
Dipartimento di Ingegneria dell’Informazione

Corso di Dottorato di Ricerca in Ingegneria dell’Informazione

Curricula Scienza e Tecnologia dell’Informazione

Ciclo XXXI

Solutions for large scale,

efficient, and secure

Internet of Things

Supervisore:

Prof. Andrea Zanella

Coordinatore del corso:

Prof. Andrea Neviani

Dottorando:

Daniel Zucchetto





Abstract

The design of a general architecture for the Internet of Things (IoT) is a com-
plex task, due to the heterogeneity of devices, communication technologies, and
applications that are part of such systems. Therefore, there are significant op-
portunities to improve the state of the art, whether to better the performance
of the system, or to solve actual issues in current systems. This thesis focuses,
in particular, on three aspects of the IoT. First, issues of cyber-physical systems
are analysed. In these systems, IoT technologies are widely used to monitor,
control, and act on physical entities. One of the most important issue in these
scenarios are related to the communication layer, which must be characterized
by high reliability, low latency, and high energy efficiency. Some solutions for
the channel access scheme of such systems are proposed, each tailored to dif-
ferent specific scenarios. These solutions, which exploit the capabilities of state
of the art radio transceivers, prove effective in improving the performance of
the considered systems. Positioning services for cyber-physical systems are also
investigated, in order to improve the accuracy of such services. Next, the focus
moves to network and service optimization for traffic intensive applications, such
as video streaming. This type of traffic is common amongst non-constrained de-
vices, like smartphones and augmented/virtual reality headsets, which form an
integral part of the IoT ecosystem. The proposed solutions are able to increase
the video Quality of Experience while wasting less bandwidth than state of the
art strategies. Finally, the security of IoT systems is investigated. While often
overlooked, this aspect is fundamental to enable the ubiquitous deployment of
IoT. Therefore, security issues of commonly used IoT protocols are presented,
together with a proposal for an authentication mechanism based on physical
channel features. This authentication strategy proved to be effective as a stand-
alone mechanism or as an additional security layer to improve the security level
of legacy systems.
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Sommario

La progettazione di un’architettura generale per l’Internet of Things (IoT) è
un compito complesso, data l’eterogeneità di dispositivi, tecnologie di comu-
nicazione e applicazioni che sono parte di tali sistemi. Ci sono, dunque, op-
portunità significative per migliorare lo stato dell’arte, sia per incrementare le
prestazioni del sistema che per risolvere problemi specifici. Questa tesi si con-
centra, in particolare, su tre aspetti dell’IoT. Per primo, si analizzano i prob-
lemi dei cosiddetti sistemi cyberfisici. In tali sistemi, le tecnologie IoT sono
ampiamente usate per monitorare, controllare e agire su entità fisiche. Uno dei
punti più critici di tali sistemi è relativo alla comunicazione, che deve essere
caratterizzata da un’elevata affidabilità, da bassa latenza e da alta efficienza
energetica. Sono dunque proposte alcune soluzioni per lo schema di accesso al
mezzo di tali sistemi, ognuna specifica per un diverso scenario. Queste soluzioni,
che sfruttano le caratteristiche dei moduli di rice-trasmissione radio di ultima
generazione, si dimostrano efficaci nel migliorare le prestazioni dei sistemi in
esame. Inoltre, vengono investigate tecniche di localizzazione per sistemi cyber-
fisici, per incrementare l’accuratezza di tali tecniche. In seguito, l’attenzione si
sposta sull’ottimizzazione della rete e dei servizi per applicazioni che generano
un traffico elevato, come lo streaming video. Questo tipo di traffico è comune
tra i dispositivi, come gli smartphone o i visori di realtà virtuale, che non hanno
limiti stringenti in termini di potenza di calcolo o consumo energetico, ma che
fanno comunque parte integrale dell’ecosistema IoT. Le soluzioni proposte ri-
escono ad incrementare la Quality of Experience, seppur usando meno larghezza
di banda rispetto alle soluzioni attuali. Infine, viene analizzata la sicurezza dei
sistemi IoT. Seppur sia spesso sottovalutato, questo aspetto è fondamentale per
permettere l’ampia diffusione di tali tecnologie. Sono dunque presentati i prob-
lemi di sicurezza dei più diffusi protocolli IoT, congiuntamente ad una proposta
per un meccanismo di autenticazione basato sulle caratteristiche del canale.
Questa strategia di autenticazione si è dimostrata efficace sia come meccanismo
unico di autenticazione che come tecnologia da abbinare ai meccanismi attuali
in modo da migliorarne la sicurezza.
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Chapter 1

The Internet of Things: An

overview

Building a general architecture for the Internet of Things (IoT) is a very complex
task, exacerbated by the extremely large variety of devices, link layer technolo-
gies, and services that may be involved in such a system. In this introductory
chapter, we analyse the main blocks of a generic IoT architecture, describing
their features and requirements, and investigating the most common approaches
proposed in the literature for each block. The analysis will prove the importance
of adopting an integrated approach that jointly addresses several issues and is
able to flexibly accommodate the requirements of the various elements of the
system.

1.1 Introduction

The IoT is a paradigm in which sensors and microcontrollers are extended into
the world of everyday objects and actively exchange information to achieve
common goals. This technology shift is deemed to be the next stage of the
information revolution after the massive spreading of the Internet in every field,
and its impact is expected to be much heavier than that caused by the integra-
tion of the Internet in our lives through smartphones and other mobile devices.
In fact, the IoT shall be able to seamlessly incorporate a large number of het-
erogeneous end systems, while providing open access to selected subsets of data
for the development of digital services [11]. The integration of potentially any
object into the Internet allows for new forms of interactions between humans
and devices, or directly among devices, according to what is commonly referred
to as the Machine-to-Machine (M2M) communication paradigm [12].

Cyber-Physical Systems (CPSs), which can be considered a subset of the
IoT, are engineered systems that deeply integrate with the physical environ-
ment surrounding them. In particular, a CPS is composed by a network of
elements that interact with the physical world through computation, commu-
nication, and control capabilities [13, 14]. Examples of CPSs are autonomous
vehicles [15], medical devices [16], robotics [17, 18], and smart power grids [19].
Furthermore, Wireless Sensor Networks (WSNs) and many common low-power
IoT applications can be included in the CPS area too.

1
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Application layer

Middleware layer

Edge Technology layer

Access Gateway layer

IoT edge network

IP network

Figure 1.1: IoT architecture

Traditionally, the design of the cyber and physical parts of a system have
been decoupled, while CPS emphasizes a holistic system view where the focus
is on the inter-dependency and interaction of both parts of the system. In
addition, CPSs link two different domains: the continuous and discrete domains
of physical and cyber components, respectively. This heterogeneity makes the
analysis of these systems a major challenge [14]. While many of the techniques
presented in this thesis can be applied in general IoT scenarios, the focus is
mainly to CPSs applications.

There is an increasing interest in both IoT and CPS areas, together with the
number of their deployments. A recent investigation from Juniper Research has
revealed that the number of IoT connected devices is predicted to be 50 billion
in 2022, up from an estimated 21 billion by the end of 2018, a rise of 238% [20]
whereas other studies [21] foresee 19.8 billions of non-phone interconnected de-
vices against 8.6 billions of phone devices by 2023. According to the McKinsey
analysis [22] the potential economic impact of IoT is going to be between $3.9
trillions and $11.1 trillions by 2025.

However, the heterogeneity of both end devices and applications complicates
the already challenging development of the IoT [23], which needs to cope with
massive access to the transmission channels, security issues and energy efficiency
problems, which are stressed by the use of constrained end devices. To cope with
these issues, the ongoing research in the scientific community addresses all layers
of the protocol stack, from physical transmission up to data representation and
service composition.

Although it is not straightforward to define a unified scheme for the various
IoT applications, it is possible to pinpoint the basic blocks that make up every
IoT architecture (Fig. 1.1) [24]:

• Edge Technology layer : it is the hardware layer that represents the things
part of the IoT and consists of sensors and actuators. The main function
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of this layer consists in collecting information from an environment or a
system and processing this information. The end devices must be able
to communicate with the Access Gateway layer in order to transmit the
collected observations and to receive feedback from the upper layers. Sev-
eral solutions have been proposed for efficiently managing communication
among the end devices, which typically are severely constrained in terms
of computational and storage capabilities, and energy capacity;

• Access Gateway layer : it represents the point of access to the Edge Tech-
nology layer and basically revolves around data handling, i.e., forwarding
the information generated by the end devices to the middleware layer and
sending data produced by the latter back to the devices. It must provide
all the functions that the constrained peripheral nodes cannot bear and
must support protocols for communicating with the IP world, whilst cop-
ing with the large variety of devices that may be present in the network;

• Middleware layer : it is the intermediate layer between the things and
the Internet and is mainly responsible for filtering and storing the data
received from the end devices. It is also responsible for enforcing the
security policy in the IoT network. This layer must be able to cope with
the device heterogeneity and hide it to the IoT applications in order to
facilitate their access to sensor data;

• Application layer : it is the layer responsible for presenting the information
to the final user. It provides a high level management of all involved
devices in an integrated way, ensuring scalability, high availability, and
the reliable and secure execution of the requested functionalities from the
devices.

To cope with the intrinsic constraints of IoT scenarios, several challenges
must be addressed at every layer and the development of the whole architecture
also has to efficiently integrate every element without interfering with the rest of
the system. The goal of this chapter is to provide an introductory overview of the
protocols and technologies that can be employed in the communication between
the various elements of an IoT system. The following sections illustrate the
most advanced commercially available solutions for IoT systems, from physical
and link layer technologies to network management and security. Drawbacks
of each solution are highlighted, showing the need for improvements over the
state of the art. In the remaining chapters of the thesis, then, each topic will be
investigated more deeply, in order to propose techniques for solving such issues
and quantify the resulting improvements.

1.2 IoT wireless technologies

The basis of an IoT system is to be found in the physical connection between
the devices in the IoT network. Most connections between things use wireless
technologies, since the number of devices to be connected is usually large and,
in many scenarios, devices need to be mobile, e.g., in the case of wearable
technologies or for tracking purposes, or placed in locations where wiring is not
feasible or convenient.
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Multi-hop short-range wireless technologies have been the first enabler of IoT
networks. Things connected to these networks usually run on dedicated protocol
stacks specifically designed to satisfy the device constraints, although at least
one of these devices must be connected to an IP network. Devices connected
to both the IoT and an IP network act as access gateways, as they allow users
to communicate with things via traditional devices like PCs and smartphones.
In this group, the most prominent technologies are the IEEE 802.15.4 family,
including ZigBee and 6LoWPAN, and ZWave. These kinds of networks operate
in the 2.4 GHz and 868/915 MHz unlicensed industrial, scientific and medical
(ISM) frequency bands, with devices connected using a mesh topology. The
distance between these devices ranges from few meters up to roughly 100 m,
depending on the specific technology used and on the surrounding environment.
One of the downsides of using a multi-hop technology is the need, for nodes in
the network, to keep the radio circuitry on in order to forward the messages
coming from other nodes, thus reducing the power efficiency of the network and
reducing the battery life of nodes. These technologies have also proven to be
inadequate in scenarios where the network must provide a large coverage range,
as in Smart City applications.

To overcome these shortcomings, new technologies have been proposed. They
can be grouped in two families: cellular IoT networks and Low Power Wide Area
(LPWA) networks and, unlike multi-hop short-range wireless technologies, they
enable a place-&-play connectivity [25], i.e., any device can be connected to the
IoT network by simply placing it in the desired location and switching it on.
In particular, the Third Generation Partnership Project (3GPP), which is the
body that developed the specifications for the most popular cellular technolo-
gies, attempted to revamp GSM (Global System for Mobile Communications)
to support IoT devices, thus implementing the Cellular IoT architecture [26].
A possible issue that arises in these types of networks is the massive number
of devices that need to access the transmission channel. Since cellular tech-
nologies were not designed to provide machine-type services to a huge number
of devices, the signaling and control traffic may become the bottleneck of the
system [23]. To solve these issues and improve compatibility with future cel-
lular networks, 3GPP introduced IoT-specific cellular technologies in Release
13, namely Narrow-Band IoT (NB-IoT) and Enhanced Machine-Type Commu-
nication (eMTC). These technologies are targeted at improving coverage while
reducing complexity and energy consumption of cellular IoT devices [27,28].

A possible alternative is represented by LPWA networks, which combine
the use of dedicated protocol stacks tailored to constrained devices, with long
coverage range. In this kind of networks, the end devices are connected to a
central aggregator, generally referred to as gateway, which provides bridging to
the IP world in a fashion similar to the access gateway in multi-hop networks.
The gateway coverage range is in the order of kilometers, making it possible
to serve an entire city with a limited number of gateways. A limit of these
networks is the low bitrate that, however, is expected to be sufficient for many
IoT services.

The first LPWA technology proposed in the IoT market is SIGFOX,1 founded
in 2009. The SIGFOX physical layer uses an Ultra Narrow Band (UNB) modu-
lation coupled with sub-GHz bands to ensure a great coverage range. SIGFOX,

1http://www.sigfox.com/
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Technology SIGFOX Ingenu LoRa

Coverage rural: 30–50 ≈ 15
rural: 10–15

range [km] urban: 3–10 urban: 3–5

Frequency
868 or 902 2400 various, sub-GHz

bands [MHz]

Data rate [Kbps] 0.1 0.01–8 0.3–37.5

Nodes per BS ≈ 106 ≈ 104 ≈ 104

Table 1.1: Comparison among LPWA radio technologies.

which acts as an operator for IoT services, already deployed its nation-wide
access networks in many European countries, including France, Spain and the
Netherlands, thanks to the great coverage range of their gateways, claimed to
be 30–50 km in rural areas and 3–10 km in urban areas [29].

A further LPWA technology is LoRa, designed and patented by Semtech
Corporation [30], which also manufactures the chipsets. Its physical layer uses
a derivative of Chirp Spread Spectrum, operating in the unlicensed sub-GHz
bands. LoRa systems are being deployed by telecommunication providers like
Orange and Bouygues Telecom in France, Swisscom in Switzerland, and KPN
in the Netherlands. While the physical layer of LoRa is proprietary, the rest of
the protocol stack, known as LoRaWAN [31], is being developed by the LoRa
Alliance2, an association of industry partners dedicated to the development of
LoRa solutions.

Ingenu,3 a trademark of On-Ramp Wireless, is another example of LPWA
technology. Ingenu networks, unlike most of the other LPWA technologies,
operate in the 2.4 GHz band, but thanks to the use of the patented Random
Phase Multiple Access technology [32], can still work over long distances. In
collaboration with Meterlinq, Ingenu is deploying a nationwide network in Italy
to enable smart water and smart gas monitoring, with the long-term goal to
scale the network to include additional IoT applications. Also, a nationwide
network is being deployed in the USA.

Tab. 1.1 shows a comparison of these LPWA radio technologies, highlighting,
in particular, the differences in bitrate and declared coverage range [25].

1.3 Messaging protocols

The interaction with the specific wireless transmission technologies discussed
in the previous section is typically realized by means of standard Application
Program Interfaces (APIs) and communication protocols that can be logically
placed on the Access Gateway layer of Fig. 1.1. The goal of this layer is to
abstract the specificities of the lower layers and provide common ways to access
the data collected by the IoT nodes. This section describes the most important
protocols that are being proposed for this purpose. In particular, the focus is

2https://www.lora-alliance.org/
3https://www.ingenu.com/
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on REST, MQTT and AMQP, as all of them are widely used and provide a
comparable set of features. However, these communication protocols have been
developed starting from different requirements and with contrasting use cases
in mind, thus providing dissimilar performance in various scenarios.

REST

The Representational State Transfer (REST) is a software architecture style
for building scalable web services, typically over the Hypertext Transfer Proto-
col (HTTP) [33], and originated from the Ph.D. thesis of Roy Fielding in the
year 2000 [34]. For a service to be identified as RESTful, the following five
constraints must be respected.

• Client-server : a RESTful service follows a client-server model, with sepa-
ration of concerns.

• Stateless: at the server side, no information about session and client con-
text is retained and each request is an independent transaction that is
unrelated to any previous request. So, each client request needs to con-
tain all the information necessary to serve the request and only the client
holds the session state. In this way servers are simpler and scalability is
enforced.

• Layered system: client and server may not be directly interconnected. In-
termediary servers may improve system scalability by enabling load bal-
ancing and providing shared caches, and may also enforce security policies.

• Cacheable: clients and intermediaries can cache responses, allowing an
improvement in scalability and performance.

• Uniform interface: the uniform interface between client and server allows
each part to evolve independently. This constraint is based on two no-
tions: first of all, individual resources must be identified in the requests
and, secondly, these resources can be manipulated according to the CRUD
pattern: Create, Retrieve, Update and Delete.

A further optional requirement is that servers shall be able to transfer executable
code to clients.

The concept of resource is central in RESTful services: every resource is
globally and uniquely identified by a Uniform Resource Identifier (URI) and
is considered as an abstract entity disconnected from its representation. Since
REST APIs are used almost exclusively over HTTP, in this work we will consider
only REST over HTTP.

MQTT

The Message Queuing Telemetry Transport (MQTT) protocol is a lightweight
event and message oriented protocol allowing devices to asynchronously com-
municate across constrained networks to remote systems. MQTT, version 3.1.1,
has recently been standardized by the Organization for the Advancement of
Structured Information Standards (OASIS) consortium [35] and has been sub-
mitted to the International Organization for Standardization (ISO) in order to
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become an International Standard [36]. The MQTT protocol has been initially
designed to communicate telemetry data in a M2M scenario, and therefore can
work in unreliable networks with small bandwidth and high latency. The size
of the message header can be as small as 2 bytes, since, in IoT and M2M sce-
narios, messages are typically short and control information may easily become
the predominant part of the communication. The protocol has a client-server
architecture: the server part is represented by a central broker that acts as in-
termediary among the clients, i.e., the entities that produce and consume the
messages. MQTT revolves around the concept of topics, which are UTF-8 (Uni-
code Transformation Format, 8 bit) strings used by the broker to filter messages
for each connected client. Topics are used by clients for publishing messages
and for subscribing to the updates from other clients. This pub/sub mechanism
avoids the need for consumer entities to continuously poll the data producers
for new messages: through a topic subscription, an MQTT client receives all the
messages published by other clients for that topic. MQTT libraries have been
provided for all major IoT development platforms, for the two major mobile
platforms, i.e., Android and iOS, and for several programming languages (Java,
C, PHP, Python, Ruby, Javascript).

AMQP

The Advanced Message Queuing Protocol (AMQP) is an open Internet protocol
for message exchange. AMQP version 1.0 has been standardized by the OASIS
consortium [37] and successively by the ISO, as ISO/IEC 19464:2014 [38]. Its
original goals were to enable communication between systems of different ven-
dors, support messaging semantics needed in the financial service industry, be
extensible to new queuing and routing strategies, and allow complete configura-
tion of the message routing. The initial development of AMQP started from the
initiative of financial institutions that needed to reliably exchange data between
heterogeneous systems. Since then, this protocol has been successfully used to
exchange messages in M2M scenarios. In an AMQP system, the entities that
produce and consume messages over the network are linked to central messag-
ing servers, called brokers. At the broker, inbound messages are put in different
queues, waiting to be collected by message consumers. The message routing is
very flexible, as it allows, e.g., to send messages in broadcast, to direct them to
a single entity, or to use a topic-based pub/sub mechanism, as in MQTT.

In the rest of this section, we compare the protocols performance with a
focus on the IoT scenario. Hence, we consider the following aspects: support of
different IoT traffic patterns, data encoding and manipulation, reliability, and
security.

1.3.1 Support of different IoT traffic patterns

In an IoT network many devices are linked to a central aggregator that monitors
and operates them. An IoT network can be used to serve several purposes,
which may differ in the way the messages are exchanged between network nodes.
It is possible to categorize the message exchanges of an IoT network in four
different communications patterns (Fig. 1.2): telemetry, notifications, inquiries,
and commands [39]. Summarized results from the analysis of these patterns,
together with the protocols support for them, can be found in Tab. 1.2.
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Telemetry: in the telemetry pattern, the device autonomously sends data
to the central aggregator with a fixed time period or at the occurrence of some
events. The aggregator, upon data reception, simply stores them for further
analysis. Data messages are usually small, with lengths of some tens of bytes,
but frequent. Depending on the use case, the average interval between the
data messages could range from hours (e.g., for environmental monitoring) to
fractions of a second (e.g., for car telemetry). The HTTP protocol, being ASCII-
oriented, is too verbose for short messages, since each optional header greatly
increases the size of the message. For this reason, the REST approach is not
very efficient in this case. MQTT, instead, was designed to have a low overhead
and to be very efficient in case of short messages. AMQP, due to its many
features, has a larger header than MQTT, however it provides a flow control
mechanism, not present in HTTP and MQTT, to slow down the source in case
the destination is unable to keep up to the rate of messages.

Notifications: refer to the central aggregator sending messages to the de-
vices to notify them about an event. It has many characteristics in common with
the telemetry pattern, but it also requires all the end devices, or their associated
access gateway, to be reachable from the central aggregator. Hence, if using the
REST architecture over HTTP, special attention is required to connect nodes
through Network Address Translation (NAT) and firewall gates. Furthermore,
each device must host an HTTP server to be able to receive the notifications,
adding complexity to the device, which is usually constrained in terms of mem-
ory and computing power. None of these issues arise for MQTT and AMQP
because, in those protocols, connections are always initiated by the client, so
that only the message broker needs to be publicly reachable. Furthermore, to
receive and send messages, nodes only need the MQTT or AMQP client, which
can run in a constrained environment.

Inquiries: in this pattern the end device (or the element in charge of con-
necting the end device to the IP world) sends requests to the central aggregator,
which successively answers with the required information. This is exactly the
use case addressed by the REST architecture, since it can be seen as a traditional
request-response pattern. Here the HTTP server must be placed in the central
aggregator, while the end devices (or the access gateways) are equipped with an
HTTP client, which is less demanding in terms of computing resources than the
HTTP server. At the beginning, the MQTT protocol did not describe a way to
exchange messages in a request-response pattern, so that the parties must agree
beforehand on pair topics for this pattern: a topic for publishing requests and
another for publishing responses. However, the OASIS MQTT Technical Com-
mittee included a mechanism to formally enable the request-response messaging
pattern in MQTT 5. AMQP, instead, already supports a mechanism to enable
the request-response message exchange, thus providing the flexibility needed to
operate in this scenario.

Commands: in this case, the central aggregator sends a message to the
end device to trigger an action and then waits for the reply by the end device
containing the outcome of the action. Besides the reachability issue described
in the notifications pattern, the REST architecture also fails to manage the case
in which the end device is temporarily offline: messages sent while the device is
unavailable are simply lost. MQTT addresses this problem with the introduction
of the optional retain flag in the published message, forcing the message to
be sent to all clients that, in the future, will subscribe to the corresponding
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Telemetry Notifications Inquiries Commands

Central aggregator End device

Figure 1.2: Communication patterns

Features
Telemetry Notifications Inquiries Commands

REST MQTT AMQP REST MQTT AMQP REST MQTT AMQP REST MQTT AMQP

Small overhead ✗ X ∼ ✗ X ∼ ✗ X ∼ ✗ X ∼
Flow control ✗ ✗ X ✗ ✗ X Not required Not required

Reachability behind
NAT or firewall

Not required ✗ X X Not required ✗ X X

Supports constrained
devices

✗ X X ✗ X X ✗ X X ✗ X X

Request-response Not required Not required X X X X X X

Publish-subscribe ✗ X X ✗ X X Not required Not required

Supports temporarily
offline devices

Not required ✗ ∼ X Not required ✗ ∼ X

General fit ✗ X X ✗ X X ✗ ∼ X ✗ ∼ X

Table 1.2: Features required for the various communication patterns and their
support by the considered protocols.

topic. As mentioned before, it is also important to remark that MQTT lacks
a formalized request-response mechanism to correlate the request to the end
device with its response. Regarding AMQP, its message broker always saves
incoming messages to the message queues, allowing them to be retrieved at
a later time even if the recipients are temporarily unavailable. Furthermore,
AMQP introduces a refinement that consists in a Time-to-Live indication, to
remove stale messages from the queues.

1.3.2 Data encoding and manipulation

Usually, message recipients elaborate the received data depending on the type
of the message content. AMQP features a rich set of metadata to describe the
transmitted data, including a complete type system. Actually, AMQP type sys-
tem defines some primitive types, together with constructs to extend them in
order to allow the association of an AMQP value with an external type that is
not present as an AMQP primitive. This feature is not present in REST nor
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in MQTT. Actually, the REST architecture only allows to specify the type of
message content through the HTTP Content-Type header, but lacks a more com-
prehensive metadata set. The message content is, instead, completely opaque to
MQTT, which does not even allow the indication of generic information such as
the Content-Type. In order to elaborate the message content, the parties must
therefore agree beforehand to the exact format of the message, and a change in
message format requires the communicating parties to be manually updated.

1.3.3 Reliability

In the IoT field, reliability refers to the absence of communication errors in the
transmitted data and the guarantee that transmitted messages have been deliv-
ered to the recipients. REST over HTTP relies only on the underlying Trans-
mission Control Protocol (TCP) to provide reliability of message exchanges,
while MQTT and AMQP offer more flexible mechanisms to provide additional
levels of reliability assurance [40]. In MQTT, Quality of Service (QoS) is an
attribute of the individual message being published. However, due to device or
link constraints, a subscribing client can set the maximum quality of service a
broker can use to send messages to it, hence each message will be delivered with
a QoS value that is the minimum between the value of the QoS attribute in the
message and the maximum QoS accepted by the client. The QoS attribute can
take three possible values: at-most-once (QoS level 0), in which no acknowl-
edgement is needed, at-least-once (QoS level 1), which requires the transmission
to be acknowledged, and exactly-once (QoS level 2), that requires a more so-
phisticated acknowledgement mechanism which involves the exchange of three
acknowledgement messages. QoS level 2 is the only level that can be used for
non-idempotent messages that must be delivered reliably, since it guarantees
that the message is not delivered multiple times, unlike QoS level 1. However,
it is to be noted that, with the highest QoS level, the overhead is large and
sending messages at a high rate may degrade the system performance. AMQP
has QoS properties similar to those of MQTT, supporting message queuing
and delivery semantics that cover at-most-once, at-least-once and exactly-once
deliveries. Furthermore, the AMQP specification also describes an optional
transaction mechanism with a multiphase commit sequence, to ensure that each
message is delivered as intended, regardless of failures or reboots.

1.3.4 Security

REST over HTTP, MQTT and AMQP can all be placed on top of Transport
Layer Security (TLS) [41], which provides confidentiality of the data exchanged.
TLS also supports authentication of the server, which is the message broker in
case of MQTT and AMQP, or the HTTP server in case of REST. While TLS
could also be used to authenticate clients, this is not commonly employed be-
cause it involves the generation and management of a certificate for each client
that must be able to connect to the server. Instead, client authentication is
typically implemented in the protocol running on top of TLS. With the REST
architecture it is possible to use HTTP Basic or Digest authentication mecha-
nisms. MQTT, instead, allows the clients to specify the username and, option-
ally, a password while connecting to the broker. AMQP does not provide an
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authentication mechanism itself, but allows the use of the Simple Authentication
and Security Layer (SASL) framework.

To conclude, the choice of the protocol to use depends on the specific use
case. The most important factors to consider are: the rate at which new mes-
sages are generated, the underlying network performance, the reliability of links,
the necessity of extensibility and message semantic, and the quality of service
required. According to this analysis, the choices made for a specific use case are
explained in Sec. 1.6.

1.4 Between the Things and the Internet: the

middleware

IoT systems often deal with different types of devices, each with its own com-
munication protocol and different requirements, that need to somehow interact
with the final user. In order to meet this demand, IoT architectures require a
software platform, called middleware (see Fig. 1.1), which represents an interme-
diate layer between the Internet and the things and acts as a bond joining mixed
applications communicating over heterogeneous interfaces. The middleware is
also in charge of masking the system complexity that is faced when interacting
with the end devices, so that even the average technology-inexperienced user is
able to enjoy IoT services effortlessly.

The development of a middleware in the IoT context requires the support
of various functionalities. The following list summarizes the crucial issues that
the middleware must address [42] [43]:

• Interoperability: the conceived middleware must cope with the great het-
erogeneity of the smart objects. Interoperability aims at device abstrac-
tion and is threefold: technical, syntactic and semantic. According to
the European Telecommunications Standards Institute (ETSI) [44], tech-
nical interoperability is defined as the association of hardware or software
components, systems and platforms that enable M2M communication to
take place. Syntactic interoperability deals instead with data formats and
asks for an agreed upon and well-defined common syntax for messages.
Finally, semantic interoperability is associated with the ability of com-
puter systems to exchange data with unambiguous and shared meaning,
understandable to humans.

• Device discovery and management: bootstrapping is a crucial phase in the
IoT as it prepares the smart objects to join the network and to interact
with the other end devices, detecting all their neighbours and making their
presence known. Moreover, the middleware must be aware of the context
in order to work in smart environments, as the smart objects may move
in a random fashion causing rapid changes in the network topology. An
IoT middleware must be able to update routing information in an efficient
way without affecting the overall network performance and independently
of the routing protocol used. Another issue related to device management
involves actuators, which may be accessed simultaneously by different ap-
plications in a contradictory way: the middleware is in charge of solving
such conflicts.
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• Security and privacy aspects: security is a key point in IoT architectures,
which often deal with sensitive data. Thus the middleware must ensure
authentication, confidentiality, data integrity and non repudiation and
must be able to manage different roles and privileges.

• Application abstraction: the middleware should provide an interface for
both high-level applications and end users to interact with the end devices
without prior knowledge about the physical network and the implementa-
tion details.

• Data management: the IoT is leading to an explosion of data exchanges,
thus the middleware needs to cope with enormous volumes of data. It is
also necessary to have historical data stored, which allow the end user to
retrieve old observations and to display time-series graphs.

Other useful features concern modularity, i.e., the possibility to add func-
tionalities without altering the existing core, which is essential to customize the
platform in a plug-and-play fashion for accommodating missing features, and
the capability of supporting downlink traffic towards the end devices to enable
actions from the final users. Many challenges need to be addressed in order to
build an efficient, robust, scalable and real-time platform. For these reasons, it
may be preferable not to develop a custom middleware from scratch, but rather
to use an existing and well tested platform and adapt it to fulfill the specific
system requirements, if needed. There exist many implemented middlewares;
in this work three different frameworks are analysed, namely openHAB, Sen-
tilo, and Parse, which are intended to be used along with an access gateway to
provide the described functions. Their characteristics are detailed in the rest of
this section.

1.4.1 openHAB

The software platform openHAB4 targets home automation and was born in
2008 from the need of its creator, Kai Kreuzer, to integrate sensors and actuators
in his own house in Darmstädt (Germany).

OpenHAB is extensible through a plug-and-play principle and interopera-
ble thanks to the use of modules to support different communication protocols
and mechanisms. Many modules have already been implemented, such as the
MQTT binding, a component that allows openHAB to act as an MQTT client
and hence to support a pub/sub mechanism for seamlessly interacting with the
nodes. End devices are registered in openHAB as items. An item is a data-
centric functional atomic building block: all openHAB resources are represented
using this abstraction, which is independent of the technology used. In this way
the final user does not need to be aware of the physical network technology
employed, since he/she only needs to dialogue with openHAB via HTTP. His-
torical data can be stored in relational, NoSQL or round-robin databases, in
IoT cloud services or in simple log files, according to the user needs. For what
concerns security, TLS can be enabled for all the protocols that support it and
user authentication is also possible. However, openHAB targets home automa-
tion and therefore it is designed to be used by a limited number of users, all

4http://www.openhab.org/
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with complete access to the available information. The implementation of user
differentiation according to given roles is on the future work list and will make
it possible to assign different read and write permissions to users.

The strengths of the openHAB platform are its high modularity and the
presence of bindings that support different protocols. Its main shortcomings,
instead, concern the lack of a user conditional access and the internal items
implementation, since items cannot be bound to a specific time and geospatial
context nor customised according to the users needs. This abstraction, for
example, makes it impossible to store location information to track mobile end
devices; also, past measures cannot be inserted at a later time, since data cannot
contain a custom timestamp.

The openHAB project gave rise to Eclipse SmartHome, a flexible framework
for the smart home. Eclipse SmartHome will be the basis for the next iteration
of the openHAB project, namely openHAB 2, which is still in its early stages of
development.

1.4.2 Sentilo

Sentilo5 is the product of a project started in November 2012 by the Barcelona
City Council and conceived to make Barcelona a reference point in the field
of Smart Cities. The name Sentilo was chosen because it means sensor in
Esperanto, underlying the intention of openness and universality in the use of
a platform.

Sentilo is an extensible open source platform that offers a REST API over
HTTP, supporting all the communication patterns described in Sec. 1.3. How-
ever, Sentilo does not support other communication protocols: it is necessary to
implement a bridging module for every other protocol to be used in the archi-
tecture, in order to properly translate its messages into their REST equivalent.
Sensors and actuators are registered in Sentilo as uniquely identifiable items and
are organized according to a hierarchical structure. It is also possible to track
the location of mobile sensors. For what concerns access control, Sentilo features
a token-based authentication system to identify the petitioner of the request,
coupled with a privilege policy based on roles. Also, to provide confidentiality,
the REST API can be used over the secure HTTPS channel.

To recap, the selling points of Sentilo are the possibility of extending its
functionalities in a plug-and-play fashion, the presence of a hierarchical and
slightly customizable item representation and the implementation of an autho-
rization and role-based permission mechanism that facilitates the interaction in
the same context of multiple users with different roles. Sentilo’s most important
drawback, instead, is its weak interoperability, as it natively supports only the
REST API and cannot communicate via other protocols.

1.4.3 Parse

Parse6 is a cloud-based data management system that allows people to quickly
develop web and mobile apps. More specifically, it is a Backend as a Service
(BaaS) solution, a turnkey service that adds user authentication, push noti-
fications, social media integration, location data, and data analytics into any

5http://www.sentilo.io
6https://parse.com
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app. It was acquired by Facebook in 2013 with the aim of adding Mobile BaaS
capabilities to the existing platform and, as IoT backends are the logical exten-
sion of mobile backends, at the end of March 2015 Facebook announced Parse
for IoT. Parse for IoT is a collection of Software Development Kits (SDKs) for
connected devices, such as Arduino Yún, a microcontroller board with built-in
WiFi capabilities. Parse SDKs are directly deployed on hardware platforms and
provide a simple REST API. Such SDKs make devices able to receive push noti-
fications, save data, and take advantage of the Parse Cloud. All Parse resources
are represented as Parse Objects, uniquely identified and customizable. Partic-
ular objects are the roles, which group users with common access privileges in
order to support role-based access control. Even data storage on Parse is built
around a Parse Object: there is no need to explicitly create databases or tables
to use Parse, since data will be automatically stored in the cloud. Finally, it
is possible to extend the functionalities of Parse for the IoT by creating the so
called Cloud Modules.

To sum up, the strengths of Parse are the great customization available for
Objects and the presence of a solid permissions and roles structure to control
user access. The major weaknesses are instead the need of installing the SDK
on each device and the inability to communicate in a way different from REST.
Moreover, being Parse for IoT so recent (it was officially announced just a
few months ago), this tool is not widely deployed, so a proof of its real-world
performance is still missing.

1.4.4 Platforms comparison

The above descriptions highlight the great effort required to develop a complete
middleware that simultaneously accomplishes all the listed requirements.

All three platforms represent valuable middleware solutions for the IoT,
but at the same time all of them lack some useful features. They all provide
modularity, data management and application abstraction, which is typically
achieved by implementing a REST API designed to be used by the user interface.
Security is achieved by means of authentication and message encryption, but,
unlike the others, openHAB does not offer user differentiation according to roles.
However, openHAB is the only middleware, among the three described in this
study, capable of supporting different communication protocols simultaneously.
Therefore, openHAB is suitable for small deployments, where there is no need
to distinguish among end users, whereas Sentilo, which supports user roles, may
be employed in wider deployments, although it may require the implementations
of protocol bridging bindings. Parse for IoT is not the best suited platform for
large existing IoT networks, since it requires the SDK installation on all the
hardware devices, and therefore depends on the particular sensors and network
topology used.

1.5 Security in IoT systems

A central aspect of every IoT application is security, which must be guaranteed
at every level of the system. IoT security, in particular, revolves around the
concepts of identification, confidentiality, integrity and availability, and needs
to meet the new requirements implied by the pervasive presence of the Internet
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platform openHAB Sentilo Parse

modularity X X X

application abstraction X X X

multiple protocols
X × ×

support

semantic and syntactic
X X X

interoperability

data management X X X

data storage X X X

items custom × X X
representation

user conditional access × X X

add timestamp to × X ×
transmitted data

security X X X

growing community X X X

Table 1.3: Comparison among the platforms

in any aspect of daily life. Internet-facing services are in fact under contin-
ual attack and this does not bode well for the IoT, which relies on it and also
incorporates many constrained devices for which it is hard to apply security
mechanisms such as frequency hopping communication and public key encryp-
tion [45]. But as the IoT also touches many sensitive areas, security represents
a challenge that cannot be neglected: attacks and malfunctionings would just
outweigh any of the IoT benefits. Security experts are currently investigating
whether current security mechanisms can be integrated in the IoT or new de-
signs are required to accomplish security goals. What mainly introduces new
threats is the distributed nature of IoT architectures and the use of fragile tech-
nologies, such as limited-function embedded devices in public areas where they
are accessible by anyone and may be physically harmed [46]. As sensors are
typically simple low power devices, they cannot even support ordinary secu-
rity measures: network firewalls and protocols can manage the high-level traffic
flowing through the Internet, but the protection of the endpoint devices with
limited resources available to accomplish it raises new challenges and demands
for revolutionary solutions.

The most important security features for IoT systems are the following.

• Identification: the things must be uniquely identified, independently of
their underlying mechanisms, e.g., the IP address they are associated to.
Assigning a unique identifier to devices is the basis for the authentication
step and the consequent authorization phase.

• Confidentiality: it refers to the guarantee that information is not made
available or disclosed to unauthorized individuals, entities, or processes.
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Confidentiality is fundamental in an IoT scenario, in which a plethora of
devices transmit messages, leading to an explosion of data. Access to these
data must be controlled mainly by means of cryptographic mechanisms
and users access lists.

• Integrity: to maintain the consistency, accuracy, and trustworthiness of
data over its entire life cycle, data must not be changed in transit or
altered by unauthorized people.

• Availability: for any information system to serve its purpose, the informa-
tion must be available when it is needed. Availability may be hindered by
legitimate users too, if they flood the network with requests that exhaust
network resources, interrupting services available to other legitimate users.

Clearly, the IoT is prone to be more susceptible to attacks than the rest of the
Internet, since billions of devices will be producing and consuming a large num-
ber of different services. From a network perspective, the sensors should open
a secure communication channel with more powerful devices exploiting crypto-
graphic algorithms and using an adequate system for exchanging the keys. A
safe transmission over TCP/IP connections can be achieved by enabling Trans-
port Layer Security (TLS), which asks the parties to authenticate themselves
and provides message encryption. At the application level, security needs for
different application environments are different, although data privacy, access
control and disclosure of information are likely common requirements. In [24]
the authors stress the crucial role of security and privacy and highlight how the
public acceptance of the IoT will happen only when strong security and privacy
solutions will be in place. In fact, when the Internet first appeared, no security
infrastructure had been built for it. But, when the first security problems came
out, the only viable solution to solve them was to treat security and privacy
as add-on features. In the IoT, instead, security has to be intrinsic, hence we
must find new fundamental solutions, shared among all interested parties, for
addressing this challenge.

1.6 A use case: an IoT system for Smart Cities

In this section we analyse the development of a complete IoT system that targets
the Smart Cities context, a project carried out by Patavina Technologies s.r.l.7

in the city of Padova, Italy.

LoRa has been chosen as the wireless technology. From the analysis carried
out in [25] and summarized in Sec. 1.2, it results that, although the declared
coverage range of LoRa is slightly lower than that of the other two technologies,
the transmission data rate achievable with LoRa is higher. The LoRa network is
typically laid out in a star-of-stars topology, where the end devices are connected
via a single-hop LoRa link to one or many gateways which, in turn, are connected
to a common Network Server (NetServer) via standard IP protocols [31]. The
NetServer represents the point of access for the LoRa network as it can support
other communication protocols.

7http://www.patavinatech.com/en
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The NetServer communicates with the rest of the world using MQTT. As
outlined in Sec. 1.3, MQTT is a lightweight protocol that meets IoT require-
ments thanks to its very small message header and the pub/sub mechanism,
features not provided in HTTP. AMQP was considered unsuitable because it is
very complex and all of the features missing in MQTT but provided in AMQP
were not necessary for the implemented architecture. Therefore, setting up
AMQP clients and broker would have required much more work with very little
benefit. An advantage of AMQP over MQTT is the message queueing system
that allows the clients not to miss messages arrived whilst they were unavailable.
Anyway, when unmissable data is sent, it is still possible to use the simple retain
mechanism available in MQTT, as explained in Sec. 1.3. Patavina Technolo-
gies also developed mechanisms for detecting the unavailability of any MQTT
element and activate it again within a short time, assuring that no MQTT com-
ponent is affected by an extended downtime. Request and response topics and
the format of the message payload have been agreed beforehand.

The selected middleware is Sentilo. In fact, Parse for IoT demands the
SDK installation on hardware devices, restricting the freedom of choice on the
development environment, and mandating the use of REST interfaces on the
devices, a choice not well suited for the constrained devices and network tech-
nology used in our solution. On the other hand, openHAB did not provide a
mechanism for user differentiation according to roles. Hence, the overall ar-
chitecture sees LoRa devices that communicate with the IP world through the
NetServer, which supports MQTT. The messages sent by the NetServer are
processed by an Application Server (AppServer) and the new human-readable
MQTT messages are forwarded to Sentilo, which is in charge of registering the
nodes and their data so that authorized users can access them. Along with the
network management infrastructure, a friendly website for interacting with the
nodes and displaying their readings has been developed.

The system deployment corroborated the choices made by Patavina Tech-
nologies. LoRa network connectivity has been tested by installing a private net-
work in a large and tall building (19 floors), with nodes placed also in heavily
shielded positions, e.g., inside elevators in order to put the connectivity condi-
tion under strain. Other experimental tests have been carried out in Padova
with the purpose of assessing the worst case coverage in an urban environment.
It turned out that, in harsh propagation conditions, the LoRa technology al-
lows to cover a cell of about 2 km of radius and, even when assuming a radius
of 1.2 km to take into account a reasonable margin for interference and link
budget variations, the number of gateways needed for assuring coverage in the
municipality of Padova is much lower than the number of sites required by one
of the major cellular operators in Italy to provide mobile cellular access over
the same area. MQTT has proved to be an excellent communication proto-
col: the pub/sub mechanism makes it possible to automatically receive updates
from nodes avoiding the polling procedure of HTTP, while the extremely small
header of MQTT messages (which is even smaller than in AMQP) affects the
traffic intensity in a minimal way. However, the use of MQTT required the
implementation of an additional bridging module in Sentilo for the conversion
of MQTT messages into HTTP messages (and viceversa for downlink traffic).
Using this setting, the average delay experienced by a packet in uplink from
the NetServer to the final application and the average uplink traffic intensity
for a particular network setup have been evaluated. Both metrics have been
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Figure 1.3: Simulation setup

calculated as the average values over more than 2.5 million packets. Downlink
traffic, mainly constituted of sporadic commands targeting the sensors, has not
been considered, as messages coming from the nodes are expected to be the
predominant traffic in the considered scenario.

The adopted configuration is represented in Fig. 1.3 and sees the
AppServer, the MQTT broker and Sentilo deployed in a cloud service, hence
with very fast connections between the elements, while the NetServer is placed
close to the LoRa gateways in order to minimize the latency in the LoRa net-
work, and is connected to the MQTT broker by means of an Asymmetric Digital
Subscriber Line (ADSL) link. The propagation times are around 10 ms for the
connections in the cloud and 100 ms for the ADSL link. It is worth noting that
the use of TLS for security reasons increases the traffic intensity because of the
preliminary authentication phase and the additional message headers. More-
over, an MQTT QoS level of 2 (see Sec. 1.3) has been used in all exchanges,
thus affecting both the traffic intensity - because of the acknowledgement mes-
sages - and the delay, since the broker needs to wait for the acknowledgement
from the producer before sending the message to the subscribers of the involved
topic. It turned out that, in addition to the LoRa traffic, each message gener-
ated by a peripheral node produces about 22 kByte of traffic resulting from the
MQTT and HTTP messages exchanged in order to process the node observation
and deliver it to the final user. About a quarter of such flow is comprised of
HTTP traffic for dialoguing with Sentilo. The traffic associated to each link is
reported in Tab. 1.4, where brk refers to the broker, NetS to the NetServer and
AppS to the AppServer. The global traffic highly depends on the number of
nodes employed and on the rate at which they transmit their messages.
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traffic [kByte] NetS → brk AppS → brk brk → Sentilo

no TLS 0.6 3.9 11.1
TLS 0.8 6.7 13.9

Table 1.4: Traffic intensity. Bytes exchanged at each link for one node observa-
tion

delay [ms] tpropagation (all) tbroker tAS tSentilo

no TLS 130 204 29 120
TLS 130 203 28 120

Table 1.5: Transmission delays

The average delay experienced by a packet can be expressed as the sum of
the various propagation times and the processing times, namely the transmis-
sion times from the NetServer to the broker, from the broker to the AppServer
and vice versa, from the broker to Sentilo and from Sentilo to the final user, the
time needed by the broker for handling the QoS level and identifying the inter-
ested subscribers, the processing times of the AppServer and Sentilo. Tab. 1.5
shows the average propagation and processing times from the simulations, re-
sulting in an average transmission time of about 480 ms. Notice that this value
strongly depends on the propagation times of the connection links, especially
that of the ADSL, that represents the bottleneck of the transmission, whereas
the processing times of the AppServer and Sentilo are in the order of just a few
milliseconds.

Security in the Edge Technology layer is granted by the LoRa technology:
data frames are encrypted with the scheme described in IEEE 802.15.4/2006 An-
nex B [47] using the AES algorithm with a key length of 128 bits. For each
end device there is a specific application session key which is used by both
the NetServer and the end device to encrypt and decrypt the payload field
of application-specific data messages. Security on the MQTT connections is
granted by enabling both authentication and TLS encapsulation: the MQTT
broker provides username and password authentication and limits access to top-
ics by using access control lists, whereas TLS ensures confidential transmission.
Finally, Sentilo REST API is used over the secure HTTPS channel and Sentilo
validates all HTTP requests according to the AAA architecture: Authentication,
Authorization and Accounting. This means that the platform first identifies the
petitioner of the request, then checks whether it is authorized to perform the
requested action over the requested resource, and it finally traces the request
by auditing the action and who performed it. Authentication is enabled by the
mandatory use of an identification field in the HTTP headers, resulting in the
so-called token-based authentication, which also allows for the authorization of
a request by simply looking up the privileges associated to the involved token.

However, a weakness in Sentilo’s security framework is that tokens, which are
necessary to guarantee a secure and controlled access to resources, were stored
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in the database in clear and, although the access to the databases requires
authorization, it is always a good habit not to store passwords as they are, as
a malicious attacker may find a way to access the database. There exist many
hashing techniques commonly used for storing passwords, such as the MD5
algorithm and the family of the Secure Hash Algorithm (SHA). The chosen
one is bcrypt, a cryptographic hash function (i.e., a one-way hash function,
practically impossible to invert) which aims at being slow, or, more precisely, as
slow as possible for the attacker while not being intolerably slow for the honest
systems. It is derived from the Blowfish block cipher which uses look up tables
to generate the hash, thus requiring a significant amount of memory space. This
discourages attacks based on Graphics Processor Unit (GPU), which excels at
doing simple manipulations on a large set of data, as it will become cumbersome
to generate the hashes due to memory restrictions.

Another leak of Sentilo concerns the generation mechanism of tokens, based
on the hashing of some knowable values, namely, a prefix retrievable in the source
code, the name of the entity for which the token is being generated, and the
creation time of this entity with a millisecond accuracy. Tokens are generated
in two steps: firstly, the three mentioned elements are concatenated in a single
string, and then the hash function of such string is computed according to the
SHA-256 algorithm. The resulting token is a string made of 26 hexadecimal
numbers. Basically, knowing the timestamp of the creation of a specific entity
in Sentilo, it is possible to calculate the token associated to that entity. To prove
this issue, a brute-force attack has been conducted against Sentilo to retrieve the
token associated to a particular role, and this attack succeeded in a reasonable
amount of time. The brute-force algorithm was single-threaded and did not rely
on GPU acceleration, which is instead commonly used nowadays. Even with
such non-optimized routine, just 4 ms are needed for a single attempt on an
Intel® Core i7-2600 quad core processor. Thus, knowing the creation day of the
entity for which the token has been generated, the token is retrievable in 4 days
in the worst case.

The original token generation procedure is clearly unsafe and represents
a big issues in the security of Sentilo. It is possible to considerably increase
the security level by changing the token creation routine with a completely
random token generator. If a brute-force attack is perpetrated by trying all
possible strings of 26 hexadecimal characters, the average time for determining
the correct token increases considerably. There are 1626 ≃ 2.03 · 1031 possible
combinations, but the number of tries before a success cannot be represented
as a geometric random variable as the attempts, despite being independent
of each other, are not identically distributed: after k wrong attempts, 1626 − k
combinations remain. If we model the probability of needing at least k attempts
before succeeding with a random variable, it is possible to estimate the lower and
upper bounds of its cumulative distribution function by assuming identically
distributed tries with the minimum and maximum probabilities, respectively.
Considering that pj+1 ≤ pj∀j ≥ 0, the minimum probability of a try is that of
the first attempt, i.e., p0 = p = 16−26, whereas the maximum probability of k
tries is pk = 1/(1/p − k). For k = 2 · 1030 the probability is still low, about
0.1. With an average computing time of 4 ms per attempt, about 1020 years
would be needed for trying k = 2 · 1030 combinations. It is evident that using a
random token certainly improves security against brute-force attacks.

The described use case shows the extent of elements that must be considered
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in an IoT system and the effort needed for integrating them in a solid, robust and
secure system. Currently, there exist many solutions in the literature and since
there is no well-established and widely-acknowledged best practice, developers
should analyse the available strategies and protocols to identify those that best
meet their requirements.

1.7 Structure of the thesis

As we have seen, there are significant opportunities to improve the state of the
art, whether to enhance the performance of the system, or to solve actual issues
in current systems, as in the security layer.

The communication system plays a major role in enabling CPSs. Message
delivery must be reliable and low-latency for a wide variety of scenarios, from
industrial systems with a presence of high electromagnetic interference to smart
mobility in urban scenarios, characterized by a large amount of interference
from neighbouring transmitting devices [15]. IoT communication technologies
are widely used in CPSs to monitor, control, and act on physical entities. In
Part I of this thesis we analyse the issues of such technologies. We focus, in
particular, on the channel access of such systems, which becomes a critical part
whenever the device density becomes very large. In particular, in Chap. 2, we
study the communication patterns of some typical devices in a CPS, in order to
create an accurate model. In Chap. 3 we investigate some traditional channel
access technique, focusing on their behaviour in massive access scenarios. A
theoretical model of one such techniques, namely ALOHA, is defined in Chap. 4
to find the optimal value of its parameters, then a generalization of the model is
given to support networks using rate adaptation mechanisms. Chap. 5 proposes
further improvements to ALOHA, specially tailored for M2M communications
and with a focus on energy efficiency. These improvements, however, are not
dependent on the type of data carried in the transmitted packets. In Chap. 6,
some new channel access strategies are introduced, which leverage correlations
found in data from sensor networks to allow for further reductions in energy
consumption for this type of devices.

Part II is focused on how machine learning techniques can be used to opti-
mize CPS services. Such service optimization can assume different forms. For
example, as explained in Chap. 7, gathering information from the network and
being able to accurately predict future traffic load helps in reducing the interfer-
ence in the network and schedule network resources. The latter, in particular,
can assume the form of admission control and resource management mecha-
nisms, which can be more impactful if they are aware of the type of content
transiting on the network. In this case, in fact, they can balance the network
use with the QoS provided in order to guarantee a minimum service level, as
shown in Chap. 8 through Chap. 10 for video streaming applications. These
applications are common amongst non-constrained devices, like smartphones
and augmented/virtual reality headsets, which form an integral part of the IoT
ecosystem. The communication subsystem, however, does not provide only the
delivery of messages between devices of a network. Positioning services, in-
vestigated in Chap. 11, also use communication techniques, often specifically
designed for this purpose and enhanced by a machine learning approach. The
ability to precisely know the location of its components is a fundamental require-
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ment for a CPS, since its devices are often mobile and have to move in a precisely
defined path to be effective and not cause harm to the environment [15].

The focus of Part III is on the security of IoT systems, which is critical due
to their pervasivity, scale, and their use in critical infrastructures. CPSs are
particularly sensitive to these issues, since they deal with the physical world
and can harm people or animals, or damage things, if they are used for a ma-
licious intent. Therefore, security issues may transform in safety issues and,
consequently, hamper the adoption of such systems. Such issues are investi-
gated in Chap. 12, while a proposal for an enhanced authentication mechanism
is presented in Chap. 13.

Finally, the work is concluded by Chap. 14, where the main findings are
summarized, and a discussion on the way forward is given.
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Chapter 2

MTC source models

Machine-Type Communication (MTC) is one of the biggest factor dictating the
design of 5G networks. The challenge, however, is that the traffic generated in
MTC is very disparate both in volume and shape [48]. For example, there can be
water level measuring sensors generating few bytes of data every hour, while, on
the other side, there are surveillance cameras flooding the network with massive
amount of data. Likewise, there could be sensors uploading data, while, on the
other hand, there could be applications which require downloading data, such
as weather maps for farmers. Secondly, groups of machine type sources, unlike
most human generated traffic, may initiate transactions that are correlated both
in space and time [49]. So, modeling this diverse canvas of machine type devices
is essential to understand the performance of both current and future networks
and for accurate network dimensioning.

2.1 Related Work

Traffic models can be broadly divided into aggregated and source models [49,50].
Aggregated models capture the traffic properties of a group of users over a cell,
area, or entire network. Source models, instead, capture traffic behavior of an
individual user, referred to as a source. Aggregated models provide a simple and
efficient way to analyse the network behavior as a whole but, since all devices
have the same parameters, it can not accurately reflect the small-scale behavior
of the network, in particular if devices have very different traffic patterns. This
is not an issue with source models which have, however, a higher computational
cost due to the larger number of parameters.

A number of M2M traffic models have been proposed in the literature. The
Third Generation Partnership Project (3GPP) designed two aggregated models,
one for coordinated traffic and one for uncoordinated arrivals [51]. They are
based on, respectively, a uniform and Beta distribution of arrivals. Parameters
for such distributions have been extracted in [51,52].

Most, if not all, of the source model approaches are based on state-based
modeling [48, 49] as quite often traffic sources have their inherit natural states,
depending on different processes in the communication, e.g., waiting states,
thinking times and states where sources are active. A well known two-state
source model is the ON/OFF model [48], where the source changes between

25
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ON state (where packets are sent) and OFF state (where no packets are sent).
Traffic modeling for M2M last mile wireless access is proposed in [53] where the
analysis is limited to event driven and fixed scheduling traffic sources. A coupled
Markovian arrival process is proposed in [54] for MTC in an automotive industry
and the weakness of traditional simple models with exponential inter-arrival
time distribution is highlighted. In [55], each device can be either in the regular
or alarm state, according to a two-state Markov chain. Traffic is generated
according to a Bernoulli process with a rate specific to the device state. Further
state-of-the-art source models are presented in the following section, where we
analyse their ability to accurately represent different real world data sets.

2.2 Comparison of M2M traffic models against

real world data sets

Considering the large variety of Machine-Type Devices (MTDs), the M2M traffic
patterns can then be very disparate and finding a comprehensive traffic model
that can be used for protocol design and performance assessment is not an
easy task. As a result, a number of different M2M traffic models have been
proposed in the literature in the effort of balancing the model complexity and
the accuracy/realism of the generated synthetic traffic traces. However, it is
not yet clear what are the actual characteristics of real M2M traffic sources
and, consequently, which model(s) might better represent the most common
M2M traffic patterns.

