
UNIVERSITY OF PADOVA

DOCTORAL THESIS

PH.D. COURSE IN INFORMATION ENGINEERING

INFORMATION AND COMMUNICATIONS TECHNOLOGY

Artificial Intelligence for Data

Analysis and Signal Processing

Author:

Matteo GADALETA

Supervisor:

Prof. Michele ROSSI

Coordinator:

Prof. Andrea NEVIANI

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Engineering

in the

Department of Information Engineering

September 2018

iii

UNIVERSITY OF PADOVA

Abstract
Department of Information Engineering

Artificial Intelligence for Data Analysis and Signal Processing

Matteo GADALETA

Artificial intelligence, or AI, currently encompasses a huge variety of fields,

from areas such as logical reasoning and perception, to specific tasks such as

game playing, language processing, theorem proving, and diagnosing dis-

eases. It is clear that systems with human-level intelligence (or even better)

would have a huge impact on our everyday lives and on the future course of

evolution, as it is already happening in many ways. In this research AI tech-

niques have been introduced and applied in several clinical and real world

scenarios, with particular focus on deep learning methods. A human gait

identification system based on the analysis of inertial signals has been devel-

oped, leading to misclassification rates smaller than 0.15%. Advanced deep

learning architectures have been also investigated to tackle the problem of

atrial fibrillation detection from short length and noisy electrocardiographic

signals. The results show a clear improvement provided by representation

learning over a knowledge-based approach. Another important clinical chal-

lenge, both for the patient and on-board automatic alarm systems, is to detect

with reasonable advance the patterns leading to risky situations, allowing the

patient to take therapeutic decisions on the basis of future instead of current

information. This problem has been specifically addressed for the prediction

of critical hypo/hyperglycemic episodes from continuous glucose monitor-

ing devices, carrying out a comparative analysis among the most success-

ful methods for glucose event prediction. This dissertation also shows ev-

idence of the benefits of learning algorithms for vehicular traffic anomaly

detection, through the use of a statistical Bayesian framework, and for the

optimization of video streaming user experience, implementing an intelli-

gent adaptation engine for video streaming clients. The proposed solution

explores the promising field of deep learning methods integrated with re-

inforcement learning schema, showing its benefits against other state of the

iv

art approaches. The great knowledge transfer capability of artificial intelli-

gence methods and the benefits of representation learning systems stand out

from this research, representing the common thread among all the presented

research fields.

v

UNIVERSITÀ DI PADOVA

Sommario in lingua italiana
Dipartimento di Ingegneria dell’Informazione

Artificial Intelligence for Data Analysis and Signal Processing

Matteo GADALETA

L’intelligenza artificiale, o AI, comprende attualmente una grande varietà

di campi, da concetti come il ragionamento logico e la percezione, a obiet-

tivi specifici come la risoluzione di giochi complessi, l’elaborazione del lin-

guaggio, la dimostrazione di teoremi matematici e la diagnosi di malattie.

È chiaro che sistemi con un’intelligenza a livello umano (o anche superiore)

avrebbero un enorme impatto sulla nostra vita quotidiana e sul futuro corso

dell’evoluzione, come si sta già osservando sotto numerosi aspetti. In questa

tesi vengono proposte tecniche di AI applicate a diversi scenari, sia clinici

che reali, con particolare interesse a metodi di deep learning. In particolare,

è stato sviluppato un sistema di identificazione dell’andatura umana basato

sull’analisi di segnali inerziali, che porta a errori di classificazione inferiori

allo 0,15%. Sono state inoltre studiate avanzate architetture di deep learning

per affrontare il problema della rilevazione della fibrillazione atriale, anal-

izzando segnali elettrocardiografici rumorosi e di breve durata. I risultati

mostrano un netto miglioramento fornito da metodi di representation learning

rispetto ad un approccio knowledge-based. Un’altra importante sfida clinica,

sia per il paziente che per i sistemi automatici di avvertimento, è quella di

rilevare con ragionevole anticipo i segnali che portano a situazioni rischiose,

consentendo al paziente di prendere decisioni terapeutiche sulla base di in-

formazioni future. Questo problema è stato specificamente contestualizzato

nella previsione di episodi ipo/iperglicemici critici, analizzando segnali ac-

quisiti da dispositivi di monitoraggio continuo del glucosio ed effettuando

un’analisi comparativa tra i metodi di maggior successo per la previsione di

eventi glicemici. In questa tesi vengono inoltre mostrati i vantaggi degli algo-

ritmi di apprendimento automatico per il rilevamento di anomalie nel traffico

veicolare, attraverso l’uso di un approccio bayesiano, e per l’ottimizzazione

dell’esperienza utente durante la visione di un flusso video, implementando

vi

un motore di adattamento intelligente per i client di video streaming. La

soluzione proposta esplora la promettente integrazione tra metodi di deep

learning e schemi di apprendimento con rinforzo, mostrando i suoi vantaggi

rispetto ad altri approcci allo stato dell’arte. La grande capacità di trasferi-

mento delle conoscenze dei metodi di intelligenza artificiale, e i vantaggi dei

sistemi di apprendimento automatico, evincono da questa ricerca, rappre-

sentando il filo conduttore tra i campi di ricerca presentati.

vii

Acknowledgements

Undertaking this Ph.D. has been a truly learning and enriching experi-

ence for me and it would not have been possible without the support and

guidance that I received from many people.

First and foremost, I would like to thank my research advisor Prof. Michele

Rossi for introducing me to this exciting field of science and for his dedicated

help, advice, inspiration, encouragement and continuous support through-

out my Ph.D.

I wish to extend my sincere gratitude to all the members of the Signet

group and all the people at the University of Padova who supported me and

contributed to this work, with special regards to Enrico Grisan and Andrea

Facchinetti from the Bioengineering Group.

I gratefully acknowledge The Scripps Research Translational Institute,

for providing me financial support and Director of Digital Medicine Steven

Steinhubl, to allow me to carryout part of my research in this esteemed in-

stitution. I also thank all the people who welcomed me and made me feel at

home during this period.

A special thank goes to Giorgio Quer for his invaluable input, support

and friendship throughout the last year of this journey, and for his help and

assistance during the period in the US, both personal and professional.

ix

Contents

Abstract iii

Sommario in lingua italiana v

Acknowledgements vii

List of Abbreviations xiii

Introduction 1

1 Human Gait Identification with Inertial Sensors 5

1.1 Related Work . 7

1.2 Signal Processing Framework 9

1.2.1 Data Acquisition and Filtering 11

1.2.2 Extraction of Walking Cycles 13

1.2.3 Orientation Independent Transformation 16

1.2.4 Normalization . 19

1.3 Convolutional Neural Network 20

1.3.1 CNN Architecture . 20

1.3.2 CNN Optimization and Results 22

1.4 One-Class Support Vector Machine Training 26

1.4.1 Revised Classification Architecture 26

1.4.2 One-Class SVM Design 28

1.5 Sequential Analysis . 31

1.5.1 Experimental Results . 33

1.6 Discussion . 34

2 ECG Signal Analysis for Early Diagnosis of Heart Diseases 37

2.1 Methods . 40

2.1.1 Single-lead ECG dataset 40

2.1.2 Pre-processing . 41

Baseline wander removal 41

x

Element-wise normalization 42

Signal cropping . 42

2.1.3 Feature extraction: feature engineering approach . . . 42

RR interval-based features 42

Signal averaged ECG features 43

Classifier . 48

2.1.4 Feature Extraction: Deep-learning architectures 48

Alexnet . 48

Visual Geometry Group (VGG) 50

Inception . 50

ResNet . 51

MobileNet . 51

2.1.5 Classification . 52

2.1.6 Training procedure . 52

2.2 Performance metrics and statistical analysis 53

2.3 Results . 55

2.4 Discussion . 61

2.4.1 AF detection: Feature engineering approach 62

2.4.2 AF detection: Representation learning approach 62

3 Prediction of Adverse Glycemic Events from CGM Signal 65

3.1 Methods . 67

3.1.1 Regression algorithms 68

3.1.2 Classification algorithms 69

3.1.3 Events detection . 70

3.1.4 Training process . 73

Static model . 74

Dynamic model . 74

3.2 Results . 75

3.3 Discussion . 83

4 A Bayesian Framework for Vehicular Monitoring Networks 85

4.1 State of the Art Analysis . 87

4.2 Bayesian Framework . 89

4.2.1 Traffic Readings . 89

4.2.2 Probabilistic inference via GMM 90

4.2.3 Data Matrices and Typical Weekly Profiles 92

xi

4.3 Numerical Results . 93

4.3.1 Forecasting Capability 94

4.3.2 Anomaly Detection Accuracy 94

4.4 Discussion . 99

5 Deep Reinforcement Learning for DASH Video Streaming 101

5.1 Related work . 103

5.1.1 Reinforcement Learning and DASH 106

5.2 System model . 107

5.2.1 Video streaming services 107

5.2.2 Reward function . 108

5.3 Machine learning optimization framework 109

5.3.1 Markov Decision Process model 109

5.3.2 Q-learning . 111

Limits of the Q-learning approach 112

5.3.3 Deep-learning integration 113

5.4 Neural network architectures: preliminaries 114

5.5 Deep Q-learning for DASH adaptation 116

5.6 Simulation and results . 120

5.6.1 Algorithm settings . 123

5.6.2 Results: real traces . 125

5.6.3 Results: synthetic traces 129

5.6.4 Memory allocation . 132

5.6.5 Summary of performance 134

5.7 Discussion . 136

Conclusion 137

xiii

List of Abbreviations

Adam Adaptive Moment Estimation
AF Atrial Fibrillation
AI Artificial Intelligence
ARIMA AutoRegressive Integrated Moving Average
BG Blood Glucose
BN Bayesian Network
BTT Backpropagation Through Time
BVI Bayesian Variational Inference
CDF Cumulative Distribution Function
CDN Content Delivery Network
CHO Carbohydrates (Carbon Hydrogen Oxygen)
CNN Convolutional Neural Network
CGM Continuous Glucose Monitoring
CRC Clinical Research Center
CT Classification Tree
DAG Directed Acyclic Graphs
DASH Dynamic Adaptive Streaming over HTTP
DL Deep Learning
DQN Deep Q-Network
DTW Dynamic Time Warping
DWT Discrete Wavelet Transform
ECG ElectroCardioGraphy
FESTIVE Fair, Efficient, and Stable adapTIVE algorithm
FIR Finite Impulse Response
FN False Negative
FP False Positive
GI Glycemic Index
GMM Gaussian Mixture Model
HMM Hidden Markov Model
MDP Markov Decision Process
MMSE Minimum Mean Square Error
MPC Model Predictive Control
MPD Media Presentation Description
MSS Microsoft Smooth Streaming
IDNet IDentification Network

xiv

IoT Internet of Things
IQR Interquartile Range
k-NN k-Nearest Neighbours
LDA Linear Discriminant Analysis
LOO Leave One Out
LSTM Long-Short Term Memory
MLP Multi Layer Perceptron
NB Naive Bayes
OCC One-Class Classification
OSVM One-class Support Vector Machine
PANDA Probe AND Adapt
PCA Principal Component Analysis
PDF Probability Density Function
PPG PhotoPlethysmoGraphy
PRC Precision-Recall Curve
QoE Quality of Experience
RAHAS Rate Adaptation Heuristic for Adaptive video Streaming
RBF Radial Basis Function
ReLU Rectified Linear Unit
RF Random Forest
RMSE Root Mean Square Error
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
RL Reinforcement Learning
SAECG Signal Averaged ECG

SD Successive Differences
SMBG Self-Monitoring Blood Glucose
SPRT Sequential Probability Ratio Test
SSGPE Sum of Squares of the Glucose Prediction Error
SSIM Structural SIMilarity
SV Support Vector
SVM Support Vector Machine
SVR Support Vector Regression
T1D Type-1 Diabetes
TOD Temporal Outlier Discovery
TN True Negative
TP True Positive
TPR True Positive Rate
VI Value Iteration

1

Introduction

The term “artificial intelligence” (AI) was first coined by John McCarthy

more than five decades ago. Since then, there have been countless debates

and discussions for a universally accepted definition of the term, perhaps be-

cause of its reference to the word “intelligence”, which is itself an abstract

quantity. A good definition of AI can be found in [1], where the author de-

fines it as the simulation of human intelligence on a machine, so as to make the

machine efficient to identify and use the right piece of knowledge at a given step of

solving a problem. Thus, an intelligent system is a system capable of think-

ing and acting rationally. A system can act rationally only after acquiring

adequate knowledge from the real world. Hence, a prerequisite for rational

actions lies on the capacity of building up knowledge from real world infor-

mation, ability known as perception. The learning capability of a machine is

then strictly related to its perception.

The subject of AI spans a wide horizon. It has been enriched with studies

from numerous disciplines, from psychology, philosophy, computer science,

cognitive science, engineering and mathematics. AI deals with various fields

of interest, such as knowledge representation schemes, methods for resolving

uncertainty of data, techniques for intelligent search, schemes for automated

machine learning and many others. Artificial intelligence has already shown

its decision-making skills in the recognition and interpretation of patterns

in many different fields. Among the application areas of AI, we have im-

age recognition, natural language processing, expert systems, game-playing,

theorem-proving, robotics and many others. In this study the focus is on

the emerging area of AI for signal processing, with particular emphasis on

deep learning techniques and biomedical applications. The adoption of AI in

future clinical practice has the potential to be transformational.

This dissertation is organized in two parts. In the first part (Chapters 1–3)

some human sensing applications are explored, including several sources of

data: motion data from inertial sensor, electrocardiographic signals and glu-

cose monitoring readings. The second part (Chapters 4–5) addresses two

2

real-world scenarios, focusing on a vehicular traffic anomaly detection sys-

tem, and the optimization of video streaming user experience. Learning

based artificial intelligence techniques represent the common thread among

these topics, and connect them from several points of view, also emphasizing

the great knowledge transfer capability of artificial intelligence methods.

In chapter 1 a user identification framework from smartphone-acquired

motion signals is presented. The main goal is to recognize a target user from

their way of walking, using the accelerometer and gyroscope signals pro-

vided by a commercial smartphone worn in the front pocket of the user’s

trousers. The framework features several innovations including: i) a robust

and orientation-independent walking cycle extraction block (Sec. 1.2), ii) a

novel feature extractor based on convolutional neural networks (Sec. 1.3),

iii) a one-class support vector machine to classify walking cycles (Sec. 1.4),

and the coherent integration of these into iv) a multi-stage authentication

technique. The algorithm exploits a deep learning approach as universal fea-

ture extractors for gait recognition, and combines classification results from

subsequent walking cycles into a multi-stage decision making framework

(Sec. 1.5). Experimental results and a comparison of this approach against

state of the art techniques are shown in Sec. 1.5.1.

Chapter 2 focuses on the automatic classification of atrial fibrillation (AF)

events in short and noisy single-lead electrocardiographic signals (ECG) ac-

quired from wireless sensors. AF is the most common serious abnormal heart

rhythm, affecting about 34 million people in the world, it is often asymp-

tomatic, so it may not be diagnosed and the affected subjects may be un-

aware of their condition. Since approximately 10 to 20% of ischemic strokes

are associated with AF first diagnosed at the time of stroke, the early detec-

tion of asymptomatic AF is very important, as it can help prevent strokes by

instituting appropriate preventive anticoagulation. For the considered AF

detection task, five different classification architectures based on deep con-

volutional neural networks have been analyzed, following the most recent

developments in the deep learning (DL) field (Sec. 2.1.4). These designs,

which were originally proposed for the analysis of images, are here adapted

to one dimensional ECG signals, and their classification performance is com-

pared with that of a state of the art classifier using expert features (Sec. 2.1.3).

3

This chapter is organized as follows. Sec. 2.1 introduces the dataset used for

the study, along with technical details on data processing, feature extraction

and training procedure. In Sec. 2.2 the performance metrics used for the anal-

ysis are defined and explained. In Sec. 2.3 the obtained results are shown and

some final remarks are highlighted in Sec. 2.4.

