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Abstract

Much of the effort in the modern chemical and physical sciences is devoted to the study
of complex dynamical phenomena. Such a study is often hampered by the considerable
complexity (i.e., the high dimensionality) exhibited by the systems of interest.

In this research project, of theoretical and methodological character, we explore
some facets of the topics of model reduction and simplification of complex dynamics,
both deterministic and stochastic.

In particular, in the first part of the work (chs. 2-5), we focus on deterministic
systems. In chapter 2, starting from the findings of two previous works [P. Nicolini and
D. Frezzato, J. Chem. Phys. 138, 234101 (2013) and P. Nicolini and D. Frezzato, J.
Chem. Phys. 138, 234102 (2013)] we introduce the concept of “canonical format” of
the evolution law for mass-action-based chemical kinetics, and show that the study of
such a type of formats could lead to the discovery of new interesting features and to
a rationalization of already well-known ones. Specifically, we unveil the existence of
“attracting subspaces” in an abstract “hyper-spherical” representation of the dynamics
of a reacting system. In chapter 3, based on the theory devised in ch. 2, we develop an
algorithm (implemented in the companion software DRIMAK, acronym of Dimensional
Reduction for Isothermal Mass-Action Kinetics) aimed at detecting the neighborhood of
the Slow Manifold, which is a hypersurface, in the concentration space, in the proximity
of which the slow evolution takes place. The detection of the Slow Manifold for a
reacting system is a potential key-step to elaborate dimensionality reduction strategies.
In chapter 4 we extend the theory to open reaction networks, i.e., reaction networks
with one or more reactants continuously injected in the reaction environment. Finally,
in chapter 5 we further generalize the theory to general phase-space dynamics, possibly
damped.

The second part of the work (chs. 6-8) is devoted to stochastic systems. In chapter 6
we move the first steps towards the model reduction of stochastic chemical kinetics.
Specifically, we show the existence of geometric structures (in the space of the number
of molecules of each species) analogous to the Slow Manifold in the macroscopic counter-
part. Still in the context of stochastic chemical kinetics, in chapter 7 we make a critical
study of two common continuous approximations of the chemical master equation and
of the associated Gillespie’s stochastic simulation algorithm; namely, we investigate on
the physical reliability of the chemical Fokker-Planck and chemical Langevin equations.
In particular, we prove that both the approximations suffer from nonphysical proba-
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bility currents at equilibrium, even for fully reversible and detailed-balanced chemical
reaction networks. Finally, in chapter 8 we focus on general overdamped fluctuating
systems, which, apart from very simple and low-dimensional cases, are often mathemat-
ically intractable. In this context, given the well-known difficulties for the mathematical
treatment of such systems, we aim only at achieving a partial, but easily computable,
information. Namely, we devise a set of mathematical time-dependent bounds for key-
quantities describing the systems of interest.



Chapter 1

Introduction

1.1 Context and aim of the research project

Much of the effort in the modern chemical and physical sciences is devoted to the study
of complex phenomena. Such a study is often hampered by the considerable complex-
ity (i.e., the high dimensionality) exhibited by the systems of interest. For example,
understanding protein folding is among the most challenging problems in the biological
context. Indeed, protein folding is studied since decades, but a unique interpretation of
the process is still lacking[1–3] and numerical simulations are particularly challenging due
to the relatively long time-scale of the process. Yet, chemical reaction networks, either
in biological environments or performed in a reactor, can comprise hundreds of reactive
species and a comparable (but often greater) number of reactions. Solving these kind
of problems poses severe difficulties both at the interpretative and computational level
(especially because these systems are often stiff [4], making their numerical integration
particularly challenging).

Due to such challenges, the scientific community developed a vast variety of strategies
aimed at achieving a sort of “essential representation” of the dynamics. In particular,
in our opinion two major approaches can be distinguished: model reduction and simpli-
fication. Model reduction (which is tightly linked to the dimensionality reduction topic)
aims at reducing the number of relevant degrees of freedom of the system, i.e., at ob-
taining a set of evolution equations with a lower number of dynamical variables; such
dynamical variables can be either a subset of the original variables, or a new set derived
from the original one. What we indicate as simplification, instead, aims at devising an
approximate evolution law of the system while maintaining physical consistency.

In this research project, of theoretical and methodological character, we deal with
some aspects of such topics. Before delving into the description of the approaches
adopted in this work, a brief overview (surely incomplete) about the ‘state-of-the-art’ in
the field is due.
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4 CHAPTER 1. INTRODUCTION

1.2 Overview of recent strategies

Concerning the deterministic chemical kinetics context, most of the efforts were directed
towards the model reduction approach. The beginning of these studies can be traced
back to a seminal work of Fraser[5] in which the well-known steady-state and equilib-
rium approximations are compared, from a geometrical point of view, in the space of
the species concentrations. From that work several diverse strategies were formulated.
Among the most relevant ones we mention the sensitivity analysis, which is capable to
distinguish the parts of the kinetic scheme made of strongly interacting reactions and
also to indicate their relative importance,[6] and the lumping strategies, which reduces
the relevant degrees of freedom by switching to a new set of dynamical variables (the
lumps) which are functions of the original ones.[7] Finally, maybe the most studied strat-
egy in the literature is the detection of the Slow Manifold (SM) of the dynamics. The
SM is a hypersurface in the concentration space in the neighborhood of which the slow
evolution takes place. Because the SM is of lower dimension than that of the full concen-
tration space (and often of much lower dimension), its detection could in principle lead
to a drastic dimensionality reduction of the problem by parametrizing the dynamics on
such a surface. The formal definition of SM is rooted in the Fenichel’s singular pertur-
bation theory[8], of which the most faithful numerical implementation is represented by
the computational singular perturbation method of Lam and Goussis.[9] Several other
strategies aimed at detecting the SM on more subjective grounds have been devised; here
we only mention the construction of intrinsic low dimensional manifolds,[10] of attract-
ing low dimensional manifolds,[11] and several approaches based on concepts borrowed
from nonequilibrium thermodynamics.[12–15] We anticipate that, concerning the deter-
ministic chemical kinetics, also the present work is focused, at least partly, upon the SM
detection.

Considering the stochastic context, one can find a vast and varied literature devoted
to the topic. It is worth noting that, contrary to the chemical kinetics context, in this
ambit the dominant approach is to seek for a simplification of the system, rather than
for a model reduction.

In this project we consider two different types of stochastic processes: stochastic
chemical kinetics and general stochastic dynamics of systems with continuous degrees
of freedom (e.g., conformational motions of complex molecules). Let us briefly outline
the main existing approaches to the model reduction and simplification in such a broad
context.

Under isothermal conditions, rapid redistribution of molecules and fixed volume,
chemical reactions involving low numbers of molecules are usually modeled as a Markov
process in the configurational space of the copy numbers of the involved species. The
chemical master equation (CME)[16] and Gillespie’s stochastic simulation algorithm[17]
provide the exact description of the evolution in terms of probabilistic expectations
and generation of trajectories, respectively. The main issue is that the CME is hardly
tractable apart for very simple cases, and in parallel the stochastic simulation algorithm
becomes computationally demanding as the number of molecules increases or if stiffness
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is present. Thus, several strategies aimed at providing reliable approximations were de-
vised. Among the strategies to obtain an approximate solution of the CME, we mention
the finite state projection (FSP) algorithm developed by Munsky and Khammash[18]
which performs a truncation of the state space (the space of molecules numbers) while
providing a certificate of accuracy for how closely the truncated space approximation
matches the true solution. A special form of the FSP algorithm, conceived to achieve the
approximation of the stationary distribution has recently been developed.[19] Another
popular line of research consists in studying the statistical moments of the probability
distribution in place of the distribution itself; note that the (infinite) number of moments
fully specifies the distribution. The problem is that any finite set of moments evolves
according to a linear system of ordinary differential equations which involve moments
of higher order not belonging to the set. Thus, to study such a kind of problems one
needs a “closure scheme” in order to work with an approximate form of the evolution law
of the moments.[20, 21] Instead of seeking for a reliable closure scheme, an alternative
strategy recently presented consists in achieving lower and upper bounds for a limited set
of moments to be chosen, both at the stationary state[22] and during the dynamics.[23]

Concerning the general fluctuating systems, the literature is vast, and especially in
recent years the interest in this topic has considerably increased (just to mention, an
entire special issue of The Journal of Chemical Physics was recently devoted to the
topic[24]).[25] In this context it is possible to distinguish two main scenarios. In the
first scenario one aims at achieving a formal mathematical simplification of a known but
complex model, while in the second scenario the target is to “build” a model having
at disposal a large set of raw data (obtained for example from molecular dynamics
simulations, which in recent years have been pushed to the millisecond regime[26] and
therefore can provide a significant amount of data to be interpreted). Note that the
latter is a challenge typical of “big data” analysis.

Regarding the first scenario, we only mention that Hummer and Szabo[27] proposed
a methodology to obtain a reduced dynamics description of aggregated superstates,
obtained in turn by lumping or clustering of microstates. In such a context, the term
‘microstate’ can be interpreted as a conformational state of the system, while the term
‘superstate’ is an aggregate of different but ‘similar’ conformational states. Although the
focus of the work was to obtain a reduction given a previously chosen set of superstates,
the authors showed that their strategy could be helpful also in the phase of finding an
optimal set of superstates.

The second scenario is in turn quite vast. Four different approaches are here briefly
discussed: Markov state models, diffusion maps, exploitation of machine learning algo-
rithms, and a recently developed strategy to discover governing evolution equations from
raw data.

Markov state models (MSMs), in essence, are a kinetic model of the process under
study.[28–31] Here we give only the core idea of the method. The objectives of the
MSMs are the ability to predict a wide range of experimental data and to build simplified
“coarse-grained” models that can be readily understood by human beings. The basic
idea to build a MSM is to identify N states (thousands, or hundreds of thousands)
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and parametrize the model with the transition rates between such states. Such a high
number of states allows to build a high-resolution model of the intrinsic dynamics. MSMs
are often built from molecular dynamics simulation data; however, these methods are
sufficiently general to allow also the use of data from other simulation methods. The
first step to build a MSM is to group the different structures available from the dataset
into N microstates (this is typically performed through clustering techniques[32]). The
second step is the definition of a transition matrix which contains all the transition
probabilities between the microstates. The transition probability between microstates i
and j is obtained by computing the fraction of counts that started at i and went to j
with respect to all the possibilities (the process is seen as a random walk made of a series
of memoryless jumps). Although high-resolution MSMs are useful to make quantitative
predictions, it is possible to obtain also a coarse-grained version of the same models by
performing a “lumping” procedure (usually, again, by means of clustering techniques)
to obtain a smaller set of ‘macrostates’. This procedure is especially useful to achieve
a human-understandable representation of the kinetics. MSMs are currently actively
studied, improved and applied to diverse problems.[33–36]

Diffusion maps are another intensively studied topic in the field of dimensionality re-
duction.[37–40] Unlike other strategies previously mentioned, diffusion maps are a tool
to achieve a dimensionality reduction of a given dataset regardless of the physical con-
text of the data, i.e., they can be applied to physico-chemical problems, such as protein
folding,[41–43] as well as to image analysis, computer vision, feature extraction and
more.[44–46] Furthermore, they allow to perform the analysis at different time-scales,
revealing how the same dataset can be represented by different low-dimensional struc-
tures as the time-scale changes. In a sense, diffusion maps can be regarded as a machine
learning algorithm, indeed they just produce a reduced representation of a given dataset
considering all the data points as possible states of a random walk without any prior
knowledge about the nature of the data provided. The starting point of the diffusion
maps method is the consideration that high-dimensional datasets are often encapsulated
into a lower-dimensional data structure (i.e., a lower-dimensional manifold, not to be
confused with the Slow Manifold in the chemical kinetics context previously mentioned).
Diffusion maps thus focus on the discovery of such an underlying low-dimensional struc-
ture. The first step in the procedure is the definition of a kernel function which quantifies
the probability of jumping between two states of the random walk. The second step is
the definition of a diffusion metric which measures the similarity between two states
as the “probability of jumping” between them. Once a diffusion metric is defined, it
is possible to re-organize the data in a new “diffusion space” according to the diffu-
sion metric. The final step to achieve a true dimensionality reduction is to perform
an eigenvalue-eigenvector analysis of the diffusion operator. The eigenvalues indicate
the relative importance of each dimension of the new diffusion space; therefore, the di-
mensionality reduction is achieved by retaining only the dimensions associated with the
dominant eigenvalues.

A further interesting line of research is based upon the exploitation of machine learn-
ing algorithms.[32] In recent years machine learning has experienced a great increase in
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popularity, especially thanks to the higher computing capabilities of modern comput-
ers. Such an increase in popularity led to a contamination into new different fields. In
the dimensionality reduction context, machine learning is typically employed to find a
set of “essential coordinates” capable of distinguish different conformational states; for
example dihedral angles or interatomic distances. Thus, in a sense, there is an attempt
to replace chemical intuition (which is typically employed to this end) with an auto-
matic procedure which does not need any previous knowledge about the system under
study. Here we only mention the application of neural networks algorithms[47] and of
decision trees algorithms (usually applied to the states obtained after the construction
of a Markov state model).[48, 49]

As a final topic of this brief excursus in dimensionality reduction and simplification
we mention the recent extension to stochastic dynamics of a framework called sparse
identification of nonlinear dynamics (SINDy).[50] The original framework, developed for
deterministic systems, allows to automatically discover the differential equations that
best represent large sets of time-dependent data (provided a suitable library of functions).
The extension of SINDy to stochastic systems[51] allows to derive stochastic equations
to describe the evolution either of the microscopic variables or of their transformation
into a different space. Although the strategy has been successfully applied to simple one-
dimensional systems, the extension to multi-dimensional problems seems to be underway.

1.3 Structure of the present work

The remainder of this chapter delineates the structure of the present work with a brief
description of each chapter. The work is divided in two parts; the first part (chs. 2-
5) is devoted to deterministic dynamics, while the second part (chs. 6-8) is devoted to
stochastic dynamics. Before continuing we point out that chapters 2, 3, 5 and 7 are draft
versions of published works, while chapters 4 and 8 are draft versions of submitted works;
finally, chapter 6 is an unpublished work. Note also that each chapter is self-contained
and can be read independently from the others.

In chapter 2, starting from previous results,[52, 53] we continue the work towards
the discovery and the study of “canonical formats” in the context of mass-action-based
chemical kinetics. In our terminology, a canonical format is a particular format of the
evolution law devoid of any system-dependent parameter (all such parameters are borne
on the initial conditions). The advantage of such a transformation lies in the fact that all
the kinetic mechanisms describable by means of the mass-action law can be represented
by one unique evolution law. Therefore, it suffices to study the evolution law just once,
and then see how the discovered properties reflect in the particular case under study. Al-
though the search for canonical formats, namely of quadratic type on suitably identified
new dynamical variables, is not common in the dimensionality reduction community, it
is an in-depth studied topic in the field of deterministic dynamical systems[54] (see also
the references in the introductions of chs. 2-5). In chapter 2, we present a new quadratic
canonical format in which the mass-action chemical kinetics can be cast. Such a for-
mat is achieved by a change (plus extension) of the original dynamical variables (the
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volumetric concentrations of the chemical species) in order to obtain what we termed
a “hyper-spherical” representation of the dynamics. We show that such a new format
unveils the existence of a series of attracting subspaces towards which the reacting system
is attracted in going to the equilibrium. This is a valuable discovery by itself because it
shows that, also for nonlinear systems, there exist fixed objects, in the new and extended
dynamical variable space, which have peculiar properties in relation to the dynamics in
the original concentration space. Furthermore, we establish a connection with the Slow
Manifold feature (and hence with the dimensionality reduction topic) by linking the
persistence of the attractiveness of a trajectory towards such subspaces to the slowness
of the dynamics. Based upon these findings we propose a tentative algorithm to detect
points in the concentration space which likely fall close to the perceived Slow Manifold.

In chapter 3 we elaborate the original algorithm proposed in chapter 2 in the freely
available C++ package DRIMAK (acronym from Dimensional Reduction of Isothermal
Mass-Action Kinetics)1 and test its effectiveness on benchmark kinetic mechanisms of
hydrogen combustion, obtaining satisfactory results.

Chapter 4 is devoted to the extension of the mathematical quadratization strategy
to open reaction networks. In our setup, an open reaction network is characterized
by a constant-rate continuous injection of one or more reactive species in the reaction
environment. We discuss several possible advantages in adopting the quadratic format
also for the open networks, in particular in relation with the possibility of understanding
how to intervene on the externally controllable injection rates to modify the guise of the
Slow Manifold.

Chapter 5 is a further abstraction of the quadratization strategy described in the
previous chapters. In this chapter we seek for a quadratization strategy applicable to a
wide class of deterministic (possibly damped) phase-space dynamics. After discussing
the general idea of quadratization and the properties that emerge from the study of the
corresponding canonical formats in the hyper-spherical representation (e.g., the attract-
ing subspaces already mentioned), we give an example of quadratization strategy for
mechanical-like systems and finally illustrate the procedure by adopting a model uni-
dimensional motion in a double-well potential under a Stokes-like friction. The main
outcome of this work is to show the existence, also for nonlinear dynamics of quite gen-
eral character, of the attracting subspaces discussed for the first time in chapter 2 in the
specific context of mass-action chemical kinetics.

With chapter 6 begins the second part of the research project, the one devoted to
fluctuating systems. In this chapter we move some steps in the context of dimensionality
reduction of stochastic chemical kinetics. The work presented is mainly phenomenologi-
cal, and consists in exploring the possibility of the existence of a structure analogous to
the Slow Manifold well characterized in the macroscopic chemical kinetics context. We
indeed find that in the configuration space of the number of molecules of each species,
the stochastic trajectories of several model reaction networks “bundle” in a specific re-
gion and slow down in a way similar to the macroscopic counterpart. We also present

1DRIMAK is distributed under the General Public License v2.0. Software and documentation are
available at: http://www.chimica.unipd.it/licc/software.html.

http://www.chimica.unipd.it/licc/software.html
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a phenomenological descriptor to detect the bundling region and discuss its potential
usefulness.

Chapter 7 is about two common continuous approximation of Gillespie’s algorithm
for stochastic chemical kinetics and the chemical master equation: the chemical Langevin
equation (CLE) and chemical Fokker-Planck equation (CFPE). Therefore, contrary to
the previous chapters, the target here is to make a critical study of such well-established
simplification approaches to stochastic chemical kinetics, rather than develop new strate-
gies. The starting point was to pose the question if the CLE and the CFPE are reli-
able from a physical point of view. The outcome is that both equations suffer from
a physical inconsistency never discussed before in the literature. Namely, we find the
presence of nonphysical probability currents at thermal equilibrium even for closed and
fully detailed-balanced kinetic schemes. We also discuss how, contrary to the CFPE, by
adopting the CLE one could possibly mitigate the impact (in terms of artifacts) of the
nonphysical currents.

Chapter 8 is devoted to the more general category of overdamped Markov dynamics
for general multidimensional systems with continuous degrees of freedom. These types
of dynamics are of particular importance because they model a wide range of physical
and biological processes. In the spirit of simplification of the description of complex
dynamics, here we adopt the idea of establishing only bounds (valid regardless of the
dimensionality of the system and easily computable) on some properties of the system
at a future time. To obtain such bounds, we present a strategy based on inequalities
for “completely monotone decreasing functions” viewed as convex functions of time.
Namely, we derive a lower bound for the maximum value of the probability density of
the system at a given time, and a lower bound for the correlation time for a generic
self-correlation function. Although the results may seem to provide a small amount
of information, it is worth noting that they may be valuable for high-dimensional and
numerically intractable systems (indeed, more than a few degrees of freedom suffice to
make a system challenging).

Finally, in the last chapter we draw some conclusions and make final remarks.
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Deterministic dynamics

15





Chapter 2

Attracting subspaces in a
hyper-spherical representation of
the reactive system

Note

This chapter is a re-edited form of the draft of the following published paper: Alessandro Ceccato,

Paolo Nicolini and Diego Frezzato, “Features in chemical kinetics. III. Attracting subspaces in

a hyper-spherical representation of the reactive system”, J. Chem. Phys. 143, 224109 (2015).

Abstract

In this work we deal with general reactive systems involving N species and M elemen-
tary reactions under applicability of the mass-action law. Starting from the dynamical
variables introduced in two previous works [P. Nicolini and D. Frezzato, J. Chem. Phys.,
138, 234101 (2013); ibid., J. Chem. Phys., 138, 234102 (2013)], we turn to a new rep-
resentation in which the system state is specified in a (N ×M)2-dimensional space by a
point whose coordinates have physical dimension of inverse-of-time. By adopting hyper-
spherical coordinates (a set of dimensionless “angular” variables and a single “radial”
one with physical dimension of inverse-of-time), and by examining the properties of their
evolution law both formally and numerically on model kinetic schemes, we show that
the system evolves towards the equilibrium as being attracted by a sequence of fixed
subspaces (one at a time) each associated with a compact domain of the concentration
space. Thus, we point out that also for general non-linear kinetics there exist fixed
“objects” on the global scale, although they are conceived in such an abstract and ex-
tended space. Furthermore we propose a link between the persistence of the belonging
of a trajectory to such subspaces and the closeness to the slow manifold which would be
perceived by looking at the bundling of the trajectories in the concentration space.

17
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2.1 Introduction

Since one and a half century, the mass-action law is the theoretical paradigm to describe
the time evolution of macroscopic and well-stirred reactive systems under isothermal
conditions. Mathematically, it leads to a system of polynomial ordinary differential
equations (ODEs) for the species volumetric concentrations taken as dynamical vari-
ables.[1] If the concentrations of N involved species are collected in the vector x, the
ODE system is ẋ = F(x), with Fj(x) multivariate polynomials.

In a couple of recent works, “Part I”[2] and “Part II”,[3] we have shown that the
conversion of the original ODE system into “canonical formats” can be an efficient
strategy to unveil some ubiquitous features which would remain otherwise hidden due
to the non-linear nature of the evolution. With the expression “canonical format” we
mean an evolution law whose mathematical structure is “universal”, namely related to
the given class of dynamics but devoid of any specific parameter of the system under
consideration. All the system-dependent parameters (stoichiometric coefficients, values
of the kinetic constants, initial state of the reactive system in the concentration space)
should affect only the initial conditions. In our perspective, a canonical format may
be achieved by means of a suitable change/extension of the set of dynamical variables.
Such an extension clearly implies mutual constraints among the new variables, which
keep the number of degrees of freedom equal to N . If some “characteristic feature”
emerges from the examination of a canonical format, then one returns back to the original
physical space to see what such a feature implies in terms of traits that can be observed
(or expected a priori). This kind of approach has been adopted in Ref. [2], where
a “quadratization” procedure was applied to work out a universal ODE system with
quadratic equations in the new variables. By means of a combined formal/heuristic
examination of such a format, we could provide a definition of the slow(est) manifold
(SM). Qualitatively, the SM is the perceived hyper-surface in whose neighborhood the
trajectories of the reactive system bundle before approaching the equilibrium states.[3]
Formal definition and operative identification of the SM play a crucial role in strategies
aimed to achieve a simplification of the kinetics description via a dimensionality reduction
of the problem (i.e., a reduction of the number of relevant degrees of freedom) in the
final and slowest tail of evolution. For a review on this topic we address the interested
reader to the excellent introductions of refs. [4–6] (see also our outline in Ref. [3] and
references therein).

In this “Part III” of our investigation into deterministic chemical kinetics, we con-
sider the following question:

In spite of the non-linearity of the original ODEs, is there a canonical representation
of the reactive system capable to “let emerge” the existence of fixed subspaces (in the
extended space of the new dynamical variables) which attract the system during its evo-
lution?

Such a question arises by the consideration that, in linear kinetics (i.e., with only
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first-order elementary reactions/steps so that the system evolution can be written as
ẋ = −Kx, with K fixed), the eigenvectors of the kinetic matrix K define a hierarchy
of fixed subspaces in the physical concentration space. The projections of the system
state x(t) on these subspaces give the picture of trajectories going through a sequence of
attracting subspaces.1 The same picture is kept when passing to non-linear kinetics, that
is, the trajectories pass though a “cascade” of manifolds[7] of lower and lower dimension.
However, the analysis sketched above becomes local in the sense of point-dependent (see
for example the construction of intrinsic low dimensional manifolds, ILDMs, based on a
local linearization of the velocity field[8, 9]) and the formal definition of such “global”
objects is challenging. Here we focus on such an issue and demonstrate that one can
still specify fixed subspaces which attract the trajectories when the system evolution
is represented in a suitable abstract and extended space. Turning back to the physical
variables x, one can then make a partition of the concentration space into domains, each
of them corresponding to one of these attracting subspaces. Thus the evolution in the
physical space becomes a transition between these distinct domains.

To achieve the goal we shall restart from the universal format of ODEs presented
in Ref. [2], and perform a further transformation to achieve what we term a “hyper-
spherical representation” of the reactive system in an extended space. In fact, in such
a new representation, the dynamical variables are a “radial” coordinate S, which has
physical units of inverse-of-time, and a normalized “state-vector” ψ, whose components
can be assimilated to dimensionless “angular” coordinates. The evolution equations of
the (S,ψ) variables constitute a new canonical format of ODEs. The examination of
such a format will let emerge the existence of subspaces which, one by one, attract ψ
during the system evolution.

To develop the methodological path, in section 2.2 we outline the essential features
of our past works and integrate them with some remarks which are due for this contin-
uation. In section 2.3 we introduce the hyper-spherical representation of the reactive
system, and derive the canonical format of ODEs for the new variables (S,ψ). In
section 2.4 we analyze such a format, define the attracting subspaces, and illustrate
the concepts by adopting a simple kinetic scheme, namely the Lindemann-Hinshelwood
mechanism also studied by Fraser in Ref. [10] and already adopted by us in our pre-
vious works.[2, 3] Then we formulate a tentative relation between the persistence of a
trajectory within the attracting subspaces and the closeness to the perceived SM. Such
ideas will be elaborated in a subsequent work targeted to devise a low-computational-
cost route (and related code) to produce candidate points in the SM proximity. In the
Supporting information we present some preliminary outcomes obtained with a tentative
algorithmic implementation of the concepts here formulated. In section 2.5 we draw the
main conclusions.

1In particular, the SM, if meant as the slowest manifold, can be unequivocally identified as the sub-
space spanned by the eigenvector(s) corresponding to the null eigenvalue(s) and by those corresponding
to the eigenvalue(s) of K of smallest real-part (which is positive-valued in our notation). Such a SM is
actually perceived if the set of eigenvalues can be partitioned into a “fast” and a “slow” subsets with
real parts well separated in magnitude.
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2.2 Background and preliminaries

By applying the mass-action law to the elementary reactions, the original ODE system
reads

ẋj =
M∑
m=1

(
ν

(m)
Pj
− ν(m)

Rj

)
rm(x) , rm(x) = km

N∏
i

x
ν

(m)
Ri
i (2.1)

being km the kinetic constant of the m-th elementary step/reaction, ν
(m)
Rj

and ν
(m)
Pj

the

stoichiometric coefficients of species j as reactant and product respectively (coefficients
are null if the species does not appear in the elementary reaction) and rm(x) the reaction
rate of step m. The starting point in Ref. [2] is to pursue the following change of
dynamical variables:

x→ h(x) , hjm(x) := x−1
j rm(x) (2.2)

These new variables are positive-valued and have physical dimension of inverse-of-time.
One deals with N × M of such variables which are, however, mutually related by a
number of non-linear constraints so that only N of them are independent. From the
knowledge of the set hjm(x), the state of the system in the concentration space can be
retrieved by means of an inversion transformation.2

Although derived by us in Ref. [2], the kind of transformation in Eq. (2.2) turned out
to be already known for decades and was even re-discovered independently by several
authors with minor variations, at least (to the best of our knowledge) by Brenig and
Goriely in the context of general transformations amongst equivalence classes of rep-
resentation for continuous-time systems,[11] by Fairén and Hernández-Bermejo,[12, 13]
and by Gouzé.[14] Notably, in Ref. [12], the authors argue that the resulting quadratic
structure can facilitate the achievement of power-series approximations of the solution
of the ODE system.[15, 16]

The subsequent step is to introduce the square matrix V with elements

Vjm,j′m′(x) = Mjm,j′m′hj′m′(x) (2.3)

where M is the fixed “connectivity” matrix whose elements are

Mjm,j′m′ =
(
ν

(m′)
Pj′
− ν(m′)

Rj′

)(
δj,j′ − ν

(m)
Rj′

)
(2.4)

where δ denotes the Kronecker delta function. The elements of V form a further enlarged
set of dynamical variables. By knowing M, the physical state of the reactive system can

2As shown in the Supporting Information of Ref. [2], xj =
∏
j′m (hj′m/km)

(
U−1

)
jj′
/M

with the ma-

trix Ujj′ = −δj,j′+M−1∑
m ν

(m)
Rj′

. Such an inversion route is inapplicable for linear kinetic schemes, since

the matrix U is singular (however, constraints from the mass-conservation can be exploited to retrieve
x). On the other hand, linear kinetics can be easily solved analytically via an eigenvector/eigenvalues
analysis, hence we do not consider such a category of problems.



2.2. BACKGROUND AND PRELIMINARIES 21

be retrieved by a two-step backward transformation V(t) → h(t) → x(t).3 By intro-
ducing the cumulative index Q = (j,m) for the species-step pair, with Q = 1, 2, · · · , Qs
where Qs = N ×M , the evolution of any mass-action based system is finally put into
the following extended system of ODEs:

V̇Q,Q′ = −VQ,Q′
∑
Q′′

VQ′,Q′′ (2.5)

The quadratic format of Eq. (2.5) is universal (i.e., it can represent any kinetic scheme
regardless of the number of species and elementary reactions) and parameter-free. In
the Appendix we demonstrate the crucial property that while the factors hj′m′(x) in
Eq. (2.3) may diverge to +∞ tending to the stationary state, the elements of matrix V
take always a finite value for any possible kinetic scheme. Thus, according to Eq. (2.5),
each of the VQ,Q′(t) can be either constantly null or never null. In the latter case, the
element cannot change sign along a trajectory, and tends to a limit value (possibly zero)
at the stationary state.

Notably, at this level the reactive system can be represented as a weighted/oriented
graph with Qs nodes, and Eq. (2.5) specifies the evolution of its links if VQ,Q′(t) is
interpreted as the connection from node Q to node Q′. The equation states that the
rate of evolution of VQ,Q′(t) is proportional to the magnitude of the connection itself,
and to the sum of the connections between the arrival node and all the nodes of the
graph. A pictorial representation is given in Figure 2.1.

Figure 2.1: Schematic of the quadratic ODE system in Eq. (2.5) in terms of evolution
of the connections of a weighted/oriented graph with Qs nodes, each labelling a pair
species/reaction.

In Ref. [2] we have shown that some properties of these sums play a crucial role in
relation with the SM, as summarized here below.

Let us define
zQ(x) :=

∑
Q′

VQ,Q′(x) (2.6)

3For sake of compactness, we shall make implicit usage of assignments f(t) ≡ f(x(t)) for a general
function of the concentrations evaluated along a specific trajectory starting (implicitly) at some point
x(0). Both notations are used through the text and should be properly interpreted.
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where zQ(x) are point-dependent “rates” which control the evolution of the hQ vari-
ables via ḣQ = −hQzQ, and hence of the connections VQ∗Q for all starting nodes Q∗

in the graph representation. These rates are mutually related by linear constraints so
that at most N of them are independent, as detailed in the Supporting Information of
Ref. [2]. Note that some rates may be identically null (in these cases the correspond-
ing hQ coincide with kinetic constants of first-order steps). Moreover, it may happen
that some rate zQ is identically equal to some other, say zQ1(x) = zQ2(x) = . . . . This
means that the corresponding hQ1(x), hQ2(x), . . . are multiples one of the others. By
means of phenomenological observations, we could formulate the conjecture that a tra-
jectory enters a region of the concentration space, termed by us “Attractiveness Region”

(AR). Within the AR, the high-order time-derivatives z
(n)
Q (x(t)) ≡ dnzQ(x(t))/dtn tend

to become multiples one of the others and monotonically decay to zero towards the
equilibrium. In terms of point-dependent functions, these derivatives are expressed as

z
(n)
Q (x) = (F(x) · ∂/∂x)nzQ(x) and are easily computed by exploiting recursive formulas

derived by the quadratic form of Eq. (2.5) (see the Supporting Information of Ref. [2]).
The SM is then defined as the hyper-surface formed by points x, within the AR, where

z
(n)
Q (x) = 0 for all Q as n→∞ (while on the equilibrium manifold one has the stronger

and exact condition z
(n≥1)
Q (x) = 0). This provides a geometric definition of SM as a

global object in the concentration space.

2.3 Hyper-spherical representation of the reactive system

Let us introduce the index J through the association

J ≡ (Q,Q′) , J = 1, 2, · · · , Q2
s (2.7)

and use it to “unroll” the matrix V into a column-array v

vJ ≡ VQQ′ (2.8)

Let C be the Q2
s ×Q2

s matrix

CJ1≡(Q1,Q′1),J2≡(Q2,Q′2) =

{
0 if Q′1 6= Q2

1 if Q′1 = Q2
(2.9)

The ODE system in Eq. (2.5) turns into

v̇J = −vJ
∑
J ′

CJJ ′vJ ′ (2.10)

In this vectorial representation, the actual state of the system is described by a point
v(x) in a Q2

s-dimensional space spanned by the orthogonal unit vectors

eJ =


0
· · ·
1
· · ·
0

← at J−th pos. , eJ · eJ ′ = δJJ ′ (2.11)
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The final step consists in turning to an equivalent hyper-spherical representation of v
by writing it as a product of a normalized and dimensionless state vector ψ (with Q2

s−1
independent components) and a single positive-valued variable S with physical units of
inverse-of-time. There are several possibilities to define S (each one based on a specific
kind of norm in the space of the vJ elements) and thus to build ψ; here we pursue the
use of the Euclidean norm ‖ · ‖. Namely, as state vector we consider

ψ := v/S , ψ ·ψ = 1 (2.12)

with

S := ||v|| =
√

Tr(VTV) (2.13)

where the last identity shows that S is also the Frobenius norm of the matrix V. Then we
introduce the auxiliary (dimensionless) array ρ := Cv/Z, with Z the root-mean-square
average rate computed on the ensemble of rates in Eq. (2.6),

Z(x) =

√
Q−1
s

∑
Q

zQ(x)2 (2.14)

The Q2
s components of ρ are explicitly given by

ρJ≡(Q,Q′) = zQ′/Z (2.15)

and their mean-square average is constantly equal to 1 by construction. Such an array
is related to ψ via

P1 =
Z

S
ρ , PJJ ′ := CJJ ′ψJ ′ (2.16)

where 1 stands for the Q2
s-dimensional column-array with all entries equal to 1.

The equations for the time evolution of S and of the vector ψ are readily obtained
with few steps of algebra by using Eqs. (2.12) and (2.13) with Eq. (2.10) written as
v̇J = −ZSψJρJ . One gets4

ψ̇J = −Z(ρJ − Φ1)ψJ , Φ1 = ψ · diag(ρ)ψ (2.17)

and
Ṡ = −Z S Φ1 (2.18)

4It may be interesting to consider that Eq. (2.17) can be reformulated as follows. Let f be a gen-
eral array with entries fJ , possibly time-dependent. Let us introduce the average over the distribu-
tion of weight generated by the state-vector: 〈fJ〉 :=

∑
J fJψ

2
J . On this basis, Eq. (2.17) turns into

ψ̇J = −Z (ρJ − 〈ρJ〉)ψJ . A straight connection with a time-commutator can be achieved in terms of a
Fisher-like equation [M. O. Vlad, S. E. Szedlacsek, N. Pourmand, L. L. Cavalli-Sforza, P. Oefner, J. Ross,
“Fisher’s theorem for multivariable, time- and space-dependent systems, with applications in population
genetics and chemical kinetics”, Proc. Natl. Acad. Sci. USA 102(28), 9848 (2005)]. By multiplying both
members by ψJfJ and summing on J , in a few steps one gets d

dt
〈fJ〉− 〈 dfJdt 〉 = −2Z (〈fJρJ〉 − 〈fJ〉〈ρJ〉)

where the left-hand term can be interpreted as the time-commutator Ct(f) between the time-derivative
and the operation of averaging over the distribution associated to ψ. Notably, in the special case f ≡ ρ
one has Ct(ρ) = −2Z[〈ρ2

J〉 − 〈ρJ〉2] < 0.
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Equations (2.17) and (2.18) form an autonomous set of ODEs for the variables
ψ(t) and S(t) which5 can be solved by providing the initial conditions ψ(0) and
S(0), corresponding to the starting point x(0) in the concentration space. At
any time, the actual state x(t) can be retrieved by applying the inversion route:
S(t)ψ(t) = v(t) → V(t) → h(t) → x(t). Furthermore, the evolution equation for ρ
turns out to be

ρ̇ = −S(P− Φ2I)ρ , Φ2 := Q−2
s ρ ·Pρ (2.19)

As demonstrated in the Supporting information the following bounds (to be possibly
sharpened) apply to the factors Φ1 and Φ2: |Φ1| ≤ Qs and |Φ2| ≤ Qs. Finally, it also
follows

Ż = −Z S Φ2 (2.20)

2.4 Dynamical features

2.4.1 Attracting subspaces in the Q2
s-dimensional space

Let us first provide some preliminary definitions. Given a point x, let

zmin(x) := min
Q
{zQ(x)} (2.21)

There may be a number d of identically degenerate zQ(x) rates whose value is the
lowest one. Then, let JA = (J1, J2, · · · , JDA) be the set of indexes J = (Q,Q′) with no
restrictions on Q, while Q′ is such that zQ′(x) = zmin(x). The number of entries of such
a set is

DA = Qs × d (2.22)

Then, let us associate to each of the indexes J ∈ JA a (fixed) versor eJ defined in
Eq. (2.11). let A be the DA-dimensional subspace

A = span(eJ1 , eJ2 , · · · , eJDA ) (2.23)

Finally, let c(A) be a compact domain in the concentration space such that x ∈ c(A) if
the functions zQ(x) individuate the set JA and hence the subspace A.

With these positions, in what follows we show that

While x(t) ∈ c(A) then ψ(x(t))→ A (2.24)

5Clearly, the time variable can be eliminated in favor of a pure geometrical representation of the
trajectories, if S is employed as progress variable. The “contracted” ODE system is immediately obtained
by dividing member-by-member Eq. (2.17) by Eq. (2.18) under the condition that Ṡ is not null. The
integration of such an ODE system would then require to split each trajectory into “portions” where
S(t) is strictly monotonically decreasing or increasing to ensure Ṡ 6= 0.
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The attractiveness of ψ(x(t)) towards the actual A, indicated by the arrow in Eq. (2.24),
can be revealed by looking at the Euclidean distance dA of the point ψ on the unit Q2

s-
dimensional hyper-sphere from the subspace itself:

dA(x(t)) =

√∑
J /∈JA

ψJ(x(t))2 (2.25)

In essence, as long as the set of degenerate smallest zQ functions remains unaltered
(regardless of their magnitude that may change), the vector ψ tends to the subspace A
which, therefore, we call an “attracting subspace”.6 Figure 2.2 gives a schematic of the
concept.

Figure 2.2: Schematic of the connection between a trajectory x(t) in the concentration
space, and the actual attracting subspace for the corresponding dynamics of the state
vector ψ(x(t)) in the hyper-spherical representation.

The proof of such a behavior starts by combining Eqs. (2.17) and (2.18) to get the

6By adopting the graph representation of the reactive system (see Fig. 2.1) such a set of relevant
zQ functions turns out to be associated to the nodes for which the logarithms of the non-null inward
connections (taken in absolute value) evolve with the highest and equal rate (with sign). As long as such
an ensemble of d nodes remains the same, the subspace A attracts the state vector ψ. To see this, let
us turn to a new graph whose connections are εQ,Q′ = ln |VQ,Q′ | if VQ,Q′ 6= 0. By considering that VQ,Q′

does not change sign during the evolution, one has that ε̇Q,Q′ = −zQ′ . Now consider the set of d nodes
Q∗1, Q∗2 , ..., Q∗d such that zQ∗i (x(t)) = zmin(x(t)). Then, ε̇Q,Q∗i = −zmin. By taking into account the
negative sign, the statement made above follows.
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formal integrated forms of ψ(t) and S(t) (that can be checked by back substitution):

ψ(t) =
exp{−

∫ t
t0
dt′Z(t′)diag(ρ(t′))}ψ(t0)

‖ exp{−
∫ t
t0
dt′Z(t′)diag(ρ(t′))}ψ(t0)‖

S(t) = S(t0)

∥∥∥∥exp

{
−
∫ t

t0

dt′Z(t′)diag(ρ(t′))

}
ψ(t0)

∥∥∥∥
(2.26)

For each component J , let us introduce the time-averaged rates

ωJ(t, t0) :=
1

t− t0

∫ t

t0

dt′Z(t′)ρJ(t′) (2.27)

Note that ωJ≡(Q,Q′)(t, t0) = (t − t0)−1
∫ t
t0
dt′zQ′(t

′). This implies that if the trajectory
x(t) is contained in a certain domain c(A) during some interval [t0, t], then

ωJ /∈JA(t, t0) > ωmin(t, t0) , ωmin(t, t0) := ωJ∈JA(t, t0) (2.28)

For each component J , the first of Eqs. (2.26) becomes

ψJ(t) =
ψJ(t0) e−(t−t0)(ωJ (t,t0)−ωmin(t,t0))√∑
J ′ ψJ ′(t0)2 e−2(t−t0)(ωJ′ (t,t0)−ωmin(t,t0))

(2.29)

Now consider a situation in which ψ(t0) has a non-null projection on the subspace A.
In this case, by taking the absolute value at both members in Eq. (2.29), one sees that
all |ψJ(t)| with J ∈ JA monotonically increase as time passes (since the numerator of
the ratio is constantly equal to |ψJ(t0)| but the denominator monotonically decreases),
while all |ψJ(t)| with J /∈ JA monotonically decrease (since the numerator decreases
faster than the denominator). In practice, this means that the state vector ψ tends to
the attracting subspace A, as t increases, in the sense that the Euclidean distance in
Eq. (2.25) decreases.7 Since the instants t0 and t > t0 are arbitrarily chosen under the
sole condition8 that the corresponding physical points x(t′) for t0 ≤ t′ ≤ t belong to the

7The first of Eqs. (2.26) is nothing but a specific implementation of the continuous realization of
the iterative “power method” to find the dominant eigenvector of a matrix [M. T. Chu, “On the con-
tinuous realization of iterative processes”, SIAM Review 30(3), 375 (1988)]. In all generality, consider
a matrix B(t) with constant eigenvectors (such that B(t) and

∫ t
t0
B(t′)dt′ do commute). Then call d

the “dominant” eigenvector associated to the eigenvalue with lowest real part. Given a unit vector n(t)
which evolves according to ṅ = −Bn + (n ·Bn)n, and such that n(t0) has a non-null projection on d,
then limt→∞ n(t) = d. In the present case, B(t) ≡ Z(t)diag(ρ(t)) and the eigenvectors of diag(ρ(t)) are
indeed fixed. However, the degeneracy on the lowest eigenvalue (which is at least Qs-fold) implies that
ψ is attracted by a subspace rather than by a single dominant eigenvector.

8There may be cases in which A is defined but the attractiveness is missing, namely when vJ(x) = 0
for all J ∈ JA. This happens for schemes with rates zQ∗ which tend to finite negative values at the
stationary state. The corresponding hQ∗ functions diverge but VQ,Q∗ are identically null for all Q
as demonstrated in the Appendix. Thus, the components ψJ=(Q,Q′)(x(t)) are identically null for all
J ∈ JA, hence the vector ψ(x(t)) cannot be attracted by A when x(t) is inside the related domain in the
concentration space. But this simply means that the dynamics of the ψJ elements is confined outside the
subspace A. Also in this case, it is possible to find other attracting subspaces by following the procedure
described in the main text taking into account only the subspace complementary to A for the search.
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same domain c(A), the global message is that ψ tends to A while the trajectories are
contained in c(A). Hence we have proved Eq. (2.24).

Although not explicitly indicated in Eq. (2.24) for sake of notation, A clearly de-
pends on the actual point in the concentration space. However, A is the same for all
the points within a compact domain c(A). This means that even if the kinetic scheme
is non-linear, there still exist such fixed subspaces which persistently attract ψ within
delimited domains of the physical space. A trajectory may cross several of these do-
mains, each characterized by a specific attracting subspace. Note that the subspaces are
mutually orthogonal (in the sense that they have null mutual projections), and that their
dimension may differ. Given the kinetic scheme, the number of attracting subspaces is
finite, at most Qs in case of no degeneracies between the zQ functions. However, the
number of corresponding domains in the concentration space can be larger since ψ(x(t)),
along a trajectory, can be in principle attracted by the same subspace A within different
disjointed domains. In all generality, by labeling with letters n, n′, n′′, · · · the domains
in the concentration space, one expects that ψ(x(t)) will move as attracted, one by one,
by the terms of a sequence

· · · → An → An′ → An′′ → · · · (2.30)

while the trajectory goes across the domains ..., c(An), c(An′), c(An′′), ... As stated
above, each term in the sequence Eq. (2.30) is “picked” by an ensemble of at most Qs
elements.

