. Using this technique, the transmitter appends
an extra N-bit sequence to every data block and holds redundant information
about the data. This redundancy helps the transmitter detect errors data
transmitted.

• Certificate Pinning: In this technique, the details of server certificate are
hardcoded in the client device (or in the companion application). The client
will check whether the certificate received from the server matches the pre-
configured certificate. If a different certificate is used the application will
normally refuse to establish the connection and will report an error to the
user.

Figure 6.2: Schematic of experimental setup.

110
Chapter 6. Popular Fitness Devices: Security Analysis, Reverse Engineering

and Spoofing

6.3 Evaluation

In this section, we evaluate dedicated wearable devices and implement attack
against these devices and explain our technical details and findings.

6.3.1 Experimental Setup

In our set-up, shown in Figure. 6.2, we connect the various fitness trackers to
a LG Nexus 5 smartphone running Android 5.1.1, on which we had installed the
corresponding companion applications for the various trackers from the Play Store.
We simulate an attacker between the smartphone and the cloud by creating a WiFi
hotspot on a Dell XPS Linux laptop. The wireless access point is created using the
script create_ap [216]. We connect smartphone to WiFi hotspot. The laptop runs
Man-In-The-Middle Proxy (mitmproxy) [217], allowing us to intercept all communi-
cations between the tracker and the server, as well as between the smartphone and
the server.
We install a fake CA certificate on an Android phone and trigger tracker synchro-
nization manually, using fitness trackers’ companion application. The application
synchronizes the tracker over Bluetooth LE and forwards data between the tracker
and the server over the Wi-Fi connection over an HTTPS connection.

Garmin Vivosmart HR, Vivofit2, and Vivofit
The Garmin trackers transmit data trough the HTTPS protocol to Garmin server.
The data is not encrypted and leverages FIT protocol to encode the data (Flexible
and Inter-operable data Transfer protocol). This protocol is designed to be compact
and extensible. Physical activity history (running, cycling, etc.) and user location
are transferred to Garmin servers via FIT files. We sniff the HTTPS communications
between the tracker and the Garmin server and dump the POST request issued by
the tracker using this URL: https://95.xxx.xxx.183/upload-service/
upload/wellness.

Figure 6.3: Garmin fitness data including CRC bytes.

Figure 6.4: Garmin detailed data after decoding.

https://95.xxx.xxx.183/upload-service/upload/wellness
https://95.xxx.xxx.183/upload-service/upload/wellness

6.3. Evaluation 111

We develop a script that modifies FIT files, our crafted script leverages a Perl
script named fitsed [218] to manipulate and update FIT files. Then, the script
uploads new FIT file instead of the original file. Figure 6.3 shows encoded fitness
data sent by the tracker to the Garmin server (the original FIT file is not human
readable also, contains integrity check such as CRC-16). Figure 6.4 illustrates the
detailed fitness data recorded in Garmin FIT file after decoding.

(a) Garmin Vivofit (b) Garmin Vivofit 2

(c) Garmin Vivosmart HR

Figure 6.5: Injecting fabricated steps into Garmin remote servers.

We successfully upload a counterfeit FIT file (indicating 80 million steps to
Garmin’s server). The server dose not raise any error and the web interface actually
shows the counterfeit step count, as shown in Figure 6.5. The Garmin protocol is
vulnerable to a motivated user generating false fitness data for his/her own account.

ViFit MEDISANA
The Vifit tracker uses the HTTPS protocol to make in-transit communication secure.
The fitness data is transmitted using a JSON file in plain text format. The payloads
(including the fitness data) are protected using a HMAC scheme [215], data integrity
check mechanism. HMAC computes a “signature" to verify that the data is actually
being sent by the sender we expect also has not been altered. In ViFit protocol, the
HMAC-SHA256 variant is used. In order to submit counterfeit data to the server,
we compute a new HMAC signature on the modified data. To this end, we use

112
Chapter 6. Popular Fitness Devices: Security Analysis, Reverse Engineering

and Spoofing

the Base String, which is built by concatenating a number of fields separated by
“&”. The following list includes the required fields to compute HMAC signature and
example data for each of those fields.

• HTTP_method = POST
• url = https://.../data/tracker/activity/array
• oauth_consumer_key: zNpgFNJRsyugyJx6dE...
• oauth_consumer_secret: sr9d44dk9KCeZ1tAW...
• oauth_token: K8eEFc0W3Pn5irDAv...
• oauth_token_secret: nczi9lTcBxKMnxJLrK1...
• oauth_nonce: k4VdSylUf4OCsOGlaa...
• oauth_timestamp: 1468750792
• Payload (JSON data):

[“trackerActivityEntries”:[“calories”:0.5,“steps”:1000000,“distance”:0.01,...,...]]

We obtain all required parameters from the POST requests, except for
oauth_consumer_secret and oauth_token_secret. We discovered that the
server sends these parameters to the tracker in different messages, as shown in (fig-
ures 6.6 and 6.7).

Figure 6.6: Token secret required to compute HMAC over the data.

Figure 6.7: Application secret required to compute HMAC over the
data.

After sniffing all HTTPS communications and extracting secret parameters, we
recompute the HMAC signature over the tampered data and successfully forward
the data along with new HMAC to the ViFit server. The ViFit server accepts our
fake data, as show in Figure 6.8.

Polar Electro Loop:
The Polar Loop tracker uses the HTTPS protocol to communicate with polar servers.
The fitness data is uploaded to the Polar server via Protocol buffer [219] which is
a mechanism for serializing structured data, as shown in Figure 6.9. Each protocol
buffer message is a small logical record of information, containing a series of key-
value pairs. The fitness information is not encrypted. But the fitness data is encoded
and not human readable and also it is not feasible to edit the fitness data using a
text editor or a simple script.

6.3. Evaluation 113

Figure 6.8: Injecting 3 million counterfeit steps into the ViFit server.

Figure 6.9: Data encoded using Protocol buffers.

Figure 6.10: Decoding data and tampering the step count.

Instead, we intercept the encoded fitness data, save it on disk, and then edit
the message using the utility Protocol Buffer Message Editor, as it can be seen in
Figure 6.10. After manipulating various fields (e.g., steps count), we successfully
send the counterfeit data to the Polar server and server accepts the falsified data,
as shown in Figure 6.11.

114
Chapter 6. Popular Fitness Devices: Security Analysis, Reverse Engineering

and Spoofing

Figure 6.11: Injecting counterfeit data into the Polar remote server.

Mio Link
The Mio Link tracker records heart-rate data and sends it to the cloud via HTTPS
for backup purposes. No web interface is available for the user for display purpose.
We intercept the network traffic and capture heart-rate data. There is no encryption
besides HTTPS. The data is encoded using Base64. The data containing hear-rate
information is shown in Figure 6.12 after Base64 decoding.

Figure 6.12: The hear-rate data sent after base64 decoding.

As it can be seen in Figure 6.12, the hex string “57 83 ad ad” is decoded
as a big-endian number representing a UNIX timestamp in July 11, 2016 and
0x70 equals 112 in decimal (hear-rate value). A SHA-1 digest of the binary data is
included in the request as data integrity check mechanism to protect data, as shown
in Figure 6.13. However, the digest can be easily modified and crafted to reflect
the counterfeit data. We easily manipulate the heart-rate data by recomputing
massage digest, as shown in Figure 6.14.

6.3. Evaluation 115

Figure 6.13: The data sent by the tracker to its web server.

Figure 6.14: Recomputing the SHA1 digest from the data.

MisFit Shine
The MisFit tracker leverages the HTTPS protocol to encrypt data in-transit and
make the communication more secure. The fitness data is transmitted using JSON
file in a plain text. Since the data is in plain text, and the MisFit Shine does not
take any steps to protect fitness data from being tampered with, we easily inject
counterfeit data into MisFit server.

Figure 6.15: MisFit Shine Gathers
data belonging to other fitness track-
ers.

Figure 6.16: Fitness data sent by Mis-
Fit to its server.

Additionally, we noticed that the MisFit Shine collects some data during the
Bluetooth scanning phase from nearby devices and sends these data to the remote

116
Chapter 6. Popular Fitness Devices: Security Analysis, Reverse Engineering

and Spoofing

server, as shown in Figure 6.15.

Figure 6.17: Injecting 4 million steps into the Misfit Shine server.

Jawbone UP3 and MOVE UP
Jawbone trackers also use the HTTPS protocol to communicate with the Jawbone
server. Since the fitness data is transmitted using the plain text JSON format, it is
easy to tamper with the data. We sniff the HTTPS communications and manipulate
the fitness data on the fly then forward the counterfeit data to the server. Jawbone’s
server accepts our counterfeit data without any check.

Figure 6.18: The fitness data sent by Jawbone trackers to their
remote server.

Figure 6.19: Injecting 1 million
steps into the server.

Figure 6.20: Injecting half a mil-
lion steps into the server.

6.3. Evaluation 117

Withings Pulse
The Withings tracker also works in a similar fashion to Jawbone’s trackers. Since
the fitness data sent by the trackers to the server is in plain text and not signed, it
can be easily manipulated. We sniff the HTTPS requests, modify the fitness data
on the fly, then inject the counterfeit data into the Withings server. The server
accepts the counterfeit data without any check and raising error.

Figure 6.21: Steps count in plain-text format.

Figure 6.22: Injecting 1 million steps into Withings’ web server.

Xiaomi MiBand
Like other fitness trackers in our experiments, the MiBand tracker leverages
the HTTPS protocol to communicate with its own remote server. We sniff the
communications and find that no encryption is performed besides HTTPS. Since
encryption and data integrity check are not performed, the data can be freely
manipulated. We modify the fitness data on the fly, then send it to the Xiaomi
server.
The server accepts the counterfeit data and stores it. In contrast with known tracker
manufacturers, Xiaomi chose not to develop a web interface for the data stored
on its cloud. To confirm that our counterfeit data had actually been accepted, we
uninstall the app from the phone (deleting all data as well), then we install it again.
The app downloads the data associated with our account from the cloud and shows
our counterfeit data.

118
Chapter 6. Popular Fitness Devices: Security Analysis, Reverse Engineering

and Spoofing

Figure 6.23: Fitness data sent by Miband to its web server.

Figure 6.24: Counterfeit data (several million steps) in the Mi Fit app.

Runtastic Orbit
The Runtastic tracker uses the HTTPS protocol to communicate with the Runtastic
server and encrypts data in-transit. The fitness data is transmitted using JSON
file in a plain text format. We intercept the requests issued by the trackers, modify
them on the fly (using mitmproxy), and send false data to the server and server
without doing any data integrity check accepts the counterfeit data.

6.3. Evaluation 119

Figure 6.25: HTTPS request from the Orbit to its server.

Figure 6.26: Injecting more than 3 million steps into Runtastic’s web server.

Fitness Trackers without Cloud Services
We test several other fitness trackers, including Razor Nabu X, Technaxx 37 and
39, Sony Smartband 2, and Oregan Dynamo 2+. The companion applications of
these devices do not perform any HTTP(S) request, with the exception of the Razor
Nabu X which does not send fitness data but just uploads some meta-information.
We examine how these applications store the fitness data on the smartphone. The
apps for these five trackers, as well as previously mentioned devices, store the
data in an unencrypted SQL databases. The fitness data not only can be read or
modified by other malicious apps on a rooted phone but also can be easily stolen
by an adversary with physical access to the phone.

120 C
h
ap

ter
6.

P
op

u
lar

F
itn

ess
D
evices:

S
ecu

rity
A
n
alysis,

R
everse

E
n
gin

eerin
g

an
d
S
p
oofi

n
g

No. Tracker A
tt
ac
ke
d
on

Y
ea
r
20
16

O
n
M
ar
ke
t

fr
om

Y
ea
r

In
je
ct
in
g
Fa

ke
D
at
a

D
at
a

in
-t
ra
ns
it

E
nc
ry
pt
io
n

D
at
a
at

R
es
t

E
nc
ry
pt
io
n

D
at
a
In
te
gr
it
y

P
ro
pr
ie
ta
ry

C
od

in
g

SS
L
P
in
ni
ng

E
nd

-t
o-
en

d
E
nc
ry
pt
io
n

C
lo
ud

D
at
a

St
or
ag
e

C
lo
ud

W
eb

In
te
rf
ac
e

1 Garmin Vivosmart HR Sep. 2015 3 3 7 3 3 7 7 3 3

2 Garmin Vivofit2 Sep. 2015 3 3 7 3 3 7 7 3 3

3 Garmin Vivofit Sep. 2014 3 3 7 3 3 7 7 3 3

4 Polar Electro Loop Sep. 2013 3 3 7 7 3 7 7 3 3

5 ViFit MEDISANA Sep. 2014 3 3 7 3 7 7 7 3 3

6 Xiaomi MiBand Aug. 2014 3 3 7 7 7 7 7 3 7

7 Jawbone UP3 Aug. 2015 3 3 7 7 7 7 7 3 7

8 Jawbone Move UP July 2014 3 3 7 7 7 7 7 3 7

9 Misfit Shine June 2013 3 3 7 7 7 7 7 3 3

10 Mio Link July 2014 3 3 7 3 7 7 7 3 7

11 Withings Pulse July 2013 3 3 7 7 7 7 7 3 3

12 Runtastic Orbit July 2014 3 3 7 7 7 7 7 3 3

13 Sony Smartband 2 — 2015 — — 7 — — — — 7 7

14 Razor Nabu X — 2015 — — 7 — — — — 7 7

15 Technaxx 39 — 2015 — — 7 — — — — 7 7

16 Technaxx 37 — 2015 — — 7 — — — — 7 7

17 Oregon Dynamo 2+ — 2014 — — 7 — — — — 7 7

Table 6.2: Test Results.

6.4. Countermeasure & Remedy 121

6.3.2 Findings

It is worth mentioning that out of all fitness trackers examined only Garmin,
Polar loop, ViFit MEDISANA, and Mio Link take some minor measures to protect
data integrity. Garmin and Polar Loop take benefit from their own proprietary
encoding which makes it somewhat more challenging to modify data in-transit. ViFit
MIDESANA uses an HMAC scheme to verify the expected sender and check data
integrity and Mio Link benefits from SHA-1 (Secure Hash Algorithm) to verify data
integrity. The products form Xiaomi, Misfit Shine, Runtastic Orbit, Jawbone, and
Withings Pulse do not use proprietary encoding or encryption to prevent data from
being read and tampered with. These fitness trackers send fitness data in plain text
over HTTPS and for a malicious user it is relatively easy to cheat and inject falsified
data into the remote server.

The fitness trackers, Sony Smartband 2, Razor Nabu X, Technaxx 39 and 37,
and finally Oregon Dynamo 2+ do not offer cloud-based services for data analytics
or storage. Also, the companion applications of these fitness trackers store the data
in plain text on the smartphone which introduces the risk of data disclosure. We
have summarized our test results in Table 6.2.

6.4 Countermeasure & Remedy

Part of the problem with the security of fitness tracking devices is because, wear-
able makers are rushing to beat their competitors and get their product onto the
market first. Fitness tracking manufacturers need to build privacy and security into
their existing development process.
When designing wearable devices connected to the Internet, manufacturers must
establish a secure hardware and software development process that includes source
code analysis to identify security-related vulnerabilities and software delivery mech-
anisms.

Deploying these devices in a secure way is just as important as their design.
Attention should be paid to device provisioning and authentication. The deployment
process should cross-authenticate both the device and the network to ensure it does
not transmit confidential information in insecure way.

Last but not least, end-to-end encryption should be deployed to ensure the in-
tegrity and confidentiality of the data during transmission from device to cloud and
vise versa, as shown in Figure 6.27. End-to-end encryption with a device-specific key
prevents the data from being manipulated using MITM attacks.

One of the benefits of using a device-specific key is to reduce the risk of possible
MITM Attack on re-keying and renegotiation in key exchange protocols. The device
key itself could be computed using a master key, just known to the server. The
input for such a computation could for instance be the serial number of the device.
The device key is pushed into device during manufacturing process.

In addition to end-to-end encryption (on-chip), Hardware-supported memory
readout protection should be applied to add additional layer of security such that
device memory cannot be accessible through debugging interferes.

122
Chapter 6. Popular Fitness Devices: Security Analysis, Reverse Engineering

and Spoofing

Figure 6.27: Deploying End-to-end encryption mechanism, using a device-specific
encryption key.

6.5 Discussion

We mainly discuss an adversarial setting in which a malicious user can view
and manipulate all the data uploaded to the server. A third-party adversary also
can conduct same attacks by setting up a WiFi AP (which runs MITM proxy) and
eavesdrops TLS encrypted communications provided that the malicious third-party
must convince or deceive victims (e.g., using social engineering techniques) to install
CA certificate associated with the MITM proxy. Even if convincing users to install
a fake certificate is mostly related to the user’s trustworthiness and is a big security
concern, but accessing third-party to users’ data will be a huge privacy concern.

Wearable devices handle sensitive and critical data showing user health sta-
tus, Geo-location position and etc. These devices carry health-related information,
showing user life habits, health situation and many things that can be abused by
third-parties or adversary. For instance, if the adversary has access to the user data,
by analyzing the data he can understand about user health situation and even worse
user sleep pattern (when user is exactly asleep), Geo-location information (when user
is far away from his home), then adversary can break-in user’s home or even track
user and spy on him.