One of the most important objective of any diabetes therapy is to main-

tain the blood glucose concentration within the euglycemic range, avoiding

or at least mitigating critical hypo/hyperglycemic episodes. Modern Contin-

uous Glucose Monitoring (CGM) devices bear the promise of providing the

patients with an increased and timely awareness of glycemic conditions as

these get dangerously near to hypo/hyperglycemia. However, the challenge,

both for the patient and on-board automatic alarm systems, is to detect with

reasonable advance the patterns leading to risky situations, allowing the pa-

tient to take therapeutic decisions on the basis of future (predicted) instead

of current glucose concentration. In the last years, several real-time short-

term prediction algorithms such a scope have been developed. Nevertheless,

despite some of them have shown to be potentially effective, current CGM

sensors still do not embed any predictive alert feature. One of the main rea-

son is that a technically sound performance comparison of these algorithms

on the same dataset is still missing, which could allow to better evidence

their pros and cons. This issue is addressed in Chapter 3. The aim of this

study is to fill the aforementioned gap, by carrying out a comparative anal-

ysis among the most common methods for glucose event prediction. Both

regression (Sec. 3.1.1) and classification (Sec. 3.1.2) algorithms have been im-

plemented and analyzed, including static and dynamic training approaches

(Sec. 3.1.4). The dataset consists of 89 CGM time series measured in diabetic

subjects for 7 subsequent days. Performance metrics, specifically defined to

assess and compare the event prediction capabilities of the methods, have

been introduced in Sec. 3.1.3 and analyzed in Sec. 3.2.

Chapter 4, unlike the previous chapters which are more focused on hu-

man sensing applications, concerns the automated and runtime analysis of

vehicular data from large scale traffic monitoring networks. This problem

is tackled through localized and small-size Bayesian networks (BNs), which

are utilized to capture the spatio-temporal relationships underpinning traffic

4

data from nearby road links. A dedicated BN is set up, trained, and tested

for each road in the monitored geographical map. The joint probability dis-

tribution between the cause nodes and the effect node in the BN is tracked

through a Gaussian Mixture Model (GMM), whose parameters are estimated

via Bayesian variational inference operating on unlabeled data. Forecasting

and anomaly detection are performed on statistical measures derived at run-

time by the trained GMMs. The design choices lead to several advantages:

the approach is scalable as a small-size BN is associated with and indepen-

dently trained for each road and the localized nature of the framework al-

lows flagging atypical behaviors at their point of origin in the monitored ge-

ographical map. Technical details are presented in Sec. 4.2, The effectiveness

of the proposed framework is tested using a large dataset from a real network

deployment, comparing its prediction performance with that of selected re-

gression algorithms from the literature, while also quantifying its anomaly

detection capabilities (Sec. 4.3).

Chapter 5 covers the topic of reinforcement learning, and its promising

integration with deep learning techniques. The ever-increasing demand for

seamless high-definition video streaming, along with the widespread adop-

tion of the Dynamic Adaptive Streaming over HTTP (DASH) standard, has

been a major driver of the large amount of research on bitrate adaptation al-

gorithms. The complexity and variability of the video content and of the mo-

bile wireless channel make this an ideal application for learning approaches.

In this study, the D-DASH framework is presented, which combines deep

learning and reinforcement learning techniques to optimize the Quality of

Experience (QoE) of DASH (Sec. 5.2 and Sec. 5.3). Different learning architec-

tures are proposed and assessed, combining feed-forward and recurrent deep

neural networks with advanced strategies (Sec. 5.4 and Sec. 5.5). D-DASH de-

signs are thoroughly evaluated against prominent algorithms from the state

of the art, both heuristic and learning-based, evaluating performance indica-

tors such as image quality across video segments and freezing/rebuffering

events (Sec. 5.6).

5

Chapter 1

Human Gait Identification with

Inertial Sensors

Wearable technology is advancing at a very fast pace. Many wearable de-

vices, such as smart watches and wristbands are currently available in the

consumer market and they often possess miniaturized inertial motion sen-

sors (accelerometer and gyroscope) as well as other sensing hardware ca-

pable of gathering biological signs such as photoplethysmographic signals,

skin temperature and so forth. Other wearables, such as commercial phys-

iological monitors, deliver a number of vitals via their wireless interfaces,

including electrocardiogram, heart rate, chest motion, etc. The same holds

true for recent smartphones, that allow for the collection of user’s feedback

and for the realtime assessment of their health condition. They also feature

sophisticated sensing technology, among which inertial sensors have been

considered. With sensing technology growing rapidly, two major problems

are related to the analysis of wearable data and to the identification of the

mobile users who provide it, so that it can be assessed with reasonably high

accuracy whether the data sources are genuine. Notably, certifying the data

sources is a necessary step toward the widespread use of this technology in

the medical field and, in this chapter, it is developed the user identification

technology required to make this possible. A great deal of work has been car-

ried out on gait recognition in the last decade [2]. In general, biometric gait

recognition can be grouped into three main categories: 1) computer vision

based, 2) floor sensor based and 3) wearable sensor based [3]. Most of the

recent work belongs to the first category, where image and video analysis are

performed to infer the user identity [4–8]. Nevertheless, user identification

from wearables is a sensible approach in those scenarios where the deploy-

ment of cameras in not possible.

6 Chapter 1. Human Gait Identification with Inertial Sensors

In this chapter the IDNet (IDentification Network) framework, a new sys-

tem for the identification of mobile users from smartphone-acquired motion

data, is proposed and detailed. As shown in [9, 10], modern phones pos-

sess highly accurate inertial sensors, which allow for non-obtrusive gait bio-

metrics. IDNet leverages deep Convolutional Neural Networks (CNN) [11]

and tools from machine learning, such as Support Vector Machines (SVM)

[12], combining them in an innovative fashion. Specifically, IDNet encom-

passes algorithms for 1) walking cycle segmentation, 2) feature extraction

and, finally, 3) user identification. CNNs are used as universal feature ex-

tractors to discriminate gait signatures from different subjects. Single- as

well as multi-stage classifiers are finally combined with CNNs to identify the

user through the accumulation of scores from subsequent walking cycles. As

shown in Sec. 1.3, this solution recognize the target user with high accuracy

and outperforms state of the art techniques such as [13–18]. Some key points

of the proposed approach are:

• The design and validation of an original preprocessing techniques that

includes: a robust algorithm for the extraction of walking cycles and

an original transformation to move smartphone acquired motion signals

into an orientation invariant reference system. Subsequent processing is

carried out within this reference system, as this considerably improves

results, see Sec. 1.2. As opposed to making motion data orientation in-

dependent, previous studies either use data acquired from a sensor in a

known and fixed position [16, 17, 19, 13, 14, 20–22], or use orientation in-

dependent features at the cost of losing information about the direction

of the forces [23].

• The design of a new CNN-based feature extraction tool, which is trained

only once on a representative set of users and then used at runtime as a

universal feature extractor, see Sec. 1.3. Note that with CNNs, statistical

features are automatically extracted as part of the CNN training phase

(automatic feature engineering) as opposed to the selection of predefined

and often arbitrary features, as commonly done in the literature [15, 16,

19, 14].

• The combination of CNN-extracted features with a one-class SVM (OSVM)

classifier [24], which is solely trained on the target subject, see Sec. 1.4.

The resulting SVM scores are then accumulated across multiple walking

1.1. Related Work 7

cycles to get higher accuracies, through a new multi-stage identification

framework, see Sec. 1.5.

• The coherent integration of these techniques into the IDNet framework,

that uses smartphone-acquired accelerometer and gyroscope motion data.

The integration of gyroscope data provides further performance improve-

ments, as shown in Sec. 1.3.2.

• The experimental validation of IDNet, proving its superiority against so-

lutions from the state of the art, see Sec. 1.3, and achieving identification

errors below 0.15%, see Sec. 1.5.

Part of the results presented in this chapter has been published in [25].

1.1 Related Work

Interest in gait analysis began in the 60’s, when walking patterns from healthy

people, termed as normal patterns, were investigated by Murray et al. [26].

These measurements were performed through the analysis of photos acquired

using interrupted light photography. Murray compared normal gait param-

eters against those from pathologic gaits [27] and showed that gait is unique

to each individual. Since then, human identification through gait recogni-

tion has been enjoying a growing interest. Most recent works are based on

computer vision [28, 3]. Currently, multi-view gait recognition problem and

condition invariance (e.g., clothing or carried items, walking speed, view an-

gle, etc.) are of special interest [8]. Many new approaches have been studied

to improve recognition performance, such as 3D body estimation [5], com-

plete canonical correlation analysis [6], sparse coding and hypergraph learn-

ing [7]. However, mobile devices are becoming increasingly sophisticated

and can provide high quality inertial measurements. Multiple activities can

thus be analyzed using wearable sensors data, and exploited, e.g., for task

identification [29]. A thorough review of the latest developments in this area

can be found in Sprager’s work [2].

The interest in this study is in human gait identification through smart-

phone inertial sensors. Ailisto et al. [30] were the first to look at this problem

and they did it through accelerometer data. In their paper, they used a tri-

axial accelerometer worn on a belt with fixed orientation: the x-axis pointed

forward, the y-axis to the left and the z-axis was aligned with the direction of

8 Chapter 1. Human Gait Identification with Inertial Sensors

gravity. Only data points from the x and z axes were used for identification

purposes. Gait cycle extraction was performed through a simple peak detec-

tion method, and a template was built for each subject. User identification

employed a template matching technique, for which different methods were

explored: temporal correlation, frequency domain analysis and data distri-

bution statistics.

In [31], Derawi et al. proposed more robust preprocessing, cycle detec-

tion and template comparison algorithms. Data were acquired using a mo-

bile phone worn on the hip, and only the vertical z-axis was considered for

motion analysis. Dynamic Time Warping (DTW) [32] was used as the dis-

tance measure, to ensure robustness against non-linear temporal shifts. This

scheme was also tested in [21], where majority voting and cyclic rotation

were compared as inference rules. In a further study [22], Hidden Markov

Models (HMM) were explored. Accelerometer data were split into windows

of fixed length, which were then utilized to train the HMMs. Good identifi-

cation results were obtained, but at the cost of long measurement phases (30

seconds).

Classification algorithms based on machine learning were also investi-

gated. Either gait cycles extraction [33] or fixed windows lengths [14] are

possible signal segmentation methods. After that, a feature extraction tech-

nique is applied to each segment and statistical measures such as mean,

standard deviation, root mean square, zero-crossing rate or histogram bin

counts, are commonly used. However, more advanced features are required

for better results, like cepstral coefficients, which are widely used for speech

recognition [14], or features extracted through frequency analysis, i.e., using

Fourier [13] or wavelet transforms [33]. Supervised algorithms are typically

used for classification, including k-Nearest Neighbours (k-NN) [14, 16, 18,

19], Support Vector Machines (SVM) [15, 19, 33], Multi Layer Perceptrons

(MLP) [15, 19] and Classification Trees (CT) [15, 19].

Accelerometer based gait analysis has also interest in the medical field.

Using time-frequency analysis, Huang et al. showed that signals acquired by

a waist-worn device on a patient with cervical disc herniation differed before

and after the surgery [20]. In [19], classification algorithms were used to dis-

criminate a group of subjects with non-specific chronic low back pain from

healthy subjects. Complex parameters, e.g., dynamic symmetry and cyclic

1.2. Signal Processing Framework 9

Cycle Extraction

Orientation

Independent

Transformation

Preprocessing

Performance

Evaluation

Classical

Machine

Learning

CNN-based

authentication

NormalizationFiltering

 accelerometer and

gyroscope signal

FIG. 1.1: Signal processing workflow.

stability of gait, were extracted by Jiang et al. [34]. However, their evalua-

tion requires to place sensors on the legs, and fine gait details are difficult to

extract from signals acquired by a single waist-worn sensor.

In most of the related work the acquisition system was placed according

to a controlled and well known orientation on the subject body. In real scenarios,

this is however unlikely to be the case. It is thus important to implement

an algorithm whose performance is invariant to the smartphone orientation,

which is somewhat unconstrained (and unknown). This makes the phone

reference system with good probability misaligned with respect to the di-

rection of motion and the definition of subject specific and time invariant

templates impossible. To deal with this, two different approaches can be

used. The first consists in the extraction of features that are rotation invari-

ant (e.g., correlation matrices of Fourier transforms [23] or gait dynamic im-

ages [35]). The second relies on the transformation of inertial signals [15],

projecting them into a new orientation invariant three-dimensional reference

system, which is extracted directly from the data. Here, the latter approach

has been adopted. Another distinctive feature of the presented work is the

use of an original processing pipeline exploiting automatic feature extraction

through CNNs and a scoring algorithm combining OSVM and multi-step de-

cision analysis.

1.2 Signal Processing Framework

The aim of IDNet is to correctly recognize a subject from his/her way of

walking, through the acquisition of inertial signals from a standard smart-

phone. The proposed processing workflow is shown in Fig. 1.1. Walking

data is first acquired, then some preprocessing is performed entailing:

1. pre-filtering to remove motion artifacts (Sec. 1.2.1),

2. the extraction of walking cycles (Sec. 1.2.2),

10 Chapter 1. Human Gait Identification with Inertial Sensors

3. a transformation to move the raw walking data into a new orientation

independent reference system (Sec. 1.2.3),

4. a normalization to represent each walking cycle (accelerometer and gy-

roscope data) through fixed length, zero mean and unit variance vec-

tors (Sec. 1.2.4).

After this, the walking cycles are ready to be processed to identify the user.

The standard approach, called “Classical Machine Learning” entails the com-

putation of a number of pre-established statistical features, the most infor-

mative of which are selected and used to train a classifier. Various machine

learning techniques are usually exploited to this purpose, and are trained

through a supervised approach. Hence, the classification performance is as-

sessed and the whole process is usually iterated for a further feature selection

phase. In this way, the features that are used for the classification task are

progressively refined until a final feature set is attained. Note that statistical

features are often assessed by the designer through educated guesses and a

trial and error approach.

As opposed to this, IDNet advocates the use of convolutional neural net-

works (see Sections 1.3 and 1.4). These have been successfully used by the

video processing community [36] but they have been rarely exploited for the

analysis of inertial data from wearable devices. One of the main advantages

of this approach is that statistical features are automatically assessed by the

CNN as a result of a supervised training phase. In Sec. 1.3, the CNN is trained

to act as a universal feature extractor, whereas in Sec. 1.4 a OSVM is trained

as the final classifier. Once the CNN is trained, the proposed system oper-

ates assuming that the smartphone only has access to the walking patterns of

the target user (i.e., the legitimate user) and the SVM is solely trained using

his/her walking data. The system is based on the premise that, at runtime,

the CNN should be capable of producing discriminant features for unseen

users and the OSVM, once trained on the target, should reliably detect im-

postors, although their walks were not used for training. The processing

blocks are described in higher details in the following subsections.

Notation: x ∈ Rn represents a column vector x = (x1, x2, . . . , xn)T with ele-

ments xi ∈ R, where (·)T is the transpose operator. |x| = n returns the num-

ber of elements in vector x. x = (∑n
i=1 xi)/n, whereas ‖x‖ = (∑n

i=1 x2
i)

1/2 is

the L2-norm operator. If x, y ∈ Rn, their inner product is defined as x · y =

1.2. Signal Processing Framework 11

xTy and their entrywise product as x ◦ y = (x1y1, x2y2, . . . , xnyn)T. Vector

1n = (1, 1, . . . , 1)T with |1n| = n. Matrices are denoted by uppercase and bold

letters. For example, if x, y, z ∈ Rn, a 3× n matrix is defined as M = [x, y, z]T,

whose rows contain the three vectors. In addition, element (i, j) of matrix X

is denoted by Xi,j ∈ R. ~r represents a 3D vector~r = (r1, r2, r3)
T and r̂ is the

corresponding 3D versor r̂ = ~r/‖~r‖. For any two 3D vectors~r and ~s, their

cross-product is indicated as ~r ×~s = (r2s3 − r3s2, r3s1 − r1s3, r1s2 − r2s1)
T.