The switch of attracting subspace is a consequence of the existing mutual constraints
on the vJ components, hence on the ψJ components. Because of these constraints, the
vector ψ cannot lie on the actual A, hence such a subspace cannot be reached otherwise
the dynamics would stop there. The exception is indeed represented by the last term in
the sequence in Eq. (2.30), which will be reached in the infinitely long timescale.

In relation with the slowest manifold features, and regardless of the specific situation,
we stress that if a SM is observed in the concentration space, there must be an ensemble of
attracting subspaces which are visited by trajectories once they lie in the SM proximity.
In particular, in case of a uni-dimensional SM it is for sure that all trajectories will share
a common sub-sequence of terms. In a pictorial fashion, the reactive system quickly goes
through the first terms of the sequence in Eq. (2.30) and then “falls” into a “funnel” of
terms associated to the SM neighborhood. This might be a new way of looking at the
bundles of trajectories in a coarse-grained fashion.

2.4.2 Illustration for a simple kinetic scheme

To illustrate the main features of our approach we adopt the Lindemann-Hinshelwood
kinetic scheme[1] reported here below:

2X
k1−→X + Y

X + Y
k2−→ 2X (Scheme A)

Y
k3−→P
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The corresponding system of ODEs, here omitted, is readily generated by applying the
mass-action law to the elementary steps. All quantities are dimensionless, meaning that
the time variable and the volumetric concentrations (hereafter indicated with [·]) are
implicitly expressed in some units ts and cs, respectively. Values of the kinetic constants
are k1 = 2, k2 = 1, k3 = 0.6 (the same values adopted by Fraser in Ref. [10] and by
us in refs. [2, 3]). Trajectories have been generated by using the DVODE solver[17] as
implemented in a routine freely available for download.9 FORTRAN codes have been
written for the specific computations.

Concerning the numbering Q↔ (j,m), an outer loop is made on the species j and an
inner loop on the elementary steps m. The species are labeled by j = 1, 2, 3 following the
sequence X, Y, P. For such a scheme, Qs = 9. However, since the species P is irreversibly
formed, the concentrations of the species X and Y evolve autonomously and [P] can be
obtained by exploiting the mass-conservation constraint [X] + [Y] + [P] = const. for a
given initial composition. Thus it suffices to consider the reduced system of ODEs for
[X] and [Y] only, that is, in practice, to focus on the projection on the sub-dimensional
space of the reactant concentrations. Correspondingly, only the “reduced” set of the
first 6 elements Q = 1, · · · , 6 is required in the analysis. All considerations will refer to
such a reduced set.10 For the explicit expressions of the hQ functions and related rates
zQ we address the reader to refs. [2, 3]. In particular it can be seen that z6(x) = 0 and
z1(x) = z5(x) identically.

Several trajectories have been generated from initial points drawn at random in the
reactant concentration region displayed in Fig. 2.3. Red and blue lines are a pair of “pilot
trajectories” (laying above and below the perceived SM), which will be used to illustrate
the relevant features. Each colored area corresponds to a domain within which the
state vector ψ(x(t)) tends to a specific attracting subspace A. The domains have been
identified by constructing a dense grid with homogeneous partition on the logarithms
of [X] and [Y], and by increasing the sampling in the proximity of the perceived SM
where a narrow domain appears. Since only the first six components of the z vector are
used in the analysis, the full space of the ψ vector is 36-dimensional. For each meshing
point, A was assigned by looking at the smallest zQ rates and accounting for possible
degeneracies as discussed above. In the specific case no degeneracies are found (i.e.,
d = 1 in all situations), hence all attracting subspaces, which are listed in the right
panel of the figure, are 6-dimensional. Figure 2.4 shows, for the two pilot trajectories,
the belonging of the trajectory to the domains (the integer number on the ordinate axis
is the n given in the right panel of Fig. 2.3). From Figures 2.3 and 2.4 it is possible to see
that the initial (fast) part of the pilot trajectories take place within the wide domains
1 and 2, while the slow tail of evolution occurs for both trajectories within the domain
1 (namely at the border of such a domain) and domain 3 (the narrow one in Fig. 2.3).
The vertical lines are placed at times which correspond to points close to the perceived

9The FORTRAN code has been downloaded from: https://computation.llnl.gov/casc/odepack/.
Last view: 9th May 2018.

10It is important to stress that the choice of working with the “reduced” set of zQ components is
determined only by practical reasons. Of course, the conclusions drawn in the following hold also if the
complete set is taken into account.

https://computation.llnl.gov/casc/odepack/
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SM.
For the two pilot trajectories, in the panels of Fig. 2.5 we show both the time evolution

of the distances dA defined in Eq. (2.25) (solid lines) and of the functions Z (dashed
lines). The vertical lines indicate a “switch” of attracting subspace. One can see that, in
the global time scale here inspected, Z rapidly decreases, as it will be rationalized in the
following. For the trajectory “from above”, the drop is of about 3 orders of magnitude,
while for the trajectory “from below” a huge drop of about 9 orders is observed. Note
that the decrease is non-monotonic when approaching the SM from above, as revealed
by the slight increase of Z at t ' 10−1.

At the same time, ψ tends to the specific local A but the quick change of attracting
subspace makes that the time of stay within a domain is so short that the approach to A
could be little. Notably, at the entrance into a domain it appears that the distance from
A is very close to 1. This means that the state vector ψ is almost orthogonal to A and the
attractiveness to A is weak. Thus, at least for this kinetic scheme, it happens that where
Z is “large” (far from the SM), the state vector reorients but remains almost orthogonal
to the attracting subspace. Conversely, once the magnitude of Z is decreased, the time
of persistence within a domain increases, ψ approaches more effectively the actual A,
and a relevant drop of the distance parameter dA is detected.

Figure 2.3: Projection of the concentration space portrait on the reactants plane for
Scheme A. Black lines are trajectories generated from initial points drawn at random.
Red and blue lines are “pilot trajectories” (which are tracked in the following figures)
starting from above and from below the perceived projection of SM. Each colored domain
corresponds to the related attracting subspace A associated to the smallest zQ function
(in this case d = 1 with reference to the schematic of Fig. 2.2). The legend for the color
code is provided in the right panel.
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Figure 2.4: Associations of the pilot trajectories of Scheme A to the attracting subspaces
(same colors as in Fig. 2.3). The number on the ordinate axis identifies each attracting
subspace A according to the associations given in the right panel of Fig. 2.3. The inset
magnifies the initial fast evolution by means of logarithmic scale on the time axis. The
vertical dashed lines are placed at times which correspond, for the two trajectories, to
points close to the perceived SM.

Figure 2.5: Approach of ψ(t) to the actual attracting subspace A in terms of Euclidean
distance dA (solid lines), and evolution of Z (dashed lines), for the two pilot trajecto-
ries of Scheme A displayed in Fig. 2.3 (red and blue colors refer to the corresponding
trajectories). Vertical lines indicate the change of attracting subspace (i.e., the change
of domain in Fig. 2.3).

2.4.3 Proximity to the SM

Up to here the rationale of the dynamics in the (ψ, S)-space is rigorous. From here, the
non-linearity of the problem forces us to proceed on qualitative and speculative grounds
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which will need to be supported by direct checks on model systems.
Let us start from the phenomenological evidence that a trajectory x(t) slows down

as the neighborhood of the SM is approached. This could be reflected in the fact that
also the evolution of the coordinates (S,ψ) in the hyper-spherical representation of the
same trajectory becomes smoother. Firstly, note that the average rate Z appears in both
differential equations (2.17) and (2.18) as multiplier at the right-hand members. Let
us focus on Eq. (2.17) alone. While the other factors are dimensionless and bounded
numbers, Z can change even by orders of magnitude along a trajectory, as shown for the
model scheme adopted above. Thus, it is “natural” to expect that the magnitude of Z
drops in the course of the reaction so that going toward the SM the “angular” coordinates
ψ may evolve more and more slowly. Furthermore, as Z becomes smaller, from Eq. (2.18)
also the evolution of the “radial” coordinate S is expected to become smoother (although
the correlation between S and Z prevents a sound statement). As a whole, where the
average rate Z takes small values, one likely expects that the SM proximity has been
approached. Also note that the variation of Z is governed by Eq. (2.20) in which Z itself
enters the right-hand member as multiplicative factor. Thus, starting from points x(0)
far from the equilibrium, the magnitude of Z should likely display a rapid depletion (as
indeed it has been observed for Scheme A).11 By following a trajectory x(t), as long
as Z(x(t)) is large, ψ(x(t)) should tend rapidly to the actual attracting subspace but,
at the same time, such a large Z also promotes a rapid change of the components of
ρ(x(t)), hence a possible change of ordering of the zQ rates. Ultimately, the attracting
subspace also “switches” rapidly.

Thus, the likely (typical) picture should be the following. In the initial (transient)
phase of a trajectory, if it starts far enough from the equilibrium manifold, one observes
a quick drop of Z(x(t)) along with rapid transitions between attracting subspaces. Such
a transient phase is followed by a slower and smoother evolution for both Z(x(t)) and
ψ(x(t)) once the trajectory x(t) has approached the SM neighborhood and the magni-
tude of Z has largely decreased.

The primary condition of smallness of Z is here termed as slowness of the trajectory
progress. The additional condition of smooth evolution of Z itself, and hence of ψ(x(t)),
is more related to the persistence of the slowness, since such a property is observed
and kept once the primary condition holds. For the simple scheme here adopted, from
Figures 2.4 and 2.5 it appears that the latter property arises in terms of persistence of
the attracting subspaces. We may guess that, in general cases, a trajectory “slides” over
a series of domains whose attracting subspaces A (a sub-sequence of Eq. (2.30)) last for
long times.

On the basis of such a guess, for the actual attracting subspace to be persistent, the
set of indexes JA must remain unaltered as long as possible. A strong condition to meet
this requisite is that the whole array ρ varies smoothly in time. As a global measure
of such a smoothness we take the root-mean-square average of the derivatives ρ̇J . With

11Such a decrease may be non-monotonic. In fact, the condition Ż → 0 in the long-time limit only
requires either that Φ2 becomes and remains positive-valued (possibly tending to zero from above), or
that Φ2 → 0−.
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few algebraic steps one gets√
Q−2
s

∑
J

ρ̇2
J = Z−1

√
Z 2

1 − Ż2 (2.31)

where Z1(x) is the analogous of Eq. (2.14) for the first-order derivatives:

Z1(x) =

√
Q−1
s

∑
Q

z
(1)
Q (x)2 (2.32)

Equation (2.31) shows that where Z is almost constant (slowness), it is required that
Z1 be small for ρ to vary smoothly. Thus, in the neighborhood of the SM one likely
expects that both Z and Z1 take small values. To translate the expression “small values”
into quantitative and operative terms, one may exploit the landscapes of functions Z(x)
and Z1(x). Such landscapes are expected to feature “grooves” which fall close to the
perceived SM. As example, in Fig. 2.6 we show the landscapes of Z(x) and Z1(x) as
functions of the reactant concentrations for Scheme A. The expected grooves are indeed
observed.

Figure 2.6: Landscapes of Z(x) and Z1(x) as functions of the reactants concentrations
for Scheme A (only the first six zQ components are considered). The insets show the
contour plots with colors from red to blue corresponding to the decrease of magnitude.

These ideas will be elaborated in a following article where we shall devise a com-
putational route, with related implementation, to produce “candidate points” to the
proximity of the SM. At this preliminary stage, in the Supporting information the in-
terested reader may find an early algorithmic implementation of the procedure together
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with the outcomes for Scheme A and for a higher non-linear scheme with elementary
steps up to the fourth order.

It is interesting to note that the reasoning above can be extended by accounting
for the higher-order time-derivatives of the rates zQ. By recursively differentiating the
components of ρ and then considering their root-mean-square average where Z ' const.,

it follows that in the region of slowness also the averages Zn(x) =
√
Q−1
s
∑

Q z
(n)
Q (x)2

of any order should feature a “groove” close to the SM. Notably, a (constrained) min-

imization of Zn to locate such a groove implies that all components z
(n)
Q are globally

minimized. Such an outcome can be taken as an approximate version of the definition

of SM[3] recalled in the Introduction, stating that on the SM all components z
(n)
Q vanish

as n tends to infinity. We recall that such a condition strictly holds within the Attrac-
tiveness Region in the concentration space, thus only the “right groove” of Zn(x) within
such a region has to be considered.

2.5 Conclusions

In this work we have shown that the mathematical description of any reactive system
involving N chemical species, under applicability of mass-action law to its M elementary
reactions, can be put into a hyper-spherical format in a Q2

s-dimensional space where
Qs = N ×M . Such a format has been obtained by further elaborating the quadratic
ODE system derived in Ref. [2]; hence also in the present case the achieved formulation
is “universal” and parameter-free. Thus, any consideration which emerges from the
examination of such a mathematical structure holds in all generality for the mass-action
class of evolving chemical systems.

In particular we have shown that also for general non-linear kinetic schemes there
exist fixed subspaces, each one with dimension at most equal to Qs, which monotonically
attract the state vector ψ. For general non-linear kinetics, these subspaces replace
the ones which, only for linear schemes, are spanned (in the concentration space) by
the eigenvectors of the kinetic matrix. This result may open new lines to inspect the
paths of a reactive system under a coarse-grained-like view, where the focus is not on
the trajectory, rather on the sequence of “visited” domains, each one associated to an
attracting subspace.

The next step is to attribute to these domains some characteristic properties which
are recognizable in the physical space. Along this line we have formulated a tentative link
between persistence of the attracting subspaces (in the extended space) and closeness
of trajectories to the perceived slow manifold (in the concentration space). This opens
perspectives to devise low cost computational strategies to locate candidate points in
the proximity of the slow manifold. These strategies could employ just the lowest order
time-derivatives of the rates zQ to build “potential functions” whose landscape can guide
the individuation of candidate points. Work on this line is currently underway but the
preliminary results presented in the Supporting information are already encouraging.
Efforts in this direction are worthwhile since once a set of candidate points is evaluated
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and spurious solutions are rejected a posteriori, interpolation routes could yield an ap-
proximation of the slow manifold. Such an interpolating surface is clearly non-invariant
with respect to the system’s dynamics, but it could be taken as starting guess for various
iterative refinement methods.[18, 19] The resulting surface can be then employed in a
procedure to reduce the dimensionality of the kinetics description in the slow part of the
evolution.

Appendix. Finite value of the elements of the matrix V

As stated in the main text, the functions hjm may diverge to +∞ as the sys-
tem evolves toward equilibrium along a trajectory x(t). This could happen if there
are species which are completely consumed in the global reactive process. Let j∗

be the label of such a kind of species, i.e., limt→∞ xj∗(t) = 0, and let m′ be a
generic step. Then, hj∗m′(x(t)) = xj∗(t)

−1 rm′(x(t)) may diverge. Regardless of
these possible divergences, in the following we show that none of the matrix elements
Vjm,j∗m′(x(t)) = Mjm,j∗m′ hj∗m′(x(t)) diverges in the course of the evolution of a chem-
ical system for any pair j,m.

Let us consider the three possible cases that may be encountered: 1) the species j∗

enters as reactant in the step m′ (regardless of it appearance also as product in the same
step); 2) the species j∗ is not involved in the step m′; 3) the species j∗ enters only as
product in the step m′.

In case 1) one has that hj∗m′(x(t)) = x−1
j∗ rm′(x(t)) = x

ν
(m′)
Rj∗
−1

j∗ km′
∏N
i 6=j∗ x

ν
(m′)
Ri
i Since

ν
(m′)
Rj∗
≥ 1, it follows that limt→∞ hj∗m′(x(t)) = 0 in this case. Thus any matrix element

Vjm,j∗m′ for such a kind of elementary steps vanish at equilibrium.
In case 2) there may be actually situations in which the terms hj∗m′ diverge at

equilibrium. However one has ν
(m′)
Rj∗

= ν
(m′)
Pj∗

= 0, hence

Mjm,j∗m′ =
(
ν

(m′)
Pj∗
− ν(m′)

Rj∗

)(
δj,j∗ − ν(m)

Rj∗

)
= 0

for any pair j,m. This implies that the elements Vjm,j∗m′ = Mjm,j∗m′hj∗m′ are identically
null.

In case 3), firstly consider that the rates of all the elementary steps in which j∗

is produced or consumed must vanish as tending to the stationary state. To see
this, let us divide the steps into a set of production processes, labelled by m+, and
consumption processes, labelled by m−. All the rates rm−(x(t)) go to zero, hence
also all the rates rm+(x(t)) must vanish to have ẋj∗(t) → 0. In this situation,
hj∗m′(x(t)) = rm′(x(t))/xj∗(t) takes an indefinite form “0/0”, whose limit is however
finite. In fact, approaching the stationary state the magnitude of the maximum rate
amongst the steps of production of j∗, rmax

m+
(x(t)) = maxm+

{
rm+(x(t))

}
, will become

an infinitesimal of the same (or greater) order of the maximum rate amongst the steps
of consumption of j∗, rmax

m− (x(t)) = maxm−
{
rm−(x(t))

}
. By considering that the step
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m′ belongs to the set m+, it follows

t→∞ : hj∗m′(x(t)) =
rm′(x(t))

xj∗(t)
≤
rmax
m+

(x(t))

xj∗(t)
<
∼
rmax
m− (x(t))

xj∗(t)

where the symbol <∼ indicates that rmax
m+

(x(t)) goes to zero, towards the stationary state,
with a velocity comparable or faster than that of rmax

m− (x(t)). Since xj∗(t) enters each of
the rates rm−(x(t)) (and thus also the dominant term rmax

m− (x(t))) with a power of order
at least 1, the latter ratio tends always to a finite limit, and thus also hj∗m′ and Vjm,j∗m′

take a finite value approaching the stationary state.
Since the analysis above holds for any trajectory x(t), we have shown that all elements

of the matrix V(x) take a finite value in all points of the concentration space.

Supporting information

Some bounds for factors Φ1 and Φ2

The following two properties, which are corollaries of basic matrix algebra theorems,[20]
will be exploited in our elaboration:

Property A (from Rayleigh’s quotient) Given a symmetric and real-valued square
matrix M, let λmin(M) and λmax(M) be its minimum and maximum (real-valued) eigen-
values. It holds

λmin(M) ≤ x ·Mx ≤ λmax(M)

for any vector x, under ||x|| = 1.

Property B (direct majorizations from Gerschgorin’s theorem) Given a sym-
metric and real-valued square matrix M, be λmin(M) and λmax(M) its minimum and
maximum (real-valued) eigenvalues. It holds

λmin(M) ≥ mini

−∑
j

|Mij |

 , λmax(M) ≤ maxi

∑
j

|Mij |



By applying the Property A to Φ1 = ψ · diag(ρ)ψ (note that ||ψ|| = 1), one imme-
diately gets

−Qs ≤ minJ{ρJ} ≡ λmin [diag(ρ)] ≤ Φ1 ≤ λmax [diag(ρ)] ≡ maxJ{ρJ} ≤ Qs (2.33)

where for the side inequalities we have considered that, by construction, |ρJ | ≤ Qs for
any J (see Eq. (2.15) of the main text).
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Now consider that Φ2 = Q−2
s ρ ·Pρ where P is the matrix defined in the main text

by Eq. (2.16). By introducing ρ′ = ρ/Qs and the symmetric matrix Ps = (P + PT )/2
(where PT is the transpose of P), it follows that

Φ2 = ρ′ ·Psρ
′ (2.34)

Since ||ρ′|| = 1, the application of Property A yields

λmin (Ps) ≤ Φ2 ≤ λmax (Ps) (2.35)

By means of Property B one gets

λmin (Ps) ≥ mini

{
−
∑
J ′

|(Ps)JJ ′ |

}
≥ −Qs (2.36)

The last inequality follows by recalling that PJJ ′ = CJJ ′ψJ ′ (see Eq. (2.16) of the main
text) and by considering the specific structure of the matrix C given in Eq. (2.9) of the
main text. An example of matrix C for the (virtual) case Qs = 3 is given here below.

Qs = 3 : C =



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1


(2.37)

Note that only Qs elements per row and per column are not null and equal to 1. The
same kind of pattern is displayed for any Qs. By also considering that |ψJ ′ | ≤ 1, and by
recalling that (Ps)JJ ′ = (PJJ ′+PJ ′J)/2, the inequality in Eq. (2.36) follows immediately.
Similarly,

λmax (Ps) ≤ maxi

{∑
J ′

|(Ps)JJ ′ |

}
≤ Qs (2.38)

Thus, by combining Eqs. (2.35) and (2.38), it follows

|Φ2| ≤ Qs (2.39)

The inequalities Φ1 ≤ |Qs| and Φ2 ≤ |Qs| derived above could be further sharpened.
Anyway this goes beyond the scope of the present analysis aimed only at showing the
boundedness of these factors.
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Basic algorithm to produce candidate points in the proximity of the
Slow Manifold

The algorithm

In this section we outline a route which makes use only of the following functions ex-
ploited as “guiding potentials” to locate the SM proximity:

Z(x) =

√
Q−1
s

∑
Q

zQ(x)2 , Z1(x) =

√
Q−1
s

∑
Q

z
(1)
Q (x)

2
(2.40)

where zQ are the functions defined in Eq. (2.6) of the main text and z
(1)
Q are their

first-order time derivatives.
To locate possible “grooves” inside a given region of the concentration space, we opt

to fix the concentration of one species at once, and search for points of minima with
respect to the concentrations of the remaining species. A two-step minimization, first of
function Z(x) and then (by starting from the resulting point of the first step) of function
Z1(x), will yield a candidate point to the SM proximity. All produced points are then
merged into a single ensemble. A number of spurious solutions is expected. These
points can be possibly recognized and removed a posteriori if some filtering criteria are
at disposal.

Such a strategy has been implemented in a computer code. The following algorithm
box summarizes the main steps. Ns ≤ N is the number of species considered in the
analysis (e.g., only the reactants for Scheme A and Scheme B considered in the following,
or only the independent species if mass-conservation constraints are applied). The initial
points are here generated by using the routine “ran2”[21] to draw random numbers
from 0 to 1 with uniform probability distribution. Then x0 is located by mapping
the Ns-dimensional hyper-cube of unitary side length into the hyper-rectangle I (whose
boundaries are specified) with logarithmic scale on the concentrations. The minimization
steps are performed with Powell’s conjugate direction method[22] as implemented in the
routine “powell”.[21]12

12Work parameters have been set to: maximum of 100 iterations, fractional tolerance 10−3, matrix of
initial directions taken diagonal with elements equal to cmin/50 where cmin is the smallest concentration
of the species at the starting point.
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Algorithm 1 Production of candidate points in the SM neighborhood

Require: number of species Ns, boundaries of the inspected region I, number of candi-
date points Npt,i to be generated for each fixed species (the total number of candidate
points in the SM neighborhood will thus be Ns ×Npt,i)
for i = 1 to Ns species do

for ni = 1 to Npt,i points do
Draw at random a starting point x0 ∈ I
While keeping fixed xi = xi,0:
step 1) From x0, search for a point of minimum of Z(x), x1

step 2) From x1, search for a point of minimum of Z1(x), x2

if (x2 ∈ I) then
Save x2

else
Draw a new starting point x0 and repeat the two-step minimization

end if
end for

end for
return Whole ensemble of points x2

Application to model schemes

In this section we show the outcomes of the two-step minimization route for two simple
schemes involving only 3 species, with one of them (“P”) irreversibly formed. The SM is
a two-dimensional surface orthogonal to the plane of the reactant concentrations, hence
only the projections on such a plane are displayed in the following figures. Produced
points x2 are shown with red spots in each concentration portrait. FORTRAN codes
have been developed for the specific computations. In particular, the trajectories have
been generated by means of the DVODE solver[17] as implemented in the routine already
mentioned in the footnote 9 of the main text.

Scheme A This is the kinetic scheme presented in the main text. For completeness it
is reported here below:

2X
k1−→X + Y

X + Y
k2−→ 2X (Scheme A)

Y
k3−→P

Adopted values are k1 = 2, k2 = 1, k3 = 0.6. As stated in the main text, only 6
components zQ are considered for this scheme. A total number of 1000 points has been
generated by performing the search with Ns = 2. The region of the search extends
from 10−3 to 103 on both axes [X] and [Y]. From Fig. 2.7 one can note that all the
produced points fall indeed in the proximity of the SM as it is perceived by the bundling
of trajectories. No spurious solutions have been found for Scheme A.
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Figure 2.7: Outcome of the SM localization route for Scheme A. Red spots are 1000
produced points.

Scheme B Scheme B is a fictitious highly non-linear scheme with elementary reactions
up to the fourth order:

2X
k1−→X + Y

X + Y
k2−→ 2X

2X + 2Y
k3−→ 4X

3X + Y
k4−→ 4P (Scheme B)

X + 2Y
k5−→ 3Y

X
k6−→P

Y
k7−→P

The employed parameters are k1 = 2, k2 = 0.2, k3 = 1.5, k4 = 1, k5 = 3, k6 = 1.6,
k7 = 4. For such a scheme Qs = 21. However, as for Scheme A the species “P” is
irreversibly produced, hence only a reduced set of 14 zQ components can be considered.
The outcomes of the analysis are shown in Fig. 2.8. The region of the search ranges from
10−3 to 103 on both axes. A total number of 1000 points has been generated. Note that
most of the produced points fall in the neighborhood of the SM as it is perceived by
looking at the bundling of trajectories. However, spurious solutions are found “above”
the SM where there is no contraction of the trajectories. This happens because the
minimization steps locate “secondary grooves” in the landscapes of Z(x) and Z1(x) far
from the SM. In particular, a large number of these points fall on the almost vertical line
at [X] ' 1, which is formed by quasi-stationary points (i.e., points where the projection
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of the velocity-vector on the reactant plane has very small magnitude). The algorithm,
by construction, correctly individuates these points where the dynamics is indeed slow.
The grey spots are the outcomes from the first part of the two-step minimization route. It
appears that the minimization of Z(x) only (i.e., by using only the “slowness” condition
as termed in the main text) brings one close to the SM, but the second step is required
to improve the quality of the SM localization.

Figure 2.8: Outcome of the SM localization route for Scheme B. Red spots are 1000
produced points. The grey spots are the outcome from the first part of the two-step
minimization route.

General remarks

For all the schemes presented in this section, it emerges that most of the points produced
fall in the proximity of the SM as it is perceived by the bundling of trajectories. We
remark that the computational cost of the procedure is very low13 since only the rates
zQ and their first-order time derivatives are required, and also considering that the
landscapes of Z(x) and Z1(x) employed as guide-potentials can be so steep (see Figure 2.6
of the main text for Scheme A) that few iterations of a minimization tool may suffice
to locate a minimum (for all schemes here treated, the number of Powell’s iterations
required to locate a minimum was of the order of tens). The main problem concerns the
spurious solutions which appear if the minimization steps locate “secondary grooves” in
the landscapes of Z(x) and Z1(x) far from the SM. The appearance of such solutions, like
for Scheme B here presented, is nothing but the typical situation which is encountered
in most cases. A procedure to detect and remove a posteriori such spurious points is
thus needed.

13Calculations have been performed on a Workstation with 4 processors Intel Xeon E5-2603 v2 @ 1.8
Ghz with 32 GB of RAM. No parallelization neither particular optimization of the code were done. The
rate of points production was of 800 points/sec for Scheme A, 310 points/sec for Scheme B.
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Chapter 3

A low-computational-cost
strategy to localize points in the
slow manifold proximity for
isothermal chemical kinetics

Note

This chapter is a re-edited form of the draft of the following published paper: Alessandro Ceccato,

Paolo Nicolini and Diego Frezzato, “A Low-Computational-Cost Strategy to Localize Points in

the Slow Manifold Proximity for Isothermal Chemical Kinetics”, Int. J. Chem. Kinet. 49,

477-493 (2017).

Abstract

Dimensionality reduction for the modeling of reacting chemical systems can represent
a fundamental achievement both for a clear understanding of the complex mechanisms
under study, and also for the practical calculation of quantities of interest. To tackle
the problem, different approaches have been proposed in the literature. Among them,
particular attention has been devoted to the exploitation of the so-called slow manifolds
(SMs). These are lower-dimensional hypersurfaces where the slow part of the evolution
takes place. In this study we present a low-computational-cost algorithm (based on
a previously developed theoretical framework) for the localization of candidate points
in the proximity of the SM. A parallel implementation (called DRIMAK) of such an
approach has been developed and the source code is made freely available. We tested the
performance of the code on two model schemes for hydrogen combustion, being able to
localize points that fall very close to the perceived SM with limited computational effort.
The method can provide starting points for other more accurate but computationally
demanding strategies; this can be a great help especially when no information about the
SM is available a priori and very many species are involved in the reaction mechanism.
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3.1 Introduction

When dealing with mechanisms involving complex reaction schemes or parallel elemen-
tary reactions, simplification of the chemical kinetics description is often needed. Even
in the simplest case of a constant-volume and well-stirred isothermal medium, such
that the mass-action law is applicable to express the progression rate of the elemen-
tary reactions,[1] the number of dynamical variables to account for (i.e., the volumetric
concentrations of the species involved) can be so large that the numerical integration
of the evolution equations becomes a hard task (especially in the case of stiff kinetics)
and, crucially, the physical understanding of the whole process is obscured. In this work
we make a step forward the identification of the so-called slow manifolds (SMs in the
following1) which are basically hypersurfaces, of lower dimension than that of the full
concentration space, where the slow part of the system’s evolution takes place. Given
a global reactive process, the identification of points on its SM (if present), and their
interpolation, would allow one to subsequently attain a reduced description of the kinet-
ics, focusing only on the slow phase. Based on our previous theoretical works, here we
provide a strategy, along with the first implementation in an open source C++ software
package and related tests, to produce good candidate points to the SM proximity with
very low computational cost. Other existing strategies for the SM construction (see be-
low) could be integrated with our method in order to make a post-production screening
of the solutions and to perform further refinement steps. Such a combination of strate-
gies may be particularly useful when the dimensionality of the SM and its approximate
localization in the full concentration space are unknown.

For a constant-temperature and well-stirred medium, the mean-field approach based
on the so-called “mass action law” provides the mathematical description of the macro-
scopic chemical kinetics for a set of N species involved in M elementary reactive processes
(which can be either the steps of the mechanism of a single complex reaction, or com-
peting elementary reactions).[1] The mathematical format consists of an autonomous set
of N polynomial ordinary differential equations (ODEs) for the volumetric concentra-
tions taken as dynamical variables. In the following, the column vector x collects the
concentrations xj for j = 1, · · · , N . The ODE system is

ẋ = F(x) (3.1)

where F(x) is the state-dependent “velocity field” whose components will be made ex-
plicit in the next section.

As stated above, when N becomes large, as may happen for reaction mechanisms
involving radical species or in the context of biochemical networks, the need for simpli-
fication of such a description by “reducing” the dimensionality of the problem becomes
urgent. A large number of strategies has been devised to achieve such a goal. The mat-
ter is quite broad and a good starting point for an interested reader may be the review
made by Okino and Mavrovouniotis[2] and references therein. Of particular relevance

1We like to indicate that the abbreviation SIM for “slow invariant manifold” is frequently used in the
specialistic literature. We prefer to use SM in continuation of our previous works on this subject.
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are the sensitivity analysis,[3, 4] the lumping procedures,[5, 6] the application of the
quasi-stationary-state and quasi-equilibrium approximations,[7, 8] and the exploitation
of the existence of the so-called slow manifolds, which is the subject of this work.

As anticipated, a SM can be seen as the hypersurface, of lower dimensionality than
that of the whole concentration space, towards which the trajectories x(t) of the reactive
system approach in going to the stationary points. Actually, there could be a “cascade”
of manifolds of ever-reducing dimensions;[9] we stress that the SM considered here is the
ultimate manifold which is approached before reaching the equilibrium manifold (EM)
formed by the stationary points. The “bundling” of the trajectories on the SM is a
known trait which can be exploited to formulate a reduced description of the kinetics.
In fact, it usually happens that the late and slowest part of the evolution takes place
in the neighborhood of a SM. Thus, if one neglects the initial and fast (with respect to
the subsequent dynamics) transients, the original system of ODEs projected on the SM
would suffice to describe the slow part. In this respect, the localization of the SM, or
at least of good candidate points in its proximity (and possibly their interpolation with
suitable parametric hypersurfaces), would provide the ingredients to build a simplified
kinetics description of reduced dimensionality.

Several conceptually heterogeneous strategies have been devised to construct the
SMs in the context of chemical kinetics. An interested reader may find a comprehensive
presentation in the introductions of refs. [10–13] (see also our outline in Ref. [14] and
references therein). In short, the leading idea is that close to the SM the system’s
evolution is slower in comparison to points far from it.

Unfortunately, such a timescale separation between fast and slow components of the
evolution is unequivocally defined only for linear kinetic schemes (i.e., with only elemen-
tary reactions of the first order) for which the evolution law takes the form ẋ = −Kx,
with K being some fixed kinetic matrix. In this case, the timescale separation (if present)
is manifest in a gap between the real parts of the non-null eigenvalues of K: if an eigen-
value is well separated by the larger ones in such a sense, the SM is the hyperplane
identified by the eigenvector corresponding to such an eigenvalue and by the eigenvec-
tor(s) corresponding to the null eigenvalue(s).[14]

For non-linear kinetic schemes, the fast-slow separation becomes local and, to some
extent, subjectively quantified. In such a general context, the SM is formally identified
within the framework of Fenichel’s geometric singular perturbation (GSP) theory which
deals with normally hyperbolic manifolds (not necessarily attracting[15]) in systems of
ODEs with fast-slow timescale separation; see for example Ref. [16] and the concise
review in Ref. [15]. Although we focus here on the case of mass-action based chemical
kinetics, we wish to remark that the GSP theory and the numerical tools mentioned
below are rather general and can be applied to the dimensional reduction of various
kinds of dynamical systems for which the velocity field F(x) is even non-polynomial.
Briefly, let ε be a small dimensionless parameter which quantifies the timescale separation
(increasing as ε→ 0). It is supposed that ε “naturally” emerges from a rescaling of the
ODEs. By denoting with M0 the central manifold corresponding to infinite timescale
separation, Fenichel’s theorems assert that there exists a family of manifolds Mε for
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the given ε 6= 0, all exponentially close to each other as ε → 0, and locally invariant
under the dynamics (i.e., they are “persistent” in the sense of “self-preserved” by the
dynamics). Note the non-uniqueness of the solution due to the possible multiplicity of
Mε. The crucial point is that whileM0 can be obtained by solving algebraic equations,
the hard task is to go beyond the mere statement of existence and construct in practice
a manifold Mε to be taken (locally) as the SM. To our knowledge, the computational
singular perturbation (CSP) method of Lam and Goussis[8, 17] represents the most
faithful numerical implementation of the GSP concepts and, in principle, is able to
produce such a SM under the sole assumption that a timescale separation between
fast and slow processes does exist. The CSP tool works with a matrix format of the
ODEs and, in practice, one only has to choose two initial sets of linearly independent
vectors which likely span the “slow” and “fast” subspaces. By means of a two-step
procedure, the route makes a refinement of the initial guess and subsequent iterations
of the procedure yield improved approximations of the fast and slow subspaces.[17] The
CSP approximation of the SM is then given by the points in the concentration space
where the velocity field has null projection on the fast subspace generated after a chosen
number of iterations. However, the implementation of the CSP tool may be not trivial:
the procedure fails if the initial guess is incorrect, and the requirement of a criterion to
stop the iterations introduces a degree of subjectivity. Among other popular methods for
the SM construction, still based on the assumption of timescale separation but less close
to the GSP concepts and built more on empiric grounds, we mention the basic quasi-
stationary-state and quasi-equilibrium approximations,[18] the construction of intrinsic
low dimensional manifolds (ILDMs)[19] and of attracting low dimensional manifolds
(ALDMs),[11] and the category of “trajectory methods”.[11–13, 20] Other approaches
rely on different assumptions where the timescale separation is not explicitly considered.
In particular, we mention the iterative evolution of functional maps,[7, 18] the method of
“heteroclinic connections”,[21] and several optimization approaches based on concepts
borrowed from nonequilibrium thermodynamics.[22–25] None of these strategies provide
the SM in the sense of Fenichel’s theory, but only approximations whose accuracy has
to be evaluated case by case.

In this work we shall present a new strategy to produce candidate points to the SM
proximity, along with its implementation in the first release of the C++ software DRI-
MAK (Dimensional Reduction of Isothermal Mass-Action Kinetics) developed by us.2

The approach exploits and combines the outcomes of our recent theoretical investiga-
tions concerning the achievement of canonical (i.e., universal) mathematical formats of
the evolution law for mass-action based kinetics, and of their application to the local-
ization of the SMs.[14, 26, 27] As demonstrated in Ref. [14], a proper change of dynamic
variables leads to a universal system of ODEs in an extended space of N ×M mutually
constrained variables. The study of the mathematical properties of such a new format
allowed us to formulate a purely geometrical and objective definition of SM.[14] Unfor-
tunately, the algorithmic implementation of such a definition poses a series of problems

2DRIMAK is distributed under the General Public License v2.0. Software and documentation are
available at: http://www.chimica.unipd.it/licc/software.html.

http://www.chimica.unipd.it/licc/software.html
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which can be hard to tackle. In Ref. [27] we have shown how a second universal format of
the ODEs, that we have termed “hyperspherical representation” of the reactive system,
allows one to devise an approximate but computationally efficient route to individuate
points expected to be close to the SM. In that framework, it was discovered that the
“grooves” in the multidimensional landscapes of a peculiar pair of functions (see the
Z(x) and Z1(x) in the following) allows one to detect the slowness of the system’s pro-
gression and the persistence of such slowness. Recognizing that these traits are typical
of the SM neighborhood, it was indicated that suitably designed minimization routes,
followed by a screening of the produced solutions, may be used to localize points on the
SM proximity. This is the idea developed in the present work.

As will be shown, the strength of the present methodology lies in its intrinsic low
computational cost, in spite of the fact that the search for candidate points can even
be made inside very large hyper-rectangular regions of the concentration space and
without any knowledge a priori about dimensionality and location of the SM, nor of the
equilibrium manifold. We must stress the important aspect that the strategy proposed
here is not intended to replace other techniques developed for localizing the SM; rather it
can be better seen as a tool to produce good starting points for a subsequent refinement
procedure and/or to restrict the domain for the SM construction by means of other
techniques.

The remainder of the article is organized as follows. In the next section we summarize
the theoretical background to introduce the key-functions Zn(x) with n ≥ 0, which
are adopted as guiding potentials; then we describe the multi-step minimization route
which exploits such potentials in order to localize candidate points. In the ‘Algorithmic
implementation’ section we illustrate the implementation of the ideas in the software
DRIMAK, along with the characterization of the crucial computational steps in terms
of scaling of the execution time as the number of species and reactions increases. Some
technicalities are provided in the Supporting information and in the documentation
which accompanies the software. In the ‘Examples’ section we provide examples for
two relevant cases: 1) a benchmark model of hydrogen combustion involving 6 species
and 12 elementary reactions[28] also studied in refs. [24, 25] and by us in Ref. [14],
and 2) a more complex mechanism of hydrogen combustion involving 8 species and 42
elementary reactions.[29] The ‘Conclusions’ section provides a summary of the work
presented herein, as well as perspectives for improvements of the strategy.

3.2 Theoretical background

3.2.1 Slow Manifolds from canonical formats of the ODEs

We shall focus on a general reactive process occurring in an isothermal and well-stirred
medium with a fixed volume. The application of the mass-action law to express the rate
of the elementary processes yields the j-th component of the velocity field, expressed as:

Fj(x) =
M∑
m=1

(
ν

(m)
Pj
− ν(m)

Rj

)
rm(x) , rm(x) = km

N∏
i

x
ν

(m)
Ri
i (3.2)



48 CHAPTER 3. APPROXIMATE SLOW MANIFOLD LOCALIZATION

where km is the kinetic constant of the m-th elementary reaction with rate rm(x), and

ν
(m)
Rj

and ν
(m)
Pj

are the stoichiometric coefficients of species j as reactant and product

respectively (the coefficients are null if the species does not appear in the elementary
reaction).

The system of ODEs ẋj = Fj(x) specifies the evolution of x(t) from an initial con-
dition x(0). Accordingly, any function of the actual system’s state, say f(x), evolves
under the dynamics according to f(t) ≡ f(x(t)). In what follows, time derivatives of
suitable point-dependent functions will play an important role in our dimensional re-
duction approach. Let us introduce the notation used throughout the paper. We shall
denote with f (n)(x) the point-dependent function such that

dnf(x(t))

dtn
≡ f (n)(x(t)) (3.3)

Explicitly, the function f (n)(x) represents the n-th time derivative of the prop-
erty f , due to the dynamics, for the system in the state x. Mathematically,
f (n)(x) = (F(x) ·∂/∂x)nf(x) where the exponent n means that the operator F(x) ·∂/∂x
is applied n times.3

Let us consider the following (N×M)2 quantities whose physical dimension is inverse-
of-time:

Vjm,j′m′(x) = Mjm,j′m′hj′m′(x) (3.4)

where
hjm(x) = x−1

j rm(x) (3.5)

and M is the connectivity matrix with dimensionless elements

Mjm,j′m′ =
(
ν

(m′)
Pj′
− ν(m′)

Rj′

)(
δj,j′ − ν

(m)
Rj′

)
(3.6)

where δ denotes the Kronecker Delta function. Some algebraic steps[26] show that the
terms Vjm,j′m′(t) ≡ Vjm,j′m′(x(t)) form a closed set of new dynamical variables whose
evolution along a system’s trajectory is governed by the following system of ODEs:

V̇jm,j′m′ = −Vjm,j′m′
∑
j′′,m′′

Vj′m′,j′′m′′ (3.7)

3To see this, for the sake of notation let us introduce the operator
Ô(x) = F(x) · ∂/∂x =

∑N
i=1 Fi(x)∂/∂xi. The first-order time derivative of f(t) ≡ f(x(t))

is df(t)/dt ≡ f (1)(x(t)) =
∑N
i=1 [Fi(x)∂f(x)/∂xi]|x=x(t) = [Ô(x)f(x)]

∣∣∣
x=x(t)

where

it has been used dxi/dt = Fi(x). Note that f (1)(x), that is the first time deriva-
tive under the flow, is the so-called Lie derivative. The second-order derivative is then

d2f(t)/dt2 ≡ f (2)(x(t)) = df (1)(x(t))/dt = [Ô(x)f (1)(x)]
∣∣∣
x=x(t)

= [Ô(x)(Ô(x)f(x))]
∣∣∣
x=x(t)

≡

[Ô(x)2f(x)]
∣∣∣
x=x(t)

By iterating, dnf(t)/dtn ≡ f (n)(x(t)) = [Ô(x)nf(x)]
∣∣∣
x=x(t)

.
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The quadratic form of Eq. (3.7) is universal; that is, it is parameter-free and it underlies
any kinetic scheme regardless of the number of species and elementary reactions.4 All
system-dependent features (i.e., number of species and elementary reactions, stoichiom-
etry, values of the kinetic constants) are borne on the dimension of such a set of new
dynamical variables and on their mutual interrelations.

It was found that the key quantities in the localization of the SM are the following
point-dependent “rates”:

zjm(x) =
∑
j′m′

Vjm,j′m′(x) (3.8)

As shown in the Supporting Information of Ref. [26], these N ×M rates are mutually
linked by a number of linear interrelations so that only N of them are independent (the
same number of interrelations, but of non-linear type, links the hjm functions defined
in Eq. (3.5)). What emerged from the combined formal-heuristic inspection illustrated
in Ref. [14], is that the SM can be defined by operating with the point-dependent time

derivatives of n-th order, z
(n)
jm (x), as outlined below.

For the sake of brevity, let us introduce the cumulative index Q to label the species-
step pair from now on:

Q = (j,m) , Q = 1, 2, · · · , Qs , Qs = N ×M (3.9)

In Ref. [14] we formulated the conjecture that a trajectory x(t) enters an “Attractiveness
Region” (AR) of the concentration space, within which the high-order time-derivatives

z
(n)
Q (x(t)) tend to become multiples of one another and monotonically decay to zero

towards the equilibrium. The SM is then defined as the hyper-surface formed by the

points xSM within the AR such that z
(n)
Q (xSM) = 0 for all Q as n → ∞. On the EM,

one has the stronger and exact condition z
(n≥1)
Q (xEM) = 0. This provides a geometric

definition of SM as a global object in the concentration space. The implementation of
this definition allowed us to detect SMs in a series of simple case models.[14] However,
the practical application to produce points xSM poses two kinds of problem: 1) there
is actually no way to know in advance the dimensionality and the boundaries of the
AR within which the search has to be performed; 2) this definition of SM requires the

computation of derivatives z
(n)
Q (x) of very high order. While the quadratic structure

of the ODEs in Eq. (3.7) offers the possibility to easily compute high-order derivatives
via recursive formulae (see the Appendix A), the problem of circumscribing the AR still
remains the crucial one.