This section provides two main contributions:

(i) traffic patterns generated by real MTDs used in three relevant and repre-
sentative M2M services, namely logistic, parking, and metering, are stud-
ied in order to identify the main components and the most relevant fea-
tures;

(ii) by using such real-world data traces, a comparison of the capabilities of
three well-known M2M traffic source models to produce realistic M2M
traffic traces is performed, identifying the strengths and weaknesses of the
different models, and proposing some possible improvements.

2.2.1 Selected M2M traffic models

In the following, three M2M source models that offer a balance between com-
plexity and accuracy are described: the Source Semi-Markov Model (SSMM),
the Coupled Markov Modulated Poisson Process (CMMPP), and the Coupled
Markovian Arrival Process (CMAP) models. All of them make use of Markov
chains to model the state flow of the MTDs in a stochastic manner. However,
CMAP considers only two states, corresponding to periodic and event-based
traffic patterns, respectively. Instead, the SSMM model entails four states, as-
sociated to different traffic generation events, included the case of transmission
bursts corresponding to the exchange of long messages. The CMMPP model,
finally, can include an arbitrary number of states, which gives additional flex-
ibility but requires a larger computational cost and makes it more prone to
overfitting. In addition, CMMPP entails time-varying transition probabilities,
thus enabling to model non stationary sources.
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Figure 2.1: CMMPP model with three states [56].

These models are described in greater detail in the following, while in the
next sections they will be tested against a real dataset with different types of
M2M sources in order to identify their strengths and weaknesses, and possible
improvements.

Source Semi-Markov Model (SSMM)

The SSMM model [49] targets specifically event-driven communication, along
with the traditional periodic reporting messages. Each device is modeled using
a Markov chain consisting of three states:

• Periodic Update (PU), when the device is periodically transmitting status
reports to a central unit. A typical example of PU message is a smart
meter reading.

• Event Driven (ED), when data transmission is triggered by a certain event.

• Payload Exchange (PE), when a larger amount of data needs to be trans-
mitted between the sensing devices and the server after an event, which
may correspond to any of the previous states (PU or ED).

Additionally, an OFF state is introduced, corresponding to the period when no
data needs to be transmitted and corresponds, usually, to a deep sleep state of
the device to save energy.

The transition probability to the same state is set to zero. Sojourn times
and message lengths are generated according to probability distributions that
are independent between states and potentially different for each of them.

Coupled Markov Modulated Poisson Process (CMMPP)

The CMMPP model is able to capture the time and space correlation of M2M
traffic sources [56]. The packet generation events are modelled by means of
a Markov modulated Poisson process, that is to say, a Poisson process whose
arrival rate depends on the state of a Markov chain that, in turn, is associated
to a certain working state of the MTD. For example, a MTD that can work in
three states (as sleep, normal, and alert), may be represented by the CMMPP
in Fig. 2.1, where {si; i = 0, 1, 2} represent the three working states, λi is the
packet generation rate when the MTD is in state si, and pi,j is the transition
probability from state si to state sj in one step.
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Figure 2.2: Message generation process according to the CMMPP model [56].

To introduce time and space correlation among the packet generation pro-
cesses of different MTDs, the Markov transition matrix of the generic n device
can be expressed as

Pn(t) = δn · θ[t] · PC + (1− δn · θ[t]) · PU (2.1)

where PC and PU are globally-defined transition probability matrices for per-
fectly coordinated and uncoordinated devices, respectively, the constant δn ∈
[0, 1] captures the degree of coordination of the nth MTD with respect to the
other MTDs, while θ(t) ∈ [0, 1] is a common background process that models
the time correlation among the sources. The generation of arrivals according
to the CMMPP model is outlined in Fig. 2.2. This model does not explicitly
include the generation of message lengths, which, however, can be added to the
model following the same principle.

Coupled Markovian Arrival Process (CMAP)

CMAP has been inspired by the previous model, but some aspects have been
simplified and others have been generalized, in order to increase the model flexi-
bility [54]. More specifically, CMAP assumes that the MTDs can only be in two
states, normal or event-driven. Each state is associated to different probabil-
ity distribution functions for the generation of the lengths and the interarrival
times of the messages. MTDs remain in the normal state for a random time
interval, after which they enter the event-driven state, where they sojourn for a
fixed amount of time and then return back to the normal state.

2.2.2 Analysis of real world M2M traffic sources

In this section we analyse the dataset obtained from one the biggest M2M oper-
ators in Europe (see [4]). The dataset contains traffic traces generated by three
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Figure 2.3: Tracking devices: time series from the dataset and realizations from
the SSMM (original and modified) models.

different M2M services, namely logistic (assets tracking), smart parking, and
remote electricity metering. For the first two services, we consider the packet
generated by each single MTD, that is to say, by each tracking device for the
logistic service, and each parking sensor for the smart parking. Instead, for the
electricity metering service, we only have the traffic traces generated by a few
concentrators, which are MTDs that collect and forward the readings provided
by a certain number of peripheral meters. The considered services and traffic
sources generate rather diverse traffic patterns. However, in all the considered
cases, the downlink traffic was mostly negligible, consisting of only a few con-
figuration messages sent during the service setup, and short acknowledgement
packets with basically no impact on the network performance. Therefore, we
focus on the uplink traffic only. In the following, a more in-depth analysis of
the traffic generated by the three services is provided.

Tracking devices

Fig. 2.3 reports an example of the uplink traffic pattern generated by one track-
ing device (blue pin with solid stem). We can identify five main message types
composing the time series:

1. a very large number of very short packets (1 Byte), with approximately
constant inter-packet time, which are likely keep-alive messages sent dur-
ing inactivity periods, when the tracked object remains still;

2. a few bursts of three messages of 5, 40, and 140 Bytes, respectively, which
are always transmitted together, probably triggered by the occurrence of
a certain event;

3. and a large number of long messages of about 110 Bytes, with the char-
acteristic pattern of periodic (location) updates.
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Figure 2.4: Electricity meters concentrator: time series from the dataset and
realizations from the CMAP (original and modified) models.

Electricity meters concentrator

In Fig. 2.4 part of the time series generated by the electricity meter concentrators
(blue pin with solid stem) is reported. We can observe that transmissions occur
in bursts spaced apart by almost constant time intervals of about 24 hours.
This pattern is coherent with a concentrator that gathers data from neighboring
slave devices and periodically sends them in bursts to a common gateway. The
messages in a burst, however, have variable lengths.

Parking sensor

The third MTD considered is a parking sensor. As we can see in Fig. 2.5, the
traffic from this device can be divided in three categories:

1. A high-frequency periodic transmission of short messages (around 800
Bytes) in bursts, which are likely keep-alive or state-update messages;

2. A less regular traffic of large messages (from 1000 to 6000 Bytes), which
may be generated by some event (e.g., expiration of the parking time, or
occupation of the parking slot);

3. An almost periodic patter of very large messages (around 16000 Bytes),
with very long periodicity (approximately 10.5 hours), which may be pe-
riodic status reports.

In the following section, we will try to replicate these empirical traces using
the three models described in Sec. 2.2.1, in order to see how accurately such
models can represent the different M2M traffic sources.

2.2.3 Comparison with M2M traffic models

In this section, we first attempt to set the parameters of the models described
in Sec. 2.2.1 in order to reproduce the real traffic patterns presented in the
previous section. Then, some possible adjustments of the models to improve
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Figure 2.5: Parking sensors: time series from the dataset and realization from
the CMMPP model.

the matching between synthetic and real traffic patterns are proposed. The
different types of traffic sources separately are considered separately.

Modeling tracking devices

The traffic pattern shown in Fig. 2.3 can be well modeled by using an SSMM,
with the following transition probability matrix:

P =

OF F P U ED P E

OF F

P U

ED

P E













0 0.98 0.02 0

1 0 0 0

0 0 0 1

1 0 0 0













The other parameters are reported in Tab. 2.1. The resulting trace is reported in
Fig. 2.3 (red pin with dashed stem). Strictly speaking, this model can not fully
replicate the event-based transmission, due to the very deterministic behaviour
of the event-based pattern for this device. In fact, the sequence of the payload
lengths for such messages are always {40, 5, 140} Bytes, which can not be
replicated by any combination of parameters for the ED and PE states. This
issue can be easily solved by splitting PE in two states, PE1 and PE2, where
the device sends the 5 and 140 Bytes messages, respectively. Therefore, the
transition probability matrix becomes as follows.

P =

OF F P U ED P E1 P E2

OF F

P U

ED

P E1

P E2

















0 0.98 0.02 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0
















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State Distribution Mean Standard Deviation

PU Rounded Gaussian 110 Bytes 1 Byte
ED Rounded Gaussian 40 Bytes 1 Byte
PE Rounded Gaussian 140 Bytes 1 Byte

Table 2.1: SSMM parameters for tracking devices

Parameter Distribution Mean

PU interarrival time Exponential 400 s
PU message length Exponential 110 Bytes
ED interarrival time Exponential 7 s
ED message length Exponential 140 Bytes
ED sojourn time Deterministic 5 s

Table 2.2: CMAP parameters for tracking devices

State PE2 has the same characteristics as state PE in Tab. 2.1, while PE1 has a
rounded Gaussian message length distribution with mean 6 Bytes and standard
deviation 1 Byte.

With this change, the model produces a pattern more similar to the real one
(yellow pin with dash-dotted stem in Fig. 2.3). To quantify this improvement
we resort to a well established dissimilarity measure between time-series, that is
the Kullback-Leibler (KL) divergence over the empirical distribution of message
lengths [57]. The original SSMM has a KL divergence of 0.016, while the mod-
ified model reaches a value of 0.0032, showing a notable improvement over the
original one. The Mean Squared Error (MSE) for the two models, calculated
by linearly interpolating the modeled time-series, is 1529 Bytes2 for the origi-
nal SSMM, which was reduced to 1229 Bytes2 when using the improved model,
confirming the accuracy improvement.

We can also try to fit the same time series with the CMAP source model.
In this case, the optimal fit of the model to the dataset is obtained with the
parameters in Tab. 2.2.

The comparison of the actual and synthetic traces is reported in Fig. 2.6. We
can see that the model performs poorly, particularly for the event-based traffic,
giving a KL divergence for message length distribution of 5.92, three orders of
magnitude larger than that obtained with the modified SSMM. This is because
CMAP entails only one event-related state, causing the same problem observed
with the original SSMM. By adding two more states, we can make this model
perform as good as the modified SSMM, but with a higher complexity. Further-
more, the modeling of the interarrival times is also poor, as shown in Fig. 2.7.
Very similar considerations can be drawn for CMMPP. Therefore, we can con-
clude that SSMM is the preferable model for this type of very deterministic and
periodic traffic sources.
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Figure 2.6: Tracking devices: time series from the dataset and realizations from
the CMAP model.

Parameter Distribution Mean

Sojourn time in ED state Deterministic 20 s
ED message interarrival time Exponential 1 s
ED message length Exponential 100 Bytes

Table 2.3: CMAP model parameters

Modeling electricity meters concentrators

The pattern reported in Fig. 2.4 exhibits constant time intervals between trans-
mission events. Furthermore, the distribution of the message lengths is well
captured by a two-state model. Therefore, the CMAP model seems to be a
good candidate for this type of source. Considering that the device never sends
messages between two consecutive burst sessions, the generate rate in the normal
state of the model is set to zero. Therefore, the transition probability matrix P
is as follows, with the first state being the normal one.

P =

(

0.92 0.08

1 0

)

The other model parameters are reported in Tab. 2.3.
A time series realization obtained with the model just described is reported

in Fig. 2.4 (red pin, dashed stem). By comparing it with the real traffic pattern,
we can see that it generates messages with realistic values, giving a KL diver-
gence for message length of 0.2574, but there are issues with the time between
two burst sessions. In particular, the burst from the real device is completely
periodic, being the inter-burst time fixed. The model is not able to capture
this aspect since the state transitions in the model are stochastic and depend
on the transition probability matrix of the Markov chain. We can therefore
investigate the use of a simple timer, as the one used in the ED state, to com-
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Figure 2.7: Empirical cumulative distribution function (ECDF) of interarrival
times for tracking devices.

mand the transition from the regular to the ED state. The model defined in
this way degenerates in a semi-Markov chain where the probability of staying in
the same state is zero and the sojourn times are constants. The only stochastic
aspect, then, lies in the message length of the generated traffic in the ED state.
By setting the sojourn time to 86360 s, we get the model realization depicted
in Fig. 2.4 (yellow pin, dash-dotted stem). Results show that this model is
able to represent the time series with a high degree of accuracy. Also the ar-
rival instants inside a burst are well represented, as depicted in the empirical
Cumulative Distribution Function (CDF) for the message interarrival time in
Fig. 2.8.

Modeling parking sensors

The parking sensors exhibit the most complex traffic pattern, which calls for the
higher flexibility of the CMMPP model. We can define two states, regular and
alarm. The short and medium sized messages are generated in the regular state,
while the larger messages are generated when the system is in the alarm state.
As already mentioned, the CMMPP model offers a large degree of freedom, with
particular reference to:

• The transition probability matrices PC and PU of coordinated and unco-
ordinated scenarios, respectively;

• The background process Θ and the factor δn;

• The message length in the regular and event states.

Here the performance of only one device is analysed, therefore we only define
one δn value. The best fit of the CMMPP model to the real data is obtained us-
ing a Beta(3,4) distribution to generate θ(t) values, a Gaussian distribution for
the message lengths (with, respectively, mean of 1500 and 1600 Bytes, and stan-
dard deviation of 400 and 100 Bytes), and setting δn = 0.05 and the following
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Figure 2.8: Electricity meters: time series from the dataset and realizations
from the CMAP (original and modified) models.

transition probability matrices:

PU =

(

1 0

1 0

)

, PC =

(

0 1

1 0

)

.

We can note, from Fig. 2.5, that the approximately periodic nature of large
message traffic is not captured in the model, due to the probabilistic transitions
between the regular and event states. Furthermore, the high-frequency short
message transmission is also not well represented. Better results could be ob-
tained by combining this model with a semi-Markov approach, similar to that
used for the electricity meter, to model the more deterministic features of the
pattern, but this is left as future work.

2.3 State Modulated Traffic Models for Machine

Type Communications

From the previous analysis it emerged that, in general, M2M traffic patterns
have strong deterministic components that, in some cases, are overlapped with
asynchronous event-driven components. On the other hand, the three source
models considered in this study are all based on a stochastic framework that
exhibits some limits in capturing deterministic patterns.

The model proposed in this section makes it possible to represent a wider
range of M2M sources, each with very different traffic characteristics, ranging
from highly regular to bursty types of traffic sources. To this end, a modu-
lated Renewal Processes for packet level traffic modeling of single M2M type
of sources is applied. A modulated Renewal Process is an extension of ordi-
nary Renewal Processes (RPs) [58] where the distribution between arrivals may
change according to the state of a modulating Markov Chain. To make the de-
scription manageable it is assumed that the number of arrivals in a state, with a
particular inter-arrival time distribution, can be modeled by an integer random
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variable with a particular distribution that is specific for that particular state.
Hence, the total time spent in a particular state (for the modulated RP) is the
sum of the inter-arrival times between the arrivals that occur in that particular
state. After the total time in a state has expired, the source will move to another
state according to the modulating Markov Chain, and start a new RP arrival
sequence with its specific distributions (both for the inter-arrival time and the
number of arrivals). The modulated RP is therefore a generalization of legacy
RPs where the statistical distribution of the arrival process changes depending
on a state variable. In addition, we may also specify the packet size distribu-
tion, which again may depend on the state variable. This type of parameterized
model makes it possible to represent a wide array of M2M sources with varying
traffic characteristics.

Modeling based on modulated RP has pros and cons. Sometimes, when the
source type and its traffic generation pattern are well known, e.g., alternating
between some known deterministic pattern, the modulated RP will not necessary
give accurate description. However, when the patterns are more random, the
traffic generation will fit well with a general stochastic modeling approach. Some
of the appealing properties of the modulated RP traffic model are that they are
easy to understand and simulate, and a very broad range of M2M source types
can be described with such models, both for regular and bursty traffic. However,
there are some drawbacks attached to this modeling approach such as the fact
that the modulated RP models involve a large number of parameters, and it is
therefore not easy to choose the best model and estimate the parameters based
on recorded traces. Secondly, it is difficult to model aggregated traffic streams
and analytical models based on aggregates are difficult to analyze.

2.3.1 Packet level model

The general packet level model is briefly described here. The idea behind this
type of arrival process is to generalize the legacy renewal model, where we
allow the distribution between arrivals to change according to the state of a
modulating Markov Chain. Further, the sojourn time in a state is determined by
the number of arrivals in that particular state, described by an integer random
variable, and by the inter-arrival times.1

Description of the Modulated RP

Let us start by giving a formal description of the modulated RP. The modulated
RP is described by the following stochastic variables (see Fig. 2.9):

• The (modulation) state variable Ik at k’th jump is the state of a Markov
Chain, with state space Ω = {1, 2, . . . , N} and transition probability ma-
trix Q = (qij), with i, j ∈ Ω, and qii = 0 for all i ∈ Ω.

• If the modulating Markov Chain has performed k transitions up to time
t, then the state of the system at a generic time t is Jt = Ik;

• When the modulation state variable Ik is in state i ∈ Ω, i.e. Ik = i, then

1Another possibility is to model the time spent in a state as a separate random variable.
This approach, however, would make the model more complicate and it is not considered in
this study.
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Figure 2.9: Traffic generation by the N state Modulated Renewal Process.

– packet inter-arrival times {T i
k} are independent and identically dis-

tributed (iid), with CDF equal to Gi(t) = P (T i ≤ t), where T i is the
canonical inter-arrival time random variable;

– the corresponding packet lengths {V i
k} are also iid, with CDF Ui(x) =

P (V i ≤ x), where V i is the canonical packet-size random variable;

– the total number M i of packet arrivals in state i ∈ Ω is discrete
random variable with probability mass distribution pi(m) = P (M i =
m), for m = 1, 2, . . ..

For the analysis, we also have to define the probability density functions
(pdfs) for the inter-arrival times, gi(t) = G′

i(t), and for the packet size in
each state, ui(x) = U ′

i(x). The associated Laplace Stieltjes Transforms (LSTs)
are given by fi(s) =

∫∞

t=0
e−stdGi(t) and vi(y) =

∫∞

x=0
e−yxdUi(x), respec-

tively, while the moment Generating Function (GF) of M i is given by Pi(z) =
∑∞

m=1 z
mpi(m). Furthermore, we denote t

(k)
i = E[(T i)k], v

(k)
i = E[(V i)k] and

m
(k)
i = E[(M i)k] as the k’th moment of inter-arrival times, packet lengths and

total number of packet arrivals in state i ∈ Ω, respectively. For ease of writ-

ing, the mean values are represented as ti = t
(1)
i , vi = v

(1)
i and mi = m

(1)
i ,

respectively.
Now, the sojourn time in state i where i ∈ Ω is readily found as the (stochas-

tic) sum
Si = T i

1 + T i
2 + . . .+ T i

Mi (2.2)

where all the T i
k are iid and distributed as T i.

Given the mutual independence of the involved variables, the transform of
the joint distribution of the sojourn time and the number of arrivals in state
i is given by wi(s, z) = E[e−sSi

zMi

] = E[E[e−sSi

zMi | M i]] = E[(zfi(s))
Mi

],
which then yields the following functional equation

wi(s, z) = Pi(zfi(s)) . (2.3)
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The mean and variance of Si are hence

E[Si] = miti and σ2
Si = σ2

Mit2i +miσ
2
T i (2.4)

where σ2
X denotes the variance of a random variable X.

To be able to follow the process over several state changes we define the
matrix R(s, z) = (rij(s, z)) where we also include the probability of the next
state in the expression (2.3)

rij(s, z) = E[e−sSi

zMi

1{Ik+1=j} | Ik = i] = Pi(zfi(s))qij (2.5)

or

R(s, z) = diag(Pi(zfi(s)))Q , (2.6)

where 1{Ik+1=j} is 1 if the next state of the modulating Markov Chain is
j ∈ Ω, and zero otherwise, while diag(λi) is the diagonal matrix with (di-
agonal) elements λi, i = 1, . . . , N . Hence, the process defined by the pair
{S, I} constitutes a ordinary Markov RP with LST of the generator matrix
R(s, 1) = (rij(s, 1)) = diag(P (fi(s))) ·Q.

Let Xi = V i
1 + V i

2 + . . .+ V i
Mi denote the total volume of bits arrived while

being in state i. Then, the envelope process R(s, 1) defines the corresponding
fluid model where the rate ri in state i is taken to be the ratio between the
mean volume of state i, and the mean sojourn time in that state, i.e.,

ri =
E[Xi]

E[Si]
=
vi

ti
. (2.7)

If the number of arrivals in state i, M i, is geometrically distributed, i.e., pi(m) =
(1−pi)p

m−1
i form = 1, 2, . . ., then the modulated RP will be an ordinary Markov

RP with generator Matrix

F (t) = diag(Gi(t))Q̂ , (2.8)

where Q̂ = (q̂ij) is the transition matrix for the associated Markov Chain given
by

q̂ij =

{

pi for j = i ;

(1− pi)qij for j 6= i .
(2.9)

Due to the memoryless property of the geometrical distribution, it is suffi-
cient for this particular case to consider the process at packet arrival instants,
where pi represents the probability that there is no state change between two
succeeding arrivals, while 1 − pi gives the probability that the state changes,
and qij is the conditional probability that the next state is j, given that state i
is left.

If we also assume that the inter-arrival times in state i have negative ex-
ponential distribution, i.e., Gi(t) = 1 − e−λit, then the arrival process is an
ordinary Markov Process (MP). In this case, the envelope process defined by
the LST of the generator matrix (2.8) will be a MP, since the time spent in a
particular state will have a negative exponential distribution. For Markov RP,
several results are available in the literature, in particular refer to [59] and [60]
for an update of some interesting results.
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Steady state distributions

In the analysis the steady state distribution of the state variable Ik will play an
important role when considering a modulated RP. At jump instances the state
variable is governed by the transition matrix Q and if we take πi = lim

k→∞
P (Ik =

i) to be the steady state probabilities for i = 1, . . . , N , and let Π = (πi) be the
corresponding row vector, the steady state distribution is determined by the
following equations

Π = Π ·Q and Π · e = 1 , (2.10)

where e is a column vector with ones.
If we consider the state variable at an arbitrary time, say Jt at time t,

then the corresponding steady state distribution pi = lim
t→∞

P (Jt = i) is found

by scaling the probabilities πi (at state jump instances) by the mean length
of a period between jumps, E[Si] = miti giving the following steady state
distribution

pi =
miti
C

πi with C =

N
∑

i=1

πimiti = Π · diag(miti) · e . (2.11)

We also have to define the marginal distributions of time between packets (in-
dependent of the states). Over a long period the number of arrivals that see
the process in state i with CDF Gi(t) is proportional to πimi while the total

number of arrivals in the same period is proportional to
∑N

i=1 πimi. Hence, the
probability that we have an arrival in state i is given by ri = πimi

∑

N

i=1
πimi

. If we

take Tavg as the average random variable then the CDF Gavg(t) = P (Tavg ≤ t)
will be given by

Gavg(t) =

∑N
i=1 πimiGi(t)
∑N

i=1 πimi

. (2.12)

From (2.12) we find the moments of Tavg to be

E[(Tavg)k] =

∑N
i=1 πimit

(k)
i

∑N
i=1 πimi

. (2.13)

Similar for the packet length, if we take Vavg as the average packet length
distribution, the CDF Uavg(t) = P (Vavg ≤ t) is given by

Uavg(t) =

∑N
i=1 πimiUi(t)
∑N

i=1 πimi

. (2.14)

As above the moments of Uavg are found from (2.14) as

E[(Vavg)k] =

∑N
i=1 πimiv

(k)
i

∑N
i=1 πimi

. (2.15)

In fact it is also possible to derive (2.12) with somehow different arguments

whereGavg(t) should be a weighted sum of theGi(t)’s, (Gavg(t) =
∑N

i=1 aiGi(t))
and we need to determine the ai’s. The main idea is that two succeeding arrivals
should see the same average distribution. By considering the process over a long
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time the probability that an arrival in state i is the last before state change is
1

mi
and that it is not is 1 − 1

mi
. If an arrival is the last before state change

the next state is j by probability qij (with arrival distribution Gj(t)). For
two succeeding distributions to be equal we therefore must have Gavg(t) =
∑N

i=1 aiGi(t) =
∑N

i=1(1− 1
mi

)aiGi(t) +
∑N

i=1
1

mi
ai

∑N
j=1 qijGj(t). Rearranging

this requires
∑N

j=1(− aj

mj
+
∑N

i=1
ai

mi
qij)Gj(t) = 0 or − aj

mj
+
∑N

i=1
ai

mi
qij = 0 for

j = 1, · · · , N . Hence, aj = απjmj for some constant α, and therefore aj = rj

for j = 1, · · · , N .

The equilibrium Modulated RP

If we consider a modulated RP which has reached equilibrium and start to
observe the process at a certain time, say t = 0 and observe the process from
there, then the state variable Jt will be in steady state. The time to the next
packet arrival, and the number of arrivals to the next state change, denoted by
T̃ i and M̃ i, will be distributed as the residuals of the random variables of T i

and M i, i.e.,

G̃i(t) = P (T̃ i ≤ t) =
1

ti

∫ t

0

(1−Gi(τ))dτ ; (2.16)

p̃i(m) = P (M̃ i = m) =
1

mi

∞
∑

j=m+1

pi(j) . (2.17)

Furthermore, the LST and GF of the residual distributions may be found from

(2.16) and (2.17), leading to f̃i(s) = 1−fi(s)
sti

and P̃i(z) = 1−Pi(z)
(1−z)mi

, respectively.

Observe that the residual distribution of the number of arrivals in a particular
state is the probability of having exactly m arrivals before a state changes, when
picking a certain arrival interval at random. For example, the residual sojourn
time in state i, denoted as S̃i, can be expressed as the sum of the residual inter-
arrival time for the first packet, which is distributed as T̃ i, and then inter-arrival
times of the remaining M̃ i packets, which are distributed according to T i, i.e.:

S̃i = T̃ i + T i
1 + T i

2 + . . .+ T i
M̃i (2.18)

where the all the T i
k, all are independent and distributed according to T i.

The joint transform of the time duration S̃i and the number of arrivals 1+M̃ i

until the next state change is given as

wi(s, z) = zf̃i(s)P̃i[(zfi(s))]

which by applying the relations for f̃i(s) and P̃i(z) gives

w̃i(s, z) =
z

timi
ŵi(s, z) (2.19)

where

ŵi(s, z) =
(1− fi(s))(1− Pi(zfi(s)))

s(1− zfi(s))
(2.20)

The LST of the residual sojourn time in a given state i is now easily found

from (2.19) by taking z = 1, giving w̃i(s, 1) = 1−Pi(fi(s))
smiti

as expected. To be
able to follow the process over the first state changes we also define the matrix
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R̃(s, z) = (r̃ij(s, z)) where we include the probability of the next state in the
expression (2.19)

r̃ij(s, z) = E[e−sS̃z1+M̃ 1{I1=j} | J0 = i] = w̃i(s, z)qij (2.21)

or

R̃(s, z) = diag(w̃i(s, z))Q = zdiag(
1

timi
)R̂(s, z) (2.22)

where the matrix R̂(s, z) can also be written as

R̂(s, z) = diag(ŵi(s, z))Q (2.23)

and where S̃ = S̃i (given by (2.18)) and M̃ = M̃ i are the duration and number
of arrivals in this particular state where the state variable at time t = 0 is i;
that is J0 = i.

The data volume arrived during the initial state may be written as X̃i =
V i

0 +V i
1 +V i

2 + . . .+V i
M̃i

where all the V i’s are distributed according to Ui(x) =

P (V i ≤ x) as defined in subsec. 2.3.1.
We may now combine some of the results discussed above and consider a

modulated RP in equilibrium over several state changes. By combining the
results above for the initial state 2.3.1 and for the normal state 2.3.1 we obtain
the following theorem.

Theorem 1. Consider a modulated RP in equilibrium and observe the process
from a random point taken to be t = 0 and let Yk and Lk be the time and
numbers of arrivals up to the k’th state change. Defining the matrix

Rk(s, z) = (rk
ij(s, z)) where

rk
ij(s, z) = E[e−sY k

zLk

1{Ik+1=j} | J0 = i]
(2.24)

we then have
Rk(s, z) = R̃(s, z) ·R(s, z)k−1 (2.25)

where R̃(s, z) is given by (2.22) and R(s, z) is given by (2.5).

Proof. We have Y k = S̃1 + S2 . . .+ Sk and Lk = 1 + M̃1 +M2 . . .+Mk where
S̃1 and 1 + M̃1 are the time and number of arrivals to the first state change for
the initial period and Sl and Ml are the time and number of arrivals for period
l; l = 2, · · · , k. By inserting in (2.24) we then obtain (2.25).

Packet counts and index of dispersion

To study the behavior of modulated RP over longer time periods, we want to
find the distribution of the number of arrivals up to a certain point in time. To
do this we first find the distribution of the number of arrivals in the last period
which includes that point in time. We therefore first consider the process in a
given time interval. Suppose that the state is Ik = i and define the time up to
the l’th arrival within this state as

Si
l = T i

1 + T i
2 + . . .+ T i

l . (2.26)

Similarly, let N̂ i
t denote the number of arrivals that occur up to time t, assuming

that at time t = 0 the state is Ik = i and there is no state change in the interval



42

(0, t). Therefore, the event {N̂ i
t = l} equals that of {Si

l > t, Si
l+1 ≤ t,M i > l}.

We hence have

P (N̂ i
t = l) = P (Si

l > t, Si
l+1 ≤ t,M i > l) =

(P (Si
l ≤ t)− P (Si

l+1 ≤ t))P (M i > l) .
(2.27)

By defining the z-transform Ĥi(t, z) = E[zN̂i
t ] and by taking the Laplace trans-

form Ĝi(s, z) =
∫∞

t=0
e−stĤi(t, z)dt and using the fact that the Laplace trans-

form of the convolution P (Si
l ≤ t) equals fi(s)l

s then this give Ĝi(s, z) =
1−fi(s)

s

∑∞
l=0(zfi(s))

lP (M i > l) = (1−fi(s))(1−Pi(zfi(s)))
s(1−zfi(s)) . Hence by (2.20) we

have
Ĝi(s, z) = ŵi(s, z) (2.28)

Similarly, the initial period, k = 0 have to be treated somewhat differently
due to the fact that the time to the first arrival is given by the residual time
and the residual numbers of arrivals. By assuming J0 = i we define the time up
to the l-th arrival in that period

S̃i
l = T̃ i + T i

1 + . . .+ T i
l (2.29)

where T̃ i is distributed according to residual arrival time. As above we let Ñ i
t

be the number of arrivals in the initial period (k = 0) up to a time t without
any state changes in the interval (0, t). The event {Ñ i

t = l} equals that of
{S̃i

l−1 > t, S̃i
l ≤ t, M̃ i > l − 1} leading to

P (Ñ i

t = l) = P (S̃i
l−1 > t, S̃i

l ≤ t, M̃ i > l − 1) =

(P (S̃i
l−1 ≤ t)− P (S̃i

l ≤ t))P (M̃ i > l − 1) .
(2.30)

As above, we define the z-transform H̃i(t, z) = E[zÑi
t ] and the Laplace

transform G̃i(s, z) =
∫∞

t=0
e−stH̃i(t, z)dt. By using the fact that the Laplace

transform of the convolution P̃ (Si
l ≤ t) equals f̃i(s)

fi(s)l−1

s we find G̃i(s, z) =

zf̃i(s)
1−fi(s)

s

∑∞
l=0(zfi(s))

lP (M̃ i > l). Since
∑∞

l=0 z
lP (M̃ i > l) = 1

1−z −
1−Pi(z)

mi(1−z)2 we obtain

G̃i(s, z) = z
(1− fi(s))

2

tis2

( 1

1− zfi(s)
− 1− Pi(zfi(s))

mi(1− zfi(s))2

)

(2.31)

We may now state the following theorem on the distribution of the number of
arrivals up to a certain time t.

Theorem 2. Consider a modulated RP in equilibrium and let Nt be the number
of arrivals up to time t and let P (Nt = n) be the corresponding distribution and
let H(t, z) = E[zNt ] be the z-transform. Then the Laplace transform G(s, z) =
∫∞

t=0
e−stH(t, z)dt is given by the following matrix expressions

G(s, z) = 1
s + z−1

Cs2 Π · diag(mi
1−fi(s)

1−zfi(s) ) · e−
z

Cs Π · diag( 1−fi(s)
1−zfi(s) ŵi(s, z)) · e+

z
C Π · R̂(s, z) · [I −R(s, z)]−1 · R̂(s, z)) · e

(2.32)

where Π is the steady state distribution at state jumps given by (2.10), the
constant C is given in (2.11), ŵi(s, z) is given by (2.20) and the matrices R(s, z)
and R̂(s, z) are given by (2.5) and (2.23) respectively.
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Proof. We first observe to have Nt = 0 we must have the residual time T̃ i > t
and hence,

P (Nt = 0) =

N
∑

i=1

piP (T̃ i > t) (2.33)

The condition Nt = n when n > 0 may be attained by either having no state
changes up to t or on ore more state changes, e.g., k ≥ 1. For the latter case, we
condition on the elapsed time Y k = y and arrivals Lk = l up to the k’th state
change. Then the numbers of arrivals in the remaining interval of length t − y
has to be n− l (to have Nt = n). By integrating and summing over all possible
combinations of arrivals in the two intervals and summing over all k ≥ 1, and
then multiplying by the initial state probabilities and summing over all states
both at time t = 0 and t, one gets the following expression

P (Nt = n) =
∑N

i=1 piP (Ñ i
t = n)+

∑∞
k=1

∑N
i=1

∑N
i0=1 pi0

∑n
l=0

∫ t

y=0
P (N̂ i

t−y = n− l)
dyP (Y k ≤ y, Lk = l, Ik = i | J0 = i0) .

(2.34)

Now we take the transforms of the expressions (2.33) and (2.34). Laplace trans-

form of P (Nt = 0) yields P ·diag( 1
s−

1−fi(s)
tis2 ) ·e. Similarly, the transforms of the

second term
∑N

i=1 piP (Ñ i
t = n) is P · diag(G̃i(s, z)) · e. Finally the third con-

volution part yields the sum
∑∞

k=1 P ·Rk(s, z) · diag(ŵi(z, s) · e. Using Rk(s, z)

given by (2.25) yields z
C Π · R̂(s, z) · [I − R(s, z)]−1 · R̂(s, z)) · e where we also

have used that diag(ŵi(z, s) · e = R̂(s, z)) · e. Collecting and substituting for P
in terms of the steady state jump probabilities Π and inserting for G̃i(s, z) by
(2.31) we then obtain (2.32).

To find the Laplace transform of the first and second moments of Nt turn
out to beneficial to rewrite the expression for G(s, z) above by taking ŵi(s, z) =
1
sz (1 + z−1

1−zfi(s) )(1− Pi(zfi(s)). This leads to the following simplification

G(s, z) =
1

s
+
z − 1

Czs2
Π · diag(mi) · e+ (2.35)

(z − 1)2

Czs2

{

Π · diag
(

mi

1− zfi(s)
− 1− Pi(zfi(s))

1− zfi(s)

)

· e+ (2.36)

Π · diag
(

1− Pi(zfi(s))

1− zfi(s)

)

·Q · [I − diag(Pi(zfi(s))) ·Q]−1· (2.37)

diag

(

1− Pi(zfi(s))

1− zfi(s)

)

· e
}

. (2.38)

By (2.38) we find that the first moment is proportional to the length of the
interval, while for the variance the general result is found in terms of Laplace
transforms. The result is stated in the following theorem.

Theorem 3. For the mean and variance of Nt we have the following expressions

E[Nt] = t
Π · diag(mi) · e

C
(2.39)
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∫ ∞

t=0

e−stV ar[Nt]dt =− Π · diag(mi) · e
Cs2

− 2(Π · diag(mi) · e)2

C2s3
+ (2.40)

2

Cs2

{

Π · diag
(

mi

1− fi(s)
− 1− Pi(fi(s))

1− fi(s)

)

· e+ (2.41)

Π · diag
(

1− Pi(fi(s))

1− fi(s)

)

·Q · [I − diag(Pi(fi(s))) ·Q]−1·
(2.42)

diag

(

1− Pi(fi(s))

1− fi(s)

)

· e
}

. (2.43)

Proof. These results follow directly from (2.38) by differentiating with respect to
z to first and second order, and then finding the Laplace transform ofE[Nt]

2.

For large t both the mean and variance will grow with rate proportional to
t, it is therefore natural to introduce the index of dispersion of counts (IDC)
as the ratio between variance and mean

It =
V ar[Nt]

E[Nt]
. (2.44)

By Tauberian arguments, it is possible to obtain the asymptotic expansion
of V ar[Nt] for large t. The method used is to expand the inverse matrix [I −
diag(Pi(fi(s)))]

−1 in terms of its adjoint matrix and the determinant, and then

also expand both mi

1−fi(s) −
1−Pi(fi(s))

1−fi(s) and 1−Pi(fi(s))
1−fi(s) for small s.

Theorem 4. The variance and IDC have the following asymptotic expressions
for large t

V ar[Nt] = At+B +O(t−1) (2.45)

It =
A

D
+
B

D
t−1 +O(t−2) (2.46)

where A and B are constants given in terms of model parameters and D =

E[N1] = Π·diag(mi)·e
C .

Proof of the asymptotic expansion of V ar[Nt] for large t. We first expand the
different parts of the Laplace transform of V ar[Nt] in (2.43) for small s. We
denote σ2 and γ3 as the variance and 3’rd central moment respectively. We find

Pi(fi(s)) = 1−mitis+
1

2
u

(2)
i s2 − 1

6
u

(3)
i s3 + o(s3) (2.47)

where

u
(2)
i = t2i (σ2

Mi
+m2

i ) + σ2
Ti
mi

u
(3)
i = t3i (γ3

Mi
+m3

i ) + tiσ
2
Ti

(3σ2
Mi

+ 3m2
i − 3mi) + γ3

Ti
mi

(2.48)

and
1− Pi(fi(s))

1− fi(s)
= mi −

1

2
w

(1)
i s+

1

12
w

(2)
i s2 + o(s2) (2.49)

where
w

(1)
i = ti(σ

2
Mi

+m2
i −mi)

w
(2)
i = t2i (2γ3

Mi
− 3σ2

Mi
+ 2m3

i − 3m2
i +mi)+

σ2
Ti

(3σ2
Mi

+ 3m2
i − 3mi)

(2.50)
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and
mi

1− fi(s)
− 1− Pi(fi(s))

(1− fi(s))2
=

1

2
ν

(1)
i − 1

6
ν

(2)
i s+ o(s) (2.51)

where
ν

(1)
i = σ2

Mi
+mi(mi − 1)

ν
(2)
i = ti(γ

3
Mi
− 3σ2

Mi
+mi(mi − 1)(mi − 2))

(2.52)

From the expression of the Laplace transform of the variance given by (2.43)
we see that the hard part to is to expand [I − diag(Pi(fi(s)))Q]−1 for small s.
We use the notion of adjoint matrices and use the result adjA ·A = A · adjA =
I ·detA for non-singular NxN matrix, or A−1 = adjA

detA . Expanding, we have [I−
diag(Pi(fi(s)))Q] = I−Q+s diag(miti)·Q− 1

2s
2diag(u2

i )·Q+o(s2). Similarly, we
expand both the adjoint and the determinant adj[I − diag(Pi(fi(s)))Q] = H0 +
sH1 +s2H2 +o(s2) and det[I−diag(Pi(fi(s)))Q] = b0 +sb1 +s2b2 +s3b3 +o(s3).
It follows that b0 = 0 since det[I − Q] = 0. By expanding the of identity for
adjoint matrices we obtain the following equations to determine H0

H0[I −Q] = [I −Q]H0 = 0

H1[I −Q] +H0diag(miti)Q =

[I −Q]H1 + diag(miti)QH0 = b1

(2.53)

The first equation gives H0 = a0L where a0 is a constant and L = e · Π.
By pre- or post-multiplying the second equation by the matrix L gives a0L ·
diag(miti) ·Q · L = b1L giving a0C = b1 with C = Π · diag(miti) · e, and hence
H0 = bi

CL. Expanding to second order of the inverse by using the expression
adj[I−diag(Pi(fi(s)))Q]
det[I−diag(Pi(fi(s)))Q] , we finally find the following expansion for the inverse

Q[I − diag(Pi(fi(s)))Q]−1 = 1
s

L
C + 1

b1
B1 − b2

b1

L
C +

s( 1
b1
B2 − b2

b2
1
B1 + [

b2
2

b2
1
− b3

b1
] L

C ) + o(s)
(2.54)

where we have defined Bi = QHi and further Hi and bi is the i’th coefficients
in the expansion of adj[I − diag(Pi(fi(s)))Q] and det[I − diag(Pi(fi(s)))Q] re-
spectively. The sought constants A and B are now the coefficients of s−2 and
s−1 in the expansion of the Laplace transform (2.43) above. We first observe
that the coefficient of s−3 vanishes as expected. We find

A =
Π·diag(ν

(1)
i

)·e

C − Π·diag(mi)·e
C

+2 Π·diag(mi)·B1·diag(mi)·e
b1C − 2 b2

b1
( Π·diag(mi)·e

C )2

−2
(Π·diag(mi)·e)(Π·diag(w

(1)
i

)·e)

C2

(2.55)

and

B = 2 Π·diag(mi)·B2·diag(mi)·e
b1C − 2 b2

b1

Π·diag(mi)·B1·diag(mi)·e
b1C

+
Π·diag(mi)·B1·diag(w

(1)
i

)·e

b1C +
Π·diag(w

(1)
i

))·B1·diag(mi)·e

b1C

− 1
3

Π·diag(ν
(2)
i

)·e

C + 2[( b2

b1 )2 − b3

b1
]( Π·diag(mi)·e

C )2

+2 b2

b1

(Π·diag(mi)·e)(Π·diag(w
(1)
i

))·e

C2

+ 1
3

(Π·diag(mi)·e)(Π·diag(w
(2)
i

))·e

C2 + 1
2 (

Π·diag(w
(1)
i

)·e

C )2

(2.56)
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For the general case, the expansion of the determinant and the adjoint of [I −
diag(Pi(fi(s)))Q] will be the hard part to find.

Remark 1 (Explicit expressions for A two and three state models). The results
given in (2.55) and (2.56) above require the matrices B1 and B2 as the first and
second order expansion of the adjoint matrix [I − diag(Pi(fi(s)))Q] as well as
b1,b2 and b3; the three first coefficient for the determinant. For general number
of states analytical expression is hard to find unless for small value of number
of states. Below, the explicit expressions for the two and three state cases are
given. For N = 2 we find the following expression for the constant A

A = 1
(m1t1+m2t2)3 ((m1 +m2)2(m1σ

2
T1

+m2σ
2
T2

)+

(t1 − t2)2(m2
2σ

2
M1

+m2
1σ

2
M2

))
(2.57)

For N = 3 the expressions are far more technical with several more parameters.
We take the Q-matrix as follows

Q =







0 q12 1− q12

1− q23 0 q23

q31 1− q31 0






(2.58)

and define the following auxiliary parameters

r1 = 1− q23(1− q31)

r2 = 1− q31(1− q12)

r3 = 1− q12(1− q23)

(2.59)

and the steady state probabilities at state jumps is then

π1 = r1

r1+r2+r3
, π2 = r2

r1+r2+r3
, π3 = r3

r1+r2+r3
(2.60)

We find the following expression for the constant A

A = 1
(r1m1t1+r2m2t2+r3m3t3)3

(

(r1m1 + r2m2 + r3m3r3)2(r1m1σ
2
T1

+ r2m2σ
2
T2

+ r3m3σ
2
T3

)+

r1σ
2
M1

(

r2m2(t1 − t2) + r3m3(t1 − t3)
)2

+

r2σ
2
M2

(

r1m1(t2 − t1) + r3m3(t2 − t3)
)2

+

r3σ
2
M3

(

r1m1(t3 − t1) + r2m2(t3 − t2)
)2

+

γ12m
2
1m

2
2(t1 − t2)2 + γ13m

2
1m

2
3(t1 − t3)2 + γ23m

2
2m

2
3(t2 − t3)2+

2m1m2m3

(

r1m1δ1(t1 − t2)(t1 − t3)+

r2m2δ2(t2 − t3)(t2 − t1) + r3m3δ3(t3 − t1)(t3 − t2)
)

)

(2.61)

where we have defined the parameters

γij = rirj(2− ri − rj) for i, j = 1, 2, 3 (2.62)

and
δi = 1− ri −

∏3
j=1,j 6=i(1− rj) for i = 1, 2, 3 (2.63)
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Observe that we get the two state solution if two of the states have equal mean
and variance of their arrival distribution. E.g. if we have t2 = t3(= t∗2) and
σ2

T2
= σ2

T3
(= σ2

T ∗

2
) we obtain the result for N = 2 by defining the following

weighted mean and variance

m∗
2 = r2

r1
m2 + r3

r1
m3 (2.64)

σ2
M∗

2
= r2

r1
σ2

M2
+ r3

r1
σ2

M2
+ r2(2−r1−r2)

r2
1

m2
2+

r3(2−r1−r3)
r2

1
m2

3 + 2 r2+r3−r2r3−r1

r2
1

m2m3

(2.65)

2.3.2 Fitting two state models to recorded traces

One of the main difficulties when applying general source models is to set the
model’s parameters based on real measurements (traces). In our case, for each
state it is necessary to find three distributions, namely for the inter-arrival times,
the packet size, and the number of arrivals, in addition to the transition matrix
of the modulating Markov Chain. Instead, some important parameters, like the
overall statistical moments and autocorrelation of key variables or the dispersion
index, are quite easy to estimate by exploiting the (supposed) ergodic nature of
the involved stochastic processes. Hence, by estimating a set of parameters and
requiring that these measurements match the corresponding analytical expres-
sions (derived from the model), we obtain a set of equations that may be solved
for the model parameters.

We observe that the number of statistical distributions that need to be esti-
mated for an N -state modulated RP based on the recorded traces grows linearly
with N , while the size of the transition matrix is equal to N2.

Clearly, the larger the number of model’s parameters to be estimated, the
larger the required data set, and the more noisy the resulting model. It is there-
fore convenient to simplify the model by fixing some of the model’s parameters
and estimating the remaining from the available data traces. The difficulty is
to choose the right balance between model complexity, and its capability to
capture the more important features of the actual source process.

To set the model parameters, two classes of measurements are considered,
namely:

• short-time scale: values that are meaningful over short time scales, like
mean and variance of the inter-arrival times, packet size, and number of
arrivals processes,

• long-time scale: values describing the packet generation process over
longer time scales, like packet counts or index of dispersion.

In the following, the proposed simplified source model is detailed.

Two-state model with negative exponential arrival distribution and
geometrical distribution of arrivals

The simplest (non-trivial) model consists of two modulating states, Ω = {1, 2},
with single-parameter distributions for the inter-arrival times, the packet size
and the number of arrivals in a state. More specifically, the inter-arrival times
are chosen to be negative exponentially distributed random variables with mean
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t1 and t2 for state Ik = 1 and Ik = 2, respectively, while the number of arrivals
in each state is modeled as a geometrically distributed random variable with
mean m1 and m2, respectively while the packet size is exponentially distributed.
Hence, the model is fully described by the parameter set {t1, t2,m1,m2}. For
this case the Laplace transform (2.43) of the variance of Nt is invertible and we
find the following IDC

It = 1 + 2
m2

1m
2
2(t1 − t2)2

(m1t1 +m2t2)2(m1 +m2)
−

2
m3

1t1m
3
2t2(t1 − t2)2

t(m1t1 +m2t2)3(m1 +m2)
(1− e−t

m1t1+m2t2
m1t1m2t2 ) (2.66)

when t→∞, (2.66) gives

I∞ = 1 + 2
m2

1m
2
2(t1 − t2)2

(m1t1 +m2t2)2(m1 +m2)
. (2.67)

Moreover, if we know the IDC for a particular time t0 and we take F−1(y) as

the inverse function of F (x) = 1−e−x

x , we may solve for the exponent in (2.66),
leading to

m1t1 +m2t2
m1t1m2t2

=
1

t0
F−1

(

I∞ − It0

I∞ − 1

)

. (2.68)

Suppose that from trace measurements we have estimated the four parameters,
i.e., the mean, square coefficient of variation, and IDC at infinity and at a
particular time t0. We may then set up the following four equations to determine
the model parameters {t1, t2,m1,m2}

m1t1+m2t2

m1+m2
= a = E[Tavg]

2 m1m2(t2−t1)2

(m1t1+m2t2)2 = b =
V ar[Tavg ]
E[Tavg ]2 − 1

2
m2

1m2
2(t2−t1)2

(m1t1+m2t2)2(m1+m2) = c = I∞ − 1

m1t1+m2t2

m1t1m2t2
= d = 1

t0
F−1(

I∞−It0

I∞−1 )

(2.69)

where we assume that all the parameters on the right hand side, i.e.,
{E[Tavg], V ar[Tavg], I∞, It0

}, are known by direct measurements. Fortunately,
(2.69) yields quadratic equations by substituting x1 = m1t1 and x2 = m2t2 for
which we find the following solutions

x1 = 1
4b2dη

(

∆ + (2η + b(η − 2))
√

∆
)

x2 = 1
4b2dη

(

∆− (2η + b(η − 2))
√

∆
)

m1 = 1
4ab2dη

(

∆ + (2η − b(η + 2))
√

∆
)

m2 = 1
4ab2dη

(

∆− (2η − b(η + 2))
√

∆
)

(2.70)

where
t1 =

x1

m1
and t2 =

x2

m2
. (2.71)

and
∆ = 4η2 + 4η(η − 2)b+ (η − 2)2b2 and η = acd . (2.72)
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Modeling examples

In the following, the proposed method is applied for three types of M2M sources,
namely

• Single electricity meter.

• Concentrator which aggregates measurements from different electricity
meters.

• Parking meter.

The considered source types are taken from a real M2M network based on
recorded traces for both uplink (UL) and downlink (DL). Based on the traces,
different time-series are constructed and analysed. In the examples below we
mainly concentrate on the packet arrival process. The measured parameters are:
mean and coefficient of variation of the arrival times, and index of dispersion
at two points in time, one very large and the second at 10 s. The estimated
parameters are given in Tab. 2.4. We observe that the average time between
packets is relatively long, e.g., in the range of one hour for the electricity meter,
while for the parking meter the mean is around a couple of minutes. We have
large values, i.e., in the 10-25 range, for both the square coefficient of variation
and the dispersion index for large time. The index of dispersion at 10 s is less
than 10 for all cases. From these parameters and by manual inspection of the
recorded time-series we conclude that these traffic sources are very bursty in
nature.

E[Tavg] [s]
V ar[Tavg ]
E[Tavg ]2 I∞ I10sec E[Vavg] [B]

V ar[Vavg ]
E[Vavg ]2

ElMeter P2P UL 2969.73 10.8499 12.4174 9.63390 425.168 1.27135

ElMeter P2P DL 3812.49 8.2299 10.0329 7.12250 39.5970 0.44533

ElMeter Conc. UL 5025.31 16.0387 15.2734 5.07427 69.5619 3.53885

ElMeter Conc. DL 5387.97 14.8912 14.7908 4.22270 32.0204 1.64640

Parking UL 162.055 20.0424 25.3383 6.89966 728.636 10.42150

Parking DL 188.133 17.1263 22.8702 4.94596 406.867 0.10329

Table 2.4: Measured parameters for the sources

The estimated two-state model parameters are shown in Tab. 2.5. We ob-
serve that the resulting calculated parameters give a typical ON/OFF pattern
with two very distinct states. In the first state, the inter arrival time is in the
range of one second and the mean number of packets is estimated around 10
packets, while in the second mode inter-packet time is large and the mean num-
ber of packet arrivals in this state is less than two for all the sources. Hence,
for all the cases we have a typical ON/OFF behaviour, with a burst of approx-
imately ten packets and then very long time between bursts.

The corresponding distributions of the inter-arrival times and packet lengths
for the different cases are shown in Fig. 2.10, Fig. 2.11 and Fig. 2.12. Compared
to the estimated distributions, the CDF based on the model is smooth. How-
ever, for all the three cases, even if the match is not perfect, the similarity is
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t1 [s] m1 t2 [s] m2

ElMeter P2P UL 0.36137 6.86923 17597.4 1.39443

ElMeter P2P DL 0.58994 5.76723 17596.7 1.59488

ElMeter Cons. UL 1.73002 8.09070 42825.4 1.07525

ElMeter Cons. DL 2.27016 7.89402 42826.4 1.13559

Parking UL 1.26545 13.6396 1717.15 1.41026

Parking DL 1.95609 12.5222 1721.01 1.52089

Table 2.5: Calculated model parameters for the sources.
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Figure 2.10: CDF of the inter arrival time and packet length obtained from the
model and based on direct estimation from traces for single Electric Meter type
of source.

evident. We see that the two modes manifest themselves in the form of the CDF
with most of the arrivals occurring in the first mode with the relative small in-
ter arrival times, while in mode two the time between packets will be several
hours for the Electrical Metering sources. Instead, for the Parking source, the
corresponding time between arrivals is typically half an hour. For the packet
length distributions, the curves based on negative exponential approximations
with the same mean as the empirical estimate ones have also been added.

Fig. 2.13, Fig. 2.14 and Fig. 2.15 show time-series from the traces and from
simulations, using the two-state model with the calculated parameters given
in Tab. 2.5. Also these figures confirm that the two-state model fits quite well
with the traces, which clearly show that most of the inter-arrival times are quite
small. Then there are a few observations with large time between arrivals and
we clearly see that the model recreates similar behaviour.

2.4 Conclusion

In this chapter we analysed some real world traffic traces, arriving to the conclu-
sion that, in many cases, M2M traffic exhibits strong deterministic components.



51

10 1000 10
5

10
7

0.0

0.2

0.4

0.6

0.8

1.0

[ ]

C
D
F

- -

Model - UL

Trace - UL

Model - DL

Trace - DL

(a) Inter Arrival Time [ms]

1 5 10 50 100 500 1000

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

- - -

Model - UL

Trace - UL

Model - DL

Trace - DL

(b) Packet Length [Bytes]

Figure 2.11: CDF of the inter arrival time and packet length obtained from
the model and based on direct estimation from traces for Electric Meter from
concentrator type of source.
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Figure 2.12: CDF of the inter arrival time and packet length obtained from the
model and based on direct estimation from traces for single Parking Meter type
of source.

We have also discovered that none of the considered state of the art technique
was able to reliably model all the traffic sources of the considered real world
data set.

Therefore, the use of a generic packet-level model has been proposed, which is
an alternating renewal process with different numbers of arrivals in each state.
After all the arrivals happened for a particular state, the process changes its
state, which corresponds to different distributions of the inter-arrival times and
of the number of arrivals in the state. The most important performance mea-
sures for such processes have been derived, as the marginal arrival distributions
and the corresponding statistical moments, and the distribution of the packet
count in a given time interval has been analyzed. The variance of the packet
count is found in terms of Laplace transform, and asymptotic behaviour is found
for large times. For two- and three-state models, explicit results have been re-
ported.

Finally, the work focused on a two-state model with exponentially dis-
tributed packet inter-arrival times and geometrically distributed number of ar-
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Figure 2.13: Simulated and trace time series of the inter arrival times for single
Electric Meter type of source.

0 20 40 60 80 100

0.1

10

1000

10
5

Arrival number

T
i
m
e

b
e
t
w
e
e
n

a
r
r
i
v
a
l
s

[
s
]

Time-Series-Consentrator-1

ModelSim - DL

Trace - DL

(a) Downlink

0 20 40 60 80 100

0.1

10

1000

10
5

Arrival number

T
i
m
e

b
e
t
w
e
e
n

a
r
r
i
v
a
l
s

[
s
]

Time-Series-Consentrator-1

ModelSim - UL

Trace - UL

(b) Uplink

Figure 2.14: Simulated and trace time series of the inter arrival times for Electric
Meter from concentrator type of source.