The gravity vector is referred to as ~ρ. u(i) represents a time series, where

i = 1, 2, . . . is the discrete time index. For acceleration data, the boldface let-

ter a is reserved for vectors, a(i) for time series and A for matrices. The same

notation is adopted for the gyroscope data, using g, g(i) and G, respectively

for vectors, time series and matrices. Finally, for any time series a(i) and

Ns ≥ 1, it is defined a(i, Ns) = vrect(a, i, Ns)
∆
= (a(i), . . . , a(i + Ns − 1))T,

where a(i, Ns) is a column vector containing samples a(i), . . . , a(i + Ns − 1).

1.2.1 Data Acquisition and Filtering

A proper dataset is key to the successful design and testing of identity recog-

nition algorithms. Some datasets are publicly available. The largest one was

acquired by the Institute of Scientific and Industrial Research (ISIR) at Osaka

University (OU) [37]. It contains motion data collected from 744 subjects us-

ing four motion sensors: three inertial sensors were placed on a belt, with tri-

axial accelerometer and gyroscope, and a smartphone was worn in the center

back waist, and only measured triaxial accelerometer data. Despite the high

number of participants, the main problem with this dataset is that motion

data was acquired in a controlled environment, and for each subject only two

short data sequences are available, which are not enough for deep network

training. Furthermore, smartphone’s gyroscope data is not provided. Other

datasets are available, but featuring a much smaller number of participants.

Casale et al. collected accelerometer data from a smartphone positioned in

the chest pocket from 22 users walking over a predefined path [38]. In [39],

a motion capture suit was used to acquire data from 40 subjects walking in a

small area at different speeds and with direction changes. However, due to

the acquisition environment and conditions, these data are more suitable for

human gait modeling rather than for user identification. Frank et al. collected

data from a mobile phone in the pocket of 20 individuals at McGill Univer-

sity, performing two separate 15 minute walks on two different days [40].

12 Chapter 1. Human Gait Identification with Inertial Sensors

FIG. 1.2: Power spectral density of accelerometer (continuous lines, one for each
axis) and gyroscope (dashed lines) data.

Also in this case gyroscope data is not provided. All these databases do not

meet the requirements. In fact, for a proper training long data collection

phases are necessary, preferably from different days and with devices freely

worn in the user’s front pockets. Hence, a dedicated data acquisition phase

has been performed specifically for the purpose of this study.

In particular, motion traces from 50 subjects have been acquired, during

a period of six months using Android smartphones worn in the right front

pocket of the users’ trousers. The following devices were used: Asus Zen-

fone 2, Samsung S3 Neo, Samsung S4, LG G2, LG G4 and a Google Nexus 5.

Several acquisition sessions of about five minutes were performed for each

subject, in variable conditions, e.g., with different shoes and clothes. Each

subject has been asked to walk as she/he felt comfortable with, to mimic

real world scenarios. For the data acquisition, an Android inertial data log-

ger application has been developed, which saves accelerometer, gyroscope

and magnetometer signals into non-volatile memory and then automatically

transfers them to an Internet server for further processing. The magnetome-

ter signal is not used for identification purposes. In general, IDNet can be

used carrying the device in other positions but each requires a dedicated

training.

In Fig. 1.2, the power of accelerometer and gyroscope signals at differ-

ent frequencies is shown through the Welch’s method [41], considering a full

1.2. Signal Processing Framework 13

walking trace and setting the Hanning window length to 1 s, with half win-

dow overlap. Most of the signal power is located at low frequencies, mostly

below 40 Hz (where the power is at least 30 dB smaller than the maximum).

The raw inertial signals were acquired using an average sample frequency

ranging between 100 and 200 Hz (depending on the smartphone model),

which is more than appropriate to capture most of the walking signal’s en-

ergy.

At the first block of IDNet processing chain, due to the non-uniform sam-

pling performed by the smartphone operating system, a cubic Spline inter-

polation is applied to represent the input data through evenly spaced points

(200 points/second). Hence, a low pass Finite Impulse Response (FIR) filter

with a cutoff frequency of fc1 = 40 Hz is used for denoising and to reduce

the motion artifacts that may appear at higher frequencies. In fact, given the

power profile of Fig. 1.2, the selected cutoff frequency only removes noise

and preserves the relevant (discriminative) information about the user’s mo-

tion.

In the following, ax(i) and gx(i) are the filtered and interpolated acceler-

ation and gyroscope time series along axis x, where i = 1, 2, . . . is the sample

number. The same notation holds for axes y and z.

1.2.2 Extraction of Walking Cycles

A template-based and iterative method that solely considers the accelerome-

ter’s magnitude signal is used for the extraction of walking cycles. This signal

is in fact inherently invariant to the rotation of the smartphone and, as such,

allows for the precise assessment of walking cycles regardless of how the

user carries the device in her/his front pocket. For each sample i = 1, 2, . . .

the acceleration magnitude is computed as:

amag(i) = (ax(i)
2 + ay(i)

2 + az(i)
2)1/2 . (1.1)

To identify the template, a reference point in amag(i) has to be located. To

do so, inspired by [17], amag(i) is first filtered through a low-pass filter with

cutoff frequency fc2 = 3 Hz. Thus, the first minimum is detected, which

corresponds to the heel strike [42], and the corresponding index is called

ĩ. This minimum is then refined by looking at the original signal amag(i)

within an interval centered on ĩ spanning one second of data, and picking

14 Chapter 1. Human Gait Identification with Inertial Sensors

FIG. 1.3: Template extraction using the accelerometer magnitude amag(i). The
first template is the signal between the blue dashed vertical lines. The red
dashed line in the center corresponds to i∗.

the minimum value of amag(i) in this interval. This identifies a new index

i⋆ for which amag(i⋆) is a local minimum. As an example, this minimum is

shown through a red vertical (dashed-dotted) line in Fig. 1.3. As a second

step, a window of one second centered in i⋆ is considered, which is repre-

sented through two vertical blue (dashed) lines in Fig. 1.3. Now, the sam-

ples of amag(i) falling between the two blue lines define the first gait template,

called T , with |T | = Ns samples, where Ns corresponds to the number of

samples measured in one second. The extracted template is then iteratively

refined and, at the same time, used to identify subsequent walking cycles. To

this end, for any two real vectors u and v of the same size n, the correlation

distance is defined as follows:

corr_dist(u, v) = 1−
(u− u1n) · (v− v1n)

‖(u− u1n)‖ ‖(v− v1n)‖
. (1.2)

The template T is then processed with the acceleration magnitude through

the following Eq. (1.3), leading to a further metric ϕ(i), where i = 1, 2, . . . is

the sample index:

amag(i, Ns) = vrect(amag, i, Ns) ,

ϕ(i) = corr_dist(T , amag(i, Ns)) , i = 1, (1.3)

1.2. Signal Processing Framework 15

FIG. 1.4: Correlation distance ϕ(i) between amag(i) and the template T of
Fig. 1.3. Local minima identify the beginning of walking cycles.

As can be seen from Fig. 1.4, the function ϕ(i) exhibits some local minima,

which are promptly located by comparing ϕ(i) with a suitable threshold ϕth

and performing a fast search inside the regions where ϕ(i) < ϕth. The indices

corresponding to these minima determine the optimal alignments between

the template T and amag(i). In particular, the second of these identifies the

beginning of the second gait cycle. From these facts we have that:

1. the samples between the second and the third minima correspond to

the second gait cycle. It is thus possible to locate accelerometer and

gyroscope vectors for this walking cycle, which are respectively defined

as: ax, ay, az and gx, gy, gz, still expressed in the (x, y, z) coordinate

system of the smartphone. The number of samples does not necessarily

match the template length and usually differs from cycle to cycle, as it

depends on the length and duration of walking steps.

2. A second template T ′ is obtained by reading Ns samples starting from

the second minimum.

At this point, a new template is obtained through a weighted average of the

old template T and the new one T ′:

T = αT + (1− α)T ′ , (1.4)

16 Chapter 1. Human Gait Identification with Inertial Sensors

where α = 0.9 has been been used for the results shown in this study. The

new template T is then considered for the extraction of the next walking cycle

and the procedure is iterated. Note that this technique makes it possible to

obtain an increasingly robust template at each new cycle.

A template matching approach exploiting a similar rationale was used

in [17], where the authors employed the Pearson product-moment corre-

lation coefficient between template and amag(i). The main differences be-

tween [17] and the proposed approach are: the template T is extracted in a

neighborhood of i⋆, using a fixed number of samples Ns, whereas they take

the samples between two adjacent minima of ϕ(i) (which may then differ in

size for different cycles). Furthermore, in Eq. (1.4), a discrete-time filter is

utilized to refine the template T at each walking cycle, making it more robust

against speed changes. In previous work [17], the template is instead kept

unchanged up to a point when minima cannot be longer detected, and a new

template is to be obtained.

Finally, a normalization phase is required to represent all the cycles through

the same number of points N, as this is required by the following feature ex-

traction and classification algorithms. Before doing this, however, a transfor-

mation of accelerometer and gyroscope signals is performed to express these

inertial signals in a rotation invariant reference system, as described next.

1.2.3 Orientation Independent Transformation

To evaluate the new orientation invariant coordinate system, three orthog-

onal versors ξ̂, ζ̂, ψ̂ are to be found, whose orientation is independent of

that of the smartphone and aligned with gravity and the direction of motion.

Specifically, the aim is to express accelerometer and gyroscope signals in a

coordinate system that remains fixed during the walk, with versor ζ̂ point-

ing up (and parallel to the user’s torso), versor ξ̂ pointing forward (aligned

with the direction of motion) and ψ̂ tracking the lateral movement and being

orthogonal to the other two. This entails inferring the orientation of the mo-

bile device carried in the front pocket from the acceleration signal acquired

during the walk. To this end, a technique similar to those of [43, 44] has been

adopted.

Gravity is the main low frequency component in the accelerometer data,

and will be the starting point of the transform. Moreover, although it is a

1.2. Signal Processing Framework 17

constant vector, it continuously changes when represented in the (x, y, z) co-

ordinate system of the smartphone, due to the user’s mobility and the sub-

sequent change of orientation of the device. So, even the gravity vector ~ρ

is not constant when expressed through the smartphone coordinates. The

mean direction of gravity within the current walking cycle is considered as

the first axis of the new reference system. Let nk be the number of samples

in the current cycle k, with k = 1, 2, ax, ay and az represent the accel-

eration samples in the current cycle k along the three axes x, y and z, with

|ax| = |ay| = |az| = nk, whereas gx, gy and gz indicate the gyroscope sam-

ples in the same cycle k, with |gx| = |gy| = |gz| = nk. The gravity vector ~ρk

within cycle k is estimated as:

~ρk = (ax, ay, az)
T . (1.5)

The first versor of the new system ζ̂ is obtained as:

ζ̂ =
~ρk

‖~ρk‖
. (1.6)

Now, the acceleration matrix is defined as A = [ax, ay, az]T of size 3 × nk,

whose rows corresponds to ax, ay and az. Likewise, the gyroscope matrix

is G = [gx, gy, gz]T, whose rows corresponds to gx, gy and gz. The projected

acceleration and gyroscope vectors along axis ζ̂ are:

aζ = A · ζ̂ , gζ = G · ζ̂ , (1.7)

where the new vectors have the same size nk. By removing this compo-

nent from the original accelerometer signal, the latter is projected on a plane

that is orthogonal to ζ̂. This is the horizontal plane (parallel to the floor).

This flattened acceleration data is represented through a new matrix A f =

[a
f
x, a

f
y , a

f
z]

T of size 3 × nk, where a
f
x, a

f
y and a

f
z are vectors of size nk that

describe the acceleration on the new plane:

A f = A− ζ̂aT
ζ . (1.8)

Analyzing this flattened acceleration, it can be observed that, during a walk-

ing cycle, it is unevenly distributed on the horizontal plane. Also, the ac-

celeration points on this plane are dispersed around a preferential direction,

18 Chapter 1. Human Gait Identification with Inertial Sensors

which has the highest excursion (variance). Here, it is assumed that the direc-

tion with the largest variance in the measurement space contain the dynamics

of interest, i.e., it is parallel to the direction of motion, as it was also observed

and verified in previous research [43]. Given this, this direction is considered

as the second axis (versor ξ̂) of the new reference system. This is done by ap-

plying the Principal Component Analysis (PCA) [45] on the projected points,

which finds the direction along which the variance of the measurements is

maximized. The detailed procedure is as follows:

1. Find the empirical mean along each direction x, y and z (rows 1, 2 and 3

of the flattened acceleration matrix A f). Store the mean in a new vector

u of size 3× 1., i.e.:

ui =
1
nk

nk

∑
j=1

A
f
i,j , i = 1, 2, 3 . (1.9)

2. Subtract the empirical mean vector u from each column of matrix A f ,

obtaining the new matrix A
f
norm:

A
f
norm = A f − u(1nk

)T . (1.10)

3. Compute the sample 3× 3 autocovariance matrix Σ:

Σ =
A

f
norm(A

f
norm)T

nk − 1
. (1.11)

4. The eigenvalues and the corresponding eigenvectors of Σ are evalu-

ated. The eigenvector ~v associated with the maximum eigenvalue iden-

tifies the direction of maximum variance in the dataset (i.e., the first

principal component of the PCA transform).

Hence, versor ξ̂ is evaluated as:

ξ̂ =
~v

‖~v‖
. (1.12)

Accelerometer and gyroscope data are then projected along ξ̂ through the

following equations: aξ = A · ξ̂ and gξ = G · ξ̂. Being ξ̂ placed on a plane

that is orthogonal to ζ̂, these two versors are also orthogonal. The third axis

1.2. Signal Processing Framework 19

FIG. 1.5: Raw accelerometer data from two different walks, acquired from a
smartphone worn in the right front pocket with different orientations. Ac-
celerometer data in the smartphone reference system (x, y, z) (left), and after the
transformation (ξ, ψ, ζ) (right). IDNet implements a PCA-based transformation
that makes walking data rotation invariant, i.e., subject-specific gait patterns
emerge in the new coordinate system (see the red colored patterns in the right
plots).

is then obtained through a cross product:

ψ̂ = ζ̂ × ξ̂ , (1.13)

and the new accelerometer and gyroscope data along this axis are respec-

tively obtained as: aψ = A · ψ̂ and gψ = G · ψ̂. The transformed vec-

tors (aξ , aψ, aζ) and (gξ , gψ, gζ), along with the magnitude vectors amag and

gmag are the output of the Orientation Independent Transformation block of

Fig. 1.1.

An example of this transform is shown in Fig. 1.5, where accelerometer

and gyroscope data from two different walks from the same subject are plot-

ted. These signals were acquired carrying the phone in the right front pocket

of the subject’s trousers using two different orientations. As highlighted in

the figure, this projection makes walking data rotation invariant. In fact,

subject-specific gait patterns emerge in the new coordinate system (see the

red colored patterns in the right plots).

1.2.4 Normalization

Each gait cycle has a different duration, which depends on the walking speed

and stride length. So, considering the accelerometer and gyroscope data col-

lected during a full walking cycle, acceleration and gyroscope vectors have a

20 Chapter 1. Human Gait Identification with Inertial Sensors

variable size, which are now expressed in the new orientation invariant co-

ordinate system discussed in Section 1.2.3. However, since feature extraction

and classification algorithms require N-sized vectors for each cycle, where N

has to be fixed, a further adjustment is necessary. A further Spline interpo-

lation has been used to cope with this cycle length variability, representing

all walking cycles through vectors of N = 200 samples each. This specific

value of N was selected to avoid aliasing. In fact, assuming a maximum cy-

cle duration of τ = 2 seconds, which corresponds to a very slow walk, and a

signal bandwidth of B = 40 Hz, a number of samples N > 2Bτ = 160 sam-

ples/cycle is required. Amplitude normalization was also implemented, to

obtain vectors with zero mean and unit variance, as this leads to better train-

ing and classification performance. This results in a total of eight N-sized

vectors for each walking cycle, which are inputted into the feature extraction

and classification algorithms of the following sections.

1.3 Convolutional Neural Network

In this section, the chosen Convolutional Neural Network (CNN) architec-

ture for IDNet (Sec. 1.3.1) is detailed, along with its optimization, training

and quantitative comparison against the most common classifiers from the

literature (Sec. 1.3.2).