It should be noted that several model reduction criteria based on time derivatives
have been proposed in the past. However, those methods employ the (x-dependent) time
derivatives of the concentration vector x, while here we deal with derivatives of the rate

4Although it was derived by us in Ref. [26], the kind of transformation from x to the set of hjm(x)
in Eq. (3.5) was already known for decades and was even re-discovered independently by several authors
with minor variations. For example, it should be mentioned that is was applied by Brenig and Goriely in
the context of general transformations amongst equivalence classes of representation for continuous-time
systems,[30] by Fairén and Hernández-Bermejo[31, 32] and by Gouzé.[33]
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functions zQ(x); the connection between the two sets of derivatives is not trivial. In fact,

by combining Eqs. (3.4) - (3.8) it can be verified that zjm(x) =
∑

j′ wjm,j′(x)x
(1)
j′ (x)

with the point-dependent factors wjm,j′(x) = (δj,j′ − ν
(m)
Rj′

)x−1
j′ . By taking successive

time derivatives of both members, it can be seen that the n-th time derivative of a rate
zQ(x) is related, in a quite intricate way, to the components of x, x(1), x(2), ..., x(n+1).
In Appendix C we give only a brief and qualitative outline of the main approaches
aimed at localizing the SM by employing time derivatives of the state vector x. Formal
connections between our approach and these other strategies are still to be established
on formal grounds.

3.2.2 Proximity to the Slow Manifold

In Ref. [27] we have made some progress in localizing points which likely fall in the
neighborhood of the SM, rather than search for the true xSM points according to our
definition of SM given in Ref. [14]. The initial step was to turn to a new representation of
the state of the reactive system in another (N×M)2 abstract space. We have termed such
a representation as “hyper-spherical”, since the actual state is specified by a positive-
valued “radial” coordinate with physical dimension of inverse-of-time, and by a set of
dimensionless “angular” coordinates.

The analysis of the dynamics for these new state variables (which are clearly mutually
interrelated) led us to individuate tentative mathematical formulations to express the
conditions of “slowness” and “persistence of the slowness” when a trajectory is close to
the SM. Namely, argumentation in Ref. [27] led us to indicate that the following scalar
functions might serve as “guiding potentials” to drive the search for candidate points in
the proximity of the SM:

Zn(x) =

√
Q−1
s

∑
Q

z
(n)
Q (x)2 (3.10)

The division by Qs, which is immaterial in practice, is introduced only to interpret the

Zn(x) functions as the root-mean-square averages of the z
(n)
Q (x) derivatives. If a number

N irr of species are irreversibly produced (i.e., they do not appear as reactants in any
of the elementary steps), then the SM hypersurface is orthogonal to the concentration
subspace of the reactant species. In this situation, it is convenient to exploit such a
dimensional reduction a priori and operate with the “reduced” guiding potentials Zn(x)
computed by restricting the summation in Eq. (3.10) to the subset of (N − N irr) ×M
values Q = (j,m) with j referring to reactant species. Clearly, the zjm components
involved are functions only of the concentrations of these species.

In particular, the lowest-order functions, i.e., Z(x) ≡ Z0(x) and Z1(x), prove to be
sufficient to localize the proximity of the SM. As we have shown in Ref. [27] for a model
case (the Lindemann-Hinshelwood scheme,[1]) the landscapes of these functions display
characteristic “grooves” within which the condition of slowness (grooves of Z(x)) and of
its persistence (grooves of Z1(x)) are expected to be met. A two-step minimization route
along chosen paths (see below) was proposed to detect points for which both conditions
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are likely fulfilled. Starting from some randomly drawn point x0, a first minimization
of Z(x) leads to a point x1 into the “slowness region”, while a subsequent minimization
of Z1(x) starting from x1 leads to a point x2 (supposed to be close to x1) eventually
taken as a candidate point to the SM proximity. The procedure can be then continued to
higher orders of derivatives, that is, by considering the functions Zn(x) and performing
an (n+ 1)-step minimization. Continuation to higher derivatives, however, was found to
yield (at least in a series of preliminary tests) little improvement at the price of increasing
computational time.5

To perform the multi-step minimization, we opt for paths in which the concentration
of a species is fixed and the minimization of the functions is performed with respect to
the other components of the set x. The motivation of such a choice relies on the fact
that, without any constraint, the minimization process would probably produce only
points xEM on the EM, since Zn(xEM) = 0 for any order n. However, if the dimension
of the EM is smaller than N − 2, then the (N − 1)-dimensional hyperplanes (i.e., the
search sections at fixed concentration of one of the species) have a very low chance to
intersect the EM, even if a portion of it falls within the domain of inspection. This is the
situation which is likely encountered in the cases of interest where the SM, and hence
also the EM, have a dimension much lower than N . If the “active space” is reduced to
a number Ñ < N of concentrations of independent species (because of the enforcement
of linear constraints and/or neglection a priori of the species only produced, see the
next section), the considerations made above still hold regarding the search in the Ñ -
dimensional subspace. Finally, once several minimizations for different (fixed) values of
the species concentrations have been performed, the solutions are then merged.

In the Supporting Information of Ref. [27] we have shown that an early implementa-
tion of the basic two-step strategy (i.e., the use of only Z and Z1) is effective in localizing
the SM neighborhood for two model cases, namely the Lindemann-Hinshelwood scheme
and a highly non-linear scheme with elementary steps up to the fourth order. However,
a number of issues made clear that several improvements were required: 1) to assure the
quick localization of the candidate points within a given multidimensional box in the
concentration space, possibly under enforcement of linear constraints among the con-
centrations, 2) to remove “spurious solutions”,6 and 3) to establish a ranking for the
likelihood that, according to the chosen approach, the remaining points are believed to
be close to the SM. The constraints mentioned above may be the intrinsic stoichiometric
ones (i.e., those related to mass-conservation along the trajectories) or even arbitrary

5Interestingly, there seems to be some connection (albeit qualitative at this stage) between our two-
step minimization route and the SM construction via the variational trajectory-based method with
objective function Φ(x) = ||x(2)||2 (see the Appendix C for notation and details). As indicated by Lebiedz
and coworkers in Ref. [20], the choice of such basic objective function in the early implementations of
the strategy was motivated by the fact that low values of Φ(x) likely catch, as a whole, the slowness
of the dynamics on the SM and the attractiveness of the SM. Notably, both approaches are based on
constrained minimization routes, work with time derivatives of the velocity field at most of second order,
and employ objective functions which are supposed to catch the same features of the evolution on the
SM.

6As shown in Ref. [27], the strategy leads also to the localization of points far from the perceived SM.
This trait seems to be almost unavoidable depending on the features of the specific kinetic scheme.
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constraints which fix linear combinations of the species concentrations to given values
(see the ‘Examples’ section). These constraints allow one to focus on sections of the full
concentration space in order to simplify the visualization and the presentation of the
outcomes. The technical solutions that we propose to face the issue 1) are presented
in the ‘Algorithmic implementation’ section, along with the description of how they are
implemented in the software DRIMAK. Concerning the a posteriori check on the candi-
date points (issues 2) and 3) above) we opt to employ a screening based on the ILDM
approach mentioned in the Introduction[19] and implemented as described in Appendix
B. Such an analysis is performed by means of an independent program which reads the
output from DRIMAK and yields the filtered results. A DRIMAK user may choose to
employ a different motivated strategy to assess, case by case, the quality of the raw
outcome and make a sensible selection of the points produced.

3.3 Algorithmic implementation

3.3.1 Computational strategy as employed in DRIMAK C++ code

The central idea depicted in the ‘Proximity to the Slow Manifold’ subsection is imple-
mented in the C++ software DRIMAK, the pseudo-code of which is given in the box
‘Algorithm 2’. The algorithm employs the arrays of species concentrations specified
hereafter. First, let x be the array made of the complete set of concentrations of the N
species. The user is allowed to specify a number N con ≥ 0 of linear constraints among the
species concentrations. In this case, DRIMAK also requires the specification of an equal
number of “dependent” species (this automatically fixes the number N ind = N − N con

of “independent” species). The concentration array x is then split into the two subsets
xdep and xind corresponding to the dependent and independent species respectively. If
N con > 0, the full set x is retrieved from the independent concentrations xind by em-
ploying the procedure described in the Supporting information. Finally, it might be the
case that, among the N ind species, a fraction N irr of them does not enter as reactants in
any elementary step.7 The concentration array x̃ ⊆ xind, made of Ñ = N ind −N irr ele-
ments and obtained by removing the N irr species concentrations from xind, constitutes
the active space of the minimization procedure.

The user is also asked to input the borders (xind
min and xind

max) of the N ind-dimensional
region to be inspected for the SM search. The N -dimensional region I indicated in
‘Algorithm 2’ is then defined by xind

min < xind < xind
max for the independent species, along

with xdep > 0 for the dependent ones.
The total number of requested points is equally distributed among the Ñ species

whose concentrations span the active space of the search. For each one of these species,

7Although not explicitly reported in ‘Algorithm 2’, at the beginning of the algorithm, a check is made
to ascertain whether some species are irreversibly produced. As mentioned in the section ‘Proximity to
the Slow Manifold’, in this case the computation of the Zn≤nmax(x) functions is made only with the
“reduced set” of (N −N irr)×M components zjm where the label jm refers to the pair made of reactant
species and elementary step. In addition, these zjm components are functions only of the concentrations
of the reactant species.
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one at a time, the concentration is kept fixed while doing the multi-minimization of the
functions Zn(x(xind)) with respect to the concentrations of the remaining Ñ − 1 species
inside the user-defined hyper-rectangle embedded in the region I. In the current im-
plementation, the initial point xind

0 is drawn at random from the uniform distribution
on the logarithm of the concentrations; such a selection is made by employing the stan-
dard C++ function rand() to generate random numbers (one per coordinate) from the
uniform distribution between 0 and 1, and then performing a rescaling according to the
dimensions of the hyper-rectangle.

The minimization of the functions Zn(x) is performed by means of a FORTRAN77
routine written by Michael J. D. Powell.8 Such a routine, called LINCOA (“LINearly
Constrained Optimization Algorithm”) belongs to the category of the so-called trust
region methods.[34, 35] It allows one to efficiently find a local minimum of a function
without explicit computation of its derivatives. The routine requires the initial and the
final values of the trust region radius, ρbeg and ρend ≤ ρbeg respectively (from the name
of the parameters in the LINCOA code). The search for a minimum terminates when
the trust region radius, which can not increase during the iterations, reaches the lower
bound ρend. While ρbeg should be chosen to be of the order of one tenth of the greatest
expected change of variables at the beginning, a trial value of ρend should be the required
accuracy for the localization of the minimum point in the concentration space. However,
there is no direct connection between ρend and the actual accuracy of the produced
point of minimum. Remarkably, LINCOA also allows one to enforce a number of linear
constraints among the independent variables. We exploited such a feature in order to
confine the minimization outcomes within the user-specified domain (for more details see
the software documentation). After each call to LINCOA, a check is made to ensure that
the concentrations of the dependent species are non-negative. The usage of LINCOA
within DRIMAK requires that the dimensionality of the active space is greater than two,
i.e., the reaction mechanism needs to have at least three independent species that enter
some elementary step as reactants.

Finally, given the need to work with concentrations that span several orders of mag-
nitude, we decided to perform the minimization by using the base-ten logarithm of the
concentrations (in place of their actual values) as independent variables. Preliminary
calculations revealed that such a choice does not significantly affect the overall computa-
tion time, while it seems to improve the accuracy of the results for the example schemes
studied.

The likelihood of the produced points being close to the SM may eventually be
evaluated by resorting to the ILDM strategy as described in Appendix B. This allows
one to rank the points and, possibly, to exclude the highly “unreliable” ones.

The execution of DRIMAK requires a user-provided input file; for a detailed descrip-
tion of such a file and some examples see the software documentation. In brief, the input
file contains the chemical mechanism to be inspected (encoded in a specific format), the
numerical values of the kinetic constants and, possibly, a number of linear constraints

8Download link for LINCOA. http://mat.uc.pt/~zhang/software.html. Last view: 23th September
2016.

http://mat.uc.pt/~zhang/software.html
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to be applied to the concentrations of the species in order to explore sections of the
full concentration space; it suffices that the concentrations of at least three species (not
irreversibly formed) remain unconstrained.

DRIMAK is an embarrassingly parallel code which implements the MPI paradigm.
If the number of processes chosen by the user is greater than one, then the number
of points to be found is equally distributed among the fixed processes. It is worth to
pointing out that the multi-step minimization route may repeatedly fail in localizing
points. This may happen when the specific section of the concentration space does not
intersect the SM inside the selected domain I, or even if no portion of the SM falls
in such a domain. In these situations, giving priority to end the computation after a
maximum number of iterations, the total number of points produced could be lower than
the requested number. In the worst case, in which no points are detected, DRIMAK
throws an instance claiming there are no candidate points to the SM proximity and stops
its execution.

Algorithm 2 DRIMAK pseudo-code

Require: From input file: reaction mechanism (number N and list of species, number M
and stoichiometry of the elementary steps, values of the kinetic constants); possible
Ndep linear constraints and their specification; list of the dependent species; bound-
aries of the inspected N ind-dimensional subregion of I. Prompt input: maximum
number TOT POINTS of points to be produced; initial seed for random number
generation; maximum order nmax ≥ 1 for the Zn(x) functions; initial trust region
radius (ρbeg) and final trust region radius (ρend) for the minimization procedures.

Ensure:
1: for k = 1 to Ñ do
2: for pts = 1 to TOT POINTS/Ñ do
3: Draw a point xind

0 at random in the N ind-dimensional subdomain of I
4: for n = 0 to nmax do
5: Find x̃min = arg minx̃⊆xind{Zn(x(xind))} starting from the initial point xind

n

and under the constraint that the k-th component of x̃ remains fixed
6: Fill xind

n+1 with the x̃min values (the remaining N irr entries are taken from xind
n )

7: Retrieve the full point x = x(xind
n+1)

8: If (x /∈ I) goto 3
9: end for

10: Store the candidate point x
11: end for
12: end for
13: return Produced points
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3.3.2 Performance scaling versus N and M in the computation of Z(x)
and Z1(x)

Much of the computational time is spent on evaluating the functions Zn(x) during the
multi-step minimizations.9 For the basic case nmax = 1, we have faced the problem of
establishing how the times required to compute Z(x) and Z1(x), for a tested point x,
scale with the dimension of the system under inspection, that is with N (number of
species) and M (number of elementary steps), but regardless of the peculiarity of the
kinetic scheme.

For this purpose, we opted to generate randomly an ensemble of kinetic schemes,
with N ranging from 2 to 50 and M from N to 3N . Each scheme is created by drawing
at random, for each elementary step m, its molecularity Mm = 1, 2, 3. For each step,
reactant species and related stoichiometric coefficients are also generated randomly ac-

cording to
∑

j ν
(m)
Rj

= Mm. Then, the product species and the related coefficients are

also drawn at random under the constraint
∑

j ν
(m)
Pj

=Mm. The last constraint is im-
posed in order to preserve mass-conservation globally, that is, to confer some realism to
the randomly generated scheme. After generation of the elementary reactions, a check is
made to exclude possible “identities” and replicated reactions (in this case, new reactions
are generated and the check is repeated). In addition, a final check is made to assure
that all the generated schemes are distinct, that is, made by steps which are not mere
permutations. For each scheme, the values of the kinetic constants and the species con-
centrations were generated at random in the intervals from 10−4 to 104 and from 10−6

to 1 respectively (units of measure are immaterial in this context). Finally, for each
pair (N,M), 50 different kinetic schemes have been created. The computational times
needed for calculating Z and Z1 were stored, along with their averages made upon the
50 schemes. The code was compiled with no optimization flags (the “-O0” flag was used
under Linux environment) in order to have an optimization-independent output. These
tests (as well as the other calculations to produce the results presented in this paper)
were performed on a workstation whose characteristics are specified in the footnote 11.

First of all, the spread of computational times over the ensemble of 50 schemes per
each (N,M) pair, was found to reach at most 30% of the average time; thus, being
interested only in the scaling of the order of magnitude of the computational time, we
shall focus on the average values. The results are presented in Figure 3.1. The average
times for computing Z and Z1 are shown with blue marks. It turned out that the
following function

τα(N,M) = α1 + α2N + α3M + α4N
2 + α5M

2 + α6NM (3.11)

can fit adequately the average computational times of Z and Z1. In both cases, the

9We should stress that the exploitation of the sparsity of the connectivity matrix M is crucial to the
reduction of the computational times of the functions z

(n)
Q required in calculations of Zn (see Appendix

A). We have also tested the effectiveness of GPU (Graphic Processor Units) programming to speed up the
matrix-vector operations. Preliminary checks have shown that a negligible gain is obtained; however, it
will be worthwhile to continue the inspection of GPU programming, especially to develop kernels for the
evaluation of the hQ functions which requires the computation of powers of the species concentrations.
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array α was obtained by minimizing the objective function

Ψ(α) =

√√√√∑
N,M

(
τα(N,M)− τ(N,M)

τ(N,M)

)2

(3.12)

where τ(N,M) is the average time actually required for the pair (N,M). The inter-
polating surfaces are shown in light-grey and the best sets of parameters are given in
the figure caption. In the figure we also report the average computational times for the
models of hydrogen combustion, as illustrated in the next section. These values are in
good agreement with Eq. (3.11). This is particularly significant for the extended hy-
drogen combustion model (Scheme B in the following) which falls outside the explored
range species/steps used to derive the parametric expression in Eq. (3.11). This means
that such an equation may be used to make predictions about the computational time
needed for the calculation of Z and Z1 on different schemes.

Furthermore, by repeating the same tests on different computers operating with dif-
ferent processors (but of the same typology of the reference one indicated in footnote
11) and clock frequencies, we noted that the offset α1 depends on the specific machine,
while the coefficients from α2 to α6 roughly scale with the inverse of the clock fre-
quency. Thus, by taking into account the fact that the clock frequency here was 1.80
GHz, from Eq. (3.11) one could estimate the computational time of Z(x) and Z1(x) as
τ(N,M) ' τ0 + [τα×1.80/f (N,M)− τα×1.80/f (N0,M0))] where τ0 stands for the compu-
tational time required for a single low-dimension test mechanism with N0 species and
M0 elementary steps, and f is the clock frequency in GHz of the specific computer (the
machine-dependent offset cancels).

Figure 3.1: a) Average time for the computation of Z as function of N and M . Blue
marks are the calculated points whilst the surface is obtained by interpolating these
points with the expression of τα(N,M) in Eq. (3.11) (fit parameters: α1 = 4.24 · 10−7 s,
α2 = 1.72 · 10−7 s, α3 = −3.48 · 10−7 s, α4 = −1.28 · 10−8 s, α5 = 4.89 · 10−8 s,
α6 = 6.98 · 10−8 s). b) The same as in panel a), here for the computation of Z1 (fit
parameters α1 = 1.02 ·10−6 s, α2 = 3.26 ·10−7 s, α3 = −7.44 ·10−7 s, α4 = −2.44 ·10−8 s,
α5 = 9.79 ·10−8 s, α6 = 1.11 ·10−7 s). Large red marks correspond to the computational
times for the two models of hydrogen combustion considered in this study.
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3.4 Examples

In this section we present the results of the application of DRIMAK on two kinetic models
of hydrogen combustion. The assumptions of a well-stirred medium and isothermal
conditions are clearly unrealistic. However, our purpose is only to test the effectiveness
of DRIMAK regardless of the realism of the specific example. The first model, Scheme A
in the following, is a basic scheme with 6 species and 12 elementary reactions;[28] such a
scheme is often taken as a benchmark in studies regarding the simplification of chemical
kinetics. The second model, Scheme B, is a much more elaborate mechanism[29] which
features 8 species and 21 reversible elementary steps, two pairs of which are actually the
same reactions with different rate constants.

As detailed below, some constraints are applied to confine the reacting systems (both
the trajectories and the candidate points produced by DRIMAK) over sections of the
full 6-dimensional or 8-dimensional concentration spaces.

3.4.1 Basic scheme of hydrogen combustion

The basic scheme of hydrogen combustion is reported below:

H2 � 2H

O2 � 2O

H2O � H + OH

H2 + O � H + OH

O2 + H � O + OH

H2 + O � H2O

k1 = 2, k−1 = 216

k2 = 1, k−2 = 337.5

k3 = 1, k−3 = 1400

k4 = 1000, k−4 = 10800

k5 = 1000, k−5 = 33750

k6 = 100, k−6 = 0.7714

(Scheme A)

It is implicit that the time variable and the volumetric concentrations are expressed
in some units of measure, here immaterial, which should be fixed by comparing the
progression rate of such a fictional reactive system with experimental observations (see
for example Ref. [28]).

Two linear constraints are applied, namely

2[H2] + 2[H2O] + [H] + [OH] = 2

2[O2] + [H2O] + [O] + [OH] = 1
(3.13)

By imposing these constraints one fixes the total concentrations of hydrogen atoms
and of oxygen atoms which, in addition, will remain in a stoichiometric ratio of 2:1.
Correspondingly, the number of independent species concentrations reduces to four. As
dependent species we chose H2O and O2. In such a 4-dimensional section of the full space,
the SM appears to be 1-dimensional, while the EM reduces to a point at concentrations
[H2O]eq = 0.7, [H2]eq = 0.27, [H]eq = 0.05, [O2]eq = 0.135, [O]eq = 0.02, [OH]eq = 0.01.
Furthermore, from previous studies,[14] it is also known that such a SM is embedded in
a 2-dimensional surface which is approached by the trajectories before they reach the
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proximity of the SM itself. This surface can be “glimpsed” in Figure 3.2 by looking at
the behaviour of the ensemble of trajectories.

The search for candidate points to the SM proximity is performed within the do-
main10

5 · 10−3 < [H2] < 1

10−3 < [H] < 9 · 10−2

2.5 · 10−3 < [O] < 9 · 10−2

5 · 10−4 < [OH] < 9 · 10−2

[H2O] > 0

[O2] > 0

The results of the calculation are shown in figures 3.2 and 3.3 where the produced
points are displayed with blue dots. The production of 2000 candidate points by DRI-
MAK requested roughly 20 seconds on our workstation.11

The main outcome is that the proximity of the perceived 1-dimensional SM is suc-
cessfully localized by the software, but a non-negligible amount of “spurious” solutions
is also produced. It might be the case that such points belong to the 2-dimensional sur-
face which embeds the SM. Indeed, trajectories which start from these points are found
to remain within the thin region which encloses the majority of the spurious solutions.
Further investigations are needed to shed light on such a phenomenology.

The employment of the ILDM-based strategy as described in Appendix B finally
yields quite good results; the 1-dimensional SM is in fact caught efficiently while almost
all the unlikely solutions are removed. It is worth stressing that this step also requires low
computational cost; the “filtering” of the 2000 candidate points produced by DRIMAK
required only a few seconds on our workstation. The points which passed the ILDM
ranking-plus-screening, totalling 734 points, are shown with larger red marks. With
reference to the parameters reported in Appendix B, the ranking of the solutions has
been done by employing εILDM = 0.5, followed by deletion of points if η < 10. These are
obviously subjective choices and the application of different parameters would modify
the outcome. Nonetheless this example shows that, with some caution and insight case
by case, it is possible to “filter” the results in a sensible way.

10The initial trust region radius was fixed to 10−1, while ρend was set to 10−10.
11Computations were performed on a workstation with an Intel(R) Xeon(R) CPU E5-2603 v2 @ 1.80

GHz and 32 GB of RAM.
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Figure 3.2: Projection on the subspace of the radical species for the basic hydrogen
combustion mechanism, Scheme A. Blue dots are 2000 candidate points produced by
DRIMAK and the larger red marks are the “filtered” results according to the ILDM-
based strategy. The large green circle corresponds to the equilibrium point.
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Figure 3.3: Two dimensional projections for the basic hydrogen combustion mechanism,
Scheme A. Blue dots are 2000 candidate points produced by DRIMAK and the larger
red marks are the “filtered” results according to the ILDM-based strategy. The large
green circle corresponds to the equilibrium point.
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3.4.2 Extended scheme of hydrogen combustion

The extended kinetic model of hydrogen combustion[29] is reported below. In this case,
volumetric concentrations and time variables are expressed in units mol/L and sec.,
respectively. For the reference temperature, we chose 1000 K. The forward kinetic con-
stants at this temperature were obtained using data from Ref. [29] while the backward
constants derive from microscopic reversibility (see the Supporting information for de-
tails and actual values of the kinetic constants).

1) H + O2 � O + OH

2) O + H2 � H + OH

3) H2 + OH � H2O + H

4) O + H2O � 2OH

5) H2 + N2 � 2H + N2

6) 2O + N2 � O2 + N2

7) O + H + N2 � OH + N2

8) H + OH + N2 � H2O + N2

9) H + O2 + N2 � HO2 + N2

10) HO2 + H � H2 + O2

11) HO2 + H � 2OH

12) HO2 + O � OH + O2

13) HO2 + OH � H2O + O2

14) 2HO2 � H2O2 + O2 (duplicated)

15) H2O2 + N2 � 2OH + N2

16) H2O2 + H � H2O + OH

17) H2O2 + H � H2 + HO2

18) H2O2 + O � OH + HO2

19) H2O2 + OH � H2O + HO2 (duplicated)

(Scheme B)
Two linear constraints are applied, as in Scheme A, to the total concentrations of

hydrogen and oxygen atoms in the system:

[H] + [OH] + 2[H2] + 2[H2O] + [HO2] + 2[H2O2] = 0.09 mol/L

[O] + [OH] + 2[O2] + [H2O] + 2[HO2] + 2[H2O2] = 0.045 mol/L
(3.14)

Accordingly, the concentrations of 6 species constitute the independent variables; as
dependent variables, here we opt to take the concentrations of the species H2O2 and H2O.
The molar concentration of the buffer species N2 was set to 0.2025 mol/L. Similarly to
Scheme A, under the mass constraints, a 1-dimensional SM emerges and the EM reduces
to a single point.

The search for candidate points to the SM proximity has been conducted within
the following domain: 10−9 < [H] < 10−2, 10−12 < [O] < 10−2, 10−9 < [OH] < 10−2,
5 · 10−8 < [H2] < 10−2, 5 · 10−8 < [O2] < 10−2, 10−13 < [HO2] < 10−2, [H2O] > 0,
[H2O2] > 0 (all values are in mol/L).12 We like to stress the remarkable extension of
such a domain, whose shorter dimension spans almost six orders of magnitude, while the
larger one spans eleven orders of magnitude.

The figures 3.4 and 3.5 show one three-dimensional and three two-dimensional pro-
jections of the whole concentration space.

12In this case the initial trust region was set to 10−1, while ρend was set to 10−2. Lower values assigned
to these parameters are shown to lead, for this scheme, to numerical problems causing DRIMAK to stop
its execution.



62 CHAPTER 3. APPROXIMATE SLOW MANIFOLD LOCALIZATION

Figure 3.4: Three dimensional subspace of the three main species H2, O2 and H2O of
Scheme B. Blue dots are 2000 candidates points produced by DRIMAK and the larger red
marks are the “filtered” results according to the ILDM-based strategy. Concentrations
are expressed in mol/L.

Figure 3.5: Two dimensional projections for the main species of Scheme B. Blue dots are
2000 candidate points produced by DRIMAK and the larger red marks are the “filtered”
results according to the ILDM-based strategy. Concentrations are expressed in mol/L.
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Such projections refer to the three main species involved in the reaction, namely H2, O2

and H2O. Because of the relatively high complexity of this scheme, we chose to present
only the plots referring to these species. The total number of candidate points produced
by the software is 2000, and it took roughly 35 seconds to complete the execution.
The ILDM-based “filtering” strategy retains very few points, in fact only 9 of the 2000
points produced, but it is worth noting that they appear to be among the ones closest
to the perceived SM. The ILDM ranking/screening of the outcomes has been done with
εILDM = 0.5 (as for Scheme A), while η is just required to be greater than 1. The latter
condition is milder than that applied to remove spurious solutions for Scheme A, but
anyway consistent with the idea that the velocity vector should have the main projection
on the lower set of eigenvectors (the “slow” subset) of the local kinetic matrix, as outlined
in Appendix B. Once again, it must be stressed that such choices are (to some extent)
subjective, but nonetheless necessary in order to remove spurious solutions. At any
rate, even taking into account the “unfiltered” points, the results could be considered
satisfactory for the three important species; indeed there is an evident accumulation of
points just in the proximity of the perceived SM.

3.5 Conclusions

In this paper we have presented an algorithm developed by us for the production of
candidate points to be in the proximity of the slow manifold in the species concentration
space. The approach is based on the theoretical framework previously derived by us and
presented in detail elsewhere.[14, 26, 27] We have implemented the method into the code
DRIMAK written in C++ with exploitation of the MPI paradigm.

We have tested the software on two model schemes for hydrogen combustion, obtain-
ing 2000 candidate points and then “filtering” them by using a strategy based on the
ILDM method.[19] For both schemes here presented, the software was able to produce
candidate points for the SM proximity in a very effective way. By considering that the
inspected regions span several order of magnitudes in the species concentrations (and,
most importantly, that such a huge extension of the research domain in logarithmic scale
does not affect significantly the performance for the studied models), these achievements
seem to be even more valuable. This means that the software can be potentially applied
to systems where the a priori knowledge on the existence and localization of slow man-
ifolds is limited. Furthermore, the computational performance shown in this study (less
than ten chemical species, few tens of elementary steps, tens of seconds on a standard
computer to produce thousands of candidate points to the SM neighborhood) discloses
a promising scenario for the application of DRIMAK to more complex mechanisms.

We like to stress again the importance of a “filtering” procedure in a post-production
ranking and screening of the DRIMAK outcomes. A sound procedure not only permits
one to neglect evidently spurious solutions, but it would also provide a measure (through
the ranking of the points) of the proximity to the target slow manifold. The ILDMs-
based criterion employed here proved to be effective (although also a large number of
evident “good points” are removed) and to require a low computational cost, at least for
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the present examples. On the other hand, more effective routes for the post-production
selection may be developed and a DRIMAK user even has the freedom to devise a
personal strategy to tackle the problem.

Finally, we must underline the fact that our algorithm does not compete with other
methods to construct the slow manifolds. Rather, our strategy is aimed at providing
“likely good points” from which other methods (possibly of heavier computational cost)
could start the localization of the SM. In this sense, ours and other methodologies are
complementary and their synergy could be very useful especially for high-dimensional
kinetic schemes.

Appendix A: Recursive formulae for the time derivatives
z

(n)
Q

The time evolution of the terms hQ(t) = hQ(x(t)) defined in Eq. (3.5) is specified by[26]

ḣQ = −hQ
∑
Q′

MQ,Q′hQ′ (A1)

This is indeed the basic equation which yields Eq. (3.7) once VQ,Q′(t) = MQ,Q′hQ′(t) is
considered. By deriving n times both members (using the rule of multiple derivative of
a product of functions), the following recursive relation is obtained:

h
(n+1)
Q (x) = −

∑
Q′

MQ,Q′

n∑
m=0

(
n

m

)
h

(m)
Q (x)h

(n−m)
Q′ (x) ,

(
n

m

)
=

n!

m!(n−m)!
(A2)

Such a relation allows one to get the (n + 1)-th derivatives at the specific point once
all derivatives of lower order have been determined for all Q starting from the set

h
(0)
Q (x) ≡ hQ(x). Then, from Eq. (3.8) it follows

z
(n)
Q (x) =

∑
Q′

MQ,Q′ h
(n)
Q′ (x) (A3)

for any order n ≥ 0.

Appendix B: ILDMs construction

Let us first introduce the matrix K(x) = −J(x) where J(x) is the point-dependent Jaco-
bian of the velocity field F(x). In what follows, the eigenspace of K(x) will play an impor-
tant role. The eigenspace is determined through the solution of K(x)W(x) = W(x)Λ(x)
with respect to the matrix W(x), whose columns are the right-eigenvectors of K(x), and
to the diagonal matrix Λ(x) whose real or complex (but pair-conjugated) entries are the
associated eigenvalues. The m-th eigenvalue and m-th eigenvector are denoted as λm(x)
and wm(x) respectively. Finally, let the eigenvalues (and the corresponding eigenvectors)
be listed according to the ascending order of their real parts, λrm(x).
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Let xc(t) be a reference trajectory, and x(t) a trajectory close to it; if mass-con-
servation constraints are present, we also require that xc(t) and x(t) correspond to the
same mass-conservation constants. The displacement vector is δx(t) = x(t) − xc(t). A
reference trajectory is considered to lie on an ILDM if the trajectories in its neighborhood
rapidly converge to it. Namely, for any choice of δx(0), a trajectory on an ILDM is such
that, in a time window 0 ≤ t ≤ ∆t with ∆t sufficiently small, δx(t) evolves (in the
sense of rotation and length’s variation) in the way that the point x(∆t) falls almost on
the reference trajectory and it is proximal to the point xc(∆t). Let us elaborate such a
picture.

For displacements that are small enough, the evolution of δx(t) can be described
by dδx(t)/dt ' −K(xc(t))δx(t). Then consider a sufficiently small ∆t, such that for
0 ≤ t ≤ ∆t it is likely to assume that 1) K(xc(t)) ' K(xc(0)) is almost constant along
the reference trajectory, and 2) the displacement δx(t) remains small. Under the ful-
fillment of conditions 1) and 2), the approximate evolution equation for δx(t) remains
accurate and its integration is explicit: δx(∆t) '

∑
m cm(0)e−λm(xc(0))∆t wm(xc(0)),

where the coefficients cm(0) are the components of the chosen initial δx(0) on the
(non-orthogonal) eigenvectors. The ILDM assumption corresponds to having δx(∆t)
essentially collinear to the velocity vector F(xc(∆t)) ' F(xc(0)), where it is as-
sumed the smoothness of the velocity variation along the reference trajectory. It
follows that

∑
m cm(0)e−λm(xc(0))∆t wm(xc(0)) ∝ F(xc(0)). By dropping the sub-

script “c” for the reference trajectory, a point x is considered to lie on an ILDM if
F(x) ' κ

∑
m cm(0)e−λm(x)∆t wm(x), with κ a proportionality factor. Now suppose

that the eigenvalues can be partitioned into two subsets, one corresponding to the “low”
eigenvalues labeled by the index ml, and one to the “high” eigenvalues labeled by the
index mh. The separation between the two sets is established by the presence of an
eigenvalue λm∗(x) (or by a group of eigenvalues with equal real part as discussed below)
such that

λr1(x) ≤ · · · ≤ λrm∗−2(x) ≤ λrm∗−1(x) ≤ λrm∗(x) �
λrm∗+1(x) ≤ λrm∗+2(x) ≤ · · · ≤ λrN (x) (3.15)

All eigenvalues with ml ≤ m∗ form the “low” set, while the eigenvalues with mh > m∗

form the “high” set. Such a sequence of inequalities may be converted, depending on
the time-interval ∆t, into inequalities between the exponential factors which enter the
summation given above: if ∆t is such that e−λ

r
m∗ (x)∆t � e−λ

r
m∗+1

(x)∆t, then the “high”
terms in the summation are negligible and F(x) has a relevant component only on the
“low” subspace (here it is assumed that the corresponding cml(0) are not null).

In summary, the conditions for x belonging to an ILDM are: a) existence of a spectral
gap in the real parts of the eigenvalues of K(x), and b) if a) is fulfilled, the components
of the velocity vector F(x) on the “high” subspace must be negligible with respect to
that on the “low” subspace.

Concerning the leading condition a), the possible gap is detected as follows. By
taking into account the fact that there may exist degeneracies on the real parts of the
eigenvalues, let us collect the degenerate eigenvalues into groups labeled by the index
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i = 1, 2, . . . . The notation λ(i)(x) here below stands for the real part of the degenerate
eigenvalues that belong to the i-th group (hence λ(1) < λ(2) < . . . ). Let us now consider

a triad of consecutive groups, and the associated exponential factors pi−1 = e−λ
(i−1)(x)∆t,

pi = e−λ
(i)(x)∆t and pi+1 = e−λ

(i+1)(x)∆t. We say that a gap exists between the groups i
and (i+ 1) if pi+1/pi � pi/pi−1. This is equivalent to stating that while the exponential
factors associated to the group i still have a relevant weight if compared to those of the
group (i − 1), the exponential factors of the group (i + 1) (and also all higher factors
taken as a whole) are negligible with respect to those of the i-th group. By introducing
the parameter

εi(x) = 2
λ(i)(x)− λ(i−1)(x)

λ(i+1)(x)− λ(i−1)(x)
for i ≥ 2 (3.16)

the inequality given above can be expressed as e(εi(x)−1)[λ(i+1)(x)−λ(i−1)(x)]∆t � 1. Rec-
ognizing that λ(i+1)(x) − λ(i−1)(x) > 0, a gap between the groups i and (i + 1) exists
if εi(x)� 1. The fulfillment of condition a) hence corresponds to finding the (possible)
lowest group i∗ such that

εi∗(x) ≤ εILDM � 1 (3.17)

where the threshold value εILDM has to be, unfortunately, subjectively chosen. If such
a group is found, then the “low” set corresponds to all eigenvalues/eigenvectors of the
groups from 1 to i∗ (the “high” set is then defined by the eigenvalues/eigenvectors of the
groups starting from i∗ + 1). If none of the εi(x) fulfill the condition in Eq. (3.17), then
the “low” set is constituted, by default, by the eigenvalues/eigenvectors of the group 1.

Concerning the condition b), the components of F(x) on the high and low sets are
given by

Fl(h)(x) =
∑
ml(h)

[W(x)−1F(x)]ml(h)
wml(h)

(x) , F(x) = Fl(x) + Fh(x) (3.18)

The fulfillment of condition b) is assessed by computing the following ratio between the
Euclidean norms:

η(x) =
||Fl(x)||
||Fh(x)||

(3.19)

The points which pass the check of condition a) are then ranked according to the magni-
tude of η(x), which should be greater than one to be consistent with the ILDM picture:
as η(x) is larger, the likelihood of the point x belonging to the SM proximity increases.

Note that the ILDM defined above is nothing but a locally attracting low-dimensional
manifold without the specification “slow”; indeed it may even be a “fast” manifold in
the presence of “low” eigenvalues with a negative and large real part. The characteristic
“slow” is attributed by checking if the following condition holds:

slow ILDM if |λ(i∗)(x)| < |λ(i∗+1)(x)| (3.20)

This condition is equivalent to saying that the dominant exponential factors of the “low”
set evolve slower, regardless of the fact that they decrease or increase, than each of the
terms of the “high” set. If this condition is not fulfilled, we attribute the characteristic
“fast” to the ILDM.
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Appendix C: Mention of other strategies employing time
derivatives to approximate the Slow Manifold

In what follows, x(n) will denote the n-th time derivative of the state vector x. Even
if not indicated for sake of notation, it should be kept in mind that the components of
x(n) depend on x. Although we shall refer to x as the concentration vector, we remark
that all the methodologies mentioned below are applicable to the construction of the
SM, even for dynamical systems different from mass-action based chemical kinetics.

We begin this brief overview by mentioning the zero-derivative principle (ZDP) of
Gear et al.[36] By splitting the vector x in xr and xi, where xr stands for a subset of “rel-
evant” (or observable) variables adopted to parametrize the SM, the ZDP approximation
at the m-th order consists of searching for points in the concentration space where the

(m+1)-th time derivatives of the remaining components are all null, that is x
(m+1)
i = 0.

Such a criterion relies on the assumption that some suitable change of variables would
convert the original system of ODEs into a singular perturbation format. The ZDP at
order m is then equivalent to find the manifold where all the first (m+ 1) terms of the
“inner solution” (i.e., the fast-evolving component of the singular perturbation solution)
are identically null. Remarkably, as m increases, the manifolds generated by the ZDP
tend to the SM in the sense of Fenichel’s definition (see ‘Theorem 2.1’ in Ref. [37])

Another approach is the flow curvature method (FCM) of Ginoux et al.[38] where a
slow (N − 1)-dimensional manifold is identified by the points of null “flow curvature” of
the trajectories in the N -dimensional space. In our notation, the constitutive equation
of such a manifold results in det(C(x)) = 0, where C(x) is the N×N matrix whose n-th
column is the vector of time derivatives x(n) (compare with the original ‘Proposition
2.1’ in Ref. [38] and with the formulation in Ref. [13]). The iteration of the FCM by re-
placing the flow curvature with its successive time derivatives yields further dimensional
reductions towards the SM.

Time derivatives of x have also been employed to build functionals for the localization
of the SM via the trajectory-based variational principles of Lebiedz and coworkers.[12,
13, 20] A functional is constructed by taking the line integral of a suitably chosen func-
tion Φ(x) (the “objective function”) along a trial trajectory piece of fixed time duration.
A subset of relevant variables xr, as stated above, is adopted to parametrize the SM. At
fixed xr, the target is to “reconstruct” the whole components of a candidate point to
the SM. To this aim, the functional is minimized with respect to the trajectory piece,
possibly enforcing conservation constraints, under the condition that for an intermedi-
ate point on the trajectory (which will be the produced point) the relevant variables
xr take the fixed values. Among the choices of Φ(x), the form Φ(x) = ||x(n)||2 has
been recently proposed;[13] here, || · || stands for the Euclidean norm of the vector at
argument. The functional of order n = 2 was employed in the early implementations
of the method.[12, 20] In such a case, the objective function takes the explicit form
Φ(x) = ||x(2)||2 = ||J(x)F(x)||2 where J(x) is the Jacobian matrix of the velocity field
F(x). As indicated in Ref. [20], the motivation underlying the choice of such an objec-
tive function is that Φ(x) ≤ ||J(x)|| ||F(x)|| where ||J(x)|| stands for the 2-norm of the



68 CHAPTER 3. APPROXIMATE SLOW MANIFOLD LOCALIZATION

Jacobian matrix. Since low values of ||J(x)|| can be intuitively associated with “attrac-
tiveness of the SM” and low values of ||F(x)|| can be associated with the “slowness” of
the dynamics, the minimization of the functional should catch both these relevant fea-
tures of the SM. The direct minimization of the functions ||x(n)||, with respect to xi at
fixed xr, was also proposed by Girimaji[39] as a likely strategy to obtain approximations
of the SM.

Supporting information

Constants of Scheme B

For convenience, the mechanism “Scheme B” of hydrogen combustion is reported here
below:

1) H + O2 � O + OH

2) O + H2 � H + OH

3) H2 + OH � H2O + H

4) O + H2O � 2OH

5) H2 + N2 � 2H + N2

6) 2O + N2 � O2 + N2

7) O + H + N2 � OH + N2

8) H + OH + N2 � H2O + N2

9) H + O2 + N2 � HO2 + N2

10) HO2 + H � H2 + O2

11) HO2 + H � 2OH

12) HO2 + O � OH + O2

13) HO2 + OH � H2O + O2

14) 2HO2 � H2O2 + O2 (duplicated)

15) H2O2 + N2 � 2OH + N2

16) H2O2 + H � H2O + OH

17) H2O2 + H � H2 + HO2

18) H2O2 + O � OH + HO2

19) H2O2 + OH � H2O + HO2 (duplicated)

The kinetic constants at T = 1000 K, for the forward and backward steps of each
reaction, were estimated as follows.

As stated in the main text, the forward constants were derived directly from the
data in Ref. [29]. Specifically, the forward constant kf for a reaction unaffected by the
pressure (i.e., a reaction with null variation of number of molecules) were obtained using

kf = ATne−
Ea
RT where all the parameters are tabulated in the reference. The forward

constants for reactions with non-negligible pressure effects were obtained from Troe’s
equation,[40]

kf = k∞

(
Pr

1 + Pr

)
F, Pr =

k0

k∞
[N2] (3.21)

where the reaction-dependent parameters F , k0, k∞ (see Ref. [40] for their physical
meaning) can be found in Ref. [29].

The backward kinetic constants for each reaction, kb, were obtained by exploiting
the microscopic reversibility:

kb =
kf
Keq

(3.22)
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where Keq is the equilibrium constant for the elementary reaction under consideration;
Keq is obtained from the thermodynamic relation

Keq = e−
∆G0(T )
RT (3.23)

where ∆G0(T ) is the temperature-dependent standard free energy of the specific reac-
tion. For each species, the values of the standard entropy at 298.15 K, and of the standard
specific heat at constant pressure, c0

p(T ), at 300, 500, 800 and 1000 K, were also found in
Ref. [29]. The value of ∆G0(1000K) for each reaction were estimated by integrating the
differential equations d∆G0(T )/dT = −∆S0(T ) along with d∆S0(T )/dT = T−1∆c0

p(T ),
where ∆S0(T ) and ∆c0

p(T ) stand for the reaction variations of the given quantities;
cp(T ) of each species was estimated by making a linear interpolation within each of the
temperature intervals given above.

Finally, the buffer species N2 has been deleted by the scheme by incorporating its
effect into effective constants obtained by multiplying the kf and kb (of the reactions
where N2 enters) by the fixed value of the N2 volumetric concentration chosen to be
0.2025 mol/L.