0 200 400 600 800 1000

0.1

10

1000

105

Arrival number

T
i
m
e

b
e
t
w
e
e
n

a
r
r
i
v
a
l
s

[
s
]

Time-Series-Parking-1

ModelSim - DL

Trace - DL

(a) Downlink

0 200 400 600 800 1000

0.1

10

1000

105

Arrival number

T
i
m
e

b
e
t
w
e
e
n

a
r
r
i
v
a
l
s

[
s
]

Time-Series-Parking-1

ModelSim - UL

Trace - UL

(b) Uplink

Figure 2.15: Simulated and trace time series of the inter arrival times for single
Parking Meter type of source.
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rivals in a state, for a total of four model parameters. A method to determine
these parameters from quantities estimated from traffic traces has been sug-
gested. The method was tested against three types of M2M traces, showing
reasonably similar stochastic characteristics to the considered traces for all three
types. This proves the ability of the proposed method to adapt to such different
traffic characteristics, contrary to the considered state of the art techniques.
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Chapter 3

Uncoordinated access

schemes for the IoT:

approaches, regulations,

and performance

IoT devices communicate using a variety of protocols, differing in many aspects,
with the channel access method being one of the most important. Most of the
transmission technologies explicitly designed for IoT and M2M communication
use either an ALOHA-based channel access or some type of Listen Before Talk
(LBT) strategy, based on carrier sensing. This chapter provides a comparative
overview of the uncoordinated channel access methods for IoT technologies,
namely ALOHA-based and LBT schemes, in relation with the ETSI and FCC
regulatory frameworks. Furthermore, a performance comparison of these access
schemes is performed, both in terms of successful transmissions and energy
efficiency, in a typical IoT deployment.

3.1 Introduction

Forecasts say that, by 2020, IoT networks will need to handle 1.6 machine-
type connections for each member of the global population [61]. A key element
to enable the full realization of the IoT vision is the ubiquitous connectivity
of end devices, with minimal configuration, as for the so-called place-&-play
paradigm [23]. As anticipated in Sec. 1.2, the three main approaches to provide
connectivity to IoT devices are the following.

Cellular systems. The existing cellular networks are a natural and appealing
solution to provide connectivity to IoT end-devices, thanks to their world-wide
established footprint and the capillary market penetration. Unfortunately, cur-
rent cellular network technologies have been designed targeting wideband ser-
vices, characterized by few connections that generate a large amount of data,
while most IoT services are expected to generate a relatively small amount of
traffic, but from a very large number of different devices. This shift of paradigm
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challenges the control plan of current cellular standards, which can become the
system bottleneck. For these reasons, the IoT and M2M scenarios are consid-
ered as major challenges for next generation wireless cellular systems, commonly
referred to as 5G.

Short-range multi-hop technologies. This family collects a number of pop-
ular technologies specifically designed for M2M communications or Wireless Per-
sonal Area Networks (WPANs). These systems usually operate in the frequency
bands centered around 2.4 GHz, 915 MHz and 868 MHz, though the 2.4 GHz
is the most common choice. They are characterized by high energy efficiency
and medium/high bitrates (order of hundreds of kbit/s or higher), but limited
single-hop coverage area. To cover larger areas, most WPAN technologies pro-
vide the possibility to relay data in a multihop fashion, realizing a so-called
mesh network. Examples of standards in this category are IEEE 802.15.4 [47],
Bluetooth Low Energy [62], and Z-Wave, the latter having its physical and data
link layers specified in ITU-T G.9959 [63].

LPWA networks. A third relevant class in the arena of IoT-enabling wireless
technologies consists in the LPWA solutions. According to [64], LPWA tech-
nologies will account for 28% of M2M connections by 2020. These technologies,
specifically designed to support M2M connectivity, provide low bitrates, low
energy consumption, and wide geographical coverage. Almost all LPWA tech-
nologies operate at frequencies around 800 or 900 MHz, though there are also
solutions working in the classic 2.4 GHz ISM band or exploiting white spaces
in TV frequencies. Some relevant LPWA technologies are LoRaWAN™, Sigfox,
Ingenu [25].

While cellular systems entail centralized access schemes over dedicated fre-
quency bands, which provide high efficiency, robustness, security, and perfor-
mance predictability, most of WPAN and LPWA technologies operate on unli-
censed radio bands, adopting uncoordinated access schemes. The use of unli-
censed bands yields the obvious advantage of lowering the operational costs of
the network, while the adoption of uncoordinated channel access schemes makes
it possible to simplify the hardware of the nodes, thus reducing the manufactur-
ing costs and the energy consumption. The downside is that the lack of coor-
dination in channel access may yield performance losses in terms of throughput
and energy efficiency when the number of contending nodes increases.

To alleviate the problem of channel congestion in the unlicensed bands, ra-
dio spectrum regulators have imposed limits on the channel occupation of each
device, in terms of bandwidth, time, and on the maximum transmission power.
However, the Federal Communications Commission (FCC) in the USA and the
Conference of Postal and Telecommunications Administrations (CEPT) in Eu-
rope have taken different approaches to limit channel congestion: the first im-
poses very strict limits on the emission power and favors the use of spread
spectrum techniques but do not restrict the number of access attempts that can
be performed by the nodes [65], while the second limits the fraction of on-air
time of a device to be lower than a given duty cycle, or imposes the use of LBT
techniques, which are also referred to as carrier-sense multiple access (CSMA)
protocols [44].1

1The two terms will be used interchangeably in this study.
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These precautions are actually effective when the coverage range of the wire-
less transmitters is relatively small (few meters), as was indeed the case for the
first commercial products operating in the ISM frequency bands. However, this
condition does no longer hold for LPWA solutions, which have coverage ranges
in the order of 10–15 km in rural areas, and 2–5 km in urban areas, with a
star-like topology that can exacerbate the mutual interference and hidden node
problems. Furthermore, while short-range communication systems usually sup-
port a single, or just a few modulation schemes and transmit rates, LPWA
technologies usually provide multiple transmit rates to optimize the transmis-
sion based on the distance to be covered.

Despite these quite radical changes in the transmit characteristics of the re-
cent LPWA technologies with respect to the previous generation of the so-called
Short Range Devices (SRD), the channel access methods and the regulatory con-
straints are still the same. In this chapter, we investigate the performance of well
established uncoordinated channel access schemes in this new scenario, charac-
terized by a huge number of devices with large coverage ranges and multi-rate
capabilities. To this end, we first review the main uncoordinated access schemes
used by the most common wireless communication technologies for the IoT, to-
gether with the regulatory framework. Then, the performance achieved by two
popular uncoordinated access schemes in a typical LPWA network scenario is
compared, considering the limits imposed by the regulations.

3.2 Uncoordinated access techniques for the IoT

Channel access schemes can be roughly divided in two main categories: coor-
dinated and uncoordinated (or contention-based). Coordinated access schemes
require time synchronization among the nodes and, hence, are more suitable
for small networks (e.g., Bluetooth) or centrally controlled systems (e.g., cellu-
lar), with large traffic flows (e.g., voice or bulk data transfer). Uncoordinated
access strategies, instead, are usually considered for networks with a highly
variable number of devices and where a reduced manufacturing cost is required,
since the more relaxed timing constraints of these strategies makes it possible
to adopt low-cost oscillators and simpler components. In the following a quick
overview is provided for the two main uncoordinated access schemes that are
widely adopted by the transmission technologies typically associated to the IoT
scenarios.

3.2.1 ALOHA-based schemes

Many protocols for M2M communication are based on pure ALOHA access
schemes, according to which a transmission is attempted whenever a new mes-
sage is generated by the device. Indeed, the ALOHA protocol was designed
for a scenario somehow similar to that of IoT, targeting systems characterized
by a large number of nodes that need to transmit short packets to a common
receiver. Although the traffic per node is generally assumed to be very low, the
aggregate traffic offered to the common receiver can be significant. Simplicity
and efficiency at low traffic rates, thus, still make ALOHA the reference channel
access choice in these scenarios.

This form of channel access may be coupled with a retransmission scheme,
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according to which a packet is retransmitted until acknowledged by the receiver.
However, some IoT services (e.g., environmental monitoring) can tolerate a
certain amount of lost messages. In these cases, a retransmission scheme is
not needed, allowing for a simplification of the device firmware and enabling
a significant reduction in the energy consumption. For these reasons, ALOHA
schemes are widely adopted in M2M communication as, for example, LoRaWAN
and Sigfox. Furthermore, some standards that adopt LBT access techniques
optionally provide an ALOHA mode of operation, as for the IEEE 802.15.4.

More sophisticated ALOHA-based protocols can be enabled when nodes are
time synchronized, e.g., by means of beacons periodically broadcasted by co-
ordinator nodes (e.g., gateways in LoRaWAN). For example, Slotted ALOHA
(SA) divides the time in intervals of equal size, called slots, and allows transmis-
sions only within slots, thus avoiding packet losses due to partially overlapping
transmissions.

Hybrid ALOHA [66] extends the SA protocol by dedicating a set of timeslots
to the transmission of training sequences for channel estimation, while the other
slots are used for information data. If users transmit the training sequences in
different timeslots, they can perform a correct channel estimation. Ideally, this
allows overlapping transmissions not to collide due to advanced Multi-Packet
Reception (MPR) techniques.

ALOHA has also been used to access the channel in a Near Field Commu-
nication (NFC) scenario. Pure ALOHA, however, proved to be inefficient when
multiple NFC tags answer simultaneously to an identification request, gener-
ating packets collisions. This problem has been mitigated by the introduction
of Framed Slotted ALOHA and its evolutions [67–70], which organize the slots
in frames, and allow each device to transmit only once per frame, in a random
slot.

The limit of these schemes is that packet transmission time should not exceed
the slot duration. A common solution to accommodate uneven packet trans-
mission times is to adopt a hybrid access scheme (HYB) that splits the frame
in two parts: the first k slots are used by the nodes to send resource reserva-
tion messages to the controller, using a FSA access scheme, while the remaining
slots in the frame are allocated by the controller to the nodes, according to the
amount of resources required in the accepted reservation messages. The nodes
get notified about the allocated resources by a control message that is broad-
casted by the controller right after the end of the reservation phase. Variants of
these basic mechanism are currently used in many different protocols as, e.g.,
GSM, 802.11e. However, to the best of our knowledge, the HYB approach has
not yet been studied in the M2M scenario.

Another approach used to improve the performance of SA aims at reducing
the contention by applying a more deterministic behavior, inspired by Time
Division Multiple Access (TDMA). For example, in Reservation ALOHA (R-
ALOHA) [71], slots are grouped together in frames containing the same number
of slots. Whenever a node manages to transmit successfully on a slot in a frame,
the same slot is automatically reserved to that user in the following frames. Slots
that are not reserved can be accessed by all nodes as for SA.

Closely related protocols are the Packet Reservation Multiple Access (PRMA)
[72,73], where the base station explicitly acknowledges the transmission in each
slot, and the Contention-TDMA (C-TDMA) [74] where, differently from PRMA,
the reservation state of the slots is notified by the base station only once per
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frame, thus reducing the communication overhead. These reservation-based pro-
tocols, however, are suboptimal when applied to MTC, where nodes generate
packets sporadically.

The Probabilistic Time Division protocol [75] tries to dynamically balance
random and scheduled access opportunities by simply adjusting the value of a
single parameter a. Slots and frames are defined as in R-ALOHA and each user
is associated with a favored slot in a frame. A node transmits on its favored slot
with probability a, while with probability 1−a it uniformly chooses another slot
in the frame. It has been shown that this protocol is immune to instability when
a > 0.7 and, even when a ≤ 0.7, the protocol is still less prone to instability
than ALOHA. However, each node must be univocally assigned a favored slot,
which makes the protocol inefficient for networks with a massive number of low
traffic nodes.

The Coded Slotted ALOHA schemes employ a combination of successive
interference cancellation and belief-propagation erasure decoding to iteratively
remove the interference from the signal received in collided slots [76–78]. Under
this scheme, nodes transmit multiple copies of each packet, which may be coded
using a packet-level linear block code. When a packet is received in a non-
collided slot, the receiver cancels out its contribution from all the previous
collided slots where other copies of the same packet were transmitted, and the
process is repeated for each new packet that gets decoded after the interference
cancellation. This mechanism, however, requires multiple transmissions of each
packet and inter-packet coding, which may be beyond the capabilities of very
basic machine-type devices.

3.2.2 Carrier sensing schemes

When using carrier sensing techniques, each device listens to the channel before
transmitting (from which the wording “Listen-Before-Talk”). The channel sens-
ing operation is typically called Clear Channel Assessment (CCA) and aims at
checking the occupancy of the channel by other transmitters, in which case the
channel access will be delayed to avoid mutual interference that may result in
the so-called packet collisions. The LBT schemes can differ in the way the CCA
is performed and in the adopted behavior in case the channel is sensed busy.

The three most common methods to perform the CCA are the following.

• Energy detection (ED). The channel is detected as busy if the electromag-
netic energy on the channel is above a given ED threshold.

• Carrier sense (CS). The channel is reported as busy if the device detects
a signal with modulation and spreading characteristics compatible with
those used for transmission, irrespective of the signal energy.

• Carrier sense with energy detection (CS+ED). In this case, a logical com-
bination of the above methods is used, where the logical operator can be
AND or OR.

The IEEE 802.15.4 standard supports all these CCA methods, along with
pure ALOHA and two other modes specific for ultra-wideband communications.
In an unslotted system, the backoff procedure for the IEEE 802.15.4 CCA mech-
anism tries to adapt to the channel congestion by limiting the rate at which
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subsequent CCAs are performed for the same message. If the number of consec-
utive backoffs exceeds a given threshold, the message is discarded. Details about
the CCA procedure in IEEE 802.15.4 networks can be found in [47], together
with recommendations about the ED threshold and CCA detection time.

3.3 The regulatory framework

The use of unlicensed frequency bands by radio emitters is subject to regula-
tions that are intended to favor the coexistence of a multitude of heterogeneous
radio transceivers in the same frequency bands, limiting the mutual interference
and avoiding any monopolization of the spectrum by single devices. The ra-
dio emitters operating in the ISM frequency bands are typically referred to as
“Short Range Devices.” However, the ERC Recommendation 70-03, emanated
by the CEPT, specifies that The term Short Range Device (SRD) is intended to
cover the radio transmitters which provide either uni-directional or bi-directional
communication which have low capability of causing interference to other radio
equipment. Despite the name, there is no explicit mention of the actual cover-
age range of such technologies. Therefore, long-range technologies operating in
the ISM bands, such as Sigfox or LoRa, are still subject to the same regulatory
constraints that apply to the actual short range technologies, as IEEE 802.15.4,
Bluetooth, IEEE 802.11, and so on.

In the European Union, the European Commission designated the CEPT
to define technical harmonization directives for the use of the radio spectrum.
In 1988, under the patronage of the CEPT, the European Telecommunications
Standards Institute (ETSI) was created to develop and maintain Harmonized
Standards for telecommunications.

In the unlicensed radio spectrum at 868 MHz, the ETSI mandates a duty
cycle limit between 0.1% and 1% over a 1 hour interval for devices that do not
adopt LBT [44]. Only very specific applications, such as wireless audio, are
allowed to ignore the duty cycle limitation. The duty cycle constraint can be
relaxed by employing an LBT access scheme together with the Adaptive Fre-
quency Agility (AFA), i.e., the ability to dynamically changing channel [44].
Devices with LBT and AFA capabilities, in fact, are only subject to a 2.8%
duty cycle limitation for any 200 kHz spectrum. An example of technology that
adopts the LBT approach is the IEEE 802.15.4 that, however, does not per-
fectly match the ETSI specifications, since its channel sensing period is shorter
than that mandated by ETSI, which is between 5 ms and 10 ms, depending on
the used bandwidth [44]. Instead, the recommendations on the LBT sensitiv-
ity, which shall be between −102 dBm and −82 dBm, are usually satisfied by
commercial transceivers.

Due to the adoption by the European Union of a new set of rules for the radio
equipments, called Radio Equipment Directive (RED) [79], ETSI is reviewing
the related Harmonized Standards. However, devices that are compliant with
the previous Radio and Telecommunication Terminal Equipment (R&TTE) Di-
rective [80] can be placed on the market until June 17, 2017. Furthermore,
devices that do not satisfy the constraints imposed by the Harmonized Stan-
dards can still be commercialized, but subject to a more comprehensive certifi-
cation procedure attesting that the device meets the essential requirements of
the European Directives [79]. The latest draft version of the ETSI Harmonized
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Standards [81] includes some changes on the medium access procedures. In par-
ticular, the LBT technique is generalized as a polite spectrum access technique,
while AFA is no more required. Furthermore, the LBT ED threshold has been
relaxed, while the minimum CCA listening period has been increased.

The agency designated to regulate radio communications in the USA is the
FCC, which also grants permits for the use of licensed radio spectrum and em-
anates regulations for wired communications. The FCC regulation does not
impose any duty cycle restrictions to emitters operating in the 902–928 MHz
band, but limits the maximum transmit power, for non-frequency hopping sys-
tems, to −1.25 dBm [65], which is significantly lower than the 14 dBm allowed
by ETSI.

3.4 Performance analysis

ALOHA schemes and channel sensing techniques have been comprehensively
modeled and their performance limits in terms of throughput and capacity are
well understood (see, e.g., [82, 83], just to cite few). However, the use of differ-
ent spreading techniques and/or modulation-&-coding-schemes to cope with the
interference and to trade transmission speed for reliability, the large coverage
range enabled by the LPWA technologies, the total reuse of the same frequency
bands by different technologies, and the limitations imposed by the regulations
to the channel access, raise the question on how effective are the classical unco-
ordinated channel access techniques to adequately support the expected growth
of the IoT services.

In this section we shed some light on these aspects by presenting a sim-
ulation analysis of the performance achieved by ALOHA-based (specifically,
pure ALOHA and HYB) and LBT access schemes in the simplest IoT scenario
sketched in Fig. 3.1: a gateway (GW) receiving packets from a multitude of
peripheral devices randomly spread over a wide area. Despite its simplicity,
this scenario embodies most of the problems that can be expected in a real IoT
deployment based on long-range technologies. In particular, we are interested in
investigating how the distance from the gateway may impact the performance
experienced by the node, with and without multirate capability and using either
ALOHA or LBT techniques. ALOHA-based access schemes, in fact, allow the
maximum energy saving in light traffic conditions, since they avoid the (even
small) energy cost involved in carrier sensing. On the other hand, nodes far-
ther away from the gateway are likely more prone to transmission failure due
to interference, which however can potentially be mitigated by the use of LBT.
Furthermore, the adoption of rate adaptation techniques is expected to increase
the system capacity by reducing the transmit time of nodes closer to the gate-
way that not only will experience a lower interference probability, but will also
have the chance to transmit more packets within the duty cycle limitations. It
is hence interesting to investigate how much of such a performance gain will be
transferred to the more peripheral nodes, and whether the LBT techniques can
further improve performance in a significant manner.
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Parameter Value

Spatial node density λs 10−3 nodes/m2

Packet generation rate λt 0.01 packets/s
Transmission power Ptx 14 dBm
Transmission frequency f 868 MHz
Path loss coefficient A 36.36 m−1

Path loss exponent β 3.5
Packet length L 240 bit
Transmission bitrates R {0.5, . . . , 100} kbit/s
Bandwidth Bw 400 kHz
Noise spectral density N0 2 · 10−20 W/Hz
Duty cycle δT 1%
Circuit power Pc 16 dBm
Sensing time Ts 0.4 ms

Sensing energy Es
3.98 µJ (LBT)

0.2 mJ (LBT+ETSI)
Smoothing parameter α 0.1
Target outage probability for RA p∗ 0.05

HYB parameters

Frame duration TW 60 s
Number of reservation slots in a frame NRM 80
Reservation message size LRM 24 bits
Reservation message transmit rate RRM 500 bit/s
Beacon duration TB 0.12 s
Resource notification message duration TRA 3.84 s

Table 3.1: Simulation parameters

3.4.1 Simulation scenario

In the simulations we consider a propagation model given by the product of
the channel gain, γ(d) = (Ad)−β , which accounts for the power decay with the
distance d from the transmitter through the model parameters A and β, and
the Rayleigh fading gain, which is modelled as an exponential random variable
with unit mean.

We consider a limited set of possible transmission rates, namely
R = {0.5, 1, 5, 10, 50, 100} kbit/s, and assume that a packet transmitted at rate
R ∈ R is correctly decoded if the signal-to-interference-and-noise ratio (SINR),
i.e., the received signal energy over the total noise energy plus interference en-
ergy collected by the receiver during the packet reception time, is above a certain
threshold Γ◦(R), which is determined from the Shannon channel capacity as

Γ◦(R) = 2R/Bw − 1 (3.1)

where Bw is the signal bandwidth.
For the single rate case (SR), we suppose that all nodes transmit with the

lowest bitrate of 500 bit/s. For the multirate scenario, instead, we consider a
simple rate-adaptation mechanism that keeps a moving-average estimate of the
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Figure 3.1: Above: simulation scenario, with multiple transmitters scattered
around the common receiver (GW). Below: example of signal transmissions by
nodes A and B, using different bitrates, and of received signal power at the
gateway.

SINR (using a smoothing factor α) and selects the rate R∗ so that the expected
outage probability is not larger than p∗ = 0.05. To improve the energy efficiency,
furthermore, we assume no acknowledgement or retransmission mechanism is
implemented, so that packets that are not successfully received are definitely
lost.

The LBT scheme is implemented based on the IEEE 802.15.4 specifications.
The ED CCA threshold is chosen to match the minimum signal power required
to correctly receive a packet transmitted at the basic rate of 500 bit/s. This
value is compatible with the limits on the LBT threshold imposed by ETSI [44].

As exemplified in Fig. 3.1, transmitting nodes are distributed as for a spatial
Poisson process of rate λs [devices/m2] over a circle with radius equal to the
maximum coverage distance at the basic rate of 500 bit/s. Each device generates
messages of length L according to a Poisson process of rate λt [packets/s]. All
messages are addressed to the gateway that is placed at the center of the circle.

The setting of all the simulation parameters is reported in Tab. 3.1.

3.4.2 Transmission failure probability

We define pfail as the probability that a transmitted message (including reser-
vation messages in case of HYB) is received with SINR below threshold and,
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Figure 3.2: pfail for ALOHA and LBT, for single rate (SR) and rate adaptive
(RA) cases, with 95% confidence intervals.

hence, is not correctly decoded. For HYB, the transmission requests that are
not accepted because of lack of slots in the transmission part of the frame are
also included in the pfail. Note that, while both the Single rate (SR) and Rate
Adaptation (RA) versions of the pure-ALOHA and LBT schemes are considered
here, only the RA version is considered for the HYB protocol, since this access
scheme is more effective when packet transmissions have uneven duration. In
Fig. 3.2 we can observe the failure probability for target nodes placed at in-
creasing distances from the gateway. Red curves with circle markers refer to
ALOHA, blue plain curves to LBT, and green dashed line with diamond mark-
ers to HYB. Solid and dashed lines have been associated to the SR and RA case,
respectively.

For the SR case, we can see that the failure probability grows with the dis-
tance from the gateway, since nodes farther away have less SINR margin for
successful decoding and are hence less robust to the interference produced by
overlapping transmissions. In this case, carrier sense can indeed improve per-
formance, even if the sensing range does not prevent the hidden node problem.

The downside of using LBT (not reported here for space constraints) is that
up to 55% of the transmission attempts are aborted, in high traffic conditions,
because the maximum number of CCAs is reached without finding an idle chan-
nel.

The adoption of RA changes significantly the performance, smoothing out
the differences between the two access protocols. Indeed, higher bitrates allow
the nodes near the receiver to occupy the channel for a lower period of time, thus
reducing the probability of overlapping with other transmissions and improving
the performance of both access schemes. Note that the change of rate with the
distance is reflected by the oscillation in the failure probability that, however,
remains approximately below 1− p∗.

Rather interestingly, HYB performs worse than the other schemes. The
reason is that, in the considered scenario, the transmit time of reservation mes-
sages, always sent at the basic rate, is comparable to that of data packets sent
at higher rates. Therefore, the reservation channel can become the system bot-
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tleneck. The overall channel occupancy of HYB is thus significantly higher than
that of the other two schemes, yielding higher failure probability.

3.4.3 Energy efficiency

Another key performance index in the IoT scenario is the energy efficiency,
which is here defined as the ratio of the total number of bits successfully delivered
to the gateway over the entire energy consumed by the node (including channel
sensing and failed transmissions).

The power consumed during a transmission is modelled as the sum of a
constant term, named circuit power, that represents the power used by the
radio circuitry, and a term that accounts for the radiated power, which is called
transmission power. When using LBT, the power required to perform the ED
CCA is also added to the consumed power. Referring to the data-sheets of some
off-the-shelf modules,2 we set the circuit power to 16 dBm, the transmit power
to 14 dBm, the receive power to 13 dBm, and the CCA power to 10 dBm [84,85].

In Fig. 3.3a we can see the energy efficiency for ALOHA and LBT access
schemes when varying the distance of the target node from the gateway, in the
SR case. We can observe that peripheral nodes exhibit lower energy efficiency
because of the larger number of failure transmissions, and that the carrier sens-
ing mechanism can alleviate this problem. The black curve marked with crosses
shows the results obtained when using the parameters imposed by ETSI in the
CCA procedure. As it can be seen, the energy efficiency is slightly lower than
that obtained with the parameters adopted by commercial technologies, which
may suggest that ETSI recommendations in this regard are possibly too con-
servative.

The adaptive rate case is shown in Fig. 3.3b, where the performance achieved
by HYB is also shown. We can observe that both ALOHA and LBT can reach
very high efficiency for nodes near the receiver, since the higher bitrates that
decrease the transmit energy and the failure probability. It is worth to note that
the first factor is dominant for the energy efficiency. The benefit transfers to the
nodes farther away from the gateway, though the performance gain progressively
reduces with the distance from the transmitter.

We also observe that, for nodes closer to the gateway, LBT shows a non-
negligible energy efficiency loss with respect to ALOHA, which is even more
marked when adopting the ETSI parameters. This is clearly due to the energy
cost of the carrier sense mechanism, which takes a time comparable with the
packet transmission time when using high bitrates. Furthermore, as revealed
by the analysis of the failure probability, the carrier sense mechanism is not
really worth for nodes close to the gateway when using RA, considering also
that it may yield packet drops due to the impossibility of finding the channel
idle within the maximum number of carrier sensing attempts. This problem
would be further exacerbated in case of overlapping cells. Therefore, the use of
CCA appears to be fruitless, if not detrimental, for nodes close to the gateway
when RA is enabled.

Finally, we observe that the energy efficiency of HYB is the worst, being
affected by both the higher failure probability observed in Fig. 3.2 and the

2Atmel AT86RF212B, Texas Instruments CC1125 and CC1310, and Semtech SX1272 mod-
ules.
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higher energy consumption due to the transmission of resource messages and
the reception of beacons. This inefficiency is more marked for nodes near the
receiver, where the energy spent on control messages is actually greater than
that used for the high-rate transmissions of small data packets.

3.4.4 Coexistence issues

Another important question regards the coexistence in the same area of nodes
using LBT and ALOHA access schemes.

Fig. 3.4 and Fig. 3.5 report the throughput of the two access methods, defined
as the overall rate of successful packet transmissions, and the energy efficiency.
Curves for ALOHA (respectively LBT) have been obtained by fixing the spatial
density of this type of nodes to 0.001 nodes/m2 and increasing the spatial density
of LBT (respectively ALOHA) nodes from 10−5 to 10−2 nodes/m2.

Results in Fig. 3.4 show that the performance of ALOHA nodes is not im-
pacted by an increase in the number of LBT nodes, while the latter suffer strong
performance degradation due to the CCA mechanism that aborts a transmis-
sion attempt when the channel is sensed busy for a given number of successive
attempts. We can also see that the use of multiple transmission rates can only
slightly alleviate the problem, but the fragility of the LBT mechanism in pres-
ence of ALOHA traffic still remains. Similar observations can be drawn for
the energy efficiency results. In both cases, the use of RA improves the energy
efficiency quite significantly.

3.5 Conclusions

This chapter presented an overview of the three main uncoordinated channel
access schemes, namely pure ALOHA, HYB, and LBT, in an IoT scenario.
The performance of these schemes has been compared in terms of probability
of successful transmission and energy efficiency, by considering the duty-cycle
limitation for ALOHA, the control packets for HYB, and the CCA procedure
for LBT as mandated by the international regulation frameworks.

From this analysis, it appears clear that adding rate adaptation capabilities
is pivotal to maintain reasonable level of performance when the coverage range
and the cell load increase. Moreover, we observed that LBT generally yields
lower transmission failure probability, though packet dropping events may oc-
cur because the channel is sensed busy for a certain number of consecutive
CCA attempts. This impacts on the actual energy efficiency of the LBT access
scheme, which may turn out to be even smaller than that achieved by ALOHA
schemes. Furthermore, we also observed that LBT performance undergoes se-
vere degradation when increasing the number of ALOHA devices in the same
cell, again because of the channel-blockage effect caused by the other trans-
mitters. Finally, the HYB scheme proves ineffective in the considered scenario,
since the reservation channel becomes the system bottleneck with short data
packets. Nonetheless, hybrid solutions that adopt LBT for peripheral nodes
and ALOHA for nodes closer to the receiver, or apply rate adaptation also to
the reservation phase, can potentially lead to a general performance improve-
ment of the system. In particular, the latter approach is going to be analysed
in Chap. 5.
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Figure 3.3: Successfully received bits per unit of consumed energy, with 95% con-
fidence intervals.
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Figure 3.4: Aggregated throughput for each channel access method in the single
and adaptive rate scenarios, with 95% confidence intervals.
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nel access method, in the single and adaptive rate scenarios, with 95% confidence
intervals.



Chapter 4

Optimal parameter

selection for ALOHA

networks

This chapter focuses on ad hoc sensor networks where nodes communicate in
pairs generating mutual interference, and tackles the fundamental yet still open
question of how to set the transmission rate so as to maximise throughput. Elab-
orating on a previous stochastic geometry model, a SINR decoding threshold
that depends on the transmission rate is considered, and the interplay between
interference and noise power is analysed to find the optimal transmission rate.
The model is then extended to include techniques, like rate adaptation or data
compression, that may cause the time on air of each transmission to be dif-
ferent. A random component is therefore included in the time on air of the
transmissions and the success probability formula in such cases is provided.

4.1 Introduction

The performance of ALOHA networks is well understood under the collision
channel model, assuming that the concurrent transmission of two or more nodes
results in the loss of all packets. In this scenario, taking the lead from classical
throughput and delay results for fixed-length messages [86, 87], ensuing studies
concentrated on systems with heterogeneous packet lengths, obtaining the delay
distribution [88,89] and bounds on the throughput [90,91]. In particular, it has
been shown that the best throughput is obtained when messages have a constant
transmission time [90,92].

Departing from the collision channel, the role of power unbalance and capture
effect was clarified in [93–98]. Under the assumption that an incoming signal can
be successfully decoded even in the presence of interferers provided its power
is sufficiently larger than that of its contenders, remarkable improvements in
terms of throughput and stability region of the protocol were shown for fixed
message length. Similar trends were later derived also in unslotted systems with
variable packet size [99].

A more realistic channel model accounting for path-loss and fading was fi-
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nally considered in [100]. Here, the authors develop a stochastic geometry frame-
work to analyse the performance of ALOHA ad hoc networks, i.e. systems in
which nodes communicate in pairs rather than sending data towards a common
receiver. Assuming a correct reception to take place when the SINR of the con-
sidered packet is above a fixed threshold, closed-form expressions for the success
probability were derived.

While offering a powerful and flexible framework, [100] does not explore
optimisation of network parameters, triggering some questions of interest. In
particular, a non-trivial tradeoff arises when considering how to set the trans-
mission rate. Indeed, for a constant payload size, higher bitrates lead to shorter
transmission times and thus to a lower collision probability. On the other hand,
though, increasing the rate also reduces the coding resiliency to interference,
raising the SINR level required for successful decoding.

Some insights on the issue were presented in [101], considering allocation of
orthogonal sub-bands to users to obtain the largest spectral efficiency. In [102],
a similar approach was followed in a slotted ALOHA setup to optimise the
network parameters for the no-fading case in the absence of noise. Derived
results reveal how the amount of interference largely influences the optimal rate
or bandwidth to be used. From a practical design standpoint, however, simple
and robust rate-adaptation policies shall be devised, as network conditions in
terms of congestion may not be known accurately. Characterising how well the
configuration striking the optimal balance performs in a wide range of scenarios
can thus offer relevant design hints that, to the best of our knowledge, have not
been derived for asynchronous random access protocols.

This work tackles the question extending the analysis in [100]. Following a
stochastic geometry approach, the SINR experienced at a receiver is related to
node/traffic density, path loss, fading, and packet transmission time. The im-
pact of the transmission bitrate on the decoding threshold is captured through
the Shannon capacity law, though the framework can embed any other model.
This study shows that the optimal rate depends on system parameters in a com-
plex manner. However, a handy closed-form expression can be obtained focus-
ing on the interference-limited region. The simplified formulation only requires
knowledge of the path-loss exponent and of the transmission bandwidth, and
is thus easily implementable in distributed and heterogeneous sensor networks.
Moreover, numerical results show how its application does not lead to significant
performance losses even in noise-limited scenarios, broadening the applicability
of the derived design hints. Furthermore, an extension of the framework is
provided for networks where the time on air of messages are different. This ex-
tended model is applied to different scenarios, to obtain hints on how to enhance
the performance of heterogeneous networks.

4.2 System model

Following the Poisson rain model proposed in [100], the behaviour of an un-
slotted ALOHA network is captured by means of a homogeneous space-time
Poisson Point Process (PPP) Ψ = {(Xi, ti)} of rate λs [packets/s/m2]. Accord-
ingly, a transmitter is created at time ti and position Xi ∈ R

2, occupies the
channel for the duration of a single packet transmission, and then disappears.
The generated message is sent to a target receiver, uniformly placed over a cir-
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cle of radius r centered at the transmitter.1 All messages have payload size L,
and are sent at a bitrate R = L/B, where B is the on-air packet transmission
time. For the sake of simplicity, we can neglect the transmission of feedback
from the receivers. Furthermore, we assume that packets are not retransmit-
ted or, equivalently, that retransmissions occur after random backoff times such
that the aggregate packet arrival rate, inclusive of both new transmissions and
retransmissions, is the PPP considered in the analysis.

Nodes employ a constant transmission power Ptx, and wireless propagation
is affected by a path-loss component ℓ(d) = (Ad)β , where d is the distance from
the transmitter, β > 2 is the path loss coefficient, and A > 0 is a constant that
depends on antennas gain and transmission frequency.2 Moreover, the effect
of block Rayleigh fading is captured as an exponential power factor F of unit
mean. Without loss of generality, we focus on the typical receiver, i.e., a node
located at the origin of the plane, whose reception starts at t = 0 and ends at

t = B. Defining I = 1
B

∫ B

0
i(t)dt as the average interference experienced during

the packet reception, we define the SINR as

γ =
PtxF

ℓ(r)(Ns + I)
, (4.1)

where Ns is the noise power. We assume the use of a capacity-achieving channel
code, so that decoding at the typical receiver is successful if the SINR is above
a threshold Γ◦, which depends on the transmission rate as

Γ◦ = 2R/Bw − 1 , (4.2)

where Bw is the transmission bandwidth. We observe that the framework can
accommodate any other rate-SINR threshold model. Models that preserve the
geometric dependence between Γ◦ and R will yield qualitatively similar results
to those obtained with (4.2).

4.3 Stochastic geometry framework

In this section, a general expression for the success probability of a transmission
is obtained by leveraging a stochastic geometry framework. This result will also
be used in the next chapter, where a more general scenario is considered.

4.3.1 Interference characterization

As we said earlier, the success probability is defined as the probability that the
SINR is higher than a threshold Γ◦. Therefore, from the CDF of the exponential
distribution, we have

ps = E
[

e−Γ◦ℓ(r)(I+Ns)/Ptx

]

= LN (Γ◦ℓ(r)/Ptx)LI(Γ◦ℓ(r)/Ptx) (4.3)

1Despite its simplicity, the model is apt to describe networks with sporadic traffic or with
high mobility, and has been shown to offer a good approximation of more involved descriptions
accounting for static node positions and retransmissions [100].

2For physical reasons, one shall set r > 1/A. Alternatively, the channel gain can be set
equal to max(1, ℓ(r)). Nonetheless, for mathematical tractability, we ignore this correction
to the path loss component, as customary in stochastic geometry approaches. Additional
investigation showed that this approximation has negligible impact on the results.
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where the expectation is taken over I and Ns. LI(s) and LN (s) are, respectively,
the Laplace transforms of the interference and the noise.

We now focus on the Laplace transform of the interference, using the average
interference constraint approach presented in [100, Section III.B]. We can ex-
pand the term related to the instantaneous interference i(t) experienced during
the packet reception, obtaining

I =
1

B

∫ B

0

∑

Xj∈Ψ1(t), j 6=0

PtxFj/ℓ(|Xj |)dt. (4.4)

Changing the order of integration and summation, and recalling the Slivnyak’s
theorem, which states that the law of Φ \X conditional on the fact that Φ has
a point at X is the same as the law of Φ [103,104], we can write [100]

I =
∑

(Xj ,Tj)∈Ψ

PtxFjh(Tj)/ℓ(|Xj |) (4.5)

where

h(s) =

∫ B

0

1(s ≤ t < s+B)

B
dt =

max(B − |s|, 0)

B
. (4.6)

4.3.2 Campbell’s theorem for marked processes

We now review some results from the literature, which we will build on in the
next sections.

Theorem 5 (Campbell’s theorem [105,106]). Let Φ be a Poisson process on S
with intensity λ(x), and let f : S → R be measurable. Then the sum

Σ =
∑

X∈Φ

f(X) (4.7)

is absolutely convergent with probability 1 if and only if
∫

S

min(|f(x)|, 1)λ(x)dx <∞ (4.8)

If this condition holds, then

E
[

esΣ
]

= exp

{∫

S

(

esf(x) − 1
)

λ(x)dx

}

(4.9)

for any complex s for which the integral on the right converges, and, in partic-
ular, when s is pure imaginary.

If Φ is uniform of intensity λ, condition (4.8) reduces to

∫

S

min(|f(x)|, 1)dx <∞ (4.10)

and equation (4.9) becomes

E
[

esΣ
]

= exp

{

λ

∫

S

(

esf(x) − 1
)

dx

}

(4.11)
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We can associate to each point X of the random set Φ a random variable mX

(the mark of X) taking values in some space M . The distribution of mX may
depend on X but not on the other points of Φ, and the mX for different X have
to be independent. Because of the Marking theorem [105], the random countable
subset Φ∗ = {(X,mX);X ∈ Φ} of S×M is a Poisson process [105, Section 5.2].

This allows us to generalize the Campbell’s theorem to the case of marked
processes. In particular, we can consider the marked Poisson process Φ∗ as
described before and the sum Σ∗ =

∑

X∈Φ f(X,mX). Under a convergence
condition analogous to (4.8), we can rewrite (4.9) considering the marked process
as a non-marked Poisson process on S ×M :

E
[

esΣ∗

]

= exp

{∫

S

∫

M

(esf(x,m) − 1)p(m|x)λ(x)dmdx

}

(4.12)

= exp

{∫

S

(

EM

[

esf(x,m)
]

− 1
)

λ(x)dx

}

, (4.13)

where p(m|x) is the conditional distribution of the mark mX . Again, if Φ∗ is
uniform of intensity λ∗, (4.12) becomes

E
[

esΣ∗

]

= exp

{

λ∗

∫

S

∫

M

(

esf(x,m) − 1
)

dmdx

}

. (4.14)

4.3.3 Solving the Laplace transform of the interference

We now want to find an explicit formula for the Laplace transform of the in-
terference LI(s). Note that the PPP of the interferers can be seen as a marked
process, with the transmission start time and the fading as the marks.

From equations (4.14) (for the time marks) and (4.13) (for the fading marks),
the Laplace transform of the interference I is

LI(s) = exp

{

−λs

∫

R2

∫ +∞

−∞

(

1− EF

[

e−sPtxF h(t)/ℓ(|x|)
])

dtdx

}

(4.15)

By applying the definition of expectation in Eq. (4.15) and transforming the
integral in x using polar coordinates we have

LI(s) = exp

{

−2πλs

∫ ∞

0

∫ +∞

−∞

(

1− 1

1 + sPtxh(t)/ℓ(u)

)

dt u du

}

. (4.16)

Let’s solve the integral on t (remembering that h(t) is an even function and that
h(t) = 0 for |t| > B):

∫ +∞

−∞

(

1− 1

1 + sPtxh(t)/ℓ(u)

)

dt = 2B − 2

∫ B

0

1

1 + sPtxh(t)/ℓ(u)
dt

= 2B − 2
ℓ(u)B

sPtx
log

(

1 +
sPtx

ℓ(u)

)

.

Putting that back in the formula for LI(s), we get

LI(s) = exp

{

−4πλsB

∫ ∞

0

[

1− ℓ(u)

sPtx
log

(

1 +
sPtx

ℓ(u)

)]

u du

}

, (4.17)

as reported in [100, Fact A.4].
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4.4 Analysis for homogeneous time-on-air

As previously derived, for the considered system model, the probability of suc-
cessful packet reception can be expressed as

ps = LN (Γ◦ℓ(r)/Ptx)LI (Γ◦ℓ(r)/Ptx) , (4.18)

where LN (s) and LI(s) are the Laplace transforms of the noise and interference,
respectively. The former readily follows from the definition, while the latter is
computed from (4.17) with a change of variable, obtaining

LN (Γ◦ℓ(r)/Ptx) = exp

(

−Γ◦ℓ(r)Ns

Ptx

)

;

LI (Γ◦ℓ(r)/Ptx) = exp

(

−λs
L

R
r2 (Γ◦)

2/β
K ′(β)

)

,

(4.19)

where K ′(β) = 4π
β

∫∞

0
u2/β−1(1− u log(1 + u−1)) du.

In the following, starting from the expression of ps, we first derive the general
expression of the optimal bitrate considering both the interference and noise
contributions. Secondly, we focus on a setting of practical interest in which
interference becomes dominant (asymptotic interference-limited region - AI) and
get a handy closed-form result.

4.4.1 General case

When combining the noise and interference contributions, ps follows from (4.18)-
(4.19), leading to a network throughput density S(R) = λs Lps[bit/s/m2], where
the transmission bitrate R affects ps through the threshold Γ◦, as for (4.2). The
optimal bitrate can thus be derived by fixing the other network parameters and
solving the maximisation problem

R∗ = argmax
R>0

S(R) . (4.20)

Since λs and L are constant and the exponential function is monotonically
increasing, we can reformulate (4.20) as

R∗ = argmax
R>0

[

−λs
L

R
r2(2R/Bw − 1)2/βK ′(β)− 2R/Bw − 1

Ptx
(Ar)βNs

]

. (4.21)

For ease of writing, let α1 = −r2K ′(β)L and α2 = −(Ar)βP−1
tx Ns so that the

objective is to maximise the function

f(R) = α1λsR
−1
(

2R/Bw − 1
)2/β

+ α2

(

2R/Bw − 1
)

. (4.22)

The optimal rate R∗ can be found by setting to zero the derivative of f with
respect to R, obtaining

− α1λs +
α1λs log(4)

βBw
R∗
(

2R∗/Bw − 1
)−1

2R∗/Bw+

α2

Bw
log(2)R∗2

(

2R∗/Bw − 1
)−2/β

2R∗/Bw = 0 . (4.23)



75

Parameter Value

Transmission power Ptx 14 dBm
Bandwidth Bw 125 kHz
Path loss coefficient A 36.38 m−1

Transmitter-receiver distance r 20 m
Packet length L 200 bit
Noise spectral density N0 2 · 10−20 W/Hz
Noise power Ns N0Bw

Table 4.1: Scenario parameters

Unfortunately, there is no closed-form solution to this transcendental equation.
However, we can prove in the following that there exists a unique point R∗ > 0
that satisfies (4.23), which is the absolute maximum of (4.22) and can be found
through bisectional search.

Existence of a unique point satisfying (4.23). Setting x∗ = R∗/Bw, we can rewrite
(4.23) in the form F (x∗) = 1, where F (x) = log(4)g(x)/β +Bh(x), B > 0, with

g(x) = x2x

2x−1 ; h(x) = x22x

(2x−1)γ , and γ = 2/β ∈ (0, 1). Since the derivatives of

g(x) and h(x) are both positive for x ≥ 0, then F (x) is monotonic increasing
in x, and given that F (0) < 1, then there exists a unique x∗ > 0 such that
F (x∗) = 1.

4.4.2 Asymptotic interference-limited region

When the packet generation density is high, the success probability is mainly
determined by the interference, which dominates the noise power. In this region,
the noise term can then be neglected and the corresponding coefficient α2 in
(4.23) vanishes. Thus, a simplified expression for the optimal transmission rate
in asymptotic interference-limited (AI) conditions follows:

R∗
AI = Bw

2W
(

−2−1−β/ log(4)β
)

+ β

log(4)
, (4.24)

where W(·) is the Lambert W function, such that W(x)eW(x) = x.
It is worth noting that R∗

AI depends only on the bandwidth Bw and the path-
loss exponent β, while it is independent of the packet generation rate (provided
that λs is sufficiently high to be in AI conditions), the packet size, and even
the transmitter-receiver distance. As we will see in the next section, while the
throughput depends on these parameters, the optimal transmission rate does
not need to be adapted to the receiver distance or to the level of interference.

4.5 Results for homogeneous time-on-air

The results in this section have been obtained by setting the parameters as in
Tab. 4.1, representative for typical LPWA network deployments.
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Figure 4.1: Optimal rate in the noise-limited and asymptotic interference-
limited regions, for different values of β.
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Figure 4.2: Success probability using the optimal rate (R∗) and the asymptotic
optimal rate (R∗

AI), for different values of β.

Fig. 4.1 shows the optimal transmission rate when varying λs, both for the
general case (lines) and the AI regime (markers). Different lines have been ob-
tained by changing the value of the path loss coefficient β. We can observe
that, before entering the AI region, the optimal transmission rate grows with
the offered traffic rate λs, until it hits the optimal values for the AI conditions.
In fact, when channel impairments play a key role for packet decoding, low
bitrates pay off by offering greater resilience to fading and noise. Conversely,
when interference is the main cause for losses, high bitrates tend to perform
better thanks to the lower amount of interference on the channel brought by
shorter transmission times. From a practical standpoint, then, an ideal rate
adaptation mechanism should be able to determine the overall level of interfer-
ence with respect to thermal noise to decide whether to increase or decrease its
transmission bitrate.

Even under this assumption, though, the optimal rate in the general case
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Figure 4.3: Throughput using R∗ and R∗
AI in the noise-limited (NL) and AI

regions.

depends on many parameters – e.g. the traffic density – which may be difficult to
estimate in practical and distributed network deployments. On the other hand,
the simple and closed-form rate expression derived for the AI region depends
only on the bandwidth and on the path-loss exponent β, which can be easily
estimated or fixed to the reference value for the considered scenarios (e.g. 3.5 in
urban settings). The relevant question of whether setting the transmission rate
to R∗

AI offers good performance also in the noise-limited regime thus naturally
arises. To better appreciate the impact of such an approximation, the success
probability that can be obtained by using the exact optimal rate R∗ and the
AI optimal rate R∗

AI are reported in Fig. 4.2. We can see that, for most values
of β, no appreciable difference emerges when using R∗

AI in place of R∗, while a
wider gap is noticed for stronger path-loss exponents, e.g. β = 4.

To better study this effect, consider a parameter λth(β), which is defined as
the packet generation rate for which the optimal rate computed in the noise-
limited (NL) region is equal to 90% of the optimal rate in the AI region, i.e.,
R∗ = 0.9R∗

AI. Therefore, λth(β) can be seen as a threshold that separates the
NL- from the AI-region. An in-depth inspection of the results, not reported due
to space constraints, reveals that λth(β) has an exponentially increasing trend
in β. Thus, for a given offered traffic, a small increase in β may be sufficient
to move from AI into NL conditions. We hence select two packet generation
rates, namely λI(β) = λth(β) · 100 and λN (β) = λth(β)/100, which are firmly
in the AI and NL region, respectively, and evaluate the system throughput,
varying β, both for R∗ and R∗

AI. We can see in Fig. 4.3 that the use of R∗
AI in

place of R∗ in the NL region causes negligible performance loss if β is less than
4 (as typical in most practical cases), while for larger values of β the penalty
is more consistent. To maximise the network throughput in a scenario with
a not very large path-loss exponent, then, the devices can avoid to estimate
many channel parameters (like transmitter-receiver distance, packet generation
density, etc.), since they can simply use the AI optimal rate, which depends
only on the path-loss exponent β and on the modulation bandwidth.

As a side note, observe that the packet length L and the process intensity
λs appear always together in the form λsL in the throughput formula, which
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has been derived in Sec. 4.4. Therefore, neglecting the overhead due to the
replication of the header field, the throughput of the nodes is not affected by
packet fragmentation, which would decrease the packet size but increase the
transmitted number of packets, keeping the product λSL constant. Consider-
ing the overhead due to the fragmentation, and the fragility of the reassembly
procedure (which fails if either a single segment is lost), fragmentation does
not appear as beneficial in the considered scenario. However, it is important to
remark that, in the considered setting, all nodes are at the same distance from
their receiver, and use the same bitrate: in a more heterogeneous setting the
optimal packet size might vary for the different nodes.
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t1 t2 h(t, b) for t1 < t < t2

−∞ −b 0
−b τ1 = min{0, B − b} (b+ t)/B

τ1 = min{0, B − b} τ2 = max{0, B − b} min{b, B}/B
τ2 = max{0, B − b} B (B − t)/B

B +∞ 0

Table 4.2: Value of h(t, b) for different intervals in t.

4.6 Using different packet transmission times for

different nodes

In the following, we consider each transmitter-receiver couple to use an inde-
pendent and identically distributed (i.i.d.) transmission time b, independent of
everything else, with pdf fb(b). The transmission time for the desired trans-
mitter is denoted by B and is considered known and fixed. Therefore, b can
be considered as a mark of the process Ψ presented in Sec. 4.3, which means
that, to calculate the probability of transmission success ps, we have to take the
expectation with respect to b inside equation (4.16), as per equation (4.13):

LI(s) = exp

{

−2πλs

∫ ∞

0

∫ +∞

−∞

(

1− Eb

[

1

1 + sPtxh(t, b)/ℓ(u)

])

u dtdu

}

(4.25)
where

h(t, b) =
1

B
max

{

min

{

b+
t− |t|

2
, B − t+ |t|

2

}

, 0

}

. (4.26)

Let’s rewrite LI(s) changing the order of the expectation and the integral with
respect to t:

LI(s)=exp

{

−2πλs

∫ ∞

0

∫ ∞

0

∫ +∞

−∞

(

1− 1

1 + sPtxh(t, b)/ℓ(u)

)

dt fb(b) db u du

}

.

(4.27)

We now solve the integral with respect to t. First, we divide the interval
(−∞,+∞) in five intervals, each having a continuous behavior of h(t, b), as
described in Tab. 4.2. The integral in t thus becomes
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∫ +∞

−∞

(

1− 1

1 + sPtxh(t, b)/ℓ(u)

)

dt

=

∫ τ1

−b

(

1− 1

1 + sPtx(b+ t)/(ℓ(u)B)

)

dt

+

∫ τ2

τ1

(

1− 1

1 + sPtx min{b, B}/(ℓ(u)B)

)

dt

+

∫ B

τ2

(

1− 1

1 + sPtx(B − t)/(ℓ(u)B)

)

dt

= B + b− ℓ(u)B

sPtx

[

log

(

1 +
sPtx(b+ τ1)

ℓ(u)B

)

+ log

(

1 +
sPtx(B − τ2)

ℓ(u)B

)]

− τ2 − τ1

1 + sPtx min{b, B}/(ℓ(u)B)

= B + b− χ(u)

s
log

(

(χ(u) + s(b+ τ1))(χ(u) + s(B − τ2))

χ(u)2

)

− τ2 − τ1

1 + smin{b, B}/χ(u)
,

where we defined χ(u) = ℓ(u)B/Ptx. Putting this result back into equation
(4.27) we have

LI(s) = exp

{

−2πλs

∫ ∞

0

∫ ∞

0

[

B + b

− χ(u)

s
log

(

(χ(u) + s(b+ τ1))(χ(u) + s(B − τ2))

χ(u)2

)

− τ2 − τ1

1 + smin{b, B}/χ(u)

]

fb(b) db u du

}

(4.28)

Splitting the integral on b in two parts, we can simplify τ1 and τ2 as indicated
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b1 b2 τ1 for b1 ≤ b ≤ b2 τ2 for b1 ≤ b ≤ b2

0 B 0 B − b
B +∞ B − b 0

Table 4.3: Value of τ1 and τ2 for different intervals of b.

in Tab. 4.3. The Laplace transform of I is then

LI(s) = exp

{

− 2πλs

∫ ∞

0

{

B

+

∫ B

0

[

b− χ(u)

s
log

(

(χ(u) + sb)(χ(u) + sb)

χ(u)2

)

− B − b
1 + sb/χ(u)

]

fb(b) db

+

∫ ∞

B

[

b− χ(u)

s
log

(

(χ(u) + sB)(χ(u) + sB)

χ(u)2

)

− b−B
1 + sB/χ(u)

]

fb(b) db

}

u du

}

= exp

{

− λs2π

∫ ∞

0

{

B

+

∫ B

0

[

−2
χ(u)

s
log

(

χ(u) + sb

χ(u)

)

+
sb2/χ(u) + 2b−B

1 + sb/χ(u)

]

fb(b) db

− 2
χ(u)

s
log

(

χ(u) + sB

χ(u)

)∫ ∞

B

fb(b) db

+B

∫∞

B
(1 + sb/χ(u))fb(b) db

1 + sB/χ(u)

}

u du

}

(4.29)

Remembering that, by ignoring the noise component, ps = LI(Γ◦ℓ(r)/Ptx)
(Eq. (4.3)), we can find the success probability of the transmission, given r (the
distance between the useful transmitter and receiver) and the useful transmis-
sion length B.

Remark 2. In case the area where the interferers are distributed is finite, we
have to change the integration intervals for the integral in v in Eq. (4.32).
Defining dMIN, dMAX the minimum and maximum distance, respectively, at
which interferers are located, the integration interval becomes:

[

(

dMIN

r

)β
B

T
,

(

dMAX

r

)β
B

T

]

.

This result is trivially derived by changing the integration interval in Eq. (4.16)
and following the same steps of the infinite area case.

4.6.1 Restricting to a specific loss function

If we consider the path-loss function to be

ℓ(r) = (Ar)β , (4.30)
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with the parameters A > 0 and β > 2 related to the transmission environment,3

the success probability ps assumes a simpler form. In particular, in Eq. (4.29),
we can operate the following substitution:

χ(u)

s
=
ℓ(u)B/Ptx

ℓ(r) Γ◦/Ptx
=
uβB

rβΓ◦
= v . (4.31)

The success probability is then

ps = exp

{

− 2πλs

(

Γ◦

B

)
2
β r2

β

∫ ∞

0

{

B +

∫ B

0

[

− 2v log

(

1 +
b

v

)

+
(2b−B)v + b2

v + b

]

fb(b) db− 2v log

(

1 +
B

v

)∫ ∞

B

fb(b) db

+
B

v +B

∫ ∞

B

(v + b)fb(b) db

}

v
2
β

−1 dv

}

. (4.32)

4.7 Defining the message transmission time dis-

tribution

We need to define the pdf fb(·) of the message transmission time b. We analyse
three scenarios, described in the following sections.

4.7.1 Variable payload

In this scenario, each transmitting node is at a constant distance from its re-
ceiver and the modulation used is the same for all nodes. However, nodes can
transmit packets having different payload lengths, which causes possible differ-
ent transmission durations for different packets.