6.6 Related Work

Related work can be categorized into two important groups.

6.6.1 Firmware modification attacks

Rieck [211] has identified a vulnerability in the firmware update process for
Withings Activity fitness tracker. He used this vulnerability to inject malicious
code into the fitness tracker firmware. In the similar work [212], Coppola studied
the firmware update procedure of Withings’ WS-30 wireless scale. He combined
hardware and software reverse engineering to exploit a critical flaw in the firmware
update process and he discovered a flow in the firmware allowing him to upload
arbitrary firmware to the scale.

6.6. Related Work 123

6.6.2 Data integrity and privacy attacks

In [208] researchers at the University of Toronto investigate transmission security,
data integrity, and Bluetooth privacy of eight fitness trackers. They discover several
security and privacy issues with the analyzed devices. Five major categories of data
transmitted to remote servers over the Internet are investigated. These categories
includes basic personal information, fitness information, location information, social
information, and device identifiers. They also examine data integrity concentrating
on whether or not fitness data can be considered authentic records of activity that
have not been tampered with.

Britt et al. [27] analyze the Fitbit Flex ecosystem. They attempt to do a hard-
ware analysis of the Fitbit device but because of difficulties associated with debug-
ging the device they decide to focus on other parts such as data transmission over
Bluetooth LE, the associated Android app and network analysis. The authors study
the data collected by Fitbit from its users as well as the data Fitbit provided to
Fitbit users.

In a report released by AV TEST [209], the authors test nine fitness trackers and
evaluate their security and privacy. The authors try to find out how easy it is to get
the fitness data from the fitness band through Bluetooth or by sniffing the connec-
tion to the cloud during the synchronization process. They list all Bluetooth related
security features and their implementation on the tracker as well as the mobile ap-
plication, considering, e.g., Bluetooth deactivation, pairing, tracker authentication.
Also, the aspects of application implementation (e.g., code obfuscation, logging,
etc.), data storage and information propagation are analyzed. In another work [28],
the same authors evaluate the security of seven different fitness trackers. They again
analyze the original application, Bluetooth communication between the tracker and
smartphone and on-line communication of the original application.

Margaritelli [210] explores aspects of Bluetooth security and authentication pro-
cess. Using an implementation for the Nike+ FuelBand, it is shown that a robust
protocol can be easily defeated by a poor implementation.

Barcena et al. [220] publish a report in 2014, describing issues related to the
handling of private information by fitness trackers. They are able to track individuals
using fitness trackers using cheap, off-the-shelf hardware by simply connecting to the
fitness trackers on the street.

Our work from many aspects differs from above-mentioned work, as we focus on
injecting falsified data into remote servers of fitness products. We do not concentrate
on firmware injection attacks but are interested in attacks targeting data integrity.
Different research work in the literature have just mentioned that how easy it is
to get the fitness data from the fitness band through Bluetooth or by sniffing the
connection to the cloud during the synchronization process. They have not shown
that how vulnerabilities mentioned in the literature can be exploited to perform
serious and real attacks in practice such as false data injection attack, as we perform.
Last but not least, we concentrate on fitness trackers that are known to be more
secure than their counterparts in the market. For instance, wearable devices that
have employed security controls such as proprietary coding and data integrity check
mechanisms (while other work have not taken such devices into account to analyze).

124
Chapter 6. Popular Fitness Devices: Security Analysis, Reverse Engineering

and Spoofing

6.7 Summary

We analyze the security of many popular and less popular fitness trackers in the
malicious user setting that user can manipulate the data. Technical analysis shows
that all tracking systems that offer cloud-based services protect the confidentiality
of communications through the use of an encrypted protocol like HTTPS to transfer
data from the smartphone of the user to the cloud service. However, in all cases, it
is still possible for a malicious user to falsify the data. Most fitness devices have no
data integrity check. Even for the few of them that use digital signature, the keys
that are used for digital signatures can be easily captured by the MITM proxy and
hence does not prevent data tampering. None of the devices consider use of end-to-
end encryption when synchronizing with the remote server and no effective tamper
protection is used. Also, the manufacturers who not offering cloud-based services
store the collected fitness data in plain text on the smartphone which introduces a
potential risk of unauthorized data leakage should the smartphone be stolen or be
infected with malware.

125

Chapter 7

Security Analysis, Reverse Engineering

and Spoofing Advanced Fitness Devices

Market forecasts indicate 274 million wrist-based fitness trackers and smart-
watches will be sold worldwide by 2020 [221]. Such devices already enable users and
healthcare professionals to monitor individual activity and sleep habits, and under-
pin reward schemes that incentivize regular physical exercise. Fitbit maintains the
lead in the wearables market, having shipped more units in 2016 than its biggest
competitors Apple, Garmin, and Samsung combined [222].

Fitness trackers collect extensive information which enables infering the users’
health state and may reveal particularly sensitive personal circumstances. For in-
stance, one individual recently discovered his wife was pregnant after examining her
Fitbit data [223]. Police and attorneys start recognizing wearables as “black boxes”
of the human body and use statistics gathered by activity trackers as admissible evi-
dence in court [62,224]. These developments highlight the critical importance of both
preserving data privacy throughout the collection process, and ensuring correctness
and authenticity of the records stored. The emergence of third-party services offer-
ing rewards to users who share personal health information further strengthens the
significance of protecting wearables data integrity. These include health insurance
companies that provide discounts to customers who demonstrate physical activity
through their fitness tracker logs [225], websites that financially compensate active
users consenting to fitness monitoring [226], and platforms where players bet on
reaching activity goals to win money [227]. Unfortunately, such on-line services also
bring strong incentives for malicious users to manipulate tracking data, in order to
fraudulently gain monetary benefits.

Given the value fitness data has towards litigation and income, researchers have
analyzed potential security and privacy vulnerabilities specific to activity track-
ers [26–29]. Following a survey of 17 different fitness trackers available on the Eu-
ropean market in Q1 2016 [228], recent investigations into the security of Fitbit
devices (e.g. [29]), and the work we present herein, we found that in comparison to

126
Chapter 7. Advanced Fitness Devices: Security Analysis, Reverse

Engineering and Spoofing

other vendors, Fitbit employs the most effective security mechanisms in their prod-
ucts. Such competitive advantage, giving users the ability to share statistics with
friends, and the company’s overall market leadership make Fitbit one of the most
attractive vendors to third parties running fitness-based financial reward programs.
At the same time it motivates us to choose Fitbit trackers as the target of our se-
curity study, in the hope that understanding their underlying security architecture
can be used to inform the security and privacy of future fitness tracker system de-
signs. Rahman et al. have investigated the communication protocols used by early
Fitbit wearables when synchronizing with web servers and possible attacks against
this [26]. Cyr et al. [27] studied the different layers of the Fitbit Flex ecosystem and
argued correlation and man-in-the-middle (MITM) attacks are feasible. Recent work
documents firmware vulnerabilities found in Fitbit trackers [28], and the reverse en-
gineering of cryptographic primitives and authentication protocols [29]. However, as
rapid innovation is the primary business objective, security considerations remain an
afterthought rather than embedded into product design. Therefore, wider adoption
of wearable technology is hindered by distrust [30,31].

Contributions: We undertake an in-depth security analysis of the Fitbit Flex
and Fitbit One fitness trackers and reveal serious security and privacy vulnerabilities
present in these devices which, although difficult to uncover, are reproducible and
can be exploited at scale once identified. Specifically, we reverse engineer the
primitives governing the communication between trackers and cloud-based services,
implement an open-source tool to extract sensitive personal information in human-
readable format, and demonstrate that malicious users can inject fabricated activity
records to obtain personal benefits. To circumvent end-to-end protocol encryption
implemented in the latest firmware, we perform hardware-based reverse engineer-
ing (RE) and document successful injection of falsified data that appears legitimate
to the Fitbit cloud. The weaknesses we uncover, as well as the design guidelines
we provide to ensure data integrity, authenticity and confidentiality, build founda-
tions for more secure hardware and software development, including code and build
management, automated testing, and software update mechanisms. Our insights
provide valuable information to researchers and practitioners about the detailed
way in which Fitbit operates their fitness tracking devices and associated services.
These may help IoT manufacturers in general to improve their product design and
business processes, towards developing rigorously secured devices and services.

Responsible Disclosure

We contacted Fitbit prior to publishing our work and informed the company
about the security vulnerabilities we discovered in their products. We disclosed these
to them to allow sufficient time to fix the identified problems before the publication
of our findings.

7.1 Adversary Model

To retrieve the statistics that trackers collect, users predominantly rely on smart-
phone or tablet applications that extract activity records stored by the devices, and
push these onto cloud servers. We consider the adversarial settings depicted in

7.1. Adversary Model 127

Figure 7.1, in which users are potentially dishonest, whilst the server is provably
trustworthy. We assume an active adversary model in which the wristband user
is the primary adversary, who has both the means and motive to compromise the
system. Specifically, the attacker (a) views and seeks to manipulate the data up-
loaded to the server without direct physical control over the device, or (b) inspects
and alters the data stored in memory prior to synchronization, having full hardware
control of the device. The adversary’s motivation is rooted in the potential to obtain
financial gains by injecting fabricated fitness data to the remote server. Smartphone
and cloud platform security issues are outside the of scope of this paper, therefore
not considered in our analysis.

Figure 7.1: Adversary model considered for (a) devices not implementing encryption
and (b) trackers using encryption.

7.1.1 Target Fitbit Devices

The adversary’s target devices are the Fitbit Flex and Fitbit One wrist-based
fitness trackers, which record user step counts, distance traveled, calories burned,
floors climbed (Fitbit One), active minutes, and sleep duration. These particular
trackers have been on the market for a number of years, they are affordable and
their security and privacy has been scrutinized by other researchers. Thus, both
consumers and the vendor would expect they are not subject to vulnerabilities.

We subsequently found that other Fitbit models (e.g. Zip and Charge) im-
plement the same communication protocol, therefore may be subject to the same
vulnerabilities we identify in this work.

7.1.2 End-to-End Communication Paradigms

Following initial pairing, we discover Fitbit trackers are shipped with one of two
different firmwares; namely, the latest version (Flex 7.81) which by default encrypts
activity records prior to synchronization using the XTEA algorithm and a pre-
installed encryption key; and, respectively, an earlier firmware version (Flex 7.64)
that by default operates in plaintext mode, but is able to activate message encryption

128
Chapter 7. Advanced Fitness Devices: Security Analysis, Reverse

Engineering and Spoofing

after being instructed to do so by the Fitbit server. If enabled, encryption is end-
to-end between the tracker and the server, whilst the smartphone app is unaware
of the actual contents pushed from tracker to the server. The app merely embeds
encrypted records retrieved from the tracker into JSON messages, forwards them to
the Fitbit servers, and relays responses back to the tracker. The same functionality
can be achieved through software running on a computer equipped with a USB
Bluetooth LE dongle, including the open-source Galileo tool, which does not require
user authentication [229].

Even though only the tracker and the server know the encryption key, upon
synchronization the smartphone app also receives statistic summaries from the server
in human readable format over an HTTPS connection. As such, and following
authentication, the app and authorized third parties can connect to a user account
via the Fitbit API and retrieve activity digests—without physical access to the
tracker. We also note that, despite newer firmware enforcing end-to-end encryption,
the Fitbit server continues to accept and respond to unencrypted activity records
from trackers that only optionally employ encryption, thereby enabling an attacker
to successfully modify the plaintext activity records sent to the server.

7.2 Protocol Reverse Engineering

In this section, we reverse engineer the communication protocol between Fitbit
trackers and servers, uncovering an intricate security through obscurity approach.
Once understanding the message semantics, we show that detailed personal informa-
tion can be extracted and fake activity reports can be created and remotely injected,
using an approach that scales, as documented in Section 7.3.

Figure 7.2: Schematic illustration of the testbed used for protocol reverse engi-
neering. Linux-based laptop used as wireless Internet gateway and running MITM
proxy.

7.2.1 MITM Setup

To intercept the communication between the tracker and the remote server, we
deploy an MITM proxy on a Linux-based laptop acting as a wireless Internet gate-
way, as illustrated in Figure 7.2. We install a fake CA certificate on an Android

7.2. Protocol Reverse Engineering 129

phone and trigger tracker synchronization manually, using an unmodified Fitbit ap-
plication. The application synchronizes the tracker over Bluetooth LE and forwards
data between the tracker and the server over the Wi-Fi connection, encapsulating
the information into JSON messages sent over an HTTPS connection. This proce-
dure resembles typical user engagement with the tracker, however the MITM proxy
allows us to intercept all communications between the tracker and the server, as
well as between the smartphone and the server. In the absence of end-to-end en-
cryption, we can both capture and modify messages generated by the tracker. Even
with end-to-end encryption enabled, we can still read the activity digests that the
server provides to logged-in users, which are displayed by the app running on their
smartphones.

7.2.2 Wireshark Plugin Development and Packet Analysis

To simplify the analysis process and ensure repeatability, we develop a custom
frame dissector as stand-alone plugin programmed in C for the Wireshark network
analyzer [230].1 Developing this dissector involves cross-correlating the raw messages
sent by the tracker with the server’s JSON responses to the client application. After
repeated experiments, we infer the many protocol fields that are present in tracker-
originated messages and that are encoded in different formats as detailed next. We
use the knowledge gained to present these fields in a human-readable format in the
protocol analyzer.

There are two types of tracker-originated messages we have observed during our
analysis, which will be further described in the following sections:

1. Microdumps: A summary of the tracker status and configuration.

2. Megadumps: A summary of user activity data from the tracker.

7.2.3 Microdump

Depending on the action being performed by the user (e.g. authentication and
pairing, synchronizing activity records), the smartphone app makes HTTPS requests
to the server using specific URLs, e.g. POST https://<fitbit_server_
ip>/1/devices/client/tracker/data/validate.json?btle_Name=
Flex&secret=null&btAddress=<6Byte_tracker_ID> for initial authenti-
cation. Each basic action is accompanied by a so-calledmicrodump, which is required
to identify the tracker, and to obtain its state (e.g. its current firmware version).
Irrespective of whether or not the tracker implements protocol encryption, the micro-
dump header includes the tracker ID and firmware version, and is sent in plain-text.
Figure 7.3 illustrates a microdump sent along with a firmware update request, as
interpreted by our Wireshark dissector.

We also note that the only validation feature that plain-text messages implement
is a CRC-CCITT checksum, presumably used by the server to detect data corruption
in tracker-originated messages. In particular, this acquired knowledge will allow us
to inject generic messages into the server and obtain replies, even when a valid

1We shall make the source code of our plug-in available upon publication.

https://<fitbit_server_ip>/1/devices/client/tracker/data/validate.json?btle_Name=Flex&secret=null&btAddress=<6Byte_tracker_ID>
https://<fitbit_server_ip>/1/devices/client/tracker/data/validate.json?btle_Name=Flex&secret=null&btAddress=<6Byte_tracker_ID>
https://<fitbit_server_ip>/1/devices/client/tracker/data/validate.json?btle_Name=Flex&secret=null&btAddress=<6Byte_tracker_ID>

130
Chapter 7. Advanced Fitness Devices: Security Analysis, Reverse

Engineering and Spoofing

Figure 7.3: Generic microdump in plain-text, as displayed by the wireshark dissector
we implement. Note the ability to filter by ‘fitbit’ protocol type in the analyzer.

tracker ID is already associated with a person’s existing account. Yet, microdumps
only contain generic information, which does not allow the spoofing of user activity
records. In what follows, we detail the format of messages sent to the server to
synchronize the tracked user activity.

Note that the plain-text format does not provide measures for verifying the
integrity and authenticity of the message contents except for a checksum, which
is deterministically calculated from the values of the message fields. This allows
the adversary to inject generic messages to the server and receive replies, including
information about whether a tracker ID is valid and associated with a user account.

7.2.4 Megadump Synchronization Message

Step counts and other statistics are transmitted by the tracker in the form of
a so-called megadump. Independent of encrypted or plain-text mode, neither the
Fitbit smartphone application nor the Galileo synchronization tool are aware of the
exact meaning of this payload. The megadump is simply forwarded to the server,
which in turn parses the message and responds with a reply. This reply is then
forwarded (by the corresponding application) back to the tracker, confirming to the
tracker that the data was synchronized with the server successfully.

Despite this behavior, the Fitbit smartphone application—in contrast to
Galileo—is aware of the user’s statistics. However, this is due to the application
making requests to the Fitbit Web API. Once authenticated, this API can be used
to retrieve user information from the server in JSON format. The Fitbit smartphone
application periodically synchronizes its display via the Fitbit Web API, allowing
the user to see the latest information that was uploaded by the most recent tracker
megadump. A plain-text example of this is shown in Figure 7.4. Note that the

7.2. Protocol Reverse Engineering 131

Date, start
of 1st record
subsection.

Date, start
of 2nd record
subsection.

Figure 7.4: Megadump frame in plain-text format as transmitted to the Fitbit server
(main window) and the human-readable JSON status response by the Fitbit Web
API (top right).

Fitbit Web API separates data by type, such that not all information transmitted
within one megadump is contained within one JSON response. From the megadump
a total distance of 522 720 mm can be extracted, which equals to the 0.52 km from
the JSON.