1.3.1 CNN Architecture

CNNs are feed-forward deep neural networks differing from fully connected

multilayer networks for the presence of one or more convolutional layers. At

each convolutional layer, a number of kernels is defined. Each of them has

a number of weights, which are convolved with the input in a way that the

same set of weights, i.e., the same kernel, is applied to all the input data,

moving the convolution operation across the input span. Note that, as the

same weights are reused (shared weights), and each kernel operates on a

small portion of the input signal, it follows that the network connectivity

structure is sparse. This leads to advantages such as a considerably reduced

computational complexity with respect to fully connected feed forward neu-

ral networks. For more details the reader is referred to [46]. CNNs have been

proven to be excellent feature extractors for images [47] and here their effec-

tiveness for motion data is also shown. The CNN architecture designed to

1.3. Convolutional Neural Network 21

Multi-stage

authentication
Preprocessing

Feature

extraction

(CNN)

Feature

selection

(PCA)

Classification

(OSVM)

CNN Feature Extraction Block

Convolutional

layer 2 (CL2)
Max Pooling

Fully-conn

layer 1 (FL1)

Fully-conn

layer 2 (FL2)

output vector

Input layer

(8x200 samples)
Convolutional

layer 1 (CL1)

gyroscope data

accelerometer data

20@(1x10)

40@(4x10)

K=35

F=40

feature vector

Data

Acquisition

y
1

y
2

y
K

f
1

f
F

CNN-based authentication

FIG. 1.6: IDNet framework. CL1 and CL2 are convolutional layers, FL1 and FL2
are fully connected layers. X@(Y×Z) indicates the number of kernels, X, and the
size of the kernel matrix, Y×Z.

this purpose is shown in Fig. 1.6. It is composed of a cascade of two con-

volutional layers, followed by a pooling and a fully-connected layer. The

convolutional layers perform a dimensionality reduction (or feature extrac-

tion) task, whereas the fully-connected one acts as a classifier. Accelerometer

and gyroscope data from each walking cycle is processed according to the al-

gorithms of Sec. 1.2. The input matrix for a generic walking cycle is referred

to as X = (aξ , aψ, aζ , amag, gξ , gψ, gζ , gmag)T, where all the vectors are nor-

malized to N samples (see Sec. 1.2.4). In detail, we have (CL = Convolutional

Layer, FL = Fully-connected Layer):

• CL1 The first convolutional layer implements one dimensional kernels

(1x10 samples) performing a first filtering of the input and processing

each input vector (rows of X) separately. This means that at this stage

it is not captured any correlation among different accelerometer and

gyroscope axes. The activation functions are linear and the number of

convolutional kernels is referred to as Nk1.

• CL2 The second convolutional layer is intended to seek discriminant

and class-invariant features. Here, the cross-correlation among input

vectors is considered (kernels of size 4x10 samples) and the output ac-

tivation functions are non-linear hyperbolic tangents. Max pooling is

applied to the output of CL2 to further reduce its dimensionality and

22 Chapter 1. Human Gait Identification with Inertial Sensors

increase the spatial invariance of features [48]. Nk2 is the number of

convolutional kernels used for CL2.

• FL1 This is a fully connected layer, i.e., each output neuron of CL2 is

connected to all input neurons of this layer (weights are not shared).

Hyperbolic tangent activation functions are used at the output neurons.

FL1 output vector is termed f = (f1, . . . , fF)
T, and contains the F fea-

tures extracted by the CNN.

• FL2 Each output neuron in this layer corresponds to a specific class

(one class per user), for a total of K neurons, where K is the number of

subjects considered for the training phase. The K dimensional output

vector y = (y1, . . . , yK)
T is obtained by a softmax activation function,

which implies that yj ∈ (0, 1), j = 1, . . . , K and ∑
K
j=1 yj = 1 (stochastic

vector). Also, yj can be thought of as the probability that the current

data matrix X belongs to class (user) j.

The network is trained in a supervised manner for a total of K subjects solv-

ing a multi-class classification problem, where each of the input matrices X

in the dataset is assigned to one of K mutually exclusive classes. The tar-

get output vector t = (t1, . . . , tK)
T has binary entries and is encoded using a

1-of-K coding scheme, i.e., they are all zero except for that corresponding to

the subject that generated the input data.

1.3.2 CNN Optimization and Results

In this section, some approaches for the optimization of the CNN are pre-

sented, quantifying its classification performance and comparing it against

classification techniques from the literature. As said above, the output of

layer FL2 is the stochastic vector y, whose j-th entry yj, j = 1, . . . , K, can

be seen as the probability that the input pattern belongs to user j, i.e., yj =

yj(w, X) = Prob(tj = 1|w, X), where w is the vector containing all the CNN

weights, X is the current input matrix (walking cycle) and tj = 1 if X belongs

to class j and tj = 0 otherwise. If X is the set of all training examples, let’s

define the batch set as B ⊂ X . Let X ∈ B and denote the corresponding

output vector by y(w, X) and its j-th entry by yj(w, X). The correspond-

ing target vector is t(X) = (t1(X), . . . , tK(X))T. The CNN is then trained

1.3. Convolutional Neural Network 23

through a stochastic gradient descent algorithm which minimizes a categori-

cal cross-entropy loss function L(w), defined as [12, Eq. (5.24) of Sec. 5.2]:

L(w) = − ∑
X∈B

K

∑
j=1

tj(X) log(yj(w, X)) . (1.14)

During training, Eq. (1.14) is iteratively minimized, by rotating the walking

cycles (training examples) in the batch set B so as to span the entire input set

X . Training continues until a stopping criterion is met (see below).

Walking patterns from K subjects are used to train the CNN, and the same

number of cycles Nc is considered for each of them, for a total of KNc training

cycles. Nt randomly chosen walking cycles from each subjects are used to ob-

tain a test set P . The remaining cycles are split into training T and validation

V sets, with |P| = KNt, |T | = KNc, X = P ∪ T ∪ V , where all the sets have

null pairwise intersection and are built picking input patterns from X evenly

at random. Set V is used to terminate the training phase, and termination

occurs when the loss function L(w) evaluated on V does not decrease for

twenty consecutive training epochs. After that, the network weights which

led to the minimum validation loss are used to assess the CNN performance

on set P . This is done through an accuracy measure, defined as the number

of walking cycles correctly classified by the CNN divided by the total num-

ber of cycles in P . The following graphs show the mean accuracy obtained

averaging the test set performance over ten different networks, all of them

trained through the just explained approach by considering K = 35 subjects

from the dataset and Nt = 100 cycles per subject.

As a first set of results, the impact of F (neurons in layer FL1) and of the

number of convolutional kernels in CL1 and CL2 are analyzed. Since the

last layer FL2 acts as a classifier, F can be seen as the number of features ex-

tracted by the CNN. In general, a too small F can lead to poor classification

results; too many features, instead, would make the state space too big to be

effectively dealt with (curse of dimensionality) and may lead to overfitting

issues [49]. Besides F, it has been investigated the right number of kernels to

use within each convolutional layer. Three networks are considered by pick-

ing different (Nk1, Nk2) pairs. For network 1 (Nk1 = 10, Nk2 = 20) is used,

network 2 has (Nk1 = 20, Nk2 = 40) and network 3 has (Nk1 = 30, Nk2 = 50).

In Fig. 1.7, the accuracy performance of these networks as a function of F is

shown. From this plot, it can be seen that at least F = 20 neurons have

24 Chapter 1. Human Gait Identification with Inertial Sensors

FIG. 1.7: CNN test accuracy vs number of features F in layer FL1. Three curves
are shown for three different network configurations (number of kernels in lay-
ers CL1 and CL2).

to be used at the output of FL1 and that the accuracy performance stabi-

lizes around F = 40, leading to negligible improvements as N grows beyond

this value. As for the number of kernels, small networks (network 1) per-

form worse than bigger ones (networks 2 and 3), but increasing the num-

ber of kernels beyond that used for network 2 does not lead to appreciable

improvements. Hence, F = 40 is used for the results of this study, with

(Nk1 = 20, Nk2 = 40).

A key performance comparison is shown in Fig. 1.8, where the accuracy

is plotted against Nc for a CNN classifier and four selected classification al-

gorithms from the literature, i.e., Classification Trees (CT) [50], Naive Bayes

(NB) classifiers [51], k-Nearest Neighbors (k-NN) [52] and Support Vector

Machines (SVM) [53].1 These approaches were used in a large number of

papers including [14, 16, 15, 19, 33]. For their training, 112 features were ex-

tracted from the signal samples in X, including their variance, mean trend,

windowed mean difference, variance trend, windowed variance difference,

maxima and minima, spectral entropy, zero crossing rate and bin counts.

These features, were then utilized to train the selected classifiers in a super-

vised manner. Note that, while the CNN automatically extracts its features

1For SVM, a linear kernel has been considered, as it outperformed polynomial and radial
basis function ones. A one-versus-all strategy was used solve the considered multiclass
problem for the binary classifers.

1.3. Convolutional Neural Network 25

FIG. 1.8: CNN test accuracy vs number of walking cycles Nc used for training.
Results for CT, NB, k-NN and SVM classifiers from the literature are also shown.

(vector f), with previous techniques these are manually selected based on

human expertise and statistical knowledge.

From Fig. 1.8 it can be observed that the CNN-based classification ap-

proach surpasses all the previous classifiers from the literature, delivering

better accuracies across the entire range of Nc. Also, the accuracy increases

with an increasing Nc until it saturates and no noticeable improvements are

observed. While a higher Nc is always beneficial, a higher number of cycles

also entails a longer acquisition time, which we would rather avoid. For this

reason, Nc = 40 has been used for the following results, as it provided a good

trade-off between accuracy and complexity across all the experiments.

To illustrate the superiority of CNN features with respect to manually

extracted ones, in the following an instructive experiment is performed. The

CNN is considered as a feature extraction block, by removing the output

vector y and using the inner feature vector f to train the above classifiers

from the literature (CT, NB, k-NN and SVM). The corresponding accuracy

results are provided in Fig. 1.9. All the classifiers perform better when trained

using CNN features, with typical improvements in the test accuracy of more

than 10%. For instance, for a k-NN classifier trained with Nc = 30 cycles

per subject, the accuracy increases from 71% (manually extracted features) to

94% (CNN features). The best performance is provided by the combined use

of CNN features and SVM.

26 Chapter 1. Human Gait Identification with Inertial Sensors

FIG. 1.9: Test accuracy of CT, NB, k-NN and SVM classifiers. “CNN” indicates
training with CNN-extracted features, whereas “Manual” means standard fea-
ture extraction.

A last consideration is in order. Most of the previous papers only used

accelerometer data, but the results show that using both gyroscope and ac-

celerometer provides further improvements, see Fig. 1.10.

1.4 One-Class Support Vector Machine Training

In this section, the IDNet CNN-based identification chain is further extended

through the design of an SVM classifier which is trained solely using the mo-

tion data of the target subject. This is referred to as One-Class Classification

(OCC) and it is important for practical applications where motion signals of

the target user are available, but those belonging to other subjects are not.

More importantly, with this approach the classification framework can be ex-

tended to users that were not considered in the CNN training.

1.4.1 Revised Classification Architecture

Due to the generalization property of deep convolutional networks, once

trained, the CNN can be used as a universal feature extractor, providing

meaningful features even for subjects that were not included in the train-

ing. To take advantage of this, the output neurons of FL2 is discarded and

1.4. One-Class Support Vector Machine Training 27

FIG. 1.10: Impact of gyroscope data. Lines represent the mean accuracy (aver-
aged over ten networks), whereas markers indicate the results of the ten network
instances.

the CNN can be used as a dimensionality reduction tool that, given an in-

put matrix X, returns a user dependent feature vector f . The CNN is then

trained only once considering the optimizations of Sec. 1.3.2. All its weights

and biases are then precomputed and will not be modified at classification

time. Considering the diagram of Fig. 1.6, the output of the CNN is the fea-

ture vector f . An additional feature selection block lead to a reduced number

of features, from F to S ≤ F (dimensionality reduction). PCA is used to ac-

complish this task and the new feature vector is called s. Hence, we have

s = Υ(f), where Υ(·) : RF → RS is the PCA transform.

A One-class Support Vector Machine (OSVM) is then used as the classifi-

cation algorithm (Sec. 1.4.2). It defines a boundary around the feature (train-

ing) vectors belonging to the target subject. At runtime, as a new walking

cycle is processed, the OSVM takes the feature vector s and outputs a score,

which is a distance measure between the current feature vector and the SVM

boundary [12, Chapter 7]. As discussed shortly, this score relates to the like-

lihood that the current walking cycle belongs to the target user.

28 Chapter 1. Human Gait Identification with Inertial Sensors

1.4.2 One-Class SVM Design

Next, the OSVM block of Fig. 1.6 is designed. It differs from a standard bi-

nary SVM classifier as the SVM boundary is built solely using patterns from

the positive class (target user). The strategy proposed by Schölkopf is to map

the data into the feature space of a kernel, and to separate them from the ori-

gin with maximum margin [54]. The corresponding minimization problem

is similar to that of the original SVM formulation [53]. Using an appropri-

ate hyperplane (in the space transformed by a suitable kernel function) it is

possible to discriminate the target vectors. The OSVM takes as input the re-

duced feature vector s = (s1, . . . , sS)
T, and it use the following Radial Basis

Function (RBF) kernel, that for any s, s′ ∈ RS is defined as:

Ψ(s, s′) =
(
Φ(s) ·Φ(s′)

)
= exp

(
−γ ‖s− s′‖2

)
, (1.15)

where Φ(s) is a feature map and γ is the RBF kernel parameter, which in-

tuitively relates to the radius of influence that each training vector has for

the space transformation. ℓ is the number of training points (feature vectors),

ω and b are the hyperplane parameters in the transformed domain (through

Eq. (1.15)) and ε = (ε1, . . . , εℓ)
T is the vector of slack variables, which are in-

troduced to deal with outliers. Given this, the following quadratic program

is defined to separate the feature vectors in the training set, s1, . . . , sℓ, from

the origin:

min
ω,ε,b

1
2
‖ω‖2 +

1
νℓ

ℓ

∑
j=1

ε j − b (1.16)

subject to (ω ·Φ(sj)) ≥ b− ε j , ε j ≥ 0 , j = 1, . . . , ℓ

ν ∈ (0, 1) is one of the most important parameters and sets an upper bound

on the fraction of outliers and a lower bound on the fraction of Support Vec-

tors (SV) [54]. The decision function for a generic feature vector s is defined

as d(s) ∈ {−1,+1}, is obtained solving Eq. (1.16), and only depends on the

training vectors through the following relations:

d(s) = sgn (h(s)) ,

h(s) =
ℓ

∑
j=1

αjΨ(sj, s)− b . (1.17)

1.4. One-Class Support Vector Machine Training 29

FIG. 1.11: OSVM: F-measure as a function of γ and ν.

Now, αj ≥ 0, ∀ j, and only some of the training vectors have αj > 0. These

are the support vectors associated with the classification problem and are the

only ones who count in the definition of the SVM boundary. h(s) is the score

associated with vector s. It weighs the distance from the SVM boundary, i.e.,

is greater than zero if s resides inside the boundary, zero if it lies on it and

negative otherwise.

Hence, the SVM is trained using a set of ℓ feature vectors from the tar-

get user, obtaining the SVM boundary (and the related decision function)

through Eq. (1.17). After training, the performance of the obtained SVM clas-

sifier is tested considering feature vectors from the positive class C1 (target

user) and the negative one C0 (any other user). Note that the vectors used for

this test were not considered during the SVM training.

As it is customary for binary classification approaches, the two most im-

portant metrics to assess the goodness of a classifier are the precision and the

recall. The precision is the fraction of true positives, i.e., the fraction of pat-

terns identified of the target class that in fact belong to the target user, while

the recall corresponds to the fraction of target patterns that are correctly clas-

sified out of the entire positive class of samples [55]. Often, these two metrics

are combined into their harmonic mean, which is called F-measure and is

used as the single quality parameter.

30 Chapter 1. Human Gait Identification with Inertial Sensors

FIG. 1.12: OSVM: F-measure as a function of the number of retained PCA fea-
tures S. The number of CNN-extracted features is F = 40.