To calculate the success probability in this case, we start from Eq. (4.32),
with the SINR threshold Γ◦ and the transmitter-receiver distance r fixed and
given. fb(b) can then be easily extracted from the packet length pdf fL(l)
leveraging the definition of rate R = L/b. Since L is discrete, fb(b) becomes a
discrete pdf and the integral in db becomes a summation.

ps = exp

{

− 2πλs

(

Γ◦

B

)
2
β r2

β

∫ ∞

0

{

B +
∑

b≤B

[

− 2v log

(

1 +
b

v

)

+
(2b−B)v + b2

v + b

]

fb(b)− 2v log

(

1 +
B

v

)

∑

b>B

fb(b)

+B

∑

b>B(v + b)fb(b)

v +B

}

v
2
β

−1 dv

}

. (4.33)

3As noted in [100], there are other possible choices of path-loss functions that avoid the
pole at r = 0.
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4.7.2 Variable distance and adaptive modulation

In this scenario, nodes transmit packets having the same payload lengths, how-
ever the distance between a transmitter and its receiver may be different for each
transmitter-receiver pair. The transmission rate is adapted based on the dis-
tance the transmission has to travel, with long distance transmission using lower
rates to improve their resilience to interference, while short range transmissions
can use a higher rates to lower their energy consumption.

To solve Eq. (4.32), we need to know the dependency between b and the
distance r between the transmitter and its receiver. We can use two approaches:

• Consider b a function of r and the average channel noise. In this way, the
transmission time does not depend on the interference and the calculation
is simple. Actually, this is the only information that a device that do not
cooperate with the other devices in the network can have, because it can
not have real-time information about channel occupation by other devices.

• Consider b a function of the previous parameters and the interference in
the network. To use this approach, we must first define a base transmis-
sion time distribution, then calculate the network interference using that
fb and calculate a new transmission time distribution using the acquired
information on interference. Then, we iterate this fixed-point procedure
until we converge to a final distribution, that will be the actual transmis-
sion time distribution to be used.

In the following, we will use the first approach, leaving the second approach as
future work.

We define Ns the average noise experienced by a receiver, Bw the channel
bandwidth, and L the message length in bits. Shannon’s theorem states that
the channel capacity C is

C = Bw log2(1 + Γ) , (4.34)

where Γ = Ptx

(Ar)βNs
is the average Signal-to-Noise-Ratio (SNR). Since we con-

sider a capacity-achieving channel code and modulation, we set the transmission
rate equal to C, so we obtain

b =
L

Bw

[

log2

(

1 +
Ptx

Ns(Ar)β

)]−1

. (4.35)

We choose to consider the receiver position to be uniformly distributed in
an annulus with inner radius rI and outer radius rO centered on its transmitter.
Observing that Ns(Ar)β > 0, we can find the CDF of b:

Fb(α) = P (b ≤ α) = P

(

L

Bw

[

log2

(

1 +
Ptx

Ns(Ar)β

)]−1

≤ α
)

= P






r ≤ P

1/β
tx

A
[

Ns

(

2
L

Bwα − 1
)]1/β






= Fr







P
1/β
tx

A
[

Ns

(

2
L

Bwα − 1
)]1/β






,
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where Fr(·) is the CDF of the transmitter-receiver distance. Since

Fr(γ) =
γ2 − r2

I

r2
O − r2

I

, (4.36)

we have that

fb(α) =
1

R2
O −R2

I

d(γ2)

dα
. (4.37)

Expanding d(γ2)
dα , we obtain

d(γ2)

dα
=

2L log(2)

A2βBwα2

(

Ptx

Ns

)2/β
(

2L/(αBw) − 1
)−2/β−1

2L/(αBw) . (4.38)

Since 0 < rI ≤ r ≤ rO, we have that

0 < rI ≤
P

1/β
tx

A
[

Ns

(

2
L

Bwα − 1
)]1/β

≤ rO

(ArI)−β ≥ Ns

Ptx

(

2
L

Bwα − 1
)

≥ (ArO)−β

0 < bmin =
L

Bw
log−1

2

(

Ptx(ArI)−β

Ns
+ 1

)

≤ α

≤ L

Bw
log−1

2

(

Ptx(ArO)−β

Ns
+ 1

)

= bmax .

To conclude, we have that

Fb(α) =



























0 α < bmin

A−2
(

Ns

(

2
L

Bwα − 1
)

/Ptx

)−2/β

− r2
I

r2
O − r2

I

bmin ≤ α ≤ bmax

1 α > bmax

(4.39)

fb(α)=















2L log(2)
A2βBwα2

(

Ptx

Ns

)2/β
(

2L/(αBw) − 1
)−2/β−1

2L/(αBw)

r2
O − r2

I

bmin≤α≤bmax

0 otherwise
(4.40)

4.8 Example applications of the heterogeneous

time on air model

To show the flexibility of this model, we analyse the performance of two ALOHA
systems, which are both a specialization of the general scenario described in
Sec. 4.7.2. In the first, all transmitter-receiver pairs are at the same distance
but can choose between three different transmission rates. In the second, the
bitrate is adapted based on the transmitter-receiver distance. Unless otherwise
stated, the value of the parameters are as given in Tab. 4.4.
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Parameter Value

Spatio-temporal transmission density λs 10−6 pcks/s/m2

Transmission power Ptx 14 dBm
Transmission frequency f 868 MHz
Path loss coefficient A 4πf/c ≃36.38 m−1

Path loss exponent β 2.5
Transmitter-receiver distance r 200 m
Packet length L 200 bit
Bandwidth W 125 kHz
Noise spectral density N0 2 · 10−20 W/Hz
Noise power Ns N0W

Table 4.4: Scenario parameters

4.8.1 Fixed distance, different bitrates

We assume that the transmission bitrate can take three possible values: R1,
R2, and R3, with probability p1, p2, and p3, respectively. Messages have a fixed
length L. The rate distribution is such that B = E [B] =

∑

i piL/Ri = L/R2.
We set B = 2.389 · 10−3 s, B1 = 0.2 ms, B3 − B2 = B2 − B1, and p1 = p3.
Results are shown in Fig. 4.5.

We observe that using a single bitrate provides a higher peak throughput,
however the additional bitrates increase the stability region, which is important,
e.g., in massive access scenarios.

4.8.2 Different distances, adaptive bitrate

This scenario considers the devices able to adapt their transmission bitrate
according to their distance to the receiver according to the Shannon’s capacity
formula. To increase resilience against fading, in the bitrate selection strategy
the reference received power is chosen such that the actual received power will
be higher than the considered value 95% of the time.

Fig. 4.6 shows the success probability depending on the distance from the
receiver for this rate adaptation strategy against the single rate case. The
rate used in this latter case is the lowest rate available for the rate adaptation
strategy, so as to maintain the same coverage area.

We can note that the success probability using a single rate is decreasing
in the distance, with success rates higher than in the rate adaptation case for
nodes at the minimum distance. That is because nodes near the receiver in
the rate adaptation case use a rate which is much higher than in the single
rate case. On the contrary, the success probability at the maximum distance is
higher for the rate adaptation case than for the single rate case, even if both
strategies use the same bitrate. This is because, when all devices use only the
lowest rate, the average level of interference in the channel is higher than in the
rate adaptation case, therefore, when comparing the performance of a device
using the lowest rate in both scenarios, the lowest average interference level in
the rate adaptation case enables higher success probabilities. We can also see
that the rate adaptation strategy is able to enforce fairness between devices at
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different distances.

4.9 Conclusions

In this section, a method has been provided for the optimisation of the transmis-
sion rate with respect to the aggregate throughput in ALOHA ad hoc networks
with homogeneous links. The first result was a simple expression of the opti-
mal rate in the AI region, which depends only on the path-loss exponent β and
on the bandwidth and, thus, is easy to calculate in real-world scenarios where
devices may have limited knowledge on the surrounding environment. An ap-
proach to tackle the optimisation problem was also proposed for the NL region.
In such conditions, however, it was shown how the choice of rate does not affect
network performance significantly.

We then extended the derived stochastic geometry model to networks where
the time on air of messages could be different. The extended model is general
enough to be able to consider, e.g., messages with different payload lengths and
bitrate adaptation techniques. To show the flexibility of this model, results have
been explicitly calculated for two scenarios, where the time on air heterogeneity
was caused by the use of different bitrates, while the message payload length
was fixed. Results were able to provide insights on the effectiveness of the use
of multiple bitrates, which is going to be exploited in the following chapters.
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Chapter 5

Multi-rate ALOHA

Protocols for Machine-Type

Communication

To mitigate the scalability limits of ALOHA protocols, some MTC technologies
feature multiple transmission rates and, more importantly, advanced receivers
that can detect the modulation scheme of a packet on the fly, without the need
to transmit the packet header at a known basic rate. In this chapter, two multi-
rate Medium Access Control (MAC) protocols are proposed, named Multirate-
Split Slotted ALOHA (MSSA) and Multirate ALOHA Reservation Protocol
(MARP), which are designed to better exploit such multi-rate capabilities of
the wireless technologies. By means of extensive simulations, the performance
over the legacy ALOHA protocol in the specific scenario of MTC, characterized
by a massive number of nodes which sporadically transmit short packets, are
studied.

5.1 Introduction

The classic ALOHA protocol is known to suffer scalability problems when the
channel access rate increases, so that it does not appear suitable to sustain mas-
sive MTCs. To mitigate this scalability issue, many MTC technologies support
multiple modulation and coding rates, in order to better adapt the transmission
to the channel conditions, thus reducing the transmission time and the energy
consumption of the nodes. However, a major problem in contention-based multi-
rate systems is that the collision probability increases with the duration of the
packet transmission, so that nodes using lower transmission rates get generally
penalized by a higher failure probability due to the interference produced by
other nodes. Because of that, some technologies feature advanced receivers that
are capable of Multi-Rate Decoding (MRD) and MPR.

MRD refers to the capability of the receiver to detect the modulation scheme
of the incoming signal on the fly, without the need for any signalling, as in
conventional wireless transmissions. Without MRD, the indication of the coding
scheme used for the payload of the packet is typically embedded in the packet
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header, which is always sent at a basic rate to make it possible its decoding at
the receiver. In this way, however, the transmission efficiency (i.e., the ratio
between the transmission time of the packet payload and that of the entire
packet, included the header) decreases with the bitrates of the payload, and
the efficiency loss becomes even more important for short packets, as for MTC.
Instead, MRD makes it possible to use the same coding scheme for the entire
packet (header and payload), thus achieving the same transmission efficiency
for all the bitrates and enabling the use of higher bitrates also in MTC.

MPR, instead, refers to the capability of the receiver to decode multiple
signals in parallel. This feature is obtained by using multiple receive chains at
the receiver operating on different frequency channels and/or using advanced
signal processing algorithms to exploit the coding gain of the various modula-
tion schemes, or iteratively decoding and canceling the overlapping components
of the compound received signal by using Successive Interference Cancellation
techniques [107]. Currently, commercial receivers typically support MPR only
for packets that are transmitted on different frequency channels or with differ-
ent modulation schemes. MPR, thus, increases the system capacity by enabling
transmissions on multiple orthogonal (or quasi orthogonal) channels.

While these advanced features clearly increase the capacity of the systems,
further gain can be obtained by changing the MAC protocol in order to better
exploit such features. Following this principle, here two multi-rate ALOHA-
based MAC protocols, named MSSA and MARP, are proposed. MSSA and
MARP are both based on a time frame structure that splits the resources based
on the transmission rates of the nodes, so that nodes contend only with other
nodes that use the same transmission rate. In this way, the channel access
should gain in fairness.

The main difference between the two proposals is that MSSA makes use
of the (rate-split) slotted ALOHA protocol to transmit data packets, while in
MARP the slotted ALOHA protocol is used to transmit short Reservation Mes-
sages (RMs) that, if successfully delivered, will grant the node exclusive channel
access to transmit longer data packets. The main novelties of these protocols,
hence, are: i) the splitting of the access resources based on the node’s data
rates; ii) the transmission of the control information (RMs, beacons, acknowl-
edgments) at the same rate of the associated data packets; iii) the dynamic
adaptation of the frame duration and organization to the amount and rate-
distribution of the channel access requests.

The performance of the proposed protocols in terms of throughput and en-
ergy efficiency are studied by means of extensive simulations and compared
with that of the baseline ALOHA access procedure adopted by common LPWA
technologies.

5.2 Multi-Rate ALOHA protocols

In this study, the focus is on a simple (but common) MTC scenario, where a
finite but large number of machine-type devices are connected to a common base
station/gateway using a single frequency channel, shared by all users. Nodes
transmit short packets of fixed length, according to a certain packet generation
process, which is assumed independent for each node. Furthermore, nodes are
supposed to be able to adapt their transmission rate to the average channel
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Figure 5.1: Allocation of transmission windows for each rate in a MSSA frame.

gain towards the gateway. The set of available transmission rates is denoted as
R = {R1, R2, . . . , Rk}, with R1 < . . . < Rk.

The receiver is capable of recognizing and decoding each such rate without
the need of any control information (MPR feature). For what concerns the
capability of simultaneous decoding of multiple packets, two opposite cases are
distinguished: Single-Packet Reception (SPR), where the receiver can handle
only one packet at a time; and full MPR, where, instead, the receiver can
simultaneously decode packets sent at different rates, which are supposed to not
interfere one another. Note that, in the latter case, the performance analysis
boils down to that of systems using a single transmission rate.

In the following, the two proposed multi-rate ALOHA-based protocols are
described in detail.

5.2.1 The MSSA protocol

The MSSA protocol is based on the Frame Slotted ALOHA structure where,
however, the slot duration depends on the transmission rate. More specifically,
as depicted in Fig. 5.1, the time is divided in frames, which are split in multiple
transmission windows, one for each bitrate. The windows, in turn, are organized
in slots, whose length depends on the bitrate associated to the window, and
is sufficient to contain a packet transmitted at that rate. Each node, then,
transmits its packet on a random slot of the window reserved to its transmission
rate.

It is assumed that the duration TF of the time frame cannot be changed,
depending on a number of uncontrollable factors, such as the maximum accept-
able delay, clock drift, beacon size, and so on. Therefore, we can only act on the
way the time frame is split among the different windows, i.e., on the number ni

of slots assigned to the ith transmission window, reserved to the transmission
rate Ri, with i = 1, . . . , k.

To find the optimal values of such {ni}, we can resort to an approximate
Poisson model, which yields a simple optimization problem that can be solved
using standard methods. Denoting by Lpck the size of data packets, the slot

duration in the ith window will be equal to
Lpck

Ri
. Therefore, any feasible slot

allocation must satisfy the condition:

k
∑

i=1

ni
Lpck

Ri
≤ TF . (5.1)

Denoting by Wi the average number of packets successfully sent in the ith
window, our aim is to find the values of {ni; i = 1, . . . , k} that maximize the

aggregate average system throughput, given by W =
∑k

i=1 Wi, while satisfying
the feasibility condition (5.1).
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Figure 5.2: Example of resource allocation for reservation and data transmission
subframes inside a MARP frame.

Now, let Gi denote the aggregate packet generation rate of the nodes that
transmit at rate Ri, i = 1, . . . , k. Then, the average number of transmission
attempts in the ith window of a frame will be equal to Ai = GiTF . Assuming
Poisson arrivals,1 the average number of non-overlapping packet transmissions
in the ith window of a frame is given by

Wi = Aie
−

Ai
ni = GiTF e

−
GiTF

ni . (5.2)

Putting all the pieces together, the optimization problem can then be expressed
as

max
n1,...,nk

k
∑

i=1

GiTF e
−

GiTF
ni

s.t. condition

{ni ∈ N ; i = 1, . . . , k}.

(5.3)

This multi-rate optimization problem can be solved using the Differential Evolu-
tion technique, a heuristic approach to nonlinear optimization that was initially
proposed for continuous and unconstrained problems [108], but has been later
extended to mixed-integer constrained problems [109].

5.2.2 The MARP protocol

The MARP protocol is largely based on MSSA, with the difference that the
contention-based access method is used to transmit RMs that, if accepted, will
grant exclusive access to the channel for the data transmission. Therefore, as
illustrated in Fig. 5.2, each time frame is divided into a reservation subframe
of constant duration TR and a data transmission subframe of variable duration
TD. The channel access in the reservation subframe is managed according to
the MSSA protocol, but in place of data packets, the nodes will transmit RMs,
each specifying the required resources (i.e., the expected transmission time of
the associated data packet) and a packet identifier. A different RM must be
transmitted for each data packet that needs to be sent.

After the reservation subframe, the base station broadcasts a beacon that
contains the identifiers of the RMs that have been successfully received and
the assigned transmission window in the following transmission subframe. The
beacon is transmitted in a multi-rate mode, reflecting the rate of the accepted
RMs, in ascending bitrate order.2 The beacon starts with some control fields

1We observe that, in the MTC scenario, the Poisson-arrival model is reasonable, since we
have a large population of nodes, each with low packet transmission probability.

2This assumption implies that the downlink channel is (at least) as good as the uplink
channel, which is reasonable when the gateways are more powerful than the peripheral nodes
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(such as the indication of the beginning of the next frame) transmitted at the
basic rate. Each rate switching during the transmission of the beacon is preceded
by a rate-switching flag, so as to let the receivers change the demodulation
scheme accordingly. After the reception of the feedback for its RM, a device
can stop listening to the beacon in order to save energy. Hence, the devices
can keep their radio on just for the transmission of their RMs, the reception of
the parts of the beacon of interest, and the transmission of the data packet (if
allowed).

The data transmission window starts immediately after the end of the bea-
con and lasts as long as needed to transmit all the packets of accepted RMs.
Therefore, the duration TD of the transmission subframe and, consequently, that
of the whole frame may change from frame to frame. Nonetheless, assume that
the mean frame duration, TF , is given. Therefore, as for MSSA, the protocol
parameters that can be optimized are the number ni of reservation slots to be
assigned to the ith rate in the reservation subframe. The feasibility condition,
however, has to keep into account the duration of the reservation subframe, the
transmission time of the multi-rate beacon, and the transmission time of the
data packets for the accepted RMs. In the following, the expressions of these
three terms are found.

Denoting by LRM the length of a reservation message, the duration of the
reservation subframe can be expressed as

TR =

k
∑

i=1

ni
LRM

Ri
. (5.4)

Indicating by wi the number of accepted RMs sent at rate Ri, the transmis-
sion time of the beacon can be expressed as

TB =
LH

R1
+

k
∑

i=1

LF + wiLFB

Ri
; (5.5)

where LH denotes the size of the beacon header, always transmitted at the basic
rate, while LF and LFB indicate the size of the rate-switching flag and of the
beacon segment, respectively, which are transmitted at the different rates. To
simplify the analysis, we consider LFB = LRM.3

Finally, the duration of the transmission subframe is given by

TD =

k
∑

i=1

wiLpck

Ri
. (5.6)

Summing all the terms together we get the frame duration:

TF =
LH

R1
+

k
∑

i=1

niLRM + wi(Lpck + LRM) + LF

Ri
. (5.7)

and can transmit with higher power. If the symmetry assumption does not hold, however, the
protocol can still work by suitably scaling the transmission rate of the beacon message, with
a small performance degradation.

3This can be considered as a worst-case scenario, since a compression function can be used
to shorten the beacon size.
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Note that, since {wi} are random variables, so are TB , TD, and TF . Now,
under the Poisson-arrival assumption, the mean number of packets transmitted
at rate Ri in a frame is given by

Wi = E [wi] = GiTF e
−

GiT F
ni (5.8)

where E [·] denotes the statistical expectation operator, and TF is the mean
frame duration. The feasibility condition for MARP can then be obtained by
using (5.8) in the expectation of the right-hand side of (5.7), which gives

TF ≥
LH

R1
+

k
∑

i=1

niLRM +GiTF e
−

GiT F
ni (Lpck + LRM) + LF

Ri
. (5.9)

Finally, the optimization problem can be formulated as

max
n1,...,nk

k
∑

i=1

GiTF e
−

GiT F
ni

s.t. condition (5.9)

{ni ∈ N ; i = 1, . . . , k}.

(5.10)

This multi-rate optimization problem can again be solved using the Differential
Evolution technique. Note that, when considering the special case of single-rate
transmissions (i.e., when k = 1), the optimization problem can be solved by a
simple exhaustive search on the number of reservation slots.

5.3 Performance analysis

This section presents the results of an extensive simulation study, where the
performance of MSSA, MARP, and the legacy SA protocol have been compared
both in terms of throughput and energy efficiency. The simulator has been
implemented in Python 3 using the SciPy scientific libraries.

5.3.1 Simulation scenario

In the simulation, transmitters are uniformly distributed over a circle centered
at the gateway, with density λs nodes per squared meter. The transmissions are
affected by path loss, Rayleigh fading, and white noise, in addition to interfer-
ence. Therefore, the received signal power is given by Ptx(Ad)−βF , where Ptx is
the transmission power, A and β are path-loss parameters, d is the transmitter-
receiver distance and F is an exponential random variable with unit mean,
modeling the Rayleigh fading. A packet transmitted at rate R is successfully
received if the SINR exceeds a threshold Γr = 2R/Bw −1, where Bw is the chan-
nel bandwidth, according to the Shannon formula. The cell radius is such that
nodes at the edge have 95% of success probability in absence of interference.

Each node generates new data packets of length Lpck according to a Poisson
process of rate λt. Packets generated during a frame are all transmitted in
the next one. In the multi-rate case, the available transmission rates are R =
{0.5, 2, 10, 100} kbit/s, which well represent the bitrates usually supported by
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Parameter Value

Spatial node density λs 0.1 nodes/m2

Packet generation rate λt {3 · 10−7, . . . , 3 · 10−4} packets/s
Transmission power Ptx 14 dBm
Transmission frequency f 868 MHz
Path loss coefficient A 36.36 m−1

Path loss exponent β 3.5
Packet length Lpck 240 bit
Transmission bitrate
(single-rate scenario)

R 0.5 kbit/s

Transmission bitrates
(multi-rate scenario)

R {0.5, . . . , 100} kbit/s

Bandwidth Bw 400 kHz
Noise spectral density N0 2 · 10−20 W/Hz
Frame duration TF 100 s
RM size LRM 40 bits
Beacon flag size LF 8 bits
Beacon header size LH 32 bits

Table 5.1: Simulation parameters

commercial IoT transmission technologies. For the single-rate scenario, the
bitrate is set to R1 = 0.5 kbit/s.

The values of all the simulation parameters are listed in Tab. 5.1.

5.3.2 Performance metrics

The throughput is defined as the average number of successfully delivered data
packets per unit time, and indicated as S.

The energy cost of a protocol is obtained by adding up the energy spent to
transmit control and data packets, and to receive the feedback (if any).

Since devices transmit infrequently, we can suppose that they do not listen to
every beacon, rather they wake up when a new packet is ready for transmission
and wait until the next beacon reception to get time synchronized. After that,
devices can perform channel access following the adopted MAC protocol. Note
that, after wake up, a node waits on average half a time frame for the next
available beacon.

Therefore, let Prx denote the power consumed during reception. Denoting
by P (R) the probability that a node transmits with rate R, the average energy
consumption to transmit a packet in MSSA and SA is simply given by

EMSSA = Prx

(

TF

2
+
LH

R1

)

+ Ptx

k
∑

i=1

Lpck

Ri
P (Ri) ; (5.11)

where the first term of the sum accounts for the energy spent to wait for and
receive a short synchronization beacon, which is supposed to be LH bits long
and always transmitted at the basic rate, while the second term accounts for
the packet transmission energy.
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Figure 5.3: Throughput of SA and MARP, with 95% confidence intervals.

For the MARP protocol, instead, we have

EMARP = Prx

(

TF

2
+
LH

R1
+

k
∑

i=1

WiLRM + LF

Ri

)

+

Ptx

k
∑

i=1

LRM + LpckWi/ni

Ri
P (Ri) , (5.12)

where, again, the first term accounts for the energy to receive the beacon (that,
however, also carries feedback information), while the second term gives the
packet transmission energy. Finally, Wi is given in (5.8). Note that EMARP is
an upper bound to the actual energy consumption because it accounts for the
reception of the entire beacon, even though nodes can stop the reception earlier,
as previously explained.

The values used for the power consumption in transmission (Ptx) and recep-
tion (Prx) mode have been extracted from the datasheets of some off-the-shelf
modules.4

5.3.3 Throughput analysis

In Fig. 5.3 we can see that the MARP significantly outperforms the other
schemes in terms of throughput. In particular, the maximum throughput for the
single-rate and multi-rate MARP is higher than that of SA and MSSA, respec-
tively.5 Also, for the single-rate MARP, the decreasing trend of the throughput
after the peak is much less marked than in SA, allowing for a wider stability
region. For example, when considering an offered traffic equal to the 80% of

4Atmel AT86RF212B, Texas Instruments CC1125 and CC1310, and Semtech SX1272 mod-
ules.

5Note that, in the single-rate case, the MSSA achieves the same performance as the stan-
dard SA.
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Figure 5.4: Average frame time used for transmission of packets in MSSA,
grouped for bitrate.
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Figure 5.5: Average frame time used for transmission of RMs, beacon, and data
packets in MARP, grouped for bitrate.

their maximum throughput, single-rate MARP is capable to sustain a tempo-
rary overload of the offered traffic 9 times larger than that in the stable working
point, while SA enters the instability region if the offered traffic exceeds 2.75
times the value at the stable working point.

To understand the origin of this gain, we can analyse Fig. 5.4 and Fig. 5.5,
which report the average fraction of frame time occupied by the transmission of
data and control packets at the different rates, for MSSA and MARP, respec-
tively. We can see that, when the offered traffic grows, the optimization routine
tends to allocate less and less slots to the lower rates, in order to maximize the
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Figure 5.6: Number of bits successfully transmitted per unit energy, with 95%
confidence intervals.

overall number of successful transmissions per unit time. This is equivalent to
artificially reduce channel contention by forcing some nodes to silence, which is
a way to preserve system stability when the channel is overloaded.

In Fig. 5.5 we can also see that the average frame duration is actually less
than the imposed value of TF = 100 s because of the random fading that causes
some of the RMs to be lost even in absence of interference.

5.3.4 Energy efficiency analysis

In Fig. 5.6 we can see the energy efficiency (i.e., the amount of successfully
transmitted information bits over the energy consumed in all transmission at-
tempts) of SA, MSSA, and MARP protocols. The curves have been obtained
by using (5.11) and (5.12), where TF and P (Ri) have been extracted from the
simulations. In the single-rate scenario, the cost for the beacon listening in
MARP is significant, so, in a very low traffic environment, we can save energy
using the traditional SA. However, in massive access scenarios, the higher en-
ergy consumption of MARP is compensated by a higher success rate, allowing
for a better efficiency than SA. The same is true for the multi-rate case, where
the energy efficiency of MARP is lower than that of MSSA only for extremely
low traffic.

5.4 Conclusions

In this chapter, two variations of the ALOHA protocols have been proposed to
better support the multi-rate transmission and reception capabilities of modern
wireless technologies for MTC. The first extends SA by reserving time windows
to different bitrates, while the second introduces RMs in order to reduce the
fraction of time occupied by collided packets on the channel.
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A simulative performance analysis has been carried out to assess the im-
provements over legacy ALOHA-like protocols. Results show that the proposed
protocols provide higher throughput and make it possible to sustain higher
traffic than SA. In particular, MARP achieves the best performance when the
traffic offered to the channel becomes critical. MARP also offers better energy
efficiency than MSSA, both in the single-rate and multi-rate cases, thanks to the
short duration of the RMs, guaranteeing a collision-free channel access to the
comparatively large data packets. The overhead of MARP RMs is significant
only when collisions are very uncommon, making it the overall best performing
protocol for any networks with non-negligible size.
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Chapter 6

Random Access Schemes to

Balance Energy Efficiency

and Accuracy in Monitoring

Applications

Performance and efficiency of channel access protocols can be improved by con-
sidering the content of the messages they are transmitting. Compared to the
approaches in the previous chapter, that were agnostic to the message con-
tent, this chapter proposes some random access schemes specifically tailored
for monitoring applications, where messages contain data points of a time se-
ries. By exploiting correlations in time series, these schemes have a very high
energy efficiency while guaranteeing a predefined accuracy in the time series
reconstruction.

6.1 Introduction

The continuous decrease in cost and size of sensing devices enables their use
in various applications, in particular related to environmental and industrial
sensing [110–114]. Monitoring activities can be roughly divided in two classes,
based on their objective. In the first category, the aim is to collect data in
order to enable its statistical analysis and thereby perform trend analysis or
predict future values. In the second case, the interest is on the identification of
some events that may trigger actions, e.g., excessively high pressure in a pipe
that requires the release of a valve. The main difference in the two use cases is
that the former analyses the time series as a whole, including the past history
of the monitored signal, while the latter only considers its current realization.
Accordingly, the definition of the target performance metric, which is related
to the error of the signal reconstructed from the samples at the control station,
is different for the two cases. For signal prediction, indeed, it makes sense to
consider the cumulative signal estimate error up to the current time, possibly
using a weight function to smooth out the impact of the past errors [8]. In
contrast, when the target is related to event triggering, the error metric is
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calculated independently for every sample, since past values are not of interest
when new data is available [5].

In principle, the phenomena of interest should be constantly monitored, so
as not to miss any critical event. However, there are some issues that need
to be taken into account and that affect both the sensing and the reporting
regimes. The first constraint to consider is the energy consumption of both
sensing and data transmission/reception procedures for battery powered devices.
Another critical point is the use of a massive number of sensing devices to
increase the spatial accuracy of the data. This in fact yields a large traffic on the
wireless channel at the risk of reducing the amount of successful transmissions
to the Fusion Center (FC) due to collisions, and may eventually result in a
reduction of the monitoring accuracy. Most of the work that deals with signal
compression and data monitoring does not consider the effect of channel errors
and interference, which instead may have a significant impact on the accuracy
of the monitoring operation. Notice that packet losses also waste energy.

A further issue that should be considered is related to the large dynamics of
the sensed signals, which causes issues in their estimation. While many signals
may appear stationary, or even almost constant, on a small time scale, their
behaviour often changes if observed for a sufficiently long time. Also, intervals
when data has a large variance, and therefore is difficult to predict, are often
of greater interest than intervals where data is almost static. This is because
the former is typical of anomalous conditions in the monitored system and,
therefore, must trigger the warnings leading to an appropriate intervention.

The use of compression has the potential to reduce communication and sam-
pling energy cost, thus increasing network lifetime. Unfortunately, conventional
compression algorithms are not directly applicable to WSNs [115] because they
minimize space occupation instead of energy expenditure for data transmission.
Also, exceedingly complex algorithms are not implementable in constrained
sensing devices. Instead, compression techniques specifically designed for sensor
networks have proved to substantially increase network lifetime. These tech-
niques can operate on three different levels [115]:

Sampling compression leverages data correlation in space and time to reduce
the sampling activity of devices. The FC is then in charge of recovering the
missing samples using only the received information.

Data compression processes the sampled measures in order to limit the length
of messages directed to the FC.

Finally, communication compression aims at reducing the number of data
transmissions and their time-on-air, in order to reduce the energy consumed by
the transceiver module.

Clearly, the use of any compression technique reduces the accuracy of the sig-
nal reconstructed by the FC, trading it with increased network lifetime. There-
fore, it is of interest to apply a combination of these techniques and optimize
their parameters in order to provide the optimal balance between energy con-
sumption, wireless channel occupation, and sensing accuracy.

This study investigates new compression and communication protocols that
target a given QoS, measured in terms of reconstruction error at the FC, while
minimizing the energy consumption of the devices. The focus is on a static
scenario with a massive number of sensors.
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6.2 Related work

Here, the significant amount of work on compression techniques for WSNs is
reviewed, following the classification introduced by [115].

Sampling Compression

Many techniques that operate at this level exploit only the temporal correlation
between samples to reduce the sampling activity of devices. For example, [111]
estimates the maximum frequency of the time series via the Fast Fourier Trans-
form and sets the sampling rate according to the Nyquist theorem. Other similar
approaches use Kalman filters [116], Bollinger bands [117], or linear program-
ming techniques [118]. Ref. [119] proposes an Exponential Double Sampling-
type predictor to dynamically change the sampling interval in order to maintain
the error below a given threshold. In addition, [110] considers issues related
to multi-hop networks, where the routing of messages containing sensor read-
ings can have a significant impact on the total energy cost. Ref. [120] applies
temporal sampling compression to WSNs with energy harvesting sensors, with
the objective to dynamically vary the sampling rate based on the amount of
available energy on each device.

Differently from techniques exploiting temporal correlation, spatial correla-
tion can be used in order to select only a subset of devices which will acquire
and transmit sensor data [121–124]. The other devices will, instead, stay in
sleep mode to preserve energy. The chosen device subset changes at every sam-
pling interval to consume energy equally from all devices. To improve accuracy
and lower the energy consumption, [122, 124] also exploit correlation between
sensors attached to the same communication device. The reading precision and
the energy cost of reading a sample, in fact, may be different for different sen-
sors [115,125,126].

The joint use of both spatial and temporal correlation has the potential to
further decrease the energy consumption of the sensing system. A possible way
to exploit this is to group sensors in clusters to capture spatial correlation and,
for each of them, acquire readings from only one sensor, which is periodically
rotated. The sampling interval is then adjusted based on the acquired data
[127,128]. A different approach uses Compressive Sensing (CS),1 which is based
on the observation that even a small number of random projections of a sparse
signal may contain enough information to recover the whole original signal with
excellent accuracy [129,130]. This enables the representation of sensor readings
using fewer samples than those required by the sampling theorem. Therefore,
in a WSN that uses CS, a number of measurements smaller than the required
spatio-temporal granularity can be transmitted to the FC, where the missing
data will be recovered [131–133]. Furthermore, in multi-hop sensor networks,
CS can be used to add and compress data of messages in transit at intermediate
network nodes [134].

1A number of studies differentiate between CS, which exploits only temporal correlation
of a single sensor, and Distributed CS, which exploits also correlation across multiple sensors.
To keep the description short and focused, such a distinction is not considered here.
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Data compression

When using data compression, we can compress samples to limit the length
of messages directed to the FC [135]. Following this approach, [136] quantizes
the difference between consecutive samples using a differential pulse code mod-
ulation scheme, while the study in [137] derives the optimal quantization and
transmit power levels when using a quadrature amplitude modulation.

Communication compression

Communication compression reduces the number of transmissions and their
time-on-air. An implementation of this technique consists in exploiting a model
of the sensed signal, which is shared by the sensors and the FC. The measure-
ment at each sample interval is compared with the model prediction. If the
prediction error is too large, the sensing device sends to the FC the correct
measurement, otherwise no data transmission occurs. The model parameters
may be updated in real time when the prediction error starts diverging. This
approach has been used in [138] and [139], but while the former applies this
technique separately for each node and, thus, uses only the temporal correla-
tion of the data, the latter exploits the space-time correlation of the data, taking
inspiration from the MPEG encoding [140].

Note that communication compression affects only the transmission strategy,
while it does not affect sensor readings. Therefore, devices have to acquire sensor
readings, possibly following a sampling compression strategy, according to the
desired temporal accuracy, even if some of those data will not be transmitted.
By performing sampling compression alone, however, it is still possible to obtain
large energy savings if the energy needed to make the measurements is large.
In fact, it has been shown that the sensing energy of some sensors can be larger
than the energy used by the radio transmitter [115,125,126].

6.3 System model

We now focus on a scenario where several sensor nodes monitor some processes
of interest and report their measurements to a common FC. The FC is a power-
ful device connected to the energy grid, while the sensors are battery-powered
and with limited computational capabilities. The goal is to minimize the en-
ergy consumption of the sensor nodes, while guaranteeing a minimum level of
accuracy and reliability of the monitoring service at the FC.

In the following, the channel and network model used in the rest of this
chapter are described.

Network model

The first assumption is that the network is organized in a star topology, with
the end devices at one-hop distance from the FC and operating based on the
same strategy.

Furthermore, suppose that the network dynamics is slowly varying, so that
the transmission scheme needs to be only seldom updated. Note that, even
though the channel status may vary because of the fading component, the trans-
mission strategy is based on the expected channel conditions, which are static.
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Therefore, the proposed policy will not depend on the absolute slot index, which
is hence neglected in the following.

The FC has no restrictions in terms of energy availability and of computa-
tional and storage capabilities. The sensor nodes, instead, are simpler devices
that are off the grid and need to efficiently manage their finite energy resources.

Depending on the channel conditions and the interference caused by the
other nodes, a transmitted packet may be lost. A successful transmission is
immediately acknowledged by a downlink packet, which is sent using high power
in a dedicated channel and, hence, is always correctly received. If no data is
transmitted, or it is lost, then the FC produces an estimate x̂k based on the last
received data and the time-correlation characteristics of the signal model.

Channel model

The sensor nodes are at known distances from the FC and transmit wirelessly
over Rayleigh fading channels. Also, assume that a device at distance r sets its
transmit power Ptx(r) in order to fully compensate its path-loss ℓ(r), so that
the average received power Prx = Ptx(r)/ℓ(r) is the same for every transmitter,
irrespective of r.2

This work considers a SA random channel access scheme, which avoids the
need to centrally coordinate the channel access, and is more flexible to changes
in the network topology and node density than scheduled access schemes. The
price to pay for such a simplicity is the risk of destructive interference caused
by simultaneous transmissions from different devices. We may consider a trans-
mission to be successful if the average SINR at the receiver is larger than a
predefined threshold [141].

The power control assumption makes the statistics of the SINR the same for
all the transmitting devices, and, in particular, independent of their location.
The SINR at the FC experienced by the generic node 0, when other m nodes
transmit, can be expressed as

γ(m) =
PrxF0

Ns +
∑m

i=1 PrxFi

. (6.1)

where Ns is the noise power and the Fi terms are independent realizations of
an exponentially distributed random variable (r.v.) with unit mean, accounting
for Rayleigh fading for each device.

In order to better exploit the SA channel access method, we can adapt the
modulation and coding scheme to the packet size, in order for the time-on-air to
be always equal to the slot time. Therefore, the energy consumption is constant
for each packet transmission, but longer packets will experience a higher error
probability, as they are sent at higher bitrates. Using Shannon’s bound as an
approximation, the SINR threshold for a packet of size L is set to

Γ◦(L) = 2L/(T Bw) − 1 , (6.2)

where Bw is the transmission bandwidth and T is the time slot duration.

2We can suppose the maximum transmission power to be large enough (or, equivalently,
the cell radius to be small enough) so that the path loss inversion can be applied for every
node in the network.
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The transmission success probability can then be expressed as

ps(L) = Pr [γ(m)>Γ◦(L)] =

= Pr

[

F0>

(

Ns

Prx

+

m
∑

i=1

Fi

)

Γ◦(L)

]

=

= e−NsΓ◦(L)/Prx E
[

e−Γ◦(L)
∑

m

i=1
Fi

]

,

(6.3)

where the expectation is computed with respect to the interference distribution,
conditional to the presence of the target transmitter. We can adopt a stochastic
geometry reasoning and model the sensing devices that transmit in a given slot
as a PPP Ψ(x, t), defined in the space-time domain R

2×N, with spatial density
λs(x, P), where x ∈ R

2 is the space coordinate and P is the persistency constant,
i.e., the per-slot transmission probability of a node.

Thanks to Slivnyak’s theorem, the conditional distribution of the interferers
given the position of the tagged node is still modeled by Ψ [106]. The fading
coefficients {Fi} can then be seen as marks of this PPP, making it possible to
apply Campbell’s theorem for marked processes [106]. We then have

EΨ

[

e−Γ◦(L)
∑

m

i=1
Fi

]

= exp

(

−
∫

R2

∫ ∞

0

(

1− e−Γ◦(L)ϕ
)

λs(x, P)e−ϕ dϕ,dx

)

, (6.4)

where the expectation is taken with respect to the marked PPP, i.e., consid-
ering both the spatial position of the nodes and the fading coefficients. Now,
assuming uniform distribution of the nodes within the cell radius and neglecting
the “arrivals” of the PPP outside the cell, i.e., assuming λs(x, P) ≡ λ(P) for all
|x| ≤ rmax and λs(x, P) ≡ 0 otherwise, we get

EΨ

[

e−Γ◦(L)
∑

m

i=1
Fi

]

= exp

(

−λs(P)πr2
max

∫ ∞

0

(

1− e−Γ◦(L)ϕ
)

e−ϕ dϕ

)

= exp

(

−λs(P)πr2
max

Γ◦(L)

Γ◦(L) + 1

)

.

(6.5)

Replacing this result into (6.3) we finally get

ps(L) = exp

(

−Γ◦(L)

(

Ns

Prx

+
λs(P)πr2

max

Γ◦(L) + 1

))

. (6.6)

Notice that the success probability depends on the adaptive transmission strat-
egy through two parameters, namely the packet size L, and the persistency
constant P that, in turn, is equal to the reciprocal of the mean period between
consecutive transmissions of a node. In the following, this last parameter is
referred to as mean sleeping period, and denoted by S(L), being a function of
the packet size L.

6.4 A semi-deterministic strategy for single val-

ue reporting

This section proposes a compression and communication protocol able to guar-
antee a desired accuracy in data gathering applications that are interested in
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instantaneous values of some sensed parameter. Differently from previous works
in the literature, the proposed strategy operates at multiple levels. At the sam-
pling compression level, it optimizes the sensing rate by exploiting temporal
correlation of the sensed measurements; at the data compression level, it sets
the quantization accuracy based on the future expected squared reconstruction
error; at the communication compression level, it avoids transmission of data if
the prediction of the FC is still valid.

6.4.1 Signal model

Each sensor i monitors a time-correlated process {xn,i}n≥0, which is modeled
as a first-order autoregressive (AR) process

xn,i = αxn−1,i + un i ∈ N , (6.7)

where n denotes the time step, α is the correlation parameter and the process
noise is zero-mean normal, un ∼ N (0, σ2), and independent of any other um.
We also assume that |α| < 1, so that xn,i is a stable process.

Each sensor can decide when to sense its process and whether to transmit
the measured data, since it is assumed that sensing and transmissions both
consume energy. Moreover, if in slot n a device chooses to transmit xn,i, it can
also decide how much information to send, so that it may transmit a distorted
version x̃n,i of xn,i to the receiver. Lmax is the size of the original data, while
Ln ∈ {0, . . . , Lmax} is the size of the packet sent by the device in a slot n.
Reducing the amount of information introduces an error v(Ln), whose statistical
distribution depends on the type of data processing performed by the node.
Hence, device i sends x̃n,i = xn,i + v(Ln). If the transmission is successful, the
receiver is able to perfectly reconstruct x̃n,i. Otherwise, the FC maintains an
estimate x̂n,i of xn,i based on the previously received data. When a device is
neither transmitting nor sensing, it switches to a sleep mode in order to save
energy. Meanwhile, the FC keeps estimating the process. The reconstruction
accuracy at the FC is in terms of the squared error |xn,i − x̂n,i|2. Note that this
error is zero only if node i transmitted in slot n (no estimation error at the FC,
i.e., x̂n,i = x̃n,i), and Ln = Lmax (no distortion introduced at the source, i.e.,
x̃n,i = xn,i).

6.4.2 Optimization problem

Our objective is to determine the optimal duration M⋆ of the sleeping phase of
a device and the optimal packet size L⋆ such that (i) the probability that the
squared error at the receiver exceeds a predefined threshold ε is bounded, and
(ii) the sensor’s lifetime is maximized.

As already said, each transmission consumes the same amount of energy, in-
cluding the circuit energy for operational mode switching. Consequently, maxi-
mizing the lifetime of a device is equivalent to minimizing the number of trans-
mission attempts and sensing operations, and thus, to maximizing the duration
M of the sleeping phase (while not violating the QoS constraint). Basically, the
goal is to find

M⋆ , max
L,M

M(L) , (6.8)
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Algorithm 1 Alternate optimization

1: ML ← vector of size Lmax ⊲ Contains ML(L) ∀L
2: for L = 1, . . . , Lmax do
3: Determine M0(L) ⊲ Sleeping duration if ps = 1
4: Initialize ps = 1, M(L) = 1
5: while M(L) has not converged do
6: M(L)← ⌊M0(L) + 1− 1/ps⌋
7: ps ← Eq. (6.3) with I depending on M(L)

8: ML(L)←M(L)

9: M⋆ = max ML, L⋆ = argmax ML

where 0 ≤ L ≤ Lmax, subject to the QoS constraint

Pr
[

|xj − x̂j |2 > ε
]

< vth , (6.9)

i.e., the probability that the squared reconstruction error exceeds ε is no larger
than a predefined threshold vth at any time. The optimal packet size L⋆ is the
one that maximizes (6.8) under the constraint (6.9).

6.4.3 Analysis

Before delving into the analysis of the transmission strategy, we investigate some
tradeoffs in the choice of M and L that are induced by the lifetime and QoS
requirements. Intuitively, a device should choose a large sleeping window to
save energy and limit the interference, since the larger M , the less frequent the
transmissions. However, M cannot be too large, in order to respect the QoS
constraint (6.9). Similarly, decreasing L increases the signal reconstruction er-
ror, but also the success probability, because transmissions will use more robust
modulations (see (6.2)).

Therefore, determining the optimal transmission strategy is not trivial. For
a given value of L, the proposed iterative approach alternately optimize the
sleeping phase duration and determine the corresponding probability of success-
ful transmission, until convergence, so that it derives ML(L), i.e., the optimal
value of M for the chosen L. An outer optimization process is then performed
to determine the value L⋆ = argmaxML(L) that yields M⋆ = ML(L⋆).

This procedure is summarized in Algorithm 1. For a fixed L (Line 2), we
first compute the duration M0(L) of the sleeping phase as if there were no
interference, i.e., M0(L) only depends on the QoS requirement (6.9) (Line 3).
The interference caused by the other nodes makes transmissions prone to losses.
Let M(L) be the number of time slots a node waits from the last successful
transmission. Then, assuming that in case of packet loss a device transmits again
in the next slot, the expected time elapsed between two consecutive successful
transmissions is

+∞
∑

j=0

(M(L) + j)(1− ps(L, I))jps(L, I) = M(L) +
1

ps(L, I)
− 1, (6.10)

which should not be larger than M0(L) to satisfy the QoS constraint (6.9).
Therefore we get

M(L) = ⌊M0(L) + 1− 1/ps⌋ . (6.11)
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At the first iteration, assume no packet losses (ps = 1), and thus M(L) ≡
M0(L). Then (Line 7), we update the success probability ps using Eq. (6.3),
where the number of interferers I depends on the frequency of transmissions
which is influenced by M(L). This alternate optimization is repeated until
M(L) converges. Then, L⋆ and M⋆ are those that maximize the value of M(L)
as in Line 9.

The following explains how to derive M0(L), while in Sec. 6.3 it is described
how to update ps based on the persistency constant P which, in this case, is
equal to 1/M .

Sleeping phase duration

Now we derive the optimal duration of the sleeping phase M0(L) for a given L
when there is no interference. Exploiting Eq. (6.7), we can relate the signal at
slot n+ j to that at slot n as follows

xn+j = αjxn +

j
∑

k=1

αj−kun+k = αjxn + wj

= αj x̃n − αjv(L) + wj = αj x̃n + ej(L) ;

(6.12)

where ej(L) , −αjv(L) + wj is the error due to the distortion introduced at
the source and the estimation process.

The estimation error wj is the linear combination of j i.i.d. zero-mean
gaussian r.v.s and, therefore, it is itself a zero-mean normal r.v., wj ∼ N (0, σ2

j ),
with variance

σ2
j =

j
∑

k=1

α2(j−k)σ2 =

j−1
∑

k=0

α2(j−1−k)σ2 =
1− α2j

1− α2
σ2 . (6.13)

We observe that σ2
j is a concave and non-decreasing function of j with a horizon-

tal asymptote at σ2/(1−α2) as j → +∞. This implies that the variance of the
estimation error is larger for |α| closer to 1. The reason behind this behavior is
that |α| closer to 0 corresponds to a weakly correlated process, which makes the
estimation error almost independent of the value of j and practically bounded
in the range [−3σ, 3σ].

Since the compression should not introduce a bias in the measurement, the
error v(L) can be assumed to have zero mean, hence the best estimate that
the FC can make is x̃n+j = αj x̃n, so that the squared reconstruction error
after j slots from the last received data is |ej(L)|2. Based on its definition
(see Eq. (6.12)), ej(L) is non-decreasing in j, therefore, to guarantee the QoS
constraint (6.9), it is sufficient to evaluate the CDF of the squared error at
ε only for j ≡ M . For analytical tractability, in the following it is assumed
v(L) ∼ N (0, ω2(L)), although the framework is general and can accommodate
any distribution of v(L). Also, ω2(L) is decreasing in L, since the smaller the
amount of information bits, the larger the distortion. In this case, eM (L) can
be modeled as the weighed sum of two independent normal r.v.s and, thus, is
also normally distributed:

eM (L) ∼ N
(

0, α2Mω2(L) + σ2
M

)

. (6.14)



110

Accordingly, the largest value M0 that satisfies the QoS constraint for the given
L is

M0(L) = max
{

M : 2− 2φ(
√
ε,M,L) < vth

}

, (6.15)

where φ(y,M,L) is the CDF of eM (L) calculated in y. Eq (6.15) gives the
maximum duration of the sleeping phase of a sensor when transmission is always
successful (ps = 1) such that (6.9) holds true. If the chosen vth is too small, since
M is discrete, the set in (6.15) could be empty, which means that the required
QoS constraint can not be satisfied even when no interferers are present. In this
case, we set M0 = 1.

Transmission strategy

With the procedure explained in Algorithm 1, after a successful transmission a
device remains silent for M⋆−1 slots before attempting to transmit again, where
M⋆ yields an expected time between two consecutive successful transmissions
such that the QoS requirement (6.9) is satisfied. However, based on how signal
{xn} actually evolves, the squared error after M⋆ slots may be larger or smaller
than threshold ε. In the latter case, the device could extend the sleeping phase
by M ′(xn+M⋆) additional slots to further save energy. Here, we study how to
determine M ′(xn+M⋆).

Let x̃n = xn +v(L⋆) be the last data received by the FC from a certain user.
After slot n, the device sleeps for M⋆ time slots and then wakes up to sense the
environment. Based on the new measurement xn+M⋆ and its knowledge of the
estimate x̂n+M⋆ = αM⋆

x̃n performed by the FC, the device chooses whether to
immediately transmit the new data (if |xn+M⋆ − αM⋆

x̃n|2 > ε) or keep sleeping
for M ′(xn+M⋆) additional time slots. In the latter case, the prediction error
ǫj(L⋆) at slot j ≥ n + M⋆ depends on the estimate of the FC, which is based
on the last received data x̃n, and on the expected evolution of the time series,
which is based on the last sensed data xn+M⋆ :

ǫj(L⋆) = |xn+M⋆+j − x̂n+M⋆+j |
=
∣

∣

∣αjxn+M⋆ + wj − αM⋆+j x̃n

∣

∣

∣

=
∣

∣

∣αjxn+M⋆ + wj − αM⋆+j(xn + v(L⋆))
∣

∣

∣

(6.16)

where wj ∼ N (0, σ2
j ) was defined in (6.12). The other terms are known by

the transmitter, because xn+M⋆ and xn are the new and old sensed data, and
the processing error v(L⋆) depends on L⋆, already obtained with Algorithm 1.
Then, the error is normally distributed: ǫj(L⋆) ∼ N

(

µj(L⋆), σ2
j

)

, with mean

µj(L⋆) = αj
(

xn+M⋆ − αM⋆

xn − αMv(L⋆)
)

. (6.17)

Since ǫj(L) has non-zero mean, its square is proportional to a non-central
χ2 random variable with one degree of freedom and non-centrality parameter
equal to the ratio between the squared mean and the variance of ǫj(L), i.e.,

1

σ2
j

ǫ2j (L⋆) ∼ χ2
1

(

(µj(L⋆))
2

σ2
j

)

. (6.18)
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Interference and communication parameters
Time slot duration T 100 ms
Density of sensor devices λs 0.001 nodes/m2

Cell radius rmax 500 m
Received power3 Prx 4 nW
Transmission bandwidth Bw 125 kHz
Noise power Ns 2.5 · 10−15 W

Signal model and QoS parameters

Autoregressive model parameters
α 0.99
σ2 0.001

Initial value x0 0.8
Maximum message length Lmax 24 bit
Threshold on P [|xn − x̂n|2 > ε] vth 0.2

Kulau et al. strategy [117]
Maximum sleep time tmax 50 slots
Weighting exponent φbb 2
Sliding window size ns 30

Table 6.1: Simulation parameters.

It is then straightforward to compute the complementary CDF of ǫ2j (L⋆) for
a given value of ε and derive M ′ as the largest j for which such value is lower
than vth, as done to find M0(L).

Besides allowing the sensing devices to save energy, this dynamic adaptation
of the sleeping phase also reduces the interference on the channel. However,
for mathematical tractability, in the optimization routine the interference is
calculated in the pessimistic case, i.e., considering sender devices to sense and
transmit messages exactly every M slots, ignoring the dynamic sampling rate
adaptation carried out by each device.

6.4.4 Numerical evaluation

To analyse the performance gain of the proposed system, a simulation is per-
formed with parameters set as in Tab. 6.1.

Fig. 6.1 shows an example of the original time series and the corresponding
estimate with the technique described in Sec. 6.4.3. The match is very good,
and the squared error is almost always below the given threshold ε. Supported
by this first result, the proposed strategy (named dynamic) is compared against
other two techniques. The static technique is the same as the strategy proposed
in this study, but without the dynamic extension of the sleeping phase. The
other one is the sample rate adaptation technique described by Kulau et al. [117],
which uses Bollinger bands to dynamically estimate the next sleeping time based
on the variability of the previously seen data. In particular, the time between
two sample acquisitions is calculated as

twait(n) =
tmax

1 + (bbb σbb(n))φbb
, (6.19)

3Note that this value allows devices at the cell edge to use the ETSI imposed limit of 25
mW on the transmission power for the 868 MHz band.
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Figure 6.1: Example of a time series and its estimate with the proposed dynamic
technique (with ε = 0.0158).

where σbb(n) is the standard deviation of the last n acquired samples, tmax

is the maximum sleeping duration and bbb is an hyperparameter defining the
width of the Bollinger bands.

Fig. 6.2 shows the probability that the squared error at the FC stays within
threshold ε, as ε increases. To guarantee a fair comparison, bbb is set so that the
probability that the squared error is lower than ε is the same as for the proposed
strategy.4 We can see that the proposed technique respects the QoS constraint
with a large margin. Fig. 6.2 actually shows that the proposed dynamic pol-
icy is overly conservative, since the interference level considered is obtained by
the static optimization of M , but the dynamic adjustment of the sleeping in-
terval lowers the actual interference on the channel. Also the static policy is
conservative, because, for analytical tractability, in the optimization routine of
Algorithm 1 we consider every message to be repeated the expected number of
transmissions needed to get a successful reception (see Eq. (6.11)). Instead, a
more precise optimization could be performed by considering the CDF of the
number of time slots a node waits from the last successful transmission.

To evaluate the energy consumption, the sum of the circuit and transmission
power is set to 40.5 mW, and the sensing energy is set to 495 µJ.5 As we can
see in Fig. 6.3, the proposed strategy is between 15% and 50% more efficient
than the technique described in [117], especially when a lower error is required.
Also, note that the dynamic policy, compared to the static one, saves energy
by postponing transmissions when the estimation values are still sufficiently

4Namely, the used values are bbb = [55.0, 48.1, 32.9, 22.8, 16.4, 12.0, 9.5].
5These values have been determined by considering the use of the Atmel AT86RF212B

radio transceiver and the Infineon KP275 digital pressure sensor.
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Figure 6.2: Probability that the squared error stays within threshold ε, with
95% confidence intervals.
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Figure 6.3: Mean energy consumed per slot, with 95% confidence intervals.

accurate. However, if the value of ε is too large, the transmission can be often
postponed, but the device may have to perform frequent sensing operations.
In this situation, as shown in Fig. 6.3, the energy efficiency loss can be quite
significant and the static strategy may outperform the dynamic one.

6.5 A semi-deterministic strategy for the report-

ing of integral values

The model presented here is similar to the previous one, but, rather than fo-
cusing on the time evolution of the actual processes measured by the sensor
nodes, here we are concerned with applications that focus on the integral of
such measurements. Although these two scenarios are seemingly similar, the
resulting optimization strategies are significantly different, as are their possible
future developments.
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6.5.1 Scenario

As mentioned, we focus on a scenario where several sensor nodes monitor some
processes of interest and report their measurements to a common FC, which is
interested in tracing the time integral of each single process xn. For example,
the integral measure may refer to the volume of fluid processed by an industrial
pump, the distance covered by a fork lift in an automated warehouse, the amount
of water used to irrigate a cultivation, and so on.