We use this information to reverse engineer and validate the megadump packet
format, and have identified that each megadump is split into the following sections:
a header, one or more data sections, and a footer. These sections start with a section
start sequence of bytes: c0 cd db dc; and end with a section terminator byte:
c0. If the byte c0 is required to be used within a data section, it is escaped in a
manner similar to RFC 1055.2

2A Non-standard for transmission of IP Data-grams over Serial Lines: SLIP

132
Chapter 7. Advanced Fitness Devices: Security Analysis, Reverse

Engineering and Spoofing

Message Header The megadump header is very similar to the microdump
header, but contains a few differences. Figure 7.5 shows how this header is struc-
tured.

28 02 00 00 00 00 00 00 00 00
be 33 18 30 14 07
07 40 07 40
fe 03 00 00 00 00 00 00 00 00 14 14
73 10 14 60
00 00 00 00
d7 02 bb 04
f1 2c 52 09 1b 17 00 00 00 00 00 00 00 ff 48 00
20 20 20 20 20 20 20 20 20 20 48 45 4c 4c 4f 20 20 20 20 20
48 4f 57 44 59 20 20 20 20 20 57 4f 4f 54 21 20 20 20 20 20
29 00 00 00 00 30 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 04 00 c0 db dc dd

Message Type Device Type Encrypted Packet?

Sequence Number
Firmware

Version

Charge (mV)

Walking
Stide (mm)

Running
Stide (mm)

Charge (%)

Greetings/
Cheering

Delimiter

Figure 7.5: Megadump Header Structure

Data Sections Following the header are one or more data sections. Each data
section contains various statistics in a particular format, and may even be blank.
As previously mentioned, each data sections start with c0 cd db dc, and are
terminated by a single c0 character. Therefore, the data sections are of variable
length. From the packets we have analyzed, it has been observed that there are
typically four data sections, which all appear in the following order, and have the
following format:

(1) Daily Summary: The first data section contains activity information across
a number of different absolute timestamps. This section contains a series of fixed-
length records that begin with a little-endian timestamp, and end with a section
terminator byte (c0).

(2) Per-minute Summary: The next data section is a per-minute summary,
comprising a series of records that indicate user activity on a per-minute granularity.
The structure of this data section is shown in Figure 7.6.

c0 db dc dd
58 aa be 20
81
00 00 00 ff
00 01 00 ff
00 02 00 ff
00 03 00 ff
 ...
00 59 00 c0

Timestamp
Records

Start

Step count

Record
Terminators

Section
Terminator

Step Count
Records

Figure 7.6: Per-minute Summary

The section begins with a timestamp (unlike other timestamps, this field is big-
endian), which acts as the base time for this sequence of step counts. Each step
count record is then an increment of a time period (typically two minutes), from

7.3. Protocol-based Remote Spoofing 133

this base time. Following the timestamp is a byte indicating the start of the step
count records. The full meaning of this byte is unclear, but we believe it indicates
the time period between each step count record. Following this, a series of records
consisting of four bytes state the number of steps taken per-time period. The second
byte indicates the number of steps taken, and the fourth byte is either ff to indicate
another record follows, or c0 (for the last record) to terminate the data section.

(3) Overall Summary: This data section contains a summary of the previous
records, although as will be demonstrated later it is not validated against “per-
minute” or “per-day” data. The format of this section is shown in Figure 7.7.

30 56 7b 58 64 00 10 27 00 00 80 96 98 00 00 00 00 00 00 00 c0

Section
Terminator

Active
minutes

Floors

ElevationDistance (mm)

Total No. Steps

Calories

Timestamp

c0 cd db dc

Figure 7.7: Megadump Summary Fields

This section starts with a timestamp, indicating the base time for this summary
data. Following this timestamp is a 16-bit value that holds the number of calories
burned. Following on from this is a 32-bit value containing the number of steps
taken, and a 32-bit value containing the distance travelled in millimeters. Finally,
the summary ends with elevation, floors climbed and active minutes—all 16-bit
values.

(4) Alarms: The final data section contains information about what alarms are
currently set on the tracker, and is typically empty unless the user has instructed
the tracker to create an alarm.

Message Footer The megadump footer contains a checksum and the size of the
payload, as shown in Figure 7.8.

63 f0 00 00 00 00 00 00 b5 01 00

Payload Length

Checksum

Figure 7.8: Megadump Footer Fields

7.3 Protocol-based Remote Spoofing

This section shows that the construction of a megadump packet containing fake
information and the subsequent transmission to the Fitbit server is a viable approach
for inserting fake step data into a user’s exercise profile. This attack does not actually
require the possession of a physical tracker, but merely a known tracker ID to be
associated with the user’s Fitbit account. This means that one can fabricate fake
data for any known and actively used tracker having a firmware version susceptible
to this vulnerability. In order to construct a forged packet, however, the format of

134
Chapter 7. Advanced Fitness Devices: Security Analysis, Reverse

Engineering and Spoofing

the message must be decoded and analyzed to determine the fields that must be
populated.

7.3.1 Submission of Fake Data

The Fitbit server has an HTTPS endpoint that accepts raw messages from track-
ers, wrapped in an XML description. The raw message from the tracker is Base64
encoded, and contains various fields that describe the tracker’s activity over a period
of time.

The raw messages of the studied trackers may or may not be encrypted, but the
remote server will accept either. Even though the encryption key for a particular
tracker is unknown, it is possible to construct an unencrypted frame and submit it
to the server for processing, associating it with an arbitrary tracker ID. Provided
that all of the fields in the payload are valid and the checksum is correct, the remote
server will accept the payload and update the activity log accordingly. In order
to form such a message, the raw Fitbit frame must be Base64 encoded and placed
within an XML wrapper as shown in Listing 7.1:

1 <?xml version=" 1 .0 "?>
2 <ga l i l e o−c l i e n t version=" 2 .0 ">
3 <c l i e n t−i n f o>
4 <c l i e n t−id>
5 6de4df71−17f9−43ea−9854−67 f842021e05
6 </ c l i e n t−id>
7 <c l i e n t−version>1 . 0 . 0 . 2 2 9 2</ c l i e n t−version>
8 <c l i e n t−mode>sync</ c l i e n t−mode>
9 <dongle−version major="2" minor="5" />

10 </ c l i e n t−i n f o>
11 <tracke r t racker−id="F0609A12B0C0">
12 <data>∗∗∗ BASE64 PACKET DATA ∗∗∗</data>
13 </ t ra cke r>
14 </ ga l i l e o−c l i e n t>

Listing 7.1: Fitbit frame within an XML wrapper

The fabricated frame can be stored in a file, e.g. payload, and then submitted
with the help of an HTTP POST request to the remote server as shown in Listing 7.2,
after which the server will respond with a confirmation message.

7.3. Protocol-based Remote Spoofing 135

(a) Before submission (b) After submission

Figure 7.9: The result of replaying data from another Fitbit tracker to a different
tracker ID. Figure 7.9a shows the Fitbit user activity screen before the replay attack,
and Figure 7.9b shows the results after the message is formed by changing the tracker
ID, and submitted to the server.

1 $ cu r l − i −X POST ht tp s : // c l i e n t . f i t b i t . com/ t ra cke r / c l i e n t /message
2 −H "Content−Type: t ex t /xml"
3 −−data−binary @payload

Listing 7.2: Submitting fake payload to the server

Impersonation Attack:
In order to test the susceptibility of the server to this attack, a frame from

a particular tracker was captured and re-submitted to the server with a different
tracker ID. The different tracker ID was associated with a different Fitbit user
account. The remote server accepted the payload, and updated the Fitbit user
profile in question with identical information as for the genuine profile, confirming
that simply altering the tracker ID in the submission message allowed arbitrary
unencrypted payloads to be accepted. Figure 7.9 shows the Fitbit user activity logs
before and after performing the impersonation attack. The fact that we are able
to inject a data report associated to any of the studied trackers’ IDs reveals both
a severe DoS risk and the potential for a paid rogue service that would manipulate
records on demand. Specifically, an attacker could arbitrarily modify the activity
records of random users, or manipulate the data recorded by the device of a target
victim, as tracker IDs are listed on the packaging. Likewise, a selfish user may
pay for a service that exploits this vulnerability to manipulate activity records on
demand, and subsequently gain rewards.

Fabrication of Activity Data: Using the information gained during the
protocol analysis phase (see section 7.2), we constructed a message containing a
frame with fake activity data and submitted it to the server, as discussed above.
To do this, the payload of a genuine message was used as a skeleton, and each
data section within the payload was cleared by removing all data bytes between the
delimiters.

136
Chapter 7. Advanced Fitness Devices: Security Analysis, Reverse

Engineering and Spoofing

(a) Before submission (b) After submission

Figure 7.10: Figure 7.10a shows the Fitbit user activity screen before fake data were
submitted, and Figure 7.10b shows the screen after the attack. In this example,
10000 steps and 10 km were injected for the date of Sunday, January 15th, 2017 by
fabricating a message containing the data shown in Table 7.1.

Then, the summary section was populated with fake data. Using only the sum-
mary section was enough to update the Fitbit user profile with fabricated step count
and distance traveled information. The format of the summary section is shown in
Table 7.1, along with the fake data used to form the fabricated message.

Range Usage Value
00-03 Timestamp 30 56 7b 58 15/01/17
04-05 Calories 64 00 100
06-09 Number of Steps 10 27 00 00 10000
0A-0D Distance in mm 80 96 98 00 10000000
0E-0F Elevation 00 00 00 00 0

Table 7.1: Data inserted into the packet summary section

Figure 7.10 again shows a before and after view of the Fitbit user activity screen,
when the fake message is submitted. In this example, the packet is constructed so
that 10000 steps and a distance traveled of 10 km were registered for the 15th of
January 2017. This attack indicates that it is possible to create an arbitrary activity
message and have the remote server accept it as a real update to the user’s activity
log.

Exploitation of Remote Server for Field Deduction: A particular prob-
lem with the unencrypted packets was that it was not apparent how the value of
the CRC field is calculated (unlike the CRC for encrypted packets). However, if a
message is sent to the server containing an invalid CRC, the server responds with a
message containing information on what the correct CRC should be (see Listing 7.3).

7.4. Hardware-Based Local Spoofing 137

1 $ cu r l − i −X POST <target−u r l> −−data−binary @payload
2 <?xml version=" 1 .0 " encoding="UTF−8" standalone="yes "?>
3 <ga l i l e o−s e r v e r version=" 2 .0 ">
4 <er r o r>INVALID_DEVICE_DATA:com. f i t b i t . p r o to co l . s e r i a l i z e r .

DataProcess ingExcept ion : Pars ing f i e l d
5 [s i gna tu r e] o f the ob j e c t o f type CHECKSUM. IO e r r o r −> ; Remote

checksum [2246 | 0 x8c6] and l o c a l
6 checksum [60441 | 0 xec19] do not match .</ e r r o r>
7 </ ga l i l e o−s e r v e r>

Listing 7.3: Response from the Fitbit server when a payload with an invalid
checksum is submitted.

This information can be used to reconstruct the packet with a valid CRC. Such
an exploit must be used sparingly, however, as the remote server will refuse to process
further messages if an error threshold is met, until a lengthy timeout (on the order
of hours) expires.

7.4 Hardware-Based Local Spoofing

We now demonstrate the feasibility of hardware-based spoofing attacks focusing
on Fitbit Flex and Fitbit One devices. We first conducted an analysis of the Fitbit
protocol as previously described in Section 7.2. However, since the newest firmware
(Fitbit 7.81) uses end-to-end encryption with a device-specific key, the data cannot
be manipulated using MITM attacks, as described in the previous section. Therefore,
we resort to a physical attack on the tracker’s hardware. We reverse engineered
the hardware layout of the devices to gain memory access, which enabled us to
inject arbitrary stepcount values into memory, which the tracker would send as
valid encrypted frames to the server.

7.4.1 Device Tear-Down

In order to understand how to perform the hardware attack, we needed to tear
down the devices. In the following section, we give an overview of the tools required
for this process.

Tools: The tools to perform the hardware attack were quite cheap and easy to
purchase. To accomplish the attack, we used:

1. digital multimeter,

2. soldering iron, thin gauge wire, flux

3. tweezers,

4. soldering heat gun,

5. debugger/programmer in circuit ST-LINK/v2, and

6. STM32 ST-LINK utility.

138
Chapter 7. Advanced Fitness Devices: Security Analysis, Reverse

Engineering and Spoofing

Figure 7.11: Tools for device tear-down and hardware RE.

, as shown in Figure 7.11.
The digital multimeter was used once to locate the testing pins associated with

the debug interface of the microcontroller. However, attackers performing the attack
do not require a multimeter, as long as the layout of the testing pins is known to
them. The soldering heat gun and tweezers were utilized to perform the mechanical
tear-down of the device casing. The soldering iron and accessories were used to
solder wires to the identified testing pins. We used the ST-LINK/v2 and STM32
ST-LINK utilities to connect to the device in order to obtain access to the device’s
memory.

Costs:
The required tools for performing the hardware attack are relatively cheap. The

STLINK/v2 is a small debugger/programmer that connects to the PC using a com-
mon mini-USB lead and costs around $15. The corresponding STM32 ST-LINK
utility is a full-featured software interface for programming STM32 microcontrollers,
using a mini-USB lead. This is free Windows software and that can be downloaded
from ST3. General-purpose tools (e.g. hair dryer) can be employed to tear-down the
casing. Therefore the total costs make the attack accessible to anyone who can afford
a fitness tracker. We argue that hardware modifications could also be performed by
a third party in exchange of a small fee, when the end user lacks the skills and/or
tools to exploit hardware weaknesses in order to obtain financial gains.

Tear-Down Findings: According to our tear-down of the Fitbit trackers
(Fitbit Flex and Fitbit One), as shown in Figure 7.12, the main chip on the moth-
erboard is an ARM Cortex-M3 processor. This processor is an ultra-low-power
32-bit MCU, with different memory banks such as 256KB flash, 32KB SRAM and
8KB EEPROM. The chip used for Fitbit Flex is STM32L151UC WLCSP63 and
for Fitbit One STM32L152VC UFBGA100. The package technology used in both
micro-controllers is ball grid array (BGA) which is a surface-mount package with
no leads and a grid array of solder balls underneath the integrated circuit. Since
the required specifications of the micro-controller used in Fitbit trackers are freely
available, we were able to perform hardware reverse-engineering (RE).

3 http://www.st.com/en/embedded-software/stsw-link004.html

http://www.st.com/en/embedded-software/stsw-link004.html

7.4. Hardware-Based Local Spoofing 139

7.4.2 Hardware RE to Hunt Debug Ports

We discovered a number of testing points at the back of the device’s main board.
Our main goal was to identify the testing points connected to debug interfaces. Ac-
cording to the IC’s datasheet, there are two debug interfaces available for STM32L:
(1) SWD, and (2) JTAG.

We found that the Fitbit trackers were using the SWD interface. However, the
SWD pins were obfuscated by placing them among several other testing points with-
out the silkscreen identifying them as testing points. SWD technology provides a
2-pin debug port, a low pin count and high-performance alternative to JTAG. The
SWD replaces the JTAG port with a clock and single bidirectional data pin, pro-
viding test functionality and real-time access to system memory. We selected a
straightforward approach to find the debug ports (other tools that can be exploited
include Arduino+JTAGEnum and Jtagulator). We removed the micro-controller
from the device PCB. Afterward, using the IC’s datasheet and a multimeter with
continuity tester functionality, we traced the debug ports on the device board, iden-
tifying the testing points connected to them.

7.4.3 Connecting Devices to the Debugger

After discovering the SWD debug pins and their location on the PCB, we soldered
wires to the debug pins. We connected the debug ports to ST-LINK v2 pin header,
according to Figure 7.13.

Dumping the Firmware: After connecting to the device micro-controller,
we were able to communicate with MCU as shown in Figure 7.12. We extracted the
entire firmware image since memory readout protection was not activated. There
are three levels of memory protection in the STM32L micro-controller:

1. level 0: no readout protection,

2. level 1: memory readout protection, the Flash memory cannot be read from or
written to, and

3. level 2: chip readout protection, debug features and boot in RAM selection are
disabled (JTAG fuse).

We discovered that in the Fitbit Flex and the Fitbit One, memory protection was
set to level 0, which means there is no memory readout protection. This enabled us
to extract the contents of the different memory banks (e.g., FLASH, SRAM, ROM,
EEPROM) for further analysis.

Note that it is also possible to extract the complete firmware via the MITM
setup during an upgrade process (if the tracker firmware does not use encryption).
In general, sniffing is easier to perform, but does not reveal the memory layout and
temporal storage contents. Moreover, hardware access allows us to change memory
contents at runtime.

Device Key Extraction: We initially sniffed communications between the
Fitbit tracker and the Fitbit server to see whether a key exchange protocol is per-
formed, which was not the case. Therefore, we expected pre-shared keys on the
Fitbit trackers we connected to, including two different Fitbit One and three differ-
ent Fitbit Flex devices. We read out their EEPROM and discovered that the device

140
Chapter 7. Advanced Fitness Devices: Security Analysis, Reverse

Engineering and Spoofing

(a) Fitbit Flex.

(b) Fitbit One.

Figure 7.12: Fitbit tear-down and connecting Fitbit micro-controller to the debug-
ger.