The complete list of kinetic constants for T = 1000 K used for the calculations
presented in the main text is given here below.

k1 = 4.92 · 107 L/(mol · s)
k−1 = 2.19 · 108 L/(mol · s)
k2 = 1.30 · 109 L/(mol · s)
k−2 = 4.02 · 106 L/(mol · s)
k3 = 9.0315 · 10−12 L/(mol · s)
k−3 = 3.94875 · 107 L/(mol · s)
k4 = 9.53775 · 108 L/(mol · s)
k−4 = 7.695 · 109 L/(mol · s)
k5 = 8.3835 · 104 s−1

k−5 = 1.1 · 1010 L/(mol · s)
k6 = 6.09 · 1010 L/(mol · s)
k−6 = 3.25 · 1010 s−1

k7 = 3.72 · 1010 L/(mol · s)
k−7 = 1.01 · 109 s−1

k8 = 2.95 · 108 L/(mol · s)
k−8 = 9.13275 · 10−5 s−1

k9 = 3.27 · 109 L/(mol · s)
k−9 = 8.82 · 108 s−1

k10 = 1.3 · 109 L/(mol · s)
k−10 = 109 L/(mol · s)
k11 = 4.72 · 109 L/(mol · s)

k−11 = 9.45 · 109 L/(mol · s)
k12 = 2.02 · 108 L/(mol · s)
k−12 = 3.27 · 106 L/(mol · s)
k13 = 1.48 · 109 L/(mol · s)
k−13 = 3.078 · 106 L/(mol · s)
k14 = 5.56875 · 10−13 L/(mol · s)
k−14 = 2.57175 · 10−9 L/(mol · s)
k15 = 5.67 · 10−11 s−1

k−15 = 9.65925 · 10−2 L/(mol · s)
k16 = 2.8 · 10−2 L/(mol · s)
k−16 = 2.74 · 101 L/(mol · s)
k17 = 7.63 · 10−2 L/(mol · s)
k−17 = 2.38 · 10−4 L/(mol · s)
k18 = 4.65 · 101 L/(mol · s)
k−18 = 1.36 · 101 L/(mol · s)
k19 = 7.776 · 10−1 L/(mol · s)
k−19 = 2.05 · 10−7 L/(mol · s)
k20 = 4.9 · 104 L/(mol · s)
k−20 = 6.62 · 104 L/(mol · s)
k21 = 1.39 · 102 L/(mol · s)
k−21 = 6.57 · 102 L/(mol · s)
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Enforcement of linear constraints among species concentrations

Given a number N con of linear constraints to be applied to the volumetric concentra-
tion vector x (of dimension N > N con), the problem consists in retrieving a number
Ndep = N con of dependent concentration variables (collected in the column-vector xdep)
given the N ind = N −Ndep independent concentration variables (collected in xind). The
column-vector x is therefore the union of xdep and xind (the components of the two
vectors xdep and xind can be arbitrarily located within x). Let us express the linear
constraints between concentrations through

Cx = m (3.24)

where C is a constant N ×Ndep matrix and m is a constant vector whose entries are the
specific values of the constraints. Note that all the possible mass-conservation constraints
of a chemical kinetics problem can be expressed using Eq. (3.24). For such particular
cases it holds also the stronger condition Cẋ = 0 along a trajectory.

In order to retrieve the vector xdep in terms of xind, let us introduce the index-vectors
u and v of dimensions Ndep and N ind respectively. The vector u collects the indexes of
the components of x that constitute xdep, while v collects the indexes of the x entries
that are also components of xind. For example, if the first two elements of the vector
xind are xk and xq, then v1 = k and v2 = q. Let us define the matrix A of dimension
Ndep ×Ndep and the matrix B of dimension Ndep ×N ind such that

Ai,j = Ci,uj

Bi,j = Ci,vj
(3.25)

The matrix A is always invertible for the cases of practical interest. By considering that
Eq. (3.24) can be rewritten as Axdep + Bxind = m, it follows

xdep = A−1
(
m−Bxind

)
(3.26)

Finally, the union of the arrays xdep and xind gives the full array x(xind), where the
argument serves to stress that the x components are obtained from the subset xind by
accounting for the linear constraints.
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Chapter 4

Recasting the mass-action rate
equations of open chemical
reaction networks into a universal
quadratic format

Note

This chapter is a re-edited version of the draft of a submitted work. The authors are Alessandro

Ceccato and Diego Frezzato.

Abstract

Recasting the rate equations of mass-action chemical kinetics into universal formats is a
potentially useful strategy to rationalize typical features that are observed in the space
of the species concentrations. For example, a remarkable feature is the appearance of
the so-called slow manifolds (subregions of the concentration space where the trajecto-
ries bundle), whose detection can be exploited to simplify the description of the slow
part of the kinetics via model reduction and to understand how the chemical network
approaches the stationary state. Here we focus on generally open chemical reaction
networks with continuous injection of species at constant rates, that is, the situation of
idealized biochemical networks and microreactors under well-mixing conditions and ex-
ternally controllable input of chemicals. We show that a unique format of pure quadratic
ordinary differential equations can be achieved, regardless of the nonlinearity of the ki-
netic scheme, by means of a suitable change and extension of the set of dynamical
variables. Then we outline some possible employments of such a format, with special
emphasis on a low-computational-cost strategy to localize the slow manifolds which are
indeed observed also for open systems.
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4.1 Introduction

The evolution of chemical reaction networks involving sufficiently large numbers of
molecules in well-stirred fluid media at fixed temperature and volume, is well described
by means of rate equations based on the mass-action law.[1] The mathematical structure
is represented by an autonomous system of polynomial ordinary differential equations
(ODEs) in which the dynamical variables are the volumetric concentrations of the chem-
ical species.

In a series of recent publications[2–5] we showed that the evolution law can be recast
into a system of pure quadratic ODEs regardless of the degree of non-linearity of the
original rate equations. Such a mathematical form can be obtained by defining an
extended set of new dynamical variables which are mutually interrelated so that the
backward transformation to retrieve the species concentrations can be performed. Such
a kind of “quadratization” strategy, also known as “embedding into a Lotka-Volterra
form”, was already known since decades and re-discovered by several authors with a
few variations; see for example refs. [6–10] and our contributions cited above. Recently,
we have even shown that a quadratization route is feasible also for other classes of
autonomous dynamical systems, including mechanical-like systems both dissipative and
conservative.[11]

In our opinion, there are several benefits for adopting this change of paradigm to
study the evolution of mass-action kinetics. At the computational level, as we shall
show later, the quadratic form might allow one to devise explicit integrators to generate
the system’s trajectories via propagation in the extended space, followed by backward
transformation. Even more importantly, instead of making a detailed inspection of any
possible kinetic scheme, one could focus on the unique quadratic form, and then see
how peculiar features that emerge at such a level are mirrored back (case by case) in
the concentration space for the specific reaction network. In this regard, in our past
works we have shown that the achievement of the quadratic form is the crucial step to
get parameter-free evolution laws that we called “canonical forms”. Among the various
findings, the canonical forms proved to be effective in characterizing the so-called “slow
manifolds” (hyper-surfaces in the concentration space in the neighborhood of which the
trajectories bundle in going toward the stationary state, as discussed later) and to unveil
hidden features such as the existence of attracting subspaces in the extended space of
the new dynamical variables.

To the best of our knowledge, in the chemical kinetics context, the quadratization
procedure is scarcely known and, up to now, it was confined to closed networks of
reactions. In this work we consider the general case of open systems, i.e., chemical
networks owing also zero-th order source processes for the injection of species at constant
rate. This may be the idealized situation of biochemical networks with continuous input
of matter from the environment and continuous formation of waste products, both in
in-vivo biological contexts or in microreactors under well-mixing conditions.[12–14]

The remainder of the paper is structured follows. First we shall show that the original
rate equations can be still quadratized also for open systems. Then we outline how the
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previous achievements, obtained for closed networks, are inherited in the present context
of open networks. In particular, we shall show that slow manifolds are present also for
this kind of networks, and that the efficient strategy devised by us in refs. [4, 5] can
be applied to the detection of such surfaces in the concentration space. An example
will be given for a simple kinetic scheme. Note that, for open systems, the guise of the
slow manifolds and the location of the stationary points are tunable, to some extent,
by acting on the source terms. Having at disposal a general tool to localize the slow
manifold might be useful to control the way in which a chemical network approaches the
steady state.

Finally we stress that although in this work we deal with chemical reaction networks,
the approach and the results hold in all generality for any dynamical system described
by polynomial ODEs for positive-valued variables. From this point of view, we feel that
the contents of this communication might be of interest for a broader audience than the
chemistry community.

4.2 Quadratization of the rate equations

Consider an open network of chemical reactions at fixed temperature and under the
applicability of the mass-action law.[1] Let N be the number of chemical species (labeled
by the index j) and M the number of elementary reactions (labeled by m). Then, let x
be the set of volumetric concentrations. The rate equation for the j-th species reads

dxj
dt

= Fj(x) + sj (4.1)

where Fj(x) is the rate in the absence of source processes, that is

Fj(x) =
∑
m

(
ν

(m)
Pj
− ν(m)

Rj

)
rm(x) (4.2)

in which ν
(m)
Rj

and ν
(m)
Pj

are the stoichiometric coefficients of the species j as reactant

and product in the reaction m respectively, and rm(x) is the rate of the m-th reaction
according to the mass-action law:

rm(x) = km
∏
i

x
ν

(m)
Ri
i (4.3)

where km is the kinetic constant of the reaction. Finally, the term sj ≥ 0 in Eq. (4.1) is
the injection rate of the species j due to some externally controlled source process. In
this study, we consider only the case of constant (time-independent) source rates.

Given an initial condition x(0), the integration of the above system of ODEs yields
the trajectory x(t). When source processes are active, the system may eventually reach a
stationary point x∞ due to the balancing of source-sink processes (here, a sink process is
a proper chemical reaction where the species is meant to be converted into some dummy
product), or it may blow up indefinitely under the continuous injection of matter. The
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interplay between the two situations depends on the topology of the network, on the
values of the kinetic constants and on the rates of the sources (see the example in the
following).

Note that, by construction, the positivity of the components of x(t) is preserved. To
see this, it suffices to prove that xj(t) cannot change sign for the generic j-th species.
When xj = 0, one has Fj(x)|xj=0 ≥ 0. In fact, the species j can be present in an elemen-
tary reaction among the reactants, so that the contribution of that reaction to Fj is null
(because rm(x)|xj=0 = 0); or it may enter only among the products so that the contribu-
tion to Fj would be non-negative. In addition, sj ≥ 0. As a whole, dxj(t)/dt|xj=0 ≥ 0,
which implies that the concentration of the j-th species cannot go below zero. Since this
holds for any species, the trajectory remains in the positive orthant.

For points confined in the positive orthant, let us now introduce the following point-
dependent quantities whose physical dimension is inverse-of-time:

hjm(x) =
rm(x)

xj
, Hj(x) =

sj
xj

(4.4)

The terms hjm are strictly positive, while the Hj are non-negative. By adopting these
quantities as dynamical variables that evolve along a trajectory, that is by setting
hjm(t) ≡ hjm(x(t)) and Hj(t) ≡ Hj(x(t)), the following equations are readily derived:

dhjm
dt

= −hjm
∑
j′,m′

Mjm,j′m′hj′m′ − hjm
∑
j′

(
δj,j′ − ν

(m)
Rj′

)
Hj′ (4.5)

and

dHj

dt
= −Hj

[
Hj +

∑
m

(
ν

(m)
Pj
− ν(m)

Rj

)
hjm

]
(4.6)

where Mjm,j′m′ are the elements of a NM ×NM connectivity matrix M characteristic
of the reaction network:

Mjm,j′m′ =
(
δj,j′ − ν

(m)
Rj′

)(
ν

(m′)
Pj′
− ν(m′)

Rj′

)
(4.7)

Eq. (4.5) can be obtained starting from ln hjm = ln km +
∑

j′(ν
(m)
Rj′
− δj,j′) lnxj′

(δ is the Kronecker delta function). The time derivative at both members yields

dhjm/dt = hjm
∑

j′(ν
(m)
Rj′
− δj,j′)x

−1
j′ dxj′/dt. By expressing dxj′/dt according to

Eqs. (4.1)-(4.2), and using the definitions in Eq. (4.4) together with the connectivity
matrix given in Eq. (4.7), one gets Eq. (4.5). For obtaining Eq. (4.6), consider the time
derivative of Eq. (4.4), i.e. dHj/dt = −sjx−2

j dxj/dt. Again, the final form is achieved
by using Eqs. (4.1)-(4.2) and the definitions in Eq. (4.4).

Equations (4.5) and (4.6) constitute an autonomous system of quadratic ODEs for
the coupled evolution of the hjm and Hj terms. Remarkably, such a quadratic format
underlies any mass-action kinetics regardless of the degree of non-linearity of the original
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rate equations. As a whole, the number of the new dynamical variables increases from
N to D = NM + N . However, in the presence of species without source terms, the
corresponding Hj are identically null and can be excluded a priori (so reducing the
dimensionality of the problem). Furthermore, it can be seen that the new variables are
mutually interrelated by non-linear constraints in the way that the number of degrees
of freedom remains equal to N .

By providing an initial condition at time-zero, that is the set of values
hjm(0) ≡ hjm(x(0)) and Hj(0) ≡ Hj(x(0)), the solution of Eqs. (4.5) and (4.6) yields a
trajectory in the extended space of the new variables. At any time, the physical state in
the concentration space can be retrieved by exploiting the mutual interrelations. To do
such a backward step, only the set of the hjm terms suffices, and the inversion formula
is

xi =
∏
j,m

(
hjm
km

)(U−1)i,j/M

(4.8)

where U is the N ×N matrix with elements

Uj,j′ = −δj,j′ +
1

M

∑
m

ν
(m)
Rj′

(4.9)

To derive such inversion formula, let us introduce the column vectors a and b with
components aj = lnxj and bj = M−1

∑
m ln(hjm/km). By taking the logarithm of hjm

defined in Eq. (4.4), with a few steps it follows that Ua = b where U is the matrix given
in Eq. (4.9). If detU 6= 0 one gets a = U−1b. Explicitly, ai =

∑
j (U−1)i,jbj . Taking

the exponential at both members of this expression yields Eq. (4.8). For linear kinetic
schemes, U is singular and this inversion route is not applicable. The invertibility of
U is thus ensured only for reaction networks having at least one non-linear elementary
reaction, which is indeed the non-trivial situation. Note also that if the sj were non-null
for all j, the physical state could be retrieved directly from the values of the Hj terms
(see Eq. (4.4)).

Eqs. (4.5) and (4.6) can be grouped into a compact structure by introducing the
D-dimensional column vector

h̃ =

[
h
H

]
(4.10)

along with the (NM)×N matrix A and the N × (NM) matrix B with elements

Ajm,j′ = δj,j′ − ν
(m)
Rj′

Bj,j′m′ = δj,j′
(
ν

(m′)
Pj′
− ν(m′)

Rj′

) (4.11)

With these positions, Eqs. (4.5)-(4.6) are combined into

dh̃Q
dt

= −h̃Q
∑
Q′

M̃QQ′ h̃Q′ (4.12)
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where Q = 1, 2, · · · , D is a cumulative index, and M̃QQ′ is the extended connectivity
matrix

M̃ =

[
M A
B I

]
(4.13)

with I the N ×N identity matrix.
We stress that the essential information to build the whole matrix M̃ is stored in

the set of the 2 × (NM) stoichiometric coefficients of the elementary reactions. The
elements of M̃ are thus highly interrelated. In particular, note that AB ≡M. Figure 4.1
highlights the blocks forming the matrix M̃.

Figure 4.1: Structure of the connectivity matrix M̃ for open chemical reaction networks
involving N species and M elementary reactions. For closed networks, such a matrix
reduces to the upper block M = AB. The elements of the matrices A and B are specified
in Eq. (4.11).

If sj = 0 for all j, then all Hj are identically null and Eq. (4.12) reduces to the set of
equations dhQ/dt = −hQ(Mh)Q already characterized in the previous works concerning
reaction networks without source terms.[2–5] Since Eq. (4.12) has exactly this structure,
all former findings are inherited in the present context of open systems.

4.3 Some applications of the quadratic format

In this section we outline the potential utility of the quadratic format of Eq. (4.12) in
order to: i) improve the efficiency of the time-propagators, ii) achieve further parameter-
free canonical forms of the evolution law, and iii) characterize the slow manifold feature
for open chemical networks.
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4.3.1 Time propagation

The penalty of enlarging the set of dynamical variables is balanced by the fact that
the degree of non-linearity of the new ODEs is fixed to pure second order regardless
of the non-linearity of the original rate equations. As pointed out in the following,
such a feature allows one to devise an explicit high-order time propagator and, most
importantly, might remove the possible stiffness of the original system of ODEs.

By denoting with h̃
(n)
Q (t) the n-th time derivative dnh̃Q(t)/dtn, the explicit forward

propagation formula of order nmax for the variables h̃Q is given by

h̃Q(t0 + ∆t) = h̃Q(t0) +

nmax∑
n=1

h̃
(n)
Q (t0)

(∆t)n

n!
+O

(
(∆t)nmax+1

)
(4.14)

where ∆t is the time step. At any desired time (not necessarily after each step), the
inversion route allows one to retrieve the values of the species concentrations. The deriva-
tives required in Eq. (4.14) could be computed explicitly by repeated time-differentiation
using Eq. (4.12); this yields

h̃
(n)
Q = (−1)n

∑
Q1,Q2,...,Qn

M̃QQ1

(
M̃QQ2 + M̃Q1Q2

)(
M̃QQ3 + M̃Q1Q3 + M̃Q2Q3

)
× · · ·

· · · ×
(
M̃QQn + M̃Q1Qn + · · ·+ M̃Qn−1Qn

)
× h̃Qh̃Q1 h̃Q2 · · · h̃Qn (4.15)

Whereas this form shows an interesting factorial-like structure of the coefficients in the
summation, it is not efficient at the computational level. By deriving n times both
members of Eq. (4.12) with respect to t, and using the rule of multiple derivative of a
product of functions, the following recursive relation (which is much more efficient at
the computational level) can be worked out:

h̃
(n+1)
Q = −

∑
Q′

M̃Q,Q′

n∑
m=0

(
n

m

)
h̃

(m)
Q h̃

(n−m)
Q′ , h̃

(0)
Q ≡ h̃Q (4.16)

where
(
n
m

)
is the binomial coefficient. The possibility of easily reaching very large orders

n allows one to enlarge the time-step ∆t in Eq. (4.14) or, equivalently, to have a more
stable propagation at a given ∆t.

Despite the simplicity and appealing of such high-order propagation route, its per-
formance is lower than that of implicit methods like the well-known VODE (Variable-
coefficient ODE solver).[15] On the other hand, it may be the case that although the
original ODEs constitute a stiff dynamical system (with respect to a certain criterion or
integration route), the quadratic form of Eq. (4.12) is a non-stiff problem. In such a case,
the removal of the stiffness would allow one to employ non-stiff solvers and, possibly, to
use even explicit propagators. This situation is met, for instance, for the model reaction
network illustrated in section 4.4.
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4.3.2 Parameter-free canonical forms

From Eq. (4.12), two parameter-free canonical forms of evolution law were derived and
characterized in previous works;[2–4] in what follows we outline the key concepts.

The first canonical form[2, 3] is the evolution law of a new set of D2 variables defined
as

VQ,Q′(t) = M̃Q,Q′ h̃Q′(t) (4.17)

Such variables may be positive-valued, negative-valued or identically null, and each of
them does not change sign during the evolution. The system of ODEs is again quadratic
and, directly from Eq. (4.12), it follows:

dVQ,Q′

dt
= −VQ,Q′

∑
Q′′

VQ′,Q′′ (4.18)

Notably, Eq. (4.18) has a simple representation in terms of evolution of a weighted and
directed graph in which the nodes correspond to the Q states (associated with species-
reaction pairs or with the indexes of the injected species) and the time-dependent links
are the variables VQ,Q′ . Eq. (4.18) shows that the rate of variation of the weight of the
connection VQ,Q′ is proportional to the weight itself and to the sum of the weight of the
connections between the arrival node Q′ and all nodes of the graph. The panel (a) of
Figure 4.2 gives a representation of such a kind of evolution.

The second canonical form[4] is the evolution law for the positive-valued norm S and
the set of variables ψJ defined as follows (J ≡ (Q,Q′) is just a cumulative index):

S =

√∑
Q,Q′

V 2
Q,Q′ , ψJ≡(Q,Q′) = VQ,Q′/S (4.19)

Since the set ψJ specifies a point in the D2-dimensional unit sphere, and S can be
interpreted as a radial variable in an abstract sense, we termed “hyper-spherical” such
a representation of the reactive system. By using Eq. (4.18), the following ODEs are
derived:[4]

dS

dt
= −SψTdiag(σ)ψ

dψJ
dt

= −
(
σJ −ψTdiag(σ)ψ

)
ψJ

(4.20)

in which ψ is the column-vector collecting the ψJ variables, and σ is the column-vector
with components σJ≡(Q,Q′) =

∑
Q′′ VQ′,Q′′ (note the degeneracy with respect to Q). In

abstract sense, the dynamics in such a hyper-spherical representation correspond to a
motion on the unit sphere’s surface (dynamics of ψ(t)) along with a sort of “breathing”
on the radial dimension (dynamics of S(t)). The panel (b) of Figure 4.2 offers a pictorial
rendering of such a representation.

Despite the further increase of the number of variables in passing from Eq. (4.12) to
Eqs. (4.18) or (4.19), and despite the difficulty of conferring a physical interpretation to
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Figure 4.2: Abstract representation of the two parameter-free canonical forms for the evo-
lution of mass-action chemical networks. Panel (a) depicts the evolution of the weighted-
oriented graph with D nodes (D = NM + N for open networks, D = NM for closed
networks) associated with the first canonical form in Eq. (4.18). Panel (b) refers to
the second canonical form in Eq. (4.19), which describes the evolution of the reactive
system in terms of dynamics in a D2-dimensional space: motion on the surface of a
D2-dimensional unit sphere along with motion on the radial dimension.

such abstract formulations of the evolution law for mass-action kinetics, the good prop-
erty of these canonical forms is that they are devoid of any system-dependent parameter:
all system’s details are entirely borne on the initial conditions. Such a generality allows
one, for example, to inspect the canonical forms in deep detail only once, and then see
how a general trait discovered at such a level is mirrored in terms of features observable
in the concentration space case by case. For example, the slow manifold feature emerged
from the analysis of the first canonical form,[3] while the second canonical form allowed
us to unveil the existence of fixed subspaces that temporarily attract the vector ψ in the
D2-dimensional space while the system evolves in the concentration space.[4]

In what follows we focus only on the slow manifolds; we summarize the key results
formerly achieved, and we adapt them to the present case of open chemical networks.

4.3.3 Detection of slow manifolds

“Slow (invariant) manifold” (SM in the following) is a conventional expression to address
the hypersurface, of dimension lower than N , that is typically reached by the system
trajectories after a fast transient phase. Depending on the topology of the reaction
network and on the values of the kinetic constants, it is frequently observed that: (i)
the neighborhood of a SM is quickly reached, (ii) the trajectories remain close to the
SM in tending to the stationary point, and (iii) the evolution close to the SM is slower
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than in regions far from it. In practice, the localization of a slow manifold allows one
to understand the way in which the reactive system approaches the steady state. In
addition, since the dimension of the slow manifold may be much lower than the number
of species, its localization could be a first step toward the simplification of the kinetics
description (i.e., model reduction via elimination of dynamical variables) in the slow
part of the process. A comprehensive presentation of the SM phenomenology can be
found in the introductions of refs. [16–19] (see also our outline in Ref. [3] and references
therein).

Even though the definition of a slow invariant manifold is rooted in Fenichel’s ge-
ometrical singular perturbation theory of dynamical systems,[20] practical routes are
demanded for the SM construction at the computational level. A number of heteroge-
neous strategies have been proposed to identify the SM. Among the most popular tools,
we mention the computational singular perturbation technique,[21] the construction of
intrinsic[22] and attracting[17] low dimensional manifolds, and variational strategies like
the trajectory-based methods.[19]

In refs. [3] and [4], we proposed a novel route to detect the SM by operating with
the dynamical variables in Eq. (4.12). To outline the key results, let us introduce the
point-dependent functions

z̃Q(x) =
∑
Q′

M̃Q,Q′ h̃Q′(x) (4.21)

The nonlinear constraints among the h̃Q variables imply an equal number of linear con-
straints among the z̃Q, so that only N of them are independent (see the supplementary
material of Ref. [2]). Note that Eq. (4.12) can be rewritten as dh̃Q/dt = −h̃Qz̃Q, in
which z̃Q(t) ≡ z̃Q(x(t)) is interpreted as the time-dependent evolution rate of the cor-

responding h̃Q along the trajectory. Then, let z̃
(n)
Q (x) be the point-dependent function

such that z̃
(n)
Q (x(t)) ≡ dnz̃Q(x(t))/dtn along a trajectory. These time derivatives are

then expressed as z̃
(n)
Q (x(t)) =

∑
Q′ M̃Q,Q′ h̃

(n)
Q′ (x(t)), where the derivatives h̃

(n)
Q′ (x(t)) are

computed by means of Eq. (4.16) (or by employing the explicit formula in Eq. (4.15)).
With these positions, the stationary state corresponds to z̃Q(x∞) = 0 for all Q, a con-
dition which automatically implies also the vanishing of all the time-derivatives. If this

is the situation at t → ∞, one might guess, by continuation, that the functions z̃
(n)
Q (x)

of all orders n ≥ 0 take smaller values when the trajectories are in the neighborhood
of the SM. This would correspond to a smooth evolution of the functions h̃Q(x(t)) once
the trajectory has approached the SM after the initial transient phase.

Such an intuitive expectation is indeed supported by the analysis of the first param-
eter-free canonical form in Eq. (4.18).[3] In short, let us introduce the positive-valued
functions

Zn(x) =

√∑
Q

z̃
(n)
Q (x)2 (4.22)

If the features of Zn(x) could be visualized in the N -dimensional concentration space,
the landscape would feature deep “grooves”. What emerged from the heuristic analysis
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in Ref. [3] is that, as n increases, also the number of grooves increases and their pattern
changes, but there is a single groove whose location tends to stabilize asymptotically.
The SM perceived in the concentration space corresponds to such a limit groove for
n → ∞. Although the target is well-defined, the practical implementation poses severe
problems due to the fact that a large number of spurious solutions (due to the large
number of grooves) is produced when a minimization route is employed to search for
local minima of the Zn(x).

A step forward was made by inspecting the second parameter-free canonical form in
the hyper-spherical representation of the reactive system.[4] It turned out that the lowest
order functions Z0(x) (which roughly quantifies the slowness of the system’s evolution)
and Z1(x) (which catches the persistence of the slowness) suffice to produce points that
are expected to fall close to the perceived SM. These solutions can then be taken as
starting points for the SM localization by employing more computationally demanding
methods. By using Z0(x) and Z1(x) as “guiding potentials”, the neighborhood of the
SM can be localized via a constrained two-step minimization as follows: by starting
from an initial point and keeping fixed the concentration of one species, first localize a
minimum of Z0(x) and then, from that point, localize the closest minimum of Z1(x).
The outcome is a candidate point to the proximity of the SM. By changing in turn the
species whose concentration is kept fixed, and starting from a sufficiently large number
of initial points drawn at random within a search box in the concentration space, the set
of produced points is expected to be dense close to the SM. A sensible post-production
screening could be then applied to filter the possible spurious solutions. The concept was
implemented in Ref. [5], where the first release of the open source package DRIMAK1

was presented and tested on benchmark models of hydrogen combustion.
The model case illustrated in the next section will show that the SM feature does ap-

pear also for open reaction networks, and that the two-step minimization route sketched
above is potentially effective in producing points which fall in the SM neighborhood.

4.4 Example

As explanatory case, let us consider the following kinetic scheme:

X + X
1
−1

X + Y

−2
2

Z

4

�

−
3

3

1DRIMAK is distributed under the General Public License v2.0. Software and documentation are
available at: http://www.chimica.unipd.it/licc/software.html.

http://www.chimica.unipd.it/licc/software.html
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where the numbers on the arrows are the labels of the elementary reactions. Henceforth,
for the sake of clarity, the species concentrations are indicated by the label of the species
within square brackets. Including the source processes, the mass-action ODEs are

d[X]

dt
= −(k1 + 2k−3)[X]2 + (k−1 − k2)[X][Y] + (2k3 + k−2)[Z] + sX

d[Y]

dt
= k1[X]2 − (k−1 − k−2)[X][Y] + k−2[Z] + sY

d[Z]

dt
= k−3[X]2 + k2[X][Y]− (k3 + k−2 + k4)[Z] + sZ

(4.23)

For such a kinetic scheme N = 3 and M = 7, hence the dimension of the extended
space of the h̃Q functions is D = 24. According to the partition of the array h̃ given
in Eq. (4.10), and to the definitions in Eq. (4.4), the first 21 terms hjm are constructed
from the rates r1(x) = k1[X]2, r−1(x) = k−1[X][Y], r2(x) = k2[X][Y], r−2(x) = k−2[Z],
r3(x) = k3[Z], r−3(x) = k−3[X]2, and r4(x) = k4[Z]; the remaining 3 terms Hj are
given by sX/[X], sY/[Y] and sZ/[Z]. For the sake of compactness, the elements of the
connectivity matrix M̃ are not given here explicitly, but they can be readily obtained
from Eq. (4.13) with Eq. (4.11).

By equating to zero the right-hand sides of the ODEs in Eq. (4.23), it is found
that a unique stationary point independent of the initial conditions can be possibly
reached. Namely, a stationary point is reached only if α sX + β sY + γ sZ > 0, where
α = k−1k−2 + k−1k3 + k2k3 + k−1k4 + k2k4, β = k−1k−2 + k−1k3 + k2k3 + k−1k4 − k2k4

and γ = 2(k−1k−2 + k−1k3 + k2k3). Note that α and γ are strictly positive, while β
can be negative. This implies that if sY > 0, then for some sets of sX, sY and sZ the
system does not reach any stationary state (note also that a sufficient but not necessary
condition to ensure the reaching of the stationary state is k−1 ≥ k2).

For the present calculations we set sY = 0 and sZ = 0, which corresponds to consider
the sole source process

� → X

In such a case, a stationary point is reached for any value of the source rate sX. The
coordinates of such a point lay on the curve [X]ss = cX

√
sX, [Y]ss = cY

√
sX, [Z]ss = cZ sX,

where cX, cY and cZ are positive-valued factors depending only on the kinetic constants.
Since sY = 0 and sZ = 0, the dimension of the extended space could be reduced a priori
from 24 to 22, as remarked in section 4.2.

In the calculations, the time and the volumetric concentrations are meant to be
expressed in some physical units which are immaterial in the present context. With
implicit reference to such units, the kinetic constants were set to k1 = 1, k−1 = 3, k2 = 2,
k−2 = 500, k3 = 75, k−3 = 0.1 and k4 = 500, while several values of sX were considered.
Trajectories in the concentration space have been generated by employing the implicit
propagator VODE[15] as implemented in the Fortran double-precision routine DVODE.2

2DVODE is freely available at https://computation.llnl.gov/casc/odepack/. Last viewed 12
April 2018.

https://computation.llnl.gov/casc/odepack/
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In all cases, the option for stiff dynamics had to be applied to perform the integration
of the ODEs in Eq. (4.23). The Jacobian matrix was supplied analytically.

Some trajectories for sX = 5 × 105 are shown in Figure 4.3. A look at the figure
reveals that the trajectories bundle together on a one-dimensional slow manifold which
contains the stationary point indicated by the blue circle. To identify such a perceived
SM we have applied the route outlined in section 4.3.3. The red dashed line connects
2000 points which have been produced by the two-step minimization of the functions
Z0([X], [Y], [Z]) and Z1([X], [Y], [Z]) in less than ten seconds of elaboration on a standard
desktop computer. To produce these results we implemented a slightly modified version
of the DRIMAK algorithm, in order to deal with the present case of open reaction
networks. Note that the neighborhood of the SM is well identified, meaning that such a
simple and low-computational-cost procedure is a valid tool.

Figure 4.4 shows the behavior of the system as the input rate of species X is varied
(the continuous red lines are trajectories computed for the same value of sX as in Fig-
ure 4.3). The two-dimensional projection on the plane of the concentrations of species
X and Z is adopted for simplicity. All trajectories start from the same two points. By
following the trajectories, it can be seen how the location of both the stationary point
and the SM are affected by the value of sX. As predicted, the points ([Z]ss, [X]ss) lay on
a parabola and move to higher concentrations as sX increases. In addition, also the SM
is modified by the change of sX.

Figure 4.3: Example trajectories for the model of chemical reaction network with con-
tinuous injection of species X. The values of the kinetic constants are given in the main
text. The value of the source term is sX = 5× 105. The blue circle indicates the unique
stationary point, while the dashed red line connects the 2000 candidate points produced
by the two-step minimization route to localize the proximity of the slow manifold.

This simple example shows that, by acting on the source terms, the SM can be
modulated. In the example, only a few choices are available for changing the SM but,
in more complex kinetic schemes with many species whose production rates can be
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Figure 4.4: Two-dimensional projection of several trajectories for the model chemical
reaction network with continuous injection of species X at various rates sX. The con-
tinuous red lines corresponds to the situation of Figure 4.3. The blue circles are the
stationary points.

independently controlled, there may be more room to design the SM guise. This means,
ultimately, that one could externally regulate not only the system composition at the
steady state, but also the way in which the chemical network approaches the steady
state. This appears to be an interesting feature to explore. Furthermore, the low-cost
route rooted in the quadratic form of the evolution law proved to be effective in localizing
the SM also for open systems.

A final remark concerns the possible removal of the stiffness when turning from the
original ODEs in Eq. (4.23) to the quadratic form in Eq. (4.12). For the adopted kinetic
parameters, and for initial points that fall in the hyper-rectangle of Figure 4.3, the
original ODEs turned out to be a stiff system according to the DVODE solver. On the
contrary, the quadratic form Eq. (4.12) revealed to be a non-stiff problem. In order to
augment the non-linearity of the original rate equations, we have included the third-order
reaction X + Y + Z→ 2X + 2Y with kinetic constant equal to 10−3. Again, although the
original ODEs constitute a stiff system, the quadratic form is non-stiff. These evidences
suggest that the change of representation of the evolution law via quadratization of the
ODEs might be a means to remove the stiffness, although a formal rationale is still
lacking.
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4.5 Conclusions

In this work we have shown that the polynomial ordinary differential equations of de-
terministic chemical reaction networks can be recast, by means of a suitable change and
extension of the set of dynamical variables, into a pure quadratic format (Eq. (4.12)).
The treatment for the general case of open systems, presented here, extends our previous
results.[2–5]

In our opinion, the main message is that it is worthwhile to perform such a “quadrati-
zation” of the ODEs. First, the quadratic form of Eq. (4.12) is universal and it constitutes
the starting point to derive parameter-free descriptions of the reactive system (see the
canonical forms outlined in section 4.3.2). Despite such representations of evolution laws
may seem unnecessarily abstract and devoid of physical concreteness, they own several
mathematical properties that can be connected with observable features of the system
evolution in the concentration space. Here we focused mainly on the localization of the
slow manifolds for open networks, but we are confident that other applications of the
canonical forms could be found in the future.

Furthermore, the inspection of the simple model in section 4.4 revealed that the
stiffness of the original ODEs is removed when passing to the associated quadratic form.
This suggests that the quadratic ODEs can be practically exploited as a means to simplify
the time-propagation of the reactive system. As already stated, the generality of such a
feature, and its formal rationale as well, have still to be inspected. This appears to be
an interesting investigation line for future developments.

Lastly, we stress again that, although we dealt here with rate equations of mass-
action chemical networks, all considerations are valid for generic autonomous dynamical
systems describable by ordinary polynomial ODEs in the positive orthant. In other
words, the concepts elaborated here could also be useful in fields other than the chemical
kinetics one.

References

1K. J. Laidler, Chemical kinetics, 3rd ed. (Harper Collins Publishers, New York, 1987).

2P. Nicolini, and D. Frezzato, “Features in chemical kinetics. I. Signatures of self-
emerging dimensional reduction from a general format of the evolution law”, The
Journal of Chemical Physics 138, 234101 (2013).

3P. Nicolini, and D. Frezzato, “Features in chemical kinetics. II. A self-emerging defini-
tion of slow manifolds”, The Journal of Chemical Physics 138, 234102 (2013).

4A. Ceccato, P. Nicolini, and D. Frezzato, “Features in chemical kinetics. III. Attracting
subspaces in a hyper-spherical representation of the reactive system”, The Journal of
Chemical Physics 143, 224109 (2015).

5A. Ceccato, P. Nicolini, and D. Frezzato, “A low-computational-cost strategy to localize
points in the slow manifold proximity for isothermal chemical kinetics”, International
Journal of Chemical Kinetics 49, 477–493 (2017).



90 CHAPTER 4. OPEN CHEMICAL REACTION NETWORKS

6M. Peschel, and W. Mende, The predator-prey model: do we live in a volterra world?
(Springer Verlag, 1986).

7B. Hernández-Bermejo, and V. Fairén, “Nonpolynomial vector fields under the Lotka-
Volterra normal form”, Physics Letters A 206, 31–37 (1995).

8L. Brenig, and A. Goriely, “Universal canonical forms for time-continuous dynamical
systems”, Physical Review A 40, 4119 (1989).

9V. Fairén, and B. Hernandez-Bermejo, “Mass action law conjugate representation for
general chemical mechanisms”, The Journal of Physical Chemistry 100, 19023–19028
(1996).
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Chapter 5

Attracting subspaces in a
hyper-spherical representation of
autonomous dynamical systems

Note

This chapter is a re-edited form of the draft of the following published paper: Alessandro Ceccato,

Paolo Nicolini and Diego Frezzato, “Attracting subspaces in a hyper-spherical representation of

autonomous dynamical systems”, J. Math. Phys. 58, 092701 (2017).

Abstract

In this work we focus on the possibility to recast the ordinary differential equations
(ODEs) governing the evolution of deterministic autonomous dynamical systems (con-
servative or damped and generally non-linear) into a parameter-free universal format.
We term such a representation “hyper-spherical” since the new variables are a “radial”
norm having physical units of inverse-of-time, and a normalized “state vector” with (pos-
sibly complex-valued) dimensionless components. Here we prove that while the system
evolves in its physical space, the mirrored evolution in the hyper-spherical space is such
that the state vector moves monotonically towards fixed “attracting subspaces” (one at
a time). Correspondingly, the physical space can be split into “attractiveness regions”.
We present the general concepts and provide an example of how such a transformation of
ODEs can be achieved for a class of mechanical-like systems where the physical variables
are a set of configurational degrees of freedom and the associated velocities in a phase-
space representation. A one-dimensional case model (motion in a bi-stable potential) is
adopted to illustrate the procedure.
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5.1 Introduction and outline

Several dynamical systems encountered in physical and natural sciences, for which
stochastic fluctuations are absent or play a negligible role, can be described by means
of a finite number of variables whose evolution is governed by an autonomous set of
ordinary differential equations (ODEs).

Let s be the set of real-valued “state variables” and f(s) the associated velocity field;
the ODE system reads1

ṡ = f(s) (5.1)

The geometric representation of the trajectories s(t) in the physical space, given initial
conditions s(0), will display particular features depending on the form of the velocity
field. In all generality, the dynamics may be conservative or damped. In the former case
the trajectories are closed curves (for bounded systems), while for damped dynamics one
has limt→∞ s(t) = s∞ where the stationary point s∞ is a “sink”, which is reached by
the specific trajectory under consideration (the stationary points may be either isolated
points or they may form compact domains).

A crucial question is: can one make a few general statements about the system’s
evolution regardless of its specific evolution law? In case of linear dynamics, that is if
f(s) = −Ks with K a constant matrix, the answer is trivial: all properties are determined
by the eigenvectors (the evolution “modes”) and eigenvalues (the evolution rates) of K.
This means that a unique interpretative scheme can be applied to study all possible
linear cases, and that the dynamical behaviour presents well-defined features. On the
contrary, for non-linear velocity fields the discovery of some underlying ubiquitous traits
is challenging, mainly because of the lack of a unifying mathematical structure.

Such an issue has stimulated the search for strategies to recast the original ODE
systems into universal “canonical” or “normal” forms. The price to pay for achieving
canonical forms consists of a general augmentation of the number of variables, meaning
that auxiliary variables have to be added and/or that new (but mutually interrelated)
variables have to be built as functions of the original ones. On the other hand, in dealing
with simpler canonical forms, one might have the chance to bypass a generally difficult
case-by-case analysis. In addition, one wishes that possible ubiquitous traits do emerge
from the inspection of these general formats. Just to mention a few milestones in this
field, Carleman’s linearization[1] allows one to convert polynomial ODEs into a linear
format, although of infinite extension, by adopting the set of multivariate monomials
of all-orders as new dynamical variables. A breakthrough step was the discovery that,
by means of suitable “quadratization transformations”, the original equations can be

1Remarks on the mathematical notation. 1) the overdot stands for time-derivative; 2) the super-
scripts “T” and “†” indicate the transpose and the adjoint array (transposed with complex-conjugation),
respectively; 3) the superscript “∗” indicates the complex-conjugate of a quantity; 4) the superscripts
“r” and “i” denote the real and the imaginary parts of a complex-valued argument, respectively; 5) | · |
stands for the modulus of a complex-valued argument; 6) Tr(·) stands for the trace of a square matrix;
7) let s(t) be a trajectory of the system; then, for any state-dependent function f(s), throughout it is
implicit that f(t) ≡ f(s(t)).
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converted into a finite-extension system of ODEs with non-linearity at most of the sec-
ond order. For instance, in a seminal work, Kerner[2] showed that the original ODEs
can be reduced to an “elemental Riccati system” with pure quadratic terms. Then we
mention the early steps in the embedding into Lotka-Volterra formats by Peschel and
Mende[3] who anticipated some of the results obtained later, and independently, by vari-
ous authors. In particular, Hernández-Bermejo and Fairén[4] showed that, for sufficiently
smooth velocity fields, the original ODEs can be converted into a quasi-polynomial (QP)
format (also termed “Generalized Lotka-Volterra” format). The QP form can then be
embedded into a Lotka-Volterra-like (LV) format using the strategy devised by Brenig
and Goriely,[5] so that the non-linearity results in being at most of the second order.
The QP and LV formats have been widely studied, mainly in terms of boundedness of
the solutions,[6] stability of the equilibrium points[7, 8] and even in terms of stabilizing
feedback control in process systems.[9] The general results which can be obtained by
inspecting the QP and LV structures are then transferred back to the specific original
ODEs.

The present study fits in such a general framework. In particular, the transforma-
tion of the original ODEs into a pure quadratic format will be the key-step; a further
transformation then allows us to attain a new canonical form of the evolution law in
what we call the “hyper-spherical” representation of the system.

Let us consider the dynamical law in Eq. (5.1) and suppose we are able to perform
some operation on the Ns components of s such that we obtain a number QS ≥ Ns of
new dynamical variables,

(s1, s2, · · · , sNs) → (h1(s), h2(s), · · · , hQS (s)) (5.2)

whose evolution is governed by a set of pure quadratic ODEs of the kind

ḣQ = −hQ
∑
Q′

MQQ′hQ′ (5.3)

where the indexes Q and Q′ run from 1 to QS , and MQ,Q′ are elements of a constant con-
nectivity matrix M which automatically arises in doing the transformation in Eq. (5.2).
The hQ terms must have physical units of inverse-of-time if the elements of M are di-
mensionless, or, equivalently, the hQ components can be dimensionless and the physical
dimension of inverse-of-time is borne by the matrix elements. The set of new dynamical
variables may be generally larger than the original one. In this case, the hQ(s) terms
must be mutually interrelated so that only Ns of them are independent. The exploita-
tion of these interrelations allows one to invert the transformation and retrieve, when
needed, the system’s state s in the original space.

The way to perform the “quadratization” from Eq. (5.1) to Eq. (5.3) might be sug-
gested by the typology of the original ODEs, although the strategies mentioned above are
applicable to broad classes of dynamical systems. However, contrarily to those strategies
which deal with real-valued quantities, in all generality here both the hQ terms and the
matrix M can be complex-valued.
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Under the condition that a quadratization is feasible, the second step, which will
be described in the next section, consists of operating with the terms MQQ′hQ′(s) to
perform a further change of variables and attain the “hyper-spherical representation” of
the system in an extended and abstract Q2

S-dimensional space. As a whole, the two-step
transformation will be

s→ (ψ, S) (5.4)

where ψ is a Q2
S-dimensional “state-vector” normalized as ψ†ψ = 1 and whose dimen-

sionless components are possibly complex-valued, and S is a positive-valued norm having
physical dimension of inverse-of-time. The transformed system of ODEs for the evolu-
tion of ψ and S (see Eqs. (5.12) in the following) takes a universal and parameter-free
structure, since the only dependence on the specific system is borne by the dimension
of the state-vector ψ (set by QS), and by the initial conditions ψ(0) ≡ ψ(s(0)) and
S(0) ≡ S(s(0)). By analyzing such a canonical form, it will be shown that, during the
evolution, the state-vector ψ(t) ≡ ψ(s(t)) is attracted, in such an extended space, by
well-defined orthogonal subspaces (one at a time) that we term “attracting subspaces”
(AS in the following). The attractiveness property is not fully invariant, but it persists
within segments of a trajectory under consideration. Namely, as long as s(t) belongs to
some region of the physical space associated with the specific AS, that AS will continue
to be attracting for the state-vector ψ(s(t)). We term these compact regions as the
“attractiveness regions” (AR in the following). In symbolic form, we can provisionally
write

While s(t) ∈ AR then ψ(s(t))→ AS (5.5)

The formal specification of the AR and AS, of their mutual interrelation, and of the
meaning of the arrow in Eq. (5.5) will be given later.