In the remainder of this section, first the model of the monitored process is
introduced and then the measurement procedure is described.

Monitored process model

Assume that time is slotted and that each sensor monitors a signal {xn}n≥0,
where n is the time index.6 Also, consider the signal xn to be time-correlated
and that it can be modeled as a first-order AR process

xn = αxn−1 + un , n ≥ 1 , (6.20)

where α is the correlation parameter, and un represents the process noise, which
is i.i.d. over time and modeled as a zero-mean gaussian r.v., i.e., un ∼ N (0, σ2).
The integral process is then defined as yn =

∑n
k=1 xn. To guarantee that both

xn and yn are asymptotically stationary, we set |α| < 1.

Process measurement model

Assume that the sensor nodes can sample the monitored process xn with a cer-
tain, maximum accuracy, and then perform a lossy compression of their mea-
surements to reduce the size of the transmitted messages. Moreover, suppose
that the node also transmits the measurement of the integral process yn with
maximum accuracy. The resulting packet size L can take values in a finite set
L, and the smaller the packet, the larger the distortion of the compressed mea-
surement. The correct reception of a data packet, therefore, makes it possible to
completely nullify the estimate error of the integral measure yn at the receiver,
while the current value of the process will be known with an error that depends
on the compression level adopted by the transmitter.

Therefore, the current data sent by a node can be modeled as x̃n(L) =
xn + v(L), where v(L) represents the error due to the lossy compression of the
original signal xn. For the sake of simplicity, assume v(L) to have zero-mean
normal distribution, v(L) ∼ N (0, ω2(L)), with variance ω2(L) that increases
for higher compression ratios, i.e., for smaller values of L. In this work, the
distortion function considered, also used in [142], is

ω2(L) = a

(

L− L0

Lmax − L0

)−b

− 1 (6.21)

where L0 is the size of the fixed part of the packet (header and non-compressed
data), Lmax > L0 is the maximum packet length, and a and b are parameters
that depend on the compression algorithm.

6For ease of notation, the sensor index is omitted. However, in general, different sensors
may monitor different phenomena.
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The temporal correlation of the signals can also be exploited to reduce the
sampling and transmission rates and, by that, save energy by switching to a
sleep mode. If data xn is not received (because the measurement was either not
taken by the sensor or not successfully delivered to the FC), the FC estimates
it based on the last received data and the data correlation profile, obtaining
x̂n. Therefore, the objective is to guarantee that the cumulative error at the
FC, which is affected by both the compression of the transmitted data and
the estimation of the missing samples, does not exceed a given threshold. In
particular, consider the absolute value of the cumulative error En after n slots
since the last successful transmission, i.e.,

En = yn − ŷn =
n
∑

j=1

(xj − x̂j) , (6.22)

with En = 0 for n = 0 (i.e., in case of consecutive successful transmissions).
We observe that, under the considered assumptions, the error (6.22) has

zero mean, but its variance grows with n, because of both the lack of new
measurements from the sensor and the distortion that affects the last received
measurement. Therefore, the probability that the error exceeds a given thresh-
old becomes progressively higher in time, until a new packet will be correctly
received, renewing the estimate process. Note that, even if the focus is on
yn, the current measure xn is nonetheless needed for the estimation, which is
fundamental to reduce the sampling and transmission rates and, by that, save
energy.

Since the error En is reset at every successful transmission, without loss of
generality we can use index 0 to indicate the slot when the last message from
a given sensor was received and consider n as the number of slots passed since
the last successful reception. Then, by leveraging on the temporal correlation
profile, we can write:

xn = αnx0 +
n
∑

ℓ=1

αn−ℓuℓ = αnx̃0 − αnv(L) +
n
∑

ℓ=1

αn−ℓuℓ, (6.23)

where x̃0 is the latest compressed data sample available at the FC. Considering
that uj has zero mean, the estimate with minimum MSE in slot n is x̂n = αnx̃0.
This makes the reconstruction error of that measurement equal to the sum of
the distortion αnv(L) and the estimation error

∑n
ℓ=1 α

n−ℓuℓ. It follows that

En =

n
∑

j=1

(xj − x̂j) =

n
∑

j=1

[

−αjv(L) +

j
∑

ℓ=1

αj−ℓuj

]

=

=

n
∑

j=1

−αjv(L) +

n
∑

j=1

j
∑

ℓ=1

αj−ℓuℓ .

(6.24)

We can express the first error term in (6.24), which is associated to the
distortion due to data compression, as

E ′
n =

n
∑

j=1

−αjv(L) =
αn+1 − α
α− 1

v(L), (6.25)
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which means that E ′
n ∼ N

(

0,
(

αn+1−α
α−1

)2

ω2(L)

)

. Similarly, the second sum

in (6.24) becomes

E ′′
n =

n
∑

j=1

j
∑

ℓ=1

αj−ℓuj =

n
∑

ℓ=1

uℓ

n
∑

j=ℓ

αj−ℓ =

n
∑

ℓ=1

uℓ
1− αn−ℓ+1

1− α . (6.26)

The terms {uℓ} are zero-mean i.i.d. gaussian r.v.s, so that E ′′
n is a zero-mean

gaussian r.v. with variance

σ2
e(n) =

n
∑

ℓ=1

σ2

(

1− αn−ℓ+1

1− α

)2

=
σ2

(1− α)2

(

n− 2
α(αn − 1)

α− 1
+
α2(α2n − 1)

α2 − 1

)

. (6.27)

In conclusion, the cumulative error over a window of size n is En =
n
∑

j=1

(xj − x̂j) =

E ′
n + E ′′

n , and follows a normal distribution N (0, σ2
t (n)), where

σ2
t (n) = σ2

e(n) +

(

αn+1 − α
α− 1

)2

ω2(L), (6.28)

for n = 1, 2, . . ., and σ2
t (0) = 0. Note that, as expected, σ2

t (n) is increasing with
the window size n.

Remark 3. Although the analysis described in this section is tailored to the AR
model, the procedure can be adapted to different signal models. The core step
consists in characterizing the expected error at lag n (as in Eq. (6.22)). To this
purpose, it is necessary to identify the temporal correlation of the signal and
the best estimate that can be made (based on the correlation model) so that
the estimation error is minimized. Also the distortion v(L) introduced by data
compression can be modeled differently, depending on the actual algorithm used
for compression.

6.5.2 Channel access scheme

As discussed at the beginning of Sec. 6.5.1, the goal is to design a transmis-
sion strategy that, given a desired level of QoS, prolongs the lifetime of the
devices. The proposed scheme assumes a duty-cycled operation mode, where
transmissions are performed after each sampling.

As mentioned, the energy consumed by a device for packet transmissions
is the same for each attempt. As a consequence, minimizing the energy con-
sumption of a node is equivalent to maximizing (under the QoS constraint) the
mean period between its consecutive transmissions. In the following, this last
parameter, which is the reciprocal of the persistency constant P, is referred to
as mean sleeping period, and denoted by S(L), being a function of the packet
size L.

In particular, capitalizing on both the sampling and data compression ap-
proaches described in the introduction, we need to determine i) the mean du-
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ration S⋆ of the sleeping window,7 and ii) the size L⋆ of the compressed packet
that maximizes the lifetime while satisfying the QoS constraint. Clearly, both
decisions i) and ii) induce some tradeoffs between energy efficiency and accuracy
of the monitoring service at the FC. A larger sleeping window corresponds to
fewer transmissions and therefore less energy consumption and interference but,
on the other hand, leads to higher reconstruction errors of the monitored phe-
nomena as most of the data need to be estimated by the FC. Viceversa, a larger
packet size L reduces the reconstruction error because data is less compressed,
but reduces the success probability since it requires a larger SINR threshold.
The two tradeoffs are intertwined: since a larger L results in a reduced success
probability, more transmissions are needed for a given QoS, and the sleeping
window needs to be smaller.

As reported in Sec. 6.5.1, the reconstruction error En is a normal r.v., there-
fore its magnitude, |En|, is half-normally distributed with scale parameter σt(n).
Also, the reconstruction error is reset at every successful transmission, since
the device also sends the integral measurement. As a consequence, the pa-
rameter σt(n) follows a sawtooth pattern that renews itself at each successful
transmission, i.e., every W slots (the time between two consecutive successful
transmissions, which is stochastic).

This means that the QoS constraint can be defined by focusing on the error
in a window of length W . More specifically, we can consider the error at the end
of a window, EW , and define the QoS as an upper threshold vth on the mean
probability that |EW | exceeds a given value ε.

The optimization problem can then be formulated as follows

S⋆ , max
L∈L

S(L) , (6.29a)

subject to: E [Pr (|EW −1| > ε)] < vth , (6.29b)

where the expectation is taken over the statistical distribution of W , while S(L)
is the mean sleeping period when the selected packet size is L.

The sleeping periods are assumed to be i.i.d. geometric r.v.s with parameter
1/S(L). Moreover, considering that the number of trials before success is also
geometrically distributed with parameter ps(L), the distribution of W turns out
to be geometric, with parameter ptx = ps(L)/S(L). Therefore, the condition
(6.29b) can be expressed as

∞
∑

w=1

ptx (1− ptx)
w−1

Qhf (ε;σt(w − 1)) < vth ; (6.30)

where Qhf(·) is the complementary CDF of the half-normal distribution and
σt(·) is the square root of the variance given by (6.28), with σt(0) = 0.

To determine S⋆ (and the associated L⋆), an iterative approach is proposed,
which is detailed in Algorithm 2. For each possible L ∈ L, the corresponding
optimal mean sleeping duration S(L) is computed. This is obtained through
an alternated optimization of the duty cycle and determining the corresponding
success transmission probability, until convergence. Then, L⋆ = argmaxS(L)
is chosen, which yields S⋆ = S(L⋆) (Line 8). The iterative procedure to de-

7If a device has an additional sensor that provides the integrated measure, it can avoid
sensing the environment during the sleeping phase, otherwise it needs to keep sensing even
during this phase. This does not impact the optimization procedure, since the sensing energy
is a constant.
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Algorithm 2 Transmission strategy

1: Initialize S← vector of size |L| ⊲ Contains S(L) ∀L
2: for L ∈ L do
3: Set ps(L) = 1
4: while S has not converged do
5: S ← max{S(L) : cond. (6.30) holds true}
6: ps(L)← eq. (6.6) with P = 1/S

7: S(L)← S

8: S⋆ = max S(L), L⋆ = argmax S(L)

Interference and communication parameters
Slot duration T 0.1 s
Density of sensor devices λ {500, 1000} devices/km2

Cell radius rmax 500 m
Received power8 Prx 4 nW
Transmission bandwidth Bw 125 kHz
Noise power Ns 2.5 · 10−15 W
Sensing energy Es 495 µJ

Signal model and QoS parameters

Autoregressive model parameters
α 0.99
σ2 0.001

Initial value x0 0.8
Minimum packet size L0 24 bits
Maximum packet size Lmax 48 bit
Compression error power ω(L) a = b = 0.05
Shannon gap coefficient β 1
Threshold on E

[

Pr
(

En > ε
∣

∣S(L)
)]

vth 0.3

Table 6.2: Simulation parameters

rive S(L) for a given L corresponds to the instructions in the while cycle in
Algorithm 2. Initially, the success probability is set to 1, as if there were no
interference, and the algorithm determines the corresponding mean sleeping du-
ration S, i.e., the one that satisfies the QoS requirement (6.30) when ps(L) = 1
(Line 3). By adopting a mean sleeping period S, however, the success proba-
bility will actually be lower than 1 because of the interference caused by the
different nodes, so that the QoS constraint will not be satisfied. The value of
ps(L) is hence updated for the current value of the mean sleeping period S,
evaluating (6.6) with P = 1/S (Line 6). The procedure is repeated iteratively
until convergence (Lines 4-6).

6.5.3 Numerical evaluation

Fig. 6.4 shows the optimal value of the mean sleeping period, S⋆ when varying
the value of ε, for two values of the node density λs. We can observe that
the sleep period grows with ε, as expected since the QoS constraint becomes

8Note that this value allows devices at the cell edge to use the ETSI imposed limit of 25
mW on the transmission power for the 868 MHz band.
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Figure 6.4: Optimal mean sleeping period S⋆ for different thresholds b, for
different node densities λs.

progressively less strict, thus allowing for less frequent transmissions. Further-
more, the mean sleep duration decreases for higher node densities, in order to
counteract the larger packet collision probability. We observe that, by further
increasing the node density, the QoS constraint can no longer be guaranteed for
smaller values of ε.

To better assess the performance of the proposed strategy, it is compared to
a naive approach where the device senses the data at each time slot (consuming
a certain amount of energy Es) and transmits it if the absolute error |En| is
larger than a given threshold ρ(ε). In order to get similar results between the
proposed and the naive strategies in terms of QoS (i.e., equal Pr (|En| > ε)), ρ(ε)
grows from 1.7 to 1.95 as ε is varied from 0.3 to 2.2. The simulation parameters
are reported in Tab. 6.2.

Given that both strategies satisfy the QoS constraint, both of them can be
used in the described scenario. However, because of the energy constraints, the
performance must also be assessed in terms of energy efficiency. The energy effi-
ciency ε is defined as the overall average energy consumption rate, i.e., the mean
energy spent by the nodes in one slot. The energy efficiency of the proposed
method can be easily computed as

ε =
PtxT + Es

S⋆
. (6.31)

The energy efficiency of the naive protocol, instead, cannot be easily determined
in mathematical form, and is evaluated only through simulations. The compar-
ison is shown in Fig. 6.5, where we can see that the naive strategy requires a
much larger amount of energy, mainly due to the continuous sensing. This is
avoided by the proposed strategy, which samples the signal more sporadically,
thus saving energy, while guaranteeing the same QoS level of the naive protocol.
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Figure 6.5: Average energy used per slot for sensing and transmission, for dif-
ferent node densities λs. Solid lines: proposed protocol (stochastic). Dashed
lines: naive protocol.

6.6 A random strategy for the reporting of in-

stantaneous values

In the following, we aim at designing a compression and communication proto-
col that targets a given QoS, measured in terms of reconstruction error at the
FC, while minimizing the devices energy consumption. The goal is to detect
when the monitored signal exceeds a predefined threshold. The use case is very
similar to that in Sec. 6.4, but with a major difference. While in Sec. 6.4 a de-
terministic channel access strategy has been considered, here, at each time slot,
a device transmits with a certain probability that depends on the time elapsed
since its last correct transmission and the expected error at the FC. Differently
from Sec. 6.4, here data compression is not used; the proposed strategy is a
mix between sampling compression and communication compression. In fact,
the devices solely sense the environment when they want to transmit, thus in
a probabilistic way. Moreover, this framework is general and can accommodate
different scenarios: it is possible to use different functions for the transmission
probability and different models for the monitored signal, where the only re-
quirement is to have a characterization of the expected prediction error over
time.

6.6.1 System model

As in the previous sections, each sensor node tracks a temporal signal of interest
{xn}, where n ∈ N is the slot index. Different devices may measure different
signals, but the node index is omitted for the sake of a simpler notation. The
sensory data is measured only in correspondence of a transmission attempt to
the FC, otherwise the node is in an energy-preserving sleep mode. Also, it is
assumed that each sensing operation requires a fixed amount of energy.
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6.6.2 Channel access scheme

We consider a probabilistic slotted ALOHA channel access scheme. Each device
has a probability ptx(j;ϕ) of waking up to transmit a packet, which depends
on the number of slots j since the last successful transmission and a number
of parameters ϕ = {ϕ1, ϕ2, . . .}, which are the optimization variables. Notice
that frequent transmissions can potentially improve the reconstruction accuracy
because they reduce the estimation error, but deplete the battery faster and also
generate more interference, which may cause packet losses. The objective is to
determine the transmission probabilities {ptx( · ;ϕ)} that guarantee a desired
level of accuracy in the tracking process and, at the same time, optimize the
energy usage.

In Sec. 6.6.1 it has been assumed that each sensing and transmission op-
eration requires the same amount of energy. Consequently, maximizing the
lifetime of a device is equivalent to minimizing the number of transmission at-
tempts and sensing operations, and, thus, to maximizing the mean time interval
τtx between two consecutive transmission attempts. Such a maximization must
be performed while guaranteeing a certain QoS, which is here defined in terms
of a threshold vth on the average outage probability. The outage probability
after j slots since the last received data is defined as the probability that the
squared signal prediction error exceeds a threshold ε, i.e.,

pout(j) = Pr
[

|xn+j − x̂n+j |2 > ε
]

, (6.32)

where n is the last slot where a sample was correctly received by the FC, while
xn+j and x̂n+j are the actual and the estimated signal in slot n+j, respectively.
Note that we suppose that the outage probability depends only on the lag j and
not on the absolute time n of the last correct reception because the prediction
error is reset to zero any time a new measurement is correctly delivered to the
FC. This yields pout(0) = 0. So, formally, our optimization problem is

ϕ
⋆ = argmax

ϕ

E [τtx|ptx( · ;ϕ)] (6.33a)

s.t. Ej [pout(j)] < vth (6.33b)

where E [·] denotes the expectation operator, that, with the subscript j, is in-
tended to be applied to the distribution of the random variable j. The optimal
transmission probability function is then given by ptx( · ,ϕ∗). In Sec. 6.6.3, a
model for the time evolution of the signal {xk} is proposed, and the correspond-
ing outage probability is derived. The QoS constraint (6.33b) can be expressed
as

pout = Ej [pout(j)] =
∑

j

pout(j)πj < vth (6.34)

where πj is the probability that, at any given time, the last successful transmis-
sion happened j slots before.

Solving Problem (6.33) is not trivial. First, we determine the expression
of the QoS constraint as a function of the transmission probability function
ptx( · ;ϕ). To this end, we have to derive the expression of the number of slots
τ needed to successfully deliver a message (hence, τ ≥ τtx) in terms of the trans-
mission probabilities and the probability ps of successful transmission. Then,
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Figure 6.6: Markov chain for the node state.

using the results of Sec. 6.3, we express ps as a function of the mean trans-
mission probability, which, in turn, depends on τ . An alternate optimization
allows us to derive both ps and τ , which are interrelated. Finally, we leverage
the knowledge about the success probability to obtain the objective function,
i.e., the mean time between two successful transmissions, given the transmission
probability function ptx( · ;ϕ).

Distribution of the lag τ

The number of slots since the last successful message delivery (i.e., the lag τ)
can be modeled as the state of the Markov Chain (MC) in Fig. 6.6. Starting
from state i, the next state of the MC is 1 if the device successfully transmits
a message, and i + 1 otherwise. These transitions happen with probability
ptx(i;ϕ)ps and 1−ptx(i;ϕ)ps, respectively, where we recall that ptx(i;ϕ) is the
probability that a device transmits after a lag of i slots. The success probability
ps depends on the channel gain and the interference produced by the other
nodes, which are assumed to be independent and stationary in time.

Assuming ptx(j;ϕ) and ps are given, the probability mass distribution of τ
equals the steady-state probability vector of the MC in Fig. 6.6. Writing the
equilibrium equations, we get

π1 = π0(1− ptx(0;ϕ)ps)

π2 = π1(1− ptx(1;ϕ)ps) = π0

1
∏

k=0

(1− ptx(k;ϕ)ps)

...

πi = πi−1(1− ptx(i− 1;ϕ)ps) = π0

i−1
∏

k=0

(1− ptx(k;ϕ)ps) (6.35)

with the additional normalization constraint

∞
∑

i=0

πi = 1 . (6.36)

By combining equations (6.35) and (6.36), we obtain

π0 =

{

1 +

∞
∑

i=1

i−1
∏

k=0

(1− ptx(k;ϕ)ps)

}−1

. (6.37)
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while πi for any i > 0 is given by (6.35).

Observation. The sum in (6.37) has an infinite number of terms, which
in practice is difficult to evaluate for an arbitrary choice of the transmission
probability function ptx( · ;ϕ). However, when the system is stable, the sum
in (6.37) converges, so that it can be approximated with the desired level of
accuracy by considering a finite number ñ of terms.

Success probability ps

Consider Eq. (6.6), where λs(P) = λEn [ptx(j;ϕ)] and Γ◦ does not depend on
the packet size L, which is now fixed. We have

ps = exp

(

−λπR2
c Ej [ptx(j;ϕ)]

Γ◦

1 + Γ◦
− Γ◦ Ns

Prx

)

, (6.38)

which depends on the mean transmission probability

En [ptx(n;ϕ)] =
∞
∑

i=0

ptx(i;ϕ)πi . (6.39)

The steady-state probabilities π = [π0, π1, . . . ] are computed as described ear-
lier. Notice, however, that π and ps are strictly intertwined, as one is needed
in order to derive the other and viceversa. To deal with this issue, we can use
a fixed-point approach: we initially set ps = 1 and compute the corresponding
steady-state probabilities as in (6.35), which are used to update the probability
of successful transmission as in (6.38), and so forth until convergence. We prove
in the following that such point of convergence exists, therefore the iterative
method is always able to terminate.

Proof of the existence of the point of convergence. Eq. (6.38) can be written in
the following format

ps = A exp (−BA(ps)) (6.40)

where A > 0 and B > 0 collect the constant terms and coefficients in (6.38),
while A(ps) =

∑∞
i=0 ptx(i,ϕ)πi is the “area” covered by the discrete function

given by the Hadamard (entrywise) product of the vectors
ptx(ϕ) = [ptx(0,ϕ),ptx(1,ϕ), . . .] and π, the latter depending on ps.

We observe from (6.35) that the steady-state distribution π is such that
πi ≥ πi+1 for any i. Furthermore, consider two values ps and p′

s < ps; it is

π′
i+1

πi+1
=
π′

i(1− p′
s ptx(i,ϕ))

πi(1− ps ptx(i,ϕ))
≥ π′

i

πi
(6.41)

for any i. Because of the normalization condition, we then have a state k such
that π′

i/πi ≤ 1 for all i ≤ k, and π′
i/πi ≥ 1 for all i > k. As ps progressively

decreases towards zero, the state drift of the Markov Chain increases, so that
the probabilities of being in the lower states decrease, while those of being in
the higher states increase, i.e., the steady-state distribution tends to flat.
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Figure 6.7: Markov chain for the node state with explicit indication of failure
or sleep status.

Also, we have

A(ps)−A(p′
s) =

∞
∑

i=0

ptx(i,ϕ)(πi − π′
i) =

=
k
∑

i=0

ptx(i,ϕ)(πi − π′
i) +

∞
∑

i=k+1

ptx(i,ϕ)(πi − π′
i) . (6.42)

Focusing on the second term in (6.42) and considering that (i) ptx(i;ϕ) is
monotonic non-decreasing with i, and (ii) πi − π′

i ≤ 0 for i > k, it results
that

∑∞
i=k+1 ptx(i,ϕ)(πi − π′

i) ≤ ptx(k + 1,ϕ)
∑∞

i=k+1(πi − π′
i). Since the

steady-state probabilities sum to 1, we can also see that
∑∞

i=k+1(πi − π′
i) =

(1−∑k
i=0 πi)− (1−∑k

i=0 π
′
i) = −∑k

i=0(πi − π′
i). Thus, (6.42) becomes

A(ps)−A(p′
s) ≤

k
∑

i=0

(πi − π′
i) (ptx(i,ϕ)− ptx(k + 1,ϕ)) ≤ 0 , (6.43)

i.e., the area function turns out to be monotonic non-increasing with ps. There-
fore, f2(ps) , A exp (−BA(ps)) is monotonic non-decreasing with ps.

Since A(ps) ≥ 0 and A = exp
(

−Γ◦ Ns

Prx

)

< 1, it results that f2(ps) < 1.

Also, A(ps) =
∑∞

i=0 ptx(i,ϕ)πi ≤
∑∞

i=0 πi <∞, so that f2(ps) > 0.

Functions f1(ps) , ps and f2(ps) are continuous in the interval ps ∈ (0, 1).
Function f1(ps) is a straight line from 0 to 1, while f2(ps) is a monotonically non-
increasing function from x1 > 0 to x2 < 1, thus have at least one intersection.

This allows us to calculate π and ps given ϕ. However, the complete so-
lution to the optimization problem, which means finding the optimal value of
ϕ, requires an external optimization routine. To this end, we now analyse the
objective function.

Mean time E [τtx] between transmissions

The objective function (6.33a) is the expected time between two consecutive
transmission attempts (regardless of their outcome). In order to derive its ex-
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pression in terms of the transmission probabilities {ptx(j;ϕ)}, we introduce an
MC equivalent to that of Fig. 6.6, where each original state i > 0 (which rep-
resents a lag of i slots since the last successful transmission) is split into two
distinct states: ifail and isleep, corresponding to an unsuccessful transmission
and a sleep phase in the last slot, respectively. State 0 remains unchanged. As
shown in Fig. 6.7, starting from state ifail or isleep it is possible to transition to
three different states:

• State 0 in case of successful transmission in the current slot, which resets
the lag. This happens with probability ptx(i;ϕ)ps.

• State (i+ 1)fail if the device transmits in the current slot, so that the lag
i increases by 1, but the packet is lost. This happens with probability
ptx(i;ϕ)(1− ps).

• State (i+1)sleep if the device sleeps in the current slot. This happens with
probability 1− ptx(i;ϕ).

The same transitions happen from state 0. The steady-state probabilities π̃ of
the expanded MC can be directly computed from those of the original MC (π)
as follows















π̃0 = π0

π̃ifail
= ptx(i− 1;ϕ)(1− ps)πi−1 i > 0

π̃isleep
= (1− ptx(i− 1;ϕ))πi−1 i > 0 .

(6.44)

Note that π̃ifail
+ π̃isleep

= (1− ptx(i− 1;ϕ)ps)πi−1 = πi for i > 0 (see (6.35)).
To compute the expected time E [τtx] between two transmission attempts, we

introduce Ttx(i), which defines the number of slots until the next transmission,
given that the MC is in state ifail, with i > 0, or in i = 0. Since these states
correspond to a transmission attempt, the time till the next transmission is at
least h slots if the device sleeps in slots i, i+ 1, . . . , i+ h− 1, i.e.,

Pr [Ttx(i) ≥ h] =

h−1
∏

k=0

(1− ptx(i+ k)), (6.45)

This yields

E [Ttx(i)] =

+∞
∑

h=1

Pr [Ttx(i) ≥ h] =

+∞
∑

h=1

h−1
∏

k=0

(1− ptx(i+ k)). (6.46)

Averaging over the starting state ifail, it is possible to calculate the expected
time between two transmission attempts as follows

E [τtx] = A

(

+∞
∑

i=1

E [Ttx(i)] π̃ifail
+ E [Ttx(0)] π̃0

)

(6.47)

where A is a normalization factor required by the definition of Ttx, which con-
siders only paths starting from states ifail or i = 0. It follows that

A =
1

∑+∞
i=1 π̃ifail

+ π0

(6.48)

In this way, the objective function (6.33a) is completely defined.
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Summary of relations

The following is a guideline through the entire procedure to explicitly write the
optimization problem described in (6.33) and obtain a numerical evaluation of
the optimal policy.

We introduce an MC to model the number of slots since the last successful
transmission, and derive its steady-state probabilities π, reported in (6.35) and
(6.37). Such probabilities depend on the expected outcome of a transmission; we
can thus use a stochastic geometry reasoning to derive the success probability ps,
which is reported in (6.38) and depends on the mean transmission probability
Ej [ptx(j;ϕ)]. In turn, this quantity depends on the steady-state probabilities
of the lag from the last successful transmission. Since a mutual relation between
π and ps is induced, we adopt a fixed-point iteration approach to derive them
jointly. The expected QoS outage probability is calculated from the steady-state
probabilities of the lag from the last successful transmission, as for (6.34).

The objective function is obtained by introducing a second MC, equivalent
to the first one, but where the two conditions of failed transmission and sleep
mode are separated into two distinct states for each possible lag. This makes
it possible to compute the expected time between two consecutive transmission
attempts, as in (6.47) and (6.48).

6.6.3 Proposed scenario

The framework described and analysed in Sec. 6.6.2 is rather general and can ac-
commodate different scenarios. In particular, it is possible to employ arbitrary
signal models and transmission probability functions. Here, a specific model for
the monitored signals is considered and it is employed to derive the correspond-
ing outage probability, which is needed to define the QoS constraint (6.33b).
Also, a possible parameterized model for the transmission probability function
is proposed.

Signal model

To keep the analysis simple, here we consider the AR model with degree 1
already introduced in the previous sections. Therefore, the time series evolves
as

xn = αxn−1 + uk , n > 0 , (6.49)

with α a non zero constant and un ∼ N (0, σ2) a zero mean Gaussian innovation
term, with variance σ2. As before, we set |α| < 1, so that {xn} is a stable
process.

The signal in slot n+ j can then be expressed in terms of the signal in slot
n as xn+j = αjxn + wj , where wj =

∑j
k=1 α

j−kun+k. The signal estimated by
the FC is x̂n+j = αjxn, while the estimation error wj is a zero-mean normal
r.v., wn ∼ N (0, σ2

j ), with variance reported in (6.13).
In conclusion, the squared error after j steps from the last known value,

|xn+j − x̂n+j |2, follows a Gamma distribution, w2
j ∼ Gamma(Kj , θj), where

the shape and scale parameters are Kj = 1/2 and θj = 2σ2
j , respectively. The

outage probability (6.32) becomes

pout(j) = 1− Fw2
j
(ε), (6.50)
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Figure 6.8: Transmission probability function resulting from the optimization
procedure (λ = 0.1 devices/m2).

where Fw2
j
(·) is the cumulative density function of the squared estimation error

w2
j at lag j.

Although the AR model is very simple, it can provide a good representation
of real-world time-correlated time series. The performance of the proposed
algorithm used with a real time series, modeled as an AR signal, is shown in
Sec. 6.6.4.

Transmission probability function

The model in Sec. 6.6.2 assumes that the transmission probability function can
be defined by a set of parameters ϕ. Intuitively, the transmission probability
should increase (or, at least, not decrease) with the lag j in order to limit the
estimate error that tends to grow with j. Furthermore, a non-decreasing proba-
bility function guarantees the convergence of the iterative process to determine
the success probability ps and the steady-state probability distribution of the
MC of Fig. 6.6, as explained previously.

We can, for example, model the transmission probability function as a gen-
eralized sigmoid

ptx(j;ϕ) =
1

1 + e−ϕ1(j−ϕ2)
, j ≥ 0 ; (6.51)

where ϕ1 defines the steepness of the curve, while ϕ2 represents the horizontal
shift. Notice that ϕ2 ≤ 0 yields a concave function. By tuning the parameters
ϕ1 and ϕ2, the generalized sigmoid function can well approximate a number
of cumulative probability distributions, thus being particularly suitable for our
purpose. However, we remark that this framework can be applied to any other
parametric probability distribution function. Fig. 6.8 shows some examples
of the curve ptx(j;ϕ) for different QoS constraints when the device density is
λ = 0.1 devices/m2.

Solution

From (6.13) and (6.50), it is apparent that, after each successful transmission,
the outage probability steadily grows in time, till the next successful trans-
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Interference and communication parameters
Time slot duration T 100 ms
Cell radius rmax 100 m
Received power9 Prx 1 nW
Transmission bandwidth Bw 125 kHz
Noise power Ns 1.25 · 10−15 W

Signal model and QoS parameters

AR model parameters
α 0.99
σ2 0.001

Initial value x0 0.8
Threshold on Eτ [pout(τ)] vth 0.1
Error threshold ε 0.04

Kulau et al. strategy [117]
Maximum sleep time tmax 50 slots
Weighting exponent φbb 2
Sliding window size ns 30

EDSAS [119]
EWMA coefficient – long ρlong 0.2
EWMA coefficient – short ρshort 0.8
EWMA reset threshold η 1

Table 6.3: Simulation parameters.

mission, which occurs after τ steps. However, the relation between τ and the
optimization variable ϕ is quite complex. Also, the optimization problem (6.33)
is in general not convex, so that analytical solutions cannot be found. Conse-
quently, the solution to the problem has been found by using numerical methods,
specifically the routines available in the MATLAB Optimization Toolbox.

6.6.4 Numerical evaluation

The proposed strategy has been validated by means of simulations to prove the
scalability of this approach and to show the improvements compared to the state
of the art. In particular, the performance has been studied in terms of QoS,
i.e., outage probability, and energy efficiency. The values of the parameters
used in the simulations are reported in Tab. 6.3. Also, energy calculations are
normalized to the cost of each joint sensing and transmission operation, implying
that the normalized energy can be seen as the fraction of slots where a device
is awake.

In Fig. 6.9 we can see an example of the estimate of the proposed algorithm
for λ = 0.001 devices/m2 and ε = 0.08. In the following, the effect of the device
density on the performance is analysed and the proposed strategy is compared
against two other state-of-the-art approaches from the literature.
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Figure 6.9: Example of original and estimated time series with vth = 0.1.
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Figure 6.10: Energy consumed for increasing device density.

Scalability on device density

To test the strategy in a massive access scenario, the outage probability is eval-
uated for increasing values of the devices density λ. The parameters of the AR
signal used for the simulation are given in Tab. 6.3. The outage probability ob-
tained with the simulation matches exactly the imposed threshold vth, even for
strict constraints. This proves that that the proposed strategy, when used with
AR signals, is able to cope with the increasing device density while maintaining
a QoS close to the desired value.

Fig. 6.10 shows the corresponding normalized energy consumption. Inter-
estingly, the amount of energy used is almost constant for the different device
densities. This proves that the proposed strategy is able to scale well, since it
proactively tunes the transmission probabilities in response to network conges-
tion, thus avoiding the negative effects of collisions on the channel.

9Note that this value allows devices at the cell edge to respect the limit of 25 mW imposed
by ETSI on the transmission power for the 868 MHz band.
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ε 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Kulau et al. bbb 9.1 8.1 7.217 6.5 4.1 4 3.94 2.78

EDSAS
αE 0.006 0.5 0.54 0.5 0.5 0.52 0.55 0.4
βE 0.006 0.5 0.54 0.5 0.5 0.52 0.55 0.4
Smax 3 3 4 3 3 4 4 4

Table 6.4: Parameters for Kulau et al. and EDSAS strategies to yield the same
error as the proposed strategy for λ = 10−3 devices/m2.

Comparison with previous strategies

Here, the proposed strategy is compared with two other techniques in the litera-
ture that address directly our use case, and that represent the typical approaches
to this problem. One is the strategy by Kulau et al., already introduced previ-
ously. The other strategy, named Exponential Double Smoothing-based Adap-
tive Sampling (EDSAS) [119], uses irregular data prediction to dynamically
change the sampling rate (up to a maximum sampling interval Smax), while
maintaining the error below a threshold δ. EDSAS starts with a 1-step predic-
tion and, as long as the prediction error stays below δ, the sampling interval K
is increased by 1 (until Smax); when the error exceeds δ, K is decremented by
1. In more detail, the strategy uses the Wright’s extension to the Exponential
Double Sampling technique, where a Kn-step prediction at time n is calculated
as x̂n+Kn

= Yn + KnMn. The coefficients Yn and Mn are, respectively, the
estimate and the trend of the signal at time n, and they are given by

Yn = (1− Vn)(Yn′ +Kn′Mn′) + Vnxn ; (6.52)

Mn = (1− Un)Mn′ + Un(Yn − Yn′)/Kn′ , (6.53)

where n′ is the instant when the previous sample has been taken (i.e., n =
n′ +Kn′). Also, the normalizing factors Vn and Un are given by

Vn = Vn′/(bn + Vn′) ; bn = (1− αE)kn′ ; (6.54)

Un = Un′/(dn + Un′) ; dn = (1− βE)kn′ , (6.55)

and depend on the hyperparameters αE and bE .
The algorithm includes an adjustment feedback based on exponentially weighted

moving averages (EWMA) to minimize errors due to unpredictable events that
suddenly change the estimated measurements. A long term moving average
(Slong) and a short term moving average (Sshort) are calculated using a stan-
dard moving average technique (Sn = ρxn′ + (1− ρ)Sn′) with the coefficient ρ
being equal to ρlong or ρshort, respectively. The ratio η = Slong/Sshort exceed-
ing a predefined threshold indicates a sudden change in the data, requiring the
sampling interval to be reset to 1.

Simulation outcome Fig. 6.11 shows the outage probability as ε increases
for λ = 10−3 devices/m2. The signal used in the numerical evaluation varies
between −20 and 50, therefore the considered values of ε correspond to a relative
error in the 0.4% − 1.4% range. To guarantee a fair comparison, the values of
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Figure 6.11: Outage probability of the considered schemes for
λ = 10−3 devices/m2, with 95% confidence intervals.

bbb (for the Kulau et al. strategy), αE, βE, and Smax (for EDSAS) are set so
that the outage probability is almost the same as for the proposed strategy. The
detailed values of these parameters are reported in Tab. 6.4. Moreover, since the
two abovementioned techniques are not tailored to AR signals, real world time
series are used in these simulations.10 Note that, to use the proposed strategy
with a real signal, it is sufficient to fit the data series to an AR model, i.e.,
determine the parameters α and σ2, and then use such approximation to feed
the algorithm. The resulting outage probability is better than the imposed one
due to the impossibility to completely capture the real signal behaviour with an
AR model, causing a small efficiency loss.

In Fig. 6.12 we can observe the energy efficiency of the considered protocols.
The proposed strategy is able to provide the desired QoS with an energy ex-
penditure that is significantly lower than those of the other approaches. This
is because of two reasons. First, the proposed approach is proactive, instead
of reactive, which means that, unlike EDSAS, it evaluates the error that the
estimate will have the next time the device wakes up, instead of simply increas-
ing or decreasing the sleeping time based on the past. Secondly, the proposed
strategy explicitly takes into account the effect of the interferers on the ability
of the FC to estimate the time series. Therefore, while the other approaches
neglect the effect of collisions, so that a lower transmission rate will always
result in a reduction of the estimation errors (at the cost of higher energy con-
sumption), the proposed strategy keeps into account that a lower transmission
rate may increase the number of collisions and, hence, eventually increase the
estimation error, in particular in massive access scenarios. The oscillating be-
havior of EDSAS is due to the fact the [119] does not specify how to set the
parameters, and thus it is necessary to manually tune the algorithm so that the
outage probability (Fig. 6.11) matches that of the proposed algorithm.

10The used time series come from the public dataset available online at https://www.ncdc.

noaa.gov/crn/qcdatasets.html. See H. J. Diamond et al., U.S. Climate Reference Network

after one decade of operations: status and assessment, Bull. Amer. Meteor. Soc., 94, 489-498,
2013
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Figure 6.12: Energy consumed by the considered schemes for
λ = 10−3 devices/m2, with 95% confidence intervals.

6.7 Conclusions

In this study, three novel channel access schemes for constrained devices in
WSNs have been presented. The common goal was to provide an accurate
estimate of the monitored signal at the FC while maximizing the energy effi-
ciency. The three techniques operate in different scenarios: for the techniques
described in Sec. 6.4 and Sec. 6.6 the interest was in instantaneous values of a
time series, therefore they aim at minimizing the error for each sample, while
the technique in Sec. 6.5 has been designed to minimize the cumulative error
of the time series. To meet the required QoS level, these techniques operate at
multiple levels, by balancing the optimal time interval between transmissions
and their optimal size. Unlike most of the state of the art techniques, the role
played by interference is also considered, as collisions impinge on both the QoS
and the energy consumption, especially in dense scenarios. This allows the pro-
posed strategies to obtain better performance than state of the art algorithms,
as shown in the numerical evaluation. The downside is the need for a more
complex algorithm to determine the transmission parameters that, on the other
hand, is still sufficiently lightweight to be run on embedded microcontrollers
and makes it possible to fine-tune the tradeoff between QoS requirements and
energy efficiency.
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Chapter 7

Cell Traffic Prediction

Using Joint

Spatio-Temporal

Information

The evolution of cellular networks from 4G to 5G will rely on adaptive techniques
in order to manage the increasing complexity of mobile systems [143]. Up to
now, cellular networks were designed using worst-case dimensioning, but the
increasingly strict capacity, latency and energy efficiency requirements, together
with the lower profit margins, make a smarter approach appealing to network
operators.

Anticipatory networking [144] is one of the most promising approaches in
smart network adaptation: the idea is to exploit knowledge of the dynamics of
the system in order to predict future network states and tailor the configuration
to the expected profile. There are several possible contexts for the prediction,
from a single user’s channel gain [145] to large-scale mobility patterns [146].
This study uses a joint exploitation of spatio-temporal data to improve the pre-
diction accuracy of standard regression methods. Several such methods from the
literature are tested on a publicly available dataset, highlighting the advantages
of the proposed approach.

7.1 Related work and contribution

In the scientific literature, cell load prediction techniques are studied because
of the potential gain they can provide to the performance of the network in a
wide range of scenarios, such as energy efficient communications and dynamic
network planning. In [147] the authors propose to use prediction techniques
based on traffic matrices collected for groups of Base Stations (BSs) under the
same coordinator in order to optimize the sleeping time of network elements,
while in [148] a classification and prediction method is applied to temporal
information given by Call Data Records in order to decide when and where it is
appropriate to deploy femto-cells. The spatio-temporal relation between cells is
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analysed in [149], where insights on the predictability of the traffic in a cellular
network are given; however, the authors do not attempt to predict future values
of the cell load, but use large-scale traffic patterns to examine the correlation.
The study in [150] uses traffic variations in cell neighborhoods, using a Markov
decision process model, in order to enable energy saving techniques. There are
other studies that consider the spatio-temporal context in cellular networks, but
their focus is on the prediction of mobility of users [151,152]. These can be then
exploited in association with some knowledge of the network topology, as done
in [153].

The novelty of this work with respect to previous studies is that, here, ma-
chine learning techniques that exploit temporal and spatial data jointly are
employed: a cell’s future load depends not only on its previous values, but also
on the loads of neighboring cells. This joint approach can improve the prediction
accuracy, especially in the noisiest and most challenging cases. This work focus
is on medium-term prediction with a range of tens of minutes; such a range is
still usable for network optimization, but is not as noisy and unpredictable as
short-term cell load.

7.2 Prediction techniques

All the techniques presented in this study are based on the exploitation of
spatio-temporal data, which was first proposed by Ohashi et al. [154]. In order
to jointly consider the spatial and temporal data, we need to define the concept
of spatio-temporal neighborhood. If a cell at a given instant is characterized by
its position in space and time, given by the vector (x, y, t), we define the distance
between two points as

di,j =

√

(

xi − xj

d0

)2

+

(

yi − yj

d0

)2

+ α

(

ti − tj
T

)2

, (7.1)

where d0 is the inter-cell distance and T is the time interval between mea-
surements. Note that the spatio-temporal distance between different instants is
non-zero even if the cell is the same, i.e., the spatial distance is 0. The parameter
α ≥ 0 is a weighting factor to combine the spatial and temporal measures.

The spatio-temporal neighborhood of a point m can then be defined as the
set of the discrete points in the dataset whose distance from m is smaller than
some radius β:

Nβ
m = {p : dm,p < β} . (7.2)

The points belonging to the spatio-temporal neighborhood are contained in
an ellipsoid in space-time, and, given the same β, a smaller α includes in the
neighborhood points which are further away in time. The cell load values zp of
the points within the neighborhood can be used in the prediction. In addition
to the pure values, we also use as input a series of indicators that capture some
of the most relevant dynamics of the cell load, as in [154].

Three indicators are implemented, which are listed below:

• The weighted mean is an average of the cell load values in the neighbor-
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hood, weighted by their spatio-temporal distance, and is given by:

ω(Nβ
m) =

1

|Nβ
m|

∑

p∈Nβ
m

zp

dm,p
(7.3)

• The spread is the standard deviation of the cell load values in the spatio-
temporal neighborhood:

σ(Nβ
m) =

√

√

√

√

1

|Nβ
m|

∑

p∈Nβ
m

(zp − z̄)2, (7.4)

where z̄ is the arithmetic mean of the cell load of all the points in the
neighborhood.

• The weighted tendency is given by the ratio between the weighted means
with two radii β1 < β2 (following [154], the chosen values are β2 = β =
2β1):

τ(Nβ1,β2
m ) =

ω(Nβ1
m )

ω(Nβ2
m )

. (7.5)

This indicator summarizes the trend of the cell load as it approaches the
target location. For example, if τ(Nβ1,β2

m ) > 1, then the load on the closest
points in time and space is larger than that of farther points.

While in [154] the indicators are added to a purely temporal prediction, in
this work the cell load values of all the points in the spatio-temporal neighbor-
hood are also used as predictors.
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Figure 7.1: Normalized average internet usage map.
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7.2.1 Prediction algorithms

The performance of several well-known prediction algorithms are tested using
the input described above. The used algorithms represent the state of the art
for prediction with time series [155,156], and are briefly described below:

• The simplest tested method was the basic multiple linear regression [157],
using least squares as a loss function.

• Given the highly variable nature of the data, some regularization tech-
niques have been implemented in order to avoid the risk of overfitting;
three methods of regularized linear regression have been used.

– Ridge regression [158] is a shrinkage method that adds a square
penalty to the least squares loss, weighted by a regularization pa-
rameter λR.

– Lasso regression [159] is a shrinkage method very similar to ridge
regression, but uses a linear penalty instead of a square penalty.

– Elastic net regression [160] is a linear combination of the lasso and
ridge regularization techniques, and is particularly useful when the
number of predictors is larger than the number of observations and
in the presence of highly correlated predictors.

• Support Vector Machines (SVMs) are mostly known as a classification
tool, but they can be adapted to output real numbers, giving us the Sup-
port Vector Regression (SVR) technique [161]. This work uses SVR with
a linear kernel, which has a regularization parameter C.

• Random Forest (RF) [162] is an ensemble estimator that consists of a num-
ber of regression trees, whose output is the average output of all the trees.
For optimal performance, the trees’ decisions should be uncorrelated, and
dataset bagging and random training techniques are employed to obtain
this property.

• Artificial Neural Networks (ANNs) [163] are well-known learning tools
which use back-propagation to learn an objective function. In this work,
the stochastic gradient descent method of back-propagation is used, using
the tanh activation function.

7.3 Results

All the prediction methods described above were trained and tested using the
Telecom Italia Big Data Challenge 2014 dataset,1 which contains the records
of the internet usage for a grid of square cells with 200 m sides (which makes
d0 = 200 m in Eq. (7.1)) in the city of Milan, Italy, for the last two months
of 2013. The data had a sampling period of 10 minutes (i.e., T = 600 s in
Eq. (7.1)). The normalized mean internet usage is overlaid on a map of the city
in Fig. 7.1.

1https://dandelion.eu/datamine/open-big-data/
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Figure 7.2: Performance of the tested regression methods.

For computational reasons, only the load of a small but representative subset
of cells have been predicted, namely, the cells with id 2583, 4241, 4856, 5060,
5091, 5259, 5262, 6065 and 7724. These cells were selected because they are
placed in different areas of the city and they show different traffic patterns. In
particular, cells 2583 and 4241 have an average traffic that is close to the average
traffic for the whole city, cells 5060, 5091 and 7724 show very high peak usage,
and cells 4856, 5259, 5262 and 6065 have a very high average traffic.

The metric chosen for the results is the coefficient of determination R2 [164],
which is a commonly used metric in the regression literature, and gives an
indication of how well the regression model describes the observed data.

7.3.1 Parameter optimization

All the parameters of the prediction algorithms were optimized by exhaustive
search with 10-fold cross-validation, after dividing the dataset into training,
validation and testing sets. The chosen values of the parameters are listed in
Tab. 7.1.

Parameter Value Description

λR [1.637e-6, 0.074]∗ Ridge regularization parameter
λL [1e-06, 4.665e-6]∗ Lasso regularization parameter
λR,E [0, 1.105e-5]∗ Ridge regularization (elastic net)
λL,E [0, 4.665e-6]∗ Lasso regularization (elastic net)
C [0.22, 34.081]∗ SVR linear kernel penalization term
Nt 200 Number of RF trees
γ 10−3 ANN learning rate
Niter 104 Maximum ANN iterations
ε 10−10 ANN convergence tolerance

∗These parameters were optimized for each cell.

Table 7.1: Parameters used in the simulation.

The values of the spatio-temporal weighting factor α and of the neighborhood
radius β were optimized for each cell and are listed in Tab. 7.2, for a number of
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neighbors from 27 to 46.

Cell id α β Number of neighbors

2583 0.25 2 27
4241, 4856 2.25 3 25
5060 0.09 2 46
5091 0.19 2 28
5259, 5262, 6065 0.12 2 37
7724 0.19 2 28

Table 7.2: Optimal neighborhood definition for each cell.

7.3.2 Prediction results

Fig. 7.2 shows the prediction accuracy on the test set for each regression method.
The figure clearly shows that the ANN is not an accurate method, probably due
to an insufficient training set size, whereas the other algorithms often have a
similar performance. The reason is that the cell load can be easily predicted in
most cells, and therefore the differences among different algorithms are minimal.
On the other hand, in cells with poor prediction accuracy different methods show
some performance difference. This reveals that, when the behavior of the load
in a cell is less predictable, the prediction performance can be improved using
different algorithms and additional context information. Indeed, the simple
linear regression and ridge regression have a slightly better performance in cells
2583, 4241 and 5091, which are all located in peripheral areas of the city, close to
major traffic roads or hubs (Via Gianbellino for cell 2583, the A1 highway for cell
4241, and Linate airport for cell 5091). In locations like these, with high mobility
and bursty traffic, the benefit of combining spatial and temporal information is
intuitive, and the performance improvement can be seen in Fig. 7.3. While only
temporal or spatial data is sufficient in the highly predictable cells, the same 3
cells mentioned above show a marked improvement in the R2 score when spatio-
temporal data are considered jointly in the prediction. It is also worth noting
that the use of temporal indicators does not result in a significant improvement
by itself, but only when combined with the spatio-temporal neighborhood data.

The most accurate prediction methods are also the simplest: both training
and parameter optimization for the linear, ridge, lasso and elastic net algorithms
were significantly faster than for RF, SVR and ANN. This offsets the increased
complexity due to the bigger size of the neighborhood due to the inclusion of
the spatial dimension in its definition.

7.4 Conclusions and future work

This study applied several regression methods taken from the literature, com-
bined with joint spatio-temporal information with indicators, to predict the
future cell load on a 10 minutes scale. The data used to perform the training
and evaluation of the different methods is from the Telecom Italia network in
Milan.
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Figure 7.3: Performance of the prediction algorithms for different neighborhood
definitions.

The results prove the usefulness of joint spatio-temporal information in the
most difficult prediction scenarios, confirming the importance of context infor-
mation for network optimization.

Future work on the prediction methods might consider the introduction of
new indicators which could capture network-specific dynamics, along with a
more in-depth study of the effect of the neighborhood size on the prediction
accuracy.
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Chapter 8

Introduction to adaptive

video streaming

Nowadays, the most appealing but also the most bitrate demanding services
are those providing high-quality videos to users playing real-time streaming
or progressive download applications. The deployment of heterogeneous high-
speed access points, such as LTE femto-cells and WiFi hotspots, dramatically
increases the number of users accessing the network, which has an impact on
the performance of both uplink and downlink channels. In particular, mobile
video traffic is currently generating most of the mobile traffic worldwide. By
the end of 2021, mobile data traffic is predicted to rise to 49 exabytes, with the
share of video traffic rising from 60% (2016) to 78% (2021) [165].

To cope with this increased traffic, mobile operators need to increase the net-
work capacity to effectively support high-quality and bitrate demanding services
with the available network resources, while keeping mobile infrastructure costs
at a reasonable level. A good trade-off between perceived Quality of Experience
(QoE) to be offered to the mobile users and smart use of network resources is
achieved by dynamically adapting the coding rate of the requested videos to the
available transmission resources. As observed in [166], reducing the encoding
rate of a video is indeed much less critical in terms of QoE degradation than
increasing the packet loss probability or the delivery delay.

In this chapter we introduce a widely used adaptive streaming technology,
namely MPEG Dynamic Adaptive Streaming over HTTP (DASH), that will be
the basis for the QoE improving techniques in the following chapters.

8.1 Adaptive streaming technologies

Adaptive bitrate streaming is a technique that enables optimum multimedia
streaming over telecommunication networks across a wide range of devices and
connection speeds. Its main peculiarity is the ability to detect and monitor
user’s available bandwidth and CPU capacity to adapt in real-time the video
flow bit rate accordingly.

In particular, adaptive streaming is a method of multimedia streaming where
the source content is encoded at multiple bit rates, then each coded content is
splitted in segments with duration of a few seconds. Retrieving a manifest file,

143



144

the client can be aware of the presence of these multiple encoded versions and the
location of the various segments. Now the client is able to retrieve the segments
to playback the whole multimedia content choosing, for each temporal interval,
the segment relative to the desired quality level. This choice can be made in an
autonomous way by the client, based on available network bandwidth and on
CPU capacity of user’s device.

A key difference between streaming technologies is the type of used streaming
protocol. While in the past the most adopted solutions used protocols like RTP
with RTSP, nowadays adaptive streaming technologies are almost exclusively
based on HTTP. This allows to have various advantages with respect to other
solutions, in particular:

• it allows the reuse of existing server infrastructure, without the need to
have dedicated servers as in the case for RTP streaming;

• it is firewall-friendly, because with HTTP protocol the video streaming
packets are generally not blocked by firewalls;

• it can exploit existing HTTP cache infrastructure to offer video segments
from a nearer location to the user with respect to the original server,
enabling faster video delivery.

8.2 Introduction to MPEG DASH

DASH [167] is an ISO standard developed by the Motion Picture Experts Group
that defines an adaptive bitrate streaming technique based on HTTP.

DASH development started in 2010, evolving into a Draft International Stan-
dard in January 2011 and an International Standard in November 2011. The
MPEG-DASH standard, first published in April 2012 as ISO/IEC 23009-1, has
been updated on July 2013, incorporating some amendments and corrigenda.

MPEG-DASH is the first HTTP-based adaptive streaming solution that
arose at the level of international standard. It was preceded by similar, but pro-
prietary, adaptive streaming technologies, like Adobe’s HTTP Dynamic Stream-
ing, Apple’s HTTP Live Streaming [168] and Microsoft’s Smooth Streaming. The
objective for MPEG-DASH was to replace those technologies by incorporating
their strong points into a widely implemented and vendor-independent stan-
dard, in order to enable the use of a single technology for multimedia streaming
on all platforms. To reach this objective, the standardization group worked
together with the most important stakeholders, like Adobe, Apple, Microsoft,
Netflix and Qualcomm, and with other standardization bodies, in particular
with 3GPP, that was developing a similar technology, called Adaptive HTTP
Streaming (AHS) [169].

Nowadays the standard is implemented in various products and gained trac-
tion as the only available technology allowing adaptive bitrate streaming on
devices from different vendors.

8.3 DASH data model

MPEG-DASH defines a media content delivery model where the control is pri-
marily client-side. In fact, clients may request data, using HTTP protocol, from



145

Media Presentation Description (MPD)

Period

Adaptation Set

Representation

Segment

Segment

Segment

Representation

Segment

Segment

Segment

Representation

Segment

Segment

Segment

Adaptation Set

Period

Figure 8.1: DASH data model

standard web servers that have no DASH-specific capabilities. Because of that,
the DASH standard focuses on data formats used in data exchanges and not on
client and server procedures.

The set of deliverable encoded versions of media content, along with their de-
scription, forms a Media Presentation. A DASH Media Presentation is described
by an XML manifest file called Media Presentation Description (MPD) [167].

Media content is composed by one or more contiguous periods in time. These
periods could represent parts or episodes of a main program, interleaved with
inserted advertisement periods. The set of the available coded versions of media
content must be consistent throughout a period, i.e., the available languages,
subtitles, bitrates, etc. can not change within a period.

In a period, material is divided in adaptation sets. An adaptation set rep-
resents a set of coded version of a media component. For example, there could
be an adaptation set for the main video component and a separate one for the
main audio component. Other components, like subtitles or other audio tracks,
could have a dedicate adaptation set each. Those media components could also
be provided in multiplexed form. In this case, interchangeable versions of the
multiplex may be described with a single adaptation set. An example for this
case is an adaptation set containing both the main audio and main video for
a period, with additional components being provided in additional adaptation
sets.