7.4. Hardware-Based Local Spoofing 141

ST-LINK/V2 SWD Pins Description
Pin 1 Vcc Target board Vcc
Pin 7 SWDIO The SWD Data Signal
Pin 8 GND Ground
Pin 9 SWCLK The SWD Clock Signal
Pin 15 RESET System Reset

Figure 7.13: Connecting the tracker to the debugger.

encryption key is stored in their EEPROM. Exploring the memory content, we found
the exact memory addresses where the 6-byte serial ID and 16-byte encryption key
are stored, as shown in Figure 7.14. We confirm that each device has a device-specific
key which likely is programmed into the device during manufacturing [29].

Disabling the Device Encryption: By analyzing the device memory content,
we discovered that by flipping one byte at a particular address in EEPROM, we were
able to force the tracker to operate in unencrypted mode and disable the encryption.
Even trackers previously communicating in encrypted mode switched to plaintext
after modifying the encryption flag (byte). Figure 7.14 illustrates how to flip the
byte, such that the the tracker sends all sync messages in plaintext format (Base64
encoded) disabling encryption.

Figure 7.14: Device key extraction and disabling encryption.

Injecting Fabricated Data Activities: We investigated the EEPROM and
SRAM content to find the exact memory addresses where the total step count and
other data fields are stored. Based on our packet format knowledge and previously
sniffed megadumps, we found that the activity records were stored in the EEPROM
in the same format. Even encrypted frames are generated based on the EEPROM
plaintext records. Therefore, oblivious falsified data can be injected, even with the
newest firmware having encryption enabled.

142
Chapter 7. Advanced Fitness Devices: Security Analysis, Reverse

Engineering and Spoofing

(a) Encrypted sync message before memory modification.

(b) Unencrypted sync message (Base64 encoded) after memory modification.

Figure 7.15: Disabling the Device Encryption.

As it can be seen in Figure 7.16a and Figure 7.16b, we managed to successfully
inject 0X00FFFFFF steps equal to 16 777 215 in decimal into Fitbit server by modify-
ing the corresponding address field in the EEPROM and subsequently synchronising
the tracker with the server.

7.5 Discussion

In this section we give a set of implementation guidelines for fitness trackers.
While Fitbit is currently the only manufacturer that puts effort into securing track-
ers [228], our guidelines also apply to other health-related IoT devices. We intend to
transfer the lessons learned into open security and privacy standards that are being
developed.4

False data injection as described in the previous sections is made possible by
a combination of sub-optimal design choices in the implementation of the Fitbit
trackers and in the communication protocol utilized between the trackers and Fitbit
application servers. These design choices relate to how encryption techniques have
been applied, the design of the protocol messages, and the implementation of the
hardware itself. To overcome such weaknesses in future system designs, we propose
the following mitigation techniques.

4See https://www.thedigitalstandard.org

7.5. Discussion 143

(a) Fitbit app (b) Fitbit web interface

Figure 7.16: The results of injecting fabricated data. Figure 7.16a shows the Fitbit
app screenshot, and Figure 7.16b demonstrates the Fitbit web interface.

Application of encryption techniques: The examined trackers support full
end-to-end encryption, but do not enforce its use consistently.5 This allows us to
perform an in-depth analysis of the data synchronization protocol and ultimately
fabricate messages with false activity data, which were accepted as genuine by the
Fitbit servers.

Suggestion 1. End-to-end encryption between trackers and remote servers should
be consistently enforced, if supported by device firmware.

Protocol message design: Generating valid protocol messages (without a
clear understanding of the CRC in use) is enabled by the fact that the server responds
to invalid messages with information about the expected CRC values, instead of a
simple “invalid CRC”, or a more general “invalid message” response.

Suggestion 2. Error and status notifications should not include additional infor-
mation related to the contents of actual protocol messages.

CRCs do not protect against message forgery, once the scheme is known. For
authentication, there is already a scheme in place to generate subkeys from the
device key [29]. Such a key could also be used for message protection.

Suggestion 3. Messages should be signed with an individual signature subkey which
is derived from the device key.

Hardware implementation: The microcontroller hardware used by both
analyzed trackers provides memory readout protection mechanisms, but were not
enabled in the analyzed devices. This opens an attack vector for gaining access to
tracker memory and allows us to circumvent even the relatively robust protection
provided by end-to-end message encryption as we were able to modify activity data
directly in the tracker memory. Since reproducing such hardware attacks given
the necessary background information is not particularly expensive, the available
hardware-supported memory protection measures should be applied by default.

5During discussions we had with Fitbit, the company stressed that models launched after 2015
consistently enforce encryption in the communications between the tracker and server.

144
Chapter 7. Advanced Fitness Devices: Security Analysis, Reverse

Engineering and Spoofing

Suggestion 4. Hardware-supported memory readout protection should be applied.

Specifically, on the MCUs of the investigated tracking devices, the memory of
the hardware should be protected by enabling chip readout protection level 2.

Fraud detection measures: In our experiments we were able to inject fab-
ricated activity data with clearly unreasonably high performance values (e.g. more
than 16 million steps during a single day). This suggests that data should be mon-
itored more closely by the servers before accepting activity updates.

Suggestion 5. Fraud detection measures should be applied in order to screen for
data resulting from malicious modifications or malfunctioning hardware.

For example, accounts with unusual or abnormal activity profiles should be
flagged and potentially disqualified, if obvious irregularities are detected.

7.6 Related Work

In 2013, Rahman et al. [26] studied the communication between Fitbit Ultra and
its base station as well as the associated web servers. According to Rahman et al.,
Fitbit users could readily upload sensor data from their Fitbit device onto the web
server, which could then be viewed by others online. They observed two critical vul-
nerabilities in the communication between the Fitbit device’s base station, and the
web server. They claimed that these vulnerabilities could be used to violate the se-
curity and privacy of the user. Specifically, the identified vulnerabilities consisted of
the use of plaintext login information and plaintext HTTP data processing. Rahman
et al. then proposed FitLock as a solution to the identified vulnerabilities. These
vulnerabilities have been patched by Fitbit and no longer exist on contemporary
Fitbit devices.

In the report released by AV TEST [209], the authors tested nine fitness trackers
including Fitbit Charge and evaluated their security and privacy. The authors tried
to find out how easy it is to get the fitness data from the fitness band through Blue-
tooth or by sniffing the connection to the cloud during the synchronization process.
AV-TEST reported some security issues in Fitbit Charge [28]. They discovered that
Fitbit Charge with firmware version 106 and lower allows non-authenticated smart-
phones to be treated as authenticated if an authenticated smartphone is in range or
has been in range recently. Also, the firmware version allowed attackers to replay
the tracker synchronization process.

Zhou et al. [231] followed up on Rahman’s work by identifying shortcomings in
their proposed approach named FitLock, but did not mention countermeasures to
mitigate the vulnerabilities that they found. In 2014, Rahman et al. published an-
other paper detailing weaknesses in Fitbit’s communication protocol, enabling them
to inject falsified data to both the remote web server and the fitness tracker. The
authors proposed SensCrypt, a protocol for securing and managing low power fitness
trackers [232]. Note that Fitbit’s communication paradigm has changed consider-
ably since Fitbit Ultra, which uses ANT instead of Bluetooth, and is not supported
by smartphone applications, but only by a Windows program last updated in 2013.
Neither the ANT-based firewalls FitLock nor SensCrypt would work on recent Fit-
bit devices. Transferring their concept to a Bluetooth-based firewall would not help

7.7. Summary 145

against the attacks demonstrated in this paper, since hardware attacks are one level
below such firewalls, while our protocol attacks directly target the Fitbit servers.

In [29], the authors captured the firmware image of the Fitbit Charge HR during
a firmware update. They reversed engineer the cryptographic primitives used by
the Fitbit Charge HR activity tracker and recovered the authentication protocol.
Moreover, they obtained the cryptographic key that is used in the authentication
protocol from the Fitbit Android application. The authors found a backdoor in
previous firmware versions and exploiting this backdoor they extracted the device
specific encryption key from the memory of the tracker using Bluetooth interface.

Principled understanding of the Fitbit protocol remains open to investigation
as the open-source community continues to reverse-engineer message semantics and
server responses [229].

7.7 Summary

Trusting the authenticity and integrity of the data that fitness trackers generate
is paramount, as the records they collect are being increasingly utilized as evidence
in critical scenarios such as court trials and the adjustment of healthcare insur-
ance premiums. In this paper, we conducted an in-depth security analysis of two
models of popular activity trackers commercialized by Fitbit, the market leader,
and we revealed serious security and privacy vulnerabilities present in these devices.
Additionally, we reverse engineered the primitives governing the communication be-
tween these devices and cloud-based services, implemented an open-source tool to
extract sensitive personal information in human-readable format and demonstrated
that malicious users could inject spoofed activity records to obtain personal benefits.
To circumvent the end-to-end protocol encryption mechanism present on the latest
firmware, we performed hardware-based RE and documented successful injection of
falsified data that appears legitimate to the Fitbit cloud. We believe more rigorous
security controls should be enforced by manufacturers to verify the authenticity of
fitness data. To this end, we provided a set of guidelines to be followed to address
the vulnerabilities identified.

Acknowledgments
We thank the Fitbit Security Team for their professional collaboration with

us, and their availability to discuss our findings and address the vulnerabilities we
identified.

146
Chapter 7. Advanced Fitness Devices: Security Analysis, Reverse

Engineering and Spoofing

147

Chapter 8

Conclusions

This chapter presents the conclusions of this thesis. We first summarize the
main contributions and discuss how these contributions satisfies the objectives of
the dissertation. Next, we identify and discuss a number of challenging open issues
and research problems that should be tackled in future work.

As current trends indicate, the proliferation of Android malware is going to be
a continued problem. As malware authors develop newer and more sophisticated
means of intrusions, old methods of protection will no longer work. To this end,
Android users need a security solution that is not only tailored to protect against
the threats of today, but also of tomorrow as well. Android users must be extremely
cautious in how they download applications. One of the best practices is not to trust
third-party apps, and whatever apps users download should be scanned locally by
running a mobile security suite on their devices. It is not just individual Android
users who have to take Android security into account, it is businesses as well. With
the increase in company BYOD policies, businesses are operating with a great deal of
employee Android devices accessing their network. While BYOD has the potential
to drive up productivity, it also opens the door to vulnerabilities, and it is the
business enterprise’s responsibility to keep threats under control and prevent them
from causing problems.

As for wearable smart devices (e.g., fitness trackers), part of the problem with
the security of these devices is because wearable manufacturers are rushing to beat
their competitors and get their product onto the market first. Fitness tracking
manufacturers need to build privacy and security into their existing development
process, because patching security vulnerabilities, fixing errors and dealing with
the investigation is significantly more costlier when compared to if companies had
done it right the first time. When designing wearable devices connected to the IoT,
manufacturers must establish a secure hardware and software development process
that includes code management, build management, automated testing, streamlined
packaging and software delivery mechanisms. It should include source code analy-

148 Chapter 8. Conclusions

sis to identify vulnerabilities as well as security-related testing to identify runtime
vulnerabilities.

Deploying these devices in a secure way is just as important as their design.
Attention should be paid to device provisioning and authentication. The deploy-
ment process should cross-authenticate both the device and the network to ensure
it does not transmit confidential information to a malicious party. Similarly, strong
encryption should be deployed to ensure the integrity and privacy of the data on
the device, in the cloud or during transmission from device to cloud. Also, utilizing
authentication and authorization for devices, users and applications must be taken
into account.

In the following, we analyze the main conclusions and summarize our contri-
butions in Section 8.1 and discuss open research problems and future work in Sec-
tion 8.2.

8.1 Summary of Contribution

This dissertation portrays our contributions towards tackling mobile and smart
devices security as follows.

8.1.1 Tackling Mobile Malware

In Part I, we illustrated an important part of our research toward tackling
mobile malware with focus on Android OS. The goal of this part was to inspire
malware researchers to come up with new and innovative ways of tackling mobile
malware threats. The problems of malware detection are not solvable by simple
iterations of existing technology. It will require novel and revolutionary approaches
for detecting malicious application. In this area our contributions are threefold:

• Secure Message Delivery Games for D2D Communications: We design the
SMD protocol in Chapter 2 with primary objective of selecting the most secure
path to deliver a message from a sender to a destination in a multi-hop D2D
network. In addition, we consider the energy cost and quality-of-service of
each route. We formulate secure message delivery game so as to derive an
optimal behavior for our protocol. Simulation results demonstrate the degree
of improvement that SMD introduces as opposed to a shortest path routing
protocol. This improvement has been measured in terms of the defender’s
expected cost as defined in SMDGs. This cost includes security expected
damages, energy consumption incurred due to messages inspection, and the
quality-of-service of the D2D message communications. The outcome of our
contribution has been published in [13].

• Android Code Obfuscation Techniques: Advanced and sophisticated malware
application tend to stay hidden during infection and operation to prevent
removal and analysis. Malware applications achieve this using many techniques
to thwart detection and analysis. In more advanced cases, the malware might
attempt to subvert modern detection systems to prevent being found, hiding

8.1. Summary of Contribution 149

running processes and network connections. Malware applications use some
additional layers of defense to protect themselves from analysis and reverse
engineering. By implementing additional protection mechanisms, malware can
be more difficult to detect and even more resilient to takedown. Obfuscation
techniques are used to hide malware’s internals. To address this issue, in
Chapter 3, we investigate concrete and relevant questions concerning Android
code obfuscation and protection techniques and review code obfuscation and
code protection practices, as well as evaluating the efficacy of existing code
de-obfuscation tools. Part of the research presented in this chapter appears
in [16].

• Android Malware Detection: In Chapter 4, we propose a system to detect An-
droid malicious applications. To do so, we conduct an extensive static analysis
on a well-labelled data-set of Android applications and extract several informa-
tive features from malware applications. We leverage several Machine Learning
classification algorithms to discover the most performant one in terms of ac-
curacy and speed. We evaluate the performance of our proposal on large-scale
malware data-set (including 18,677 malware and 11,187 benign apps). Our
experimental results show a true positive rate of 97.3% and a false negative
rate of 2.7%. These results are better than what are reported by state-of-
the-art Android malware detection methods. This contribution to the filed of
malware detection has been publihsed in [17].

• Android Malware Classification: Malware authors introduce polymorphism to
the malicious components to evade detection. This means that malicious apps
belonging to the same malware “family”, with the same forms of malicious be-
haviour, are constantly modified or obfuscated using various techniques, such
that they look like many different applications. In order to classify malware
applications effectively, we group them into 78 groups and identify their re-
spective families. In addition, such grouping criteria applies to new malware
encountered on smartphones, in order to detect them as malicious and of a
certain family.
In Chapter 5, we carry out family-by-family malware classification. Then, we
accumulate Android malware apps and perform cumulative classification where
the classification results are continuously updated as new malware samples are
discovered. We leverage boosting techniques to obtain as much classification
performance as possible for Android malware detection in the wild. In mal-
ware family classification, we obtain an average classification accuracy of 92%.
We also present the empirical results for our cumulative classification which
investigates how good features from old malware can contribute to the detec-
tion of new variants of both known and unknown malware. Part of the work
presented in this chapter appeared in [18].

8.1.2 Security Analysis on Wearable Fitness Devices

In Part II of this dissertation, we analyze a representative subset of different
wearable fitness tracking devices including devices from top manufacturers and less
well-known brands with divers security mechanism (ranging form the most secure

150 Chapter 8. Conclusions

fitness trackers to less secure ones). We reveal that many challenges need to be
addressed in order to develop consistent, robust, flexible, safe and secure systems.
This thesis provides two contributions as follows:

• Security Analysis, Reverse Engineering and Spoofing Popular Fitness Devices:
In Chapter 6, we conduct hardware and software security analysis of these
devices and related communication protocols to understand how they work
internally. we focus on a malicious user setting that aims to inject false data
into the cloud-based services leading to erroneous data analytics. We primarily
consider attacks aimed to either (i) disclose fitness data, or (ii) tamper with
data in order to inject counterfeit information into the cloud service. We con-
duct a Man-In-The-Middle (MITM) attack that targets the communication
between the fitness App (installed on smartphones) and the manufacturer’s
cloud service, as fitness trackers typically utilise the user’s smartphone for up-
loading data to the cloud service. The attack is successful in all tested activity
trackers and consequence of the mentioned attack is to inject counterfeit in-
formation into the cloud service.
Quite a few fitness products include End-to-End (On-device) encryption to
protect data from being sniffed or tampered. Since the data is End-to-End
encrypted, it cannot be manipulated using MITM attack and to compromise
the data, hardware access is needed. We deal with such devices in chapter 7.
We show that none of these products can provide data integrity, authenticity
and confidentiality. As a result of our research, we discover a number of vul-
nerabilities in selected fitness tracking products. These vulnerabilities could
be potentially used by malicious users to fabricate false activity record data
and upload them to the respective cloud services. We published the outcome
of this work in [25].