The remarkable fact is that, within the hyper-spherical representation, the attracting
subspaces do exist also for dynamics which are described by non-linear ODEs. In other
terms, “invariant objects” are found even when the concept of global eigenspace of the
dynamical flow is lost. The subspaces we deal with are in fact fixed in the hyper-spherical
space (although their attractiveness is “turned on” and “switched off”).

Despite the loss of visualization of the dynamics in the extended space, the important
fact is that the new ODE system has a unique and system-independent structure. Thus,
if some ubiquitous (or, in some way, peculiar) traits are discovered for such a unique
format, these will be automatically “inherited” by all dynamical systems whose ODEs
can be converted in such a canonical format. Then, these traits are translated, case
by case, into features that can be observed in the specific s-space once the backward
transformation is performed. Figure 5.1 gives a pictorial representation of this idea. Even
if in this study the ubiquitous trait found is the existence of the attracting subspaces,
the idea is general and our opinion is that other “hidden” traits may be unveiled by
inspecting the canonical ODEs in the hyper-spherical representation.

In the two-step transformation, the difficult part is the first step of quadratization.
We stress here that the main difficulty is not actually due to mathematical issues in
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Figure 5.1: The concept underlying the employment of canonical formats of ODEs: find
ubiquitous traits for the dynamics in the extended space, and then go back to see how
they are “reflected” in the physical space for the specific system.

devising and performing the change in Eq. (5.2), rather to the possibility of giving an
unequivocal (and physically grounded) interpretation to the new variables hQ. In fact,
the attracting subspaces and the associated attractiveness regions do depend on the
specific quadratization route. In the ideal situation, the transformation in Eq. (5.2)
should be “naturally suggested” by the features of the original ODEs themselves with
none, or with a very low, degree of subjectivity. A representative case is the evolution
of a reacting mixture under applicability of the mass-action law.[10] In that case, the
dynamical variables are the volumetric concentrations of the chemical species involved in
the network of elementary reactions, and the rate equations take the form of multivariate
polynomial ODEs. Interestingly, the same kind of quadratization strategy has been
devised with little variations by several authors since the early work of Peschel and
Mende,[3] for example by Gouzé,[11] by Fairén and Hernández-Bermejo,[12] and more
recently also by some of us.[13] Here, the new variables hQ have the physical meaning
of “per capita rates”,2 in the terminology of the authors of Ref. [12]. In a subsequent
work,[14] we have shown that the quadratic canonical form provides a rationale for
the appearance of the so-called “slow manifolds” (SM) in the concentration space. A
SM is a low dimensional surface in whose neighborhood the trajectories bundle, and
its identification/characterization is useful to perform a dimension reduction of the full

2For N chemical species involved in a network of M elementary reactions under isothermal conditions
and applicability of the mass-action law (well-stirred medium of fixed volume), the strategy presented
in Ref. [13] employs QS = N ×M new variables hQ ≡ hj,m(x) = rm(x)/xj , where xj is the volumetric
concentration of the j-th species and rm(x) is the rate of the m-th elementary reaction (rm(x) has
multivariate monomial form).
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kinetic problem.[15, 16] The inspection of the canonical format of the evolution law of
a reacting system in the hyper-spherical representation[17] then allowed us to develop a
low-computational-cost strategy for the SM construction.[18]

The present study represents the generalization of our previous work in Ref. [17]. In
particular, all statements made here are valid regardless of the physical context in which
the specific original system of ODEs is collocated. In addition, the transformation in
Eq. (5.2) also includes the case of having the new hQ variables and the matrix elements
MQ,Q′ complex-valued. Secondly, complementary to the chemical kinetics case fully
treated in Ref. [17], we shall give a further example of a quadratization strategy valid for
a class of mechanical-like dynamical systems whose state variables are s = (x,v) where
x is an array of configurational coordinates and v collects the corresponding velocities.
The evolution is governed by ẋ = v and v̇ = F(x,v) for a given “force field” F. The
quadratization route proposed here for such a kind of ODEs involves complex-valued
quantities. We anticipate that the applicability of such a route is subject to restrictions,
and the strategy itself contains some degree of subjectivity. This approach is hence
provisional but it provides, we feel, interesting new lines to developing quadratization
strategies for mechanical-like systems. As an illustrative case we shall consider a one-
dimensional toy-model with dynamical variables x and v. The model consists of a
“particle” which moves in a bi-stable “energy” profile, described by a quartic polynomial
on x, with dynamics either conservative or damped by a Stokes-like friction (proportional
to v).

The remainder of the paper is structured as follows. In the next section we present the
two-step transformation (sec. 5.2.1), we prove the existence of fixed attracting subspaces
(sec. 5.2.2) and make considerations on the likely condition under which their attrac-
tiveness property should persist during the system’s evolution (sec. 5.2.3). In section 5.3
(with technical details given in the Appendix) we present an example of quadratization
for a class of mechanical-like systems; numerical inspections on the one-dimensional case
model are reported in section 5.3.4. The final section contains general remarks and
perspectives for future investigations. Further remarks and inspections are given in the
Supplementary material related to this article.

5.2 Dynamical laws in the hyper-spherical representation

5.2.1 The two-step transformation

Let us start by considering the evolution law in Eq. (5.1), and suppose we are able to find
a quadratization route such that the original ODEs are turned into the pure quadratic
format of Eq. (5.3) by means of a change-extension of the dynamical variables indicated
in Eq. (5.2). We recall that, in all generality, both the hQ terms and the matrix M can
be complex-valued.

Consider now the QS ×QS matrix V, generally complex-valued, with elements

VQ,Q′ = MQ,Q′hQ′ (5.6)
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whose physical dimension is inverse-of-time. From Eq. (5.3) it follows that the time-
evolution of these elements is governed by

V̇Q,Q′ = −VQ,Q′
∑
Q′′

VQ′,Q′′ (5.7)

Notably, Eq. (5.7) is a parameter-free evolution law, of universal kind, which underlies
general autonomous dynamical systems once a quadratization can be worked out. Note
that the summation in Eq. (5.7) can be seen as the “rate” of evolution of all the elements
of the column Q′ of the matrix V. Let us denote these rates, which will play a relevant
role in the following, as

zQ(s) =
∑
Q′

VQQ′(s) (5.8)

Up to here, the whole quadratization step which comprises the equations from (5.2)
to (5.7) is related to the change s → V(s). The specific kind of transformation in
Eq. (5.2) is immaterial for the validity of the following arguments, although we recall
that for a sound quadratization step the variables hQ should possess an intrinsic physical
meaning. On strict mathematical grounds, in our opinion, the following basic criteria
suffice to guide the search for a “good” quadratization route:

1. The number QS of new dynamical variables hQ is finite;

2. The elements of the matrix V take a finite value for any system’s state s;

3. The backward transformation V(s)→ s can be performed.

The second stage of the two-step transformation consists of making a subsequent
change of representation without further enlarging the set of dynamical variables. Na-
mely, the Q2

S elements of the matrix V are turned into a real-valued Frobenius norm
S, having physical dimension of inverse-of-time, plus the dimensionless components of a
normalized state-vector ψ of dimension Q2

S . Namely, the change is

V→ (ψ, S) (5.9)

with

S =
√

Tr
(
V†V

)
, ψJ≡(Q,Q′) =

VQ,Q′

S
, ψ†ψ = 1 (5.10)

where J = 1, 2, · · · , Q2
S is an enumeration index associated with the pair (Q,Q′). Let

us now introduce the auxiliary column array σ, of dimension Q2
S , whose elements are

specified by the rates defined in Eq. (5.8):

σJ≡(Q,Q′) = zQ′ for any Q (5.11)
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With these positions, a few steps of algebra3 yield the following evolution equations for
the variables (S,ψ):

ψ̇J = −
[
σJ − (ψ†diag(σr)ψ)

]
ψJ , σrJ = Re{σJ}

Ṡ = −S (ψ†diag(σr)ψ)
(5.12)

As for Eq. (5.7), also Eqs. (5.12) constitute a universal and parameter-free canonical
form.

5.2.2 Attracting subspaces (AS) and associated attractiveness regions
(AR)

Before presenting the main result, some preliminary definitions need to be given. First,
let us recall the indexes J ≡ (Q,Q′) and associate, to each of them, a fixed unit vector
eJ of the following kind:

eJ =


0
· · ·
1
· · ·
0

← at J-th pos. , eTJ eJ ′ = δJ,J ′ (5.13)

These versors are orthogonal to one another, and their ensemble spans the full Q2
S-

dimensional space. Then, given a point s, let zrQ(s) be the real part of zQ(s) and

zmin(s) := min
Q
{zrQ(s)} (5.14)

In all generality, there may be a number d of identically (not accidentally) degenerate
zrQ(s) terms whose value is equal to zmin(s). This happens if some of the hQ(s) compo-

nents have moduli constantly proportional to one another.4 Let JA = (J1, J2, · · · , JDA)

3Let us expand S, defined in Eq. (5.10), as S =
√∑

Q,Q′ V
∗
Q,Q′VQ,Q′ . Taking the time derivative

yields Ṡ = (2S)−1∑
Q,Q′(V̇

∗
Q,Q′VQ,Q′ + V ∗Q,Q′ V̇Q,Q′). By recalling Eq. (5.7) for the time derivative

of the elements VQ,Q′ , it follows that Ṡ = −(2S)−1∑
Q,Q′(V

∗
Q,Q′VQ,Q′z

∗
Q′ + V ∗Q,Q′VQ,Q′zQ′). From

the definition ψJ≡(Q,Q′) = VQ,Q′/S (Eq. (5.10)) it follows that V ∗Q,Q′VQ,Q′ = |ψJ≡(Q,Q′)|2S2, hence

Ṡ/S = −
∑
Q,Q′ |ψJ≡(Q,Q′)|2zrQ′ where zrQ′ = (z∗Q′ + zQ′)/2 has been used. By employing the elements

of the auxiliary array σ given in Eq. (5.11), we get the second of the evolution equations in Eq. (5.12):
Ṡ/S = −ψ†diag(σr)ψ, with σrJ = (σ∗J + σJ)/2. Taking the time derivative of ψJ from Eq. (5.10) then
gives ψ̇J = −ṠVQ,Q′/S2 + V̇Q,Q′/S = −(Ṡ/S)ψJ≡(Q,Q′) − ψJ≡(Q,Q′)zQ′ . By using the expression for

Ṡ/S, the first of the evolution equations in Eq. (5.12) follows.
4To check this statement, let us turn to the polar representation of the generally complex-valued

terms hQ, that is, let us write hQ = RQe
−ıφQ where RQ > 0 is the modulus and φQ is the phase factor.

The time-derivative yields ḣQ = −hQ[ıφ̇Q− ṘQ/RQ]. By considering that ḣQ = −hQzQ, the real part of
the rate zQ is immediately identified: zrQ ≡ −ṘQ/RQ. Thus, two rates have identically (not accidentally)
the same real part, zrQ1

= zrQ2
, only if the moduli of the corresponding hQ1 and hQ2 are proportional:

RQ2 = αRQ1 for some constant factor α > 0.
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be the set of indexes J ≡ (Q,Q′) with no restrictions on Q, while Q′ is such that
zrQ′(s) = zmin(s). The dimension of such a set is thus DA = QS × d. Then, let A be the
following DA-dimensional subspace

A = span(eJ1 , eJ2 , · · · , eJDA ) (5.15)

Finally, let c(A) be a compact domain in the s-space such that if s ∈ c(A), then the
rates zQ(s) individuate the set JA, and hence the subspace A, as specified above.

With these positions, in what follows we shall show that

While s(t) ∈ c(A) then ψ(s(t))→ A (5.16)

We recall that the state-vector is generally complex and normalized as ψ†ψ = 1. The
attractiveness of ψ(s(t)) towards the actual A, as indicated by the arrow in Eq. (5.16),
is intended as the monotonic increase of the modulus |ψJ(s(t))| for each J ∈ JA. As
a whole, such attractiveness can be monitored by looking at a real-valued measure of
the distance between the point ψ(s(t)) and A. Here we shall adopt the following scalar
quantity:

dA(s(t)) :=

√∑
J /∈JA

|ψJ(s(t))|2 (5.17)

The single contribution |ψJ(s(t))|2 is the square modulus of the projection of the state-
vector on the versor eJ ; therefore, dA in Eq. (5.17) is the modulus of the projection of
ψ onto the non-attracting subspace of the full Q2

S-dimensional space. By construction,
0 ≤ dA(s(t)) ≤ 1. As will be proved, it happens that dA(s(t)) monotonically decreases
in the portion of trajectory s(t) where the set JA (and hence A) remains unaltered.

Given these properties, we call A the “attracting subspace” (AS) for the vector ψ
in such a portion of trajectory. The c(A) introduced above corresponds to the domain
obtained by “merging” the portions of all possible trajectories wherein A is the same.
In principle, the vector ψ(s(t)) may be attracted by the same subspace in different
segments of a trajectory. In other words, a number of disjointed but compact domains
c1(A), c2(A), c3(A), etc. may correspond to the same A. An example will be provided
for the model case presented later. Each of these domains of the physical space will be
called “attractiveness region” (AR) associated to a specific AS.

On these bases one can make a partition of the physical s-space into compact do-
mains within which the state-vector ψ(s(t)) is attracted by a unique, well-defined, and
persistent subspace.

Proof of the statement in Eq. (5.16). The formal solution of Eqs. (5.12) for the
state-vector, as can be checked by back-substitution, is

ψJ(t) =
exp

{
−
∫ t
t0
dt′ σJ(t′)

}
ψJ(t0)√∑

J ′

∣∣∣exp
{
−
∫ t
t0
dt′ σJ ′(t′)

}
ψJ ′(t0)

∣∣∣2 (5.18)
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For the sake of notation, let us introduce the real-valued time-averaged rates ωrJ(t, t0)
and ωiJ(t, t0) through the identity

1

t− t0

∫ t

t0

dt′ σJ(t′) ≡ ωrJ(t, t0) + ı ωiJ(t, t0) (5.19)

Since σJ≡(Q,Q′)(t
′) = zQ′(t

′) (Eq. (5.11)) one has

ωrJ≡(Q,Q′)(t, t0) = (t− t0)−1

∫ t

t0

dt′ zrQ′(t
′) (5.20)

Now consider a portion of trajectory s(t′), with t0 ≤ t′ ≤ t, such that the ensemble of
the smallest terms zrQ(s(t′)) = zmin(s(t′)) remains unaltered, hence the corresponding
set of indexes JA (and the subspace A as well) does not change. It follows that in such
a portion of trajectory one has

ωmin(t, t0) := min
J
{ωrJ(t, t0)} =

1

t− t0

∫ t

t0

dt′ zmin(t′) = ωrJ∈JA(t, t0) (5.21)

In terms of the time-averaged rates, Eq. (5.18) is rewritten as

ψJ(t) =
e−(t−t0)[ωrJ (t,t0)−ωmin(t,t0)] e−ı (t−t0)ωiJ (t,t0) ψJ(t0)√∑

J ′ e
−2(t−t0)[ωr

J′ (t,t0)−ωmin(t,t0)]|ψJ ′(t0)|2
(5.22)

and the modulus is

| ψJ(t) |= e−(t−t0)[ωrJ (t,t0)−ωmin(t,t0)]|ψJ(t0)|√∑
J ′ e
−2(t−t0)[ωr

J′ (t,t0)−ωmin(t,t0)]|ψJ ′(t0)|2
(5.23)

Let us now consider the relevant case of ψ(t0) having a non-null projection on the
subspace A. In such a case, Eq. (5.23) reveals that, for all J ∈ JA, the modulus | ψJ(t) |
monotonically increases (since the numerator of Eq. (5.23) is constantly equal to |ψJ(t0)|
but the denominator decreases), while all | ψJ(t) | with J /∈ JA monotonically decrease
(since the numerator of Eq. (5.23) decreases faster than the denominator). Since the
instants t0 and t are arbitrarily chosen under the condition that s(t0) and s(t) lie on
a portion of trajectory where A is persistent, the conclusion is that the state-vector
ψ(t) tends to the attracting subspace A (as indicated in Eq. (5.16) and quantitatively
expressed by the decrease of the distance defined in Eq. (5.17)) as long as s(t) is contained
in the domain c(A).

5.2.3 Condition for lasting attractiveness of an AS

In this section we face the problem of identifying a proper indicator to recognize the
regions of the physical space (the s-space) where the mirrored dynamics of S and ψ is
slow and, in particular, the attractiveness of the actual AS lasts for a relatively long time
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(this concept will be better specified later). While the analysis made in section 5.2.2 is
rigorous, here we shall proceed mainly on intuitive grounds. The following argumentation
represents the extension, for complex-valued quantities, of the analysis in Ref. [17] which
is limited to the hyper-spherical format of the ODEs for mass-action-based chemical
kinetics.

Let us consider a real-valued and state-dependent “average rate function”, Z, defined
as the root mean square (r. m. s.) of the moduli |zQ|:

Z =

√
Q−1
S

∑
Q

|zQ|2 (5.24)

Since the zQ rates are functions of the physical variables s, the graph of Z(s) is a
hypersurface in Ns + 1 dimensions. We shall show that Z(s) can be taken as a likely
indicator of local slowness of the dynamics represented in the hyper-spherical space.

Let σ̃ be the dimensionless auxiliary array defined as

σ̃ =
σ

Z
(5.25)

By construction, the r. m. s. of the Q2
S components of σ̃ is fixed to 1. In terms of Z

and σ̃, the evolution equations in Eq. (5.12) become

ψ̇J = −Z (σ̃J − Φ) ψJ
Ṡ = −Z S Φ (5.26)

where, for the sake of compactness, we introduce the following real-valued and dimen-
sionless factor

Φ = ψ†diag(σ̃r)ψ (5.27)

The values of such a factor are bounded by |Φ| ≤ QS .5

Note that Z enters Eqs. (5.26) as multiplier on the right-hand side. Let us first con-
sider the evolution equation for ψJ . Since the other factors are dimensionless bounded
numbers, the rate of evolution of the ψ components is determined by the actual mag-
nitude of Z. Large values of Z are expected to induce a quick rearrangement of ψ so
that, as a consequence, a rapid change of σ may also occur. Such a rapid change of
the σJ components is likely associated with a change in the ordering of their real parts
and, ultimately, with the change of attracting subspace. With a similar reasoning, the
second of Eqs. (5.26) tells us that also the norm S may evolve rapidly when the system’s
trajectory is in physical regions where Z(s) is large.

As a whole, Z(s) can be adopted as an indicator to compare the persistence of the
attractiveness of an AS (in the hyper-spherical space) along trajectory pieces in different

5This can be seen by recognising that |Φ| =
∣∣∑

J |ΨJ |2 σ̃rJ
∣∣ ≤ ∑J |ΨJ |2 |σ̃rJ | (“triangle inequality”).

By considering that
∑
J |ΨJ |2 = 1, it follows that |Φ| ≤ maxJ |σ̃rJ |. Consider now that, by construction,

σ̃†σ̃ = Q2
S . Thus, maxJ |σ̃rJ | ≤

√∑
J(σ̃rJ)2 +

∑
J(σ̃iJ)2 =

√
σ̃†σ̃ = QS . In conclusion, |Φ| ≤ QS .
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regions of the physical space: moving to regions where Z(s) is smaller, in a given time-
window of observation, it is expected that the change of ψ and S is smoother and that
the attractiveness of an AS is more persistent.

With such a picture in mind, the regions in the s-space with lasting attractiveness
of an AS should correspond to “grooves” (if present) in the landscape of Z(s). Such
a criterion has recently been applied by us to devise low-computational-cost strategies
for the localization of candidate points to the proximity of the slow manifold in the
context of isothermal chemical kinetics.[17, 18] In such a specific context, it was found
that slowness in the hyper-spherical representation corresponds to slowness also in the
physical space of the volumetric concentrations of the species involved in the reaction.

5.3 An example of quadratization strategy for mechanical-
like systems

In this section we focus on dynamical systems whose evolution can be specified by the
following system of ODEs:

ẋ = v

v̇ = F(x,v)
(5.28)

The dynamical variables are the configurational coordinates x1, x2, · · · , xN (collected in
the array x) and the corresponding velocities v1, v2, · · · , vN (array v). The total number
of variables is Ns = 2N . In the following, the state-dependent vectorial field F(x,v) will
be called the “force field” in abstract terms, and the space of the x and v variables will
be termed “phase-space” (in analogy to the classical mechanics context). For damped
dynamics, the stationary point reached as t → ∞ corresponds to (x∞,0). For conser-
vative dynamics, the force field is velocity-independent and has the form −∂U(x)/∂x,
where U(x) may be seen as the “potential energy” with ∂/∂x the gradient operator;
then, E(x,v) = U(x) + v · v/2 is interpreted as the “total energy” which is constant
(in the absence of friction) along a trajectory. Clearly, the simple addition of a velocity-
dependent friction contribution to the conservative force produces a special subclass of
force fields F(x,v) for damped dynamics.

Under the requisites expressed in section 5.3.1, we shall present a quadratization
route based on a suitable change-extension of the set of variables. The main challenge
consists of devising a strategy such that the new dynamical variables do not diverge along
any trajectory in the considered phase-space portion. The approach described later in
section 5.3.2 satisfies such a requisite. The route requires only algebraic operations to
be performed on the variables x and v (i.e., not integral transformations) and does not
refer to the details of the specific force field (i.e., the transformation is an intrinsic one
applicable to different mechanical-like systems).

The strategy requires the knowledge of the stationary points, one of which will be
taken as the “reference point” (denoted as xref in the following), and the choice of scaling
factors for the time (factor τ) and for each variable xj (factors lj). These ingredients
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enter the quadratization route as parameters and the outcomes will depend on them.
In particular, we anticipate that the pattern of the ARs in the phase-space will depend
on the coordinates of xref and on τ . This means that the specific quadratization route
proposed here is effective in making sensible inferences on the physics of the dynamical
system only on the condition that the setting of the required parameters can be made
on physically-grounded criteria.

5.3.1 Requirements

Firstly, the quadratization strategy requires the selection of a reference point, xref . A
reference point may be such that (xref ,0) is one of the stationary points in the phase-
space (x,v), that is, F(xref ,0) = 0. In addition, xref may also specify a phase-space
subdomain D(xref) within which the employment of the canonical format should be
confined. Under the assumption that some motivated choice can be made about xref

and D(xref), the transformation in Eq. (5.2) becomes

(x,v) with x ∈ D(xref) → (h1(x,v), h2(x,v), · · · , hQS (x,v)) (5.29)

Secondly, the strategy is applicable to force fields that fulfill the following requisite:
for each component j, there must be an exponent εj ≥ 1, possibly not integer, such that
Fj(x,v) can be decomposed as

for each j : Fj(x,v) =
∑
q

(xj − xref
j )εj−αj,q v

αj,q
j gj,q(x,v) , εj ≥ 1 (5.30)

where gj,q(x,v) are some functions that are bounded (i.e., they do not diverge) in the
whole domain D(xref), and the αj,q exponents are non-negative numbers. The absence
of a constant term in Eq. (5.30) assures that Fj(x

ref ,0) = 0 for all j at the stationary
point. For Fj(x,0) 6= 0 to be realized for some x 6= xref , it must be that at least one of
the αj,q exponents is 0 and that the associated gj,q(x,0) is not null.

The requisite expressed by Eq. (5.30) guarantees that if along a trajectory in
D(xref) it happens that xj(t) = xref

j and vj(t) = 0 for some j-th component, then
Fj(x(t),v(t)) = 0 at that point. In particular, the condition εj ≥ 1 implies that the
ratio

Fj(x(t),v(t))/
√

(xj(t)− xref
j )2 + τ2vj(t)2

takes a finite value when such points are crossed (τ is some fixed scaling time). As
will be shown, this assures that the new dynamical variables hQ(x,v) produced by the
quadratization route proposed here do not diverge along a generic trajectory contained
in D(xref).

Clearly, Eq. (5.30) puts limitations on the variety of force fields which can be treated
with the present strategy. For example, force fields having terms linear in x and other
terms linear in v must take the special form Fj(x,v) = aj(xj − xref

j ) + bjvj with aj and
bj given coefficients; this corresponds to the peculiar case of decoupled motion in each
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dimension. It is worth stressing that the requisite in Eq. (5.30) can be relaxed if the
reference point is taken outside a delimited phase-space region of interest, so that the

terms
√

(xj − xref
j )2 + τ2v2

j never vanish (in such a case, xref does not even need to be

a stationary point). With a little effort, the quadratization strategy presented in the
following can be re-elaborated accordingly. In the present explanatory study we opt to
focus only on cases for which Eq. (5.30) holds, so that no phase-space delimitation is
strictly required.

5.3.2 The quadratization strategy

Let us consider a reference stationary point (xref ,0) and (possibly) the associated domain
D(xref) in the phase-space. We now introduce a scaling time τ > 0 and, for each j-th
configurational variable, a scaling factor lj ; these parameters can be, in principle, freely
chosen. The reference point and the scaling factors are employed to build the following
shifted-dimensionless variables:

x̃j = (xj − xref
j )/lj

ṽj = vj τ/lj
(5.31)

Let us now turn from the original cartesian-like representation to a polar-like represen-
tation. For each pair of variables x̃j and ṽj , consider the associated radial and angular
variables ρj and θj specified by

ρj =
√
x̃2
j + ṽ2

j (5.32)

together with

ρj cos θj = x̃j

ρj sin θj = ṽj
(5.33)

With these positions, each original variable xj and vj is expressed as a function only of
the associated variables ρj and θj :

xj(θ,ρ) = xref
j + lj ρj cos θj , vj(θ,ρ) = (lj/τ) ρj sin θj (5.34)

Finally,

F̃j(θ,ρ) ≡ τ2

lj
Fj(x(θ,ρ),v(θ,ρ)) (5.35)

is the scaled force field component as a function of the new variables. In the polar-like
representation, the reference stationary point corresponds to ρref = 0, while a set of
angles θref cannot be generally specified.

The next step is to expand F̃j(θ,ρ) as a finite summation where each addend contains
powers of the ρ components multiplied by periodic functions of the θ components; a
Fourier decomposition is then employed for the dependence on θ. As a whole, we adopt
the expansion

F̃j(θ,ρ) =
∑
k,m

fj(k,m) eık·θ Πm(ρ) (5.36)
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where Πm(ρ) are monomial-like terms

Πm(ρ) :=
∏
j′

ρ
mj′

j′ (5.37)

The summation in Eq. (5.36) runs over arrays m having non-negative entries (possibly
not integer) and over arrays k with integer entries (null, negative and positive). For
an easier handling of the equations, the summation is left unrestricted on k and m,
meaning that the contributing terms are selected by the non-null coefficients fj(k,m).
These dimensionless complex-valued coefficients are subjected to the symmetry relation
fj(k,m)∗ = fj(−k,m) so that F̃j is real-valued. Furthermore, fj(k,0) = 0 for all k and
j assures that each F̃j component vanishes at the stationary point. In fact, this condition
implies that a ρ-independent term is absent on the right-hand-side of Eq. (5.36).

The number of terms in the summation of Eq. (5.36) can actually be finite (for
example, this happens if the functions Fj(x,v) are multivariate polynomials on the
variables x and v), or it can be finite in practice once a truncation of Eq. (5.36) can be
taken as a good workable approximation of the true algebraic form of F̃j(θ,ρ).

To proceed, we recall that the original force field F(x,v) must be consistent with
Eq. (5.30). Since both xj − xref

j and vj depend linearly on ρj (see Eq. (5.34)), this

implies that all monomial-like terms which enter F̃j(θ,ρ) must contain ρj elevated to
an exponent mj ≡ εj ≥ 1 by assumption. Thus, the required form of Eq. (5.30) implies
that

fj(k,m) = 0 if mj < 1 (5.38)

As anticipated, Eq. (5.38) implies that the ratio F̃j(θ,ρ)/ρj takes a finite value, possibly
zero, even when ρj accidentally vanishes along a trajectory.

Let us now introduce the complex-valued functions

hk,m,j(θ,ρ) = −ı ε(j,m) eık·θ Πm(ρ)/ρj (5.39)

where ε(j,m) is nothing but a “selection factor”:

ε(j,m) =

{
1 if mj ≥ 1
0 if mj < 1

(5.40)

By construction, the non-identically-null functions hk,m,j(θ,ρ) do not diverge if ρj van-
ishes along a trajectory. From Eq. (5.39) it is easy to check the fulfillment of the
symmetry relation hk,m,j(θ,ρ)∗ = −h−k,m,j(θ,ρ).

Under the condition in Eq. (5.38), in the Appendix we demonstrate that the evolution
of these functions, taken as the new dynamical variables, is governed by the following
system of ODEs:

ḣk,m,j = −hk,m,j

∑
k′,m′,j′

M(k,m,j),(k′,m′,j′) hk′,m′,j′ (5.41)
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where M is the fixed and complex-valued connectivity matrix

M(k,m,j),(k′,m′,j′) =
1

4τ

[
kj′
(
δk′,2uj′ + δk′,−2uj′

− 2δk′,0

)
−(mj′ − δj,j′)

(
δk′,2uj′ − δk′,−2uj′

)]
δm′,uj′

+
1

2τ
fj′(k

′ − uj′ ,m
′)
(
kj′ −mj′ + δj,j′

)
+

1

2τ
fj′(k

′ + uj′ ,m
′)
(
kj′ +mj′ − δj,j′

)
(5.42)

with uj the following arrays (one per component j):

uj = (0, 0, · · · , 0, 1, 0, · · · , 0) , entry 1 at the j-th position (5.43)

It can be verified that such a matrix possesses the symmetry relation

M(−k,m,j),(−k′,m′,j′) = −M∗(k,m,j),(k′,m′,j′) (5.44)

Note that Eq. (5.41) takes precisely the structure of Eq. (5.3) once one enumerates
these terms by establishing (arbitrarily) the associations

Q↔ (k,m, j) (5.45)

Also note that we have opted here to make the hQ↔(k,m,j) terms dimensionless, while
the elements of the connectivity matrix have units of inverse-of-time due to the divisions
by τ . This is an immaterial arbitrary choice since the division by τ could have been
done in Eq. (5.39) rather than in Eq. (5.42) (so that the physical dimensions of the hQ
components and of the matrix elements would have been switched). All considerations
in the following are anyway not affected by such a choice.

Up to here, the functions hk,m,j introduced in Eq. (5.39) form an ensemble of in-
finite extension. However, a subset of essential terms hk,m,j , whose ODEs of the type
in Eq. (5.41) constitute an autonomous system, is determined by the structure of the
connectivity matrix itself. By looking at Eq. (5.42) it appears that the matrix has non-
null elements only on the columns associated with the sets (±2uj ,uj , j), (0,uj , j) and
(ke,j ±uj ,m

e,j , j), where ke,j and me,j are such that fj(k
e,j ,me,j) 6= 0 in the expansion

of Eq. (5.36). This implies that the corresponding essential terms h±2uj ,uj ,j , h0,uj ,j and
hke,j±uj ,me,j ,j evolve autonomously. Let QS be the total number of these essential terms.
Clearly, only the square QS ×QS sub-matrix of M formed with the elements related to
the essential terms needs to be accounted for. In what follows, such a relevant portion
of the matrix in Eq. (5.42) will be directly termed as the matrix M for the given system.

Finally, the elements of the matrix V introduced in Eq. (5.6) are given by

V(k,m,j),(k′,m′,j′) = M(k,m,j),(k′,m′,j′) hk′,m′,j′ (5.46)

where (k,m, j) and (k′,m′, j′) implicitly belong to the essential ensemble of sets of
indexes. A direct inspection reveals that the following symmetry relation holds:

V(−k,m,j),(−k′,m′,j′) = V ∗(k,m,j),(k′,m′,j′) (5.47)
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We draw attention to the fact that (see Eq. (5.39)) the terms h0,uj ,j = −ı are constant.
The number of these purely imaginary and constant terms is equal to the number N
of configurational variables. The corresponding rate functions defined in Eq. (5.8) are
identically null for all j:

z0,uj ,j =
∑

k′,m′,j′

V(0,uj ,j),(k′,m′,j′) = 0 (5.48)

This concludes the derivation of the canonical quadratic form of ODEs for the evo-
lution of the dynamical system. By adopting an enumeration as in Eq. (5.45), the
quantities defined in Eq. (5.46) evolve according to the law given in Eq. (5.7). Thus, by
following the path described in section 5.2.1 it is possible to achieve the hyper-spherical
representation and to proceed with the identification of the attracting subspaces in the
extended Q2

S-dimensional space spanned by the versors eJ in Eq. (5.13).
We must stress the crucial point that both the elements of the matrix M and the

terms hQ depend parametrically on the chosen xref , on τ , and on the scaling factors lj .
However, the kind of dependence is such that the matrix V, which ultimately specifies
the ASs in the extended space and the corresponding ARs in the phase-space, depends
parametrically only on xref and τ but not on the lj parameters. As it can be proved by
direct inspection (see the proof in the Supplementary material), such an independence
of the lj comes from the fact that the angular variables θ do not depend on the lj
while the radial variables ρ are simply proportional to powers of the lj parameters. The
dependence of the ASs and ARs on xref and τ means that the whole procedure is useful
for obtaining objective information about the dynamics of the system in its phase-space
only if these required parameters can be set on sound physical grounds.

5.3.3 Backward transformation

Let us consider the inversion route from the matrix V to the variables ρ and θ (the
further step to retrieve x and v is trivial from Eq. (5.34)). First, given the matrix
M one has to retrieve the set hk′,m′,j′ from V by considering Eq. (5.46). From the
definition in Eq. (5.39) it follows that the set of angles θ can be obtained, component
by component, from the comparison of the two forms

θj = 2−1 arccos
[
ı(h2uj ,uj ,j + h−2uj ,uj ,j)/2

]
θj = 2−1 arcsin

[
(h2uj ,uj ,j − h−2uj ,uj ,j)/2

] (5.49)

The unique value of θj which satisfies both relations eliminates the ambiguity due to the
periodicity of the trigonometric functions. Then, the resulting set of angles is employed
to obtain the components of ρ. Some algebraic steps yield

ρj = e(R−1w)j (5.50)
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where the N ×N constant matrix R and the column-vector w are constructed from N
suitably selected hke,j ,me,j ,j terms. Namely,

Rj,j′ = me,j
j′ − δj,j′

wj = ln
(
ı e−ık

e,j ·θhke,j ,me,j ,j

) (5.51)

The terms hke,j ,me,j ,j have to be selected in the way that the matrix R, constructed with
the entries of me,j , is invertible. Note that the matrix R is not invertible, and hence this
backward transformation is not feasible, exactly for the simplest systems whose force
field has a global linear dependence on configurational coordinates and velocity (such
linear cases are illustrated in the Supplementary material). On the other hand, the
dynamics of linear systems can be treated by means of a basic eigenvalues-eigenvectors
analysis.

5.3.4 Case study: motion in one dimension

In one dimension (N = 1, hence Ns = 2 for the pair of variables x and v), Eqs. (5.28)
reduce to ẋ = v and v̇ = F (x, v). By retracing all steps described in the previous
section, the shifted-scaled dimensionless variables are x̃ = (x − xref)/l = ρ cos θ and
ṽ = v τ/l = ρ sin θ where l is the chosen scaling factor for x, and τ is the chosen scaling
time. We recall that xref is a stationary point of the system. Then, the dimensionless
force is F̃ (θ, ρ) = τ2 l−1 F (x(θ, ρ), v(θ, ρ)) with mixed polynomial-Fourier decomposition
given by F̃ (θ, ρ) =

∑
k

∑
m≥1 f(k,m) eıkθ ρm. The dynamical variables in the extended

space are hk,m(θ, ρ) = −ı ε(m) eıkθ ρm−1 with the factor ε(m) = 0 if m < 1 (otherwise it
is equal to 1). The evolution of the hk,m(θ, ρ) variables is described by

ḣk,m = −hk,m
∑
k′,m′

M(k,m),(k′m′)hk′,m′ (5.52)

with the connectivity matrix

M(k,m),(k′m′) =
1

4τ

[
k(δk′,2 + δk′,−2 − 2δk′,0)− (m− 1)(δk′,2 − δk′,−2)

]
δm′,1

+
1

2τ
f(k′ − 1,m′) (k −m+ 1) +

1

2τ
f(k′ + 1,m′) (k +m− 1)

(5.53)

In the present case (N = 1), only one term, namely h0,1, is constantly equal to −ı.
The corresponding evolution rate z0,1 is identically null.

The above equations are valid in all generality regardless of the specific form of the
force F (x, v), under the sole constraints imposed by Eq. (5.30). As an example, in what
follows we consider the case of F (x, v) being linearly dependent on the velocity, that is
F (x, v) = g(x)− ξv where g(x) is the conservative part of the force and ξ is the friction
coefficient. We call this kind of friction “Stokes-like”, in analogy with the hydrodynam-
ical force that opposes to the motion of a body in viscous environments for velocities
low enough. The case g(x) = −Kx corresponds to the simplest non-trivial situation
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of a damped harmonic oscillator, whose features are illustrated in the Supplementary
material. Here we inspect the more interesting case of conservative/damped motion in

a symmetric double-well potential of the form U(x) = ∆
[
(x/c)2 − 1

]2
. The potential

has two equivalent minima located at x = ±c and a central maximum at x = 0; ∆
is the barrier between the minima. The conservative part of the force is obtained as
g(x) = −dU(x)/dx. The dynamics in similar kinds of double-well potential have been
widely studied in the past (see for example the work of Ryter in Ref. [19]).

We shall focus here on damped dynamics, while the conservative case for ξ = 0 is
illustrated in the Supplementary material. The reference stationary point can be either
xref = +c or xref = −c. Due to the symmetry of F (x, v) it suffices to consider only
one of the two reference points. We choose xref = +c and opt to confine the analysis to
the phase-space portion D(xref) within which the trajectories tend to such a stationary
point.

Some elaboration leads to the finding that QS = 12, hence the attracting subspaces
are defined in a 144-dimensional space. The associations Q ↔ (k,m) are the following:
1 ↔ (−4, 3), 2 ↔ (−3, 2), 3 ↔ (−2, 3), 4 ↔ (−2, 1), 5 ↔ (−1, 2), 6 ↔ (0, 1), 7 ↔ (0, 3),
8 ↔ (+1, 2), 9 ↔ (+2, 1), 10 ↔ (+2, 3), 11 ↔ (+3, 2), 12 ↔ (+4, 3). The structure
of the connectivity matrix obtained from Eq. (5.53) is displayed in the Supplementary
material. The constant term h0,1 here corresponds to h6 and the associated rate z6

is identically null. The factors required to compute the matrix elements are found to
be6 f(±1, 1) = ±ıA/2 − B/2, f(±2, 2) = −C/4, f(0, 2) = −C/2, f(±3, 3) = −D/8,
f(±1, 3) = −3D/8, with coefficients A = τξ, B = 2τ2αc2, C = 3τ2α l xref , D = τ2α l2

where α = 4∆/c4.
In what follows, all quantities are implicitly meant to be expressed in some units of

measure. In these units, for the present calculations we opt to set τ = 1 and l = 1.
We recall that the results will depend on the chosen value of τ but not on l. For the
calculations we then set c = 1, ∆ = 5 and ξ = 10. The range explored is the part of
D(xref) for −2 ≤ x ≤ +2, −3 ≤ v ≤ +3. Only two attracting subspaces (ASs) are
present in such a region. The detailed analysis of the rates zQ reveals that they are
divided into two sets formed by functions with an equal real part. Namely, one set is
constituted by the five (d = 5) rates z1, z3, z7, z10, z12 with degenerate real parts; the
other set is formed by the three (d = 3) rates z4, z6, z9. When the degenerate real
parts of one of these sets become the lowest, that set of rates identifies the AS in the
144-dimensional hyper-spherical space. In summary, two attracting subspaces are found
for this specific dynamical system: a 60-dimensional (d = 5) one and a 36-dimensional
(d = 3) one.

Figure 5.2 shows the results of the numerical inspection. The colored areas in panel
(a) show the attractiveness regions (ARs) corresponding to the ASs in the hyper-spherical

6The starting point consists of inserting x = (l x̃ + xref) and v = lṽ/τ in the expression
F (x, v) = g(x) − ξv with g(x) = −dU(x)/dx = −α(x3 − c2x) where α = 4∆/c4. The multiplica-
tion by τ2/l then yields the scaled force expressed as F̃ (x̃, ṽ) = −Aṽ − Bx̃ − Cx̃2 − Dx̃3 with the
coefficients given in the main text. The factors f(k,m) are readily obtained, with a few algebraic steps,
by inserting x̃ = ρ[eıθ + e−ıθ]/2 and ṽ = −ıρ[eıθ − e−ıθ]/2.
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Figure 5.2: Panel (a) displays the phase-space portrait for the one-dimensional damped
dynamics. The reference stationary point is xref = +1 and only the pertinent phase-
space domain D(xref) is considered. The colored areas correspond to the attractiveness
regions associated with the attracting subspaces experienced by the vector ψ in the
hyper-spherical space. The following associations between colors and lowest degenerate
zrQ functions are employed (see the text for details): green (grey in greyscale) ↔ zr4, z

r
6,

zr9 (d = 3); yellow (light grey in greyscale) ↔ zr1, zr3, zr7, zr10, zr12 (d = 5). Several
trajectories starting from points drawn at random inside D(xref) are shown. Panel (b)
shows the distance of ψ from the current attracting subspace for the two trajectories
drawn with dashed blue line and dashed-dotted red line in panel (a).

representation.
The ARs corresponding to the subspace with d = 5 are displayed in yellow, while

those corresponding to the subspace with d = 3 are displayed in green. Starting from
randomly drawn points, some trajectories have been generated by means of the DVODE
solver.[20]7 Panel (b) of the figure shows the monotonic decrease of the distance dA (see
Eq. (5.17)) between ψ(t) and the actual AS along the two trajectories displayed with
same style in panel (a) (consider that the damped evolution continues indefinitely and
the plot in the figures is just interrupted at a certain time). Looking at the phase-space
portrait, it appears that different ARs are separated by the horizontal axis at v = 0 and

7The FORTRAN code has been downloaded from: https://computation.llnl.gov/casc/odepack/.
Last view: 15th May 2018.

https://computation.llnl.gov/casc/odepack/
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by the separatrix which falls close to the perceived curve where the trajectories bundle
in tending to the reference stationary point. However, we recall that these outcomes are
related to the choice τ = 1. Supplementary calculations (not shown here) have revealed
that the pattern of the ASs markedly depends on the chosen value of τ , although a
convergence occurs as τ increases. In particular, passing from τ = 1 to τ = 5 the
boundaries of the ARs change only slightly, and the further increase to τ = 10 has no
detectable effect. For completeness, in the Supplementary material we also provide the
contour plot of the average rate Z(x, v) defined in Eq. (5.24). Because of the dependence
on the specific choices of the parameters, we feel that it is not sensible to make further
comments on the specific outcomes, which should be taken only as an illustration of
the kind of results obtainable with this route of ODEs transformation once a motivated
choice of τ is made.

5.4 Concluding remarks

In this work we have illustrated the potentiality of recasting the evolution laws of classes
of autonomous dynamical systems into “canonical formats”. The investigation of the
intrinsic properties of these general formats, in fact, can shed light on the properties of the
specific dynamical system under consideration. By generalizing an approach previously
developed by us for chemical kinetics, we have presented a general methodological path
that can be useful in achieving the goal. Specifically, we proposed to look for a two-
step transformation made of a “quadratization” of the original ODEs system, followed
by a conversion into a hyper-spherical representation. In doing this, the number of
dynamical variables generally increases, but mutual interrelations maintain unaltered
the number of degrees of freedom. Under the assumption that it is possible to devise
such a kind of transformation, the remarkable point is that the mathematical form of the
new ODEs in the hyper-spherical representation allows us to unveil the existence of fixed
subspaces (the ASs throughout the text) which are attracting for a normalized “state-
vector” (ψ) encoding part of the information about the physical state of the system.
The attractiveness property of an AS lasts only while the trajectory lies within specific
compact regions of the physical space (the ARs throughout the text) that correspond
to that AS. The discovery of the attracting subspaces is the main outcome of this work:
showing that even for non-linear dynamics there exist invariant objects (the subspaces
are indeed fixed) which are “turned on”, one at a time, to become attracting when the
trajectory enters some specific regions of the physical space.

We remark again the fundamental point that the results presented in section 5.2
are a characteristic of the unique and parameter-free canonical format of the ODEs
(Eqs. (5.12)) for the evolution in the hyper-spherical space. This means that general
features of the dynamics in such an extended space can be “reflected back”, case by
case, to see how they are displayed in the configurational space of the specific system
under consideration.

Leaving the general framework, we have also proposed an example of a strategy to
perform the quadratization step (which is the first and the crucial part of the two-step
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transformation) for the class of dynamical systems of Eq. (5.28) under the requirements
specified in section 5.3.1. In such a context, the dynamical variables are general con-
figurational degrees of freedom and the associated velocities. The resulting quadratic
format of ODEs, and the final equations in the hyper-spherical representation, involve
complex-valued quantities; to our knowledge, this is by itself a novelty in the field of the
canonical formats of dynamical systems. The calculations made for the simple case of
one-dimensional dynamics in a double-well potential served mainly to illustrate how the
procedure works. We stress again that the quadratization strategy proposed here should
be taken just as an example and as a proof of feasibility of the global approach; different
quadratization procedures, possibly devoid of the present drawbacks and limitations,
might be devised in the future.