In Fig. 1.11, the F-measure is plotted as a function of the two SVM pa-

rameters γ and ν. As seen from this plot, the area where the classifier’s per-

formance is maximum is quite ample. This is good as it means that even

selecting γ and ν once for all at design stage, the performance of the SVM

classifier is not expected to change much if the signal statistics changes or a

new target user is considered. In other words, this relatively weak depen-

dence on the parameters entails an intrinsic robustness for the classifier. For

the results that follow the parameters have been set to γ = 0.3 and ν = 0.02.

Two last considerations are in order. The first relates to the PCA transfor-

mation Υ(·) and in particular to how many and which principal components

have to be retained for the output feature vectors. In fact, as pointed out

in [56], two options are possible to go from the CNN-extracted feature vector

f to s. The first is to retain the S ≤ F entries of the transformed vector (ex-

pressed in the PCA basis) that correspond to the principal components with

highest variance, whereas a second option is to retain those with the small-

est. Fig. 1.12 shows the F-measure of the OSVM classifier as a function of

S for F = 40 (number of CNN-extracted features). From this plot it can be

observed that picking S < F in general provides better results and also that

considering the principal components with lowest variance provides better

results for this class of problems. This is in accordance with [56].

The last consideration regards the amount of feature vectors belonging

1.5. Sequential Analysis 31

FIG. 1.13: F-measure as a function of the number of walking cycles used to train
the OVSM classifier.

to the target user that should be used for the OSVM training. Note that

this number is related to the walking time required for a new subject to

train his/her personal identification system. To perform this analysis, a fixed

number of cycles were randomly extracted from the whole target dataset and

were used to train the OSVM. The remaining walking cycles were used as the

positive test set. In Fig. 1.13 the F-measure as a function of this number of

cycles is shown. From these results, it follows that increasing the number of

cycles beyond 1, 000 leads to little improvement. This number corresponds to

about 15 minutes of walking activity, distributed among different acquisition

sessions. Multiple sessions are recommended to account for some statistical

variation due to wearing different clothes.

Once all the model’s parameters are defined, the OSVM score can be an-

alyzed. Let pθ(h(s)) = p(h(s) | s ∈ Cθ) be the estimated probability density

function (pdf) of the OSVM score h(s) ∈ R, provided that the walking cycle

belongs to a user of class Cθ with θ ∈ {0, 1}. Empirical pdfs pθ(h(s)) from

the dataset are provided in Fig. 1.14.

1.5 Sequential Analysis

The so far discussed processing pipeline returns a score for each walking cy-

cle. However, as seen in Fig. 1.14, when a score falls near the point where

32 Chapter 1. Human Gait Identification with Inertial Sensors

FIG. 1.14: Empirical pdf of the OSVM scores for class C1 (p1(h(s))) and C0
(p0(h(s))).

the two pdfs intersect, there is a high uncertainty about the identity of the

user who generated it. In IDNet, this indetermination is reduced by jointly

considering the scores from successive walking cycles. Let O = (o1, o2, . . .)

be a sequence of subsequent OSVM scores from the same subject, where

oi = h(si) ∈ R and i = 1, 2, . . . is the walking cycle index. From pre-

vious analysis, oi can be thought of as a random process having probabil-

ity density function pθ(h(si)) = pθ(oi), θ ∈ {0, 1}, and the objective is to

reliably estimate θ from the scores in O. Toward this, it is assumed that

subsequent scores belong to the same user and that they are independent

and identically distributed (i.i.d), i.e., they are independently drawn from

pθ(·), with θ unknown. For the estimation of θ the Wald’s sequential prob-

ability ratio test (SPRT) [57, 58] is used. The two hypotheses are defined

as {H1 : θ = 1}, meaning that the sequence O belongs to the target user

(class C1), and {H0 : θ = 0}, meaning that another user generated it (class

C0). Hence, the most likely hypothesis can be assessed through the SPRT.

That is, by measuring new scores it is possible to decrease the uncertainty

about θ. Considering n samples (o1, o2, . . . , on), the final decision takes on

two values Dn = 0 or Dn = 1, where Dn = j, j ∈ {0, 1} means that hypothe-

sis Hj is accepted and therefore the alternative hypothesis is rejected. Owing

to the previous assumptions (i.i.d. scores, generated by the same subject), for

1.5. Sequential Analysis 33

n scores On = (o1, o2, . . . , on) the joint pdf is:

p̃θ(On) =
n

∏
j=1

pθ(oj), θ ∈ {0, 1} . (1.18)

Defining λj = p1(oj)/p0(oj), the likelihood ratio of the sequenceO truncated

at index n, On, is
p̃1(On)

p̃0(On)
=

n

∏
j=1

p1(oj)

p0(oj)
=

n

∏
j=1

λj , (1.19)

and applying the logarithm, we get:

Λn = log
(

p̃1(On)

p̃0(On)

)
=

n

∑
j=1

log
(
λj

)
. (1.20)

Waiting a further step n+ 1 before making a decision, from Eq. (1.20) the new

log-likelihood Λn+1 is conveniently obtained as Λn+1 = Λn + log(λn+1). The

SPRT test starts from time 1, obtaining one-class OSVM scores o1, o2, . . . for

each successive walking cycle. After n cycles, the cumulative log-likelihood

ratio is Λn = Λn−1 + log(λn), with Λ0 = 0. Two suitable thresholds A and B

are defined and the test continues to the next cycle n + 1 if A < Λn < B, H1

is accepted if Λn ≥ B, whereas H0 is accepted if Λn ≤ A. Moreover, defining

α as the probability of accepting H1 when H0 is true and β that of accepting

H0 when H1 is true, A and B can be approximated as: A = log(β/(1− α))

and B = log((1− β)/α), see [57].

1.5.1 Experimental Results

The motion data from K = 35 subjects was used to train the CNN feature

extractor, with Nc = 40, F = 40 and S = 20. One user out of the remaining

15 was considered as the target user and 14 as the negatives for the final tests.

The following results are obtained through a leave-one-out cross-validation

approach for the sessions of the target user, i.e., out of twelve sessions, eleven

are used for training and one for the final tests. The session that is left out

is rotated and the final results are averaged across all trials. The results of

the multi-stage framework are shown in Fig. 1.15. False positive rates (i.e., a

user is mistakenly recognized as the target) and false negative ones (i.e., the

target is not recognized) are smaller than 0.15% for an appropriate choice of

the SPRT thresholds (α and β). Also, a reliable identification requires fewer

34 Chapter 1. Human Gait Identification with Inertial Sensors

FIG. 1.15: Results of the multi-stage identification framework. False positive
and negative rates are shown in the top graphs, the number of walking cycles
required to make a final decision on the user’s identity is shown in the bottom
ones. Upper shaded areas extend for a full standard deviation from the mean
and include about 80% of the events.

than five walking cycles in 80% of the cases. This means that the framework

is very accurate and at the same time fast. The best results that were obtained

in previous papers lead to error rates ranging from 5 to 15% [13–18]. Never-

theless, a direct comparison with these approaches is very difficult to carry

out due to the different datasets (e.g., number of subjects and walking time),

acquisition settings (e.g., smartphone or sensors location). The reader can re-

fer to Section 1.3.2 for a fair comparison between the single-step classification

framework and classical feature extraction techniques on our dataset.

As for the given assumptions, in light of the small number of cycles re-

quired, it is reasonable to presume that the same subject generates the scores

in O. For the i.i.d. assumption, the decision framework has been extended

to the first-order autoregressive model of [58, Chapter 3, p. 158], which al-

lows tracking the correlation across successive cycles. However, this did not

lead to any appreciable performance improvement and only implied a higher

complexity.

1.6 Discussion

In this chapter a user identification framework for inertial signals acquired

from smartphones has been presented. Various schemes performing man-

ual feature extraction and using the selected features for user classification

have appeared in the recent literature. In sharp contrast with these, IDNet

1.6. Discussion 35

exploits convolutional neural networks, as they allow for an automatic fea-

ture engineering and have excellent generalization capabilities. These deep

neural networks are then used as universal feature extractors to feed classi-

fication techniques, combining them with one-class support vector machines

and a novel multi-stage decision algorithm. With this framework, the neural

network is trained once for all and subsequently utilized for new users. The

one-class classifier is solely trained using motion data from the target subject;

it returns a score weighing the dissimilarity of newly acquired data with re-

spect to that of the target. Subsequent scores are then accumulated through

a multi-stage decision approach. Experimental results show the superiority

of IDNet against prior work, leading to misclassification rates smaller than

0.15%, achieved in fewer than five walking cycles for most of the experi-

ments. Design choices and the optimization of the various processing blocks

were discussed and compared against existing algorithms.

37

Chapter 2

ECG Signal Analysis for Early

Diagnosis of Heart Diseases

Deep learning (DL) has amply demonstrated its knowledge extraction ca-

pabilities in the identification of features for the classification of clinical im-

ages [59]. For example, DL has been shown to possess classification skills on

par with board-certified ophthalmologists for detecting diabetic retinopathy

and macular edema from retinal fundus images [60]. In [61], DL reached a

level of accuracy on a par with dermatologists in the identification and clas-

sification of skin cancers.

While DL has been extensively utilized for image processing, the same

does not hold true for biomedical time series, for which the use of these tech-

niques is still mostly unexplored. With this study, the purpose is to fill this

gap by carrying out a comprehensive analysis among advanced represen-

tation learning methods for the classification of short one-dimensional (1D)

signals. Since 1D signal analysis bears relevant differences with respect to

image processing, the techniques have to be adapted to this domain.

The main focus of this study is on an important clinical problem, the de-

tection of atrial fibrillation (AF), which is the most common serious abnormal

heart rhythm, affecting about 34 million people in the world (between 2 and

3% of the population in Europe and North America) [62]. AF is characterized

by rapid and irregular beating of the atria, which is often asymptomatic, so it

may not be diagnosed and the affected subjects may be unaware of this con-

dition. Since approximately 10 to 20% of ischemic strokes are associated with

AF first diagnosed at the time of stroke, the early detection of asymptomatic

AF is of crucial importance, as it can help prevent strokes by instituting ap-

propriate preventive anticoagulation [63].

The detection of AF often requires: 1) long-term monitoring, up to a few

38 Chapter 2. ECG Signal Analysis for Early Diagnosis of Heart Diseases

weeks, since a subject may be affected by paroxysmal AF and experience an

AF event only occasionally; and 2) accurate electrocardiography (ECG) mon-

itoring, since an AF event may be easily confounded with noise, so accuracy

in the ECG monitoring is of great importance. These two conditions make

the detection of AF a relatively time-intensive and expensive procedure us-

ing current methods.

On the other hand, wireless and wearable devices make it easier to mon-

itor ECG for long time spans, although, with current technology, the quality

of the signals collected in free-living conditions is not always good enough to

permit an accurate detection of AF events. In order to test the accuracy of AF

detection algorithms with short and noisy ECG signals, PhysioNet launched

the Computing in Cardiology Challenge 2017 [64], making a large dataset of

labeled ECG records publicly available. Several approaches have been pro-

posed to detect AF events and other arrhythmias using this dataset. Among

the most successful studies, [65] proposes a set of high-level and clinically

meaningful features to train two different classifiers: one evaluates the trace

globally, and the other analyzes per-beat features as a sequence. The two clas-

sifiers are then combined for the final evaluation [65]. In [66], DL features are

also combined with expert features to train a gradient boosting classifier. In

[67], the authors split the multi-class classification problem into hierarchical

binary classifiers based on several manual features to improve the classifica-

tion performance. In [68], a subset of significant features have been selected

from a very large set of hand-crafted features, and used to train a random

forest classifier for the final task.

A substantial knowledge on the signals and clinical expertise is often re-

quired to achieve a good performance, including morphological information,

time-frequency representation and statistical analysis. Although some DL

approaches have been proposed in the past [69, 70], an exhaustive study on

pure representation learning techniques, and the comparison among their

modern implementations and algorithms based on expert features is still

missing. This work is an attempt to fill this gap, by adapting the most suc-

cessfully DL techniques to detect AF from the data collected by wireless sen-

sors, comparing different DL solutions against standard approaches that ex-

ploit manually engineered features.

The study starts with an overview of state of the art signal processing

techniques, that are used as a benchmark for comparison. These methods are

Chapter 2. ECG Signal Analysis for Early Diagnosis of Heart Diseases 39

based on the selection of a set of expert features, that are suggested by clinical

studies and connected to the rhythm / morphology of the ECG, and on the

automatic detection of such features in the signal [71–75]. These approaches,

referred in the following to as feature engineering, require a specific domain

knowledge to transform raw (unprocessed) data into a suitable representa-

tion that is able to generalize on unseen data, and used to train a classifier. A

detailed review of past research is provided in Section 2.4.1.

As a promising alternative, in the present study the use of DL for the

detection of AF events is investigated, exploiting advanced convolutional

neural network (CNN) architectures [47, 76–79]. CNNs have been widely

investigated in the computer vision field, but an in-depth analysis targeted

at biomedical 1D signal processing is still missing. Here, effective CNN ar-

chitectures for ECG analysis are investigated, focusing on AF detection. No-

tably, with DL techniques the features are automatically identified, without

requiring any prior expert knowledge.

Some of the main advances introduced by this study are summarized

next.

• A uniform mathematical framework is reviewed and provided for the

most common feature engineering approaches used in the literature for

ECG signal analysis.

• Five different DL methods are proposed, originally used within the im-

age processing field, providing insightful implementation details on

the exploitation of such models to analyze short intervals (with vari-

able length) of 1D ECG signals.

• The five DL methods are used to discriminate between short ECG sig-

nals corresponding to normal sinus rhythm, atrial fibrillation, other ar-

rhythmias and noise; comparing their performance in terms of detec-

tion accuracy (precision and recall), complexity and training time.

• The capability of representation learning techniques to extract mean-

ingful information directly from raw data is quantified, showing the

benefits against standard methods based on manually engineered (ex-

pert) features.

This chapter is structured as follows. The dataset is presented in sec-

tion 2.1 (Section 2.1.1), along with the pre-processing to remove noise and

40 Chapter 2. ECG Signal Analysis for Early Diagnosis of Heart Diseases

artifacts (Section 2.1.2), the state of the art approach using expert features

(Section 2.1.3), a novel approach involving DL techniques (Section 2.1.4) and

the training method for the considered classifiers (Sections 2.1.5 and 2.1.6).

The performance metrics are defined in Section 2.2, whereas the numerical

results are shown in Section 2.3. In Section 2.4, the literature on AF detec-

tion is analyzed, including a discussion on the value and the potential of

DL-based feature extraction techniques.

2.1 Methods

The proposed analysis of ECG signals is organized into three phases: 1) pre-

processing of the signal, 2) feature extraction, and 3) classification. Next,

these phases are described and two approaches for feature extraction are

proposed: 2.a) a classical feature engineering approach, and 2.b) a novel rep-

resentation learning approach. For both approaches, several solutions are

investigated and compared.

2.1.1 Single-lead ECG dataset

The data used in this study has been made publicly available as part of the

2017 PhysioNet and Computing in Cardiology Challenge. All the traces have

been acquired using AliveCor’s single-channel ECG wireless sensors (gener-

ations one to three), which can record short ECG signals by touching two

electrodes with the fingertips. To use such device, the subject should hold

one electrode in each hand, creating a single-lead equivalent ECG. Some of

the ECGs were inverted, since the device does not have a preferred orienta-

tion [64].

This dataset is divided into a public set with 8, 528 ECG records and a hid-

den set of 3, 628 records (not publicly available), sampled at fs = 300 Hz with

different duration (from 9 to 61 seconds). Each record has been classified us-

ing ten different algorithms and a set of at least three experts1 into one of

these four classes: normal sinus rhythm (5, 154 samples), AF (771 samples),

other type of arrhythmias (2, 557 samples) and noisy data (46 samples) 2. Ex-

ample ECG traces from these categories are shown in Fig. 2.1.

1The details of the labeling procedure can be found in [64].
2The number of samples is referred to the public dataset only. The hidden set was not

released, and it was used by us only once to test the algorithm.

2.1. Methods 41

FIG. 2.1: Some examples of signals belonging to the four classes of the dataset:
normal sinus rhythm, atrial fibrillation, other arrhythmias and noise.