• Security Analysis, Reverse Engineering and Spoofing Fitbit Devices: We pro-
vide an in-depth security analysis of the operation of fitness trackers com-
mercialized by Fitbit, the wearables market leader in Chapter 7. We reveal an
intricate security through obscurity approach implemented by the user activity
synchronization protocol running on these devices. Although non-trivial to in-
terpret, we reverse engineer the message semantics, demonstrate how falsified
user activity reports can be injected, and argue that based on our discoveries,
such attacks can be performed at scale to obtain financial gains.
Regarding the studied Fitbit products, we found that they are susceptible to
impersonation attack in which activity reports are modified by changing the
tracker ID to a different tracker ID associated with a different Fitbit user ac-
count. In addition, we have also discovered that it is possible to modify the
contents of activity reports in transit in a way that would allow an attacker to
fabricate arbitrary activity information. In both cases, the modified activity
reports are accepted by the Fitbit servers as genuine. Last but not least, our
security analysis of the tracker hardware revealed details about the internal
state of the tracker device, which would potentially allow an attacker to di-
rectly modify activity information in tracker memory and thereby fabricate
activity information. The activity reports are accepted by the Fitbit servers

8.2. Open Issues and Future Work 151

as genuine, even if end-to-end encryption between the tracker and the server
is in-place. Finally, we give guidelines for avoiding similar vulnerabilities in
future system designs. Part of the research work conducted in this chapter is
published in [32].

8.2 Open Issues and Future Work

The research work presented in Part I of this dissertation aims to overcome
some of the limitations that affect current malware analysis and detection solutions.
However, the techniques we described are not free from limitations. In this section we
sketch possible improvements and extensions over the ideas we proposed, together
with some directions for future work. Our future contributions include but not
limited to:

• Android Obfuscation Future Research Directions: The Android de-
vices have constrained processing and limited storage. Obfuscation techniques
have an adverse impact on battery consumption. The power management is an
important issue to identify impact of code level modifications. The Android
Obfuscation has a APK statistical significance [149]. An important future
work is to consider a large set of obfuscated APK empirical evaluation. The
same can be extended to different mobile OS and devices. Since the developers
do not have access to tools like CARAT [150], they cannot identify the impact
on energy consumption. The ability to identify the impact is important for
resource constrained Android devices.
The existing academic code obfuscation research is heavily concentrated more
towards analysis of obfuscated malicious applications [152] [153] [154] [155].
The relevant literature evaluates obfuscation techniques prominently among
malicious applications. The real identification of obfuscated code among the
normal programs which is important for software protection, is ignored. The
non-malicious code reverse engineering is largely unexplored. Targeting pro-
gram obfuscation and related techniques for protecting the digital rights is
an interesting future direction. In spite of the existing research on obfusca-
tion, evaluation matrices to verify the existing obfuscation technique resilience
are not available. Formal analysis techniques to evaluate obfuscation and
de-obfuscation techniques is still not available. Hence, we summarize code
obfuscation, de-obfuscation tools and techniques to understand the effect in
isolation. It would be interesting to combine different class of obfuscation
techniques, and evaluate existing de-obfuscation tools.

• Extending Android Applications Analysis: We will extend our analysis
and combine static analysis with dynamic analysis to overcome to limitation
associated with static analysis that we already explained in Chapter 4. We
plan to leverage more fine-grained features, and structured data (e.g., string,
set, and graph) to characterize Android apps. We will extract more features
related to behavior of Android applications such as CPU and Memory con-
sumption, Network traffic activities, Inter-Process Communications (IPC) and
system calls made by applications so as to interact with Android OS.

152 Chapter 8. Conclusions

We also plan to concentrate more on tackling the problem of automatically
detection of evasive malware. One of the most problematic classes of mal-
ware is evasive malware. These malware applications are considered as one
of the most problematic malicious apps. An example of evasive malware, we
can mention logic bombs which are executed, or triggered, only under cer-
tain circumstances. These malicious software applications are written with
the specific intent of evading currently analysis systems and this aspect makes
the automatic detection an open research problem. We intend to focus more
on analyzing this class of malware to devise a performant malware detection
framework.

• Deep Learning for Malware detection and classification: Deep Learn-
ing as a new frontier in data mining and machine learning, is starting to be
used in automatic malware detection. A multilayer deep learning architecture
takes advantage of superior ability in feature learning and takes control of the
learning difficulty via layerwise pretraining. A deep learning model exploits
of feature detectors from the lowest level to the highest level to construct the
final classification model [233].
We will construct deep neural networks and apply them to hunt Android ma-
licious applications. We leverage Convolutional Neural Networks (CNN), and
Recurrent Neural Network (RNN) using architectures such as: (i) Long Short
Term Memory (LSTM), and (ii) Gated Recurrent Unit (GRU). These deep
neural networks have shown state-of-the-art performance in various field such
as Computer Vision, Pattern Recognition, and Natural language Processing
(NLP). To increase the model performance and optimize malware detection
architecture, we will combine the above-mentioned deep neural networks

• Malware Detection in IoT Smart Devices: The experience obtained from
Android-powered smartphones recommends that malware will also hit other
smart IoT devices. There will be a new type of threat in which adjacent IoT
devices will infect each other with a worm that will spread explosively over
large areas [234]. Recently, Linux Malware has clearly started to target IoT
Devices. Mirai malware enabled the largest DDoS attack ever by targeting not
just Linux servers, but also IoT devices on the Internet.1

• Security and Privacy Analysis of Smartwatches: In chapters 6 and 7, we
evaluated security of fitness tracking devices like smart bands rather than more
general-purpose smartwatches. While fitness tracking bands in general are lim-
ited in terms of computational power, memory, connectivity and functionality,
smartwatches are more complex and powerful devices. Most of smartwatches
on the market use the most advanced hardware and software solutions avail-
able for mobile operating system that was developed specifically for wearable
devices. Therefore, these devices can leverage more robust, safe and efficient
security controls. As a future work, we are interested in conducting an in-depth
security and privacy analysis of smartwatches.

1 https://github.com/jgamblin/Mirai-Source-Code

https://github.com/jgamblin/Mirai-Source-Code

153

Bibliography

[1] Giovanni Russello, Mauro Conti, and Bruno Crispo andand Earlence Fernan-
des. Moses: Supporting operation modes on smartphones. Proceedings of
the17th ACM Symposium on Access Control Models and Technologies, pages
3–12, 3-12, Newark, NJ, US, June 20-22, 2012.

[2] Eurograbber. http://www.checkpoint.com/products/downloads/
whitepapers/Eurograbber. white paper.pdf, 2013.

[3] Earlence Fernandes, Bruno Crispo, and Mauro Conti. Fm 99.9, radio virus:
Exploiting fm radio broadcasts for malware deployment. In In IEEE Trans-
actions on Information Forensics and Security, 2013.

[4] Roman Schlegel, Kehuan Zhang, Xiao yong Zhou, Mehool Intwala, Apu Ka-
padia, , and XiaoFeng Wang. Soundcomber: A stealthy and context-aware
sound trojan for smartphones. In Proceedings of the NDSS, 2011.

[5] V. Laxmi V. Ganmoor M.S. Gaur M. Conti P. Faruki, A. Bharmal and M. Ra-
jarajan. Android security: A survey of issues, malware penetration, and de-
fenses. IEEE Communications Surveys & Tutorials, pages 998–1022, 2015.

[6] Emmanouil Panaousis, Tansu Alpcan, Hossein Fereidooni, and Mauro Conti.
Secure message delivery games for device-to-device communications. In In
Proceedings of 5th International Conference, on Decision and Game Theory
for Security. IEEE, Los Angeles, CA, USA, November 6-7, 2014.

[7] Hui Y. Wei Z. Jianting Y., Chuan M. Secrecy-based access control for device-
to-device communication underlaying cellular networks. IEEE Communica-
tions Magazine, pages 2068–2071, 2013.

[8] A.L. Fakoorian S.A.A. Wei X. Chunming Z Daohua Z., Swindlehurst. Device-
to-device communications: The physical layer security advantage. IEEE Com-
munications Magazine, pages 1606–1610, 2014.

[9] Parvez Faruki, Hossein Fereidooni, Vijay Laxmiand, Manoj Singh Gaur, and
Mauro Conti. Android code protection via obfuscation techniques: Past,
present and future directions. ACM Computing Surveys (CSUR).

http://www.checkpoint.com/products/downloads/whitepapers/Eurograbber
http://www.checkpoint.com/products/downloads/whitepapers/Eurograbber

154 Bibliography

[10] Hossein Fereidooni, Mauro Conti, Alessandro Sperduti, and Danfeng Yao.
Anastasia: Android malware detection using static analysis of applications.
In In Proceedings of 8th IFIP International Conference on New Technologies,
Mobility & Security. IEEE, Cyprus, 21-23th November 2016.

[11] Hossein Fereidooni, Veelasha Moonsamy, Mauro Conti, and Lejla Batina. Effi-
cient classification of android malware in the wild using robust static features.
In Protecting Mobile Networks and Devices: Challenges and Solutions, CRC
Press - Taylor & Francis, (Editors: Weizhi Meng, Xiapu Luo, Jianying Zhou,
Steven Furnell), 2016.

[12] L. Lee, S. Egelman, J. H. Lee, and D. Wagner. Risk perceptions for wearable
devices. In arXiv pre-print arXiv:1504.05694, 2015.

[13] X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang. When good becomes evil:
Keystroke inference with smartwatch. In In Conference on Computer and
Communications Security, ACM, page 1273âĂŞ1285, 2015.

[14] A. Maiti, M. Jadliwala, J. He, and I Bilogrevic. (smart)watch your taps: side-
channel keystroke inference attacks using smartwatches. In In International
Symposium on Wearable Computers, ACM, page 27âĂŞ30, 2015.

[15] A. Migicovsky, Z. Durumeric, J. Ringenberg, and J. A. Halderman. Outsmart-
ing proctors with smartwatches: A case study on wearable computing secu-
rity. In In Financial Cryptography and Data Security. Springer, page 89âĂŞ96,
2014.

[16] Forbes Magazin. http://www.forbes.com/sites/parmyolson/
2014 / 11 / 16 / fitbit - data - court - room - personal - injury -
claim/#a169f02209f8, [Online]; Accessed June 2016.

[17] Daily News. http://www.nydailynews.com/news/national/
police - attorneys - fitness - trackers - court - evidence -
article-1.2607432, [Online]; Accessed June 2016.

[18] Hossein Fereidooni, Tommaso Frassetto, Markus Miettinen, Ahmad-Reza
Sadeghi, and Mauro Conti. Fitness trackers: Fit for health but unfit for secu-
rity and privacy. In In Proceedings of the 2nd IEEE International Workshop
on Safe, Energy-Aware, & Reliable Connected Health (CHASE 2017 workshop:
SEARCH 2017). IEEE, Philadelphia, USA, July 17-19, 2017.

[19] Mahmudur Rahman, Bogdan Carbunar, and Madhusudan Banik. Fit and Vul-
nerable: Attacks and Defenses for a Health Monitoring Device. In Proceedings
of the Privacy Enhancing Technologies Symposium (PETS), Bloomington, In-
diana, USA, July 2013.

[20] Britt Cyr, Webb Horn, Daniela Miao, and Michael Specter. Security anal-
ysis of wearable fitness devices (fitbit). Technical report, Massachusetts In-
stitute of Technology, USA. Available at: https://courses.csail.
mit.edu/6.857/2014/files/17-cyrbritt-webbhorn-specter-
dmiao-hacking-fitbit.pdf, Accessed April 2017.

http://www.forbes.com/sites/parmyolson/2014/11/16/fitbit-data-court-room-personal-injury-claim/#a169f02209f8
http://www.forbes.com/sites/parmyolson/2014/11/16/fitbit-data-court-room-personal-injury-claim/#a169f02209f8
http://www.forbes.com/sites/parmyolson/2014/11/16/fitbit-data-court-room-personal-injury-claim/#a169f02209f8
http://www.nydailynews.com/news/national/police-attorneys-fitness-trackers-court-evidence-article-1.2607432
http://www.nydailynews.com/news/national/police-attorneys-fitness-trackers-court-evidence-article-1.2607432
http://www.nydailynews.com/news/national/police-attorneys-fitness-trackers-court-evidence-article-1.2607432
 https://courses.csail.mit.edu/6.857/2014/files/17-cyrbritt-webbhorn-specter-dmiao-hacking-fitbit.pdf
 https://courses.csail.mit.edu/6.857/2014/files/17-cyrbritt-webbhorn-specter-dmiao-hacking-fitbit.pdf
 https://courses.csail.mit.edu/6.857/2014/files/17-cyrbritt-webbhorn-specter-dmiao-hacking-fitbit.pdf

Bibliography 155

[21] Eric Clausing, Michael Schiefer, and Maik Morgenstern. AV-TEST Analysis
of Fitbit Vulnerabilities. Available at: https://www.av-test.org/
fileadmin/pdf/avtest_2016-04_fitbit_vulnerabilities.pdf,
Accessed June 2016.

[22] Maarten Schellevis, Bart Jacobs, , and Carlo Meijer. Security/privacy of wear-
able fitness tracking IoT devices. Radboud University. Bachelor thesis: Getting
access to your own Fitbit data., August 2016.

[23] Accenture. Digital trust in the IoT era, 2015.

[24] PwC. Use of wearables in the workplace is halted by lack of
trust. http://www.pwc.co.uk/who-we-are/regional-sites/
northern- ireland/press- releases/use- of- wearables- in-
the-workplace-is-halted-by-lack-of-trust-pwc-research.
html, Accessed June 2016.

[25] Hossein Fereidooni, Jiska Classen, Tom Spink, Paul Patras, Markus Mietti-
nenand Ahmad-Reza Sadeghi, Matthias Hollick, and Mauro Conti. Breaking
fitness records without moving: Reverse engineering and spoofing fitbit. In
In Proceedings of the 20th International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2017). IEEE, Atlanta, Georgia, USA, 2017,
(Submitted).

[26] Lu-L. Yuan-Wu Y. Ye Li G. Li S. Feng G. Feng, D. Device-to-device commu-
nications in cellular networks. IEEE Communications Magazine, pages 49–55,
2014.

[27] Dahlman-E. Mildh-G. Parkvall S. Reider N. Miklos G. Turanyi Z. Fodor, G.
Design aspects of network assisted device-to-device communications. IEEE
Communications Magazine, pages 170–177, 2012.

[28] Ito-M. Kato-N. Nishiyama, H. Relay-by-smartphone: realizing multihop
device-to-device communications. IEEE Communications Magazine, pages 56–
65, 2014.

[29] Rinne-M. Wijting-C. Ribeiro C.B. Hugl K Doppler, K. Device-to-device com-
munication as an underlay to lte-advanced networks. IEEE Communications
Magazine, pages 42–49, 2009.

[30] Conti-M. Leone-M. Stefa J. Ardagna, C.A. An anonymous end-to-end com-
munication protocol for mobile cloud environments. IEEE Transactions on
Services Computing, 2014.

[31] F-Secure. Bluetooth-worm:symbos/cabir. Technical report, accessed June
2016.

[32] Courtney T.-Sanders W. H. Stevens F. Van Ruitenbeek, E. Quantifying the
effectiveness of mobile phone virus response mechanisms. In Proceedings of
the 37th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 790–800, 2007.

https://www.av-test.org/fileadmin/pdf/avtest_2016-04_fitbit_vulnerabilities.pdf
https://www.av-test.org/fileadmin/pdf/avtest_2016-04_fitbit_vulnerabilities.pdf
http://www.pwc.co.uk/who-we-are/regional-sites/northern-ireland/press-releases/use-of-wearables-in-the-workplace-is-halted-by-lack-of-trust-pwc-research.html
http://www.pwc.co.uk/who-we-are/regional-sites/northern-ireland/press-releases/use-of-wearables-in-the-workplace-is-halted-by-lack-of-trust-pwc-research.html
http://www.pwc.co.uk/who-we-are/regional-sites/northern-ireland/press-releases/use-of-wearables-in-the-workplace-is-halted-by-lack-of-trust-pwc-research.html
http://www.pwc.co.uk/who-we-are/regional-sites/northern-ireland/press-releases/use-of-wearables-in-the-workplace-is-halted-by-lack-of-trust-pwc-research.html

156 Bibliography

[33] K.G. Bose, A. Shin. On mobile viruses exploiting messaging and bluetooth
services. In Proceedings of the ecurecomm and Workshops, pages 1–10, 2006.

[34] Martinelli F.-Sgandurra D. La Polla, M. A survey on security for mobile
devices. IEEE Communications Surveys and Tutorials, pages 446–471, 2013.

[35] Halonen P. Hatonen-K. Miettinen, M. Host-based intrusion detection for ad-
vanced mobile devices. In Proceedings of the 20th International Conference
on Advanced Information Networking and Applications (AINA), pages 72–76,
2006.

[36] Basar T. Alpcan, T. Network security: A decision and game-theoretic ap-
proach.

[37] Schapire R.E. Freund, Y. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of computer and system sciences,
pages 119–139, 1997.

[38] J.F. Nash. Equilibrium points in n-person games. In Proceedings of the Na-
tional Academy of Sciences, volume 36, pages 48–49, 1950.

[39] Olsder G. J. Basar, T. Dynamic noncooperative game theory. London Aca-
demic press, 2nd Edition, 1995.

[40] Maltz D.A. Johnson, D.B. Dynamic source routing in ad hoc wireless networks.

[41] Yu W. Han-Z. Liu K.J.R. Sun, Y.L. Information theoretic framework of trust
modeling and evaluation for ad hoc networks. IEEE Journal on Selected Areas
of Communication, 24:305–317, 2006.

[42] Ji Z. Liu-K.J.R. Yu, W. Securing cooperative ad-hoc networks under noise and
imperfect monitoring: strategies and game theoretic analysis. IEEE Transac-
tions on Information Forensics and Security, 2:240–253, 2007.