Apart from technicalities and choices to be made case-by-case, the most crucial point
is now to understand how to “dress” the mathematical features with physically observ-
able traits or, at least, to provide some practical utility of the mathematical elements
themselves. In other words: do the attracting subspaces possess a physical (observable)
reality? For example, in the context of the mass-action-based chemical kinetics we have
already pointed out their connection with the observable slow manifold feature. We
should also point out that the canonical formats in equations (5.7) or (5.12) might hide
other different properties in addition to the existence of attracting subspaces discussed
here. In fact, all considerations have been confined to the evolution of the state-vector
ψ, which encodes only part of the information about the physical state of the system.
The knowledge of ψ alone is insufficient to retrieve the full physical state. What about
the norm S? Are there some general statements which can be made if S is also ac-
counted for? Furthermore, we stress that only the real parts of the rates zQ play a
role (see section 5.2.2) in the specification of the attracting subspaces. What about the
imaginary parts? Do they control some other aspects of the dynamical behaviour in the
hyper-spherical representation?

These are only a few open issues and questions that, in our opinion, make it worth-
while to continue the exploration of the mathematical properties of these canonical
formats of the evolution laws.

Appendix. Derivation of Eq. (5.41)

The system of ODEs for the evolution of the scaled variables defined in Eq. (5.31) is

dx̃j(θ,ρ)

dt
= τ−1ṽj(θ,ρ)

dṽj(θ,ρ)

dt
= τ−1F̃j(θ,ρ)

(5.54)

with the scaled force field given in Eq. (5.35). By taking the time-derivative of both
members of Eqs. (5.33), and making use of Eq. (5.54), we get(

cos θj − sin θj
sin θj cos θj

)(
ρ̇j
ρj θ̇j

)
= τ−1

(
ṽj
F̃j

)
= τ−1

(
ρj sin θj
F̃j

)
(5.55)
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The rotation matrix on the left-hand-side is invertible; pre-multiplication of both mem-
bers by its inverse yields the equations for the dynamics in the (θ,ρ)-space:

ρ−1
j ρ̇j = τ−1 sin θj cos θj + τ−1 sin θjF̃j(θ,ρ)/ρj

θ̇j = −τ−1 sin2 θj + τ−1 cos θjF̃j(θ,ρ)/ρj
(5.56)

The divisions by ρj are permitted since, where ρj = 0, F̃j(θ,ρ) also vanishes and the
resulting form “0/0” takes a finite value according to Eq. (5.38). Now consider the
following complex-valued functions

ϕk,m,j(θ,ρ) = ε(j,m) eık·θ Πm(ρ)/ρj (5.57)

where the notation introduced in section 5.3.2 has been adopted. In particular, we recall
that ε(j,m) is a “selection factor” which specifies that only the terms with mj ≥ 1 are
not null. These functions possess the symmetry relation ϕk,m,j(θ,ρ)∗ = ϕ−k,m,j(θ,ρ).
From Eq. (5.36) (and considering the requisite in Eq. (5.38)) it follows that the expansion

F̃j(θ,ρ)/ρj =
∑
k,m

fj(k,m)ϕk,m,j(θ,ρ) (5.58)

can be inserted in Eqs. (5.56). In terms of the arrays uj given in Eq. (5.43), and making
use of Euler formulae cos θj =

(
eıθj + e−ıθj

)
/2 and sin θj = −ı

(
eıθj − e−ıθj

)
/2, it follows

that

−ı ρ−1
j ρ̇j =− 1

4τ

(
e2ıθj − e−2ıθj

)
− 1

2τ

∑
k,m

fj(k,m)
(
ϕk+uj ,m,j(θ,ρ)− ϕk−uj ,m,j(θ,ρ)

)
θ̇j =

1

4τ

(
e2ıθj + e−2ıθj − 2

)
+

1

2τ

∑
k,m

fj(k,m)
(
ϕk+uj ,m,j(θ,ρ) + ϕk−uj ,m,j(θ,ρ)

)
(5.59)

The time-derivative of the functions ϕk,m,j in Eq. (5.57) yields

ϕ̇k,m,j = ı ϕk,m,j

∑
j′

[
kj′ θ̇j′ − ı

(
mj′ − δj,j′

)
ρ−1
j′ ρ̇j′

]
(5.60)

By inserting the expressions in Eqs. (5.59) into Eq. (5.60) it follows that

ϕ̇k,m,j =ıϕk,m,j

{
1

4τ

∑
j′

[
kj′
(
e2ıθj′ + e−2ıθj′ − 2

)
− (mj′ − δj,j′)

(
e2ıθj′ − e−2ıθj′

)]
+

1

2τ

∑
j′,k′,m′

fj′(k
′,m′)

[
kj′
(
ϕk′+uj′ ,m

′,j′ + ϕk′−uj′ ,m′,j′
)

− (mj′ − δj,j′)
(
ϕk′+uj′ ,m

′,j′ − ϕk′−uj′ ,m′,j′
)]}

(5.61)
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By exploiting the identity

ϕk,uj ,j(θ,ρ) ≡ eık·θ (5.62)

the following compact and autonomous set of evolution equations is achieved,

ϕ̇k,m,j = ı ϕk,m,j

∑
k′,m′,j′

M(k,m,j),(k′,m′,j′) ϕk′,m′,j′ (5.63)

with the connectivity matrix M given in Eq. (5.42). The final form in Eq. (5.41) is then

obtained by recognizing that hk,m,j(θ,ρ) = −ı ε(j,m)eık·θ Πm(ρ)/ρj = −ı ϕk,m,j(θ,ρ).

Supplementary material

Proof that the matrix V in Eq. (5.46) does not depend of the scaling
factors lj (statement made in section 5.3.2)

Let us prove that the elements of the matrix V do not depend on the scaling factors
lj , here collected in the array l. All key-quantities that depend on the variables ρ and
hence on the scaling factors will be indicated with the subscript “(l)”. The arguments
of the functions are omitted for the sake of clarity.

Let us introduce the factors Φm(l) = Πjl
mj
j . Given two different sets l1 and l2, for

the monomial-like factors defined in Eq. (5.37) one has Π
(l2)
m = Π

(l1)
m Φm(l1)/Φm(l2).

Now consider the expansion of the (non-scaled) component Fj of the force field, which

is obtained by combining Eqs. (5.35) and (5.36) Fj = τ−2
∑

k,m[f
(l)
j (k,m)lj ]e

ık·θ Π
(l)
m .

By equating the expressions of the same Fj written in terms of quantities referred to

the sets l1 and l2, and then replacing Π
(l2)
m with Π

(l1)
m Φm(l1)/Φm(l2), it follows that the

equality is fulfilled only if the expansion coefficients transform as

f
(l2)
j (k,m) = f

(l1)
j (k,m)

Φm(l2)

Φm(l1)

l1,j
l2,j

By considering such a relation, from Eq. (5.42) it follows that the transformation rule
for the elements of the matrix M is:

M
(l2)
(k,m,j),(k′,m′,j′) = M

(l1)
(k,m,j),(k′,m′,j′)

Φm′(l2)

Φm′(l1)

l1,j′

l2,j′
(5.64)

In deriving Eq. (5.64) it has been taken into account that the factors Φm′(l)/lj′ are
equal to 1 if m′ = uj′ . Then, from the definition in Eq. (5.39), it also follows that the
transformation rule is:

h
(l2)
k,m,j = h

(l2)
k,m,j

Φm(l1)

Φm(l2)

l2,j
l1,j

(5.65)

Equations (5.64) and (5.65) show that both the matrix M and the terms hQ de-
pend on the chosen set of scaling factors. However, when Eqs. (5.64) and (5.65) are
inserted in Eq. (5.46) (with Eq. (5.65) expressed for k′, m′ and j′), the factors cancel

and V
(l2)

(k,m,j),(k′,m′,j′) = V
(l1)

(k,m,j),(k′,m′,j′) for any l1 and l2.
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Quadratization of mechanical-like ODEs with linear force fields

For linear systems, the requisite expressed by Eq. (5.30) imposes that each j-th dimension
is decoupled from the others, that is, each force field component must take the form
Fj(x,v) = aj(xj − xref

j ) + bjvj where aj and bj are specific coefficients (possibly null).
Physically, such a dynamical system corresponds, in abstract terms, to N independent
harmonic oscillators possibly damped by a Stokes-like friction.

By employing Eqs. (5.34) and using Euler formulae for the trigonometric func-
tions, it is straightforward to obtain the following coefficients of the expansion in

Eq. (5.36): fj(k,m) =
[
Ajδk,uj +A∗jδk,−uj

]
δm,uj , with Aj = (ajτ

2 − ı bjτ)/2 where

τ is the adopted scaling time. Explicitly, the relevant terms correspond to ke,j = ±uj ,
me,j = uj . Thus, the essential hQ terms (see the discussion in section 5.3.2) turn out to
be h±uj ,uj ,j(θ,ρ) = −ıe±2ıθj and h0,uj ,j(θ,ρ) = −ı for each j from 1 to N . The total
number of these terms is thus QS = 3N .

Note that the hQ do not depend on ρ and their modulus is constantly equal to 1.
This implies that |VQ,Q′(t)| = |MQ,Q′ | (recall that the elements of M have been set
to have physical dimension of inverse-of-time). Ultimately, the norm S in Eq. (5.10)
is not only constant during the time evolution, but it also takes identically the value

S =
√∑

Q,Q′ |MQ,Q′ |2 which is a characteristic of the given system. Concerning the

rates zQ =
∑

Q,Q′MQ,Q′hQ′ , by inserting the explicit values of the connectivity matrix
elements obtainable from Eq. (5.42) using the factors fj(k,m) given above, a few alge-
braic steps lead to zrQ = 0 for all Q. This implies that for such a kind of linear system
there is no attracting subspace or, equivalently, that the attracting subspace is the full
Q2
S-dimensional hyper-spherical space itself.

Finally, since me,j = uj , from Eq. (5.51) it follows that Rj,j′ = 0 for any
pair j, j′. The fact that R is the null matrix implies that the transformation
(x,v) → (h1, h2, · · · , hQS ) is not invertible by adopting the standard route outlined
in section 5.3.3. This means that some additional information is required to perform the
backward transformation.

To summarize, some peculiarities are shown by the simplest dynamical systems (the
linear ones) compatible with the requisite in Eq. (5.30) about the force field: identically
constant norm S, lack of attracting subspaces for the state-vector ψ, and impossibility
to retrieve the physical state (x,v) by means of the standard backward transformation.

The damped harmonic oscillator

Let us make reference to the contents of section 5.3.4 and specify the equations (5.52)
and (5.53) for the case of a damped harmonic oscillator. The evolution equations are
ẋ = v and v̇ = F (x, v) = −Kx − ξv, and the reference point is clearly xref = 0. In
this case (N = 1) the number of relevant hQ terms is QS = 3. Namely, these terms are
h1 ≡ h−2,1 = −ıe−2ıθ, h2 ≡ h0,1 = −ı and h3 ≡ h+2,1 = −ıe2ıθ. With this enumeration,
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the matrix M is

M =

 α β α∗

0 0 0
−α −β −α∗


where α = (Kτ − τ−1 + ıξ)/2 and β = Kτ + τ−1, with τ the adopted scaling time. The
constant norm S may then be expressed as S =

√
3τ−2 + ξ2 + 2K + 3K2τ2. Finally,

zr1 = zr2 = zr3 = 0 identically. This implies that no attracting subspace of dimension
lower than Q2

S is present for such a dynamical system.

Structure of the connectivity matrix for the one-dimensional case model
treated in section 5.3.4 of the main text

The figure below shows the pattern of the elements of the connectivity matrix M for the
example of one-dimensional damped dynamics (ξ 6= 0) treated in section 5.3.4 (motion
in a double-well potential). The pattern is the same for xref = ±1. The correspondence
adopted between the cumulative index Q and the pairs (k,m) is shown on the right side.

Conservative motion (ξ = 0) for the one-dimensional case model illus-
trated in section 5.3.4 of the main text

The same analysis illustrated in the main text for the damped dynamics in the one-
dimensional double-well potential (see section 5.3.4 and Figure 5.2 of the main text),
has been carried out also for the conservative case.

For conservative dynamics (i.e., for ξ = 0), the trajectories are closed curves in the
(x, v) space and the “total energy” E(x, v) = U(x) + v2/2 is conserved. The condition
E(x, v) ≤ ∆ specifies the phase-space region corresponding to the motion within the
wells of U(x). Such a region displays two lobes which are connected at x = 0 and v = 0.
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[See for example: A. Polimeno, P. L. Nordio, G. Moro, “Master equation representa-
tion of Fokker-Planck operators in the energy diffusion regime: strong collision versus
random walk processes”, Chem. Phys. Lett. 144(4), 357-361 (1988).] On the contrary,
E(x, v) > ∆ specifies the remaining “outer” portion of phase-space. Here we focus on
the former case of intra-well motions, and choose xref = +c; as domain D(xref) we shall
consider the associated lobe for x > 0.

The results are shown in the figure below. The colored areas in panel (a) show the
ARs corresponding to the ASs in the hyper-spherical representation. It can be seen that
the orthogonal axes v = 0 and x = xref delimit the ARs, hence there is a sudden switch
of AS when one of these axes is crossed. The trajectories displayed are clearly traveled
along in a clockwise direction. Panel (b) shows one period of evolution of the distance
dA (see Eq. (5.17)) between ψ(t) and the actual AS for the blue-dashed trajectory. The
initial point corresponds to x(0) = 1 and v(0) > 0 and the vertical lines are placed at
the times where there is a switch of AS. Correspondingly, in panel (a) a change of AR
in the physical phase-space is observed. Note that, as expected, while the trajectory lies
within an AR in the physical phase-space, the distance dA constantly decreases.

Figure 5.3: Panel (a) displays the phase-space portrait for the one-dimensional conser-
vative dynamics (ξ = 0). The dotted black curve is the separatrix E(x, v) = ∆ which
delimits the phase-space domain considered here. The colored areas correspond to the
attractiveness regions associated with the attracting subspaces experienced by the vector
ψ in the hyper-spherical space. The following associations between colors and lowest
degenerate zrQ functions are employed: green ↔ zr4, z

r
6, zr9 (d = 3); yellow ↔ zr1, zr3, zr7,

zr10, zr12 (d = 5). Three trajectories are plotted with solid black and dashed blue lines.
Panel (b) shows the distance of ψ from the attracting subspaces over one period along
the trajectory drawn with dashed blue line in panel (a). The starting point corresponds
to x(0) = 1 and v(0) > 0.
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Landscape of the average rate Z(x, v) for the one-dimensional damped
dynamics illustrated in section 5.3.4 of the main text

The figure here below shows the contour plot of the average rate Z(x, v) defined in
Eq. (5.24). The dashed lines represent the same trajectories displayed in Figure 5.2 of
the main text. We recall that Z(x, v) can be taken as an indicator of slowness of the
dynamics if it is observed in the hyper-spherical space.

Figure 5.4: Contour plot of the average rate Z(x, v) in base-ten logarithmic scale. The
portrait refers to the one-dimensional damped dynamics illustrated in the main text.
The dashed lines represent the same trajectories displayed, in Figure 5.2 of the main
text, in red and blue colors.
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Chapter 6

Towards dimensional reduction in
stochastic chemical kinetics:
Phenomenological analogy with
the “slow manifold” feature in
the deterministic context

Note

This chapter is based on the draft of an unpublished work whose contributors are Sara Dal

Cengio, Paolo Nicolini, Alessandro Ceccato and Diego Frezzato.

Abstract

In this work we move some steps in the topic of dimensional reduction of the descrip-
tion of stochastic chemical kinetics. Starting from the existence of the so-called “slow
manifolds” in deterministic mass-action-based kinetics (i.e., hyper-surfaces in the con-
centrations space where the system’s trajectories bundle towards the equilibrium), we
wonder if a similar feature also exists in the stochastic context where the evolution
becomes a fluctuation in the configuration space of the number of molecules of each
species. By performing simulations on simple schemes we show that a “bundling re-
gion”, where the evolution also slows down, indeed exists. The presence/identification
of this region where the stochastic trajectories “fall” and the slow part of the evolution
takes place, may be the basis for new dimensional reduction strategies. Then we present
a phenomenological descriptor to detect the bundling region, and highlight its poten-
tial usefulness to formally define such a region by starting from the chemical master
equation.
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6.1 Introduction

The description of the time evolution of reactive systems is a need shared by several
branches of theory and applications in chemical sciences. Here we shall focus on (com-
plex) reactions involving a number N of species, and whose mechanism is known and
made of M elementary processes. Moreover, we assume that the system is at constant
temperature and spatially homogeneous. In many contexts, like for example biochemi-
cal networks, the numerical time propagation of the system’s state may be hampered by
the large number N of dynamical variables. Also, the number M of required physical
parameters (kinetic rates or factors entering the propensity functions, see below) may be
huge, many of them may be unknown, and the possible large spread in their values may
limit the time-step of propagation used in dynamics simulations (“stiffness”). On the
other hand, when one focuses on selected time-windows of the process (for example, the
slowest part of the process) or, better, on portions of trajectories within peculiar regions
in the space of system’s variables, it is frequent to observe that many of the N species
and/or of the M elementary processes play a minor role, that is, they may be neglected
or “lumped” into a smaller number of new dynamical variables. The construction of
such a “contracted” mathematical description of the system’s evolution is the target of
the so-called “dimensional reduction of chemical kinetics”.

The strategies to achieve such a goal depend on the appropriate mathematical mod-
elling which has to be adopted on the basis of the numbers of molecules involved in the
fixed volume where the process takes places.

In the context of macroscopic systems, that is when dealing with sufficiently high
numbers of molecules, the mean-field approach known as “mass action law” is the theo-
retical paradigm to describe the evolution of the reaction. The mathematical structure
consists in a system of polynomial ordinary differential equations (ODEs) for the volu-
metric concentrations of the N species.[1] By collecting the concentrations in the array
x, the ODEs system reads ẋ = F(x) (the dot stands for time derivative) with Fj(x)
multivariate polynomials. In such a framework, amongst the main tools for dimensional
reduction[2] we mention the exploitation of hyper-surfaces commonly known as slow
manifolds (SMs). A SM can be meant as the surface, of dimension NSM lower than N ,
in whose neighborhood the trajectories of the system bundle while “slowly sliding” to-
wards the equilibrium state.[3, 4] An example of SM for a toy kinetic scheme is shown in
Fig. 6.1. By looking at the contraction of trajectories one can see that a unidimensional
SM appears in the bidimensional space of the reactant concentrations. The presence of
a SM, and its localization in practice, could allow one to achieve the simplification of the
chemical kinetics. Suppose in fact that the SM has dimension NSM � N . In this case
the number of relevant (independent) variables reduces to NSM since the concentrations
of such a number of species are mutually correlated in the SM proximity. Thus, if one is
interested only in the description of the slow part of the process, i.e., after the transient
phase (typically fast) to approach the SM, the dimensional reduction could be very effec-
tive. In a series of recent works[5–7] we have shown that the conversion of the original
ODEs system into “canonical formats” proves to be useful to unveil some ubiquitous
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Figure 6.1: Example of a SM in the concentrations space for a simple kinetic scheme.
The underlying mechanism is reported in the figure. The values of the kinetic con-
stants are taken from Ref. [8]. All physical variables are meant to be expressed in some
measurement units (here unessential).

features which would remain otherwise hidden due to the non-linear character of the
evolution; amongst these features, an objective definition of SM also emerged. Keynotes
on this issue are given in the Appendix.

When dealing with small numbers of molecules, the use of volumetric concentrations
as dynamical variables, and the adoption of the mass-action law, may be inappropriate.
The deterministic evolution is replaced by a probabilistic description where the system’s
state is specified by the number of molecules per each species, and the time-dependent
quantity to be determined is the conditional probability of observing such a state, at a
given time, if the system’s state was known at a previous instant. By denoting with n the
array whose non-negative integer entries (n1, n2, · · · , nN ) are the numbers of molecules
per each species, and n0 the array with the values observed at an instant taken as
time-zero, then p(n, t|n0) is the conditional probability of interest with normalization∑

n p(n, t|n0) = 1 at any time. The time evolution of this probability is governed by the
following chemical master equation (CME)[9, 10]

∂

∂t
p(n, t|n0) =

M∑
m=1

[am(n− νm)p(n− νm, t|n0)− am(n)p(n, t|n0)] (6.1)

where νm is an N -dimensional array, associated to the m-th elementary reaction, whose

entries are (νm)j = ν
(m)
Pj
− ν(m)

Rj
being ν

(m)
Pj

and ν
(m)
Rj

the stoichiometric coefficients of

the species j as product and reactant, respectively, in such a reaction. In Eq. (6.1),
the state-dependent factors am(n) are the so-called “propensity functions”, such that
am(n)δt is the probability that, if the system is presently in the state n, the m-th
reaction takes place in the subsequent time-interval δt. Given the molecularity of a
elementary reaction, the corresponding propensity function is expressed on statistical
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grounds (see for example the general expression in Ref. [11]). For the first- and second-
order reactions of practical relevance (unimolecular reactions, bimolecular reactions of
homo- and hetero-molecular kinds) one has[10]

A→ Products ,

2A→ Products ,

A + B→ Products ,

am(n) = cm nA

am(n) = cm nA(nA − 1)/2

am(n) = cm nAnB

(6.2)

where the factors cm have physical dimension of inverse-of-time. With such definitions,
and under the assumption that for each reaction the propensity functions are indeed
physically meaningful and can be quantified (see the discussion in Ref. [12] about the
second-order processes), the CME immediately follows by focusing on the general state
n and accounting for both the possible ways that lead to its realization from other states
(first addend within brackets at the right-hand side) and the processes that take off of
it (second addend).

Even in such a stochastic framework, one aims at devising sound criteria to search
for a reduced but reliable description of the full process, at least within selected domains
of the configuration space. The natural way to tackle such a problem is to work out the
analogues of consolidated tools which prove to be efficient in the deterministic counter-
part. For example, we mention the effort which has been done, starting from the seminal
work of Rao and Arkin,[13] to build the analogue of the quasi-steady-state-assumption
(QSSA) widely employed to simplify the ODEs in mass-action-based kinetics. In essence,
such a strategy is based on the partition (driven by “physical intuition”) of the chemical
species into two sets of “primary” and “ephemeral” species. An approximated CME
is then obtained for the number of molecules of the primary species under the twofold
condition that the evolution of the number of molecules of the ephemeral species is a
Markov process and it is faster than the evolution for the primary species. On the other
hand, the failure of the stochastic QSSA has been put forward[14] showing that prop-
erties like the distribution around the mean cannot be accurately reproduced in some
model cases. This is not surprising, since the QSSA is known to fail also in deterministic
kinetics depending on the reaction scheme and its parameterization.[8]

In a similar way of reasoning, one may wonder if there are some traits that resemble
the slow manifolds feature observed in the deterministic context. In terms of trajectories
n(t) (i.e., the only observable quantity of the monitored evolving system), one would
expect to observe a (likely quick) fall of them into a region where the system fluctuates
while it is (likely slowly) driven to the stop of the reaction or to the pool of states which
are typically and persistently visited by fluctuations at equilibrium. In what follows
we shall denote such a region as the “bundling region” with reference to the mutual
closeness of the stochastic trajectories into it. This concept will be elaborated in the
next section.

Regardless of the peculiar strategy adopted to formally define/individuate the bun-
dling region, a preliminary step is to perform a phenomenological inspection on some
model cases with the purpose to look directly at possible traits of mutual convergence
of the stochastic trajectories into a common region. This is what we do in this work.
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We anticipate that, for all the model cases here studied, a bundling region where the
trajectories fall indeed appears. The subsequent step is to work out a phenomenological
state-dependent indicator, ε(n) in the following, able to catch quantitatively the condi-
tion of bundling of trajectories. As it will be shown, a promising candidate indicator of
such kind is here proposed and tested on the model schemes.

The remainder of the paper is arranged as follows. In sec. 6.2 we give our perspective
about possible routes to achieve the dimensional reduction in stochastic kinetics by
starting from the basic CME. In particular we shall elaborate the concept of “closeness”
of the trajectories in the bundling region. In sec. 6.3 we present the model kinetic
schemes which are adopted in our phenomenological inspection. Then, for each case,
we show some trajectories n(t) in the configuration space. The trajectories are here
simulated by means of the basic Gillespie’s stochastic algorithm[10, 15] which represents
the exact stochastic single-system counterpart of the probabilistic CME. Ensembles of
trajectories will allow to state, qualitatively, that a bundling region exists in all cases. In
sec. 6.4 we present a phenomenological descriptor ε(n) and prove its effectiveness when
applied to localize the bundling region. In sec. 6.5 we draw the main conclusions of this
early analysis and give perspectives for future lines of investigation.

6.2 Viewpoints on dimensional reduction in stochastic ki-
netics

In the previous section we have introduced the picture of “mutual closeness” of the
stochastic trajectories when they are within the bundling region. The formalization of
such a picture should be based on the likely evolution of the p(n, t|n0). For example, if
such a distribution, developing from different initial states, was unimodal at all times,
one could adopt the ensemble of states with maximum probability of realization to build
“representative paths” in the configuration space:

n(t)n0 := arg maxn{p(n, t|n0)} (6.3)

It is expected that for t sufficiently long, and regardless of the initial state n0, these
paths do converge into the bundling region.

In analogy with the characterization of the SM feature in deterministic kinetics, a
natural starting point to tackle the problem of specifying the bundling region in stochas-
tic kinetics could be, to our opinion, to convert the CME into a finite set of deterministic
ODEs. After that, one could apply the same strategies of dimensional reduction which
are employed in the macroscopic case.

The most direct approach would be that of writing the CME as a set of linear ODEs.
By setting pn(t) ≡ p(n, t|n0) (the dependence on the initial configuration is kept implicit
for sake of notation), one immediately gets

ṗ = −Kp (6.4)
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where p is a column array and K is the relaxation matrix with elements

Kn,n′ = a0(n′)

(
δn,n′ −

M∑
m=1

δn′,n−νm ηm(n′)

)
(6.5)

with δ standing for Kronecker’s delta-function, a0(n) is the “total propensity” of leaving
the state n, and ηm(n) is the probability of the m-th move to take place:

a0(n) =
M∑
m=1

am(n) , ηm(n) =
am(n)

a0(n)
,

M∑
m=1

ηm(n) = 1

(6.6)

The dimension of the arrays to be handled is fixed by the number Nconf of system’s
configurations which are taken into account. In particular, these configurations must
form a compact domain which encloses the set of states where the reaction stops or
which are persistently visited by fluctuations at equilibrium. To fulfill the normalization
condition at any time, the set of Nconf configurations can be taken as the complete
ensemble of states which are reachable by the starting point n0. The delta functions in
Eq. (6.5) automatically determine the filling of the matrix at the borders by ignoring
those contributions which would bring the system outside the considered domain.

From Eq. (6.4), the formal solution for the conditional probability is

p(n, t|n0) =
[
e−Kt

]
n,n0

(6.7)

and the representative path defined above becomes n(t)n0 = arg maxn

[
e−Kt

]
n,n0

. Sup-

pose that the real parts of the eigenvalues of the matrix K,1 listed in ascending order,
display a gap such that a set of “low” eigenvalues is well separated by the upper set of
“high” eigenvalues. If this happens, Eq. (6.7) reveals that, for long t when the bundling
region is supposed to be reached, n(t)n0 is controlled by the set of “slow eigenvectors”
associated to the “low” eigenvalues. Thus it is expected that, for t sufficiently long such
that the fast-relaxing exponential terms have decayed, the ensemble of representative
states n(t)n0 (deriving by different initial states n0) fall indeed in a restricted sub-region
(the bundling region) of the configuration space. Although in principle such a route could
yield an unambiguous localization of the bundling region, the dimension of the matrix
K makes such an analysis useless in most practical cases since the diagonalization of K
becomes rapidly unfeasible even for very small N and only some tens of molecules per
species.2 This severe limit calls for some criteria to guide the construction of the set of
slow eigenvalues/eigenvectors by avoiding the full diagonalization procedure.

1The eigenvalues of the non-hermitian matrix K are generally complex-valued (but pair-conjugated)
and they must have positive-valued real parts in order to allow the relaxation to equilibrium.

2We like to mention that, however, the computation of the matrix exponential in the formal solution
of the CME in Eq. (6.7) can be greatly simplified by applying the finite-state-projection algorithm [B.
Munsky and M. Khammash, J. Chem. Phys. 124, 044104 (2006)], in which the set of configurations
is progressively enlarged up to attain a desired accuracy on the outcome; the strategy has also been
exploited to build a solver of the CME in the QSSA perspective [S. MacNamara, A. M. Bersani, K.
Burrage and R. B. Sidje, J. Chem. Phys. 129, 095105 (2008)].
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A different approach consists in converting the CME into a set of ODEs which de-
scribe the evolution of the multivariate moments associated to p(n, t|n0).[11] Given a
N -dimensional set of non-negative integer exponents, h = (h1, h2, · · · , hN ), the related

moment is µh(t) =
∑

n

(∏N
j=1 n

hj
j

)
× p(n, t|n0). For probability distributions which

differ from a multivariate Gaussian, Marcienkiewicz theorem[16] states that the number
of non-null cumulants is infinite, and the same is for the number of independent mo-
ments. Thus, only a well-educated guess about how truncating the set of moments (the
so-called “closure” procedure) can yield a finite set of linear ODEs able to reproduce,
with sufficient accuracy, the evolution of the system. Given a finite set µ of moments
up to a certain order of the exponents, some algebraic elaboration leads to an ODEs
system in the form µ̇ = −Aµ − Bµ′ where µ′ is the ensemble of the excluded higher-
order moments and the matrices A and B are known (see for example the mathematical
elaboration in Ref. [11]). A closure relation is such that µ′ = f(µ) with f(·) a suitable
vectorial function to be found. In this way, µ̇ = −Aµ−B f(µ) becomes an autonomous
set of ODEs. In our way of thinking, if one were able to localize a slow manifold in the
space of the retained moments (or of the associated cumulants), the sets of moments
which fall on such a manifold could be then used to reconstruct a distribution pS(n, t|n0)
which, for t sufficiently long and regardless of n0, is likely peaked in the bundling region
of the configuration space. Actually, there are several ways (unfortunately subjective
and system-dependent) to perform the closure operation, and the research in this topic is
nowadays quite lively. For example we mention the work in Ref. [17] where the authors
apply methods borrowed from the information theory.

As stated in the Introduction, a phenomenological inspection on model cases is
mandatory to look for evidences of mutual convergence of the stochastic trajectories into
a common region. If such a behaviour is observed, a phenomenological state-dependent
indicator, ε(n) in what follows, should be proposed to detect the condition of bundling.
Such an indicator could be then useful to guide the construction of the slow eigenvectors
of the matrix K (the first approach above), or to provide hints about how to truncate
the set of moments (the second approach). Such a phenomenological inspection and the
identification of ε(n) are the topics of the this work. A further issue is to show that in
the bundling region, typically, the system’s evolution is slower compared to its progres-
sion rate before approaching the region. In the configuration portrait, where the time
variable is hidden and only the visited states are represented, the local progression rate
can be expressed in terms of average time, τ(n), to move away from the given config-
uration n; by employing Gillespie’s result[15] for the distribution of the reaction times,
p(τ | n) = a0(n)e−a0(n)τ , one immediately gets τ(n) =

∫∞
0 dτ τ p(τ | n) = a0(n)−1.

The occurrence of a slower progression (for the monitored trajectory) in the bundling
region would constitute a further analogy with the situation typically encountered in
macroscopic kinetics in the neighborhood of a slow manifold in the concentration space.
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6.3 Inspection on model kinetic schemes

6.3.1 Model kinetic schemes

In the present investigation we will adopt five simple schemes in order to both elucidate
the concepts and test the validity of the guess, formulated in the previous section, about
the existence of a bundling region as a typical trait in stochastic kinetics. The schemes
here studied (and related parameters) are presented in Fig. 6.2. The time variable is
assumed to be given in some unit ts, so that the coefficients cm are expressed in units of
t−1
s and their values are arbitrarily chosen. It can be seen that Scheme 1 is taken as a

“core” variously modified to generate the schemes 2, 3 and 4. Schemes 1, 3 and 4 feature
two reactant species, X and Y, and an irreversibly produced species P. The relevant
configuration space is thus the bidimensional grid of the numbers nX and nY. In Scheme
2, instead, all species X, Y and P are involved as reactants and products. In this case
one should resort to three-dimensional portraits, but for the sake of clarity we exploited
the stoichiometric constraint nX + nY + nP = 400. By choosing the initial points of the
trajectory according to such a relation, the dynamics takes place on the plane specified
by the constraint and it suffices to look at the bidimensional projection of the trajectories
on the (nX, nY) plane. Finally, Scheme 5 is the well-known Michaelis-Menten catalytic
mechanism. Also in this case an irreversibly produced species P is present, while, among
all the elementary steps, the substrate S, the enzyme E and the complex ES act both
as reactants and products. The complete configuration space is thus four-dimensional
but, similarly to Scheme 2, two stoichiometric constraints (nS + nES + nP = 300 and
nE + nES = 50) are here exploited; therefore, only the projection on the (nS, nE) plane
can be considered.

6.3.2 Simulation of stochastic trajectories in the configuration space

For the model schemes illustrated above we have generated stochastic trajectories n(t)
by starting from different initial configurations n0. Simulations have been performed
by means of Gillespie’s algorithm[10, 15] implemented in a FORTRAN code written
by us. For the generation of random numbers we used Marsaglia’s KISS algorithm.[18]
Trajectories for each scheme are simulated for a time tmax = 20, or until a point of arrest
of the reaction is reached.

The outcomes of the numerical simulations for all schemes are shown in Fig. 6.3
where some stochastic trajectories are displayed. As one can see from the graphs, in all
schemes here considered a bundle of the trajectories into a narrow region is observed,
thus confirming the guess made in sec. 6.1. This seems to be a common feature of
the kinetic schemes here adopted, regardless the fact that the global reaction goes to
completion (schemes 1, 3, 4 and 5) or that the system reaches a pool of equilibrium
states visited by persisting fluctuations (Scheme 2). The top-right panel shows, for
Scheme 1, the same trajectories as in the top-left panel in an enlarged view, together
with three “representative paths” defined by Eq. (6.3) (filled circles). The conditional
probability at each configuration has been calculated by constructing the matrix K
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Figure 6.2: Model kinetic schemes here considered, factors entering the propensity func-
tions, and schematics of the moves due to each elementary reaction. The moves are
projected on the (nX, nY) space for the schemes from 1 to 4, and on the (nS, nE) space
for Scheme 5.
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Figure 6.3: Examples of projection of stochastic trajectories on the (nX, nY) space for the
schemes from 1 to 4, and on the (nS, nE) space for Scheme 5. Each trajectory starts from
a different point in the configuration space. For Scheme 2, all trajectories belong to the
plane corresponding to the stoichiometric constraint nX +nY +nP = 400. For Scheme 5,
the stoichiometric constraints employed are nS + nES + nP = 300 and nE + nES = 50.
Open circles represent the starting point for each trajectory. The top-right panel shows,
for Scheme 1, the same trajectories as in the top-left panel in an enlarged view, together
with three “representative paths” defined by Eq. (6.3) (filled circles).
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(see Eq. (6.5)) and by applying the forward-Euler propagation algorithm to Eq. (6.4)
with a time-step δt = 10−3. These representative paths clearly show that the most
probable configurations fall in a narrow region, which is reached independently of the
initial conditions.

In order to inspect also the slowness feature mentioned in sec. 6.1, in Fig. 6.4 we
report, for some trajectories from Fig. 6.3, the time evolution of the particles numbers.
In Fig. 6.4, the vertical lines are placed at times corresponding to the reaching of the
perceived bundling region. Considering that the scale on the time axis is logarithmic,
for all schemes such a region is attained in the very first part of the trajectories. There-
fore the main outcomes from these data is that the system evolves more rapidly when
the trajectory is outside the bundling region while, when the system has reached the
neighborhood of such a region, the dynamics slows down toward the equilibrium.

To sum up the main outcomes of the present analysis, it is safe to say that a bundling
region for the trajectories in the configuration space does exist for the schemes here
studied.
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Figure 6.4: Time evolution of the particle numbers for the trajectories reported in red
in Fig. 6.3 taken as examples. Each vertical dashed line represents the time when the
trajectory is considered to have approached the bundling region.

6.4 Phenomenological indicator of local “bundling of tra-
jectories”

In this section we present a candidate descriptor for the localization of the bundling
region observed in the previous section for the model schemes studied. Our target was
to construct a scalar configuration-dependent function, ε(n), whose landscape, if meant
to be represented in a (N + 1)-dimensional space, presents characteristic features where
the bundling of trajectories is perceived. Among all attempts, mainly driven by intuition,
the peculiar ε(n) below presented has proved to be the best one to localize the bundling
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region for all the schemes tested by us.
Let us start by recalling the quantity ηm(n) defined in Eq. (6.6). It represents the

probability that, if the system is in the state n, the m-th move is the next reactive event
that will take place. ηm(n) is defined everywhere in the space of particles numbers except
for the points where the total propensity a0(n) =

∑M
m=1 am(n) of leaving the state n is

zero (i.e., where the reaction stops). Now consider the following vectorial quantity

ν̄(n) :=
M∑
m=1

ηm(n)νm (6.8)

which represents the (weighted) average move of the system from the state n. We may
write ν̄(n) as

ν̄(n) = ‖ν̄(n)‖ û(n) (6.9)

where ‖·‖ stands for the Euclidean norm while û(n) is the unit vector which specifies
the direction of the average move. The best scalar descriptor that emerged from our
inspections is

ε(n) = ‖ν̄(n)‖ (6.10)

that is the length of the average move starting from the actual state n.
For each scheme and within the regions in the configuration space shown in Fig. 6.3,

we evaluated ε(n) by using Eq. (6.10). The corresponding landscapes, displayed as
contour plots, are shown in Fig. 6.5. The thick lines are average trajectories which are
displayed, in place of single stochastic trajectories, as a guide for the eye to help the
individuation of the bundling region; the thin lines are contour lines for the values of
the descriptor. It appears that the bundling regions are identified, in all cases, as the
portions of the configuration space where the descriptor ε(n) takes small values.

Furthermore, the diagrams in Fig. 6.5 reveal that not only the average trajectories
mutually converge into the “groove” where the descriptor takes small values, but in
such a region they turn out to be also substantially parallel to the contour lines of
ε(n). This property gives the picture that the representative paths should likely be such
that the magnitude of ε(n(t)n0) rapidly decreases and then evolves in a smoother way
once n(t)n0 has entered the groove. The agreement between the contour lines which
delimit the groove and the perceived bundling region, implies that the representative
paths remain confined within the groove itself. The capability of catching not only the
bundling but also its persistence is peculiar of the descriptor ε(n) in Eq. (6.10). Other
descriptors that we have considered display grooves in their landscapes but, contrary to
the present one, their contour lines markedly intersect the perceived bundling region.

Finally, we like to stress the analogy between the detection of the bundling region
in the (N + 1)-dimensional space of the number of molecules through the localization
of grooves in the landscape of ε(n), and the localization of the slow manifold in the
(N + 1)-dimensional concentration space for deterministic kinetics through the localiza-
tion of grooves in the landscapes of the scalar functions Z(x) and Z1(x) (see Ref. [7]
and the outlines in the Appendix). In both cases, stochastic and deterministic, it ap-
pears that suitable “guiding potentials” can lead to localize, or better circumscribe, the



138 CHAPTER 6. SLOW MANIFOLD IN STOCHASTIC CHEMICAL KINETICS

configurations where the trajectories bundle. However a formal link, beyond the mere
analogy, between these two different but related contexts is still missing.

Figure 6.5: Contour plots of the descriptor ε(n) for the model schemes adopted in this
study. Average trajectories calculated over the 10000 stochastic calculations (starting
from the same points shown in Fig. 6.3) are reported, as guide for the eye, with thick
lines. Contour lines for the values of ε(n) are displayed with thin lines.

6.5 Conclusions and perspectives

In this work we have conducted a phenomenological inspection into stochastic chemical
kinetics with the aim to unveil some traits which resemble the so-called “slow manifold”
feature observed in the macroscopic (mean-field) counterpart. We have pursued to follow
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single stochastic trajectories (in the N -dimensional configuration space of the number of
molecules for N chemical species), as the observable feature of a given reactive system.
By means of simulations on simple model schemes it has been shown that, before reaching
the reaction arrest or the pool of equilibrium states visited by persisting fluctuations,
the trajectories converge into a “bundling region” where the reaction progress also slows
down. In particular, we have proposed a state-dependent indicator, ε(n) in Eq. (6.10),
which allows one to identify such a bundling region. Namely, ε(n) physically corresponds
to the length of the average move-per-reactive event, which is obtained by adding the
moves of the elementary steps in vectorial sense, each with a weight proportional to the
related propensity function at the given configuration. The landscape of the function
ε(n), if conceived as a hyper-surface in a (N + 1)-dimensional space, features a “groove”
right in the bundling region which is perceived by looking at an ensemble of trajectories.
The simulations done here on simple schemes with small N support such a picture; the
conjecture is that such a feature is found independently of N and of the complexity of
the reaction mechanism.

The preliminary investigation here illustrated opens perspectives for future works.
First of all, the correspondence between groove in the landscape of ε(n) and bundling
region is interesting per se but deserves a full rationalization starting from a focused
elaboration of the CME. Given the phenomenological nature of this study, a further
check of such a connection is desired. If the same behavior will be found to be a general
feature, a deeper formal analysis will be due to understand why such a kind of descriptor
is suitable to catch the bundling property and its persistence. Moreover, it could be
interesting to establish formally if only scalar quantities (the Euclidean norm, in this
case) related to the average move suffice to identify the bundling region. Indeed, the
direction of the average move, that is û(n) in Eq. (6.8), has not been taken into account
at this stage. It might be the case that consideration of the full vectorial properties of
the average move may refine the localization of the bundling region.

A further line of investigation concerns to provide a formal guise to the analogy
between the scalar descriptor ε(n) in stochastic kinetics, and the scalar functions Z(x)
and Z1(x) recently proposed to approximately localize the slow manifolds in determin-
istic kinetics.[7] As stated in sec. 6.4, it seems that suitable “guiding potentials” to
circumscribe the portion of configurational space where the slow evolution takes place
can be worked out in both contexts. On the other hand, while the specific functions
Z(x) and Z1(x) “emerged” from the analysis of canonical formats of the ODEs systems
for the mass-action-based macroscopic kinetics,[5–7] the complexity of the CME in the
stochastic counterpart currently prevents to pursue a similar methodological way.

Finally, on the practical side we foresee the employment of ε(n) (or of more refined
descriptors to be devised) in the elaboration of strategies to achieve the truncation of
the set of moments of the conditional probability distribution on a timescale such that
only the bundling region is mainly populated. This is clearly a long-term goal once the
formal issues sketched above will be properly faced.
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Appendix: Slow manifolds in deterministic kinetics

With reference to the notation given in sec. 6.1, for deterministic kinetics under appli-
cability of the mass-action law, the velocity-field components in the N -dimensional con-

centrations space are expressed by Fj(x) =
∑

m(ν
(m)
Pj
− ν(m)

Rj
) rm(x), with j = 1, · · · , N

and m = 1, · · · ,M , where rm(x) = km
∏
j′ x

ν
(m)
Rj′

j′ is the rate of the m-th reaction being
km the kinetic constant. In Ref. [5] we have obtained a canonical format of ODEs by
means of a suitable change/extension of the set of dynamical variables (such an extension
clearly implies mutual constraints that keep the number of degrees of freedom equal to

N). Namely, let us introduce Vjm,j′m′(x) := (ν
(m′)
Pj′
− ν

(m)
Pj′

)(δj,j′ − ν
(m)
Rj′

) rm′(x)x−1
j′ .

The time evolution of these (N × M)2 variables is governed by the ODEs system
V̇jm,j′m′ = −Vjm,j′m′

∑
j′′,m′′ Vj′m′,j′′m′′ . Remarkably, any mass-action-based kinetics

can be converted into such a universal quadratic format which is devoid of any system-
dependent parameter: the specificity of the reacting system only affects the number
of such variables and their values at an initial time (corresponding to an initial point
x(0)). In Ref. [6] we have shown, via combined formal/heuristic inspections, that some
properties of such a canonical format are strictly related to the SM. Namely, by focus-
ing on the rates zjm(x) =

∑
j′,m′ Vjm,j′m′(x), in Ref. [6] we have shown that the SM is

the subdomain of the concentrations space formed by the points where the time deriva-

tives z
(n)
jm (x) ≡ (F(x) · ∂/∂x)n zjm(x) vanish, for all j,m pairs, as n → ∞ and inside a

well-defined “attractiveness region”.
In Ref. [7] we have devised a route which requires only the zjm(x) components (n = 0)

and their first-order derivatives (n = 1). In particular, we have shown that the scalar
functions

Z(x) =

√
(N M)−1

∑
j,m

zjm(x)2 and Z1(x) =

√
(N M)−1

∑
j,m

z
(1)
jm(x)2

can be employed as “guiding potentials” to drive the detection of candidate points in
proximity of the SM; the route requires a two-step minimization, first of Z(x) and then
of Z1(x) starting from the produced point, along chosen paths in the concentration
space. The function Z(x) quantifies the “slowness” of the reaction progress, while Z1(x)
is related to the “persistence” of the slowness in the direction of the local flux. An early
implementation of this strategy has been already proved to be efficient to approximately
localize the SM for simple kinetic schemes (see the Supporting Information of Ref. [7]).
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Chapter 7

Remarks on the chemical
Fokker-Planck and Langevin
equations: Nonphysical currents
at equilibrium

Note

This chapter is a re-edited form of the draft of the following published paper: Alessandro Cec-

cato and Diego Frezzato, “Remarks on the chemical Fokker-Planck and Langevin equations:

Nonphysical currents at equilibrium”, J. Chem. Phys. 148, 064114 (2018).