An adaptation set contains a set of representations. A representation de-
scribes a deliverable encoded version of one or multiple media content com-
ponents. Each representation in an adaptation set is sufficient to render the
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<?xml version="1.0"?>

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011" minBufferTime="PT1.500000S" type="static"

mediaPresentationDuration="PT0H0M12.00S" profiles="urn:mpeg:dash:profile:full:2011">

<ProgramInformation> <Title>akiyo0_dash.mpd</Title> </ProgramInformation>

<Period duration="PT0H0M12.00S">

<AdaptationSet segmentAlignment="true" maxWidth="352"

maxHeight="288" maxFrameRate="25" par="352:288">

<Representation id="1" mimeType="video/mp4" codecs="avc1.640016" width="352"

height="288" frameRate="25" sar="1:1" startWithSAP="1" bandwidth="6772590">

<BaseURL>akiyo0_dashinit.mp4</BaseURL>

<SegmentList timescale="1200000" duration="5952000">

<Initialization range="0-865"/>

<SegmentURL mediaRange="866-4205261" indexRange="866-969"/>

<SegmentURL mediaRange="4205262-8393927" indexRange="4205262-4205365"/>

<SegmentURL mediaRange="8393928-10158885" indexRange="8393928-8393995"/>

</SegmentList>

</Representation>

<Representation id="2" mimeType="video/mp4" codecs="avc1.640016" width="352"

height="288" frameRate="25" sar="1:1" startWithSAP="1" bandwidth="5973738">

<BaseURL>akiyo2_dashinit.mp4</BaseURL>

<SegmentList timescale="1200000" duration="5952000">

<Initialization range="0-865"/>

<SegmentURL mediaRange="866-3709849" indexRange="866-969"/>

<SegmentURL mediaRange="3709850-7403297" indexRange="3709850-3709953"/>

<SegmentURL mediaRange="7403298-8960607" indexRange="7403298-7403365"/>

</SegmentList>

</Representation>

<Representation id="3" mimeType="video/mp4" codecs="avc1.640016" width="352"

height="288" frameRate="25" sar="1:1" startWithSAP="1" bandwidth="5184079">

<BaseURL>akiyo4_dashinit.mp4</BaseURL>

<SegmentList timescale="1200000" duration="5952000">

<Initialization range="0-865"/>

<SegmentURL mediaRange="866-3220504" indexRange="866-969"/>

<SegmentURL mediaRange="3220505-6425239" indexRange="3220505-3220608"/>

<SegmentURL mediaRange="6425240-7776118" indexRange="6425240-6425307"/>

</SegmentList>

</Representation>

</AdaptationSet>

</Period>

</MPD>

Figure 8.2: Example of an MPD manifest file
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contained media components, but, grouping together several representations in
a single adaptation set, the Media Presentation author states that those repre-
sentations represent perceptually equivalent contents. This means that clients
can dynamically switch between representations in an adaptation set in order
to adapt to network conditions or other factors. Switching refers to the presen-
tation of decoded data of one representation up to a certain time instant, and
the presentation of decoded data of another representation from that instant
onwards. If both representations are included in the same adaptation set, and
the client switches properly, the media playout is perceived seamless across the
switch.

Within a representation, the content may be divided in time into segments.
In order to access a segment, an URL is provided for each segment.

Segments description in the MPD manifest file could be expressed in one of
the following ways:

• SegmentBase: this description in used when only a single media segment
is provided per representation. In this case, an URL (with an optional
byte range) is reported for each representation, which references the file
containing the segment for the considered representation. An example
exploiting the possibility to make HTTP/1.1 byte-range requests follows:

<Representation id="1" mimeType="video/mp4" codecs="avc1.4d401f"

width="1280" height="720" bandwidth="2073921">

<BaseURL>car-20120827-88.mp4</BaseURL>

<SegmentBase indexRange="708-1183">

<Initialization range="0-707" />

</SegmentBase>

</Representation>

• SegmentList: in this case the description of each representation includes a
list of segment URLs, one for each segment of the considered representa-
tion. Each segment URL is composed by a file location and, optionally, a
byte range, allowing to make byte-range requests according to HTTP/1.1
specification. A self-explanatory example for this case follows:

<Representation id="1" mimeType="video/mp4" codecs="avc1.640016"

width="352" height="288" bandwidth="6772590">

<BaseURL>akiyo0_dashinit.mp4</BaseURL>

<SegmentList timescale="1200000" duration="5952000">

<Initialization range="0-865"/>

<SegmentURL mediaRange="866-4205261" indexRange="866-969"/>

<SegmentURL mediaRange="4205262-8393927" indexRange="4205262-4205365"/>

<SegmentURL mediaRange="8393928-10158885" indexRange="8393928-8393995"/>

</SegmentList>

</Representation>

• SegmentTemplate: in this case, the list of segment URLs is expressed by a
template and some replacement rules that allows to swap special identifiers
with appropriate dynamic values assigned to segments. The simplest case
is when the template is made by a fixed part and an index that assumes
increasing values for successive segments. In this way it’s possible to use
DASH technology for streaming of live media content, where segments are
delivered to clients while successive ones are still being generated, making
impossible the creation of a segment URLs list beforehand. A simple
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example of this case, where $Number$ is the placeholder for the segment
number, could be:

<Representation id="1" mimeType="video/mp4" codecs="avc1.640016"

width="352" height="288" bandwidth="10059517">

<SegmentTemplate timescale="1200000" media="seg_bowing0$Number$.m4s"

startNumber="1" duration="2304000" initialization="seg_bowing0init.mp4"/>

</Representation>

8.4 Typical DASH client operation

The typical DASH client procedure to retrieve and render a media stream con-
sists of the following steps:

1. the client retrieves the MPD manifest file from the server and parses it to
be aware of all available media components and their representations;

2. the retrieval of the media starts with the download of first segments rel-
ative to the desired media components. Usually, the low bitrate version
of first segments are chosen, because of the unknown network conditions.
In this way, it is also possible to get a faster start of video playout. MPD
manifest may also indicate the necessity to retrieve an initialization seg-
ment, containing information needed to initialize the media engines for
enabling playout of the media segments. If this is not the case, segments
are said to be self-initializing, because each of them contains all the nec-
essary information for its decoding.

3. The client estimates network conditions from metrics calculated from pre-
vious segments download. These metrics will be helpful in choosing the
bitrate of the next media segments to retrieve.

4. Successive segments are retrieved using the metrics calculated in the pre-
ceding step. In case of not self-initializing segments, if the new segment
belongs to a different Representation with respect to the previous one, the
initialization segment for that Representation must be retrieved in order
to correctly decode the new segment.

5. Steps 3-4 are repeated until all desired media components are completely
retrieved.

8.5 Additional DASH features

DASH technology provides additional features, such as:

• being codec independent, it works with H.264, WebM and other codecs,
allowing this technology to be future-proof and adaptable to new codec
that will be developed;

• the possibility to support all encryption schemes and DRM techniques
specified in ISO/IEC 23001-7 standard enables its use in commercial
streaming services;
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• it allows for dynamic ads insertion, useful again for commercial streaming
services;

• it entails special features to support live streaming, like the possibility to
fragment the MPD manifest and download each fragment separately (used
to update the manifest with new information that become available after
the stream start).
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Chapter 9

QoE Multi-Stage Machine

Learning for Dynamic

Video Streaming

An emerging and promising trend to address the rapid growth of video traffic
in cellular networks is the development of solutions that are aware of the QoE
of the end users and exploit this knowledge to optimize the network parame-
ters. However, predicting the QoE perceived by the users in different conditions
remains a major challenge. In this chapter, a machine learning approach to
support QoE-based video admission control and resource management is pro-
posed. More specifically, the approach implements a multi-stage learning sys-
tem that combines the unsupervised learning of video features from the size of
H.264-encoded video frames with a supervised classifier trained to automati-
cally extract the quality-rate characteristics of unknown video sequences. This
QoE characterization is then used to manage simultaneous video transmissions
through a shared channel in order to guarantee a minimum quality level deliv-
ered to the final users.

9.1 Introduction

As already mentioned, a good trade-off between great user QoE and efficient
network use is achieved by dynamically adapting the coding rate of the video
flows to the available transmission resources. However, the perceived QoE at
a certain encoding rate depends on the video content itself, e.g., the dynamics
of the scene, the mobility of the source and frame-by-frame motion, etc., which
are not easy to predict. Knowing these characteristics would make it possible
to adjust the video rates according to the available transmission resources, so
as to maximize the QoE of the users.

In this chapter, a cognitive approach for video delivery in communication-
constrained scenarios is presented. The basic idea is to combine unsupervised
and supervised machine learning techniques to infer the Quality-Rate (Q-R)
characteristics1 of the video sequences from high level information, readily avail-

1The Q-R characteristic is often expressed in the literature in terms of rate-distortion curve,
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Figure 9.1: Reference scenario: the Cognitive HTTP Proxy (CHP) implements
the RM and VAC mechanisms to manage the rates of the active video flows
across the bottleneck link of capacity R [bit/s].

able at the network layer.

Consider a scenario where a number of mobile users request video content
from some remote servers, using a shared channel. Also, assume that videos are
provided by the servers in the form of short chunks of a few seconds each (called
video segments), which are then delivered to the mobile users through HTTP
sessions, similarly to DASH [167]. Therefore, there is no need to maintain long
streaming sessions between server and mobile users, dramatically simplifying
mobility management. Each video streaming session starts with an HTTP re-
quest sent by the mobile user to the video server for the list of the titles and
formats of the available videos [170]. Each DASH file is indeed associated to a
MPD that provides information characterizing the video file and the available
locations of the segments, and may contain multiple representations for the
same media, that is, multiple versions with different resolutions and bitrates.
A DASH client is then able to dynamically select the desired representation of
each chunk of the video and to get it via HTTP.

While the DASH framework is well established, the quality-adaptation pol-
icy is still open to investigation. Typically, the policies adopted by legacy DASH
clients are based on local measurements, such as the number of buffered video
segments at the client side, or the estimated average downlink throughput. In-
stead, the actual Q-R characteristics of the streamed videos, or the number and
type of contending flows, are not commonly considered.

In this work, a more systematic approach is followed, proposing a solution
where the rate of each competing video flow is determined in a centralized
manner by a Cognitive HTTP proxy (CHP), as represented in Fig. 9.1. The
CHP can be instantiated in the access router of a private network, to control
the video traffic towards the hosts of the network. Furthermore, leveraging the
upcoming Network Function Virtualization (NFV) paradigm, instances of the
CHP can be activated where multiple video flows merge into the same shared
link, in order to provide minimum performance guarantees to multimedia flows
and/or blocking excess video traffic.

The proxy intercepts all HTTP requests, performs traffic classification, and

which conveys the same information, though presented in a different form.
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applies Video Admission Control (VAC) and Resource Management (RM) algo-
rithms to improve the QoE of the clients. In particular, the CHP will be able to
intercept, interpret, and modify the DASH packets exchanged by video clients
and servers, thus performing a dynamic adaptation of the video quality accord-
ing to a certain utility function, which depends on the Q-R characteristic of each
single video, which is automatically estimated by using a multi-stage machine
learning approach. The Q-R characteristic is able to summarize, in a single
function, the map between QoS and QoE parameters. Such map is necessary
since the VAC and RM mechanisms aim to maximize the QoE while satisfying
some QoE constraints of the network (such as maximum channel capacity or
minimum end-to-end delay).

Crucially, the proposed method does not require to process the original con-
tent of the video frames, but only uses information readily available at the net-
work layer after the encoding process, namely the size of the video frames, with
some other parameters that can be easily retrieved from the MPD file associated
to the video, such as the structure of the Group-of-Pictures (GOP) used during
the encoding, the resolution of the video, and the frame rate. The rationale is
that the Q-R function of a video is closely related to the dynamics of its content
that, in turn, impacts the spatial and temporal redundancy of the video frames
and, consequently, the size of the frames generated by the encoder [171, 172].
Highly dynamic videos, containing complex spatial and temporal structure, will
likely result in larger frame sizes, while more static videos will be likely encoded
in frames of smaller and more homogeneous size.

To test the proposed method, a training dataset has been built, containing
the frame sizes for a number of HD and CIF video clips, encoded at different
compression levels. The dataset was then used to perform the unsupervised
training of a Restricted Boltzmann Machine (RBM) [173]. The RBM captures
the latent features of the input data, thus providing a high-level representation
of the video segments at different compression levels, which can be exploited by
supervised learning algorithms to estimate the Q-R characteristics of unknown
videos. In this study, the average Structural Similarity (SSIM) index [174] of the
frames in a GOP is considered as a measure of the perceived quality of a video
segment. Note that SSIM is not the only objective metric for QoE assessment of
video sequences, nor is necessarily the best in all cases. The Q-R characteristics
of a video can indeed be expressed with other metrics, either full reference
(i.e., where the evaluation system has access to the original media) like the
NTIA-Video Quality Metric General Model [175] and the MOVIE index [176],
or no-reference, e.g., Video BLIINDS [177].

We observe that the SSIM focuses on the spatial dimension only, i.e., the
quality of the image captured by the frames, while neglecting the time dimension
that can be crucial to correctly assess the degradation of the visual experience
due to gaps in the video streaming (freezing and rebuffering events) or sharp
variations of the visual quality of the video frames. As it will be better discussed
in Sec. 9.8, however, when the link bitrate is known (as assumed in this study),
suitable VAC and RM algorithms can choose the bitrates of the video segments
to fit into the available channel capacity, thus avoiding that the client runs out
of frames to play out. In this scenario, where the temporal aspect of the QoE
metric is less critical, SSIM represents a reasonable low-complexity choice. In
addition, consider that the proposed framework can be applied to other QoE
metrics with a qualitative similar Q-R characteristics (i.e., such that the quality
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increases with the frame size and the data rate).
To summarize, based on a machine learning scheme, the Q-R characteristics

(in terms of SSIM vs normalized bitrate) of unknown videos is estimated from
the distribution of the coded frame sizes. This characterization is then fed
into QoE-aware VAC and RM algorithms. Simulations show that combining
unsupervised feature extraction and linear classification provides better results
than a more basic approach that tries to extract the SSIM characteristics directly
from the raw data. A further result is that QoE-based VAC and RM algorithms
make a better use of the available transmission resources than content-agnostic
schemes and provide a valuable tool for quasi-realtime adaptive video streaming
applications.

9.2 Related Work

In this section we first review the state of the art on DASH adaptation logics and
then consider the literature on the objective quality metrics for video sequences,
which represent the two main building elements of the proposed approach.

9.2.1 Adaptation logics for DASH video streaming

As briefly mentioned in the introduction, in the DASH framework, the video
clips are split in short time segments, which are encoded at different compres-
sion levels and stored at the video server as independently addressable and
reproducible multimedia objects. This makes it possible to download any of
the available versions of each video segment, thus enabling the dynamic adapta-
tion of the video rate (and, in turn, quality) to the channel conditions in order
to guarantee good video quality, uninterrupted play out, and smooth quality
variations.

For example, the scheme proposed in [178] privileges the stability of the
video bitrate over instantaneous video quality, thus adopting a conservative ap-
proach when increasing the bitrate that also yields a lower probability of freezing
events. Probe and Adapt (PANDA) [179] makes use of active channel probing
to estimate the path throughput and adapt the video rate accordingly. To pre-
vent fluctuations due to cross-traffic variations, however, the scheme adopts a
conservative rate-increasing strategy when the channel capacity grows and hys-
teresis margins to avoid frequent rate switches. A similar but simpler heuristic
was presented by Petrangeli et al. in 2014 [180]. The mechanisms proposed
in [181] uses only buffer state information to adapt the video bitrate, resorting
to channel capacity estimation only during transient periods. As shown in [182],
however, such simple schemes may not be able to guarantee high video quality,
even when the channel capacity is constant. More complex approaches make
use of predictive or Markov Decision Process techniques to model the variations
of the channel capacity and find the optimal adaptation strategy [183–185]. The
main limit of these approaches is the computational load: the model is too com-
plex to be solved at runtime. To overcome this issue, some recent works apply
reinforcement learning techniques to automatically learn the best adaptation
strategy from the past experience [186]. However, this approach is limited by
the training time of the machine-learning algorithms, which grows very quickly
with the size of the state space [187]. Alternatively, the state space can be
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roughly quantized to speed up the learning process to the detriment of the
achieved performance [188,189].

The work in [190] defines the bitrate adaptation strategy as an optimization
problem, applied to a Markovian channel model. The function that links the
video bitrate to the video quality, however, is not bound to any perceived quality
metric. In [191], the authors developed a network-side mechanism to adapt
video bitrate based on information from the clients that, however, are required
to be all compliant with this protocol, which limits its practicality. A heuristic
cross-layer algorithm for wireless networks is presented in [192], where both end-
to-end bandwidth estimation and measurements from the WiFi link are used to
determine the frame quality to download from the server.

For a more comprehensive overview of existing adaptation techniques for
DASH, the reader is referred to [193].

The main focus of this work is not to provide another adaptation algorithms
for DASH. Rather, the purpose is to propose a new methodology to infer the Q-
R characteristics of each single video sequence and to show how this information
can be successfully exploited in a DASH framework. For this reason, the con-
sidered scenario is rather simple, where the transmission resources reserved to
video contents are constant and can be arbitrarily assigned to the different flows.
Therefore, rate-adaptation is only required to reallocate channel resources when
new video flows are accepted into the system or active ones are terminated. The
proposed Q-R estimation technique can be combined with more sophisticated
DASH algorithms and employed in more challenging scenario, whose investiga-
tion however is left to future work.

9.2.2 Objective quality metrics

Prior work on video detection over communication networks mainly focuses on
extracting objective networking and quality metrics. In [194] the authors classify
videos based on selected common spatial-temporal audio and visual features
described by the MPEG-7 compliant content descriptors. Due to the complexity
of the method, the authors make use of principal component analysis (PCA)
to reduce the set of features under study. Nevertheless, this work is strictly
dependent on the MPEG-7 multimedia format.

The work in [195] marks the packets using a pre-congestion notification
mechanism in order to detect congestion in the network. A linear program-
ming method is then used to assign a quality level to each video flow, in order
to maximize a revenue function. The considered quality levels, however, are
only described by video resolution and bitrate, not by a metric that properly
evaluates the perceived quality.

The authors of [196] exploit a measurement-based admission control mecha-
nism for video flows in order to maximize the number of admitted video requests
in a network. Again, the considered metric is the video bitrate, while the per-
ceived video quality is not considered. Also, this technique requires to know
the state of the entire network in order to solve the admission control problem,
which may be infeasible in large networks.

Further related work focuses on quality prediction models to capture the
behavior of video scenes. The authors of [197] propose an objective model to
predict the quality of 3D videos in the presence of frame losses, which is based
on the header information of the video packets at different ISO/OSI layers. This
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model is able to roughly capture the SSIM of some video clips based on the size
of the lost frames and via deep packet inspection, which is usually avoided by
operators in cellular deployments due to complexity and users’ privacy concerns.
Also, a model to extract the channel induced distortion in a no-reference fashion
is described in [198]. The described algorithm exploits the received prediction
residuals, coding modes, and the received and concealed motion vectors to com-
pute an approximation of the SSIM index, therefore still requiring deep packet
inspection. In any case, in [199], the authors claim that the frame loss proba-
bility, which is mainly a network metric, provides only limited insight into the
video quality perceived by the user. Ref. [200] describes a model to map network
QoE factors to a QoE value, whose complexity however makes it unsuitable for
online applications. Other studies use learning techniques to predict video QoE
from traffic data, including factors as the frequency of bitrate variations and the
freezing events. However, the accuracy of the predicted QoE values is rather
coarse [201,202].

In this work, video test sequences are analysed and grouped based on the
relation between video compression rate and SSIM. It is widely recognized that
the SSIM index provides a more accurate QoE indication than more traditional
metrics, like PSNR and mean square error (MSE), which have proven to be
inconsistent with perceptual experience. Although the SSIM characterization
of a video sequence is computationally expensive, many studies have shown that
the extraction of perceived quality metrics, like SSIM, from the features of the
encoded video is feasible. In [203] an artificial neural network is used to extract
the SSIM of a video sequence using information on quantization parameters,
frame structure, and motion vectors. The authors of [204] approximate the SSIM
using, instead, an extension of the Support Vector Machine (SVM), namely the
ǫ-Support Vector Regression. In this case, the considered features are derived
from the frame structure, the quantization parameters, and the motion vectors.
A much larger feature space is considered in [205], where 20 features describing
the frame structure, motion vectors, and texture information are fed into a
model, which is estimated using multipass polynomial regression. A simpler
linear regression is employed in [206], which, however, is able to estimate both
SSIM and Video Quality Metric (VQM) [175] for noisy channels using features
related to motion vectors, the mean residual energy of the frames and error
concealment information. In a related way, [207] describes the use of a multi
linear regression technique to extract different video quality metrics (including
PSNR, SSIM, and VSSIM) from the video bitrate and frame rate, and from
information on motion vectors and on frame and group-of-picture structures. All
of these methods, however, require the extraction of a large number of features
from the video stream, thus requiring deep packet inspection and considerable
computational cost.

Machine learning algorithms represent the state of the art in many classifica-
tion tasks, especially when the structure of the domain is difficult to characterize.
The problem of automatic video processing is closely related to that of image
processing, with the additional complexity given by the temporal dimension of
the data. In the so-called “content-based” video retrieval [208], for instance,
a range of different techniques can be applied depending on the task of inter-
est, e.g., video indexing, scene recognition and/or classification, object tracking,
and motion detection. In recent years, advances in the theory and practice of
probabilistic graphical models and statistical learning led to the development of
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extremely powerful deep learning systems, which achieve state-of-the-art perfor-
mance in several machine vision tasks [209,210]. Although the main application
of these systems has been primarily focused on still frames, there have also been
successful extensions to the temporal domain [211,212].

All the above-mentioned machine learning methods, however, are usually
applied at the pixel level, or to some higher-level representations obtained after
additional pre-processing of the raw images. Nevertheless, for the task of classi-
fying different videos depending on the dynamics of their content, it is assumed
that the relevant information is still preserved after the video has been encoded
to be sent on a transmission channel.

[171] showed that SSIM can be compactly represented by means of polyno-
mial curves that can be associated to each video. Tagged videos can then be
handled by simple traffic shaping mechanisms in case of network congestion or
under-provisioned network resources. The idea of representing the Q-R curve as
a polynomial function is well known in the literature. For example, considering
the distortion expressed as the PSNR, the Bjøntegaard model [213] approxi-
mates a Q-R curve by a third order logarithmic polynomial fitting, based on
experimental observations [214]. Another polynomial fitting based on PSNR
and MPEG-2 encoding is described in [215].

Therefore, this chapter describes a technique for automatically extracting a
set of features that can be used to describe the relevant characteristics of the
original videos, using only information available at the network level.

9.3 Video analysis

The video dataset employed in this study is an expanded version of the one
used in [171], where, in particular, a set of HD video clips have been added.
For the reader’s convenience, the video analysis framework described in [171] is
reported here.

We need to evaluate the objective QoE of the videos with the SSIM in-
dex, which is a full reference metric that measures the image degradation in
terms of perceived structural information change, thus leveraging the tight inter-
dependence between spatially close pixels that contain the information about
the objects in the visual scene [174]. SSIM is calculated via statistical metrics
(mean, variance) computed within a square window of size N ×N (typically
8×8), which moves pixel-by-pixel over the entire image. The measure between
the corresponding windows X and Y of two images is computed as follows:

SSIM(X,Y ) =
(2µXµY + c1)(2σXY + c2)

(µ2
X + µ2

Y + c1)(σ2
X + σ2

Y + c2)
(9.1)

where µ and σ2 denote the mean and variance of the luminance value in the
corresponding window, and c1 and c2 are variables to stabilize the division
with weak denominator (the interested reader is referred to [174] for additional
details).

The range of the SSIM index goes from 0 to 1, which represent the extreme
cases of totally different or perfectly identical frames, respectively. Tab. 9.1
shows the mapping of SSIM to Mean Opinion Score (MOS), which assesses the
subjective perceived video quality on a scale of 5 values, from 1 (bad) to 5
(excellent), as reported in [216].
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SSIM MOS Quality Impairment

≥ 0.99 5 Excellent Imperceptible
[0.95, 0.99) 4 Good Perceptible but not annoying
[0.88, 0.95) 3 Fair Slightly annoying
[0.5, 0.88) 2 Poor Annoying
< 0.5 1 Bad Very annoying

Table 9.1: Mapping SSIM to MOS scale

The analysis of the SSIM has been first applied to a pool of V = 38 CIF
video clips, taken from standard reference sets.2 Successively, the analysis has
been replicated on a set of 28 HD videos. Each video has been encoded into
H.264-AVC format. To test the robustness of the proposed approach to the
specific encoding algorithm, the Joint Scalable Video Model (JSVM) reference
software [218] has been used for CIF videos and the x264 encoder [219] for HD
videos. The encoding has been done at C = 18 increasing compression levels
(i.e., quantization points) for the CIF videos, and C = 33 levels for the HD
videos, which correspond to as many quality levels. Note that there are no
scene transitions inside each video sequence. The SSIM of a frame encoded at
compression level c is obtained by comparing the decoded frame with the full
quality version of the same frame. For practical reasons, the average values of
the SSIM index computed for all frames of each video is considered.

Denote by rv(c) the transmit rate of video v ∈ {1, . . . , V } encoded at rate
c ∈ {1, . . . , C}, with rv(1) being the maximum (i.e., full quality) rate. To ease
the comparison between different video clips, it is convenient to normalize the
video rates to the full quality rates. Moreover, following the Weber-Fechner’s
law that postulates a logarithmic relation between the intensity and the sub-
jective perception of a stimulus, we can introduce a logarithmic measure of the
normalized rate, here named Rate Scaling Factor (RSF) and defined as

ρv(c) = log(rv(c)/rv(1)) .

The dynamics of the video content impact the perceived QoE for a certain
RSF value, as clearly shown in Fig. 9.2 (on the next page) where markers cor-
respond to the average SSIM of each video clip when varying the RSF ρ, while
lines represent a 4-degree polynomial interpolation of such points. More gener-
ally, we observe that the SSIM characteristics of a video v can be approximated
by an n-degree polynomial expression, which takes the form

F (n)
v (ρ) ≃ 1 + av,1ρ+ av,2ρ

2 + av,3ρ
3 + . . .+ av,nρ

n .

The vector of coefficients av = {av,i}, called SSIM coefficients in the following,
provides a compact description of the relation between the perceived QoE and
the RSF of a video v.

From Fig. 9.2, we observe that, in general, the 4-degree polynomial F
(4)
v (ρ)

provides a quite accurate approximation of the SSIM values in the range of ρ of
practical interest, for both the CIF and the HD videos in the test set. We observe
that the relationship between QoE and QoS parameters is, in general, very com-
plex, depending (among other factors) on metrics such as GOP size/structure,

2Video traces can be found in [217], ftp://132.163.67.115/MM/cif
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frame-rate, resolution, etc. (see, e.g., [220]). The curves reported in Fig. 9.2
have been obtained for a certain combination of parameters (frame rate, GOP
structure, resolution), only changing the quality factor (c) of the H.264 encoder.
Nonetheless, similar Q-R curves are obtained by changing the encoding parame-
ters, i.e., considering different combinations of the GOP length and composition,
frame rate, and resolution (not reported here for space constraints). In a real
setting, most of these parameters will remain fixed within each video segment,
so that the proposed approach is valid for each specific DASH request. It is
hence conceivable to tag each video segment with the SSIM coefficients which
provide a compact representation of its QoE characteristics that, in turn, can
be used by RM and VAC algorithms, as discussed in the next section.

9.4 Machine Learning approach to video classi-

fication

The exact SSIM characterization of a video sequence using (9.1) is computation-
ally demanding and infeasible in many practical cases. Following the rationale
described in [172,221], to overcome this limitation the presented approach uses
a machine learning technique that provides a fairly accurate estimation of the
SSIM characteristics of a video from the size of the frames coded in a GOP.
As previously mentioned, the idea is that the SSIM characteristic of a video
is closely related to the dynamics of its content, and that this information is
preserved in the structure of the corresponding sequence of frame sizes after the
encoding. However, extracting the SSIM characteristics of a video directly from
the raw data, i.e., the frame sizes, is problematic because of the non-linear and
hidden interrelations between the two quantities.

The fundamental idea behind the proposed approach is to train a generative
model to capture these non-linearities, providing an alternative representation
of the input data that is amenable to classification even by means of linear
discrimination methods. More specifically, the proposed learning framework
consists of two main phases. First, unsupervised learning is used to extract an
abstract representation of the raw data that captures descriptive features of
the video. A subsequent supervised learning phase is then performed to create
a mapping between the abstract representations and the corresponding SSIM
coefficients of the related videos. These two learning phases are detailed in the
following.

9.4.1 Unsupervised phase: the Restricted Boltzmann Ma-

chine

The proposed approach relies on a powerful family of generative models which
can be implemented as stochastic recurrent neural networks known as Boltz-
mann Machines [222]. They can be interpreted as probabilistic graphical mod-
els, where connections between units are symmetric, i.e., with equal weight in
either direction. The input to the network is given through a layer of visible (i.e.,
observed) units, which are fully connected to another layer of hidden units that
are used to model the latent features of the data. If there are no connections
among units of the same layer, we obtain the so-called Restricted Boltzmann
Machine (RBM) [173], which is graphically represented in Fig. 9.3.
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Figure 9.3: Graphical representation of a Restricted Boltzmann Machine.

The behavior of the network is driven by an energy function E, which im-
plicitly defines the joint distribution of the units by assigning a probability value
to each of their possible configurations:

p(v, h) =
e−E(v,h)

Z
(9.2)

where v and h are column vectors containing the values of the visible and hidden
units, respectively, and Z is a normalizing factor known as partition function.
The energy function is parameterized according to the weights of the connections
between visible and hidden units:

E(v, h) = −b⊤v − c⊤h− h⊤Wv , (9.3)

where W is the matrix of connections weights and b and c are two additional
parameters known as unit biases.

RBMs can be efficiently trained by using the contrastive divergence algo-
rithm [223], which consists in alternating a positive and a negative phase. Dur-
ing the positive phase (inference), visible units are clamped to the values of the
data observed in the training set. The network then propagates activations to
hidden units, according to the weights of the connections. If we consider binary
units for simplicity, during the positive phase the network observes the values of
the visible units and activates each hidden unit hj according to the conditional
probability:

p(hj = 1|v) = σ(cj +
∑

i

viwij) ,

where σ is the sigmoid logistic function, cj is the bias term of the hidden unit
hj , and wij is the weight of its connection with the visible unit vi. The entire
vector of hidden unit activations constitutes an internal representation of the
pattern observed in the visible units. During the negative phase, instead, hidden
units are fixed and activations are propagated backward to the visible units in a
similar fashion, in order to accurately reconstruct the original input vector. Each
visible unit vi is therefore activated according to the conditional probability:

p(vi = 1|h) = σ(bi +
∑

j

hjwij) . (9.4)

The objective of the learning process is to find a good set of weights W , so
that the function E will assign low energy (i.e., high probability) to configura-
tions of units that allow to obtain accurate reconstructions of the input patterns
(i.e., maximum likelihood learning). This can be accomplished by performing
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gradient descent over the likelihood function of the training data. It turns out
that the derivative of the log-probability of a training vector v with respect to
a particular weight wij is surprisingly simple:

∂ log p(v)

∂wij
= 〈vihj〉data − 〈vihj〉model , (9.5)

where the first term on the right-hand side of (9.5) represents the empirical
expectations computed on the training data, while the second term refers to the
expectations computed according to the actual model distribution. We can use
this quantity to compute how each weight should be changed at each learning
step:

∆wij = η(〈vihj〉data − 〈vihj〉model) (9.6)

where η is a small constant called learning rate. Due to the stochastic dynamics
of RBMs, computing model expectations requires to gradually change the state
of the network until it settles to thermal equilibrium, usually by running com-
putationally expensive Gibbs sampling algorithms [224]. However, contrastive
divergence makes it possible to efficiently train large-scale RBMs by approxi-
mating the log-probability gradient. The reader could refer to [225,226] for more
details about learning in RBMs and for the explanation of important additional
parameters of the algorithm (e.g., weight decay and momentum).

In our case, the training set consists of vectors of frame sizes for each GOP
of the videos in the dataset. Unsupervised learning tunes the RBM model
parameters (i.e., the connections weights) with the objective of reproducing the
patterns presented in the visible layer, thereby minimizing the reconstruction
error. At the beginning, weights are randomly initialized to small values (close
to zero) and the reconstruction will be very poor. However, the learning process
iteratively adapts the weights until the network is able to accurately reproduce
the observed patterns. At the end of this unsupervised learning phase, the values
taken by the units in the hidden layer provide an alternative and, hopefully, more
expressive representation of the input vector, i.e., of a certain sequence of frame
sizes in a GOP.

9.4.2 Supervised phase: the linear classifier

After a good model of the data has been learned, an additional read-out module
can be put on top of the hidden layer of the RBM to perform a supervised
classification task, which in our case consists in estimating the SSIM coefficients
av for each new GOP. The idea is that some characteristics of the data are not
directly visible in the raw input patterns, but can be discovered by the feature
extraction process during the unsupervised learning phase. Once the RBM
has learned good internal representations of the patterns by modeling their
underlying causes, it should be easier to perform a supervised classification task
starting from those abstract representations.

A simple linear classifier is used as a read-out module. The discrimination
between the possible classes is therefore performed by exploiting a linear com-
bination of the data features. This choice is motivated by observing that the
non-linearities of the data should be captured by the generative model during
the unsupervised learning phase, which creates more separable representations
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Figure 9.4: Scheme of the proposed learning framework, on which unsupervised
feature extraction (left) is followed by supervised linear read-out (right).

that could be easily read out even by a linear method. In many machine learn-
ing scenarios, this strategy has shown to be very effective and is usually adopted
by the so-called “kernel methods” exploited in Support Vector Machines [227],
which first perform a non-linear projection of the data into a different (usually
higher-dimensional) feature space, and then apply a linear optimization method
to compute the maximum margin separating hyperplane.

Within this perspective, the accuracy of linear read-out can be considered
as a coarse measure of how well the relevant features of the data are explic-
itly captured by the generative model [225]. Therefore, the use of a linear
classifier makes it easier to understand the quality of the internal representa-
tions learned by the RBM, because we can directly compare the classification
accuracy obtained using the raw input patterns with that obtained from the
internal representations of the RBM. Moreover, a linear classifier is preferred
in this scenario due to its greater generalization ability even in the presence of
a limited training set. Indeed, a more powerful, non-linear algorithm would be
more prone to overfitting. A schematic representation of this process is given in
Fig. 9.4.

It is worth remarking that, once the unsupervised training phase is com-
pleted, the internal representation of the input data provided by the RBM can
be used to perform supervised training of multiple read-out modules, with dif-
ferent purposes. For instance, it is possible to train a linear classifier that
recognizes the GOPs belonging to the same video, or that classifies the GOPs
according to the similarity of the video dynamics, and so on [221]. This is in-
deed one of the major advantages of combining unsupervised and supervised
learning approaches, with the former providing an alternative representation of
the input data that eases the selection of useful features by the latter.

9.5 Learning framework performance

In this section the performance of the proposed RBM-based learning framework
is evaluated with respect to a linear classifier that acts directly on the raw data,
i.e., the frame sizes contained in a GOP.

9.5.1 Dataset and learning parameters

The system is tested on the video dataset described in Sec. 9.3. In order to
make the size of the data uniform, only the first 15 GOPs of each CIF video,
and 13 GOPs for HD videos, are used, thereby discarding shorter videos. Thus,
the used dataset is composed by 34 CIF videos, for a total of 510 data patterns



164

(GOPs), and 28 HD videos, for a total of 364 data patterns. The quality of
learning in a RBM gets worse when the patterns in the training set are drawn
from very different, heterogeneous distributions. In particular, in this case it
can be observed that by merging the GOP patterns corresponding to both CIF
videos and HD videos resulted in the emergence of a much less effective set of
features. The reason is that the sole frame size is likely insufficient to capture the
complex Q-R relationships for generic encoding parameters, while it is sufficient
when the other parameters (namely, the GOP structure and size, and the video
resolution) are fixed. A possible solution to overcome this problem is to train a
different learning model for each representative combination of video encoding
parameters. Another possibility may consist in expanding the input patterns
by also explicitly including some information about the encoding parameters,
such as the resolution of the video or the GOP structure. In this work, the first
solution is considered, leaving the latter for future studies.

Therefore, two different training sets have been created, one containing sam-
ples derived from CIF videos and the other containing samples derived from HD
videos, and separate RBMs were trained on each dataset. The encoding format
for input patterns consisted of GOPs formed by a single inter-coded frame (I )
followed by 15 predicted frames (P), which is a common format for GOPs of
16 frames. However, control simulations (not reported here) showed that the
used approach still works even using other GOP formats, e.g., with a different
number of frames and/or a different pattern (sequence of I and P frames within
a GOP), provided that the RBM is adapted to the new input and properly
trained.

Due to the limited size of the datasets, the performance of the system has
been tested using a k-fold cross-validation technique [228]. To this aim, the
dataset of CIF videos has been partitioned into 34 subsets (folds), each including
all the 15 GOPs of a specific video. The RBM was then trained using 33 folds
(training set), and its generalization performance was computed on the left-out
fold (test set). This way, 34 different RBMs were trained, each time changing
the left-out video to be used as test, and the mean estimation accuracy over all
the 15 GOPs is reported. The input to the RBM consisted of 32 visible units,
which represented the sizes of the 16 frames in a GOP, coded with two different
compression levels c = 1 (full quality) and c = 9 (intermediate quality). Only
these two levels have been included in order to limit the amount of patterns
in the training set, with the goal of more clearly establishing how well the
system could generalize to previously unseen compression levels. Furthermore,
the intermediate qualities were used instead of the lowest ones because the aim
is to estimate with greater accuracy the high SSIM region of the Q-R curves
rather than the low-quality tail, considering that, in practical applications, the
latter region is of scarce interest because of the very poor visual quality of the
videos.

The same procedure was applied for the dataset of 28 HD videos clips, where
however the intermediate quality corresponded to a parameter c = 18, since the
number of available quality layers for HD videos was 33, against the 18 levels
of the CIF videos.

The I and P frame sizes of each GOP were normalized between 0 and 1,
which corresponded to the minimum and maximum frame sizes, as this is the
usual format of the input patterns used for training neural networks. The size
of the hidden layer determines the complexity of the generative model, since the
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number of free parameters in the model is given by the number of connection
weights. Different layer sizes were tested, with a number of units varying be-
tween 50 and 200, finding that the obtained results are robust with respect to
this parameter. Results presented in the following have been obtained with a
network having 70 hidden units.

Tests were conducted using a publicly available efficient implementation of
RBMs that exploits Graphic Processing Units (GPUs) to parallelize the learn-
ing algorithm [229]. Unsupervised learning occurred using a mini-batch scheme
with mini-batch size of 13, learning rate of 0.001, weight decay of 0.00001, and
a momentum coefficient of 0.9. With the current settings of the machine learn-
ing parameters, the learning phase converged after about 50 epochs without
exceeding one minute of running time. Regarding the supervised phase, a linear
classifier can be implemented as a single layer perceptron, on which iterative
learning is performed using the delta-rule. However, an equivalent but compu-
tationally more efficient method has been used, which relies on the calculation of
a pseudo-inverse matrix and is readily available in some high-level programming
languages such as Python or MATLAB [225].

Note that the unsupervised and supervised learning processes are performed
only once. Once the RBM and the coupled linear classifier are trained, the
estimation of the SSIM coefficients for unknown videos is extremely simple, and
can be performed online in negligible time.

9.5.2 Coefficients estimation accuracy

Here we assess whether the internal representation learned by the RBM allows
to estimate the n SSIM coefficients for each video in the test set. The quality
of the estimation is evaluated in terms of RMSE between the exact and the
estimated SSIM-rate characteristics, i.e.,

RMSE =

√

1

ρmin

∫ 0

ρmin

(

F
(4)
v (ρ)− F̃ (n)

v (ρ)
)2

dρ

where ρmin ≃ −3 is the minimum value of RSF of interest, while F
(4)
v (ρ) is the

reference SSIM-rate curve, and F̃
(n)
v (ρ) is the n-degree polynomial (9.3), with

coefficients estimated by the classifier.
The dashed line with square markers in Fig. 9.5 shows the mean estimation

accuracy on the 15 GOPs contained in each of the 34 videos of the CIF test
set (a), and on the 13 GOPs of the 28 videos in the HD test set (b). To
better appreciate the performance of the RBM-based learning architecture, the
graph also reports the RMSE for the SSIM curves obtained by applying the
linear classifier directly on the raw data patterns (solid line with circle markers).
We see that the internal representation learned by the RBM model is indeed
capable of capturing critical features of the data, thereby allowing to increase
the estimation accuracy for almost all test videos.

Fig. 9.6 offers a visual comparison between the exact and estimated SSIM
curves for two different videos with prototypical trends (see corresponding points
in Fig. 9.5 to have an idea of their average RMSE error). In particular, Fig. 9.6a
shows that the curve estimated using the RBM internal representations (solid
line) clearly exhibits a better alignment with the exact SSIM curve (dashed
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Figure 9.5: Root Mean Square Error (RMSE) of the estimated SSIM-rate curve
for each video in the CIF video test set (a) and HD video test set (b), with
n = 4. Polynomial coefficients estimation is given by applying a linear classifier
on raw input data (circle markers) or on the hidden layer of the RBM (square
markers).

line) than the curve obtained directly from raw data (dotted line). Even in the
few cases where the RMSE is worse for RBM prediction, as that reported in
Fig. 9.6b, the RBM estimation of the SSIM curve still remains good.

As explained, the complexity of the coefficients estimation increases with the
degree n of the polynomial. On the other hand, high-degree polynomials offer
a better approximation of the actual SSIM-rate characteristics. It is therefore
interesting to investigate the accuracy of the SSIM estimation when varying the
degree n of the polynomial. To this end, for each video in the CIF dataset, we
report in Fig. 9.7 the RMSE of the SSIM estimation obtained by considering
2, 3 and 4-degree polynomials. Similar results were obtained for HD videos.
Quite interestingly, we observe that there is no absolute winner: the optimal
choice of n depends on the characteristics of each video. In the next section,
we will investigate the practical impact of such estimation differences in the
performance of video admission control and resource allocation algorithms.
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(a) Predicted and real curves for video number 2: RBM prediction
shows better precision.
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(b) Predicted and real curves for video number 11: raw data predic-
tion shows better precision, but RBM prediction is still acceptable.

Figure 9.6: Examples of predicted polynomial curves with respect to the ideal
curve, for two different videos.

9.6 Performance Analysis of Cognitive RM and

VAC Algorithms

In this section, we first revisit the approach presented in [171], which is used
in this study in conjunction with the learning framework of Sec. 9.5. Then, we
discuss the role of the play-out buffer and derive a simple analysis to determine
the amount of pre-buffered content that guarantees a freezing probability lower
than a given threshold.
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Figure 9.7: 2, 3 and 4-degree prediction error for each video of the dataset.

9.6.1 SSIM-based RM and VAC algorithms

Given a mechanism to infer the QoE characteristics of a video, we can now
develop VAC and RM mechanisms that make use of such information. Consider
a framework where different video clips are multiplexed into a shared link of
capacity R by the Cognitive HTTP Proxy (CHP) that performs VAC and RM
(see Fig. 9.1). In general, the RM module should detect changes of the link
capacity (e.g., due to concurrent data flows or fading phenomena in wireless
channels) and trigger an optimization procedure that adapts the video rates
to maximize a certain utility function. In this work, a more favorable (but
still practical) scenario is considered, in which a fixed and constant capacity
is reserved to video flows, which are then isolated from best-effort traffic. In
Sec. 9.8 possible extensions of the work to more challenging scenarios will be
discussed.

The VAC module determines whether or not a new video request can be
accepted without decreasing the QoE of any video below a threshold F ∗ nego-
tiated, for instance, between the operator and video consumers. To this end,
the VAC invokes the RM module to get the best resource allocation for all the
videos potentially admitted into the system and, then, computes the expected
SSIM of each video by using (9.3). If the estimated SSIM is below F ∗ the last
video admission request is refused, otherwise the video is accepted and the rates
of the videos in the system are adapted to the new allocation of the transmis-
sion resources determined by the RM module. To avoid sharp quality changes
in the ongoing video streams, the video rates can be adapted progressively, with
a step that depends on the actual gap between the current and the target SSIM
of each video. Such smoothing techniques will be briefly discussed in Sec. 9.8,
though a detailed analysis of these and other possible improvements is left to
future work.

Formally, let R denote the average available transmission capacity of the
link that can be allotted to the videos, and let Γ = {γv} be an allocation vector
that assigns to the vth video a fraction γv of R, with γv = 0 indicating that
the video is not accepted into the system. Although the H.264 encoding can
only offer a discrete set of transmit rates, in the formulation of the optimization
problem it is temporarily assumed that video encoding rates can be tuned in a
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continuous manner.3 Under this assumption, the RSF of the vth video can be
expressed as

ρ̃v = log

(

γvR

rv(1)

)

.

The optimization problem addressed by the RM module can then be defined
as follows:

Γopt = argmax
Γ

U(Γ, R, {Fv}) s.t.
∑

v

γv ≤ 1 ,

where {Fv} denotes the set of SSIM functions of the videos, while U(·) denotes
the utility function considered by the optimization algorithm. Two baseline
utility functions, which reflect different optimization purposes, are considered:

Rate Fairness (RF)

Resources are distributed to all active videos proportionally to their full quality
rate, without considering the impact on the perceived QoE. In this case, the
optimal rate allocation for the ith video is simply given by

γopt,v =
rv(1)

∑

j rj(1)
,

so that the RSF of each video equals ρ̃ = log(R/
∑

j rj(1)).

SSIM Fairness (SF)

Resources are allocated according to a max-min fairness criterion with respect
to the SSIM of the different videos:

U(Γ, R, {Fv}) = min
v
Fv(ρ̃v) .

Note that under the assumption of continuous rate adaptation, the SF criterion
yields the same SSIM, say ϕ, to all active videos. Given this target SSIM, the
RSF for each video can be easily found as ρ̃v = F−1

v (ϕ), where F−1
v is the inverse

of the QoE function Fv (which is monotonic in the range of interest). Therefore,
the optimization problem can be solved by searching for the maximum ϕ that
satisfies the rate constraint in (9.6.1), i.e.,

ϕ∗ = max

{

ϕ :
1

R

∑

v

rv(1)10F −1
v (ϕ) ≤ 1

}

.

and the associated rate-allocation vector is given by

γv = 10F −1
v (ϕ∗) rv(1)

R
for all v ∈ V .

3This assumption will be removed in the simulations.
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Mapping to admissible encoding rates

Once the target allocation vector Γ = {γv} has been determined under the as-
sumption of continuously encoding rates, we need to find a feasible allocation
vector Γ◦ = {γ◦

v} such that, for each video v, there exists an encoding rate
rv(c) = γ◦

vR. The solution is obtained through the following recursive pol-
icy. For each video v, we find the minimum compression level ĉ for which the
encoding rate does not exceed the allotted capacity, i.e.,

ĉ = min{c : rv(c) ≤ γvR} .

We then select the video v for which the gap between rv(ĉ) and γvR is minimum,
and set γ◦

v = rv(ĉ)/R. Hence, we update the amount of available resources as
R← R− rv(ĉ) and repeat the process iteratively over the remaining videos.

9.6.2 Play-out buffer analysis

We observe that the considered RM algorithms always guarantee that the ag-
gregate bitrate of the downloaded video segments does not exceed the available
channel capacity. Consequently, the size4 of the play-out buffer at the client
side will also remain approximately constant in time, except for small oscilla-
tions due to the variations of the GOP rates around their mean, which can be
smoothed out by buffering a few GOPs of video before starting the playback. In
this way, it is possible to avoid freezing events, while guaranteeing quick starting
of the video play. In the following, we perform an approximate analysis of the
necessary play-out buffer size to guarantee a smooth video playback with low
probability of freezing and rebuffering events.

Let τv be the time duration of each GOP in the video sequence v. Fur-
thermore, let sh

v (c) be the size of the hth GOP of the video, when encoded at
compression level c. In principle, these values can be determined by the video
server and passed to the client (and the CHP) through the MPD descriptor.
However, for the sake of simplicity and generality, these values are modeled
as i.i.d. random variables, with mean sv(c) = E

[

sh
v (c)

]

and standard devia-
tion σv(c), and it is assumed that only these two parameters are passed to the
client/CHP.

Let n0 be the number of GOPs that are buffered by the client before starting
the playback. When the playback starts, a GOP is fetched from the buffer
every τv seconds, while new GOPs arrive into the buffer from the network at
uneven intervals. A freezing event occurs whenever the time to download n
new GOPs exceeds the time to play n0 + n GOPs or, in other terms, when the
aggregate size of n GOPs, Sv(n; c), exceeds the total number of bits Dv(n) that
can be downloaded by the client in the period (n + n0)τv. Assuming that the
RM determines the source rates by conservatively considering only a fraction
α ∈ [0, 1] of the available link rate R, we have that sv(c) = ατvγ

◦
vR, so that the

aggregate size of the n GOPs is Sv(n; c) =
∑n

h=1 s
h
v (c), with mean µ = nsv(c) =

nατvγ
◦
vR, while the total amount of data that can be downloaded in the playing

time of n + n0 GOPs is Dv(n) = τvγ
◦
vR(n0 + n). The freezing probability can

then be expressed as Pf (n; c) = Pr[Sv(n; c) ≥ Dv(n)] = Pr[Sv(n; c) ≥ µ(1+δ)] ,

4As customary, the size of the play-out buffer is here intended in terms of playing time of
the buffered video content, whose size in bytes depends on the compression level of the video
sequence.
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where δ = n+n0

nα − 1. We wish to determine the value of n0 such that Pf (n; c) ≤
P ∗

f for all n, where P ∗
f is the maximum acceptable freezing probability. Applying

the Chernoff bound, we then get

Pf (n; c) ≤ exp

(

− 2δ2µ2

n∆v(c)2

)

,

where ∆v(c) is the difference between the max and the min GOP sizes. Posing
the right-hand side of (9.6.2) lower than or equal to P ∗

f we get the following
conservative criterion to choose the size of the play-out buffer:

n0 ≥ f0(n;α) =
α∆v(c)

sv(c)

√

√

√

√

√n log





1
√

P ∗
f



− n(1− α)

= β
√
n− (1− α)n , (9.7)

where, for ease of writing, we set

β =
∆v(c)

τvγvR

√

√

√

√

√log





1
√

P ∗
f



 .

The right-hand side of (9.7) reaches it maximum for n∗ = β2

4(1−α)2 , for which we

get f0(n∗;α) = β2

4(1−α) . Denoting by nmax the maximum number of GOPs in a

video stream, we can then set

n0 = β
√

min {nmax, n∗} − (1− α)min {nmax, n
∗} .

Using this approximation, it is possible to tune the play-out buffer size to the
characteristics of the specific video stream. Note that, the smaller α (i.e., the
larger the fraction of the link rate that is not allocated to the sources to leave
some capacity in case of need), the smaller the play-out buffer required to avoid
freezing events. However, the value of c will also be affected by α, since the RM
will choose more compressed versions of the video streams to fit into the shrunk
channel capacity αR. For a given P ∗

f , there is then a tradeoff between the delay
to start the play out, which is approximately equal to αn0τv, and the quality of
the streamed video.

Considering the test videos used in this study, by setting α = 1 (which allows
for maximum video quality), we obtain ∆v(c)/sv(c) ≤ 0.35 for all videos and all
values of c. With such values, Eq. (9.6.2) returns a buffer size of n0 ≃ 10 GOPs
(about 3.6 seconds with GOP of 12 frames) when considering video sequences of
up to nmax = 500 GOPs (about 3 minutes) and a freezing probability threshold
P ∗

f = 5%, while n0 = 12 GOPs for P ∗
f = 1%.

9.7 Simulation results

Here the results of the simulation study are presented, showing the potential
benefits, in terms of QoE and blocking probability of the video connections,
that can be achieved by adopting the proposed mechanisms.
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Figure 9.8: Performance comparison of the proposed algorithms RF and SF
when varying the channel capacity, where SF-Exact is the result based on the
exact SSIM curve, while SF-RBM-n is based on the n-degree polynomial esti-
mation given by the RBM model.

9.7.1 Simulation scenario

To compare the performance of the VAC and RM algorithms described above,
the simulated scenario consists of a transmission link that is shared among the
users, e.g., the outbound link towards the public Internet of a LAN. The VAC
mechanism (running in the edge router/proxy) intercepts all requests for new
video streaming sessions, and checks whether the additional traffic flow can be
accommodated without dropping the QoE of the active videos below a certain
SSIM threshold that is set to F ∗ = 0.95, which corresponds to good quality
(MOS of 4, see Tab. 9.1).

The video generation process is simulated as a Poisson process with λ = 0.66
requests/s, where each video request refers to a video randomly picked from the
dataset. The simulation provides a high-level picture of the system, neglecting
the low-level details of the HTTP protocol. Each new video request triggers the
VAC and RM modules, which use the Q-R curve for that video as estimated by
the RBM algorithm to perform their decisions. When a new video is admitted
into the system, or an active video completes its playback, the RM algorithm
reassigns the resources, according to the chosen policy. Note that, while the
VAC and RM operate on the estimated Q-R curves, the performance shown in
the result section refers to the actual SSIM of the active videos. Denoting by
T the average duration of a video sequence, we then have an offered load of
λT ≃ 11 videos, which corresponds to an aggregate rate request for full video
quality of about G ≃ 161 Mb/s.
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Video requests are processed by the VAC algorithms described in Sec. 9.6,
and resources are allocated accordingly. In particular, four different flavors of
the SF algorithm are considered, corresponding to different choices of the SSIM
function Fv(ρ), namely:

• SF-Exact based on the exact SSIM curve, i.e., Fv(ρ) = F
(4)
v (ρ);

• SF-RBM-n based on the n-degree polynomial estimation given by the RBM

model, i.e., Fv(ρ) = F̃
(n)
v (ρ), with n ∈ {2, 3, 4}.

The simulation has been implemented using MATLAB, without the use of
external libraries. Results are obtained in a practical, but somehow favorable
scenario, where the link capacity is stable and known and the Q-R characteristic
of each video is fixed in time.

9.7.2 Results

The algorithms are compared in terms of: (i) average number of admitted videos,
(ii) average SSIM of admitted videos, (iii) blocking probability of a video re-
quest, and (iv) quality outage probability, i.e., probability that the quality of an
accepted video drops below the minimum threshold F ∗ during the session. Note
that with SF-Exact there is no quality outage, therefore this performance index
captures the impact of the SSIM estimation errors of the RBM-based methods.

Fig. 9.8 shows the performance indices when varying the channel rate R with
respect to the nominal average rate request G for full-quality videos. At first
glance, we observe that the SF policies always perform better than RF, and
accept more videos with above-threshold quality. This confirms that content-
aware admission and resource allocation policies are much more effective than
traditional content-agnostic policies in a QoE framework. It is interesting to
observe in Fig. 9.8b that the average SSIM of the active videos is well above
the minimum required quality threshold F ∗. The reason is that actual video
rates obtained with the different (discrete) compression levels are used, so that
resource allocation is not able to use all the channel capacity, leaving part of it
unused. This effect is minimized when R/G ≃ 0.05. If the video coder were able
to provide any desired bitrate value, the quality for all video would have been
equal to F ∗, when considering a sufficiently large G. From Fig. 9.8d we also
note that the smaller the margin between the mean SSIM and F ∗, the larger the
quality outage probability of the SF-RBM schemes. Having a smaller margin, in
fact, offers less protection to SSIM estimation errors. When the average SSIM
is way larger than F ∗, instead, the probability that a SSIM estimation error
causes the actual video quality to drop below F ∗ is very low.

For what concerns the SF algorithms, we observe in Fig. 9.8a that, on aver-
age, the SF-RBM polynomial approximations perform quite closely to the SF-
Exact scheme. Hence, the RBM-based prediction is nearly optimal and proves
the goodness of the training phase. A closer look at the results reveals that SF-
RBM-2 is slightly looser than the other SF schemes in the admission process,
allowing a moderately larger number of videos in the system, with a little lower
average SSIM, as shown in Fig. 9.8b. From Fig. 9.8d, however, we note that the
degree-2 approximation exhibits the largest quality outage probability, which
negatively impacts the system performance due to the aforementioned nearly
optimal number of admitted videos. Conversely, the SF-RMB-3 and SF-RMB-4
schemes perform in a comparable manner, with a very small advantage of SF-
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RBM-3 over SF-RBM-4 in terms of quality outage probability. Thus, we might
suggest the use of degree-3 predictions due to the slightly lower computational
complexity and amount of signaling required in the system.