[43] Liu K.J.R. Yu, W. Game theoretic analysis of cooperation stimulation and
security in autonomous mobile ad hoc networks. IEEE Transactions on Mobile
Computing, 6:507–52, 2007.

[44] Liu K.J.R. Yu, W. Secure cooperation in autonomous mobile ad-hoc net-
works under noise and imperfect monitoring: a game-theoretic approach. IEEE
Transactions on Information Forensics and Security, 3:317–330, 2008.

[45] Buttyan L. Felegyhazi, M. and J.-P. Hubaux. Nash equilibria of packet for-
warding strategies in wireless ad hoc networks. IEEE Transactions on Mobile
Computing, pages 463–476, 2006.

[46] Chen I.R. Feng-P.G. Cho, J.H. Effect of intrusion detection on reliability
of mission-oriented mobile group systems in mobile ad hoc networks. IEEE
Transactions on Reliability, 59:231–241.

Bibliography 157

[47] Debbabi M. Assi-C. Bhattacharya P. Otrok, H. A cooperative approach for
analyzing intrusions in mobile ad hoc networks. In Proceedings of the Interna-
tional Conference on Distributed Computing Systems Workshops (ICDCSW),
pages 48–49, 2007.

[48] Saranyan R. Senthil-K.P. Vetriselvi V. Santosh, N. Cluster based co-operative
game theory approach for intrusion detection in mobile ad-hoc grid. In Pro-
ceedings of the International Conference on Advanced Computing and Com-
munications (ADCOM), pages 273–278, 2008.

[49] Park J. M. Patcha, A. A game theoretic approach to modeling intrusion
detection in mobile ad hoc networks. In Proceedings of the 5th Annual IEEE
SMC Information Assurance Workshop, pages 280–284, Switzerland (2004).

[50] Park J. M Patcha, A. A game theoretic formulation for intrusion detection in
mobile ad hoc networks. International Journal of Network Security, 2:131–137,
2006.

[51] Comaniciou C. Man-H. Liu, Y. A bayesian game approach for intrusion de-
tection in wireless ad hoc networks. In Proceedings of the of the Workshop on
Game theory for communications and networks (GameNets), 2006.

[52] Comaniciou C. Man-H. Liu, Y. Modeling misbehaviour in ad hoc networks:
A game theoretic approach for intrusion detection. International Journal of
Security and Networks, 1:243–254, 2006.

[53] Politis C. Panaousis, E.A. A game theoretic approach for securing aodv in
emergency mobile ad hoc networks. In Proceedings of the 34th IEEE Confer-
ence on Local Computer Networks (LCN), pages 985–992, Switzerland (2009).

[54] Tripathi R. Marchang, N. A game theoretical approach for efficient deployment
of intrusion detection system in mobile ad hoc networks. In Proceedings of
the International Conference on Advanced Computing and Communications
(ADCOM), pages 60–464, 2007.

[55] The Guardian. Three graphs to stop smartphone fans fretting about “market
share.”. http://www.theguardian.com/technology/2014/jan/
09/market-sharesmartphones-iphone-android-windows, [On-
line]; Accessed 17 Sept., 2014.

[56] Techology Research Gartner. Worldwide traditional pc, tablet, ultramobile
and mobile phone shipments are on pace to grow 6.9 percent in 2014.
http://www.gartner.com/newsroom/id/2692318, [Online]; Accessed
17 Sept., 2014.

[57] Google Play. All your entertainment, anywhere you go. http://
googleblog.blogspot.co.uk/2012/03/introducing-google-
play-all-your.html, [Online]; Accessed January, 2015.

[58] SlideME. All your entertainment, anywhere you go. http://slideme.
org/, [Online]; Accessed, Nov. 2014.

http://www.theguardian.com/technology/2014/jan/09/market-sharesmartphones-iphone-android-windows
http://www.theguardian.com/technology/2014/jan/09/market-sharesmartphones-iphone-android-windows
http://www.gartner.com/newsroom/id/2692318
http://www.gartner.com/newsroom/id/2692318
http://googleblog.blogspot.co.uk/2012/03/introducing-google-play-all-your.html
http://googleblog.blogspot.co.uk/2012/03/introducing-google-play-all-your.html
http://googleblog.blogspot.co.uk/2012/03/introducing-google-play-all-your.html
http://slideme.org/
http://slideme.org/

158 Bibliography

[59] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M.S. Gaur, M. Conti, and
M. Rajarajan. Android security: A survey of issues, malware penetration,
and defenses. Communications Surveys Tutorials, IEEE, 17(2):998–1022, Sec-
ondquarter 2015.

[60] Carlos A. Castillo. Android Malware Past, Present, and Future. Technical
report, Mobile Working Security Group McAfee, 2012.

[61] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. Har-
vesting Runtime Data in Android Applications for Identifying Malware and
Enhancing Code Analysis. Technical report, EC SPRIDE, 2015.

[62] Michael Franz. E unibus pluram: Massive-scale software diversity as a defense
mechanism. In Proceedings of the 2010 Workshop on New Security Paradigms,
NSPW ’10, pages 7–16, New York, NY, USA, 2010. ACM.

[63] Lucas Davi, Alexandra Dmitrienko, Stefan Nürnberger, and Ahmad-Reza
Sadeghi. XIFER: A software diversity tool against code-reuse attacks. In
ACM International Workshop on Wireless of the Students, by the Students,
for the Students, August 2012.

[64] Bin Liu, Bin Liu, Hongxia Jin, and Ramesh Govindan. Efficient privilege
de-escalation for ad libraries in mobile apps. In Proceedings of the 13th An-
nual International Conference on Mobile Systems, Applications, and Services,
MobiSys ’15, pages 89–103, New York, NY, USA, 2015. ACM.

[65] Mark Rogers. Dendroid malware can take over your camera, record audio, and
sneak into google play. https://blog.lookout.com/blog/2014/03/
06/dendroid/, [Online]; Accessed October, 2014.

[66] Contagio Minidump. Backdoor.AndroidOS.Obad.a. http :
//contagiominidump.blogspot.in/2013/06/backdoorandroid\
osobada.html, [Online]; Accesed December, 2014.

[67] Google Android. Proguard | android developers. http://developer.
android.com/tools/help/proguard.html, [Online]; accessed Septem-
ber, 2015.

[68] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization
and evolution. In IEEE Symposium on Security and Privacy’12, pages 95–109,
2012.

[69] Appbrains. Number of available android apps. http://www.appbrain.
com/stats/number-of-android-apps, [Online]; Accessed January,
2015.

[70] Giovanni Russello, Arturo Blas Jimenez, Habib Naderi, and Wannes van der
Mark. Firedroid: Hardening security in almost-stock android. In Proceedings
of the 29th Annual Computer Security Applications Conference, ACSAC ’13,
pages 319–328, New York, NY, USA, 2013. ACM.

https://blog.lookout.com/blog/2014/03/06/dendroid/
https://blog.lookout.com/blog/2014/03/06/dendroid/
http://contagiominidump.blogspot.in/2013/06/backdoorandroid\osobada.html
http://contagiominidump.blogspot.in/2013/06/backdoorandroid\osobada.html
http://contagiominidump.blogspot.in/2013/06/backdoorandroid\osobada.html
http://developer.android.com/tools/help/proguard.html
http://developer.android.com/tools/help/proguard.html
http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps

Bibliography 159

[71] Parvez Faruki, Vijay Ganmoor, Vijay Laxmi, M. S. Gaur, and Ammar Bhar-
mal. Androsimilar: Robust statistical feature signature for android malware
detection. In Proceedings of the 6th International Conference on Security of
Information and Networks, SIN ’13, pages 152–159, New York, NY, USA,
2013. ACM.

[72] Yury Zhauniarovich. Improving the Security of the Android Ecosystem. PhD
thesis, University of Trento, April 2014.

[73] Yunhe Shi, Kevin Casey, M. Anton Ertl, and David Gregg. Virtual machine
showdown: Stack versus registers. ACM Trans. Archit. Code Optim., 4(4):2:1–
2:36, January 2008.

[74] Android. Class to Dex Conversion with Dx. http://developer.
android.com/tools/help/index.html, Online;Last Accessed March
5 2013.

[75] Yueqian Zhang, Xiapu Luo, and Haoyang Yin. Dexhunter: Toward extracting
hidden code from packed android applications. In GÃĳnther Pernul, Peter
Y. A. Ryan, and Edgar R. Weippl, editors, ESORICS (2), volume 9327 of
Lecture Notes in Computer Science, pages 293–311. Springer, 2015.

[76] Mila Dalla Preda. Code Obfuscation and Malware Detection by Abstract In-
terpretation. Phd thesis, Universit‘a degli Studi di Verona, Dipartimento di
Informatica, 2007.

[77] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of
obfuscating transformations. https://researchspace.auckland.ac.
nz/bitstream/handle/2292/3491/TR148.pdf, [Online]; 2002.

[78] Paul C. van Oorschot. Revisiting software protection. In Colin Boyd and
Wenbo Mao, editors, ISC, volume 2851 of Lecture Notes in Computer Science,
pages 1–13. Springer, 2003.

[79] Douglas Low. Java control flow obfuscation. Technical report, [Online]; 1998.

[80] Sharath K. Udupa, Saumya K. Debray, and Matias Madou. Deobfuscation:
Reverse engineering obfuscated code. In In Proceedings of the 12th Working
Conference on Reverse Engineering, pages 45–54. IEEE Computer Society,
2005.

[81] Hannes Schulz. Automated de-obfuscation of android bytecode. Master’s
thesis, Technische UniversitÃďt MÃĳnchen, July 2014.

[82] Collberg. Obfuscation techniques for enhancing software security. www.
patents.com/us-6668325.html, [Online]; Accessed June 24., 2015.

[83] Egil Aspevik Martinsen. Detection of junk instructions in computer viruses.
Master’s thesis, Technische UniversitÃďt MÃĳnchen, July 2008.

http://developer.android.com/tools/help/index.html
http://developer.android.com/tools/help/index.html
https://researchspace.auckland.ac.nz/bitstream/handle/2292/3491/TR148.pdf
https://researchspace.auckland.ac.nz/bitstream/handle/2292/3491/TR148.pdf
www.patents.com/us-6668325.html
www.patents.com/us-6668325.html

160 Bibliography

[84] Aleksandrina Kovacheva. Efficient code obfuscation for android. In Borworn
Papasratorn, Nipon Charoenkitkarn, Vajirasak Vanijja, and Vithida Chong-
suphajaisiddhi, editors, IAIT, volume 409 of Communications in Computer
and Information Science, pages 104–119. Springer, 2013.

[85] Mark Stamp and Wing Wong. Hunting for metamorphic engines. Journal in
Computer Virology, 2(3):211–229, December 2006.

[86] Michael Batchelder and Laurie J. Hendren. Obfuscating java: The most pain
for the least gain. In Shriram Krishnamurthi and Martin Odersky, editors, CC,
volume 4420 of Lecture Notes in Computer Science, pages 96–110. Springer,
2007.

[87] Michael R. Batchelder. Java bytecode obfuscation. Master’s thesis, School of
Computer Science, McGill University, MontrÌĄeal, 2007.

[88] Sable Mcgill. Java obfuscation techniques. www.sable.mcgill.ca/
JBCO/examples.html, [Online]; Accessed June 24., 2015.

[89] freepatents. FPO IP Research and Communities. http://www.
freepatentsonline.com/, [Online]; 2015.

[90] Marjanne Plasmans. White-box cryptography for digital content protection.
Master’s thesis, TECHNISCHE UNIVERSITEIT EINDHOVEN, July 2005.

[91] Sonali Gupta. Obfuscating data structures. http://palisade.
plynt.com/issues/2005Sep/code-obfuscation-continued, [On-
line]; September 2005.

[92] Gregory Wroblewski. General method of program code obfuscation. http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.
9052, [Online]; 2002.

[93] DexGuard. Dexguard, android dalvik executable protector. https://www.
saikoa.com/dexguard, [Online]; Accessed September, 2015.

[94] Strazzare. ANDROID HACKER PROTECTION LEVEL. https:
//www.defcon.org/images/defcon-22/\dc-22-presentations/
Strazzere - Sawyer / DEFCON - 22 - Strazzere - and - Sawyer -
Android-Hacker-Protection-\Level-\UPDATED.pdf, 2014.

[95] Erik Ramsgaard Wognsen, Henrik SÃÿndberg Karlsen, Mads Chr. Olesen,
and RenÃľ Rydhof Hansen. Formalisation and analysis of dalvik bytecode.
Science of Computer Programming, 92, Part A(0):25 – 55, 2014. Special issue
on Bytecode 2012.

[96] Erik Ramsgaard Wognsen. Static analysis of dalvik bytecode and reflection in
android. Master’s thesis, Software Engineering, Aalborg University, 2012.

[97] Jonathan Crussell, Clint Gibler, and Hao Chen. Andarwin: Scalable detec-
tion of semantically similar android applications. In Jason Crampton, Sushil
Jajodia, and Keith Mayes, editors, Computer Security âĂŞ ESORICS 2013,

www.sable.mcgill.ca/JBCO/examples.html
www.sable.mcgill.ca/JBCO/examples.html
http://www.freepatentsonline.com/
http://www.freepatentsonline.com/
http://palisade.plynt.com/issues/2005Sep/code-obfuscation-continued
http://palisade.plynt.com/issues/2005Sep/code-obfuscation-continued
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.9052
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.9052
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.9052
https://www.saikoa.com/dexguard
https://www.saikoa.com/dexguard
https://www.defcon.org/images/defcon-22/\dc-22-presentations/Strazzere-Sawyer/DEFCON-22 -Strazzere-and-Sawyer-Android-Hacker-Protection-\Level-\UPDATED.pdf
https://www.defcon.org/images/defcon-22/\dc-22-presentations/Strazzere-Sawyer/DEFCON-22 -Strazzere-and-Sawyer-Android-Hacker-Protection-\Level-\UPDATED.pdf
https://www.defcon.org/images/defcon-22/\dc-22-presentations/Strazzere-Sawyer/DEFCON-22 -Strazzere-and-Sawyer-Android-Hacker-Protection-\Level-\UPDATED.pdf
https://www.defcon.org/images/defcon-22/\dc-22-presentations/Strazzere-Sawyer/DEFCON-22 -Strazzere-and-Sawyer-Android-Hacker-Protection-\Level-\UPDATED.pdf

Bibliography 161

volume 8134 of Lecture Notes in Computer Science, pages 182–199. Springer
Berlin Heidelberg, 2013.

[98] Clint Gibler, Ryan Stevens, Jonathan Crussell, Hao Chen, Hui Zang, and
Heesook Choi. Adrob: examining the landscape and impact of android appli-
cation plagiarism. In Hao-Hua Chu, Polly Huang, Romit Roy Choudhury, and
Feng Zhao, editors, MobiSys, pages 431–444. ACM, 2013.

[99] Wu Zhou, Xinwen Zhang, and Xuxian Jiang. Appink: Watermarking android
apps for repackaging deterrence. In Proceedings of the 8th ACM SIGSAC Sym-
posium on Information, Computer and Communications Security, ASIACCS
’13, pages 1–12, New York, NY, USA, 2013. ACM.

[100] APKTool. Reverse Engineering with ApkTool. https://code.google.
com/android/apk-tool, [Online]; Accessed March 20, 2015.

[101] Heqing Huang, Sencun Zhu, Peng Liu, and Dinghao Wu. A framework for
evaluating mobile app repackaging detection algorithms. In Trust and Trust-
worthy Computing - 6th International Conference, TRUST 2013, London, UK,
June 17-19, 2013. Proceedings, pages 169–186, 2013.

[102] Symantec. Remote Access Tool Takes Aim with Android APK
Binder. http://www.symantec.com/connect/blogs/remote-access-tool-takes-
aim-android-apk-binder, [Online]; Accessed September, 2015.

[103] Axelle Apvrille and Ruchna Nigam. Obfuscation in android malware, and
how to fight back. https://www.virusbtn.com/pdf/magazine/
2014/vb201407-Android-obfuscation.pdf, [Online]; Accessed Jan-
uary, 2016.

[104] Patrick Schulz. Code protection in android. https://net.cs.
uni-bonn.de/fileadmin/user_upload/plohmann/2012-Schulz-
Code_Protection_in_Android.pdf, [Online], Available 2012.

[105] Strazzere. Dex education: Practicing safe dex. http://www.
strazzere.com/papers/DexEducation-PracticingSafeDex.pdf,
[Online]; Available.

[106] Axelle Apvrille. Angecryption: Hide android applications in images. https:
//www.blackhat.com/docs/eu-14/materials/eu-14-Apvrille-
Hide-Android-Applications-In-Images-wp.pdf„ [Online]; 2014.

[107] Karen Kent Frederick. Network intrusion detection signature. http://
securityfocus.org/infocus/1553, [Online]; 2002.

[108] Patrick Schulz. Android bytecode obfuscation. http://dexlabs.org/
blog/bytecode-obfuscation, [Online]; Accessed November, 2015.