Abstract

The chemical Langevin equation (CLE) and the associated chemical Fokker-Planck equa-
tion (CFPE) are well-known continuous approximations of the discrete stochastic evo-
lution of reaction networks. In this work we show that these approximations suffer from
a physical inconsistency, namely, the presence of nonphysical probability currents at the
thermal equilibrium even for closed and fully detailed-balanced kinetic schemes. An
illustration is given for a model case.

7.1 Introduction

Under isothermal conditions and rapid re-distribution of molecules in the available space
of fixed volume, chemical reactions involving small numbers of molecules in homogeneous
fluid phases are consensually modeled as a Markov process in which the system’s state is
specified by the number of molecules of each species. In such a framework, the chemical
master equation (CME)[1–3] and Gillespie’s stochastic simulation algorithm (SSA)[4]
provide the exact description of the evolution in terms of probabilistic expectations
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and generation of trajectories, respectively. Unfortunately, the CME is analytically
hardly tractable apart from simple cases, and even its numerical solution becomes rapidly
unfeasible as the number of reactant molecules increases. In parallel, simulations via SSA
become lengthy again in the limit of large numbers of molecules and/or in the presence
of a large timescale separation between the reaction channels (stiffness); moreover, a
very large ensemble of trajectories should be simulated to achieve accurate statistics.
To circumvent these issues, one seeks for approximate but reliable simplifications of the
exact evolution law.

One popular approximate evolution machinery of stochastic reaction networks is the
so-called chemical Langevin equation (CLE), introduced by Gillespie in Ref. [5] and
compared with the previous approaches of van Kampen[6] and Kurtz.[7–9] In the CLE
context, the evolution of the system is described in a coarse-grained fashion on the
time variable. Correspondingly, one turns from integer numbers of molecules (in the
following denoted by nj for the j-th species) to their continuous real-valued extension
(the ηj in the following). The CLE, that will be reviewed and commented in section 7.2,
has the form of a Langevin-like Itô stochastic differential equation for the evolution of
the configuration η (see Eq. (7.9) later). The chemical Fokker Planck equation (CFPE)
is the corresponding partial-derivative differential equation which rules the evolution of
the probability density in the η-space starting from a given initial condition. In short,
the approximate CLE replaces the exact SSA route, whereas the approximate CFPE
replaces the exact CME.

The strength of the CLE consists in dealing with continuous dynamical variables and
allowing for rapid simulation of single trajectories. In this respect, the CLE is greatly
employed in biochemical contexts, like for example in transcriptional regulation,[10] pro-
vided that one can switch from the exact SSA to the CLE coarse-grained picture.[11]
In addition, the CLE is the suitable intermediate step to bridge stochastic kinetics and
macroscopic mass-action rate equations; such a link can be established in the thermody-
namic limit in which both the numbers of reactant molecules and the volume increase at
fixed volumetric concentrations.[12] We also mention some recent advances in the adap-
tation of the computational singular perturbation methodology to achieve dimensional
reduction for prototype models of stochastic differential equations;[13] further develop-
ment of that strategy, with application to the CLE, could lead to set up the machinery
for disentangling slow and fast modes of evolution for stochastic chemical networks at the
mesoscale between low numbers of molecules and thermodynamic limit. In parallel, the
potential utility of the CFPE consists in the possibility, at least in principle, of detect-
ing directly the slow eigenmodes of evolution (and related rates) of a reaction network.
For example, modern strategies like Diffusion Maps[14] might be suited to construct the
slowest evolution modes even in relatively high-dimensional reaction networks.

Aside these points of strength, the crucial question is: How safely can we rely on the
CLE and CFPE as physically consistent shortcuts of the SSA and CME? It is not only
a matter of having good approximations of the exact solution on quantitative grounds,
but also, and more importantly, to check if the CLE and CFPE are at least devoid of
nonphysical drawbacks (or, if present, to what extent they may be serious). Regarding
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the numerical consistency, it is known that the statistical properties of the ensemble
of trajectories simulated by means of the CLE is fully consistent with the CME/SSA
only for networks of unimolecular reactions, otherwise the consistency is guaranteed only
up to the first- and second-order moments of the distribution.[15] The accuracy of the
multivariate CLE and CFPE has been addressed, for instance, in Ref. [16]. Previous
inspections on model reaction networks reducible to one-dimensional systems featuring
bi-stability[17–19] revealed that the CFPE fails in reproducing the probability density
in the long timescale. About the physical consistency, Horowitz recently showed[20]
that the CLE is consistent with the thermodynamics (in the sense that the rate of
entropy production along the trajectories matches the heat flux between system and
thermal bath) only when the system is close to equilibrium. The global picture is that
these continuous approximations of CME/SSA suffer from subtle inconsistencies whose
quantitative manifestation cannot be easily assessed without a case-by-case analysis.

In this paper, we focus on a physical inconsistency that emerges from the analysis
of the CFPE. Namely, we shall see that nonphysical probability currents may be gener-
ally present at equilibrium even for closed and detailed-balanced reaction networks. In
practice, this means that a stationary distribution is attained in the long timescale, but
a directed circulation (on average) in the configurational space would still be present.
This clearly goes against the condition of thermal equilibrium. It must be stressed from
the beginning that such an issue regards both the CLE and CFPE. In fact, the CLE and
the CFPE are fully consistent one with the other in the sense that, at given boundary
conditions in the η-space, they have the same statistics.

The paper is structured as follows. In section 7.2 we specify the physical context and
give the essentials about the chemical master equation approach. Section 7.3 presents
the chemical Langevin equation and the associated Fokker-Planck equation, with special
emphasis on their limits of applicability. In section 7.4 we address the nonphysical prob-
ability currents that emerge in the chemical Fokker-Planck context, and in section 7.5 we
illustrate such an issue for a model kinetic scheme. Section 7.6 is devoted to conclusions.

Mathematical notation. Throughout the paper, vectors and matrices will be indicated
with bold style. Vectors are implicitly intended as column-vectors. The superscript ‘T’
denotes the transposed array. The symbol ‘⊗’ stands for the dyadic product between
two vectors: a⊗ b is the matrix with elements [a⊗ b]ij = aibj .

7.2 Physical context and the chemical master equation

Let us consider a network of M elementary reactions (labeled by the index m) involving

N chemical species (labeled by the index j). Let ν
(m)
Rj

and ν
(m)
Pj

be the stoichiometric
coefficients of the species j as reactant and product, respectively, in the reaction m. The
system’s configuration is specified by the array n whose non-negative integer entries (n1,
n2, · · · , nN ) are the numbers of molecules of each species. Finally, the set n0 specifies
the initial configuration.

The dynamics corresponds to stochastic transitions among all possible configurations
which are accessible from n0 due to the moves allowed by the stoichiometry of the reac-
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tion channels. In this work, we consider closed networks (neither pure source nor sink
processes) composed of reversible reactions. This implies that the number of molecules
remains strictly positive for each species, and that the number of achievable configu-
rations is finite. In addition, a number of a priori constraints makes that some linear
combinations of the molecular numbers are conserved, that is, there exists a constant
matrix S of dimension d×N with d < N such that

S n(t) ≡ S n0 = c (7.1)

at any time, where c is a constant vector. By introducing the N -dimensional arrays νm
with entries

(νm)j = ν
(m)
Pj
− ν(m)

Rj
(7.2)

the condition in Eq. (7.1) corresponds to

Sνm = 0 for each m (7.3)

The full array n is thus redundant since the accessible configurations lie on a (N − d)-
dimensional hyperplane in the full space. A subset ñ of dimension (N − d) suffices to
specify the network’s state.

In the context defined above, the quantity of interest is the probability p(n, t) to find
the network in the configuration n at time t; p(n, t) is normalized as

∑
n p(n, t) = 1 at

any time. The initial condition is p(n, 0) =
∏
j δnj ,n0

j
, where n0

j are the components of

n0 and δ stands for the Kronecker’s delta-function.
The evolution of p(n, t) is specified by the chemical master equation (CME) given

below. The CME is built by accounting for both the processes that lead to the realization
of the state n from other states, and the processes that take off from it:[1–3]

∂p(n, t)

∂t
=

M∑
m=1

[am(n− νm)p(n− νm, t)− am(n)p(n, t)] (7.4)

The state-dependent factors am(n) are the so-called “propensity functions”; the quan-
tity am(n)δt is the probability that, if the system is presently in the state n, the m-th
reaction takes place in the subsequent time-interval δt. The general form of a propen-
sity function is am(n) = cmfm(n), where the function fm(n) and the proportionality
coefficient cm with physical dimension of inverse-of-time are deduced from the molec-
ularity of the elementary reaction on the basis of combinatorial arguments, and from
the matching with the deterministic mass-action rate equation when the numbers of
reactant molecules are large. In particular, only first- and second-order reactions are of
practical relevance. For unimolecular reactions A → Products, the propensity function
reads auni(n) = cuni nA where cuni ≡ kuni is the kinetic constant in the determinis-
tic limit. For bimolecular reactions of homo-molecular kind, 2A → Products, one has
abim,1(n) = cbim,1 nA(nA − 1)/2 with cbim,1 = 2kbim,1V

−1, while for bimolecular reac-
tions of hetero-molecular kind, A + B→ Products, one has abim,2(n) = cbim,2 nAnB with
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cbim,2 = kbim,2V
−1 (kbim,1 and kbim,2 are the kinetic constants in the deterministic limit

and V is the available volume).
The single-trajectory counterpart of the CME is Gillespie’s stochastic simulation

algorithm (SSA)[4] which generates trajectories whose statistical ensemble is exactly
consistent with the CME.

Apart from simple cases, solving the CME is a quite hard task. The most natural
way is to convert Eq. (7.4) into a set of linear ordinary differential equations,1 and
solve them by means of strategies able to contrast the rapid growth of dimension as
the number of accessible configurations increases; among these strategies we mention
the ‘finite state projection’ method[21, 22] and its technical variants.[23] Concerning
the SSA counterpart, the problem is that the advancement of the reaction network
becomes slow when the number of reactant molecules is large and/or in the presence of
a large spread in the magnitude of the cm rate coefficients (stiffness). Because of these
criticalities, efficient approximations of the SSA/CME are demanded when treating stiff
reaction networks and/or large numbers of molecules (but not large enough to adopt the
deterministic rate equations).

7.3 The chemical Langevin and Fokker-Planck equations

In this section we introduce the chemical Langevin equation (CLE) and the associated
chemical Fokker-Planck equation (CFPE). It is well-known that the CFPE can be derived
directly by truncating the Kramers-Moyal expansion of the CME (written in terms of
variables η) at the second-order derivatives; see for example section 7.5 of Gardiner’s
book[1] and Ref. [16] on the same topic. On the other hand, as indicated by Gillespie,[5]
the same form of CFPE can be obtained as the Fokker-Planck equation whose drift and
diffusion terms are parametrized by the CLE. In such a way, the CFPE is supported by
the clear physical assumptions that underlie the CLE (see below), rather than deriving
from a mere mathematical truncation of the Kramers-Moyal. This is the perspective
adopted here.

Before proceeding further, a preamble is due about the fact that in both CLE and
CFPE the integer numbers of molecules are replaced by their continuous extension to
real values. Let I be the domain of configurations n which are accessible from the initial
condition. Then, let D be the domain in RN which “fills” and “completes” I in the
following sense: by denoting with cell(n) the hyper-cube nj − 1/2 ≤ ηj < nj + 1/2, we
say that η ∈ D if there exists a unique n ∈ I such that η ∈ cell(n). The domain D is
the union of all cell(n) for n ∈ I.

1The set of equations takes the form ṗ = −Kp where p is the column-vector with entries
pn(t) ≡ p(n, t), and K is the matrix with elements Kn,n′ = a0(n′)δn,n′ −

∑M
m=1 δn′,n−νm am(n′)

where δ is the Kronecker’s delta-function and a0(n) =
∑M
m=1 am(n). The dimension of the arrays to

be handled is fixed by the number Nconf of system’s configurations which are reachable by the starting
point n0. The formal solution of the CME is thus p(n, t) =

[
e−Kt

]
n,n0

.
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7.3.1 The CLE

Following Gillespie, the CLE is derived directly from the physical assumptions underly-
ing the CME and SSA. We mention an interesting alternative approach[15] in which the
CLE emerges as one among several allowed parametric stochastic differential equations
that guarantee the matching of the first- and second-order moments of the molecular
populations with those produced by the CME. However, in Gillespie’s derivation such a
subjective freedom is absent and the CLE is the stochastic differential equation mimick-
ing (being it an approximation) the true evolution of a reaction network.

Two assumptions are in order to derive the CLE. The first one, termed as the ‘tau-
leap condition’, consists in assuming that all propensity functions am(η) do not change
appreciably in a certain time interval ∆t sufficiently short. This allows one to adopt
the tau-leaping propagation formula in which several reactions can occur, even several
times, in that interval. The number of events of each m-th reaction is drawn from the
Poisson distribution with mean am(η)∆t. The second assumption consists in having
the possibility to choose ∆t sufficiently long so that the first assumption still holds but
am(η)∆t� 1 for all reactions. This allows one to approximate the Poisson distributions
by Gaussian distributions with mean and variance both equal to am(η)∆t.

As a whole, the CLE is applicable if it is possible to choose ∆t such that

∆tmin(η) ≤ ∆t ≤ ∆tmax(η) (7.5)

where we take

∆tmin(η) =
γ

minm{am(η)}
(7.6)

with γ � 1 subjectively chosen (γ = 3 is considered to be sufficient by us), and where
∆tmax(η) is an estimate of the largest value of the propagation time-step which can be
employed in the tau-leaping strategy (for example, one can adopt the efficient τ -selection
procedure presented in Ref. [24], as we do in sec. 7.5). The applicability of the CLE is
thus limited to regions of the η-space wherein

∆tmin(η)

∆tmax(η)
≤ 1 (7.7)

The condition in Eq. (7.7) is usually fulfilled for sufficiently large numbers of reactant
molecules so that the rate of reactive events is large (∆tmin(η) is small) but even the
occurrence of a large number of reactions do not sensibly affect the value of the propensity
functions (hence ∆tmax(η) can be longer than ∆tmin(η)).

Gillespie showed that if ∆t can be fixed according to Eq. (7.5) for the current state
η, then the following propagation route is accurate:[5]

η(t+ ∆t) ' η(t) + ∆t
∑
m

νmam(η(t)) +
∑
m

νm
√
am(η(t))∆t Nm(0, 1) (7.8)

where Nm(0, 1) are random numbers drawn from independent Standard Normal Dis-
tributions (zero mean and unit variance). Eq. (7.8) is the CLE in the form of explicit
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advancement of the system’s state. In the form of Itô stochastic differential equation
following from Eq. (7.8), the CLE reads

dη

dt
'
∑
m

νmam(η) +
∑
m

νm
√
am(η) ξm (7.9)

where ξm stands for the m-th component of the M -dimensional Gaussian white noise.2

In adopting Eq. (7.9), caution must be taken since ‘dt’ is a “macroscopic infinitesimal”
(Gillespie’s terminology[5]) bounded according to Eq. (7.5).

As stressed by Gillespie and coworkers,[5, 24] the propagation via CLE should be
halted, in favor of the exact SSA, as soon as the two requirements for the CLE validity
are no more fulfilled. Moreover, the evolution scheme of Eq. (7.8) may give rise to a
problem when η(t) is a point close to the faces of the positive orthant and the amplitude
of the propagation step is large enough to bring η(t+ ∆t) out of the orthant so that for
one or more species the number of molecules would become negative. In our opinion, a
formal way to incorporate a physical boundary into the CLE scheme is still lacking and
ad hoc solutions have been proposed to date. An alternative is to accept the occurrence
of negative concentrations (hence of possible imaginary factors multiplying the white
noise terms in Eq. (7.8)) and check that the statistical properties of the ensemble of
trajectories are, however, compatible with the CME statistics.[25] On the other hand,
when the number of molecules of a reactant species is close to zero, one falls outside the
region of applicability of the CLE itself.

Note that Eqs. (7.8) and (7.9) fulfill the mass-conservation constraints discussed in
section 7.2. In fact, by multiplying both members of these equations by the matrix S and
considering Eq. (7.3), it follows d[Sη(t)]/dt = 0 which implies Sη(t) = Sη(0) = c. This
means that a reduced (N − d)-dimensional array η̃(t) suffices to describe the system’s
state once the matrix S is known and the array c is given. By introducing a (N −d)×N
matrix R which selects the independent variables via η̃(t) = Rη(t), a reduced form of
Eqs. (7.8) and (7.9) is readily obtained; for example, Eq. (7.9) turns into

dη̃

dt
'
∑
m

Rνmãm(η̃) +
∑
m

Rνm
√
ãm(η̃) ξm (7.10)

where ãm(η̃) ≡ am(η)|η=η(η̃,c) in which η(η̃, c) denotes the full set of variables retrieved
from the reduced one.

7.3.2 The CFPE

The CLE allows the parametrization of the corresponding chemical Fokker-Planck
equation (CFPE) for the evolution of the probability density ρ(η, t) normalized as∫
dη ρ(η, t) = 1. The link between the probability density ρ(η, t) and the probabil-

ity p(n, t) can be set, on intuitive grounds, to be
∫

cell(n) dη ρ(η, t) = p(n, t).

2〈ξm(t)〉 = 0 and 〈ξm(t)ξm′(t
′)〉 = δm,m′δD(t−t′) where δ is the Kronecker’s delta and δD is the Dirac’s

delta-function; the averages 〈· · · 〉 are meant to be taken over the statistical ensemble of realizations.
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The CFPE takes the form

∂ρ(η, t)

∂t
= −Γ̂ρ(η, t) (7.11)

with the evolution operator

Γ̂ =
∂

∂η

T

v(η)− 1

2

∑
i,j

∂2

∂ηi∂ηj
Bij(η) (7.12)

in which the drift vector v(η) = lim∆t→0{〈∆η(∆t)〉/∆t} and the diffusion matrix
B(η) = lim∆t→0{〈∆η(∆t) ⊗ ∆η(∆t)〉/∆t} are determined by using Eq. (7.8) for the
displacement ∆η(∆t), and by considering the statistical properties of the distributions
Nm(0, 1) to evaluate the averages.3 The resulting expressions, according to Gillespie,[5]
are

v(η) =
∑
m

νmam(η) (7.13)

and
B(η) =

∑
m

[νm ⊗ νm]am(η) (7.14)

Such a matching makes that the solution of Eq. (7.11) yields a probability density in
accord with the one obtainable from the statistical analysis of the ensemble of trajectories
generated by means of Eq. (7.8) (under application of the same boundary conditions). We
remark again that Eqs. (7.11)-(7.14) agree with the CFPE that can be obtained directly
from the Kramers-Moyal expansion of the CME up to the second-order terms.[1]

It is readily seen that B(η) is a N × N (symmetric) positive semidefinite ma-
trix since uTB(η)u ≥ 0 for any vector u in the N -dimensional space. In fact,
uTB(η)u =

∑
m(uTνm)2am(η) is always non-negative, and null only for vectors orthog-

onal to the hyperplane individuated by the mass-conservation constraints (uTνm = 0
for all m). This implies that the probability spread (diffusion) out of such hyperplane
is automatically prohibited by the structure of the CFPE itself. On the other hand, for
an easier handling of the CFPE it may be preferred to get rid a priori of these extra
dimensions by adopting the reduced CFPE for the essential variables η̃. The reduced
equation is analogous to Eq. (7.11) with (7.12), but with derivatives taken with re-
spect to the components of η̃, drift vector ṽ(η̃) =

∑
m Rνmãm(η̃), and diffusion matrix

B̃(η̃) =
∑

m[(Rνm) ⊗ (Rνm)]ãm(η̃). The diffusion matrix now results to be positive

3Note that if the differential form in Eq. (7.9) were adopted to parametrize the Fokker-Planck equation
without any information about how Eq. (7.9) itself was derived, there would be the ambiguity of choosing
between Itô and Stratonovich methods for stochastic integration. However, the fact that Eq. (7.9) follows
from the integrated form Eq. (7.8) indicates that Itô’s route is the natural choice (in this way, one can
go back from Eq. (7.9) to the discrete explicit advancement in Eq. (7.8)). At any rate, Stratonovich
integration would lead to an alternative Fokker-Planck equation in which the drift term is given by
v(η) in Eq. (7.13) plus a correction smaller than v(η) by a factor of the order of the average number
of reactant molecules. Thus, since the CLE is valid for large numbers of molecules, such a different
Fokker-Planck would reduce to the CFPE in that limit.
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definite. The fact that the eigenvalues of B̃(η̃) are strictly real and positive for any η̃,
ensures that the stationary state is reached in the long timescale.

Although it does not emerge formally in the derivations of the CFPE, “impenetrable
boundaries” should be applied at the faces of the positive orthant or, in the reduced
formulation in terms of the variables η̃, at the intersections between the hyperplane de-
termined by the mass-conservation constraints and the faces of the positive orthant. The
need for such reflecting boundaries, on which the orthogonal component of the probabil-
ity current must vanish (see the discussion in the following), is related with the need to
keep η(t) inside the positive orthant when the trajectories are simulated by means of the
CLE. We stress that, contrary to other kinds of stochastic dynamics like conformational
fluctuations in molecular systems where the boundaries are “natural” and imposed by
the energetics, or like diffusive motions in restricted geometries where the boundaries
are physical impenetrable barriers externally imposed, here the boundaries are inherent
in the dynamics of the system that cannot reach nonphysical configurations by means
of finite moves determined by the stoichiometry. To our knowledge, the behavior at the
boundaries for the CFPE has not been addressed properly yet.

7.4 Nonphysical probability currents at equilibrium

In the typical diffusion equations (i.e., Fokker-Planck equations in the Smoluchowski
form[1]) encountered in the physics of overdamped fluctuating systems at thermal equi-
librium, the diffusion matrix is tuned in a way that an equilibrium state devoid of
probability currents is attained in the long timescale. Here, on the contrary, both the
drift vector and the diffusion matrix given in Eqs. (7.13)-(7.14) are determined by the
stochastic evolution law of the reaction network under the approximations at the basis
of the CLE. This implies that diffusion and drift might be generally unbalanced in the
sense that the vanishing of the probability currents at equilibrium may not be guaran-
teed. This is the crucial issue investigated in what follows.

Let us consider the reduced CFPE once the mass-conservation constraints are en-
forced as described in section 7.3.1. The independent variables are η̃1, η̃2, · · · , η̃i′ , · · · ,
η̃N−d, collected in the array η̃; in what follows, the indexes with the prime will label
such variables. The reduced CFPE can be written in the form

∂ρ(η̃, t)

∂t
= − ∂

∂η̃

T

J(η̃, t) (7.15)

where J(η̃, t) is the probability current vector whose components are

Ji′(η̃, t) = ṽi′(η̃)ρ(η̃, t)− 1

2

∑
j′

∂[B̃i′j′(η̃)ρ(η̃, t)]

∂η̃j′
(7.16)

The probability current vector is such that, given an oriented surface δΩ+ in the η̃-
space, the flux

∫
δΩ+

dσ(η̃) ŝ(η̃)TJ(η̃, t) gives the rate of probability transfer through

that surface (in the integral, dσ(η̃) is the area of a surface element centered in η̃, and
ŝ(η̃) is the unit vector normal to such oriented surface element).
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Let us assume that a unique stationary state is reached in the long timescale, with
limt→∞ p(n, t) = pss(n); correspondingly, limt→∞ ρ(η̃, t) = ρss(η̃). By elaborating
Eq. (7.16) it follows

Jss(η̃) =
[
ṽ(η̃)− b̃(η̃)

]
ρss(η̃)− 1

2
B̃(η̃)

∂ρss(η̃)

∂η̃
(7.17)

where Jss(η̃) = limt→∞ J(η̃, t) and b̃(η̃) is the column vector with components

b̃i′(η̃) =
1

2

∑
j′

∂B̃i′j′(η̃)

∂η̃j′
(7.18)

The specific topology of Jss(η̃) depends on the features of the reaction network which
may lack, in all generality, of detailed-balance.

Let us focus now on a closed network of reversible and detailed-balanced reactions.[26]
The detailed-balance condition is here referred to the reaction network in the thermo-
dynamic limit, and it consists in having the same rate for each forward/backward pair
of elementary processes. In such a condition, the stationary point in the concentration
space corresponds to the point of thermodynamic equilibrium. When the same network
is brought down to the stochastic context, the corresponding CME yields a station-
ary state which corresponds to the thermal equilibrium. Thus, pss(n) ≡ peq(n) and
ρss(η̃) ≡ ρeq(η̃). In such a situation, the physics imposes that all components of the
probability current must be zero, i.e., Jss(η̃) ≡ Jeq(η̃) = 0, otherwise there would be a
directed (on average) motion in the η̃-space for free. By introducing the scalar field

Φ(η̃) = − ln ρeq(η̃) (7.19)

and considering that the positive definite matrix B̃(η̃) is invertible, the required vanish-
ing of the right-hand side of Eq. (7.17) implies

∂Φ(η̃)

∂η̃
= Ψ(η̃) (7.20)

where for sake of compactness we have introduced the new vector

Ψ(η̃) = 2B̃(η̃)
−1
[
b̃(η̃)− ṽ(η̃)

]
(7.21)

Equation (7.20) with (7.21) is known as ‘potential equation’[1] and constitutes the math-
ematical requirement to have a stationary state with null currents: if there exists a scalar
field Φ(η̃) such that its gradient generates identically the vector Ψ(η̃), then Jeq(η̃) = 0
can be fulfilled; on the contrary, the dynamics of the system would be such that (as an
artifact) the probability current at equilibrium would be non-null.

Since Eq. (7.20) states that Ψ(η̃) must be a conservative vector field, a way to check
this property is to verify if the following condition holds identically:

∂Ψi′(η̃)

∂η̃j′
=
∂Ψj′(η̃)

∂η̃i′
for all i′, j′ (7.22)



7.5. ILLUSTRATIVE EXAMPLE AND REMARKS 153

An alternative route is to verify if the path integrals of Ψ(η̃) between any two points A
and B arbitrarily chosen are independent of the path. Explicitly, the required condition
is ∫ 1

0
ds γ̂(η̃γ(s))TΨ(η̃)|η̃=η̃γ(s) = const (7.23)

for any curve γ connecting A with B (here, 0 ≤ s ≤ 1 is a progression variable, η̃γ(s) is
the corresponding point on the curve in the η̃-space, and γ̂(η̃γ(s)) is the tangent versor
to the curve in that point).

If the violation of Eq. (7.22) or Eq. (7.23) were recognized even by a single check, and
even for a single closed and detailed-balanced reaction network, then one would conclude
that the CFPE (and the CLE as well) is inconsistent with the condition that at thermal
equilibrium the probability current must be identically null. In the next section we show,
for a simple case, that Eqs. (7.22) and (7.23) are indeed violated. However, there may
be cases in which the current at equilibrium is unequivocally null. This is certainly the
case when the array η̃ reduces to a single variable η̃, so that the potential equation
Eq. (7.20) is fulfilled since Φ(η̃) can be determined by integration: Φ(η̃) =

∫ η̃
dη̃′Ψ(η̃′).

For example, this happens for the dimerization A 
 B discussed in Ref. [27], where the
conservation constraint nA + nB = c makes that the sole variable η̃ ≡ ηA suffices to
specify the composition of the system. Going to higher dimensions, however, a potential
Φ(η̃) that fulfills Eq. (7.20) cannot be found in all generality.

7.5 Illustrative example and remarks

To show that the physical inconsistency addressed in the previous section occurs in
practice, we adopt the simple kinetic scheme

X + X
1
−1

X + Y

−2
2

Z

−
3

3

Such a network is closed, reversible in all the reaction channels, and connected (meaning
that each configuration of reactants is directly connected with the others). In addition,
we choose the following values for the rate coefficients cm that enter the propensity
functions as expressed in sec. 7.2: c1 = 2, c−1 = 3, c2 = 2, c−2 = 500, c3 = 75,
c−3 = 0.2. These values are meant to be given in some units of inverse-of-time that
are immaterial in this context. By turning to the corresponding kinetic constants, one
has that k1k2k3 = k−1k−2k−3, hence the reaction network is also detailed-balanced as
discussed in the previous section. This implies that the system reaches a stationary
state of equilibrium. According to the notation introduced in the previous sections, the
components of n and η are, respectively, nX, nY, nZ and ηX, ηY, ηZ. The network owns
the conservation constraint nX + nY + 2nZ = const; the value of such a constant was
set to 2 × 104 in the present calculations. Such a constraint allows us to take only the
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species X and Y as independent; in particular, the components of the reduced set η̃ are
η̃1 = ηX and η̃2 = ηY.

The panel a) of Fig. 7.1 shows five trajectories simulated with the standard SSA. The
panel also shows the triangular intersection between the hyperplane corresponding to the
conservation constraint and the faces of the positive orthant. Note that, on such a scale,
the erratic character of the trajectories is hardly detectable. The fluctuations are evident
in the panel b), where one of the trajectories is shown on a smaller scale in the reduced
space of the species X and Y. The equilibrium distribution peq(n) is here presented in
color-scale. To construct the distribution, 106 trajectories were generated by means of
the standard SSA. All trajectories were initiated from a state close to the equilibrium
point of the deterministic rate equations with unitary volume of the sample; this ensures
a good statistics for the configurations mostly visited at the thermal equilibrium. Each
simulation was stopped at the time 0.02. By collecting the final states, the equilibrium
distribution was obtained by a histogram construction. A check of convergence was
made by verifying that the distribution is indistinguishable from the one generated by
collecting the final states at the shorter time 0.01.

Figure 7.1: Panel a). Five trajectories for the model reaction network simulated by
means of the standard SSA method (see the text for details). The trajectories lie on the
hyperplane corresponding to the mass conservation constraint nX +nY + 2nZ = 2× 104;
the intersections of such a plane with the faces of the positive orthant are indicated by
the red lines. Panel b). Equilibrium distribution in the reduced space of the species
X and Y. The distribution has been obtained from 106 trajectories generated with the
standard SSA method. The trajectory displayed is the one indicated by the arrow in
the panel a).

As stated in section 7.3.1, the CLE is strictly applicable only in the configurational
region where Eq. (7.7) holds. To identify such a region in the reduced η̃-space, we com-
puted the ratio ∆tmin(η̃)/∆tmax(η̃) in the domain with 1 < ηX < 104 and 1 < ηY < 104.
For each state η̃, ∆tmin(η̃) was calculated according to Eq. (7.6) with γ = 3. For
∆tmax(η̃) we followed the optimized tau-leaping procedure illustrated in Ref. [24] (see
section IIC.1 along with section IVA therein) and adopted the same computational pa-
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rameters employed in that work.4 With these criteria, the filled area in Fig. 7.2 represents
the points for which ∆tmin(η̃)/∆tmax(η̃) ≤ 1. It can be seen that such a region covers
a limited portion of the explored η̃-space. Notably, such a portion encloses the cloud
of states typically visited by the equilibrium fluctuations. This tells us that the CLE is
suited for simulating the thermal fluctuations of this specific reactive system with the
adopted parametrization. We stress that, however, this is not a general situation since
the cloud of typically visited states might fall outside the region of applicability of the
CLE. Note that other criteria to fix ∆tmin(η̃) and ∆tmax(η̃) would have led to a somehow
different outcome; however, our purpose here is mainly to remark that the CLE has a
limited region of applicability.

Let us now turn to the main issue, that is, showing that the vector field Ψ(η̃) in
Eq. (7.21) is not a conservative field, implying that the vanishing of the probability
current at equilibrium cannot be exactly satisfied in the whole accessible η̃-space. For a
given state η̃, the vector Ψ(η̃) was obtained via Eq. (7.21) with b̃(η̃) from Eq. (7.18); the
derivatives required in Eq. (7.18), and the matrix inversion in Eq. (7.21), were performed
analytically. First, it is found that the equivalence Eq. (7.22) is violated. To see this,
we considered the factor

R(η̃) =

∂ΨX(η̃)

∂ηY
− ∂ΨY(η̃)

∂ηX∣∣∣∣∂ΨX(η̃)

∂ηY

∣∣∣∣+

∣∣∣∣∂ΨY(η̃)

∂ηX

∣∣∣∣ (7.24)

as a function of the system’s state (the derivatives are here computed by means of finite
differences). By construction, such a factor is bounded between -1 and 1, and Eq. (7.22)
would be satisfied only if R were identically null. In the present case it is found that
R has a marked variation in the explored domain, as shown by the contour plot in
Fig. 7.2. This means that Eq. (7.22) is violated and hence the vector field Ψ(η̃) is not
conservative. Second, we can arrive at the same conclusion by noting that Eq. (7.23) is
also violated. In Fig. 7.3 are shown the pairs of edge points adopted to compute different
path integrals according to Eq. (7.23).5 For each pair, three connecting paths are chosen:
an upper two-segment path, a straight diagonal path, and a lower two-segment path, as
indicated in the figure. The numerical results are presented in Table 7.1. It can be seen
that, for all the chosen pairs of edge points, the three integrals are different from each
other.

As a whole, the numerical investigations have shown that Ψ(η̃) is not a conservative

4Namely, nc = 10 for the identification of the ‘critical reactions’ and ε = 0.03 in Eq. (33) of Ref. [24].
A ‘critical reaction’ is any reaction for which there are at most nc firings left before one of its reactants
disappears. The parameter 0 < ε < 1 approximately bounds the relative change of each propensity
function. We did not consider the steps (3) and (6) in the procedure of Ref. [24], since these steps are
important only for the generation of stochastic trajectories.

5The integrations along the paths were performed numerically by means of a FORTRAN routine
employing Romberg’s method; a convergence check was made with respect to the variation of parameters
of accuracy and tolerance. In addition, the integration route was tested by checking the invariance of
the path integrals for benchmark conservative fields.
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Figure 7.2: State dependence of the parameter R, defined in Eq. (7.24), for the model
reaction network under the constraint ηX + ηY + 2ηZ = 2× 104 (see the text for details).
Note thatR is close to zero in the region corresponding to the most visited configurations
at the thermal equilibrium (compare with panel b) of Fig. 7.1.

Figure 7.3: The filled area corresponds to the domain of applicability of the CLE for the
model reaction network under the constraint ηX + ηY + 2ηZ = 2× 104 (see the text for
details). The pairs of points (A,B), (A′,B′) and (A′′,B′′) are the chosen edge points to
compute path integrals along the displayed connecting paths (three paths per each pair
of points). The values of the integrals are reported in Table 7.1.
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Table 7.1: Values of the path integrals for the edge points shown in Fig. 7.3. For each pair
of points, the first value refers to the upper two-segment path, the second value refers to
the diagonal path, and the third value refers to the lower two-segment path. The spread
is intended as relative percentage dispersion of the extreme values with respect to the
average of the three values.

Value of the
Spread

path integral

A→ B
4.246

0.6 %4.229
4.222

A′ → B′
349.258

6.4 %362.724
372.258

A′′ → B′′
274.781

2.2 %273.510
268.661

field for this simple case model. Having detected such a fact for a single case implies
that this is a concrete issue concerning the CFPE/CLE in all generality.

It might be the case, however, that the non-null spurious probability current has
no marked signatures on the solution of the CFPE and on the statistics of the CLE
trajectories. In this regard, it is worth noting that the percentage spread between the
three path integrals for A → B is much smaller than that for A′ → B′, despite the fact
that the distance between the edge points is the same in the two cases. Comparing the
two situations, we note that A and B closely surround the cloud of states mostly visited
by the fluctuations at equilibrium (see panel b) of Fig. 7.1; we also note that in such
a region the factor R in Fig. 7.2 is nearly zero. As a whole, one might provisionally
conclude, at least for this simple reaction network with the adopted parameters, that
Ψ(η̃) is “almost conservative” inside the region of states typically visited at thermal
equilibrium. Conversely, Ψ(η̃) is manifestly non-conservative far from the equilibrium
cloud; on the other hand, here ρeq(η̃) is nearly flat and low in magnitude. By considering
that ρeq(η̃) and its gradient enter the expression of Jeq(η̃) (see Eq. (7.17)), it is reasonable
to expect a small probability current far from the typical equilibrium configurations. As
a whole, Jeq(η̃) could be small everywhere in the η̃-space. A quantitative validation of
such a statement should be made case by case, but the analysis is hampered by the fact
that peq(n) (generally hardly accessible) and its smooth interpolation ρeq(η̃) would be
required.
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7.6 Conclusions

In this work we reviewed the chemical Langevin equation (CLE) and the associated
chemical Fokker-Planck equation (CFPE) as approximate continuous formulations of
the stochastic chemical kinetics. In doing that, we focused on a physical inconsistency,
namely, the possible presence of nonphysical probability currents at equilibrium even for
closed and fully detailed-balanced networks of elementary reactions. The analysis of the
case model reported in sec. 7.5 supports the concreteness of such an issue.

As pointed out at the end of section 7.4, such an issue may be manifest only in mul-
tidimensional cases. Previous detailed analyses of the CFPE were focused on chemical
networks reducible to one-dimensional problems[17–19, 27] for which the nonphysical
currents are absent. Other studies on multidimensional systems mostly regarded the
accuracy of the CLE/CFPE, with respect to the CME, in terms of mean concentrations
and variance of the fluctuations about the mean.[16] Although all inspections on the
CLE/CFPE explore different facets of the same problem, to the best of our knowledge
the issue of nonphysical probability flow at equilibrium has not been inspected so far.

We emphasize once again that the presence of nonphysical probability currents re-
gards both the CLE and CFPE, since they are fully consistent one with the other.
However, the use of the CLE in the production of a stochastic trajectory can be lo-
cally suspended (switching to the exact SSA propagation), while the CFPE, being it a
partial-derivative equation for the evolution of the probability density field on the global
scale, has to be solved without the possibility to impose a delimitation a priori of the
configurational space. Thus, such a “flexibility” of the CLE might allow one, through
a suitable algorithmic implementation, to produce an ensemble of trajectories for which
the impact of the nonphysical currents is attenuated. On the contrary, the solution of the
CFPE should be taken with caution. At any rate, the technical handling of the CFPE is
quite demanding, especially when the number of independent species is just above a few
units, and because of the difficulty of enforcing reflecting conditions at the boundaries.
For this reason, the CFPE appears to us more as a formal construction to be further
inspected, rather than a practical tool for describing the dynamics of stochastic reaction
networks.
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Chapter 8

Inequalities for overdamped
fluctuating systems

Note

This chapter is a re-edited version of the draft of a submitted work. The authors are Alessandro

Ceccato and Diego Frezzato.

Abstract

In many ambits of the chemical sciences it happens to deal with complex systems udergo-
ing thermal fluctuations in the overdamped regime of the motion (i.e., multidimensional
diffusive processes). Although such stochastic dynamics are well specified in terms of
the Fokker-Planck-Smoluchowski equation for the time-dependent probability density,
the solution becomes rapidly unfeasible as the number of degrees of freedom increases
beyond a few units. Here we present a strategy, based on inequalities for “completely
monotone decreasing” functions viewed as convex functions of time, to by-pass such a
difficulty and aimed to achieve only bounds (but with low computational effort) on some
quantities that pertain the system’s dynamics. Namely, we derive (i) a lower bound
for the maximum value of the probability density that develops from a given initial
condition, and (ii) a lower bound on the correlation time for a generic self-correlation
function. The former bound is quantified by means of simple operations on the initial
condition, while the latter is gained by the knowledge of an initial “piece” of correlation
function to be supplied, for instance, by molecular or Brownian dynamics simulations.
Some practical applications are discussed.

8.1 Introduction, motivation, and outline

In several ambits at the border between chemistry, physics and biology, it happens to
deal with complex molecular systems that fluctuate in contact with the fluid environ-
ment acting as thermal bath. Examples range from molecular roto-translational and
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conformational motions, to collective fluctuations of mesoscopic portions of “soft mat-
ter” (e.g., biomembranes and liquid crystals), to intricate dynamics of many interacting
bodies in crowded media like the intra-cellular environment, and many other situations
in which the stochastic character of the motion (due to the interaction between system
and unstructured environment) is relevant.

Despite such a variety of physical contexts, two common and practical problems
can be identified: (i) the need of characterizing, in probabilistic terms, the evolution of
the system from an initial condition, and (ii) the computation of the time-correlation
functions that are linked to experimental observables, or that provide an insight on
modes and timescales of the system’s relaxation. What we begin to explore in this work
is the possibility of getting only a partial solution of the problems (i) and (ii) but at low
computational cost. As it will be detailed in the following, in doing such a “downgrade”
we give up to solve exactly the equation of the stochastic dynamics in favor of dealing
with manageable inequalities involving a few quantities easily assessable.

Let x be the set of relevant degrees of freedom of the system. In the probabilis-
tic framework, at time t the system is specified in terms of the distribution pt(x)
evolved from an initial condition p0(x) at time-zero.1 Clearly, for a stationary pro-
cess, limt→∞ pt(x) = peq(x) from any p0(x), where peq(x) is the Boltzmann distribu-
tion at the thermal equilibrium. On assuming that the dynamics is a multidimensional
Markov process, the evolution of pt(x) is specified by the Fokker-Planck equation.[1] Let
us focus on the situation of overdamped (high friction) regime, also known as diffusive
regime, for which only configurational degrees of freedom are relevant (i.e., the conju-
gated momenta can be ignored). In such a situation, the Fokker-Planck equation takes
the Smoluchowski’s form which reads

∂pt(x)

∂t
= −Γ̂pt(x) (8.1)

where Γ̂ is the evolution operator

Γ̂ = − ∂

∂x

T

D(x)peq(x)
∂

∂x
peq(x)−1 (8.2)

with ∂/∂x the gradient operator (arranged as column array) and D(x) the real-symmet-
ric diffusion matrix, possibly configuration-dependent. The physical requirement that
D(x) be positive-definite assures that the stationary distribution peq(x) is reached from
any initial condition. We shall suppose that the system’s mean-field energetics, and the
environmental friction as well, have been previously characterized, or modeled, so that
peq(x) and D(x) are known. For instance, at the methodological level it may be instruc-
tive to see how peq(x) and D(x) can be modeled for alkyl chains in solution,[2] since such

1 Throughout in the next, the word ‘distribution’ has a twofold meaning: it may refer either to
distribution of microstates (in the ensemble point of view where an infinite number of independent replicas
of the system do evolve in parallel) or to the probability density associated with the expectation about
the single system under consideration. Hence also the initial condition p0(x) is meant as distribution of
microstates or as probability density due to some uncertainty about the initial miscrostate of the single
system under inspection.
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a relative simple system is a prototype of more complex biopolymers. For completeness,
we remark that single-system counterpart of Eq. (8.1) would be any (physically framed)
stochastic differential equation consistent with the Fokker-Planck-Smoluchowsk,[1] i.e.,
capable of generating trajectories whose statistical ensemble is compatible with the dis-
tribution pt(x) if the initial configurations are sampled from p0(x). In such a categoty
of stochastic differential equations, a well-known model is the Langevin equation for
overdamped Brownian-like dynamics.2

Solving the problem (i) mentioned above requires to solve Eq. (8.1) to get the
nonequilibrium distribution pt(x) which contains the complete information about the
relaxing system. For instance, one could compute the time-dependent average of any
function f(x) of interest [i.e., 〈f〉t =

∫
dx f(x)pt(x)]. From a different perspective, in-

stead of considering ensemble properties, it might be of interest to follow the trajectories
of the points of maxima of pt(x) in the space of the degrees of freedom starting from a
localized configuration x(0). In particular, as long as pt(x) remains uni-modal, the path
of the single maximum can be taken as a representative initial piece of single-system
path since it connects the most probable configurations. Depending on each specific
needs, other usages of pt(x) could be devised case by case.