2.1.2 Pre-processing

The ECG signal intervals have different lengths and they are affected by

noise and artifacts. Before the feature extraction phase, they need to be

pre-processed to improve the performance of the classifier. Three operations

should be considered: 1) a baseline wander removal, 2) an element-wise nor-

malization, and 3) a random cropping.

Baseline wander removal

The baseline wander is a low frequency artifact, present in most ECG traces,

which can be the result of movement and breathing. These fluctuations may

be larger than the useful signal, particularly in free-living conditions. Several

approaches have been proposed, e.g., simple Butterworth filter [80], spline

approximation [81], and moving median subtraction [82]. In this study, a

high-pass filter based on wavelet transformation [83] is used, as it excels in

the preservation of the signal’s morphological traits [84]. First, the acquired

ECG signal is decomposed using a discrete wavelet transform (DWT) at a

42 Chapter 2. ECG Signal Analysis for Early Diagnosis of Heart Diseases

predefined decomposition level L. Then, the approximation coefficients as-

sociated with the last level L (corresponding to the lowest frequency) are set

to zero. Finally, the inverse DWT is used to obtain the filtered signal. The

decomposition level L corresponds to a cut-off frequency fc, obtained as

L = log2(fs/ fc)− 1 , (2.1)

where fs is the sampling frequency. The frequency of the baseline wander

for ECG signals is usually between 0.1 Hz (in the absence of movement) and

0.65 Hz (during a stress test) [83]. In this study, fc = 0.3 Hz is considered,

which leads to L = 9 for fs = 300 Hz. The wavelet used is Daubechies 9.

Element-wise normalization

The ECG signal is usually affected by many sources of noise (electrode con-

tact noise, baseline drift, motion artifacts, instrumentation noise, power line

and electromyography interference), and other unpredictable factors due to

the subject’s position or the electrodes’ coupling. Amplitude normalization

typically consists of a linear rescaling leading to unbiased unit norm signals.

Since this normalization is independently applied to each trace, it is referred

to as element-wise normalization, to distinguish it from the batch normalization

used in the DL architectures.

Signal cropping

All the architectures considered in this study are optimized for a fixed size

input. If the original ECG signal is longer that 30 seconds, it is cropped at ran-

dom to an interval of 30 seconds, while if the original ECG signal is shorter,

the interval is padded with zeros to match the desired input dimension.

2.1.3 Feature extraction: feature engineering approach

In this section, the process to extract the expert features from the ECG signal

is detailed, as summarized in Fig. 2.2.

RR interval-based features

The first phase is the detection of the R-peaks, corresponding to the high-

est electrical activity during the ventricular depolarization. A method based

2.1. Methods 43

FIG. 2.2: Diagram of the expert feature based model.

on two moving average filters has been used, leading to high accuracy re-

sults with a low computational effort [85]. The output is a sequence of time

instants representing the R-peaks location, as shown in Fig. 2.3.

The following heart rate variability features have been considered:

• AHR - the average heart rate, obtained from the mean time between

two consecutive R-peaks (RR interval);

• SDNN - the standard deviation of the RR intervals;

• RMSSD - the root mean square of the differences between adjacent RR

intervals (SD);

• SDSD - the standard deviation of SD;

• PNN50 - the fraction of successive RR intervals that differ by more than

50 ms;

• PNN20 - the fraction of successive RR intervals that differ by more than

20 ms.

Signal averaged ECG features

The signal averaged ECG (SAECG) is used to cope with the noise present in

single-lead ECG recordings, a denoising method that has already shown its

effectiveness in ECG signal processing [86]. Given an ECG signal x with N

samples, the ECG trace x = [x(1), . . . , x(N)] ∈ RN is divided into R intervals,

where each interval contains a single QRS complex. Hence, the intervals are

aligned (based on the location of the R peaks) and averaged to obtain a single

characteristic ECG shape. The algorithm entails the following steps.

44 Chapter 2. ECG Signal Analysis for Early Diagnosis of Heart Diseases

FIG. 2.3: Example ECG trace from the dataset. The vertical red lines represent
the detected R-peaks.

1. The R-peak sequence r = [ri, . . . , rR], r ∈ NR should be identified,

where ri is the index of the ith peak in x, and R is the total number of

peaks.

2. A set of R intervalsQ = {q1, . . . , qR} is extracted from the ECG trace x,

a single interval per peak in r. The samples in the i-th interval are:

qi = [q(ri −M), . . . , q(ri + M)] , i = 1, . . . , R , (2.2)

where qi has size 2M + 1, is centered around the i-th ECG beat, and

extends M samples to the left and right sides of it. M is a predefined

beat length, that is here set to M = 0.7× RR, i.e., 70% of the average RR

interval.

3. The Pearson correlation coefficient is evaluated for each pair of ele-

ments in set Q, obtaining a correlation matrix C = [C(i, j)].

4. The interval qi∗ with the highest average correlation among all the other

intervals in Q is selected as:

i∗ = arg max
i

1
R− 1

R

∑
j=1,j 6=i

C(i, j) . (2.3)

qi∗ is then added to a new (initially empty) set S , and removed fromQ.

2.1. Methods 45

5. The representative interval s = [s(1), . . . , s(2M + 1)], s ∈ R2M+1, is ob-

tained by averaging all the intervals in set S .

6. A correlation vector cs is evaluated between s and all the elements in

set Q. Hence, the interval qi∗ ∈ Q with the highest correlation with s is

selected.

7. If the correlation between qi∗ and cs is greater than a predefined thresh-

old γ, qi∗ is added to the set S and removed fromQ, and the procedure

is repeated from point 5).

The outputs of this method are the set S = {s1, . . . , sRS}, which contains

all the RS = |S| beats (RS ≤ R) that are considered for the evaluation, and

the representative beat s. A correlation threshold γ = 0.7 has been chosen

to exclude artifacts and false positive beats, while considering intervals with

reasonable morphological differences.

Two features are extracted during this process:

• AC - the average correlation, evaluated over all pair of elements in set

S .

• FoO - the fraction of intervals that were originally in x, but that are not

included in set S , which are considered as outliers.

Following this, a wavelet-based ECG delineator is implemented to iden-

tify the start and end of the P-wave (Ps and Pe, respectively), the T-wave (Ts

and Te), and the QRS complex (QRSs and QRSe), see Fig. 2.4.

The wavelet transform provides a description of the signal in the time-

frequency domain, allowing the analysis of the temporal features of a signal

at different resolutions [87]. It can be observed that carrying out a wavelet-

based analysis on the raw signal sometimes produces inaccurate localization

of the points of interest (start and end points of ECG waves). The SAECG

technique allows for an increased accuracy and the use of the representative

signal s reduces the effect of sensor noise and artifacts. As shown in Fig. 2.4,

by analyzing the signal s, we can determine:

• PRi = QRSs − Ps, the period between the beginning of atrial (P-wave

onset) and ventricular depolarization (QRS complex onset), which rep-

resents the time needed by the action potential to propagate from the

sinoatrial (SN) node to the atrioventricular (AV) node.

46 Chapter 2. ECG Signal Analysis for Early Diagnosis of Heart Diseases

FIG. 2.4: SAECG example where the points extracted by the ECG delineator are
indicated in the figure and the shaded area represents the interquartile range of
the aligned beats.

• PRs = QRSs − Pe, the time from the end of the atrial depolarization

(end of the P-wave) and the beginning of the ventricular depolarization

(QRS onset). During this period, no electrical activity is measured in

normal conditions.

• QRS = QRSe−QRSs, the QRS complex duration, which represents the

time for a complete ventricular depolarization.

• QT = Te − QRSs, the time from the beginning of the QRS complex to

the end of the T-wave. The T-wave is related to the ventricular repolar-

ization, the duration of which depends on the cells resistivity. If some

cells present a higher resistivity than normal, for example due to previ-

ous ischemic episodes, a prolonged QT interval would be measured.

• ST = Ts−QRSe, the period during which the ventricles are completely

depolarized (end of the QRS complex, also known as J-point), waiting

for the subsequent repolarization, which starts with the T-wave.

Furthermore, the amplitude of the P and T waves are also included in the

feature set.

The main issue with the evaluation of the SAECG is the loss of infor-

mation on inter-beat morphology variability, which represents an important

factor to consider for arrhythmia detection. To overcome this limitation, a set

S is utilized to evaluate an amplitude dispersion index (ADI) [88], both for

2.1. Methods 47

HR analysis Delineation SAECG P-wave T-wave

AHR PRi AC amplitude amplitude
SDNN PRs FoO ADImax ADImax
RMSSD QRS ADIavg ADIavg
SDSD QT
PNN50 ST
PNN20

TABLE 2.1: Set of features for the feature engineering approach.

the P-wave and the T-wave. For the P-wave, the SAECG signal s is first con-

sidered and the set of NP indexes corresponding to the P-wave are selected,

where NP = Pe − Ps is the total number of samples in the P-wave. Thus, a

new set of vectors is built, P = {p1, . . . , pRS}, with the same cardinality of

S , whose elements only contain P-wave samples,

pi = [si(Ps), si(Ps + 1), . . . , si(Pe)] , i = 1, . . . , RS . (2.4)

That is, pi is a masked version of si, which only contains the portion of si

between the start (Ps) and end (Pe) indexes of the P-wave. Then, a dispersion

measure for each pi is evaluated as

AD(j) = iqr
i
(pi(j)), j = 1, . . . , NP , (2.5)

where iqr(·) is the inter-quartile range operator. Finally, all the RS elements

in P are considered to calculate the maximum and the average value of the

dispersion, i.e.,

ADImax = max
j

AD(j), j = 1, . . . , NP , (2.6)

ADIavg =
1

NP
∑

j

AD(j), j = 1, . . . , NP . (2.7)

A similar procedure is used to calculate the above measures for the T-wave.

In the final feature vector, ADImax and ADIavg are included for both the

P-wave and the T-wave.

The full set of features considered for the feature engineering approach is

summarized in Tab. 2.1.

48 Chapter 2. ECG Signal Analysis for Early Diagnosis of Heart Diseases

Classifier

A multilayer perceptron (MLP) neural network has been trained to compare

the discriminative power of expert features against those learned by the deep

neural network architectures of the following sections. The considered MLP

has 2 fully connected hidden layers with 256 neurons each, and rectified lin-

ear unit (ReLU) is used as activation function [89].

2.1.4 Feature Extraction: Deep-learning architectures

Most of the existing convolutional neural networks implementations are de-

signed to cope with bi-dimensional data (images). Two main workflows can

be identified to adapt these implementations to the analysis of single-lead

(1D) ECG signals.

W1) The data can be mapped into a time-frequency representation and then

treated as a bi-dimensional signal, as usually done with speech anal-

ysis. The choice of this input transformation highly impacts the final

performance.

W2) All the operations can be performed in the original one-dimensional

space, giving more flexibility to the network, at the price of a more dif-

ficult training.

In this study, W2 is used in this respect, since the ECG analysis requires a

fine temporal resolution, and time-frequency representations typically entail

a loss in that domain. Furthermore, the data dimensionality would make

the training intractable using (W1) with a high time resolution, and a heavy

redesign would be required, which is left to future investigations.

In the following, I delve into the details on the proposed DL architectures,

which are shown in Fig. 2.5.

Alexnet

The architecture in Fig. 2.5-(a) was the first deep convolutional network to be

successfully trained on a very large dataset (several millions of images) for

the classification of a thousand different classes [47]. It consists of five convo-

lutional layers, followed by two fully-connected ones, where the non-linear

activation functions at the output of each layer are ReLU. Max-pooling is

2.1. Methods 49

FIG. 2.5: Network schemes for all the considered architectures: AlexNet (a),
VGG (b), Inception (c), ResNet (d) and MobileNet (e). The notation used is de-
tailed in the legend on the right. Refer to Fig. 2.6 for the implementation of the
Inception modules.

FIG. 2.6: Basic modules used by the Inception network.

used as a dimensionality reduction method and to increase the spatial in-

variance of features. Dropout is applied at the output of the fully-connected

layers during training to mitigate overfitting (regularization technique). It

simply drops the contribution of each neuron of the previous layer, with a

given probability [90]. The original implementation makes use of 11×11,

5×5 and 3×3 convolution kernels, which have been respectively substituted

by 1×80, 1×48 and 1×16 in the mono-dimensional version. After an ex-

ploratory phase, it has been found that a mono-dimensional kernel of size

1×16 is a good compromise between number of parameters and computa-

tional power, and it is adopted here to replace the bi-dimensional 3×3 kernel,

used in the vast majority of the modern convolutional network implementa-

tions.

In Fig. 2.5-(a), it can be observed that the convolutional kernel size K de-

creases layer after layer. At the same time, the number of filters increases,

50 Chapter 2. ECG Signal Analysis for Early Diagnosis of Heart Diseases

and the data dimensionality is consistently reduced to obtain a more abstract

and compact representation of the data after each layer.

Visual Geometry Group (VGG)

The architecture in Fig. 2.5-(b) increases the depth of the network while keep-

ing the same basic structure of the previous model. In the proposed imple-

mentation, a total of 13 convolutional layers with constant kernel size K are

considered. It has been shown that stacking several smaller convolutions the

receptive field considerably increases with the depth, leading to better per-

formance than with a single large convolution [76]. The drawback is a signif-

icant increase in the complexity (i.e., in the number of network parameters,

the weights), with a higher risk of overfitting. Substantial dimensionality

reduction is performed using max pooling.

Inception

The architecture in Fig. 2.5-(c) is designed to deal with two of the issues en-

countered with deeper networks. (I1) Overfitting, due to a high number of

parameters. (I2) Higher complexity, since the computational requirements

increase quadratically with the number of filters [91]. It has been observed

that part of these computations may not be required and this leads to sparse

parameter matrices (with many weights either zero or close to zero). Un-

fortunately, the numerical computation on sparse data is inefficient. The In-

ception network is an attempt to approximate sparse convolutions through

more efficient and dense blocks. In particular, the computation is split into

different parts, each one with its specific purpose. In this implementation,

four parallel branches are considered for each layer (Fig. 2.6), the outputs

of which are concatenated to form the input of the next layer, as detailed in

Fig. 2.5. A key task is performed by 1×1 convolutions, which are used to ef-

ficiently map the local relations among the filters onto a reduced space. This

procedure can be intuitively represented as a compression, and the key point

is to approximate sparse operations in the original space with dense opera-

tions in the compressed space. Each of the four branches performs a different

computation. In the inception module (Fig. 2.6, from left to right), the network

entails an average pooling, to increase the spatial invariance, a pure 1×1 con-

volution, a single and a two-layer convolution to process local correlations.

Even though a 1×1 convolution is used in each branch, it is worth noting that,

2.1. Methods 51

after the final concatenation, the input and the output dimensionality are ex-

actly matched, having chosen appropriately the parameters of the inception

modules (Fig. 2.5). The dimensionality reduction task is indeed carried out

by a separate reduction module (Fig. 2.6), which reduces the input dimension

and at the same time increases the number of filters, following the typical

behavior of a deep network. This implementation is based on [78]. Finally,

an average pooling along the feature maps before the last classification block

is included, as it has been shown to yield better results [92].

ResNet

The architecture in Fig. 2.5-(d) is designed to address the following issues

of very deep models: (I1) The gradient becames exponentially small with

the network (backpropagation) depth, preventing the parameters to be effec-

tively updated (vanishing gradients [93]). (I2) The model has too many param-

eters, so the network becomes harder to train, leading to sub-optimal results

or lack of convergence (degradation problem). Residual layers have been in-

troduced to mitigate these problems by adding an identity mapping on each

layer. In this way, instead of learning the direct relation between the input

and the output, these modules learn the residual representation, hence the

name. If a layer, for any reason, is not able to be effectively trained, the iden-

tity mapping allows for the propagation of the previously processed infor-

mation, making it possible to optimize extremely deep architectures without

suffering from the degradation problem. Furthermore, these modules also

address the issue of vanishing gradients. The presence of shortcut connections

allows the gradients to easily propagate back through the network. This im-

plementation is inspired by [94], where the authors obtained promising re-

sults for ECG analysis. The number of filters (parameter M in Fig. 2.5-(d)) is

doubled every 4 layers, and the signal dimensionality is halved every 2. A

1×1 convolution is optionally used among the shortcut connection to match

the input and output dimensions, if necessary.