9.8 Improvements and open challenges

The study presented in the previous sections was mainly intended to prove the
effectiveness of the machine-learning approach to gain knowledge on the Q-
R characteristics of a video sequence from high-layer parameters and to show
how such a knowledge can be exploited by network management algorithms to
improve the service offered to the users. The analysis has been carried out by
considering a practical, but somehow favorable scenario, in which homogeneous
video sequences are assumed, with fixed and known Q-R characteristics and
stable communication resources. Furthermore, other important QoE metrics
have been neglected, such as the effect of sharp quality variations.

This section provides a preliminary discussion of some possible extensions
of the proposed approach to overcome these limits, leaving a more detailed
analysis to future work. Given its superior performance, only the SSIM-fairness
RM criterion is considered. As a first step, some of the assumptions regarding
the Q-R characteristics of the video sequences and the QoE metrics are relaxed,
but still assuming that the multimedia flows are guaranteed a constant bitrate
R. Then, the case where the channel capacity may vary over time is addressed.

9.8.1 Limiting video quality variations

To avoid sharp variations of the video quality due to the adaptation mechanisms,
it is possible to resort to the smoothing/hysteresis techniques proposed in the
DASH literature. However, the knowledge of the Q-R characteristics of each
video sequence makes it possible to choose the step of the rate adaptation in a
way that makes the quality variation less perceivable. Consider, for example,
the reduction of the SSIM of current videos from ϕ to ϕ′ to make space for a
newcomer. If the quality variation ϕ−ϕ′ is small, so that the SSIM gap is barely
perceivable, then the rate change can be performed immediately, irrespective of
the actual rate gap, and the new video can be directly admitted with quality
ϕ′. If, instead, the SSIM gap is perceivable, then the rates should be smoothly
changed and the new video might be admitted with some delay and/or with a
lower initial quality which is progressively and smoothly increased till ϕ′. We
observe that the proper implementation of these mechanisms would require the
definition of a function d(ϕ,ϕ′, t) that quantifies the quality degradation due to
variations of the SSIM from ϕ to ϕ′ in a time t. However, the identification of
such a function is still an open and interesting research challenge.

9.8.2 Varying Q-R characteristics

The video clips considered in this analysis were homogeneous in terms of Q-R
characteristics. In general, however, the Q-R curve may vary in consecutive
video segments, e.g., because of scene changes. In this case, the VAC becomes
more complex. If the Q-R curve is known in advance for all the video seg-
ments, the VAC can potentially predict the resource assignments for the whole
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duration of the video sequences (assuming the current system conditions would
not further change) and check whether the SSIM would always be satisfactory.
Moreover, it is possible to design rate adaptation algorithms that temporarily
increase the resource share assigned to a flow (or reduce the video quality of
that flow) in order to fill the play-out buffer in prevision of future segments of
the same video with higher rate requests.

To formalize these concepts, we can define gℓ
v(ϕ) as the size of the ℓ segment

of video v, when encoded at a level that yields SSIM ϕ. Adopting a conservative
approach, we may replace the feasibility condition in (9.6.1) with the following

1

ns

ns
∑

ℓ=1

∑

v

gℓ
v(ϕ) ≤ RTs, for ns = 1, 2, . . . , Ns,max ,

where Ts is the time duration of a video segment, and Ns,max is an acceptable
time horizon (e.g., the least number of residual segments for the ongoing flows).
Therefore, (9.8.2) is satisfied when the aggregate bitrate required to download
each of the video segments at quality ϕ never exceeds the link capacity. A new
video is accepted into the system only if the maximum ϕ that satisfies (9.8.2)
is not lower than the threshold F ∗. A more aggressive (and resource-efficient)
strategy may consider a dynamic adaptation of ϕ, while avoiding sharp quality
variations. In this case, the feasibility condition can be expressed as

1

ns

ns
∑

ℓ=1

∑

v

gℓ
v(ϕℓ) ≤ RTs, for ns = 1, 2, . . . , Ns,max , (9.8)

s.t. d(ϕℓ, ϕℓ+1, Ts) ≤ d∗ . (9.9)

where d(·) is the function described in Sec. 9.8.1, and d∗ is the maximum accept-
able degradation due to quality variations. The analysis of these approaches,
however, is left for future work.

9.8.3 Variable link capacity

The analysis carried out so far assumes that the link capacity reserved to mul-
timedia flows is constant over time. In many practical cases, however, the
multimedia contents share the channel with other flows, so that the capacity
available to video flows may vary in time. In this case, the RM algorithm
should be able to estimate the new available rate and adapt the quality of the
on-going flows accordingly. Since the capacity estimate is generally noisy, how-
ever, it is not possible to guarantee a minimum SSIM, or to completely avoid
the risk of freezing or sharp quality variations.

To gain insights on the possible effects of noisy channel estimates, we can
model the link rate experienced when downloading the hth GOP of video v
as rh

v = rv(c) + wh
v , where rv(c) is the link capacity estimated by the RM

algorithm and wh
v is an estimate error term assumed to be random, with zero

mean and variance σ2
r,v. Building upon the analysis developed in Sec. 9.6.2, we

can now express the freezing probability as Pf (n) = Pr [Sv(n) ≥ D′(n)] with

D′(n) = τv

(

γ◦
vR(n+ n0) +

∑n+n0

h=1 wh
v

)

= Dv(n) + Y (n) where Y (n) has zero

mean, so that E [Sv(n)− Y (n)] = µ, as in Sec. 9.6.2. Then, repeating the steps
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Figure 9.9: Video quality and initial playback delays for different values of α,
using RF and SF.

of Sec. 9.6.2, we get

n0 ≥
α∆′

v(c)

sv(c)

√

√

√

√

√n log





1
√

P ∗
f



− n(1− α) = β′
√
n− (1− α)n

where ∆′
v(c) ≥ ∆v(c) because of the additional variance due to rate estimation

errors. Approximating ∆v(c)′ as k
√

σ2
v(c) + τ2

vσ
2
r,v (i.e., increasing the variance

of the GOP size to account for the channel capacity fluctuations), we get

β′ =
α∆′

v(c)

sv(c)

√

√

√

√

√log





1
√

P ∗
f



 ≃
k
√

σ2
v(c) + τ2

vσ
2
r,v

γ◦
v(c)Rτv

√

√

√

√

√log





1
√

P ∗
f



 (9.10)

n0 = β′
√

min {n∗′, nmax} − (1− α)min {n∗′, nmax} (9.11)

with n∗′ = β′2

4(1−α)2 .

Clearly, the size of the play-out buffer impacts the initial delay τ0. A rough
estimate of τ0 can be obtained by assuming that the aggregate size of the initial
n0 GOPs is equal to n0sv(c) = n0ατvγ

◦
vR and that these GOPs are downloaded

at the assigned share of the nominal link rate, i.e., γ◦
vR, so that we get τ0 =

αn0τv . From this result and (9.11), we see that the smaller α, the lower τ0. On
the other hand, the smaller α, the lower the quality of the segments downloaded
by the CHP. There exists then a tradeoff between the initial playback delay
and the average quality of the video when varying α. Fig. 9.9 shows such a
tradeoff for a few sample videos, when using both the SF (dashed line) and
RF (solid lines) RM algorithms. The plot has been obtained by setting k = 7,
σv(c)/sv(c) = 5%, P ∗

f = 5%, and σr,v = 0.01. The results show that SF makes
it possible not only to offer the same quality to all video sequences, but also to



177

provide the same playback delay for a certain quality level. RF, instead, can
give better quality (or lower playback delay) to certain videos, while others will
suffer very poor quality, even when the initial delay is allowed to be large.

9.9 Conclusions and future directions

This chapter described a framework for video admission control in wireless sys-
tems that exploits machine learning algorithms to optimize resource manage-
ment. By means of simulation, it has been shown that the proposed framework
outperforms offline video analysis techniques in terms of the trade-off between
QoE delivered and computational costs.

Further improvements of the proposed method could be obtained by extend-
ing the unsupervised learning phase by using a richer input vector, including
other encoding parameters, and a deeper architecture, thereby considering a hi-
erarchical generative model of the data distribution [209]. However, more com-
plex models usually need larger training datasets, which must provide enough
statistical information to extract a good set of descriptive features. An impor-
tant step would therefore be to also increase the amount of data used to train
the generative model, which can be accomplished by collecting more videos or
integrating other available datasets into the framework. Finally, exploiting un-
supervised learning to build an expressive set of high-level features allows great
flexibility to the proposed framework, which can be used to transfer knowledge
across several tasks [230].
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Chapter 10

Just-In-Time Proactive

Caching For DASH Video

Streaming

Following the widespread adoption of adaptive video streaming algorithms on
the client side, this study proposes a pre-fetching proxy cache, to be placed at
the network’s edge, which will predict the quality that the client will request
for the following segment. The proxy predicts the future network conditions
and models the system as a Markov Decision Process (MDP), in order to find
the optimal decision for the proxy, given the current network conditions. This
Just-in-Time caching technique pre-fetches the segment just before the client
requests it, aiming to decrease the total time spent by the client downloading
the segments, and indirectly increasing the user’s QoE, as the DASH client will
perceive better network conditions.

10.1 Introduction

Caching and pre-fetching are well known techniques to improve the user QoE in
video streaming applications. Caching can be defined as the temporary storage
of an object for future use, and pre-fetching can be defined as the action of
requesting an object that is expected to be needed in the near future. The
introduction of proxy caches in the network has been studied, along with various
caching strategies. The purpose of this is to make the network less vulnerable
to congestion by making the same content available in places other than the
server, so there are fewer requests sent directly to the server, and users can get
better performance by streaming the content from the closest available cache.
There have also been some attempts to study the impact of pre-fetching on user
QoE [231,232]; however, the cache often needs a considerably large size in order
to yield an acceptable cache hit percentage.

The study of caching and pre-fetching solutions is widely saturated, however,
a caching strategy which involves a pre-fetching technique that predicts the
client’s future behavior is yet to be explored. Therefore, the main objective
of this work is to study the impact on the user QoE of the introduction of
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a predictive proxy cache in the edge of a network, in a connection between a
DASH client and a DASH server.

By placing a cache closer to the requesting client, the Round Trip Time
(RTT) of the connection will decrease, reducing the time taken by the client
to download a video segment. This will induce the client to perceive a better
channel capacity, enabling it to request segments with higher qualities. The
aim of the proxy cache is to increase the user’s QoE by: i) increasing the video
quality; ii) reducing the amplitude of the variation in the video quality; iii)
reducing the frequency of the video quality variation; iv) reducing the frequency
of stalling events; v) reducing the duration of stalling events.

Since real caches have a limited storage capacity, there must be an efficient
way to determine which segments to store in the cache over time. To achieve
this, a probabilistic approach is considered to predict which video segment the
client will request, given the current network conditions. This prevents the
unnecessary storage of unused video segments as well as the unnecessary use of
bandwidth to pre-fetch these segments from the server.

10.2 State of the Art

This section describes the most relevant works published in the literature con-
cerning pre-fetching strategies.

A network awareness study is conducted by Bronzino et al. [233], where
the authors aim to optimally use the available end-to-end bandwidth by using
intermediate nodes to cache video content closer to the client, thus distributing
the traffic load over time. Ultimately, the solution aims to improve the QoE
for the end user. The proposed solution involves moving the decision on the
segment’s quality into the network, by introducing a controller and a cache in
the edge of the network. In this study, the client will only request the required
video segment, and will receive that segment with the bitrate pre-fetched by
the controller, which will be stored in the cache. The study takes advantage
of the fact that the available bandwidth is easier to predict having a general
view of the network infrastructure resources available in the network. Using
the information on the client playback and buffer status, the controller exploits
the available resources and chooses an appropriate bitrate for the segment it
will download to store in the cache. The bitrate selection algorithm used in this
study chooses a combination of bitrates for the given sequence of segments to be
downloaded at the time (bitrate path). The chosen bitrates are the ones which
lead to the highest QoE, given the current network conditions. This algorithm
runs within a given time frame, returning the bitrate path with the highest QoE
when the time frame ends.

A limitation that is addressed by this study is that in the long run, it is
possible that when a new time frame begins, the network conditions will be
different from the ones that were considered in the previous time frame, and this
may lead to a significant QoE drop if the network conditions are less favorable
at this time. Another limitation that can be seen in this study is the fact that
the algorithm must be run once for every decision that must be made. Even
though the proposed solution introduces some additional costs for the content
provider, the authors claim that the resource costs are minimal and that the
achieved gain in QoE outweighs the computational costs.
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In [231], Liang et al. combine both caching and pre-fetching to improve the
performance in terms of byte-hit ratio and video bit rates. The architecture
of this solution is composed of three modules: a cache manager, a pre-fetch
manager and a request pool. The cache manager handles all user requests and
video segments received from the content server. If there is a cache-miss, it
sends a request to the request pool, which in turn forwards the request to the
content server. The cache manager also generates pre-fetch requests for every
user request, and sends those to the pre-fetch manager. It only generates pre-
fetch requests for successive video segments with the same bit rate as the current
request. When the video segment arrives, if the cache is full, the cache manager
makes a decision on whether to keep or discard the segment, based on its utility.
The pre-fetch manager decides whether the received pre-fetch request should be
sent to the request pool or not, based on its current usage.

Evaluation is done by comparing to three alternatives: Least Recently Used
(LRU)-based caching approach, a popularity-based caching approach called
Popular Content (PC) which caches the top 100 most popular in advance, and
an aggressive pre-fetching approach. The study shows that the Average Per-
User Throughput (APUT) is 50% higher compared to LRU and PC, and 31%
higher when compared to the aggressive pre-fetching, for a cache size of 1GB.
In terms of byte-hit ratio, the architecture improves the performance by nearly
84% compared to the aggressive pre-fetching, and a performance gain between
5 and 8 times larger when compared to LRU and PC. This study, however, does
not take into account the volatile behaviour of the channel, as it always chooses
to pre-fetch the same bit rate as was requested previously.

In [232], Krishnappa et al. investigate the advantages of having a pre-
fetching and caching scheme for Hulu (a free hosting service of professionally
created video for films and TV shows). The pre-fetching scheme is based on
caching the most popular videos of the week provided by the Hulu website. It
is compared to the conventional LRU caching. Results show that this yields a
hit ratio of up to 77.69% but requires a storage of 236 GB. When evaluating the
performance of pre-fetching the popular videos list, it is noted that a maximum
hit ratio of 44.2% is obtained when pre-fetching 100 videos, corresponding to
a cache storage of 10GB. For the same storage space, the LRU caching scheme
yields a hit ratio of 45.53%; however, in this case 5767 videos are downloaded,
compared to only 100 when pre-fetching.

Binging is a new trend which has also been studied. Binging is when a user
watches multiple episodes of a television programme in rapid succession, typi-
cally by means of DVDs or digital streaming. For example, Claeys et al. [234]
take advantage of the recent trend. Studies show that users stream on average
2.3 episodes per viewing, and so 57% of the streaming sessions could be an-
nounced in advance by a proxy. If these announcements were to be made, it
would enable a simple prediction for future segment requests and subsequent
episodes could be cached in advance, allowing for an improved QoE.

The evaluation of this study is based on the byte hit ratio. It notes an
increase in performance of 54% in comparison to the LRU caching strategy. A
limitation on this approach is that it does not take into account the possibility
of the user ending the session before the episode ends. If this were to happen,
many segments would be stored in cache with no purpose, as they would not be
served to the client. Also, the bandwidth that would be used to pre-fetch these
segments could have been used to serve other clients.
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Figure 10.1: Schematic of the considered scenario.

Zhang et al. [235] present a dependency-aware caching algorithm which takes
into account a dynamic network condition. The study assumes multiple users
and multiple requests per user, and therefore aims to improve QoE for all users
generally and not for a specific user. The algorithm is based on the profit of
caching a certain segment, which is defined by the increase in utility of caching
that segment. The utility of caching a segment depends on the available band-
width, the segment size, the number of active client sessions and the number
of requests per session. The algorithm decides to cache segments in descending
order of profit, and depending on how full the cache storage is.

10.3 System Model

As depicted in Fig. 10.1, consider a DASH client that is streaming a video by
downloading consecutive segments from a server. A proxy is placed between the
client and the server, intercepting the client’s segment requests and answering
them directly if the chosen segment is present in its cache. Assume that the
proxy proactively tries to predict the next segment that the client will request
and pre-fetches it from the server; if the proxy pre-fetches and stores the correct
adaptation, the latency the client experiences is far lower, improving the user
QoE.

Let ac(n) be the adaptation chosen by the client for the n-th segment, and
ap(n) be the one pre-fetched by the proxy. We can distinguish two different
scenarios:

• Cache hit: if ap(n−1) = ac(n), and the proxy has finished downloading the
pre-fetched segment when the client’s request arrives, the client downloads
the segment from the proxy, which requests the next predicted adaptation
to the server at the same time;

• Cache miss: if ap(n− 1) 6= ac(n) or the pre-fetching is not complete, the
client’s request is forwarded to the server, and either the proxy abstains
from pre-fetching the next segment (resulting in another cache miss) or
its pre-fetching will be in direct competition for the link between server
and proxy with the client’s download. In any case, the client is prioritized
with respect to the proxy, so the latter can only use the bandwidth that
is not used by the client.

We can model the scenario above as an MDP, a class of Markovian model
defined by a state space S and an action space A, both finite and discrete,
a state transition matrix M whose elements are the transition probabilities
between states sn and sn+1, and a reward function r(sn, sn+1, ap(n)).
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The action space of the problem is represented by the proxy’s pre-fetching
choices ap(n): the solution to the problem is the policy Π∗ : S −→ A which max-
imizes the expected reward function for the next step. Note that, as explained
above, refraining from pre-fetching a segment is a valid action and should be
included in the problem definition. The objective of the proxy is to maximize
the client’s reward function, which depends on the user QoE for the video; we
also assume that the proxy knows the adaptation logic the client is running and
can then predict the client’s actions in any given situation, in order to preserve
the Markov property. In order to model the problem as an MDP, we need to
define the reward function, the system state and the transition matrix.

10.3.1 Reward function

As discussed in Sec. 10.2, the QoE of a video client depends on the visual quality
of the current segment, the quality variation between segments, and the playout
freezing events due to rebuffering. In the following, a reward function that
captures these aspects is introduced and that, in turn, can be used to derive
policies that maximize the QoE of video streaming customers.

In this work, the bitrate is considered a proxy for picture quality, but the
framework supports any objective QoE metric, which could be pre-computed by
the server and served to the client along with the MPD or computed live using
an appropriately trained deep neural network [221].

We define the reward function for the pre-fetched segment n as follows:

r(qn−1, qn, φn) = qn − β‖qn − qn−1‖ − γφn, (10.1)

where φn is an indicator variable that is equal to 1 in case a rebuffering event
happens. The first term on the right-hand side accounts for the benefit of
a higher quality qn of the video, while the following two negative terms are
penalty factors due to quality variations in consecutive frames and rebuffering
events, respectively. The coefficients β and γ are weighting factors that regulate
the relative importance of the three penalty terms. Note that the structure of
the reward function (10.1) was first proposed and validated by De Vriendt et
al. in [236], and is used as a comprehensive QoE metric by several algorithms
in the literature [183,186,237].

The weights β and γ are here used to select different points in the trade-off
between a high instantaneous quality, a constant quality level, and a smooth
playback. The desired operational point might depend on several factors, includ-
ing user preferences and video content, and tuning these parameters is outside
the scope of this work.

The optimal policy Π∗ : S −→ A is defined as the policy that maximizes the
expected value E[rn|sn,Π

∗] in any state.

10.3.2 MDP definition

Since qn is directly involved in the reward calculation, its value should be in-
cluded in the state definition in order to fit the definition of the MDP. Two other
parameters indirectly affect the state transitions and the reward: the buffer level
and the capacity Cn experienced by the client. Let Bn denote the buffer level
at the beginning of the n-th segment download, and consider it part of the state
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definition. The other parameter, the capacity, is composed of three values: the
capacity of the link between client and proxy CCP (n), the capacity of the link
between proxy and server CP S(n), and an indicator variable Hn which is equal
to 1 in case of a cache hit and 0 otherwise. If Hn = 1, Cn = CCP (n), while in
the cache miss scenario Cn = min(CCP (n), CP S(n)).

The complete state of the MDP is then a 5-tuple:
sn = (Bn, qn, CCP (n), CP S(n), Hn). Here it is assumed that the policy imple-
mented by the client is known to the proxy, which should be able to determine
the probability distribution of the client’s actions in any given state sn.

10.3.3 Small-scale model

The definition of an MDP to represent the video streaming scenario has one
major issue: since the download of different segments in different network con-
ditions will take different amounts of time, the Markovian assumption can not
be justified without some extra steps.

In order to overcome this problem, the capacity of the links between client
and proxy (CCP ) and between proxy and server (CP S) is modeled as two inde-
pendent Markov processes, with a time step T which should be far smaller than
the average download time of a segment. If we denote the number of undelivered
bits in the segment at step t as bt, we get:

bt+1 = bt − CtT, (10.2)

where Ct is the capacity experienced by the client. Let Tsetup be the number
of time steps that the client needs to send the request and receive the response
from the server or proxy, during which no useful bits can be downloaded; since
the capacity of the client is Markovian, we can calculate the probability that
an adaptation ac(n) will take N time steps, given the initial capacities and the
proxy’s action:

P (N(ac(n)) = N |CCP
t , CP S

t , Tsetup, Hn, ap(n)) =
∑

C

p(C)δ (F (ac(n)), C) , (10.3)

where F (ac(n)) is the frame size for adaptation ac(n), C is the vector of channel
capacities experienced by the client from time t + Tsetup + 1 to t + N , and C
is the sum of all its elements. The solution to this equation can be computed
recursively for any initial combination (N,F (ac(n)), CCP

t , CP S
t ) and stored for

later use. The time from one client decision to the next is simply TN(ac(n)).
In order to get a cache hit for segment n + 1, two conditions have to be

met: the proxy has to correctly predict the adaptation the client will require,
and it has to download the segment before the client requests it (i.e., the proxy
download needs to take M < N time steps). The probability of the latter can
be computed as:

P (M(ap(n)) = M |CP S
t , Hn) =

∑

C

p(C)δ (F (ap(n)), C) , (10.4)

where C now indicates the vector of proxy-server channel capacities from time
t+Tsetup +1 to time t+M . In this case, the capacity for the proxy is equivalent
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to CP S(t) if Hn = 1, and CP S(n) −min(CCP (n), CP S(n)) otherwise, as it has
to share the link with the client. In the latter scenario, M and N are not
independent, and so must be computed together.

In this way, the large-scale transition from one state
sn = (Bn, qn−1, CCP (n), CP S(n), Hn) to the next sn+1 = (Bn+1, qn, CCP (n +
1), CP S(n+ 1), Hn+1) can be modeled as a Markov process; the joint computa-
tion of all variables yields the transition matrix of the MDP.

10.3.4 Solution

Since the problem has a finite horizon, it is possible to solve the MDP analyti-
cally:

a∗
p(sn) = argmax

ap∈A

∑

sn+1∈S

E [rn+1|sn+1]P (sn+1|sn, ap). (10.5)

The two parts of the equation can be simply determined:

E[Rn|sn] =

∞
∑

N=0

r(qn−1, q(ac(n)), u (NT −Bn))P (N(ac(n) = N |sn), (10.6)

where u ( · ) is the Heaviside step function. The last term can be calculated using
(10.3), which was derived from the small-scale channel model. The probability
P (sn+1|sn, ap(n)) is computed directly from the small-scale model in Sec. 10.3.3.
The expected reward from all the actions in all states can be then computed,
and a simple argmax operation is enough to determine the optimal policy.

This brute-force policy calculation is computationally feasible for problems
of relatively limited size and with a short-term temporal horizon; for larger and
more long-term oriented problems, solutions such as reinforcement learning can
be considered, but this is beyond the scope of this work and will be analysed in
a future extension of it.

10.4 Results

This section presents a simulative comparison between the previously described
proactive pre-fetching proxy, a pre-fetching proxy that pre-fetches the next seg-
ment having the same quality as the one previously downloaded by the client,
and the scenario with no proxy. The client runs the algorithm described in [237].

10.4.1 Simulation scenario

The simulation scenario is simple: a proxy is placed between a DASH client and
a server, with two independent channels between the client and the proxy and
between the proxy and the server. The first has an RTT of 50 ms, while the
second has an RTT of 200 ms. As described in Sec. 10.3.3, the two channels are
modeled as independent Markov processes with transition matrices πC,P S and
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Figure 10.2: Average hit probability, with 95% confidence intervals.
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The size of this square matrix is different for the client-proxy and proxy-server
channels. In particular, the states represent the link capacity measured in
Mbit/s, starting from 1 up to a maximum channel capacity. The maximum
channel capacity for the client-proxy link is set to Cmax

CP = 6 Mbit/s, so the six
states for the client-proxy channel model correspond to available capacities of
{1, 2, 3, 4, 5, 6} Mbit/s. The same holds for the proxy-server link; however, its
maximum capacity Cmax

P S has been varied from 1 Mbit/s to 24 Mbit/s to explore
different scenarios, including the ones where the proxy-server link capacity is
actually lower than the client-proxy capacity, which is a challenging setting for
a prefetching proxy. The time step T for the small scale model was set to 100
ms.

In the following simulations the values β = 6 and γ = 10 are used as the
weighting factors in the reward function in (10.1).

10.4.2 Hit probability

First, we analyse the average cache hit probability when varying the maximum
proxy-server link capacity (Fig. 10.2).
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Figure 10.3: QoE, with 95% confidence intervals.

For very low values of Cmax
P S it is unlikely that the proxy is able to pre-

fetch segments before the client requests them. In order to better explain this
statement, consider the scenario where the next segment requested by the client
has the same quality as the currently downloaded one. For the proxy to be able
to successfully pre-fetch the next segment, the proxy-server bandwidth available
to the proxy has to be at least equal to the client-proxy bandwidth. As soon as
a cache miss happens, since the proxy-server capacity is low, the client requests
the segment from the server using almost all of the available bandwidth, thus
preventing the proxy to download the correct quality for the next segment. This
causes an avalanche of cache misses, which lower the average hit probability.

Instead, when the maximum proxy-server link capacity is high, the hit prob-
ability is large, particularly for the predictive proxy. This proves that the pre-
dictive proxy is able to accurately predict the next segment quality even when
the number of states in the channel model, and, therefore, its capacity vari-
ability, is large. As expected, the same quality pre-fetching strategy offers an
inferior performance. Since the proxy pre-fetches the different qualities in order
of how likely they are to be requested, as the maximum proxy-server capacity
approaches to infinity, the proxy is able to pre-fetch any segment quality with-
out considering the capacity limitation, thus yielding an average hit probability
close to 1.

10.4.3 Average QoE

In order to measure the overall QoE, a metric proposed in [237] is used. This
metric is a linear combination of the average video quality q̄ and its standard
deviation σq, both normalized by the maximum available quality qmax, and a
parameter F that models the influence of stalling events.

QoE = 5.67
q̄

qmax
− 6.72

σq

qmax
− 4.95 · F + 0.17 , (10.7)
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Figure 10.4: Initial buffering time, with 95% confidence intervals.

with F defined as

F =
7

8
max

(

log(φ)

6
+ 1, 0

)

+
1

8
· min(ψ, 15)

15
, (10.8)

where φ is the frequency of stalling events and ψ is their average duration.
Fig. 10.3 shows a large increase in QoE by using a caching proxy and, in par-
ticular, by using a predictive pre-fetching strategy.

For low proxy-server maximum capacity, the client, as explained earlier,
is almost always downloading the segment from the server. With such a low
proxy-server capacity, the channel model has very few states, causing a channel
with low capacity but also low variability. In this scenario, the client adaptation
algorithm is able to predict the channel very well, thus avoiding quality switches
and rebuffering, offering large QoE even when playing low quality segments.

From there, increasing the proxy-server maximum capacity brings higher
variability to the channel, while still forcing the download of low quality seg-
ments. This decreases the QoE value up to a point, which in our scenario is
Cmax

P S = 6 Mbit/s, where the large channel variability is compensated by the
possibility to play high quality segments. From there, the QoE increases with
the maximum proxy-server capacity.

10.4.4 Initial buffering time

The time needed to fill the buffer before the actual start of the playout is not
considered in the QoE metric plotted in Fig. 10.3. Therefore, for completeness,
its behavior is shown in Fig. 10.4 for different maximum proxy-server capacities.
The playout is considered started, and therefore the initial buffering period
ended, when the buffer contains the first 3 seconds of video. We observe that,
for Cmax

P S lower than 9 Mbit/s, the performance with and without the proxy is
the same, because of the low hit probability which forces the client to download
the segment directly from the server. Instead, for larger maximum proxy-server
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capacity values the client benefits from the presence of a proxy, reducing the
initial buffering time. The initial delay stabilizes for Cmax

P S ≈ 2Cmax
CP , since, in

this case, the probability of the proxy-server link being the bottleneck is almost
zero.

10.4.5 Advantages of the scheme

In conclusion, the benefit of using a pre-fetching proxy is clear: Fig. 10.3 shows
a significant increase in the QoE for both pre-fetching schemes. The predictive
pre-fetching scheme increases the QoE only slightly with respect to the simple
non-predictive scheme, but its advantage lies in the significantly higher hit rate:
since every cache miss means that a segment is downloaded by the proxy but
never used by the client, increasing the hit rate greatly improves the efficiency of
the system. A predictive pre-fetching system, installed before the “last mile” in
a DSL or cellular network, can help improve end users’ QoE without imposing
a significant additional load on the core network.

10.5 Conclusions

In this work, a DASH video streaming scenario including a proactive pre-fetching
proxy has been modeled as an MDP, and the optimal strategy for the proxy has
been found.

Although the benefits in terms of QoE are not huge when compared to a
simpler proxy which pre-fetches the next segment at the same quality as the
one currently streamed by the client, the combined increase in QoE and cache
hit rate means that the predictive proxy can exploit its better awareness of the
scenario to provide a better quality while wasting less bandwidth and reducing
the load on the server.

Further improvements to the proxy could be achieved by using reinforcement
learning in order to maximize the long-term QoE instead of just the instanta-
neous one.
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Chapter 11

Features selections and

machine learning techniques

for Non-LOS detection in

UWB transmissions

In CPSs, positioning is an important service, not only because it provides the
control loop with information about device operation, but also as an aid to the
communication subsystem, enabling improved performance on bitrate adapta-
tion or beamforming techniques. Indoor systems often use triangulation tech-
niques based on ultra-wideband (UWB) pulses to perform accurate ranging
estimates, since satellite positioning services are not available inside buildings.
However, the ranging accuracy can be greatly degraded in case of non-line-of-
sight (NLOS) conditions of the propagation channel, which are therefore crucial
to correctly identify. This chapter provides a systematic study that includes
multiple machine learning algorithms and signal features, in order to identify
which features are more informative for each machine learning technique, and
which combination performs the best. Furthermore, a technique exploiting mul-
tiple signals received from different directions is proposed.

11.1 Introduction

UWB location systems are seen as a promising solution to enable robust and
precise positioning services in indoor environments [238]. The most common
technique to position of a device in UWB systems is to estimate its distance to
some reference points, called beacons, by considering the time of arrival (ToA)
or the time difference of arrival (TDoA) of the signals transmitted by such
beacons, and then applying triangulation or multilateration techniques [239].
Instead, the received signal strength (RSS) or angle of arrival (AoA) techniques
are less popular, since they do not exploit the fine space resolution of impulsive
signals and thus offer lower accuracy [240,241].

The main source of ranging errors in ToA UWB ranging is the presence of
NLOS components in the received signals, which introduce a positive time bias
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that, in turn, results in an overestimate of the transmitter-receiver distance [241–
243]. A common and simple strategy to mitigate this type of ranging errors is to
detect the received signals with a strong NLOS component, which can then be
discarded or weighted less than the line-of-sight (LOS) signals when performing
the ranging estimate [241,244].

Therefore, much effort has been dedicated to the study of effective and ef-
ficient ways to discriminate between NLOS and LOS propagation conditions in
UWB transmissions. The basic idea consists in exploiting some specific features
in the received UWB impulse that are likely affected by NLOS propagation,
such as kurtosis, delay spread, energy, and others. However, the extent to which
these features are influenced by the propagation conditions strongly depends on
the characteristics of the environment, thus making difficult the definition of
threshold-based classification criteria.

One possible approach to circumvent these difficulties is to train machine-
learning algorithms to automatically classify the received UWB impulse as LOS
or NLOS. However, which signal features are more informative and what is
the most promising machine learning algorithm to recognize NLOS propagation
conditions in UWB transmissions is still unclear.

This chapter sheds some light on these problems by performing a compar-
ative study among different machine learning algorithms. More specifically, we
consider SVM, which has been widely used in the literature for such a purpose,
with other four machine learning techniques that are considered state-of-the-art
in many classification tasks, namely k-Nearest Neighbors (k-NN), ANN, Naive
Bayes (NB), and Logistic Regression (LR). Altogether, the five techniques com-
pared in this study cover a broad variety of approaches: generative, discrimina-
tive, distance-based, and regression models. The analysis is performed on real
measurements collected in heterogeneous environments, thus making it possible
to i) identify the signal features that are more useful in this classification task,
and ii) assess the robustness of the NLOS identification techniques to variations
of the building materials in the structure. A distinctive trait of this analysis is
the use of an antenna array at the UWB receiver, which makes it possible to
perform the classification task by considering the impulses simultaneously re-
ceived from multiple directions. It will be shown how the accuracy of the NLOS
detection task monotonically increases with the number of available antenna
elements at the receiver, though with diminishing gain after a certain value. In
connection with this analysis, we are also going to discuss a possible method-
ological pitfall in the validation of the classifiers due to the angular correlation
of the received UWB signals.

In summary, the original contribution of this work consists in the following
points:

• Performance comparison of five machine learning techniques, namely SVM,
k-NN, ANN, NB, and LR, which have been optimized for NLOS.

• Identification of the best subset of UWB signal features for each algorithm.

• Evaluation of the NLOS performance when considering real measurements
collected in different indoor environments.

• Analysis of the performance gain obtained by considering the multiple
signals collected from different directions by using multi-antenna receivers.
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Based on the obtained results, we can draw the following conclusions: i) the
detection accuracy can be dramatically improved by using signals received from
five (or more) equally-spaced directions; ii) SVM is the best performing algo-
rithm, as also observed in some previous papers, but k-NN achieves very similar
performance with lower complexity; and iii) the most useful UWB signal fea-
tures are kurtosis, and mean and variance of the excess delay.

11.2 Related work

Much work has been dedicated to improve the accuracy of the LOS/NLOS clas-
sification task in UWB systems. Many classifiers, however, do not exploit the
full potential of machine learning techniques. In [245], the authors use a likeli-
hood ratio test employing the amplitude and delay statistics of the channel in
NLOS and LOS scenarios. In [246], the empirical pdf of the range measurements
is extracted from many samples collected at the same position, then it is com-
pared to the expected pdf for a LOS scenario using binary hypothesis testing.
Similarly, an approach based on distance characterization between probability
distributions, using only root mean square delay spread and kurtosis as signal
features, is presented in [247]. The work in [248] uses binary hypothesis testing
to compare range measurements to NLOS error models, leveraging the fact that
the variance of NLOS measurements is larger than that of LOS measurements.
An error model is also used in [249] to identify range measurements affected by
NLOS errors, based on the a priori knowledge of the standard deviation of the
measurement noise. In alternative, NLOS identification and error mitigation can
be performed by taking into account the geometry of the environment [250,251].
Another approach consists in performing an exhaustive search over subsets of
range measurements using the least-median-of-squares method, with the aim of
obtaining a consistent set of LOS range measurements [252].

In [253] and [254], both ToA range measurements and RSS information
are used. The intuition is that NLOS conditions are usually associated with
high range estimates and low RSS values. Analogously, [255] presents different
techniques for NLOS identification based on temporal RSS measurements and
applies it to Wi-Fi signals. The techniques are based, respectively, on Least
Squares Support Vector Machine (LS-SVM), a Gaussian process classifier, and
a hypothesis testing classifier. These techniques, however, do not use features
extracted from the whole signal envelope, thus losing potentially useful infor-
mation.

Multi-antenna receivers make it possible to extract additional information
by comparing the signals received by the multiple antennas [256]. The technique
introduced in [257] uses this approach by exploiting the distribution of the phase
difference of two signals received through two different elements in an antenna
array.

Other works use supervised machine learning techniques to differentiate be-
tween LOS and NLOS signals. In [258], the authors propose the use of a LS-SVM
for this purpose. The feature space is composed by some characteristics of the re-
ceived signal envelope, like maximum amplitude, energy, and kurtosis. A similar
approach is proposed in [259] where Support Vector Data Description (SVDD)
is used instead of SVM to perform the NLOS identification. Alternatively, a
Relevance Vector Machine can be used as a LOS/NLOS classifier [260]. The
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work in [261] presents a NLOS identification technique for on-body area net-
works using four time-domain features extracted from UWB signals, namely
kurtosis, entropy, mean, and variance. In addition, SVM and Gaussian pro-
cesses regressors are proposed in [262] to mitigate ranging errors in the NLOS
case. Further approaches are reported in [241].

As it is apparent from this overview, the NLOS detection problem has been
addressed with several approaches and considering different sets of signal fea-
tures, so that it is not easy to understand which solution is preferable. This work
aims at shedding some light on this aspect, by proposing a systematic compar-
ison of five of the most representative data-driven classification algorithms on
the same empirical dataset, and for different combinations of the UWB signal
features, so as to identify the most promising combinations of features and ma-
chine learning approaches. In addition, in this work the feature set is expanded
by considering signals received from different directions, which proves to be very
informative for the NLOS identification task.

11.3 Signal features

Consider the case of a device receiving a beacon from an anchor. The received
signal is usually given by the overlapping of a direct component (LOS) and
multiple reflected contributors (NLOS). If the energy of the direct component
is larger than that of the other terms, the signal propagation is said to be
in LOS conditions, otherwise we refer to NLOS conditions. Compared to the
NLOS case, a LOS propagation condition is generally characterized by (i) lower
time spreading of the received signal; (ii) more peaky signal amplitude; (iii)
higher energy of the first received signal component. In order to capture these
characteristics, we now consider the following six features that can be extracted
from the received signal r(t) [258,263]:

• Energy:

Er =

∫ +∞

−∞

|r(t)|2dt . (11.1)

• Maximum amplitude:
rmax = max

t
|r(t)| . (11.2)

• Rise time:
trise = tH − tL , (11.3)

with tL = min{t : (r(t))2 ≥ α2σ2
n}, tH = min{t : |r(t)| ≥ βrmax}, σ2

n being
the variance of the thermal noise. The values of α > 0 and 0 < β ≤ 1
have been set to α = 6 and β = 0.6, as suggested in [258].

• Mean excess delay:

τMED =

∫ +∞

−∞

tψ(t)dt , (11.4)

where ψ(t) = |r(t)|2/Er is the normalized power profile.

• Mean squared delay spread (MS-DS):

τMS =

∫ +∞

−∞

(t− τMED)2ψ(t)dt . (11.5)
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Parameter Value

SVM
Soft margin 10
Gaussian kernel scale 2

k-NN
Number of neighbors 10

ANN
Hidden layer size 2.5 * input cardinality

NB
Gaussian kernel window width 10

LR
Classification threshold 0.25

Table 11.1: Classifier parameters

• Kurtosis:

κ =
1

σ4
|r|T

∫

T

(

|r(t)| − µ|r|

)4
dt , (11.6)

where µ|r| = 1
T

∫

T
|r(t)|dt is the signal mean and

σ2
|r| = 1

T

∫

T

(

|r(t)| − µ|r|

)2
dt is the variance of the signal.

We observe that these features have already been used in the past to clas-
sify a received UWB signal as LOS/NLOS. However, here a more systematic
study is proposed, that aims to test the capability of different machine learning
algorithms to correctly and precisely classify a signal as LOS/NLOS based on
a subset of these features, as better explained in the next section.

11.4 Machine learning techniques

In this section, the machine learning techniques considered in this study to per-
form the LOS/NLOS classification task are briefly described. Each of the fol-
lowing classifier has a number of parameters, which is tuned to achieve the best
classification performance. The chosen parameters are reported in Tab. 11.1.

Support Vector Machine

SVM [264] is a supervised learning technique that aims to find the optimal
hyperplane to linearly separate the input data once mapped into another space
via the so-called kernel functions. SVMs proved to be effective even in very
high dimensional spaces and are also efficient in terms of memory occupation,
due to the use of only a subset of the training point (the support vectors) in the
decision function.
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k-Nearest Neighbors

The k-NN classifier is a non-parametric method that assigns an object1 to the
most common class in its neighborhood in the features space [265]. The neigh-
borhood is composed by the nearest k > 0 objects among those used for train-
ing. The distance function can be any metric measure, however the standard
Euclidean distance is the most common choice and is the one used in this anal-
ysis. Being a non-parametric method, this technique can exhibit very good
performance even in situations where the decision boundary is very irregular.
On the other hand, k-NN should, in principle, keep in memory all the training
data to perform the classification, so its memory occupation can be significant.

Artificial Neural Network

ANNs have proved useful for a number of purposes, including classification
tasks [266]. Their design has been inspired by the biological structure that con-
stitutes animal brains: nodes (called neurons) are connected through synapses,
usually composing a hierarchical structure. In feed-forward ANNs, input data
is given to the network through the input layer, while results are obtained in
the output layer. Other neurons are grouped in one or more hidden layers.
Each neuron maintains a state and produces an output, both of which depend
on the input and on a given activation function. Due to the low number of
input features, a feed-forward ANN with a single hidden layer is used for the
classification problem.

Naive Bayes

The NB classifier [267] is a simple probabilistic classifier based on the Bayes’
theorem. This classifier considers the different features to be independent from
one another, which is not the case in our scenario. However, in the literature, NB
proved to achieve good performance even when the independence assumption
does not hold.

Logistic Regression

LR is a predictive method used to categorically classify objects [268]. This
method is one of the many forms of regression analysis and its concept is similar
to the linear regression method. However, LR predictions of the outputs are
categorical (i.e., picked from a finite and discrete set of categories) rather than
continuous. In this work, the binary LR is used to decide between the LOS and
NLOS cases.

11.5 Experimental setup

This section describes the way the data have been collected and processed to
obtain the experimental results.

1In machine learning terminology, the term object indicates an element of the input space.
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11.5.1 Dataset

Tests are conducted using publicly available data,2 containing channel responses
captured in indoor environments with receivers using circular array antenna [269].
Using an antenna array instead of a single antenna introduces spatial diversity
in the system, allowing for measurements of both spatial and temporal proper-
ties of the channel. The used dataset contains data from four buildings made
of different materials, namely:

• NIST North: sheetrock wall with aluminum studs;

• Child Care: plaster walls with wooden studs;

• Sound: cinder block;

• Plant: steel.

For each building, data is available for 50 different transmitter-receiver positions
of which 40 are NLOS and 10 are LOS. For each position, 96 channel responses
are collected, one for each element of the circular array antenna. Therefore,
adjacent measurements are separated by an angle of 3.75 degrees. Frequency
responses from the dataset have been combined with a classical impulse used in
UWB localization techniques [270] to obtain the UWB signals, from which the
six previously described features have been extracted and used either singularly,
or in vectors, as explained later.

11.5.2 Machine learning training and testing

To test the performance of each learning technique, an n-fold cross-validation
technique has been used [228]. In more detail, the dataset is partitioned into
n subsets (folds). The training phase uses n − 1 folds (training set), and the
performance is computed on the left-out fold (validation set). This operation is
repeated n times, each time changing the validation set. The experiments have
been conducted by setting n = 5 and calculating the estimated classification
accuracy averaged over all the 5 rounds. As we will see in the next section,
measurements collected at a given location for different arrival angles can be
correlated. To avoid any bias in the results due to such dependency, the data
in the validation set are never taken from locations already considered in the
training set. Furthermore, to avoid any bias due to the particular subdivision
of the dataset in subsets, the n-fold cross-validation routine is iterated m times
and the average of the estimated classification accuracy over all the m iterations
is reported.

For the single building scenario, the dataset used is from the NIST North
building, while data from all four buildings is employed in the multi-building
case.

The classifiers used in this study are the one implemented in MATLAB’s
Statistics and Machine Learning Toolbox [271]. For each classifier, the input
vector is given by a subset F of the six features described earlier.

In the validation phase, the number of true positive (TP ), false positive
(FP ), true negative (TN ), and false negative (FN ) events are counted. Since the
final objective of the work is to detect the NLOS condition (e.g., to decrease

2https://www-x.antd.nist.gov/uwb/
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Figure 11.1: Autocovariance of rmax and κ (other features have similar shapes)
when varying the direction of the antenna. The values have been averaged over
all positions on all four buildings.

the weight of such signals in localization algorithms), the false positive event
refers to the detection of a NLOS condition whenever the real condition is LOS.
Analogously, the false negative event refers to the detection of a LOS condition in
place of NLOS. The F1 score is defined as the harmonic mean between precision
(

TP

TP +FP

)

and recall
(

TP

TP +FN

)

, which results in

F1 =
2TP

2TP + FP + FN
. (11.7)

The probability of false alarm (pFA) and missed detection (pMD) are, respec-
tively,

pFA =
FP

FP + TN
; pMD =

FN

TP + FN
. (11.8)

11.6 Experimental results

This section presents the results of the performed experiments, together with a
proposal to improve classification performance by exploiting signals simultane-
ously received by different elements of the circular array antenna.

11.6.1 Analysis of correlation between antenna directions

As mentioned, the measurements collected for different arrival angles at a given
location can be correlated. Fig. 11.1 shows the covariance of some features
(namely, maximum signal amplitude and kurtosis) when varying the angular
lag, both in the LOS and NLOS cases. Since correlated data bring lower infor-
mation, we expect that the learning phase can be performed by considering only
a subset of almost-uncorrelated measurements, without affecting the accuracy of
the results. To test this conjecture, a number of reduced datasets is extracted
from the whole dataset, each obtained by picking only k measurements with
maximum angular distance out of the 96 available for each transmitter-receiver
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Figure 11.2: Average F1 score (four buildings case) with 99% confidence intervals
when using all six features but only a subset of available directions for each
location.

f 1 2 3 4 5 6

SVM
{κ} {rmax, τMED} {rmax, τMED, τMS} {rmax, τMED, τMS, κ} {rmax, trise, τMED, τMS, κ} {Er, rmax, trise, τMED, τMS, κ}
{κ} {τMS, κ} {rmax, τMED, κ} {rmax, τMED, τMS, κ} {rmax, trise, τMED, τMS, κ} {Er, rmax, trise, τMED, τMS, κ}

k-NN
{κ} {rmax, τMED} {rmax, τMED, τMS} {rmax, τMED, τMS, κ} {rmax, trise, τMED, τMS, κ} {Er, rmax, trise, τMED, τMS, κ}
{κ} {τMS, κ} {rmax, trise, τMED} {rmax, τMED, τMS, κ} {rmax, trise, τMED, τMS, κ} {Er, rmax, trise, τMED, τMS, κ}

ANN
{κ} {rmax, τMED} {Er, τMED, κ} {Er, τMED, τMS, κ} {Er, trise, τMED, τMS, κ} {Er, rmax, trise, τMED, τMS, κ}
{κ} {τMS, κ} {rmax, τMED, κ} {rmax, trise, τMED, κ} {rmax, trise, τMED, τMS, κ} {Er, rmax, trise, τMED, τMS, κ}

NB
{κ} {rmax, κ} {rmax, τMED, κ} {Er, rmax, τMS, κ} {rmax, trise, τMED, τMS, κ} {Er, rmax, trise, τMED, τMS, κ}
{κ} {Er, κ} {trise, τMS, κ} {Er, trise, τMED, κ} {Er, trise, τMED, τMS, κ} {Er, rmax, trise, τMED, τMS, κ}

LR
{κ} {τMED, κ} {trise, τMS, κ} {trise, τMED, τMS, κ} {Er, rmax, trise, τMS, κ} {Er, rmax, trise, τMED, τMS, κ}
{κ} {rmax, κ} {Er, τMED, κ} {Er, τMED, τMS, κ} {Er, rmax, τMED, τMS, κ} {Er, rmax, trise, τMED, τMS, κ}

Table 11.2: Feature sets that provide the best F1 score for each feature set size
f and learning technique. The first row for each technique refers to the single
building scenario, the second to the four buildings scenario.

position. The training-validation analysis of the four machine learning tech-
niques is then performed on such reduced datasets. Note that, to counteract
the higher variability in the dataset when k is small, the number m of iterations
of the cross-validation routine is adapted to k in order for the product k×m to
remain always equal to 9600.

Fig. 11.2 confirms our premises: the accuracy of the classification improves
with the number of angles, but the gain becomes negligible when using more
than about 20 directions, though already with 5 angles the performance is close
to the maximum. According to this result, in the following analysis only 20 out
of 96 measurements is used for each position.

11.6.2 Prediction accuracy for different feature sets

In Fig. 11.3 and Fig. 11.4 the F1 score obtained for each technique is reported
when varying the number of features used as input for the single building and
the four buildings cases, respectively. For each point, the reported results have
been obtained with the best selection of f features as for Tab. 11.2. Since we
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Figure 11.3: Average F1 score with 99% confidence intervals for the different
classifiers when varying the number of features in the single building scenario.

set k = 20, the number of iterations of each n-fold cross-validation routine is
set to m = 480.

For all techniques, increasing the number of features improves the accuracy
of the predictors up to a certain point, after which the performance slightly
decreases. A likely explanation is that the inclusion of any additional feature
in the input vector brings diminishing diversity, due to the mutual correlation
among the features, while increasing the noise. SVM, k-NN, and ANN pro-
vide the best classification accuracy, both for the single building and the four
buildings scenarios. In the first scenario, all these techniques reach an excellent
accuracy using only f = 4 features. When considering four buildings, they reach
the best F1 score using 5 features, one more than in the single building case. In
all cases, SVM offers marginally superior performance than k-NN, followed by
ANN.

In Fig. 11.5 and Fig. 11.6 the false alarm and missed detection probabili-
ties are depicted for the single and four buildings cases, respectively. Almost
all classifiers have a false alarm probability higher than the missed detection
probability, which is a desirable property in the positioning algorithms since
the error introduced by a NLOS signal misinterpreted as LOS is larger than
that caused by the exclusion of a LOS signal because misclassified as NLOS.
When the number of signals is small, however, a high false alarm probability
may lead to the exclusion of most of the valid measurements for the positioning
algorithm. In this case, k-NN has an edge over the competing classifiers, since
its false alarm probability is lower than its missed detection probability when
using at least four features in the single building case. Conversely, ANN has
a large false alarm probability, particularly in the four buildings case, thus it
should be used only when there is an abundance of received signals.

In Tab. 11.2 the set of features resulting in the best F1 score for the different
algorithms are reported. Note that, when considering only one feature, the
kurtosis (κ) is the most informative in all the considered cases. Furthermore,
the kurtosis feature is also included in the best feature sets for almost all the
algorithms, both for the single building and four buildings scenarios. Therefore,
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Figure 11.4: Average F1 score with 99% confidence intervals for the different
classifiers when varying the number of features in the four buildings scenario.

we can conclude that it is one of the most valuable features for the NLOS
identification, in general. Other valid features are the mean excess delay (τMED)
and the mean squared delay (τMS), which appear in a number of optimal feature
sets.

11.6.3 Exploitation of multiple angular directions

As noticed from Fig. 11.2, increasing the input vector of the classifiers by consid-
ering multiple signals from different directions can improve the NLOS detection
performance. On the other hand, a longer input vector increases the complexity
and duration of the training phase, and may also introduce more noise in the
classification. In this section a different approach to exploit the availability of
multiple signals received from different angles is proposed. More specifically, we
can pick a number N of directions with maximum angular distance and clas-
sify each of the N received signals independently. In this way, the classifier is
fed with the best-set features extracted from each single signal, providing its
LOS/NLOSclassification for that signal. Then, we decide the link status by a
simple majority voting between the N classifications. In the experiments, an
odd value for N is chosen to avoid ties in the majority voting.

In Fig. 11.7, the F1 score for the three best performing classifiers is reported.
We observe that this technique is able to notably improve the performance of
the classifiers.

To confirm the significance of this improvement, the Wilcoxon signed-rank
paired test [272] is used, which determines if two samples have been selected
from populations with the same distribution. When considering the samples
obtained when using only one direction (N = 1) with those obtained for multiple
directions (N > 1) for any of the three classifiers used in Fig. 11.7, the test
returns p-values smaller than 3 · 10−5, which reject the null hypothesis that the
samples belong to the same population. In other words, such a low p-value
confirms that the performance gaps observable in Fig. 11.7 when increasing N
are significant and not due to stochastic variations.

Furthermore, as also noticed in Fig. 11.2, the use of more than five directions
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Figure 11.5: Probability of false alarm (dotted lines) and missed detection (solid
lines) with 99% confidence intervals for the different classifiers when varying the
number of features in the single buildings scenario.
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Figure 11.6: Probability of false alarm (dotted lines) and missed detection (solid
lines) with 99% confidence intervals for the different classifiers when varying the
number of features in the four buildings scenario.

does not bring significant performance improvements because of the correlation
between different directions.

11.7 Conclusions

In this study, the LOS/NLOS classification problem has been addressed in a
UWB positioning system. The transmission of UWB signals has been consid-
ered in four different indoor environments and six features from the received
waveforms have been extracted. These features have been used as inputs to five
different machine learning algorithms to compare their performance.
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Figure 11.7: Average F1 score with 99% confidence intervals by applying a
majority vote among N directions, in the single building (1 b., solid lines) and
four buildings (4 b., dashed lines) scenarios.

A preliminary analysis of the data showed that, when using directional an-
tennas to receive signals, the use of five angular directions is already sufficient to
get close to the best performance, while with twenty or more directions the gain
in terms of classification accuracy is negligible, while the time and complexity
to train the networks increase considerably.

When comparing the F1 score obtained for different subsets of the signal
features, results show that SVM and k-NN have high accuracy on NLOS detec-
tion, while NB and LR have poor classification accuracy. Among the two best
performing techniques, SVM performs slightly better than k-NN in all scenarios.

We also observe that, for all the considered cases, the best performance
is achieved when selecting a subset of four or five features, rather than using
all of them, likely because of the mutual correlation among the features. The
most valuable feature is the kurtosis, followed by mean excess delay and MS-
DS. Based on these results, we can conclude that a good solution to perform
LOS/NLOS classification of UWB signals is to apply SVM on five signal features,
namely maximum amplitude, mean excess delay, MS-DS, kurtosis, and possibly
rise time.

Finally, an alternative approach has been proposed, which classifies multiple
signals received from different angles independently and makes a final classifica-
tion decision with a majority voting. Significant performance improvement can
be obtained by considering five signals simultaneously received at maximum an-
gular distance. By classifying them independently as LOS or NLOS, and then
performing a majority voting among the results, we can achieve an F1 score
of 0.99 and 0.983 for the single and four buildings cases, respectively, which
represent excellent results.
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Chapter 12

Introduction to IoT security

IoT networks are designed to be pervasive and to be applied in he most diverse
settings. This pervasivity increases the attack surface in IoT applications and
makes them both more vulnerable and more attractive for hackers. Healthcare,
logistics, factory automation, automotive, just to name a few, are all application
area of IoT that have stringent requirements in terms of security.

In 2014, the Federal Trade Commission investigated on vulnerabilities in
TRENDNet security camera, which allowed attackers to access to the video and
audio streams of the camera [273, 274]. At the Blackhat conference, in 2015,
security researchers explained how to hijack Jeep vehicles via their cellular data
connection [275]. This connections is normally used to transmit monitoring
data with the car manufacturer, but the researchers were able to obtain full
control of the vehicle through this connection, including acceleration and brakes
control. In October 2016, the botnet created by a malware called Mirai attacked
the servers of the service provider Dyn, which led to a large portion of the
Internet to be unreachable [276–278]. The malware infected weakly protected
IoT devices and started making requests to servers operated by Dyn, causing
an overload in a so-called Distributed Denial of Service (DDoS) manner. In
2017, researchers found that implantable cardiac devices produced by St. Jude
Medical can be accessed by attackers, who were able to deplete the battery or
administer incorrect pacing or shocks [279,280].