The problem (ii), instead, concerns the intrinsic characterization (i.e., regardless of
specific initial conditions) of the relaxation modes and associated rates through their
effectiveness in determining the loss of correlation between two functions of the sys-
tem’s configuration x. For any pair of functions f1(x) and f2(x), possibly complex-
valued, the time-correlation function can be expressed in terms of ensemble averages
as Cf1,f2(t) =

∫
dx0

∫
dxf2(x)∗f1(x0)pt(x)peq(x0). With specific reference to the self-

correlation, the following “integral” correlation time

τf =
1

Cf,f (0)

∫ ∞
0

dtCf,f (t) (8.3)

quantifies the timescale of decay of Cf,f (t). Here it is meant that 〈f〉eq = 0 so that
limt→∞Cf,f (t) = 0 and the time integral does converge. Note that specific self-corre-
lation functions, as well as their correlation times τf , could be related to measurable
quantities, especially in magnetic and optical spectroscopies describable at the level of
linear response theory.[3] The matching between values of τf computed from a model
of the system’s dynamics on one side, and values obtained from experiments on the
other side, could hence be a way to validate the likelihood of the model itself. On the
other hand, making the time propagation from p0(x) to pt(x), or computing Cf,f (t)
and τf , requires to face other underlying crucial issues. Even in the ideal situation in

2 Brownian trajectories can be generated by means of a Langevin stochastic differential equa-
tion[1] consistent with the Fokker-Planck-Smoluchowski. The required parameters are the drift vector

vdrift(x) = d(x) + D(x)
∂ ln peq(x)

∂x
, where d(x) is the vector with components di(x) =

∑
j ∂Dij(x)/∂xj ,

and a matrix W(x) such that W(x)W(x)T = 2D(x). Given these ingredients, the time-propagation
route is x(t+ δt) = x(t) + δtvdrift(x(t)) +

√
δtW(x(t))s(t), where s is an array of independent random

numbers drawn from a distribution with zero mean and unit variance (White Noise). Specific subjective
choices about the matrix W(x) and the distribution of the White Noise components lead to different
kinds of single trajectories, but any ensemble average (e.g., a time correlation function) is invariant.
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which the set of relevant variables x is known, and the dynamics of such variables is
described by a stochastic model fully parametrized as assumed above, the numerical
solution of the Fokker-Planck-Smoluchowski equation becomes rapidly unfeasible as the
number of degrees of freedom increases beyond a few units. In fact, strategies based
on finite-difference schemes are hardly implementable (in particular because of the diffi-
culty of enforcing boundary conditions in many dimensions) and the numerical solution
becomes prohibitive due to the fact that the dimension of the relaxation matrix growths
exponentially with the number of degrees of freedom. Similar difficulties are encoun-
tered if one opts to solve Eq. (8.1) in the manner of the Schrödinger equation in the
quantum context, that is, by adopting an ortho-normal basis set of functions for the x
variables, go through the matrix representation of Eq. (8.1), and get pt(x) via a standard
eigenvalues-eigenvectors decomposition. In such a case, the matrix representation of the
operator Γ̂ requires elaborating and computing a large number of elements, since the
extension of the basis set grows rapidly, being it given by the direct product of sets of
basis functions (one set per degree of freedom); moreover, the computational cost of the
diagonalization route, and of other required steps as well, scales quadratically with the
leading dimension of the matrix.

An even more serious issue is the problem upstream of discovering the set of essential
variables when the physical intuition cannot lead to a reasonable choice. A way to over-
come such a difficulty consists in trying to reduce the dimensionality of the problem by
means of projective procedures under the (approximate) preservation of the Markovian
condition.[4] This is typically the case in which the system’s energetics and dynamics
are described at a detailed level from first principles (e.g., at a fully atomistic level)
and a few relevant variables have to be found. In recent years, several smart strategies
aimed at extracting such information directly from the system’s trajectories have been
devised. Their global target is to perform a dimensional reduction directly from the
raw data in order to identify collective variables capable to catch/represent the essential
(and typically slow) modes of the system’s relaxation.[5] Among these approaches, we
mention the ‘Diffusion maps’ [6–8] and the elaboration of ‘Markov state models’.[9]

The viewpoint adopted here is rather different. We shall assume that the set of
variables x has been identified and that peq(x) and D(x) are known. From the beginning
we give up to look for efficient numerical solutions (possibly approximated) of Eq. (8.1),
and seek for the possibility of getting, with low effort, only some partial information
about pt(x), Cf,f (t) and τf . Namely, we shall focus on the maximum value of pt(x) at
a given time,

pmax(t) = max
x
{pt(x)} (8.4)

and search for a lower bound of it (see Eq. (8.17) later). Note that pmax(t) gives the
measure of the maximum localization of the system in the space of the degrees of freedom.
A lower bound for pmax(t) hence states that, at time t, the maximum of the localization
is above that threshold (but the point of maximum, or the several points of maximum
in case of multi-modality, remains undetermined). The other target is to establish a
lower bound on the correlation time τf (see Eq. (8.21) later). Note that providing a
lower bound on τf , and having an experimental estimate τf,exp, could help one to assess
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the likelihood of a given model. In fact, the situation in which τf,exp falls below that
threshold would indicate unequivocally that the model is incorrect; in the opposite case
one could only assert that the theoretical model is admissible.

The leading idea is that the quantification of a bound on pmax(t) should require only
simple operations on the initial condition p0(x), while a bound on τf should require
only the knowledge of an initial piece of time correlation function.3 In particular, the
knowledge of the eigenmodes of the operator Γ̂ should not be necessary. Clearly, the
amount of information that we aim to achieve may seem very low. On the other hand,
for scenarios in which any standard numerical treatment is unfeasible, such an amount
of information could be significant.

Towards such goals we start by considering that, for overdamped systems, some
monotonically decreasing functions can be constructed on the basis of the evolution
law Eq. (8.1). More specifically, some of these functions take the form of summation
of exponential decays with non-negative weight factors, hence they own the stronger
character of being completely monotone decreasing (CMD) functions of time. In short,
a function ϕ(t) is said to be CMD if (−1)Ndϕ(N)(t)/dtN > 0 for all orders of the
time derivatives (for a review on the CMD functions we address the reader to Ref. [11]
and references therein). The key point is recognizing that a CMD function is also a
convex function.4 Given this, by applying Jensens’s inequality[12]5 in several ways and
at different stages, we get some useful upper and lower bounds for a general CMD
function ϕ(t) decomposable as summation of exponential decays. The inequalities are

3 According to the standard “sliding time-window” method,[10] an approximation of the correlation
function can be obtained by generating several system’s trajectories starting from different points x0 and
of duration tmax as long as possible; for each trajectory, the following integrals (where t is a fixed parame-
ter) are computed: cf,f (t|x0) = 1

tmax

∫ tmax

0
dts f (x(ts + t|x0))∗ f (x(ts|x0)). The time correlation is then

achieved by superimposing such profiles by assigning to each of them the statistical weight of the initial
point at the thermal equilibrium. For instance, a Monte Carlo sampling[10] could be done to generate a
sufficiently extended statistical ensemble of N initial points. Then, Cf,f (t) ' N−1∑N

i=1 cf,f (t|x0,i).
4 We recall that a real-valued convex function ϕ(y) of real-valued argument y is such that,

for any pair y1 and y2 within the domain of the function, and for any 0 ≤ λ ≤ 1, it holds
ϕ(λy1 + (1 − λ)y2) ≤ λϕ(y1) + (1 − λ)ϕ(y2); for twice differentiable functions, this is equivalent to
require that d2ϕ(y)/dy2 ≥ 0 for all y.

5 Jensen inequality (see for example Ref. [12]) regards convex functions (see note 4). Let ϕ(y) be a
convex function, yn a set of points in its domain, and pn ≥ 0 a set of numbers such that

∑
n pn = 1.

The Jensen inequality reads

ϕ

(∑
n

pnyn

)
≤
∑
n

pnϕ(yn) (a)

If the numbers pn are interpreted as weight factors to compute weighted averages, the Jensen inequality
reads ϕ (〈y〉) ≤ 〈ϕ〉 with 〈y〉 =

∑
n pnyn and 〈ϕ〉 =

∑
n pnϕ(yn). In all generality, consider a function

y(x) and a distribution p(x) on the variables x, with p(x) ≥ 0 and
∫
dx p(x) = 1. The previous expression

generalizes to
ϕ (〈y〉p) ≤ 〈ϕ〉p (b)

where 〈(· · · )〉p ≡
∫
dx (· · · )p(x) is the ensemble average of a function of x. The discretization of

the integrals, in fact, makes that one goes back to the form Eq. (a) given above. Equivalently, let
ρ(y) =

∫
dx δ(y − y(x)) p(x) be the distribution on the y values, being δ(·) the Dirac’s delta function.

Eq. (b) becomes ϕ (〈y〉ρ) ≤ 〈ϕ〉ρ, which again reduces to the form of Eq. (a) once the integral over y is
discretized.
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summarized in section 8.2 and proved in Appendix A.
The next step consists in applying such general inequalities to specific CMD func-

tions, decomposable as summation of exponential decays, that emerge in the context of
overdamped systems and that are relevant for our targets. Two cases are considered.
One is the function F(t) given later in Eq. (8.10). Such a function, known in informa-
tion theory as χ2-distance,[13] quantifies the deviation of pt(x) from p0(x) during the
relaxation process. On this basis, one may figure out that restrictions on F(t) imply
bounds on the distribution pt(x) and hence, ultimately, imply a lower bound on the
largest value pmax(t). The other case is that of generic self-correlation functions Cf,f (t).
The application of the general inequalities leads, as we shall show, to a lower bound on
τf that can be determined from the knowledge of an initial piece of Cf,f (t) to be sup-
plied, for instance, from short system’s trajectories simulated via molecular or Brownian
dynamics.

Figure 8.1 gives a schematic of our approach. Notably, all the results that we are
going to present are valid regardless of the dimensionality and the complexity of the
system.

Figure 8.1: Schematic of the methodological approach adopted to work out useful in-
equalities for overdamped fluctuating systems.

8.2 Inequalities for a class of CMD functions

Let us consider a generic CMD function of time, ϕ(t), decaying to zero in the long-time
limit and decomposable as

ϕ(t) = ϕ(0)
∑
n

gn e
−knt (8.5)

with decay rates kn > 0 and weights gn ≥ 0 normalized as
∑

n gn = 1. The sum-
mation may be an infinite series in all generality. The CMD condition is fulfilled since
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(−1)Ndϕ(N)(t)/dtN =
∑

n gn k
N
n e
−knt > 0 for all orders of the time derivatives. For such

a class of CMD functions, the inequalities given hereafter are proved in Appendix A.
Let us introduce the following time-dependent integral:

I(t) =

∫ t

0
dt′ ϕ(t′) (8.6)

Under the condition that I(∞) = limt→∞ I(t) is finite, the following upper limit is
derived:

I(t) ≤ I(∞)
{

1− e−t ϕ(0)/I(∞)
}

(8.7)

From Eq. (8.7), an explicit upper bound on ϕ(t) is then obtained:

ϕ(t) ≤ I(∞)

{
1− e−2t ϕ(0)/I(∞)

2t

}
(8.8)

Finally, a lower bound on ϕ(t) is also determined:

ϕ(t) ≥ ϕ(0) e−t |ϕ
(1)(0)|/ϕ(0) (8.9)

where ϕ(1)(0) = dϕ(t)/dt|t=0.
The important fact to remark is that in all relations (8.7)-(8.9) the decay rates

kn and the weight factors gn that fully specify ϕ(t) do not appear. The bound in
Eq. (8.9) contains only information about the local behaviour of ϕ(t) at the initial
time, while the bounds in Eqs. (8.7) and (8.8) require also the time-integrated quantity
I(∞) =

∫∞
0 dt′ ϕ(t′) supposed to be achievable or supplied as independent information.

In the next section we apply these general results to a pair of CMD functions, decom-
posable as in Eq. (8.5), that are of relevance in the context of overdamped fluctuations
and connected with the goals (i) and (ii) set in section 8.1. In such specific applica-
tions, the independence of the bounds on the details of the CMD functions means that
it is not required the knowledge of the eigenvalues and eigenfunctions (generally hardly
achievable) of the evolution operator Γ̂.

8.3 Bounding the nonequilibrium probability density

8.3.1 The χ2-distance as CMD function quantifying the extent of dis-
equilibrium

For overdamped dynamics, some monotonic decreasing functions of time (i.e., Lyapunov
functions for the system’s dynamics in the probabilistic context) can be easily con-
structed from Eq. (8.1) using only pt(x) and peq(x).

For instance, the Kullback-Leibler divergence,[14] also known as ‘relative entropy’
and defined as D(t) =

∫
dx pt(x) ln [pt(x)/peq(x)], is a strictly positive quantity which

monotonically decreases to zero as pt(x) tends to peq(x). Such a function is well known in
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the field of information theory and in stochastic thermodynamics[15–17] since it quanti-
fies the “distance” (although not in a strict sense) between a given statistical distribution
and a reference one. In our context, D(t) could be used to follow the decay of the extent
of disequilibrium starting from a given distribution p0(x).

Another monotonically decreasing function is

F(t) = −1 +

∫
dx

pt(x)2

peq(x)
(8.10)

It can be proved that F(t) is non-negative and that limt→∞F(t) = 0, hence also
F(t) quantifies the extent of disequilibrium. In information theory, F is known as the
χ2-distance of the distribution of interest (pt(x) in this case) from a reference one (peq(x)
in this case); see for example Ref. [13] and references therein. The fact that dD/dt < 0
and dF/dt < 0 can be easily proved from Eq. (8.1).6

Since F(t) is not directly related to key features of nonequilibrium thermodynamics,
it had drawn much less attention than D(t) (which, on the contrary, can be connected
with the maximum work that can be extracted from a system out of equilibrium [18]).
On the other hand, for overdamped dynamics it can be proved that F(t) is not simply
a monotonic decreasing function, but precisely a CMD function of time. This is shown
in Appendix B by employing the expansion of pt(x) onto the basis set of the eigenfunc-
tions of the operator Γ̂. The more stringent CMD character confers to F(t) some good
mathematical properties which are lacked by D(t). For example, F(t) is a convex func-
tion of time, whereas the convexity of D(t) is not global[19] but generally limited to the
long timescale (clearly depending on the initial condition p0(x)) in which pt(x) is close
enough to the equilibrium distribution peq(x).[20] In passing, it can be demonstrated

6 To prove that dF/dt < 0, let us rewrite Eq. (8.1) by employing the symmetrized op-

erator Γ̃ = p
−1/2
eq Γ̂p

1/2
eq (the argument x is omitted for the sake of notation); this gives

∂pt/∂t = −p1/2
eq Γ̂

(
pt/p

1/2
eq

)
. The multiplication by pt/peq (from left) at both members, and the use

of the identity (pt/peq)∂pt/∂t = (1/2)∂(p2
t/peq)/∂t, yield ∂(p2

t/peq)/∂t = −2(p2
t/peq)Γ̃(p2

t/peq). By inte-
grating over x at both members we get

∫
dx p2

t (x)/peq(x) ≤ 0, since
∫
dx(p2

t/peq)Γ̃(p2
t/peq) ≥ 0 because

the operator Γ̃ is hermitian with non-negative eigenvalues. Finally, by taking the time derivative at
both members in Eq. (8.10) (definition of F(t)) it follows that dF/dt < 0 as long as pt differs from peq.
To prove that dD/dt < 0, let us consider the identity ∂ [pt ln(pt/peq)] = ∂pt/∂t + ln(pt/peq)∂pt/∂t.
By recalling Eq. (8.1), it follows ∂ [pt ln(pt/peq)] /∂t = ∂pt/∂t − ln(pt/peq)Γ̂pt. The integration
at both members on x gives dD/dt = −

∫
dx ln(pt/peq)Γ̂pt once the definition of D(t) is recalled

and upon consideration that ∂
[∫
dx pt(x)

]
/∂t = 0 from the normalization of pt. By inserting

the explicit form of Γ̂ (Eq. (8.2)) we get dD/dt =
∫
dx ln(pt/peq)

∂
∂x

T
D(x)

∂(pt/peq)

∂x
, and the in-

tegration by parts gives dD/dt = −
∫
dx
[
∂ ln(pt/peq)

∂x

]T
D(x)

∂(pt/peq)

∂x
. Now consider the identity

∂(pt/peq)/∂x = (pt/peq)∂ ln(pt/peq)/∂x. Upon substitution,

dD/dt = −
∫
dx

[
∂ ln(pt/peq)

∂x

]T
D(x)pt

[
∂ ln(pt/peq)

∂x

]
Since D(x) is a definite-positive matrix for any system’s configuration x, the integral at the right-hand
side is always non-negative; thus, dD/dt < 0 as long as pt differs from peq.
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that D(t) ≤ ln [F(t) + 1],7hence the discovery of an upper bound on F(t) provides an
upper bound also on D(t).

Giving that F(t) is a CMD function decomposable as in Eq. (8.5) (see Appendix B),
the inequalities Eqs. (8.7), (8.8) and (8.9) can be straightforwardly applied by replacing
the generic ϕ(t) with F(t). In particular, let us focus on the upper and lower bounds on
F(t). The required quantities, referred to the initial time, are

F(0) = −1 +

∫
dx

p0(x)2

peq(x)

F (1)(0) ≡ dF(t)

dt

∣∣∣∣
t=0

= −2

∫
dx p0(x)peq(x)−1Γ̂p0(x) (8.11)

where Eq. (8.1) has been applied to express the time derivative. Then,

I(∞) =

∫ ∞
0

dtF(t) (8.12)

is the other required quantity. From Eqs. (8.8) and (8.9), the following upper and lower
bounds readily follow:

F(t) ≤ I(∞)

{
1− e−2tF(0)/I(∞)

2t

}
(8.13)

and
F(t) ≥ F(0) e−t |F

(1)(0)|/F(0) (8.14)

We stress that F(0) and F (1)(0) can be reasonably computed, for the given ini-
tial condition, with a low computational cost in contrast with the exact solution of
the Fokker-Planck-Smoluchowski equation via matrix representation on an orthonormal
basis set of functions.8 Contrary to F(0) and F (1)(0), the parameter I(∞) is hardly as-
sessable since it is an integrated quantity over the whole relaxation path to equilibrium.
Such a limitation actually prevents practical applications of Eq. (8.13).

7 To prove such a relation, let us write D(t) ≡
〈

ln pt(x)
peq(x)

〉
pt

and F(t) + 1 ≡
〈
pt(x)
peq(x)

〉
pt

where 〈· · · 〉pt
stands for the ensemble average over pt(x). Since ln(·) is a convex function, the application of the Jensen

inequality in the form of Eq. (b) given in note 5 yields
〈

ln pt(x)
peq(x)

〉
pt
≥ ln

〈
pt(x)
peq(x)

〉
pt

. From the above

equations, the inequality D ≤ ln(F+1) readily follows. A demonstration of such inequality can be found
also in Ref. [13].

8 Note that if the initial condition is a precisely localized configuration x0 so that p0(x) is the
multidimensional Dirac’s delta-function δ(x − x0), then F(0) diverges; the divergence then propagates
to the time derivative F (1)(0). However, such an issue can be circumvented by referring to some short
time ∆t at which an approximate form of the distribution p∆t(x) can be worked out. In the short time-
window, the distribution p∆t(x) can be likely modeled as a N -dimensional Gaussian (N is the number
of stochastic variables) whose center moves under a constant drift, and that broadens due to diffusion.

Explicitly, p∆t(x) ' [4π∆t det(D(x0)]−N/2 × exp
{
− 1

4∆t
[x− xc(x0,∆t)]

TD(x0)−1[x− xc(x0,∆t)]
}

in
which xc(x0,∆t) = x0 + ∆tvdrift(x0) is the shifted center, being vdrift(x0) the drift vector evaluated at
the initial location. Such a drift vector corresponds to the deterministic part of the overdamped Langevin
equation associated with the Fokker-Planck-Smoluchowski (see note 2). The required quantities F(0)
and F (1)(0) are then computed by plugging in Eqs. (8.11) such a form of p∆t(x) in place of p0(x).
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An important point to emphasize is that F(t) is determined by pt(x). Thus, bounds
on F(t) imply, although quite indirectly, that some limitations are imposed to the dis-
tributions pt(x) that can develop from the initial p0(x). In abstract terms, a candidate
pt(x) can be represented by a point in the multidimensional space of a sufficiently ex-
tended set of order parameters (ensemble averages of functions of x). In such a space
there would be prohibited regions and allowed ones associated with distributions pt(x)
that place F(t) inside the bounds of Eqs. (8.13) and (8.14). Much more simply, in what
follows we shall use Eq. (8.14) just to establish a lower bound on the pmax(t) defined in
Eq. (8.4).

8.3.2 Bounding the maximum probability density from below

Let us consider the case of systems that are energetically bounded, physically confined
by reflecting boundaries, or that possess periodic degrees of freedom. In all these cases,
the majorization F(t)+1 ≤ pmax(t)2

∫
dx peq(x)−1 (directly from Eq. (8.10)) makes sense

since the integral

Ω =

∫
dx peq(x)−1 (8.15)

does converge. By rearranging, the following lower bound on the maximum of the
probability density is obtained:

pmax(t) ≥
√
F(t) + 1

Ω
(8.16)

By using the lower bound on F(t) given in Eq. (8.14), a less tight but explicit inequality
is derived:

pmax(t) ≥
√

Ω−1
[
1 + F(0) e−t |F

(1)(0)|/F(0)
]

(8.17)

For illustrative purposes, let us consider an unbiased one-dimensional overdamped ro-
tor (hence peq(x) = 1/2π) with constant diffusion coefficient D. The initial distribution is
set to be p0(x) ∝ e2 cos(x−π/2), i.e., of von Mises type suitable for circular systems.[21] For
the free diffusion on the circle, the explicit expression of pt(x), in the form of Eq. (8.30)
in Appendix B, can be readily found by considering that the evolution operator reduces
to Γ̂ = −D∂2/∂x2; its eigenfunctions are (2π)−1/2einx for n = 0,±1,±2, · · · , and the
corresponding eigenvalues are λn = n2D. The solution is

pt(x) = (2π)−1

1 + 2
∑
n≥1

e−n
2Dt [Cn cos(nx) + Sn sin(nx)]

 (8.18)

where Cn =
∫ 2π

0 dx p0(x) cos(nx) and Sn =
∫ 2π

0 dx p0(x) sin(nx). In the calculations,
the diffusion coefficient was set to 1 (meant to be expressed in some physical units that
are here immaterial). Fig. 8.2 displays the distribution pt(x) at several times, and the
horizontal lines correspond to the right-hand side of Eq. (8.17). As it can be seen, at
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Figure 8.2: Distribution pt(x) at several times (solid lines), and corresponding lower
bounds on pmax(t) from Eq. (8.17) (horizontal dashed lines) for the diffusive free rotor
with diffusion coefficient D = 1.

each time the maximum of the distribution is always above the corresponding horizontal
line; this shows that the bound is correct although not tight.

Such an example serves only as proof of concept of the general idea that it might
be effective, in some instances and especially for complex multidimensional systems, to
get some information about the maximum extent of the system’s localization just on
the basis of the distribution known at a previous instant taken at time-zero. Regardless
of the details of a given system, we expect that the quality of the bound in Eq. (8.17)
degrades if the spectrum of the eigenvalues of the operator Γ̂ features a gap between
slow and fast relaxation modes. In that case the slow modes heavily affect the behaviour
at sufficiently long times, but their contribution could not be well caught (depending on
the initial condition) by the first-order derivative F (1)(0) alone.

8.4 Bounding the time self-correlation

Let us consider the time self-correlation function Cf,f (t) for a generic function f(x)
possibly complex-valued. In terms of ensemble averages, it is expressed by

Cf,f (t) =

∫
dx0

∫
dx f(x)∗f(x0)pt(x)peq(x0) (8.19)

By inserting the formal solution of Eq. (8.1), that is pt(x) = e−tΓ̂δ(x − x0) with δ(·)
the Dirac’s delta function, and making a few algebraic elaborations by exploiting the
integration by parts under the assumed boundedness or periodicity at the boundaries,



172 CHAPTER 8. INEQUALITIES FOR FLUCTUATING SYSTEMS

one gets the useful expression

Cf,f (t) =

∫
dxf(x)∗e−tΓ̂peq(x)f(x) (8.20)

As demonstrated in Appendix B, Eq. (8.20) allows one to recognize that for over-
damped fluctuations Cf,f (t) is a CMD function decomposable as in Eq. (8.5). Thus,
all inequalities presented in section 8.2 are directly applicable when the generic ϕ(t) is
replaced by Cf,f (t).

8.4.1 Lower bound on the self-correlation time from partial knowledge
of the correlation function

Let us focus on Eq. (8.7) for the CMD function Cf,f (t) under the condition that
limt→∞Cf,f (t) = 0. In such a case, the correlation time given in Eq. (8.3) is defined and
corresponds to τf = I(∞)/Cf,f (0) according to Eq. (8.6). Thus, the inequality Eq. (8.7)
becomes

τf

{
1− e−t/τf

}
≥ I(t)

Cf,f (0)
(8.21)

where I(t) =
∫ t

0 dt
′Cf,f (t′).

Eq. (8.21) is potentially useful to establish a lower bound on τf from a short initial
piece of correlation function which could be achieved, for example, from an ensemble of
relatively short system’s trajectories (see note 3) simulated via molecular or Brownian
dynamics (see note 2). Suppose to know the correlation function Cf,f (t′) in the limited
time-window 0 ≤ t′ ≤ tcut. With such information at hand, the right-hand side of
Eq. (8.21) is fixed and it can be computed. For tcut taken as fixed parameter, the graph
of the left-hand side of Eq. (8.21) versus τf grows from zero and monotonically tends
to the value tcut. Thus, the condition in Eq. (8.21) is fulfilled only if τf is beyond some
value which represents a lower bound. As tcut is ever extended, such a lower bound must
tend to τf . In fact, when the full profile of Cf,f (t′) is known, Eq. (8.21) reduces to the
equality τf = Cf,f (0)−1

∫∞
0 dt′Cf,f (t′) which corresponds to the definition of τf itself.

As mentioned in section 8.1, this strategy might be important when one has an
experimental value τf,exp on one side, and a model to simulate single-system trajectories
on the other side. If an ensemble of simulations provides even a short piece of correlation
function with sufficient accuracy, then the lower bound on τf can be determined. If
τf,exp falls below such a bound, one can state for sure that the model has to be revised,
otherwise one can only conclude that the model is acceptable in the sense that it is
compatible with the information at disposal.

For the overdamped free rotor already introduced in section 8.3.2 these expec-
tations are illustrated in the panels a) and b) of Fig. 8.3 for the self-correlation
of f(x) = cosx + cos(2x). The correlation function takes the analytical form
Cf,f (t) = 2−1

(
e−Dt + e−4Dt

)
and the correlation time is τf = 5/(8D) which, nu-

merically, is equal to 0.625 in the present case. The panel a) shows the profile of
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τf
{

1− e−tcut/τf
}

(left hand side of Eq. (8.21)) versus τf for three values of tcut. The
horizontal dashed lines correspond to I(tcut)/Cf,f (0) (right hand side of Eq. (8.21)) for
the same values of tcut. The crossing points provide the lower bound on τf from the
correlation function truncated at the given tcut. The dashed line in the panel b) shows
the tcut-dependence of lower bounds computed in this way. As expected, as tcut is taken
ever larger, the lower bound tends to the true value of τf .

In all generality, the lower bound on τf is expected to be significant for those systems
that do not feature a gap between slow and fast relaxation modes, or, if a gap is present,
for correlation functions whose decay is not markedly determined by the slow modes.
Otherwise, the contribution to I(t) due to the slow modes could emerge very gradually
as tcut increases, hence for tcut relatively short the lower bound would fall much below
the true value.

8.4.2 Lower and upper bounds on self-correlation functions

In some experimental frameworks it may be possible to determine the correlation time
τf for specific functions which enter the description of the system’s response to external
perturbations. This might be the case in which τf is associated with spectral densities
at zero frequency that are linked to spectroscopic observables. For instance, in nuclear
magnetic resonance relaxometry under fast-motional narrowing (Redfield limit), specific
rotational correlation times of the spin-probe molecule are connected with the spectral
linewidths.[22]

In such cases, the perspective is reversed with respect to the one of section 8.4.1:

given τf , and provided that also Cf,f (0) and C
(1)
f,f (0) = dCf,f (t)/dt|t=0 are known, with

Eqs. (8.8) and (8.9) one could set upper and lower bounds to the correlation function
Cf,f (t). Namely,9

Cf,f (0) e−t |C
(1)
f,f (0)|/Cf,f (0) ≤ Cf,f (t) ≤ Cf,f (0)

{
1− e−2t/τf

2t/τf

}
(8.22)

Note that the upper limit is not stringent in the long-time limit, since it has a slow
asymptotic decay as ∼ t−1.

The panel c) of Fig. 8.3 shows the case of the self-correlation function of
f(x) = cosx + cos(2x) for the free diffusive rotation. The solid line corresponds to
the exact function Cf,f (t) = 2−1

(
e−Dt + e−4Dt

)
, while the dashed lines are the lower

and upper bounds.

9For completeness, we mention that although the bounds in Eq. (8.22) pertain self correla-
tions, they can be combined to yield bounds also on mixed correlations. In fact, in the dif-
fusive regime, a correlation function Cf1,f2(t) can be expressed in terms of self correlations as
Cf1,f2(t) = [Cf1+f2,f1+f2(t)− Cf1−f2,f1−f2(t)] /4. If the correlation times τf1+f2 and τf1−f2 are known,
then lower and upper bounds on Cf1,f2(t) can be readily obtained by combinations of the bounds in
Eq. (8.22).
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Figure 8.3: Bounds on the time self-correlation of the function cos x + cos(2x) for the
diffusive free rotor with diffusion coefficient D = 1. Panel a): identification of the lower
bound on the time correlation τf from Eq. (8.21) for three values of the cutoff time
tcut that delimits the known piece of correlation function. Panel b): the resulting lower
bound versus tcut. Panel c): lower and upper bounds on the correlation function.
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8.5 Conclusions

In this work we focused on the dynamics of fluctuating systems in the diffusive regime
of the motion. Given that solving the Fokker-Planck-Smoluchowski equation becomes
rapidly prohibitive on computational grounds as the number of degrees of freedom is
beyond a few units, we have pursued the idea of getting only some partial information
about the dynamics but at low computational cost. Such a partial information is con-
stituted by a lower bound on the maximum value of the probability density pt(x) that
evolves from a given initial condition p0(x), and a lower bound on the correlation time
for a generic self-correlation function. As detailed in sections 8.3.2 and 8.4, the quantifi-
cation of such bounds requires, respectively, simple operations on the initial condition
p0(x), or the knowledge of an initial part of correlation function which could be obtained,
for instance, from an ensemble of system’s trajectories generated by means of molecular
or Brownian dynamics.

Although the amount of achievable information may appear to be low, we stress
again that for numerically intractable systems with many degrees of freedom it may be
valuable. As we pointed out, the maximum of the probability density is related to the
extent of system’s localization in the space of its degrees of freedom, while specific corre-
lation times are connected with experimental data. The bounds that we have set can be
therefore useful to make a sort of “fuzzy” time propagation of the system (bound on the
maximum of the probability density) and/or to check the admissibility of the stochastic
model itself (by checking the compatibility between the lower bound on the correlation
time and the available experimental value). We underline the important fact that al-
though we have illustrated our findings for the very simple case of the one-dimensional
free rotor, the results are valid in all generality regardless of the dimensionality and the
complexity of the system. This is the point of strength of this work.

On methodological grounds, the specific bounds have been derived passing through
general inequalities concerning a class of completely monotone decreasing functions
which are also convex functions. Various usages of Jensen’s inequality have led to the
results summarized in section 8.2. The application of such general relations to the cases
of the time-dependent χ2-distance (our function F(t)) and of generic self-correlation
functions, have led to the final bounds of interest. In spite of their simplicity, to the best
of our knowledge the final inequalities Eq. (8.17) and Eq. (8.21) have not been presented
previously.

Finally, we would like to stress that, although here we focused on some peculiar
features of overdamped fluctuating systems, the idea of seeking for inequalities emerging
from the mathematical structure of the dynamical problem is quite general and might
be further elaborated.

Appendix A: Proof of Equations (8.7), (8.8) and (8.9)

In what follows, the inequalities summarized in section 8.2 are derived for the class
of CMD functions of the form in Eq. (8.5) by applying, at different stages, Jensen’s
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inequality for convex functions (see note 5).
To prove Eq. (8.7), let us insert Eq. (8.5) into Eq. (8.6) and perform the integration;

this yields

I(t) = ϕ(0)
∑
n

gn
kn

(
1− e−knt

)
≡ I(∞)− ϕ(0)

∑
n

gn
kn
e−knt

(8.23)

Since I(0) = 0, then
∑

n gn/kn = I(∞)/ϕ(0). By introducing the factors
w̃n = (gn/kn)ϕ(0)/I(∞) with

∑
n w̃n = 1, the summation at the right-hand side is

rewritten as ∑
n

(gn/kn)e−knt = [I(∞)/ϕ(0)]
∑
n

w̃ne
−knt (8.24)

Since the function e−kt is convex with respect to the variable k (t is taken as fixed
parameter), by applying Jensen’s inequality (in the form of Eq. (a) of note 5) it follows
that

∑
n w̃ne

−knt ≥ e−
∑
n w̃nkn . By recalling the definition of the w̃n factors, and also

recalling that
∑

n gn = 1, we have that
∑

n w̃nkn = ϕ(0)/I(∞). As a whole, from
Eq. (8.23) it follows

I(t) ≤ I(∞)− I(∞)e−tϕ(0)/I(∞) (8.25)

which corresponds to Eq. (8.7).
Equation (8.8) may be seen as a corollary of Eq. (8.7). Let us consider that a CMD

function is also a convex function (the opposite is not generally true). On this basis we
get the following inequality

1

t

∫ t

0
dt′ ϕ(t′) ≥ ϕ

(
1

t

∫ t

0
dt′ t′

)
= ϕ(t/2) (8.26)

In fact, by interpreting the left-hand side as average over the time variable, the inequality
is obtained by applying Jensen’s inequality (in the form of Eq. (b) of note 5 for uniform
distributions). From Eq. (8.26) it follows

I(t) ≥ t ϕ(t/2) (8.27)

By combining Eq. (8.27) (lower bound on I(t)) with Eq. (8.7) (upper bound on I(t)) it
follows

t ϕ(t/2) ≤ I(∞)
(

1− e−tϕ(0)/I(∞)
)

(8.28)

By turning from t/2 to t, Eq. (8.8) is readily obtained.
To prove Eq. (8.9), let us consider that the time derivatives of the CMD function

in Eq. (8.5) are given by ϕ(N)(t) ≡ dNϕ(t)/dtN = (−1)Nϕ(0)
∑

n gn k
N
n e
−knt. Let us

introduce the new weight factors g̃n = gnk
N
n /
∑

n′ gn′ k
N
n′ with

∑
n g̃n = 1. This leads

to |ϕ(N)(t)| = |ϕ(N)(0)|
∑

n g̃n e
−knt. As above, since the function e−kt is convex with
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respect to the variable k, Jensen’s inequality yields
∑

n g̃n e
−knt ≥ e−t

∑
n g̃n kn . On

the other hand,
∑

n g̃n kn =
(∑

n gn k
N+1
n

)
/
(∑

n gn k
N
n

)
= |ϕ(N+1)(0)|/|ϕ(N)(0)|. By

substituting, we get the following general inequality concerning the time derivatives:

|ϕ(N)(t)| ≥ |ϕ(N)(0)| e−t |ϕ(N+1)(0)|/|ϕ(N)(0)| (8.29)

From such a general relation, Eq. (8.9) follows as the special case N = 0.
We emphasize that all inequalities here derived hold in all generality for any CMD

function decomposable as in Eq. (8.5).

Appendix B: Proof that F(t) and Cf,f(t) are CMD functions

Here we show that the function F(t) in Eq. (8.10), and any self-correlation function
Cf,f (t) in Eq. (8.19), are CMD functions of the form of Eq. (8.5).

Let us begin by considering that the solution of the Fokker-Planck-Smoluchowski
equation given in Eqs. (8.1)-(8.2) can be cast in the form

pt(x) = peq(x) +
∑
n≥1

cn(0) e−λnt φn(x) (8.30)

where λn and φn(x) are, respectively, eigenvalues and eigenfunctions of Γ̂, that is,
Γ̂φn(x) = λnφn(x). The eigenvalues are real-valued and non-negative, while the
eigenfunctions may be generally complex-valued. In particular, λ0 = 0 is the unique
null eigenvalue associated with the eigenfunction φ0(x) ≡ peq(x), while λn≥1 > 0
assures that limt→∞ pt(x) = peq(x). The fact that the “symmetrized” operator
Γ̃ = peq(x)−1/2Γ̂peq(x)1/2 is hermitian (hence its eigenfunctions peq(x)−1/2φn(x) form
an orthonormal basis set) implies that

∫
dxφn(x)∗φn′(x)peq(x)−1 = δn,n′ , where δn,n′ is

the Kronecker’s delta function. Finally, the weight factors cn(0), which depend on the
initial condition, are given by cn(0) =

∫
dx p0(x)φn(x)∗ peq(x)−1.

By using Eq. (8.30) in Eq. (8.10), a few steps lead to

F(t) = F(0)
∑
n≥1

wn e
−αnt (8.31)

where wn are the non-negative weight-factors wn = |cn(0)|2/
∑

n′≥1 |cn′(0)|2 with∑
n≥1wn = 1 and αn = 2λn. Eq. (8.31) tells us that if p0(x) 6= peq(x), then F(t)

starts from the positive value
∑

n≥1 |cn(0)|2 and monotonically decays to zero. More
strictly, F(t) is a CMD function which has precisely the form of Eq. (8.5).

To see that also Cf,f (t) is a CMD function, one could insert Eq. (8.30) into Eq. (8.19)
and elaborate the resulting expression. A more convenient way is to consider Eq. (8.20)
which, in terms of the symmetrized operator Γ̃, is rewritten as

Cf,f (t) =

∫
dxf(x)∗peq(x)1/2e−tΓ̃peq(x)1/2f(x) (8.32)
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By expanding peq(x)1/2f(x) on the basis of the eigenfunctions of Γ̃, and performing the
integration by considering their ortho-normality property, one gets

Cf,f (t) = |〈f〉|2 +
∑
n≥1

∣∣∣∣∫ dxφn(x)∗f(x)

∣∣∣∣2 e−λnt (8.33)

which can be re-arranged as

Cf,f (t) = |〈f〉|2 +
[
Cf,f (0)− |〈f〉|2

]∑
n≥1

fn e
−λnt (8.34)

with Cf,f (0) = 〈|f |2〉 and non-negative weight factors

fn =

∣∣∫ dxφn(x)∗f(x)
∣∣2∑

n′≥1

∣∣∫ dxφn′(x)∗f(x)
∣∣2 (8.35)

From Eq. (8.34) it is clear that Cf,f (t) is a CMD function which decreases from 〈|f |2〉
to |〈f〉|2.

The correlation time in Eq. (8.3) is defined only for functions f(x) with null equilib-
rium average so that Cf,f (t) decays to zero and the integral in Eq. (8.3) does converge
(at any rate, to be in such a situation it suffices to consider, instead of f(x), its deviation
from the equilibrium average). In such a case, Eq. (8.34) reduces to

If 〈f〉 = 0 : Cf,f (t) = Cf,f (0)
∑
n≥1

fn e
−λnt (8.36)

of the same form of Eq. (8.5).
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5F. Noé, and C. Clementi, “Collective variables for the study of long-time kinetics from
molecular trajectories: theory and methods”, Current Opinion in Structural Biology
43, 141–147 (2017).



REFERENCES 179

6R. R. Coifman, I. G. Kevrekidis, S. Lafon, M. Maggioni, and B. Nadler, “Diffusion
maps, reduction coordinates, and low dimensional representation of stochastic sys-
tems”, Multiscale Modeling & Simulation 7, 842–864 (2008).

7M. A. Rohrdanz, W. Zheng, M. Maggioni, and C. Clementi, “Determination of reaction
coordinates via locally scaled diffusion map”, The Journal of Chemical Physics 134,
124116 (2011).

8E. Chiavazzo, R. Covino, R. R. Coifman, C. W. Gear, A. S. Georgiou, G. Hummer,
and I. G. Kevrekidis, “Intrinsic map dynamics exploration for uncharted effective free-
energy landscapes”, Proceedings of the National Academy of Sciences 114, E5494–
E5503 (2017).
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12G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities (Cambridge university press,
1988).

13S. S. Dragomir, and V. Gluscevic, “Some inequalities for the kullback-leibler and χ2–
distances in information theory and applications”, RGMIA research report collection
3, 199–210 (2000).

14S. Kullback, and R. A. Leibler, “On information and sufficiency”, The Annals of Math-
ematical Statistics 22, 79–86 (1951).

15C. Jarzynski, “Equalities and inequalities: irreversibility and the second law of thermo-
dynamics at the nanoscale”, Annual Review of Condensed Matter Physics 2, 329–351
(2011).

16S. Vaikuntanathan, and C. Jarzynski, “Dissipation and lag in irreversible processes”,
Europhysics Letters 87, 60005 (2009).

17D. Frezzato, “Dissipation, lag, and drift in driven fluctuating systems”, Physical Re-
view E 96, 062113 (2017).

18I. Procaccia, and R. D. Levine, “Potential work: a statistical-mechanical approach for
systems in disequilibrium”, The Journal of Chemical Physics 65, 3357–3364 (1976).

19V. Jog, and V. Anantharam, “Convex relative entropy decay in Markov chains”, in
Information sciences and systems (ciss), 2014 48th annual conference on (IEEE, 2014),
pp. 1–6.

20M. Polettini, and M. Esposito, “Nonconvexity of the relative entropy for Markov dy-
namics: a Fisher information approach”, Physical Review E 88, 012112 (2013).

21K. V. Mardia, and P. E. Jupp, Directional statistics, Vol. 494 (John Wiley & Sons,
2009).



180 CHAPTER 8. INEQUALITIES FOR FLUCTUATING SYSTEMS

22D. Kotsyubynskyy, M. Zerbetto, M. Soltesova, O. Engström, R. Pendrill, J. Kowa-
lewski, G. Widmalm, and A. Polimeno, “Stochastic modeling of flexible biomolecules
applied to NMR relaxation. 2. Interpretation of complex dynamics in linear oligosac-
charides”, The Journal of Physical Chemistry B 116, 14541–14555 (2012).



Chapter 9

Conclusions

The present work was aimed at giving a contribution in the vast topic of model reduction
and simplification of complex dynamical systems, both deterministic and stochastic,
which are encountered in the chemical sciences. Although only to a limited extent, we
gave some insights in quite a varied spectrum of contexts, from deterministic chemical
kinetics to general overdamped stochastic processes, passing through general phase-space
deterministic dynamics and stochastic chemical kinetics.

Concerning the first part of the project, which is devoted to deterministic systems,
we chose a rather unexplored methodology to achieve a dimensionality reduction of the
dynamics; namely, we obtained and studied “canonical formats”, of quadratic type, of
the evolution law. A canonical format is achieved by adopting an extended set of new
dynamical variables. As already mentioned in several points throughout this work, the
main advantage in switching to a canonical format of the evolution law is that it is devoid
of system-dependent parameters (which are entirely borne on the initial conditions).
Thus, the study of a canonical format is in principle sufficient to characterize a whole
family of dynamics (such as mass-action-based chemical kinetics) and, if a particular
feature is discovered, one has only to turn back to the original representation to see how
such a feature is mirrored. The adoption of this methodology allowed us, for instance,
to discover the existence of attracting subspaces in a “hyper-spherical” representation
of the dynamics; in addition, a connection was made between such subspaces and the
Slow Manifold feature for the mass-action chemical kinetics. As thoroughly discussed in
chs. 2, 4 and 5, the study of canonical formats could lead to the emergence of further
interesting properties that are not easy to detect by looking at the original representation
of the system’s dynamics. It is worth noting that, in all generality, different canonical
formats can be built for a given family of dynamics and, therefore, some formats could
be more suitable than others to let emerge peculiar features.

The second part of the project was devoted to explore the topics of dimensionality re-
duction and model simplification in various ambits of stochastic dynamics. In chapter 6
we adopted mainly a phenomenological approach. The main outcome of the work was to
show that a geometrical structure similar to the Slow Manifold, well characterized in the
deterministic chemical kinetics, actually exists also for the stochastic counterpart. We
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think that such a finding is interesting because a geometrical simplification similar to the
strategies widely employed in the deterministic context is relatively unexplored in the
stochastic ambit. A more clear understanding of the phenomenon, along with a formal
mathematical formulation, could lead to a new approach to the dimensionality reduction
of stochastic chemical kinetics. In chapter 7 we gave a contribution to the assessment
of the physical reliability of the chemical Langevin and Fokker-Planck equations. We
proved that both such continuous approximations of the discrete stochastic kinetics suffer
from a physical inconsistency, namely the presence of nonphysical probability currents
at equilibrium even for fully reversible and detailed-balanced reaction networks. This
finding clarified, at least partially, some limitations of these two commonly employed
continuous models. Finally, in chapter 8 we set the target of obtaining some partial
information about a future state of a general overdamped fluctuating systems with con-
tinuous degrees of freedom. Indeed, as explained in depth in ch. 8, apart from simple
low-dimensional cases, such systems are often mathematically intractable and even the
achievement of a small amount of information is challenging. We achieved the target by
discovering easily computable time-dependent bounds for physical quantities of interest
through the exploitation of the properties of continuous monotone decreasing functions
of the dynamics, treated as convex functions of time. This methodology could be viewed
as a “fuzzy time-propagation” of the system because one gets information about a future
state, but only at a partial and approximate level. To our knowledge, this approach is
new in the context of the simplification of stochastic dynamics and, for this reason, we
hope it could open new perspectives in the field.

In conclusion, we hope that, although in a partial and somewhat limited way, we
succeeded in giving a contribution to the vast and varied field of model reduction and
simplification of deterministic and stochastic dynamics; in particular by providing ap-
proaches and perspectives not yet fully explored by the community.
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