[109] Allatori. Allatori obfuscator. http://www.allatori.com/doc.html,
[Online]; Accessed November, 2015.

https://code.google.com/android/apk-tool
https://code.google.com/android/apk-tool
https://www.virusbtn.com/pdf/magazine/2014/vb201407-Android-obfuscation.pdf
https://www.virusbtn.com/pdf/magazine/2014/vb201407-Android-obfuscation.pdf
https://net.cs.uni-bonn.de/fileadmin/user_upload/plohmann/2012-Schulz-Code_Protection_in_Android.pdf
https://net.cs.uni-bonn.de/fileadmin/user_upload/plohmann/2012-Schulz-Code_Protection_in_Android.pdf
https://net.cs.uni-bonn.de/fileadmin/user_upload/plohmann/2012-Schulz-Code_Protection_in_Android.pdf
http://www.strazzere.com/papers/DexEducation-PracticingSafeDex.pdf
http://www.strazzere.com/papers/DexEducation-PracticingSafeDex.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Apvrille-Hide-Android-Applications-In-Images-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Apvrille-Hide-Android-Applications-In-Images-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Apvrille-Hide-Android-Applications-In-Images-wp.pdf
http://securityfocus.org/infocus/1553
http://securityfocus.org/infocus/1553
http://dexlabs.org/blog/bytecode-obfuscation
http://dexlabs.org/blog/bytecode-obfuscation
http://www.allatori.com/doc.html

162 Bibliography

[110] Patrick Schulz. Dalvik-obfuscator project github page. https://github.
com/thuxnder/dalvik-obfuscator, Available Online 2012.

[111] Tim Strazzere. Apkfuscator project github page. https://github.com/
strazzere/APKfuscator, [Online]; Accessed September, 2015.

[112] Google. Art and dalvik | android open source project. https://source.
android.com/devices/tech/dalvik/, [Online]; accessed June 2016.

[113] SecNeo. The professional service provider for the mobile application security.
http://www.bangcle.com/, [Online]; accessed September, 2015.

[114] APK Protect. Apk protect: Android apk security protection. http://www.
apkprotect.com/, [Online]; accessed September, 2015.

[115] Christian S. Collberg and Clark Thomborson. Watermarking, tamper-
proofing, and obfuscation - tools for software protection. SOFTWARE ENGI-
NEERING, IEEE TRANSACTIONS ON, 28(8):735–746, 2002.

[116] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. Catch me if you can: Evaluat-
ing android anti-malware against transformation attacks. IEEE Transactions
on Information Forensics and Security, 9(1):99–108, 2014.

[117] Min Zheng, Patrick P. C. Lee, and John C. S. Lui. ADAM: An Automatic and
Extensible Platform to Stress Test Android Anti-virus Systems. In DIMVA,
pages 82–101, 2012.

[118] Chenxiong Qian, Xiapu Luo, Yuru Shao, and Alvin T. S. Chan. On track-
ing information flows through JNI in android applications. In 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN 2014, Atlanta, GA, USA, June 23-26, 2014, pages 180–191, 2014.

[119] Android tools: Adb, dx, aapt, emulator, dumpstate, monkey, logcat, sqlite3,
ptrace. http://elinux.org/Android_Tools, [Online]; Accessed
September, 2015.

[120] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Manoj Singh Gaur, Mauro
Conti, and Muttukrishnan Rajarajan. Evaluation of android anti-malware
techniques against dalvik bytecode obfuscation. In 13th IEEE International
Conference on Trust, Security and Privacy in Computing and Communica-
tions, TrustCom 2014, Beijing, China, September 24-26, 2014, pages 414–421,
2014.

[121] Android. Android Open Source Project. Android sdk. http://
developer.android.com/sdk/index.html, [Online]; Accessed Novem-
ber, 2015.

[122] smali. Smali Dalvik bytecode assembler. http://code.google.com/p/
smali/, [Online]; Accessed October, 2015.

https://github.com/thuxnder/dalvik-obfuscator
https://github.com/thuxnder/dalvik-obfuscator
https://github.com/strazzere/APKfuscator
https://github.com/strazzere/APKfuscator
https://source.android.com/devices/tech/dalvik/
https://source.android.com/devices/tech/dalvik/
http://www.bangcle.com/
http://www.apkprotect.com/
http://www.apkprotect.com/
http://elinux.org/Android_Tools
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://code.google.com/p/smali/
http://code.google.com/p/smali/

Bibliography 163

[123] DexGuard. How does dalvikvm handle switch and try smali code. http://
stackoverflow.com/questions/14100992/how-does-dalvikvm-
handle-switch-and-try-smali-code, [Online]; Accessed November,
2015.

[124] Desnos. Androguard, android static analysis tool. http://code.google.
com/p/androguard/, [Online]; Accessed May, 2015.

[125] ded: Decompiling Android Applications. http://siis.cse.psu.edu/
ded/, [Online]; Accessed September, 2015.

[126] Dex2Jar. Android Decompiling with Dex2jar. http://code.google.
com/p/dex2jar/, Online;Last Accessed May 15 2013.

[127] Damien Octaeu, Patrick McDaniel, and Somesh Jha. DARE: Dalvik Retar-
geting. http://siis.cse.psu.edu/dare/, [Online]; Accessed September, 2015.

[128] Damien Octeau, Somesh Jha, and Patrick McDaniel. Retargeting Android
applications to Java bytecode. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, page 6.
ACM, 2012.

[129] Gabor Paller. Dedexer. http://dedexer.sourceforge.net/, [Online];
accessed September, 2015.

[130] JEB Decompiler. http://www.android-decompiler.com/, Online; Last Ac-
cessed 11th February, 2016 2013.

[131] HexRays. IDA Pro, Disassembler. http://www.hex-rays.com/
products/ida/index.shtml, [Online]; Accessed March, 2015.

[132] Dexter Labs. Dexter, android static analysis tool. http://dexter.
dexlabs.org/, [Online]; Accessed November, 2015.

[133] Jurrian Bremer. Automated deobfuscation of android applications.
http://jbremer.org/automated-deobfuscation-of-android-
applications/, [Online]; Accessed October, 2015.

[134] QuantumG and Mike Van Emmerik. Unix-like reverse engineering framework
and commandline tool. https://github.com/radare/radare2, [On-
line]; Accessed September, 2014.

[135] QuantumG and Mike Van Emmerik. A general, open source, retargetable de-
compiler of machine code programs. http://boomerang.sourceforge.
net/index.php, [Online]; Accessed 17 Sept., 2014.

[136] Jurrian bremer. Abusing dalvik beyond recognition. http://
jbremer.org/wp-posts/AbusingDalvikBeyondRecognition.pdf,
In Hack.Lu, 2013.

[137] Axelle Apvrille. Playing hide and seek with dalvik executables. http:
//www.fortiguard.com/uploads/general/hidex_insomni.pdf.,
In Hack.Lu, 2013.

http://stackoverflow.com/questions/14100992/how-does-dalvikvm-handle-switch-and-try-smali-code
http://stackoverflow.com/questions/14100992/how-does-dalvikvm-handle-switch-and-try-smali-code
http://stackoverflow.com/questions/14100992/how-does-dalvikvm-handle-switch-and-try-smali-code
http://code.google.com/p/androguard/
http://code.google.com/p/androguard/
http://siis.cse.psu.edu/ded/
http://siis.cse.psu.edu/ded/
http://code.google.com/p/dex2jar/
http://code.google.com/p/dex2jar/
http://dedexer.sourceforge.net/
http://www.hex-rays.com/products/ida/index.shtml
http://www.hex-rays.com/products/ida/index.shtml
http://dexter.dexlabs.org/
http://dexter.dexlabs.org/
http://jbremer.org/automated-deobfuscation-of-android-applications/
http://jbremer.org/automated-deobfuscation-of-android-applications/
http://jbremer.org/automated-deobfuscation-of-android-applications/
https://github.com/radare/radare2
http://boomerang.sourceforge.net/index.php
http://boomerang.sourceforge.net/index.php
http://jbremer.org/wp-posts/AbusingDalvikBeyondRecognition.pdf
http://jbremer.org/wp-posts/AbusingDalvikBeyondRecognition.pdf
http://www.fortiguard.com/uploads/general/hidex_insomni.pdf.
http://www.fortiguard.com/uploads/general/hidex_insomni.pdf.

164 Bibliography

[138] Axelle Apvrille. Playing hide and seek with dalvik executables. Hidex.
https://github.com/cryptax/dextools/tree/master/hidex, In
Hack.Lu, 2013.

[139] Karim O. Elish, Xiaokui Shu, Danfeng (Daphne) Yao, Barbara G. Ryder, and
Xuxian Jiang. Profiling user-trigger dependence for android malware detec-
tion. Comput. Secur., 49(C):255–273, March 2015.

[140] Asaf Shabtai, Yuval Fledel, Uri Kanonov, Yuval Elovici, Shlomi Dolev, and
Chanan Glezer. Google android: A comprehensive security assessment. IEEE
Security and Privacy, 8(2):35–44, 2010.

[141] Timothy Vidas, Daniel Votipka, and Nicolas Christin. All your droid are
belong to us: A survey of current android attacks. In Proceedings of the
5th USENIX Conference on Offensive Technologies, WOOT’11, pages 10–10,
Berkeley, CA, USA, 2011. USENIX Association.

[142] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A
study of android application security. In Proceedings of the 20th USENIX Con-
ference on Security, SEC’11, pages 21–21, Berkeley, CA, USA, 2011. USENIX
Association.

[143] G. Suarez-Tangil, J.E. Tapiador, P. Peris-Lopez, and A. Ribagorda. Evolution,
detection and analysis of malware for smart devices. Communications Surveys
Tutorials, IEEE, 16(2):961–987, Second 2014.

[144] Rowena Harrison. Investigating the Effectiveness of Obfuscation Against An-
droid Application Reverse Engineering. Technical report, Information Security
Group, Royal Holloway University of London, 2015.

[145] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting Repackaged
Smartphone Applications in Third-party Android Marketplaces. In Proceed-
ings of the second ACM conference on Data and Application Security and
Privacy, CODASPY ’12, pages 317–326, New York, NY, USA, 2012. ACM.

[146] Lookout Inc. Current World of Mobile Threats. Technical report, Lookout
Mobile Security, 2013.

[147] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merz-
dovnik, and Edgar Weippl. Protecting software through obfuscation: Can it
keep pace with progress in code analysis? ACM Comput. Surv., 49(1):4:1–4:37,
April 2016.

[148] Ruchna Nigam Axelle Apvrille. Obfuscation in android malware, and how to
fight back. http://www.strazzere.com/papers/DexEducation-
PracticingSafeDex.pdf, [Online]; Accessed September, 2015.

[149] Cagri Sahin, Mian Wan, Philip Tornquist, Ryan McKenna, Zachary Pearson,
William G.J. Halfond, and James Clause. How does code obfuscation impact
energy usage? Journal of Software: Evolution and Process, 2016. To Appear.

Hidex. https://github.com/cryptax/dextools/tree/ master/hidex
Hidex. https://github.com/cryptax/dextools/tree/ master/hidex
http://www.strazzere.com/papers/DexEducation-PracticingSafeDex.pdf
http://www.strazzere.com/papers/DexEducation-PracticingSafeDex.pdf

Bibliography 165

[150] Ella Peltonen, Eemil Lagerspetz, Petteri Nurmi, and Sasu Tarkoma. Constella:
Crowdsourced system setting recommendations for mobile devices. Pervasive
and Mobile Computing, 26:71 – 90, 2016. Thirteenth International Conference
on Pervasive Computing and Communications (PerCom 2015).

[151] Mario Linares VÃąsquez, Andrew Holtzhauer, Carlos Bernal-CÃąrdenas, and
Denys Poshyvanyk. Revisiting Android reuse studies in the context of code
obfuscation and library usages. In Proceedings of the 11th Working Conference
on Mining Software Repositories, pages 242–251. ACM, 2014.

[152] Junyuan Zeng, Yangchun Fu, Kenneth A. Miller, Zhiqiang Lin, Xiangyu
Zhang, and Dongyan Xu. Obfuscation resilient binary code reuse through
trace-oriented programming. In Proceedings of the 2013 ACM SIGSAC Con-
ference on Computer & Communications Security, CCS ’13, pages 487–
498, New York, NY, USA, 2013. ACM.

[153] Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen Schulz, and Christian
Wachsmann. A security framework for the analysis and design of software
attestation. In Proceedings of the 2013 ACM SIGSAC Conference on Com-
puter 38; Communications Security, CCS ’13, pages 1–12, New York, NY,
USA, 2013. ACM.

[154] Luyi Xing, Xiaorui Pan, Rui Wang, Kan Yuan, and XiaoFeng Wang. Upgrad-
ing your android, elevating my malware: Privilege escalation through mobile
os updating. In Proceedings of the 2014 IEEE Symposium on Security and Pri-
vacy, SP ’14, pages 393–408, Washington, DC, USA, 2014. IEEE Computer
Society.

[155] David Brumley, JongHyup Lee, Edward J. Schwartz, and Maverick Woo. Na-
tive x86 decompilation using semantics-preserving structural analysis and it-
erative control-flow structuring. In Presented as part of the 22nd USENIX Se-
curity Symposium (USENIX Security 13), pages 353–368, Washington, D.C.,
2013. USENIX.

[156] Fakeinstaller leads the attack on android phones. https://blogs.
mcafee.com/mcafee-labs/fakeinstaller-leads-the-attack-
on-android-phones, Online; 2012.

[157] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. Har-
vesting runtime data in android applications for identifying malware and en-
hancing code analysis. Technical Report TUD-CS-2015-0031, EC SPRIDE,
February 2015.

[158] Yongfeng Li, Tong Shen, Xin Sun, Xuerui Pan, and Bing Mao. Security
and Privacy in Communication Networks: 11th International Conference, Se-
cureComm 2015, Dallas, TX, USA, October 26-29, 2015, chapter Detection,
Classification and Characterization of Android Malware Using API Data De-
pendency, pages 23–40. Springer International Publishing, Cham, 2015.

[159] N. Idika and A. P. Mathur. A survey of malware detection techniques. Purdue
University, 2007.

https://blogs.mcafee.com/mcafee-labs/fakeinstaller-leads-the-attack-on-android-phones
https://blogs.mcafee.com/mcafee-labs/fakeinstaller-leads-the-attack-on-android-phones
https://blogs.mcafee.com/mcafee-labs/fakeinstaller-leads-the-attack-on-android-phones

166 Bibliography

[160] FHugo Gascon, Fabian Yamaguchi, and Daniel Arp. Structural detection of
android malware using embedded call graphs. booktitle =.

[161] Zarni Aung and Win Zaw. Permission-based android malware detection. Int.
J. of Scientific and Technology Research., pages 228–234, 2013.

[162] Naser Peiravian and Xingquan Zhu. Machine learning for android malware
detection using permission and api calls. In Proceedings of the 2013 IEEE
25th International Conference on Tools with Artificial Intelligence, pages 300–
305, IEEE Computer Society Washington, DC, USA, 2013.

[163] Grace Michael, Zhou Yajin, Zhang Qiang, Zou Shihong, and Jiang Xuxian.
Riskranker: scalable and accurate zero-day android malware detection. In
Proceedings of the10th International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys), 2012.

[164] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization
and evolution. 2012 IEEE Symposium on Security and Privacy (SP), pages
95–109, 20-23 May, 2012.

[165] Daniel Arp, Michael Spreitzenbarth, Malte HÃĳbner, Hugo Gascon, and Kon-
rad Rieck. Drebin: Efficient and explainable detection of android malware
in your pocket. In Proceedings of the 17th Network and Distributed System
Security Symposium (NDSS), February 2014.

[166] VirusTotal. http://www.virustotal.com.

[167] M0droid. http://m0droid.netai.net/modroid/.

[168] Seo, Gupta, Mohamed Sallam, Bertino, and Yim K. Detecting mobile malware
threats to homeland security through static analysis. Journal of Network and
Computer Applications, pages 43–53, 2014.

[169] Scikit-learn. https://github.com/scikit-learn/.

[170] Tianqi Chen. https://github.com/dmlc/xgboost.

[171] Yoav Freund and E. Scha. Experiments with a New Boosting Algorithm. In
proceedings of the Thirteenth International Conference, 1996.

[172] Leo Breiman. Random Forests. University of California, Berkeley, Journal of
Machine Learning, Volume 45 Issue 1, Pages 5 - 32, October, 2001.

[173] V. Vapnikp. The Nature of Statistical Learning Theory. Springer-Verlag, NY,
1995.

[174] D. Kibler D. W. Aha and M. K. Albert. Instance-Based Learning Algorithms.
Machine Learning, 6:3766, 1991.

[175] Keras. http://keras.io/#keras-deep-learning-library-for-
theano-and-ten,.

http://www.virustotal.com
http://m0droid.netai.net/modroid/
https://github.com/scikit-learn/
https://github.com/dmlc/xgboost
http://keras.io/#keras-deep-learning-library-for-theano-and-ten
http://keras.io/#keras-deep-learning-library-for-theano-and-ten

Bibliography 167

[176] Yousra Aafer, Wenliang Du, and Heng Yin. Droidapiminer: Mining api-level
features for robust malware detection in android. pages 86–103, Sydney, NSW,
Australia, September 25-28, 2013.

[177] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P.G. Bringas, and G. Al-
varez. Puma: permission usage to detect malware in android. In Proceedings
of the CISIS’12-ICEUTE’12-SOCO’12 Special Sessions, 2012.