MobileNet

Two final issues are addressed by the architecture in Fig. 2.5-(e). (I1) The large

number of parameters, and (I2) the high computation demand. MobileNet

exploits depthwise separable convolutions to address them [79]. Let consider a

standard convolution with FI input channels, FO output channels, and K total

52 Chapter 2. ECG Signal Analysis for Early Diagnosis of Heart Diseases

kernel parameters. The total number of parameters required for this opera-

tion is FI × FO × K. MobileNet splits this computation into two steps. (S1)

A depthwise convolution is applied to the input data, which performs a spatial

convolution independently over each channel, entailing FI × K weights. (S2)

A pointwise convolution, i.e., a 1×1 convolution, is used to project the output

into the new channel space, considering also the relations among the chan-

nels, with FI × FO weights. The total number of parameters is FI(K + FO),

with a reduction in computation of a factor 1/FO + 1/L, where L represents

the dimensionality of the input feature maps [79]. As for the residual net-

work implementation, no pooling is used between the layers; instead, a stride

operation is used to reduce the dimensionality, which further decreases the

computational requirements [95].

2.1.5 Classification

A final classification module is concatenated to each of the above described

neural network architectures. This block consists of a linear fully-connected

layer with C neurons, where C corresponds to the number of classes. A

softmax block is applied to the output of this linear layer: since the classes are

mutually exclusive, the softmax activations return a C-dimensional output

vector y = (y1, y2, . . . , yC), whose element yj ∈ [0, 1] represents the estimated

probability that the input ECG sample belongs to class j, with j = 1, 2, . . . , C

and ∑
C
j=1 yj = 1 (stochastic vector).

2.1.6 Training procedure

The training procedure described in this section is adopted for the MLP with

expert-based features, and for the classification approach based on represen-

tation learning through deep networks. The ECG signal classifier is obtained

concatenating the following blocks: 1) expert features: the MLP is concate-

nated with the classification block of Section 2.1.5, 2) deep networks: each of

the CNN architectures of Fig. 2.5 is concatenated with the classification block

of Section 2.1.5. Learning, in both cases, consists of training the network pa-

rameters (weights) of the classifiers through gradient descent.

Specifically, a stochastic gradient descent optimization method with Nes-

terov accelerated gradient [96] is used to minimize a weighted cross-entropy

loss function, iteratively updating the weight vector w of the network. Given

2.2. Performance metrics and statistical analysis 53

an input ECG sequence x, the classifier acts as a function mapping x into a

stochastic vector y(x, w) = (y1, y2, . . . , yC), whose j-th entry yj(x, w) rep-

resents the estimated probability that the input x belongs to class j, with

j = 1, . . . , C, where C is the number of classes. Since the dataset is labeled,

each input example x has an associated (ground truth) class label c, which

has been assessed as described in Sec. 2.1.1. The loss function for a given

generic sample x of class c, is:

f (x, c, w) = αc

[
− log

(
eyc(x,w)

∑j eyj(x,w)

)]
, (2.8)

where αc is the class weight, which is used to cope with imbalanced datasets

and is here computed as the fraction of samples of class c over the total num-

ber of samples in the training set.

If X is the set of all training examples, let’s define the batch set as B ⊂ X ,

with cardinality B = |B|. The optimization method minimizes a further loss

function, obtained averaging f (x, c, w) over the batch set B, and adding a

weight regularization term ‖w‖2:

F(B, w) =
1
B ∑

(x,c)∈B

f (x, c, w) + β‖w‖2 , (2.9)

where the regularization parameter β is implemented as a weight decay dur-

ing the updates.

Batch normalization [97] has been implemented after each convolution

and before the ReLU activation function, as it increases the training stability

and also acts as a regularizer.

2.2 Performance metrics and statistical analysis

For all the learning procedures, the public available dataset of 8, 528 ECG

records has been uniquely used, while no access is allowed to the hidden test

set.

A 5-fold cross validation approach has been used for the presented nu-

merical results: the public dataset has been randomly split into 5 subsets,

maintaining for each the original distribution between the classes. One sub-

set is used as a test set (subset T), while the remaining ones constitute the

training and validation subsets.

54 Chapter 2. ECG Signal Analysis for Early Diagnosis of Heart Diseases

Each test sample x ∈ T is associated with a ground truth label c(x) ∈

C = {CS, CA, CO, CN}, corresponding to normal sinus rhythm, AF, other ar-

rhythmias, or noise, respectively. The output of the classifier is another label

cp(x) ∈ C, which represents the predicted class.

Precision and recall have been considered as the performance metrics.

The precision estimates the fraction of examples correctly predicted as a spe-

cific class cp (true positives) among all the examples predicted as cp, and it

can be interpreted as the probability that a new example with predicted class

cp, actually belongs to that class. It is defined as

precision(ρ) =
∑x∈T 1(c(x) = ρ) · 1(cp(x) = ρ)

∑x∈T 1(cp(x) = ρ)
, (2.10)

where ρ ∈ {CS, CA, CO, CN}, and 1(·) is the indicator function, with 1(Z) = 1

if Z is true, and 1(Z) = 0 otherwise.

The recall estimates the fraction of samples belonging to a specific class

that are correctly classified (sensitivity). It can be seen as the probability that

a new example of class c will be correctly classified. It is defined as:

recall(ρ) =
∑x∈T 1(c(x) = ρ) · 1(cp(x) = ρ)

∑x∈T 1(c(x) = ρ)
. (2.11)

The F1-measure combines precision and recall through an harmonic mean,

providing a good way to compare different algorithms:

F1(ρ) =
2 ∑x∈T 1(c(x) = ρ) · 1(cp(x) = ρ)

∑x∈T

[
1(cp(x) = ρ) + 1(c(x) = ρ)

] . (2.12)

In order to have a global performance assessment metric, a score has

been also defined, which is evaluated by averaging the given metric m ∈

{precision, recall, F1} among the normal sinus rhythm, AF and other ar-

rhythmias classes, i.e.,

score(m) =
∑ρ∈{S ,A,O}m(ρ)

3
. (2.13)

Noisy signals have been excluded for two reasons: (R1) the number of noisy

examples are extremely limited (only 46 samples to divide among training,

validation and test set), and (R2) noise detection can be performed as a sepa-

rated task with a dedicated algorithm, which is out of the scope of this study.

2.3. Results 55

2.3 Results

The validation subset is used to compare the performance of the classification

for the five DL architectures and the MLP classifier with expert features. Each

neural network has been trained for a total of 200 epochs, with a step-based

learning rate annealing policy, starting from λ = 0.1, and reducing this value

by a factor of 3 every 25 epochs3.

Precision and recall for each class and for each method are shown in

Fig. 2.7. The performance of the feature engineering approach is significantly

lower than that of all the considered DL architectures. Focusing on the AF

class, a lower precision and a higher recall can be observed, corresponding

to a higher misclassification rate. These findings cannot be generalized, as

new expert features can be derived and added to the MLP framework, but

they provide an idea of the advantages of DL architectures. In particular,

they suggest that predefined features may not be appropriate to extract infor-

mation in a realistic environment and in free-living conditions, i.e., in the

presence of time-varying noise and artifacts due to the movement of the sen-

sor. Data-driven techniques, instead, excel in such complex scenarios, where

the diversity of the acquired signals could heavily affect the classification

performance, being able to automatically learn the best way to fit the train-

ing data.

The performance of the classifiers is influenced by the amount of data

available for each class, due to the fact that the neural networks effectiveness

depend on the training data dimensionality. As expected, considering the

limited data available, the learned features are not able to accurately classify

noisy signals. Some improvements may be obtained using data augmenta-

tion techniques, and these improvements are left for future work.

The score values for precision, recall and F1-measure are reported in Fig. 2.8.

From this figure, it can be observed that the classification performance in-

creases using deeper architectures, as noticed by comparing AlexNet with

VGG, or with more advanced structures, like Inception and ResNet. On the

downside, deeper architectures entail a higher number of parameters and

an increase in computational complexity, as highlighted in Fig. 2.9, where

3In a preliminary analysis it has been determined that starting with a high learning rate
drives to better performance in this case. Gradient clipping has been applied to have a more
stable training.

56 Chapter 2. ECG Signal Analysis for Early Diagnosis of Heart Diseases

FIG. 2.7: Validation precision (top) and recall (bottom) achieved by all the mod-
els considered in this study (Ale.=Alexnet, VGG, Inc.=Inception, RN=ResNet,
MN=MobileNet, MNN=MobileNet with element-wise input normalization,
EF=Expert Features). All the obtained cross-validation values lie between the
lines on the top of the bars; the bars represent the average value among the
runs.

2.3. Results 57

FIG. 2.8: Validation score achieved by all the models considered in this
study (Ale.=Alexnet, VGG, Inc.=Inception, RN=ResNet, MN=MobileNet,
MNN=MobileNet with element-wise input normalization, EF=Expert Features).
All the obtained cross-validation values lie between the lines on the top of the
bars; the bars represent the average value among the runs.

the number of parameters and the average training time for each epoch are

shown.

A remarkable result is achieved by depth-wise separable convolutions in

MobileNet, which performs on par with Inception in terms of accuracy, while

leading to substantial reductions in training time and number of parameters,

as shown in Fig. 2.9. For this architecture, the effects of element-wise nor-

malizations (described in Sec. 2.1.2) are negligible, as shown in Fig. 2.7 and

Fig. 2.8.

Fig. 2.10 shows the score value for the F1-measure (on the validation set)

as a function of the number of epochs during the deep network training.

These values can be used to quantify the effectiveness of each architecture in

extracting relevant information. The VGG network is slower in converging to

its optimal weight vector, due to the very high number of parameters, while

ResNet performs significantly better in terms of convergence time.

To summarize, in Fig. 2.11 the five DL techniques are compared in terms

of score, data efficiency (average score after 20 epochs of training), mem-

ory efficiency (number of parameters) and computational efficiency (training

time). The results are normalized such that for each dimension the worst

technique has a point in the inner circle, while the best one has a point in

58 Chapter 2. ECG Signal Analysis for Early Diagnosis of Heart Diseases

FIG. 2.9: Number of parameters and training time for all the deep learn-
ing architectures considered in this study (Ale.=Alexnet, VGG, Inc.=Inception,
RN=ResNet, MN=MobileNet, MNN=MobileNet with element-wise input nor-
malization, EF=Expert Features).

FIG. 2.10: Validation score, averaged among the classes, during the training.
The shaded area represents the variance considering all the cross-validation
runs.

the outer circle. The AlexNet implementation has the lowest computational

complexity, but it does not perform well along the other dimensions. Mo-

bileNet performs better than the other techniques in terms of score, number

of parameters and data efficiency, while in terms of computational complex-

ity it is only second to AlexNet (although not by much). According to the

2.3. Results 59

FIG. 2.11: Overall graphical comparison among the DL architectures.

discussed results, MobileNet has been chosen as the representative DL archi-

tecture for the final testing phase.

First, the same test as the other participants in the Physionet Comput-

ing in Cardiology challenge has been performed. The algorithm has been

first trained using the entire public dataset, following the same guidelines

described in Sec. 2.1. Then, its performance has been tested on the hid-

den dataset (see Sec. 2.1.1 for more details) considering the score defined in

Eq. (2.13). The proposed method achieves a score(F1) = 0.80, very close to

the best algorithm of the challenge, which performs a score(F1) = 0.83. The

limited availability of training data negatively affects representation learn-

ing, as pointed out in [66], where the coexistence of expert features along

with DL representations improves the performance of this specific task. By

achieving a performance very close to the best result in the Physionet chal-

lenge, it has been shown that an approach purely based on representation

learning can reach the performance of approaches that also exploit expert

based features, thus requiring preliminary clinical expertise. This is an en-

couraging result especially for the analysis of less investigated physiological

signals, for which a limited number of expert based features have been rec-

ognized.

Finally, the deep architecture based on MobileNet has been compared to

the expert-based feature approach. In this last comparison, due to the un-

availability of the hidden test set, the cross-validation approach is used to

60 Chapter 2. ECG Signal Analysis for Early Diagnosis of Heart Diseases

FIG. 2.12: Final performance achieved by the DL (MobileNet) and expert feature
approaches. On the top figure the F1-measure for each class is presented. On the
bottom, the average precision, recall and F1 scores are shown.

perform the test on all the samples in the public dataset, leading to a greater

reliability of the results, while keeping a strict separation between training

and testing samples. The models are trained considering a higher number

of epochs (2, 000), and with a more relaxed learning rate annealing (which is

halved every 150 epochs).

The performance of MobileNet and of the feature engineering approach

is shown in Fig. 2.12, where the F1-measure for each class and the corre-

sponding average score are shown. Once again, the selected DL architecture

(MobileNet) provides a significant improvement over both metrics.

Ultimately, let’s focus on the simpler problem of AF detection, so as to

reduce the problem to a binary classification task, where the goal is to deter-

mine whether the input ECG signal x presents AF or not. Under this assump-

tion, each sample in the testing set is classified as AF if the corresponding es-

timated probability is greater than or equal to a threshold τ. By varying τ, a

distinct value pairs for precision and recall can be measured. This procedure

generates a curve in a precision-recall plane (PRC), shown in Fig. 2.13 for

both the deep network and the expert features based classifier. The isocurves

for three example values of the F1-measure are also shown in the figure for

2.4. Discussion 61

FIG. 2.13: Precision-recall curve (aFib class) for the final deep network imple-
mentation and the expert feature approach. The isocurves for some levels of
F1-measure are also shown for increased readability.

increased readability. With this graph, it is possible to choose an operational

point for the classifiers, based on the desired trade-off between precision and

recall.

2.4 Discussion

AF is the most common significant heart arrhythmia in the population and is

associated with a 5-fold increase in the risk of a stroke and with a 2-fold risk

of mortality. But it is also especially well suited for screening, as there are

preventative therapies available that have been shown to decrease the risk of

these complications by 65 percent. In addition, a gold-standard for diagnosis

exists in the form of an ECG. While in the past, the performance of an ECG

was limited to the patient care setting, today there is an ever-growing number

of options available for an individual to obtain their own ECG, making the

need for precise automated detection of AF from individually-obtained ECGs

uniquely important.

62 Chapter 2. ECG Signal Analysis for Early Diagnosis of Heart Diseases

2.4.1 AF detection: Feature engineering approach

In a clinical environment, a 12-lead ECG is commonly used to observe AF

and other arrhythmias for short intervals. A single-lead ECG sensor can de-

tect AF over a longer period, monitoring the subject for, currently, up to two

weeks in free-living conditions. The amount of data produced is substantial

and can not be analyzed by an expert, so several techniques for an automated

detection have been developed. The first efforts for automatic arrhythmia de-

tection were based on the analysis of the heart rhythm using classical signal

processing techniques, such as adaptive filtering [98], autocorrelation [99]

and sequential hypothesis testing [100]. Frequency domain analysis has also

been investigated, while non-linear dynamic time warping techniques have

been used in [101].

Beside the heart rhythm, morphological characteristics such as the shape

and position of the P and T waves (associated with the atrial depolarization

and ventricular repolarization, respectively), can also contribute to arrhyth-

mia detection [102, 103]. The classical approach for detecting AF involves the

selection of a set of features (suggested by clinical experts) and the automatic

detection of such features in the signal. Besides the heart rhythm [104], the

QRS complex can be analyzed [71, 72], or more advanced features [73–75].

These approaches, being based on feature engineering, require a specific do-

main expertise to transform raw data (i.e., unprocessed data) into a suitable

representation that is able to generalize on unseen data, and used to train a

classifier.

2.4.2 AF detection: Representation learning approach

In this chapter, a promising approach based on artificial intelligence (AI) al-

gorithms has been investigated. The concept of representation learning encom-

passes any method that is able to automatically discover useful representa-

tion of data for classification, detection or regression, without the need for

feature engineering. This approach is particularly effective in the presence of

non-clinical signals, such as the photoplethysmography (PPG) signal [105],

or in the presence of short and noisy ECG signals as those that are consid-

ered in this study.

DL methods have been the most successful AI algorithms of this kind.