These are just few examples of how IoT security can affect our lives. In
the following, the features characterizing a secure system will be described and
we will understand why implementing those on IoT systems is difficult. Then,
some common IoT protocols will be investigated focusing on security aspects,
highlighting their vulnerabilities.

12.1 Classification of security goals and features

Security is composed by a set of requirements that the system designer wants to
satisfy. Those requirements may be violated by a wide range of threats, against
which some security services are put in place. In the following we explore in
more detail the security requirements, threats, and services.
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12.1.1 Security requirements

Security requirements are tailored to the system being considered. Some systems
may need just a few of the following requirements, depending on who is going to
use them and the type of information they store and transmit. For example, a
public announcement service does not need confidentiality, since the processed
information is public anyway, but integrity and availability are of the greatest
importance.

Confidentiality Confidentiality means that the message or information is
available only to the intended receiver. This does not deal with the integrity of
the message, which is explained next.

Integrity To guarantee integrity, the information must not corrupted, and
must be received exactly as transmitted.

Availability This requirements is about guaranteeing that the provided ser-
vice is always available [281], contrary to what happened with, e.g., Dyn services
attacked by Mirai, mentioned previously.

Accountability Accountability guarantees that it is possible to discover the
originator of every action or event. This is so to assure that the originator is
authorized to perform the considered action and that the responsible for issues
in the system can be identified.

Privacy Privacy requires that no private1 information is made available to
non-authorized parties. Also, the access to authorized parties must be limited
to the information needed to perform their duties, e.g., a medic is authorized to
access to health information of their patients, but not to financial information,
or to health information of people who are not their patients [282]. Privacy also
deals with side information, e.g., the purchase of a particular set of products
may indicate a pregnancy condition [281,283,284].

Exclusivity This guarantees that only authorized applications can run on a
device and transmit data over the network [285]. This requirement has become
particularly relevant with the growth of IoT, since, contrary to what happens
with traditional PC systems, IoT devices infected by malware may continue to
work without issues for long time, before the malware activates simultaneously
on all devices and attack a given target, like in the Mirai botnet case [276–278].

12.1.2 Security threats

Threats make a system to not satisfy one or more security requirements. Dif-
ferent threats are often combined together to perform an attack on the system.

1The definition of what is “private” is evolving over time and is defined by national and
international regulations.
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Eavesdropping This threat attempts to undermine the confidentiality and
privacy requirements by obtaining confidential information [282,285]. This may
be done, e.g., by listening to the messages on the network or even capturing
electromagnetic emissions from wired keyboard [284,286].

Message replay Using message replays, an attacker can make the target
system to perform again a certain action [285]. Note that the message is not
modified, but just sent again some time later its previous transmission. This
may be used, for example, for opening radio controlled gates or car locks by
simply capturing a legitimate request and retransmitting it later. This breaks
the accountability and exclusivity requirements.

Modification Unlike the message replay, modification is about modifying a
message in transit. The modified message, therefore, may contain different
requests or information than the original one [285]. This threat violates the
integrity, accountability, and exclusivity requirements.

Forgery / fabrication In this threat, the attacker creates a message pretend-
ing the sender was another entity. Differently from modification, this threat is
present even when no legitimate entity is using the network. Forgery violates
the accountability and exclusivity requirements.

Masquerading In the masquerading threat, the attacker is able to imperson-
ate someone or something else. This threat is closely related to forgery, but it
is more general, dealing not only with messages on the network, but also with
actions executed in a single machine.

Repudiation This threat concerns the ability of the sender to deny to
have sent or received certain messages. This breaks the accountability require-
ment, since it makes impossible to deem the users responsible for their actions.
Forgery, masquerading, and repudiation are often considered as a whole when
designing a secure system, since, e.g., the ability to perform a forgery attack
allows users to repudiate the sending of messages declaring they were forged by
an attacker.

Profiling This treats undermines the privacy requirement, by collecting in-
formation on a single user based on many messages and different information
sources. An example is the collection of statistical data by retail chains with the
objective of tailoring promotions to specific people [283], a practice also used by
online advertiser companies.

Fingerprinting Similar to the previous threat, this one still breaks the pri-
vacy requirement, but by gathering information on a user or device based on
a single message or a small set of messages. Often it is used as the first step
on attacks, in order to understand what type of devices the attacker is dealing
with.
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Denial of Service In this threat to availability, the service is made unavail-
able to legitimate entities, often caused by the attacker overusing the network,
storage, or computational resources of the service [282]. In the distributed ver-
sion of the attack, the resource overload is caused by a multitude of devices
performing the same attack in a coordinated manner. In the IoT scenario, this
attack is particularly critical, both performed against the IoT system itself and
performed by IoT devices towards data centers. In the first case, the IoT system
is usually resource constrained, so it is easy to completely exhaust the network
resources or deplete batteries in battery operated devices. In the latter case,
while IoT devices are not able to perform a traditional denial of service attack
due to their limited resources, the coordination of a massive amount of resource
constrained devices is able to easily overload powerful systems and networks, as
in the Mirai botnet case [276–278].

Physical damage This threat is about breaking or destroying the devices.
This may cause partial malfunction or full denial of service, impairing the avail-
ability requirement [282]. This threat is more serious than the previous one
because device has also to be repaired or substituted after the attack has ended,
but it is more difficult to execute, since it requires physical access to the target
device and can not be automated.

Node capture This is again a threat where physical access to the target
device is required. Leveraging the physical access the attacker obtains the in-
formation stored on the device, by using either destructive or non destructive
methods. Capturing the devices can not only cause impairments to availabil-
ity, as a consequence of the device destruction, but also on confidentiality and
privacy [282].

Node controlling This threat includes both the installation of malware on
the device or the use of unprotected programming interfaces to control the
device [282]. After the attacker has gained control of the target, the latter can
be used to gain control of other devices or to perform a coordinated attack.
This threat is often linked with the creation of botnets for distributed denial of
service attacks. Since the device is completely under the control of the attacker,
this is the worst threat and damages all the listed security requirements.

12.1.3 Security services

Security services are ways to protect the system from the security threats in
order to satisfy the security requirements.

Secrecy Secrecy deals with ways to hide information, which are readable only
by authorized entities. For example, one of the secrecy techniques is cryptog-
raphy, where authorized entities possess keys able to decipher the message. Se-
crecy techniques protects against eavesdropping, profiling, fingerprinting, and
node capture.2

2Note that the term “node capture” specifically refers to the ability to gather information
from devices which the attacker has physical access to, not to the ability to actually capture
the node.
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Integrity protection This service, which protects against modification, guar-
antees that the message or the stored data is not modifiable by an attacker with-
out a clear indication of such modification [285]. Hash functions and signatures
are common techniques in this family.

Authentication Authentication refers to the ability to identify the entity
that is operating on the system [281,282]. It is able to protect from the forgery,
repudiation, masquerading, node controlling, and message replay threats.

Authorization and Access control While authentication deals with se-
curely identifying an entity, authorization and access control concerns with as-
signing authorization to users and access permissions to resources [282, 285].
Therefore, it is analogous to a map between users and resources. This service
stops denial of service and node controlling threats.

Accounting / Notarization This service, often referred together with the
previous two as AAA (Authentication, Authorization, and Accounting), records
the activity on the system so that it is possible to trace back to the originating
entity of every action. It protects from repudiation.

Anonymization This service takes care of removing, in the exchanged mes-
sages, information which can be used to identify or profile the originating entity
or other entities [282]. While this works against the profiling and fingerprinting
threat, it may collide with the authentication and accounting services. A bal-
ance between those two seemingly contrasting needs can be found by making
identifiable data readable only to the AAA services, with the help of the secrecy
service.

Security fault tolerance Fault tolerance in terms of security assumes the
form of a group of entities that monitor the system and signal, and potentially
react to, active security threats [282].

Network fault tolerance This service, instead, deals with network status,
in order to assign network resources and prioritize traffic [281]. Other than
providing protection against denial of service, it can help the security fault
tolerance service to assess if an attack is running, by detecting, e.g., unusual
network traffic to a group of devices [282].

12.2 Tailoring security solutions to IoT scenar-

ios

The characteristics of IoT systems make the implementation of security mea-
sures difficult. First of all, a large part of IoT is composed by embedded and re-
source constrained devices. Limitations on memory, computational power, and
low-power communication all contribute to put a limit on the level of auxiliary
information that can be exchanged to implement security functions, particularly
those based on cryptography [284].
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Diversity and heterogeneity also cause issues, because security features must
be designed and implemented separately for each of the many types of devices
that compose the system [281,282,287]. For example, smartphones are capable
of executing complex cryptographic routines, while wearable devices may need
to collaborate with more powerful devices in order to run such routines. Au-
tomatic updates are a partial solutions to this problem, and, in any case, they
are dependent on timely update distribution by device manufacturer, which is
not always guaranteed, sometimes requiring intervention from governmental en-
tities [274]. Moreover, keeping such a heterogeneous set of devices up to date
with security updates and updated credentials is very complex. Not having a
centralized AAA service makes users keep the default authentication creden-
tials in IoT devices to avoid managing a large amount of credentials. Even in
the case where users customize access credentials, they may be not periodically
changed, since it would be a very time consuming task. A centralized AAA
system would provide easier credentials and authorization management [281],
but would require a homogeneous system.

Different devices also have different security requirements, so not every part
of the network is covered by the same set of security services [284]. However,
vulnerabilities in non-critical devices, like a smart kettle, may be used to access
to a critical network that device is connected to, like a home or corporate Wi-Fi
network [285, 287, 288]. Additionally, diversity increases the attack surface: an
attacker has a greater possibility to find a vulnerability in at least one of the
devices part of the same system. Isolation between critical and non-critical part
of the system is therefore advisable, but difficult, particularly for pervasive IoT
systems.

As a designer, you have to find all the flaws in the system, while the

attacker only one. You will fail, so you have to plan for that failure.

— M. Muller, CTO, ARM [289]

Furthermore, the large amount of data that this massive amount of devices
exchange makes it difficult to protect against privacy issues [281, 282]. In par-
ticular, these systems are prone to provide unintended side information, e.g.,
the presence of an active baby monitor signal outside a house discloses when a
baby is present. Also, cryptanalysis attacks against cryptographic algorithms,
particularly when using a short key length because of the devices limitations,
are facilitated when the attacker has a larger set of previous messages to anal-
yse [284].

A closely related security issue concerns trust: consider an IoT system that
manipulates data of user A using devices manufactured by company B that uses
a third party provider C for data communication. This data is then analysed
in the cloud owned by company D to provide advanced services to the user. In
this scenario there must be a strong trust relationship between all parties, that
often do not know each other. In this scenario, for example, trust is related
to the important topics of data integrity, legitimate use of the service, and
privacy [282]. If a trust relationship can not be created, complex and multi-
layered security measures must be put in place, exponentially increasing the
complexity of an already intricate system.

IoT devices are often installed in public places but they are still connected
to private networks (e.g., a doorbell connected to the home wireless network).
This increase the importance of threats that require physical access to the device
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(physical damage, node capture, and node controlling) compared to non-IoT
networks, since, in the latter case, the devices composing the network are usually
kept in private area.

I’m less worried about the data being stolen, I’m actually worried that

the device is stolen, because if you lose control of an IoT device, it’s game

over. Loss of the data is easier to protect than loss of the device.

— M. Muller, CTO, ARM [289]

To conclude, IoT raise a number of issues never seen before with traditional
systems. Implementation of security features is challenging because of resource
constraints, heterogeneity, and large amount of data. In addition, in IoT a
security issue may become a safety issue, so care must be taken as to design the
system to fail in a safe way [287,289].

12.3 Security in IoT communication protocols

Due to the peculiarity of IoT networks and the limited amount of resources they
have, a number of protocols have been specifically designed for IoT use cases. In
this section, we analyse three of the most widely used protocols in this category,
focusing on their security features.

12.3.1 ZigBee

Protocol description

ZigBee [290] is a two-way, wireless communication standard developed by the
ZigBee Alliance. It provides the application and network layers, while the link
and physical layers used are from IEEE 802.15.4 [291]. Thanks to its low cost
and low power consumption, ZigBee is one of the most used technology to
connect IoT devices. The ZigBee stack is composed by the following layers:

• Application Layer (APL). The application layer is divided into two
more specialized sub-layers:

– Application Support Sub-Layer (APS) provides the data transmission
service, security services, and allows the binding of devices between
two or more application entities located on the same network.

– ZigBee Device Objects (ZDO) is responsible for the initialization of
the APS, network layer, and security provider.

• Network Layer (NWK). Some of the functionalities provided by this
layer are routing, security, and configuration of new devices. This layer
also manages the establishment of new connections, the joining and leaving
procedures, and the addressing and neighbor discovery services.

ZigBee includes different application profiles. These establish agreements
for messages, message formats, and processing actions that developers have to
respect in order to create interoperable and heterogeneous applications. In such
a way, devices from various vendors are able to seamlessly communicate in a
ZigBee network [290].
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For what concerns security, ZigBee allows for message encryption and au-
thentication using the Advanced Encryption Standard (AES) in the counter with
cipher block chaining message authentication code (CCM) mode. This provides
the secrecy and authentication security services described above. Integrity pro-
tection is provided by a 128 bit message integrity code (MIC) and replay pro-
tection is based on a 4 Byte frame counter.

A ZigBee network also includes a Trust Center, a device trusted by all the
other nodes in the network and that usually corresponds to the network coordi-
nator. The Trust Center is responsible to authenticate devices that request to
join the network, decide whether to accept or deny the join request, maintain
and distribute network keys, and enable end-to-end security between devices.

The cryptographic routines used in ZigBee employ two different types of key:
link key and network key, each of them 128 bit long. The first type of key is used
to secure unicast communications between APL entities and is known only by
the pair of entities that use it, while the second key type is used for broadcast
communications and is shared amongst all devices in the same network. Keys
can be acquired in three ways [292]:

• Pre-installation: they key is installed in the device during the manufac-
turing process.

• Key transport: the key is generated elsewhere (usually by the Trust Cen-
ter) and then communicated to the device. The standard suggests to load
the key using an out-of-band technique, however it includes the possibility
to send the key in-band. In the latter case, the key may be sent in clear text
or encrypted using a pre-shared key specific for each application profile and
known to every device. For example, for Home Automation devices, the
pre-shared key is defined in the ZigBee standard and is publicly available.
For ZigBee Light Link (ZLL) devices, instead, the pre-shared key “will be
distributed only to certified manufacturers and is bound with a safekeep-
ing contract”, as the ZLL specification affirms [293]. However, it has been
leaked on the Internet in 2015, so it is now publicly known. [292,294]

• Key establishment: this technique is only used for link keys. Key estab-
lishment allows to exchange a link key Li between the Trust Center and
another device of the network for securing communications between these
two entities. The procedure is started by the exchange of a trusted infor-
mation, the master key, pre-installed during the manufacturing process.
The master key, different for each application profile, is provided by the
ZigBee Alliance to its members. After this phase, the devices exchange
ephemeral data that are used to derive Li. When two devices i and j need
to communicate with each other, the Trust Center provides them with a
link key Li,j , protecting it using the link keys Li and Lj , respectively.

The process through which a new ZigBee network is set up or a new ZigBee
device is added to an existing network is called commissioning. Commissioning
procedures are defined by the different application profiles. In addition to that,
there is also a common procedure specified in the ZigBee standard that allows
the connection between devices of different application profiles.
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Attack surface

A possible attack vector is trying to discover the keys used to secure the network.
In particular, ZigBee has been shown to be vulnerable to plaintext attacks [295].
This technique enables the recovery of a cryptographic key by having access
to both the encrypted and decrypted messages. For example, the repeated
encryption of publicly known (e.g., because defined in the specification) and
fixed messages, makes the system vulnerable to plaintext attacks. Therefore, to
ensure a high security level, the network key needs to be changed periodically.

Other attack vectors are specific to ZLL installations. In 2012, LIFX and
Philips presented their first smart lights solutions and, afterwards, many other
companies developed similar connected light systems. Many vendors, such as
Philips, use the ZLL application profile. A number of security investigations
on smart light systems have disclosed that designers and manufacturers tend
to implement only the essential security measurements that are necessary to
obtain ZigBee Alliance’s certification [294]. At a first analysis, it may seems un-
necessary to implement many security precautions in a light system, since they
do not elaborate confidential information and can still be operated manually
in case the network does not work. However, as explained above, we have to
remember that attackers may use these devices to relay an attack to the rest of
the home or corporate network, bringing more critical devices at risk.

In [294], the authors investigate the state of the art security in three dif-
ferent ZigBee smart light systems: Osram Lightify, GE Link and Philips Hue.
Vulnerabilities of both bulbs and interconnected devices are evaluated, and, as a
consequence, seven different types of attack are reported. The attacks are based
on the inter-PAN frames, the frames used to transmit touchlink commissioning
commands such as scan request, scan response, and so on. These frames are
neither secured nor authenticated: an attacker can send the same commands
pretending to belong to the network.

• Active device scan. The scan searches for ZLL devices in the range of
the attacker, sending scan requests in different channels. Listening on the
correpsonding scan responses, the attacker can obtain a complete overview
of the devices connected to the network. The behavior of the three systems
analysed is different one to another. All light bulbs and controller from
Lightify respond to the attacker’s scan request, the Link controller does
not respond, and, finally, the Hue controller responds only if its Touchlink
commissioning button has been pushed within the last 30 seconds.

• Blink attack. This attack can be activated after a device scan, by send-
ing to the attacked device the inter-PAN command identify request. The
device, then, starts to blink for a default period. Such a command is im-
plemented to allow the owner of the devices to understand which device
has a certain address. All the three light bulb types are vulnerable to this
attack.

• Reset attack. The attacker resets all setting of the ZLL device to the
factory state, by sending the inter-PAN command reset to factory new
request after having completed the device scan. All devices are vulnerable
to this attack.
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• DoS attack and hijack attack. In these attacks the end user loses control
on the target device. Two approaches are possible in order to make a
DoS attack. The first is to force a device to change the transmission
channel, sending a network update request inter-PAN command including
the new channel. The second is to make the device join a non existing
network, changing its network key with arbitrary bytes. Hijack attack is
similar to this second attack, with the difference that it forces the device
to join a new network chosen by the attacker. In this case, the network
key of the desired network is used. These two attacks are executed by
sending the inter-PAN command network join end device request: at the
reception of the command, the device leaves its current network, changing
its parameters according to the new configuration. All the evaluated smart
light systems are vulnerable to DoS and hijack attacks but all of them
integrate functions to regain control over attacked devices.

• Network key extraction attack. This attack allows the attacker to extract
the current network key, by eavesdropping the messages exchanged by the
devices during the touchlink commissioning procedure. A preliminary DoS
attack is needed to disconnect a device from the network. After that, the
attacked device will start a commissioning procedure in order to regain
access to the network. Therefore, the attacker can extract the network key
from the network join end device request. As previously seen, the network
key is encrypted using the well known master key. Only Philips Hue
devices can be attacked in this way because the touchlink commissioning
procedure is not enabled in the other devices.

• Inject commands attack. This attack makes it possible to send commands
to the devices in order to control their actions. The knowledge of the
current network key is needed, via, e.g., the execution of the previous
attack. All the three smart light systems are vulnerable to this attack.

12.3.2 Bluetooth Low Energy

Protocol description

Bluetooth is a widely used short range connectivity protocol [62]. Its low en-
ergy and IoT-tailored version, initially named Bluetooth Low Energy (BLE),
has been first introduced in the Bluetooth Core Spec version 4.0. BLE is a
wireless protocol operating in the unlicensed 2.4 GHz ISM band and uses 40
channels with 2 MHz spacing. Its physical layer uses a Gaussian Frequency
Shift Keying modulation with index around 0.5: this scheme allows the use of
fewer advertising channel and enables lower power consumption. The physical
layer data rate is 1 Mbps. The coverage range is typically over various tens of
meters [296]. The BLE MAC Layer is split into two parts, advertising and data
communication [297]: 37 of the available channels are used during the transmis-
sion of data and the remaining 3 are used by unconnected devices to broadcast
device information and establish connections.

As ZigBee, BLE uses AES-CCM with 128 bit keys for encryption and au-
thentication purposes. The agreement on a symmetric key is part of the pairing
procedure, which is executed as follows:
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1. Devices exchange their capabilities and authentication requirements. This
phase is completely unencrypted.

2. Devices generate or exchange a Temporary Key (TK) using one of the
available pairing methods, then exchange some values to confirm that the
TK is the same for both devices. After that, a Short Term Key (STK) is
generated from the TK and will be used to encrypt the data exchange.

3. Optionally, devices exchange transport specific keys if bonding require-
ments are present.

The available pairing methods are three:

• Just Works: in this case, the TK is 0. Of course, this does not provide
any level of security.

• Out of Band: the TK is exchanged out-of-band, e.g., using near field
communication. This method provides a security level that is as high as
that of the out-of-band method used to exchange the key. However, it can
be inconvenient for the user.

• Passkey: the TK is a six digit number that the user passes between the
devices. For example, one of the devices may generate the number, show
it in a display, and make the user enter it into the other device. The
security level is still high, but requires devices to have a way to make the
user read and input the TK, which may be impossible for miniaturized
IoT devices.

Starting from the 4.2 version of BLE, a new pairing procedure has been put
in place, using elliptic curve cryptography:

1. Each device generates an Elliptic Curve Diffie Hellman (ECDH) public-
private key pair. Then, they exchange the public key with each other and
derive a key, called DHKey, from their own secret key and the public key
of the other device, using elliptic curve functions.

2. The devices use one of the available pairing methods to confirm that
DHKey is the same for both of them and to generate a Long Term
Key (LTK) that will be used to symmetrically encrypt the data exchange.

3. Optionally, devices perform a final step, equal to the one for 4.1 BLE
devices.

Also the pairing methods have been changed, with the introduction of a new
option and the hardening of the methods in the previous version.

• Just Works: the non-initiating device generates a nonce and a confirma-
tion value Cb, function of the nonce and the public keys. Cb and the nonce
are then sent to the initiating device. The latter generates its own nonce
and sends it to the non-initiating device. It also uses the non-initiating
device’s nonce and the public keys to generate its own confirmation value
Ca, which should match Cb.
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• Numeric Comparison: this method is equal to Just Works, but also
generates a value which is function of the public keys and the nonces.
This value must be displayed to the user, which must manually confirm
that the shown number is the same in both devices.

• Out of Band: with this method, random numbers and commitment
values, which are function of the random numbers and public keys, are
exchanged in an out-of-band fashion, e.g., using near field communication.

• Passkey: in this method, the user first inputs a k bit long secret passkey
to both devices (or reads it from one of the devices and inputs it to the
other). Then, for each bit i = 1, . . . , k of the passkey, the device pair must
perform a two-step procedure: (i) Each device generates a nonce and com-
putes a commitment value, which is function of the nonce, the passkey,
and the public keys. Commitments and nonces are then exchanged be-
tween devices. (ii) After that, each device recalculates the commitments
as before, but exchanging the order of the two public keys, and using the
nonce of the other device. If the passkey is the same, the commitment
value must be equal to the one found before.

Attack surface

The pairing methods just described have some important security issues. In BLE
4.0 and 4.1, there is no resistance to eavesdropping or man-in-the-middle attacks
during the pairing phase, except for Out of Band pairing). In fact, in the Just
Works pairing method the key is known, while in the passkey method the key is
easily brute-forced (and in some cases brute-force is not even required) [298–302].
BLE 4.2 is affected by similar problems too, in particular for the passkey pairing,
since the passkey is verified one bit at a time [302, 303]. When the attacker is
interested in eavesdropping, the attacker can try to match the confirmation value
considering the current bit ri of the key equal to 0. If the confirmation value
does not match, ri = 1. When trying to directly connect to a device, instead,
the attacker can consider ri = 0. If the other device aborts the procedure, then
ri = 1. This procedure can be repeated for bit i = 1, . . . , k, learning, therefore,
the entire key.

Another issue is linked to the advertise mode of BLE devices. In [297],
authors found that the analysed fitness trackers are almost always in advertise
mode. This is because the master device frequently disconnects from the tracker
in order to preserve energy. Therefore, when the smartphone app for the fitness
tracker is not running, the tracker closes its communication link, remaining in
advertise mode until the next connection establishment. Also, they found that
most of the analysed devices expose always the same MAC address. This makes
possible to capture exchanged messages and correlate over a long period of time
the BLE traffic between a pair of devices. As an example, an attacker may be
able to track the movements of the BLE device owner or even just verify its
presence in an area. As a security feature, the BLE specification allows a device
to use random MAC addresses and to frequently change them. For example,
the Apple Watch randomizes the MAC address both when it is rebooted and
during normal usage at an approximately 10 minutes interval [304].
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12.3.3 6LoWPAN and CoAP

Protocol description

To make IoT devices support IP networks and traditional upper layer protocols,
like HTTP, two protocols, published by the IETF, are usually implemented:
6LoWPAN and CoAP. The first is an IPv6 adaptation protocol that defines
mechanisms to make IP connectivity viable for tightly resource constrained de-
vices that communicate over low power and lossy links such as IEEE 802.15.4
[305, 306], leveraging compression and fragmentation mechanisms. CoAP is a
RESTful protocol at the application layer, transported over UDP. It has been
designed to be easy to map to HTTP via proxies, to support retransmissions,
sleepy devices, and resource discovery. On the downsides, the usage of UDP
instead of TCP does not allow message reordering and retransmission of lost
packets. Often the physical and MAC layers employed in networks using these
protocols are those from IEEE 802.15.4.

6LoWPAN routing is based on the IPv6 Routing Protocol for Low-Power and
Lossy Networks (RPL) defined in RFC 6550 [307]; it has been mainly designed
for multi-point to point communications, such as those in WSNs. However,
it also supports point to multi-point (sink broadcast) and point-to-point (leaf
nodes communicating with each other). RPL builds a Direct Acyclic Graph
(DAG) based on a root node called Low power and lossy Border Router (LBR),
usually being the device responsible for the management of a group of nodes and
representing the border between two networks. From the DAG, RPL creates
a Destination Oriented Direct Acyclic Graph (DODAG) tree, which contains
only one root and excludes any network loop. Starting from the DODAG root,
devices broadcasts their DODAG Information Objective (DIO) message, which
contains device and link metrics. The Global repair and Local repair mecha-
nisms are used in case of a broken link: the first recalculates the whole topology,
while the second operates locally, by informing all the children of a node that
they need to update their parent.

Attack surface

We are now going to describe some attacks against 6LoWPAN devices. A hy-
pothetical attacker can act on the RPL, at the application layer, or at the
adaptation layer, based on the type of control of the network that it wants to
achieve.

Attacks against the RPL Many of the attacks on 6LoWPAN focus on redi-
recting traffic and disrupting the routing tree. In the following we report some
of the attacks against the RPL [308–310].

• Clone ID and sybil attacks. In the clone ID attack, the malicious node
clones the identity of another node. Similarly, in the sybil attack, the
attacker uses the identity of several entities at the same time. In this way,
the attacker can redirect and access a large amount of network traffic.
These types of attack can be detected by keeping track of the number of
instances of each identity or monitoring the geographical location of the
devices.
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• Sinkhole attack. The malicious node attracts to it a lot of traffic, by
declaring very efficient routing paths. Following this, the attacker may
modify or drop the packets that pass through it.

• Selective forwarding and black hole attacks. These attacks take place when
a malicious node of the network, that is supposed to forward the packets
along the correct routing path, discards some of the traffic (selective for-
warding) or all of it (black hole) that passes through it. Possible solutions
may be the creation of disjoint or dynamic paths inside the DAG.

• Hello flooding attack. The Hello message is used by a node in a 6LoWPAN
network to announce its presence. If a node receives a Hello message, it
deduces that the sender node is in its neighbor, so a direct link between
them is available. An attacker can exploit this mechanism by broadcasting
a Hello message using a larger than permitted transmission power. In this
way, a large number of nodes consider the attacker a neighbor. However,
when a node tries to use the new link, the sent packets will be lost, since
the permitted power level is used. This type of attack can be avoided
using link layer acknowledgments to check the message reception.

Contrary to the previous ones, the following attacks are based on the RPL
service messages [308–310].

• Local repair attack. In this attack, a node without any connectivity prob-
lem continuously sends local repair messages. This forces an update of the
network topology, which is costly both in terms of computational resources
and in energy, causing service degradation and early energy depletion for
battery operated devices.

• Version number attack. The version number is a field of DIO messages
incremented every time that a rebuilding of the DODAG has to be done.
If an attacker forwards DIO messages where the version number has been
forcefully increased, the whole DODAG is going to be unnecessarily re-
built. Again, this causes service degradation and energy depletion.

Attacks from the Internet side Neither 6LoWPAN nor CoAP provide se-
crecy, authentication, or integrity protection. The use of 6LoWPAN and CoAP
without additional security measures, therefore, makes the devices fully acces-
sible from the Internet. A proposal has been made to add extensions to CoAP
in order to provide built-in security, but the proposal did not become an actual
standard [311]. The CoAP specification, instead, suggests using Datagram TLS
(DTLS) to provide secrecy, authentication, and integrity protection [312, 313].
Alternatively, IPsec can be used to provide authentication and encryption at
the IP level.

Attacks at the Adaptation Layer The translation of the packets between
Internet and the 6LoWPAN network is implemented at the border router. The
lack of authentication and the computational resources of the device that per-
form the adaptation make this mechanism vulnerable. Two attacks that can be
achieved at this level, fragment duplication and buffer reservation, are presented
in [314]. The fragment duplication attack is based on the fact that a node cannot
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verify at the 6LoWPAN layer if a received fragment belongs to the same IPv6
packet of the previous ones (in fact, this control is managed by higher layers).
Therefore, a malicious node inside the network can inject fragments with the
same header of the legitimate 6LoWPAN packets. The target node cannot de-
cide which fragments to use during packet reassembly procedure, since it cannot
distinguish between legitimate and spoofed IPv6 fragments. This causes corrup-
tion in IPv6 packets, which are consequently dropped. The buffer reservation
attack leverages the scarce memory of the network nodes. In the 6LoWPAN
network, receiving nodes must reserve buffer space to reassembly the fragments
that belong to the same IPv6 packet. When the reassembly buffer is assigned
to one IPv6 packet, received fragments of other IPv6 packets are dropped out.
Since, buffer space reservation is kept for 60 seconds, if an arbitrary fragment
is transmitted by the attacker to the target node, its communication will be
blocked for the following minute. Consecutive repetitions of this attack causes
a long term DoS to the targeted device, while employing just a small amount
of the attacking node resources.

In order to protect 6LoWPAN networks from the attackers, Intrusion De-
tection Systems (IDSs) specifically tailored to IoT networks have been stud-
ied [308,309,315]. An IDS monitors network parameters and is able to identify
signs of intrusions or attacks. IDSs for 6LoWPAN networks are optimized in
order to save the largest amount of network resources. Due to the vast attack
surface, IDSs should operate both at the adaptation, RPL, and application lay-
ers. Therefore, a hybrid architecture is needed, in which a centralized module
installed on the border router cooperate with distributed modules installed on
internal nodes.

12.4 Conclusions

We have seen that there are still many critical security issues in current IoT
protocols, which are made even more dangerous by the pervasivity of these type
of networks and their use in mission-critical systems. In the following chapter,
a new authentication technique is proposed, which aims at solving some of the
issues with current authentication strategies by employing a completely different
approach, based on physical channel features.
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Chapter 13

A Stochastic Geometry

Analysis of Distributed

Physical Layer

Authentication in 5G

Systems

13.1 Introduction

Message authentication is the security service which allows a device to verify
that some received message is actually coming from the claimed source. It typ-
ically encompasses two steps: a) an identity acquisition step, by which some
special feature operating as a fingerprint (e.g., a key or some characteristics of
the transmitter) is acquired by the receiver and associated to the user, and b)
an identity verification step by which, upon reception of a message, the spe-
cial feature is checked on the received message in order to confirm the sender
identity. Typically authentication is performed by cryptographic techniques,
however, since the seminal works of the 1980’s [316] authentication can also be
performed by using features of the physical channel, either through the use of
a key exchanged among the users or directly using the physical transmission
properties. Typically, physical-layer authentication (PLA) techniques may find
application as a complement to cryptographic mechanisms, or as the only solu-
tions for devices with limited energy resources or communication capabilities,
such as in the IoT and fifth-generation (5G) cellular systems [317]. Challenges
and developments of PLA have been recently highlighted in [318].

Here we focus on key-less approaches to PLA (see [319,320] for recent litera-
ture surveys), where the special feature is some characteristic of the communica-
tion channel between the authentic transmitter and the receiver, and the verifi-
cation procedure consists in checking if the channel over which the message was
transmitted exhibits this feature. Due to the different transmission scenarios,
and channel features (for example, time-variations of the channel), a variety of
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practical solutions has been proposed in the literature, including PLA based on
impulse responses in wideband channel transmissions [321], frequency responses
of a multicarrier signal [322,323], multiple-input-multiple-output (MIMO) chan-
nel responses [324,325], and carrier frequency offsets [326]. In order to overcome
the difficulties of a proper channel estimation due to either synchronization er-
rors or time-variations of the channel, further refinements of these techniques
are continuously studied as shown by recent results on the use of channel quan-
tization [327] and authentication without phase detection [328]. An analysis of
attacks and countermeasures in PLA systems has been considered in [325,329],
in terms of false alarm and missed detection probabilities.

When applied to 5G cellular contexts, PLA techniques can be implemented
in a distributed fashion over multiple BSs [330]. Leaving aside the simple sce-
nario in which the receiver authenticates the transmitter without cooperation by
any other nodes and considering a more complex architecture in which multiple
nodes cooperate opens a number of issues. When many cooperating nodes with
some performance limitation (e.g., in terms of energy or data rate) are avail-
able, a suitable selection of cooperating nodes should be considered to make the
network efficient. In this respect, when energy consumption is concerned, nodes
selection has been proposed in [331], while when communication overhead is a
concern, compressed sensing techniques can be applied [332]. Indeed, authen-
tication performance is significantly affected not only by the number of nodes,
but also by the relative position between the legitimate cooperating nodes and
the attacker. Therefore it is essential to have a better understanding of sce-
narios in which nodes are randomly placed, such as a cellular 5G networks. In
other contexts outside authentication, analysis and design of networks has been
performed using various approaches, among which one of the most promising
is stochastic geometry [103, 104, 106] that studies random point patterns. In
particular, when applied to wireless networks stochastic geometry allows the
mathematical analysis of random channel access, single- and multi-tier cellular
networks, and cognitive networks (see [333] for a survey). Typically, the dis-
tribution of nodes in the network considered by stochastic geometry follows a
Poisson process model and semi-analytical results involving solutions of integrals
can be obtained. Stochastic geometry has also been applied to the security con-
text, for example security connectivity was studied in [332], while scaling laws
for secure communications in large networks have been analyzed in [334]. How-
ever, no study of distributed PLA in large networks has been performed in the
literature, while its investigation would provide insight into both performance
and design criteria for the authentication network.

This work analyzes distributed PLA in a cellular 5G system using stochastic
geometry tools. In particular, the authentication feature is the channel be-
tween the terminal and the BSs, modeled as a set of parallel additive white
Gaussian noise (AWGN) channels, which corresponds for example to an orthog-
onal frequency division multiplexing (OFDM) or a MIMO system, as typically
encountered in cellular systems. The decision process compares the observed
channel in the initialization and verification phases and a maximum likelihood
decision is taken. Two channel models are considered: in the first case the chan-
nel is characterized by path-loss and affected by an AWGN estimation error or
log-normal shadowing; in the second case the channel is affected by path-loss
and shadowing. For both cases, stochastic geometry tools allows us to obtain
the statistics of the hypothesis testing problem, being able to derive the aver-
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age missed detection and false alarm probabilities of this authentication system
under the assumption that BSs are distributed according to a PPP on a plane.

The rest of the chapter is organized as follows. In Sec. 13.2 a physical
layer authentication strategy is proposed and modeled. The following Sec. 13.3
will analyse in depth the two cases of (i) channel with path loss and noisy
estimation, and (ii) channel with path loss and shadowing. In Sec. 13.4, the
theoretical performance of the proposed strategies will be extracted leveraging
some stochastic geometry tools. Numerical results will be presented in Sec. 13.5,
while some final remarks will be given in Sec. 13.6.

13.2 System Model

Consider a legitimate node positioned at uL = (uL, vL) and a random number
NBS of base stations located at x1,x2, . . ., with xk = (xk, yk). Each time a
message is sent in the uplink, all the NBS base stations receive the message
and estimate the corresponding channel response. An attacker positioned at
uA = (uA, vA) wants to forge messages by impersonating the legitimate node.
The objective of the authentication system is to accept all the legitimate mes-
sages and to reject the forged messages. A smart attacker may also change the
transmitted signal so that the estimated channel response estimated upon re-
ception of the forged message is similar to that for messages from the legitimate
node.

The channel between any transmitter-receiver pair is represented by multiple
coefficients, in general (e.g., MIMO, OFDM), and their number is denoted by
Nc. Also, let hk,n be the n-th coefficient of the channel between the legitimate
device and the k-th base station.

At the network deployment (or at a proper time) an association procedure
allows the system to learn the channels hk,n, k = 1, . . . , NBS, n = 1, . . . , Nc.
We suppose this association procedure is secure. When receiving a message, the
system compares, the maximum likelihood (ML) estimated channel responses

ĥk,n for each of the base stations with the channel response previously learned
in the association phase. Given a tunable threshold θ, the message is deemed
authentic and accepted if

∑

k

∑

n

∣

∣

∣ĥk,n − hk,n

∣

∣

∣

2

< Θ , (13.1)

while it is marked as forged and discarded otherwise.

The channels in our scenario are affected by exponential path loss and log-
normal shadowing. Thus, the channel gain between two nodes located in y and
z are given by

g(y,z) =
eξ

ℓ(y,z) + ε
, (13.2)

where: eξ is the log-normal shadowing component, with ξ ∼ N (0, σ2
ξ ); ℓ(y,z) =

(‖y − z‖/d0)
α/2

is the path loss, d0 a normalization factor, and α the corre-
sponding (power) loss exponent; ε ≪ 1 is an arbitrary constant, introduced to
avoid numerical integration issues.
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Using this model, the n-th coefficient for the channel between the legitimate
user and the k-th base station is hk,n = g(uL,xk), where uL and xk are the
location of the legitimate user and of the k-th base station, respectively.

The channel estimation is considered noisy, so that ĥk,n = hk,n + wk,n,
with each wk,n distributed according to a normal distribution, i.e., wk,n ∼
N (0, σ2) ∀ k, n.

The base stations are randomly distributed over a compact region S ⊂ R
2

according to a spatially uniform PPP Φ. Let λ = E[NBS]/|S| be the constant
intensity of Φ in S, where E[NBS] is the mean number of base stations in S.
The intensity of Φ over R

2 is therefore λ′(x) = λ1S(x), where 1S(x) is the
indicator function of S. Also, the intensity measure of Φ is Λ(A) = λ|A ∩ S| for
any A ⊂ R

2.

We want to determine the false alarm and missed detection probabilities
of the proposed physical layer authentication scheme, taking into account the
noise in the estimation of channel coefficients and the inherent randomness in
the shadowing component.

Expressions for false alarm and missed detection probabilities will be given
as a function of the distance between the legitimate user and the attacker. If
the attacker’s position is known only statistically or through some bounds on its
distance, the results must be correspondingly averaged, interpreted as outage
values or deterministic bounds.

13.3 Analysis for fixed base station positions

13.3.1 Channel with path loss and noisy estimation

In this scenario, the shadowing component is ignored, i.e., ξ ≡ 0. In case of
attack, the estimated channel responses are those between each base station
and the attacker, affected by noise, that is ĥk,n = g(uA,xk) +wk,n. The missed
detection probability is, thus,

pMD = Pr
{xk,wk,n}

[

NBS
∑

k=1

Nc
∑

n=1

∣

∣

∣ĥk,n − hk,n

∣

∣

∣

2

< Θ

]

(13.3)

= Pr
{xk,wk,n}

[

NBS
∑

k=1

Nc
∑

n=1

|g (uA,xk) + wk,n − g (uL,xk)|2 < Θ

]

. (13.4)

Analogously, in case of an authentic message, the estimated channel responses
ĥk,n are the one between each base station and the legitimate node, thus the
probability of false alarm is

pFA = Pr
{xk,wk,n}

[

NBS
∑

k=1

Nc
∑

n=1

∣

∣

∣ĥk,n − hk,n

∣

∣

∣

2

> Θ

]

= Pr
{wk,n}

[

NBS
∑

k=1

Nc
∑

n=1

w2
k,n > Θ

]

. (13.5)
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13.3.2 Channel with path loss and shadowing

The second scenario ignores the estimation noise (wk,n ≡ 0 ∀ k, n) but consid-
ers the log-normal shadowing. Note that, by taking the logarithm of channel
response g(y,z), we have

log(g(y,z)) = − log(ε+ ℓ(y,z)) + ξ , (13.6)

where ℓ(y,z) = (d(y,z)/d0)
−α/2

.
By using maximum likelihood detection techniques, the missed detection

probability is

pMD = Pr
{xk,ξA

k,l
,ξ0

k,l
}

[

NBS
∑

k=1

Nc
∑

n=1

∣

∣

∣log ĥk,n − log hk,n

∣

∣

∣

2

< Θ

]

= Pr
{xk,ξA

k,l
,ξ0

k,l
}

[

NBS
∑

k=1

Nc
∑

n=1

(

− log (ε+ ℓ (uA,xk)) + ξA
k,l

+ log (ε+ ℓ (uL,xk))− ξ0
k,l

)2
< Θ

]

= Pr
{xk,ξ

(l)

k,MD
}

[

NBS
∑

k=1

Nc
∑

n=1

(

log

(

ε+ ℓ (uL,xk)

ε+ ℓ (uA,xk)

)

+ ξ
(l)
k,MD

)2

< Θ

]

, (13.7)

where the shadowing exponent for the legitimate user (ξ0
k,l) and the attacker

(ξA
k,l) are both distributed according to N (0, σ2

ξ ), and ξ
(l)
k,MD = ξA

k,l − ξ0
k,l is dis-

tributed according to N (0, σ2
ξ,MD). Suppose σ2

ξ,MD = 2σ2
ξ (1− e−δMD/Xc), where

δMD is the attacker–legitimate user distance. This derives from the Gudmund-
son’s model [335], which describes the correlation of the shadowing component
between two points. In this model, the decorrelation distance Xc is the distance
at which the signal correlation equals 1/e of its maximum value. For outdoor
systems, Xc typically ranges from 50 m to 100 m [336, 337]. Also, empirical
studies show that σξ ranges from 4 to 13 dB [338]. This maximum likelihood
criterion makes sense because the information on the phase of the channel is
not reliable because of synchronization errors, and the use of the module is
equivalent to the use of the power, or its logarithm.

Analogously, the probability of false alarm is

pFA = Pr
{xk,ξ0

k,l
}

[

NBS
∑

k=1

Nc
∑

n=1

∣

∣

∣ĥk,n − hk,n

∣

∣

∣

2

> Θ

]

= Pr
{

ξ
(l)

k,FA

}

[

NBS
∑

k=1

Nc
∑

n=1

(

ξ
(l)
k,FA

)2

> Θ

]

. (13.8)

ξ
(l)
k,FA ∼ N (0, σ2

ξ,FA) is the difference between two realizations of the random

variable ξ0
k,l. The legitimate node is able to slightly move after network setup,

subject to the condition that the movement is small compared to its distance
from the nearest base station. In this way, the path loss component of the
channel is not influenced by this movement, however the shadowing compo-
nent is influenced by it, according to the Gudmundson’s model. Hence, we
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have σ2
ξ,FA = 2σ2

ξ (1− e−δFA/Xc), where δFA is the distance between the current
position of the legitimate user and its position at network setup.

13.4 Stochastic Geometry Analysis

In this section, the results for missed detection and false alarm probabilities
from the previous section are generalized to the random distribution of the BSs,
according to the system model. In doing so, a fundamental result in the analysis
of point processes, the Campbell’s theorem for PPPs, is used [106, §4], described
in Sec. 4.3.2.

13.4.1 Channel with path loss and noisy estimation

In the specific scenario where the shadowing is ignored, the characteristic func-
tion (CF) of the random variable γ′

MD =
∑NBS

k=1

∑Nc

n=1 (g (uA,xk) + wk,n − g (uL,xk))
2
,

representing the sum in (13.3), becomes

ϕ
MD

(t) = exp

(

∫

S

E{w(n)}

[

exp

(

jtσ2
Nc
∑

n=1

f
(

x, w(n)
)

)

− 1

]

λ dx

)

(13.9)

where

f(x, w) =

(

g (uA,x)− g (uL,x)

σ
+
w

σ

)2

. (13.10)

For fixed x, the sum
∑Nc

n=1 f (x, wn) is a noncentral chi-squared random
variable with Nc degrees of freedom and noncentrality parameter

ρBS(x)2 =

Nc
∑

n=1

(g(uA,x)− g(uL,x))2

σ2
= Nc

(g(uA,x)− g(uL,x))2

σ2
. (13.11)

We can thus use the explicit form of its CF to calculate the expectation in
(13.9):

E{w(l)}

[

exp

(

jtσ2
Nc
∑

n=1

f (x, wn)

)

− 1

]

=
exp

(

jρBS(x)2tσ2

1−j2tσ2

)

(1− j2tσ2)
Nc/2

− 1 . (13.12)

The CF of γ′
MD is then

ϕ
MD

(t) = exp



λ

∫

S





exp
(

jρBS(x)2tσ2

1−j2tσ2

)

(1− j2tσ2)
Nc/2

− 1



dx



 . (13.13)

Instead, the CF of the random variable γ′
FA =

∑NBS

k=1

∑Nc

n=1 w
2
k,n, represent-

ing the sum in (13.5), can be derived from the CF of γ′
MD by setting uA to

the value of uL. The noncentrality parameter of the noncentral chi-squared
distribution becomes, thus, zero and the CF of γ′

FA simplifies to

ϕ
FA

(t) = exp

(

λ

∫

S

[

(

1− j2tσ2
)−Nc/2 − 1

]

dx

)

. (13.14)



229

13.4.2 Channel with path loss and shadowing

The stochastic geometry analysis in this scenario is analogous to that carried on
in the previous one, therefore only the final derivations are reported. For that,
we now consider two cases: (i) the shadowing is independent for each channel
coefficient of a single user–base station pair; (ii) the instantaneous shadowing

is the same for all channel coefficients of a user–base station pair, i.e., ξ
(1)
k,MD =

ξ
(2)
k,MD = . . . = ξ

(Nc)
k,MD = ξk,MD and ξ

(1)
k,FA = ξ

(2)
k,FA = . . . = ξ

(Nc)
k,FA = ξk,FA.

Independent shadowing

The probability of missed detection is

Pr
{xk,ξ

(l)

k,MD
}

[

σ2
ξ,MD

NBS
∑

k=1

Nc
∑

n=1

f̆
(

xk, ξ
(n)
k,MD

)

< Θ

]

, (13.15)

where

f̆(x, ξ) =

(

1

σξ,MD
log

(

ε+ ℓ(uL,x)

ε+ ℓ(uA,x)

)

+
ξ

σξ,MD

)2

. (13.16)

As previously done, by exploiting Campbell’s theorem, we can write the CF

of γ′′
MD =

∑NBS

k=1

∑Nc

n=1 f̆
(

xk, ξ
(n)
k,MD

)

, which is

ϕ
MD

(t) = exp

(

∫

S

E{
ξ

(n)

MD

}

[

exp

(

jtσ2
ξ,MD

Nc
∑

n=1

f̆
(

x, ξ
(n)
MD

)

)

− 1

]

λ dx

)

(13.17)

For fixed x,
∑Nc

n=1 f̆(x, ξ
(n)
MD) is a noncentral chi-squared distributed variable

with Nc degrees of freedom and noncentrality parameter

ρ̆BS(x)2 =
Nc

σ2
ξ,MD

(

log

(

ε+ ℓ(uL,x)

ε+ ℓ(uA,x)

))2

. (13.18)

From there, we can calculate the expected value of this noncentral chi-squared
variable and, therefore, we can explicit the CF of γ′′

MD:

ϕ
MD

(t) = exp






λ

∫

S







exp
(

jρ̆BS(x)2tσ2
ξ,MD

1−j2tσ2
ξ,MD

)

(

1− j2tσ2
ξ,MD

)Nc/2
− 1






dx






(13.19)

As for the CF of γ′′
FA =

∑NBS

k=1

∑Nc

n=1

(

ξ
(n)
k,FA

)2

, we follow the same reasoning

as before, but replacing σξ,MD with σξ,FA. Also, the noncentrality parameter
results zero, since the path loss terms can be simplified, resulting in

ϕ
FA

(t) = exp

(

λ

∫

S

[

(

1− j2tσ2
ξ,FA

)−Nc/2 − 1
]

dx

)

. (13.20)
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Identical shadowing for channel coefficients

Note that in this case, varying Nc is equivalent to varying Θ. So, doubling Nc is
the same as halving Θ, both in pMD and pFA. Performance of the authentication
scheme is then the same as the single channel per link case (i.e., the indepen-
dent shadowing case with Nc = 1). For the sake of completeness, though, we
explicitly perform the analysis also in this case.

Since the shadowing is identical for the different channel coefficients, the CF
of γ′′

MD is just

ϕ
MD

(t) = exp

(∫

S

EξMD

[

exp
(

jtσ2
ξ,MDNcf̆ (x, ξMD)

)

− 1
]

λ dx

)

, (13.21)

with f̆ (x, ξMD) being a noncentral chi-squared variable with one degree of free-
dom and noncentrality parameter

ρ̆BS(x)2 =
1

σ2
ξ,MD

(

log

(

ε+ ℓ(uL,x)

ε+ ℓ(uA,x)

))2

(13.22)

The CF of γ′′
MD is, therefore,

ϕ
MD

(t) = exp






λ

∫

S







exp
(

jNcρ̆BS(x)2tσ2
ξ,MD

1−j2Nctσ2
ξ,MD

)

(

1− j2Nctσ2
ξ,MD

)1/2
− 1






dx






(13.23)

Analogously, the CF of γ′′
FA is

ϕ
FA

(t) = exp

(

λ

∫

S

[

(

1− j2Nctσ
2
ξ,FA

)−1/2 − 1
]

dx

)

. (13.24)

13.4.3 CF inversion

From the CF ϕ(t), the CDF is given by [339]

F (y) =
1

2
− 1

π

∫ ∞

0

ℑ
(

e−jtyϕ(t)

t

)

dt , (13.25)

where ℑ(s) denotes the imaginary part of s. Usually, this integral can not
be explicitly solved, so we resort to its numerical integration, using the SciPy
scientific library for Python.

13.5 Results

In this section, performance results of the proposed authentication scheme, in
terms of false alarm and missed detection probabilities, are reported. The pa-
rameter values used to obtain the numerical results are reported in Tab. 13.1.

Fig. 13.1 shows the performance of the scheme when no shadowing is con-
sidered. We can see that it is possible to have both a false alarm and missed
detection probability values of less than 10−3 even in such a simple case. When
shadowing is considered but the channel estimation noise is ignored, we can
reach similar results, as shown in Fig. 13.2.
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Figure 13.1: pFA vs pMD for different base station densities, when ignoring the
shadowing component.
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Figure 13.2: pFA vs pMD for different base station densities, when ignoring the
channel estimation noise.
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Parameter Value

Path loss exponent β 3
Path loss normalization factor d0 1
Channel gain stability constant ε 1
Number of channel coefficients Nc 1
Estimation noise power σ2 2 · 10−14 W
Variance of the shadowing in dB σ2

ξ 8 dB

Decorrelation distance Xc 75 m
Attacker–legitimate user distance δMD 5 m
Legitimate user movement after setup δFA 0.5 m

Table 13.1: Value of the parameters used for the numerical evaluation.

In both cases, increasing the base station density, or raising the amount
of channel coefficients considered, improves the performance of this scheme,
though increasing the size and complexity of the infrastructure. System design-
ers, therefore, have the ability to choose the best tradeoff between complexity
and performance level that is adequate to their applications.

13.6 Conclusions

In this chapter, a new authentication scheme, based on physical channel fea-
tures, has been proposed. The channel considered in this study consisted of
the gain and shadowing components, in addition to the estimation noise. A
mathematical model based on stochastic geometry allowed us to analyze the
performance of this scheme in terms of probability of false alarm and missed de-
tection. Numerical results showed that performance, in the considered scenario,
can be tuned based on the specific needs of the application. This means that the
proposed authentication scheme can either be set up to have high performance,
by, e.g., increasing the base station density, and then used as a standalone mech-
anism or can be employed, with a more relaxed performance level and, therefore,
lower complexity, as an addition to a traditional authentication scheme in order
to increase its security level.



Chapter 14

Final considerations

In this thesis we explored current issues and proposed innovative solutions for
IoT systems. Part I focused on CPSs. The work gravitated towards the com-
munication technologies, since communication reliability and network lifetime
play a critical role in these systems. To understand the characteristic of CPSs,
we analysed the communication patterns of MTDs and a new model for them
has been proposed. The new model has proved to be general enough to cap-
ture the characteristics of a wide variety of MTDs, enabling its use in contexts
with heterogeneous traffic sources. Then, we concentrated on channel access
schemes. We reached the conclusion that exploiting innovative rate adaptation
techniques enables a significant performance improvement over state of the art
protocols, both in terms of transmission success probability and energy effi-
ciency. These improvements are more significant the more dense the network
is, enabling the realization of massive and ubiquitous IoT. Also, knowing the
content of the messages, in our case sensing data from WSNs, allowed us to
reach important improvement over state of the art protocols, particularly in
extending the lifetime of battery-powered devices.

In Part II the use of machine learning techniques for network and service
optimization has been introduced. In fact, prediction and optimization of the
traffic flows in the IoT infrastructure is important to guarantee a high QoS,
in particular when deploying services that require a large bandwidth. Video
streaming towards mobile devices, like smartphones and tablets, is such an ex-
ample. In this part, a technique for predicting cell load has been presented,
followed by an investigation on dynamic video streaming techniques. For these,
a machine learning technique to infer the quality-rate characteristic of a video
has been presented, together with resource management and video admission
control strategies. Additionally, a predictive proxy that prefetches video seg-
ments to improve the quality experienced by the user has been proposed. These
techniques proved effective to increase the video QoE and can be used together
for maximum effectiveness: the cell traffic predictor estimates the future load
of the network links, then the resource management algorithm, based on the
predicted load and the estimated quality-rate curves, can assign resources to
different users to increase the QoE. At last, the prefetching proxy provides
further quality improvements, while wasting less bandwidth and reducing the
server load compared to a traditional non-predictive proxy. Machine learning
can also be applied to positioning services, which have to provide the system
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with accurate information on the location of the devices composing it. We have
seen that learning techniques have the ability to enhance the performance of
NLOS detection algorithms, particularly when combined with multidirectional
receivers. This improves the accuracy of the positioning system, allowing for its
use in critical scenarios.

In the third part, we focused on security aspects of IoT. While the factors
analysed in the previous part are technological enabler, security is a legal and
psychological enabler for ubiquitous IoT. In fact, users1 will not fully embrace
the IoT paradigm until sufficient security level will be assured. Therefore, we
investigated the security issues of standard and commonly used protocols in
IoT. Then, we concentrated on authentication mechanism, and a new technique
using physical layer features has been proposed. This authentication strategy
proved to be effective as a stand-alone mechanism or as an additional security
layer for legacy systems.

In conclusion, we have seen that, while currently available technologies are
not ready for massive and secure deployments, the proposed strategies allow
us to unleash the full potential of IoT. In fact, when properly designed, these
systems are able to securely interconnect powerful devices, like smartphones and
PCs, and resource constrained devices, e.g., sensors and automation controllers,
through the Internet. The virtual and physical world can therefore be integrated
seamlessly, realizing the CPS vision. The resulting data flows, composed by
multimedia streams and short control and data messages, have to be efficiently
and securely managed. Large attention must be given to innovative security
solutions, which will play a predominant role in fostering the acceptance of
these systems by the users and will enable their use for strictly regulated and
critical applications.

1Note that the term user denotes also companies or governmental agencies, which have
stricter security regulations to comply to than people.
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