[178] Saurabh Oberoi, Weilong Song, and Amr M. Youssef. Androsat: Security
analysis tool for android applications. The 8th International Conference on
Emerging Security Information, Systems and Technologies, 2014.

[179] Hyunjae Kang, Jae wook Jang, Aziz Mohaisen, and Huy Kang Kim. Detect-
ing and classifying android malware using static analysis along with creator
information. International Journal of Distributed Sensor Networks, 2015.

[180] Kevin Allix, TegawendÃľ F. BissyandÃľ, Quentin JÃľrome, Jacques Klein,
Radu State, and Yves Le Traon. Empirical assessment of machine learning-
based malware detectors for android. Journal of Empirical Software Engineer-
ing, 2014.

[181] Dong Jie Wu, Ching Hao Mao, Te En Wei, Hahn Ming Lee, and Kuo Ping
Wu. Droidmat: Android malware detection through manifest and api calls
tracing. pages 62–69, Washington, DC, USA, 2012.

[182] Ryo Sato, Daiki Chiba, and Shigeki Goto. Detecting android malware by
analyzing manifest files. Proceedings of the Asia-Pacific Advanced Network,
pages 23–31, 2013.

[183] G. Dini A. Saracino, D. Sgandurra and F. Martinelli. Madam: Effective and
efficient behavior-based android malware detection and prevention. January,
2016.

[184] S. Khan K. Tam M. Ahmadi J. Kinder S. K. Dash, G. Suarez-Tangil and
L. Cavallaro. Droidscribe: Classifying android malware based on runtime
behavior. San Jose, CA, USA, May 22-26, 2016.

[185] Zhaoguo Wang Yibo Xue Zhenlong Yuan, Yongqiang Lu. Droid-sec: deep
learning in android malware detection. In In Proceedings of the 2014 ACM
conference on SIGCOMM, pp 371-372., 2014.

[186] Alessandro Reina, Aristide Fattori, and Lorenzo Cavallaro. A system call-
centric analysis and stimulation technique to automatically reconstruct an-
droid malware behaviors. In Proceedings of the 6th European Workshop on
Systems Security (EuroSec) Prague, Czech Republic, April 14, 2013.

[187] A.A. Samra, O.A. Ghanem, and Kangbin Yim. Analysis of clustering technique
in android malware detection. In Proceedings of the IMIS, pages 729–733, 2013.

[188] Kevin Allix, TegawendÃľ F. BissyandÃľ, Jacques Klein, and Yves Le Traon.
Are your training datasets yet relevant?. Proceedings of the 7th International
Symposium, ESSoS 2015, pages 51–67, Milan, Italy, March 4-6, 2015.

168 Bibliography

[189] Karim Elish, Danfeng Yao, and Barbara Ryder. On the need of precise inter-
app icc classification for detecting android malware collusions. In Proceedings
of the Mobile Security Technologies (MoST), in conjunction with the IEEE
Symposium on Security and Privacy, San Jose, CA. May 2015.

[190] Britton Wolfe, Karim Elish, and Danfeng Yao. High precision screening for
android malware with dimensionality reduction. Proceedings of the 13th In-
ternational Conference on Machine Learning and Applications (ICMLA’14),
Detroit, MI. Dec. 2014.

[191] Mansour Ahmadi Johannes Kinder Giorgio Giacinto Guillermo Suarez-Tangil,
Santanu Kumar Dash and Lorenzo Cavallaro. Droidsieve: Fast and accurate
classification of obfuscated android malware. In In Proceedings of the 7th ACM
on Conference on Data and Application Security and Privacy (CODASPY
’17), pp 309-320., Scottsdale, Arizona, USA, March 22-24, 2017.

[192] D. Makrushin M. Garnaeva, V. Chebyshev and A. Ivanov. https:
//securelist.com/analysis/quarterly- malware- reports/
69872/it-threat-evolution-in-q1-2015/, IT Threat Evolution in
Q1 2015. [Online]; Accessed June, 2016.

[193] S. Etalle B. P. S. Rocha, M. Conti and B. Crispo. Hybrid static-runtime
information flow and declassification enforcement. IEEE Transactions on In-
formation Forensics & Security, pages 1294–1305, 2013.

[194] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization
and evolution. IEEE Symposium on Security and Privacy, pages 95–109, San
Francisco, CA, USA, 2012.

[195] M. H D. Arp, M. Spreitzenbarth.

[196] T.E. Wei H.M. Lee D.J. Wu, C.H. Mao and Wu K. Droidmat: Android
malware detection through manifest and api calls tracing. pages 62–69, Tokyo,
Japan, August 2012.

[197] J. Sahs and L. Khan. A machine learning approach to android malware de-
tection. In Proceedings of the EISIC, pages 141–147, 2012.

[198] U. Zurutuza I. Burguera and S. Nadjm-Tehrani. Crowdroid: Behavior-based
malware detection system for android. pages 15–26, Illinois, USA, October
2011.

[199] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss. Andromaly:
a behavioral malware detection framework for android devices. Journal of
Intelligent Information Systems, pages 161–190, 2012.

[200] J. R. D. Alas R. J. Tolentino K.J. Abela, D. K. Angeles and M. A. Gomez.
An automated malware detection system for android using behavior-based
analysis - amda. International Journal of Cyber-Security and Digital Forensics
(IJCSDF), pages 1–11, 2013.

https://securelist.com/analysis/quarterly-malware-reports/69872/it-threat-evolution-in-q1-2015/
https://securelist.com/analysis/quarterly-malware-reports/69872/it-threat-evolution-in-q1-2015/
https://securelist.com/analysis/quarterly-malware-reports/69872/it-threat-evolution-in-q1-2015/

Bibliography 169

[201] F. Ge M. Zhao, T. Zhang and Z. Yuan. Robotdroid: A lightweight malware
detection framework on smartphones. Journal of Networks, pages 1–8, 2012.

[202] X. Ugarte-Pedrero C. Laorden J. Nieves B. Sanz, I. Santos and P. G. Bringas.
Anomaly detection using string analysis for android malware detection. pages
1–10, Salamanca, Spain, September 2013.

[203] A. Saracino F. Martinelli and D. Sgandurra. Classifying android malware
through subgraph mining. pages 1–15, Egham, UK, September 2013.

[204] Min Zheng, Mingshen Sun, and John C. S. Lui. Droidanalytics: A signa-
ture based analytic system to collect, extract, analyze and associate android
malware. 2013.

[205] D. Chiba R. Sato and S. Goto. Detecting android malware by analyzing
manifest files. pages 23–31, 2013.

[206] V. Khobaragade D. Koundel, S. Ithape and R. Jain. Malware classification us-
ing naives bayes classifier for android os. International Journal of Engineering
And Science (IJES), pages 59–63, 2014.

[207] C. Laorden-X. Ugarte-Pedrero J. Nieves P.G. Bringas B. Sanz, I. Santos and
G. Álvarez. Mama: Manifest analysis for malware detection in android. Cy-
bernetics and Systems, Intelligent Network Security and Survivability, pages
469–488, 2013.

[208] Andrew Hilts, Christopher Parsons, and Jerey Knockel. Every step you fake:
A comparative analysis of fitness tracker privacy and security. Technical
report, Open Effect Report. Available at: https://openeffect.ca/
reports/Every_Step_You_Fake.pdf, 2016.

[209] Eric Clausing, Michael Schiefer, and Maik Morgenstern. Internet of Things:
Security Evaluation of nine Fitness Trackers. AV TEST, The Independent
IT-Security institue, Magdeburg, Germany, June 2015.

[210] Margaritelli: Nike+ fuelband se ble protocol reversed, Accessed April 2017.

[211] Jakob Rieck. Attacks on fitness trackers revisited: A case-study of unfit
firmware security. Technical report, Available at: http://subs.emis.
de/LNI/Proceedings/Proceedings256/33.pdf, Accessed July 2016.

[212] M Coppola. Attacks on fitness trackers revisited: A case-study of unfit
firmware security. Technical report, Available at: http://poppopret.
org/2013/06/10/summercon-2013-hacking-the-withings-ws-
30/, Accessed June 2016.

[213] MD5 2104. https://www.ietf.org/rfc/rfc1321.txt, [Online]; Ac-
cessed April 2017.

[214] SHA RFC. https://tools.ietf.org/html/rfc3174, [Online]; Ac-
cessed April 2017.

https: //openeffect.ca/reports/Every_Step_You_Fake.pdf
https: //openeffect.ca/reports/Every_Step_You_Fake.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings256/33.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings256/33.pdf
http://poppopret.org/ 2013/06/10/summercon-2013-hacking-the-withings-ws-30/
http://poppopret.org/ 2013/06/10/summercon-2013-hacking-the-withings-ws-30/
http://poppopret.org/ 2013/06/10/summercon-2013-hacking-the-withings-ws-30/
https://www.ietf.org/rfc/rfc1321.txt
https://tools.ietf.org/html/rfc3174

170 Bibliography

[215] HMAC RFC. https://tools.ietf.org/html/rfc2104, [Online];
Accessed April 2017.

[216] WiFi Access Point. https://github.com/oblique/create_ap, [On-
line]; Accessed June 2016.

[217] MITM Proxt. http : / / docs . mitmproxy . org / en / latest /
mitmproxy.html, [Online]; Accessed June 2016.

[218] Fitsed. http://pub.ks-and-ks.ne.jp/cycling/fitsed.shtml,
[Online]; Accessed June 2016.

[219] Protocol Buffers Message Editor. https://developers.google.com/
protocol-buffers, [Online]; Accessed July 2016.

[220] Wueest C. Barcena, M. B. and H. Lau. How safe is your quantified
self? Technical report, Available at: https://www.symantec.
com/content/dam/symantec/docs/white-papers/how-safe-is-
your-quantified-self-en.pdf, Accessed April 2017.

[221] Forbes. Wearable tech market to be worth $34 billion by 2020. https:
//www.forbes.com/sites/paullamkin/2016/02/17/wearable-
tech-market-to-be-worth-34-billion-by-2020, February 2016.

[222] International Data Corporation. Worldwide quarterly wearable device tracker.
https://www.idc.com/tracker/showproductinfo.jsp?prod_id=
962, March 2017.

[223] Mashable. Husband learns wife is pregnant from her Fitbit data. http:
//mashable.com/2016/02/10/fitbit-pregnant/, Feb. 2016.

[224] The Wall Street Journal. Prosecutors say Fitbit device exposed fibbing in rape
case. http://blogs.wsj.com/law/2016/04/21/prosecutors-
say-fitbit-device-exposed-fibbing-in-rape-case/, April
2016.

[225] VitalityHealth. https : / / www . vitality . co . uk / rewards /
partners/activity-tracking/.

[226] AchieveMint. https://www.achievemint.com.

[227] StepBet. https://www.stepbet.com/.

[228] Markus Miettinen-Ahmad-Reza Sadeghi Hossein Fereidooni, Tommaso Fras-
setto and Mauro Conti. Fitness trackers: Fit for health but unfit for security
and privacy. In Proc. IEEE International Workshop on Safe, Energy-Aware,
& Reliable Connected Health (CHASE workshop: SEARCH 2017), in press,
Philadelphia, Pennsylvania, USA, July 17-19, 2017., 2017.

[229] Galileo project. https://bitbucket.org/benallard/galileo/.

[230] Wireshark network protocol analyzer. https://www.wireshark.org/.

https://tools.ietf.org/html/rfc2104
 https://github.com/oblique/create_ap
http://docs.mitmproxy.org/en/latest/mitmproxy.html
http://docs.mitmproxy.org/en/latest/mitmproxy.html
http://pub.ks-and-ks.ne.jp/cycling/fitsed.shtml
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://www.symantec.com/content/dam/symantec/docs/white-papers/how-safe-is-your-quantified-self-en.pdf
https://www.symantec.com/content/dam/symantec/docs/white-papers/how-safe-is-your-quantified-self-en.pdf
https://www.symantec.com/content/dam/symantec/docs/white-papers/how-safe-is-your-quantified-self-en.pdf
https://www.forbes.com/sites/paullamkin/2016/02/17/wearable-tech-market-to-be-worth-34-billion-by-2020
https://www.forbes.com/sites/paullamkin/2016/02/17/wearable-tech-market-to-be-worth-34-billion-by-2020
https://www.forbes.com/sites/paullamkin/2016/02/17/wearable-tech-market-to-be-worth-34-billion-by-2020
https://www.idc.com/tracker/showproductinfo.jsp?prod_id=962
https://www.idc.com/tracker/showproductinfo.jsp?prod_id=962
https://www.idc.com/tracker/showproductinfo.jsp?prod_id=962
http://mashable.com/2016/02/10/fitbit-pregnant/
http://mashable.com/2016/02/10/fitbit-pregnant/
http://blogs.wsj.com/law/2016/04/21/prosecutors-say-fitbit-device-exposed-fibbing-in-rape-case/
http://blogs.wsj.com/law/2016/04/21/prosecutors-say-fitbit-device-exposed-fibbing-in-rape-case/
https://www.vitality.co.uk/rewards/partners/activity-tracking/
https://www.vitality.co.uk/rewards/partners/activity-tracking/
https://www.achievemint.com
https://www.stepbet.com/
https://bitbucket.org/benallard/galileo/
https://www.wireshark.org/

Bibliography 171

[231] S. Zhou, W.; Piramuthu. Security/privacy of wearable fitness tracking iot
devices. In Proceedings of the 9th Iberian Conference on IEEE Information
Systems and Technologies (CIST), pages 1–5, 2014.

[232] Mahmudur Rahman, Bogdan Carbunar, and Umut Topkara. Secure Man-
agement of Low Power Fitness Trackers. Published in IEEE Transactions on
Mobile Computing, Volume 15 Issue 2, Pages 447-459, February 2016.

[233] W. Kang-Z. Li Y. Lv, Y. Duan and F. Wang. Traffic flow prediction with
big data: A deep learning approach. In IEEE Transactions on Intelligent
Transportation Systems, Vol 16(2), pp 865-873., 2015.

[234] Eyal Ronen, Colin O’Flynn, Adi Shamir, and Achi-Or Weingarten. Iot goes
nuclear: Creating a zigbee chain reaction. IACR Cryptology ePrint Archive,
2016:1047, 2016.

	Introduction
	Research Motivations and Contributions
	Tackling Mobile Malware
	Security Analysis on Wearable Fitness Devices

	Publications
	Conference and Workshop Publication
	Book Chapter Publication
	Magazine and Journal Publication

	I Tackling Mobile Malware
	Secure Message Delivery Games for D2D Communications
	System Model
	Collaborative Detection
	Device Confusion Matrix
	Route Confusion Matrix
	Energy Costs and QoS
	Network Profiles

	Secure Message Delivery Games
	Game Characterization
	Strategies and Payoffs
	Nash Equilibrium

	The Secure Message Delivery Protocol
	SMD Considerations
	Routing

	Performance Evaluation
	Simulation Parameters
	Simulation Results

	Related Work
	Summary

	Android Code Obfuscation Techniques
	Android Overview
	Android Architecture
	Android Compilation

	Code Obfuscation Techniques
	Control Flow Obfuscation
	Data Obfuscation
	Layout Obfuscation
	Preventive Transformations
	Repackaging Popular Apps
	Custom Obfuscation Techniques

	Custom Code Obfuscation Tools
	Proguard
	Allatori
	Dalvik-obfuscator
	DexGuard
	APKfuscator

	Code Packers and Protectors
	Code Packers
	Comparison of Obfuscation and Protection Techniques

	Android Bytecode Analysis
	Bytecode and De-Obfuscation Tools
	Stealth Obfuscation

	Existing Surveys and Related Work
	Future Research Directions
	Obfuscation Code Examples
	Summary

	Android Malware Detection
	Design and Implementation
	Data-set Composition
	Feature Extraction
	Feature Selection
	Classification Models

	Evaluation and Benchmark
	Experimental Setup on balanced data-set
	Experimental Setup on imbalanced data-set

	Related Work
	Summary

	 Android Malware Classification
	Proposed Classification Framework
	Dataset Collection and Pre-processing
	Feature Extraction
	Feature Selection
	Classification Models
	Evaluation metrics

	Malware Family-based Classification
	Cumulative Classification
	Related Work
	Summary

	II Security Analysis on Wearable Fitness Devices
	Popular Fitness Devices: Security Analysis, Reverse Engineering and Spoofing
	System Model
	Analyzed Devices
	Adversary Model
	Requirement Analysis

	Background Preliminaries
	Evaluation
	Experimental Setup
	Findings

	Countermeasure & Remedy
	Discussion
	Related Work
	Firmware modification attacks
	Data integrity and privacy attacks

	Summary

	Advanced Fitness Devices: Security Analysis, Reverse Engineering and Spoofing
	Adversary Model
	Target Fitbit Devices
	End-to-End Communication Paradigms

	Protocol Reverse Engineering
	MITM Setup
	Wireshark Plugin Development and Packet Analysis
	Microdump
	Megadump Synchronization Message

	Protocol-based Remote Spoofing
	Submission of Fake Data

	Hardware-Based Local Spoofing
	Device Tear-Down
	Hardware RE to Hunt Debug Ports
	Connecting Devices to the Debugger

	Discussion
	Related Work
	Summary

	Conclusions
	Summary of Contribution
	Tackling Mobile Malware
	Security Analysis on Wearable Fitness Devices

	Open Issues and Future Work