Very complex non-linear functions can be learned by representing data through

2.4. Discussion 63

multiple levels of abstraction, and composing non-linear transformations in

deep layered structures. DL techniques have significantly improved the state

of the art in speech recognition, visual object recognition, object detection

and other domains [106]. On the downside, these methods require a large

amount of data to achieve good results.

Four important observations can be made as a results of this analysis.

First, all the proposed DL approaches resulted in superior performance com-

pared to the expert-based approach. This is due to the fact that the signals

analyzed are taken in free-living conditions, in the presence of sensor noise

or external noise and artifacts. DL has shown to be very effective in these

cases. Second, the analysis showed that the performance (in terms of preci-

sion and recall) vary among the considered DL networks, highlighting the

advantage of deeper networks in terms of accuracy. Third, computational

complexity and training time are important considerations in the choice of

an algorithm, especially if the learning phase needs to be periodically re-

peated in the presence of new data (or new sensor characteristics). In this

context, it has been showed how depthwise separable convolutions, used in

the presented implementation of MobileNet, provide a significant reduction

in terms of complexity. Finally, the sole use of DL learning methods leads to

results very close to approaches where they are combined with complex fea-

ture engineering [66]. The availability of a larger dataset may further reduce

this gap.

The final selection of MobileNet and its comparison with the feature en-

gineering approach highlighted the superiority of the DL approach for the

considered AF detection task. It should also be highlighted another impor-

tant aspect, which is the flexibility of DL methods. In fact, while an expert

based approach required a careful choice of features, the DL approach was

automatically able to select the most important features for the targeted de-

tection problem. Furthermore, its application to a new physiological signal

with completely different characteristics, e.g., like the PPG signal, would be

straightforward in the presence of a large annotated dataset.

On the other side, the main limitations of an approach based on DL should

be also noted. First, it needs a large set of labeled data for proper training.

For example, the limited accuracy to detect noise has been highlighted in this

chapter, probably due to the limited number of noise samples in the dataset.

64 Chapter 2. ECG Signal Analysis for Early Diagnosis of Heart Diseases

Second, the results of the DL approach are not easy to interpret, since the out-

put of the algorithm is a set of probabilities (one for each class), but it is not

clear which morphological features in the signal were triggering the decision.

65

Chapter 3

Prediction of Adverse Glycemic

Events from CGM Signal

Diabetes is a metabolic disorder characterized by chronic hyperglycemia re-

sulting from a deficient insulin production or utilization. This is due to the

destruction of beta cells in the pancreas (type 1 diabetes), which requires

daily administration of insulin, or an ineffective use of insulin (type 2 dia-

betes) [107]. Insulin-dependent diabetes requires a daily management, which

commonly consists in diet, physical exercise and exogenous insulin admin-

istration [108, 109], which are tuned on the basis of self-monitoring blood

glucose (SMBG) measurements usually performed 3-4 times per day.

In recent years, blood glucose (BG) monitoring has been revolutionized

by the advent of Continuous Glucose Monitoring (CGM) sensors, consisting

of wearable subcutaneous needle-based and minimally-invasive devices that

allow measuring the BG concentration almost continuously (1-5 min sam-

pling period) for several consecutive days/weeks. Thanks to this, and to

the availability of acoustic/visual alerts for hypo/hyperglycemia, CGM sen-

sors have become a key tool to effectively improve diabetes management and

glucose control [110]. However, avoiding hypoglycemic and hyperglycemic

events, or at least mitigating their frequency and duration, still remains an

open challenge [111]. In particular, the real-time prediction of future lev-

els of BG concentration from its past history could allow the patient to take

therapeutic actions on the basis of predicted glycemic levels instead of the

current glycemic status, possibly mitigating and/or avoiding imminent crit-

ical events [112, 113]. Most of the modern sensors include hardware capa-

ble of performing heavy computations. The relatively low sensors’ sam-

pling frequency allows for near-realtime operation. Nevertheless, most of

66 Chapter 3. Prediction of Adverse Glycemic Events from CGM Signal

the wearable sensors usually delegate this task to an additional, more pow-

erful device, to enhance their battery time and to limit the memory require-

ments [114].

Several algorithms for the real-time prediction of hypoglycemic and hy-

perglycemic events from CGM data have been proposed in the literature.

Glucose prediction by using as input only the past history of the CGM sig-

nal has been explored with auto-regressive models [115–117], artificial neural

networks [118], and kernel-based methods [119]. Since glucose dynamics are

influenced by the quantity of ingested carbohydrates (CHO), injected insulin,

physical activity, etc., glucose prediction algorithms that consider some (or

even all) of these signals have been proposed, e.g., autoregressive-moving

average with exogenous inputs models [120–122], random forests [123], sup-

port vector based algorithms [124], Gaussian processes [125], linear multi-

step predictors [126], neural networks [127–131] and multi-model systems [132].

An increasing spread of data-driven approaches can be observed, and the

availability of high quality measurements is of primary importance. In [133],

for example, the authors make use of artificially generated data to obtain

a large dataset. Nevertheless, real data is always preferable and leads to a

more accurate prediction analysis. Despite these attempts, commercial CGM

sensors still do not embed any prediction algorithm for the early detection

of hypoglycemia and hyperglycemia [110, 111], at variance with the “artifi-

cial pancreas” systems that couple a sensor with an insulin/glucose pump

connected in close loop. However, basic methods are typically used for these

devices. For example, a simple linear projection algorithm is embedded in

Medtronic systems, both sensor-augmented pumps [114] and hybrid closed

loop systems [134], to predict hypoglycemia and suspend the basal insulin

delivery trying to mitigate hypoglycemic states (“suspend before low”). One of

the reasons for this, is that prediction algorithms have been developed and

tested using different datasets (either real or simulated), and that an in depth

comparison of their performance on the same dataset is still missing [135].

The main contribution of this study is to fill the aforementioned gap, of-

fering a performance comparison among regression and classification algo-

rithms for hypoglycemic and hyperglycemic event prediction based on CGM

data. Two different approaches have been implemented and analyzed: static

and dynamic methods, which are detailed in Section 3.1. Numerical results

3.1. Methods 67

FIG. 3.1: System diagram. Static (a) and Dynamic (b) models.

are presented in Section 3.2. Most of the previous works focus on the pre-

diction performance of the algorithms. Here, the event detection problem

has been investigated, introducing a specific analysis for this purpose, and

showing that common prediction metrics are not always in accordance with

event detection capabilities. Finally, in Section 3.3 some concluding remarks

are provided.

Part of the results presented in this chapter has been published in [136].

3.1 Methods

The present work is meant to be a comparative analysis among the most

common machine learning algorithms for glucose events prediction. Only

the Continuous Glucose Monitoring (CGM) readings are considered for this

study, whereas exogenous inputs or any additional information are not taken

into account as they are not available in the dataset.

In this study, two different approaches have been analyzed and tested

(see Fig. 3.1), defined as follows:

Static - A single model is trained once, in an offline fashion, using a subset

of the available data. The data may belong to subjects different from the one

considered in the test phase. The model is never updated during the test and

a fixed amount N of previous samples are used as input.

Dynamic - The model is updated with each new sample. M previous samples

are used to update the model, and N previous samples are used to estimate

future glucose levels or events. Note that M > N in order to have enough

training samples for updating the model. In this case, the data used for up-

dating the model and the data used for the test belong to the same subject.

68 Chapter 3. Prediction of Adverse Glycemic Events from CGM Signal

In this study, several machine learning techniques have been analyzed.

These models can be divided in two main categories: regression and classifica-

tion algorithms, detailed in the following sections.

3.1.1 Regression algorithms

The aim of this type of algorithms is to predict the future value of the BG

concentration, that is considered to be a real number, from measurements

acquired in the past. In general, they implement a function r such that:

r(XN
t , βt) = x̂t+ph x̂t+ph ∈ R , (3.1)

where XN
t = [xt−N+1, . . . , xt] ∈ RN is a vector containing the last N CGM

readings, ph is the prediction horizon, and βt represents a vector containing

algorithm-specific parameters. This parameter vector is unknown and is to

be found during the training process. The sub-index t represents the discrete

time progression. In general, βt is not constant. In particular, if a dynamic

approach is used, the model parameters continuously change at each itera-

tion; when considering a static model, instead, the parameters are optimized

in the training phase, and then remain fixed (βt = β). As performance met-

ric, let’s define the regression error, corresponding to a prediction horizon ph,

as:

e
ph
t = xt+ph − x̂t+ph . (3.2)

Furthermore, a Root Mean Square Error (RMSE) can be associated with an

entire signal of T samples as follows:

RMSE =

√√√√ 1
T

T

∑
t=1

(
e

ph
t

)2
. (3.3)

Sum of Squares of the Glucose Prediction Error (SSGPE), defined in Eq. (3.4),

is also considered as a relative error estimation metric.

SSGPE =

√√√√√ ∑
T
t=1

(
e

ph
t

)2

∑
T
t=1
(
xt+ph

)2 . (3.4)

3.1. Methods 69

The methods considered in this study that fall into this category are: lin-

ear, quadratic and spline fitting, Linear Regression, Bayesian Regression [137],

Support Vector Regression (SVR) [138] and Autoregressive Integrated Mov-

ing Average (ARIMA) models.

3.1.2 Classification algorithms

In order to perform a classification of the events corresponding to specific

levels of BG concentration, the BG has been quantized into a finite number

of classes. Following a well-accepted and commonly used definition [139],

the following states have been considered: severe hyperglycemic (SHyper),

hyperglycemic (Hyper), normal (Norm), hypoglycemic (Hypo) and severe

hypoglycemic (SHypo). The function q that maps the CGM readings xt onto

the class set C = {SHyper, Hyper, Norm, Hypo, SHypo} is defined as fol-

lows:

ct = q(xt) =





SHypo if xt 6 50

Hypo if 50 < xt 6 70

Norm if 70 < xt < 180

Hyper if 180 6 xt < 250

SHyper if xt > 250 .

(3.5)

All the measurement units are mg/dL and have been omitted for the sake of

conciseness. The aim of the classification algorithms is to predict the future

state given the past CGM readings. In particular, all the classification models

presented in this study implement a function f such as:

f (XN
t , θt) = ĉt+ph ĉt+ph ∈ C , (3.6)

where XN
t is a vector containing the previous N glucose readings, θt is the

unknown parameters vector and ph is the prediction horizon. As for Eq. (3.1),

upon completion of the training phase, θt is a constant vector or it changes at

each iteration for the static and dynamic approach, respectively.

An accuracy measure is used as the performance metric for the classifi-

cation algorithms, which is here computed as the percentage of classes that

are correctly predicted. Note that the accuracy metric is evaluated including

70 Chapter 3. Prediction of Adverse Glycemic Events from CGM Signal

FIG. 3.2: Example of severe hyperglycemic event onset. A Linear Regression
model has been considered.

the samples belonging to all the considered classes (hypo, hyper and normal

states). Therefore, the result may be affected by an imbalanced dataset.

In this study, the following classification algorithms have been consid-

ered: Support Vector Machine (SVM) [53], k-Nearest Neighbor (kNN) [52],

Naive Bayes (NB) [51], Classification Tree (CT) [50], Random Forest (RF) [140],

AdaBoost [141], Linear Discriminant Analysis (LDA).

3.1.3 Events detection

The ultimate goal of this study is to present a performance evaluation frame-

work involving a large number of prediction and classification models, try-

ing to figure out the most appropriate approach to solve glucose event pre-

diction problems. Let’s consider as events all the time instants t̄ whose corre-

sponding samples verify one of the following conditions:

xt̄−1 > 50 and xt̄ 6 50 Severe Hypoglycemia Event

xt̄−1 > 70 and xt̄ 6 70 Hypoglycemia Event

xt̄−1 < 180 and xt̄ > 180 Hyperglycemia Event

xt̄−1 < 250 and xt̄ > 250 Severe Hyperglycemia Event

3.1. Methods 71

Four different sets can be created according to this criterion, with each set

containing all the events that meet one of the above defined conditions. Due

to the presence of measurement noise and signal fluctuations, multiple con-

secutive events of the same type could be observed within a short time frame.

To avoid this behavior, which is quite unrealistic, a settling time of 30 min-

utes is also considered [142, 143]. That is, if a specific event occurs, additional

events of same type are not considered for the following 30 minutes. The

same procedure can also be applied to the predicted samples x̂t, and a simi-

lar approach is used for the predicted classes ĉt, where the event is mapped

onto a class change.

In the following, I refer to a specific set, containing a generic type of event.

The considerations that follow apply to all events.

Let V = {t̄1, . . . , t̄V} be the generic set containing the V time instants

associated with the real events, obtained analyzing the CGM measurements

xt, and let P = {t̄1, . . . , t̄P} be the set containing the P predicted events, found

using the predicted BG concentration values x̂t (or ĉt in case of classification

methods). Each element t̄p ∈ P is individually analyzed and marked as

either a True Positive (TP) or a False Positive (FP), according to the following

criterion.

Let’s define ∆t̄pv = t̄p − t̄v as the distance between a generic predicted

event time t̄p and a real event t̄v (see Fig. 3.2). ph is the temporal predic-

tion step into the future. For each t̄p ∈ P, if there exists t̄v ∈ V such as

−k < ∆t̄pv < ph, t̄p is considered to be a TP and t̄v is removed from the set

V and no longer considered in the following steps, to prevent that the same

event be considered multiple times. A TP condition is indeed assigned to a

predicted event that, in general, actually occurs in the future, within a tol-

erance range. If the condition above is not met, t̄p is considered to be a FP,

i.e., the predicted event will not occur or has already occurred. k ∈ N is a

positive constant that prevents the association of events that are too distant

apart. When there are multiple events meeting the above condition, only the

one with the minimum |∆t̄pv| distance is considered. After having checked

all the elements in set P, all the remaining events in the set V, if any, are

tagged as False Negatives (FN). In fact, at this point, the set V contains the

observed events that have not been correctly predicted. In Tab. 3.1, a list of

possible conditions associated with a predicted event is shown for clarity. In

Fig. 3.2 an example of the onset of a severe hyperglycemic event is shown,

72 Chapter 3. Prediction of Adverse Glycemic Events from CGM Signal

∆t̄pv < −k The event is out of the analysis range.
−k 6 ∆t̄pv < 0 The real event occurs later than the predicted time t̄p, but

still within the tolerance range.
∆t̄pv = 0 The real event occurs exactly when predicted.

0 < ∆t̄pv < ph The real event t̄v occurs earlier than the predicted time t̄p,
but still in the future.

∆t̄pv > ph The real event has already happened. Its prediction has
failed.

TABLE 3.1: List of possible conditions associated with a predicted event.

along with the predictions of a linear regressor with a prediction horizon

ph = 6.

Once all the TP, FP and FN events have been found, Precision, Recall and

F-measure can be evaluated as follows [144]:

Precision =
NTP

NTP + NFP
(3.7)

Recall =
NTP

NTP + NFN
(3.8)

F-measure = 2 ·
Precision · Recall

Precision+ Recall
(3.9)

where NTP, NFP and NFN are respectively the total number of TP, FP and FN

events. With these three metrics, an overall assessment of the algorithm per-

formance is possible, along with a probabilistic interpretation. The Precision

estimates the fraction of correctly predicted events (i.e., the true positives)

among all the predicted events (including the false positive outcomes). It can

be interpreted as the probability that a predicted event will actually happen

in the near future. The Recall, instead, estimates the fraction of real events

that is correctly predicted by the algorithm. It can be seen as the probability

that a real event is detected in advance. Both these metrics are extremely im-

portant and should be jointly considered to provide a complete performance

analysis. The F-measure combines these two metrics with an harmonic mean,

providing a good way to compare different algorithms’ outcomes.

Note that the metrics defined in Eqs. (3.7), (3.8) and (3.9) refer to a spe-

cific set V, that is related to a particular event type. When another event

is considered, these results may vary considerably. To provide an overall as-

sessment, all the different conditions can be aggregated and all the events can

be considered at the same time. In this study, the focus is both on the overall

3.1. Methods 73

performance and on the specific hyperglycemic event, which is considered

to be of great importance for diabetic patients.

A compact and clear overview of the event prediction capabilities of a

method can be assessed with these metrics. Nevertheless, there is still a limi-

tation, due to the loss of information about the time difference ∆t̄pv between

the predicted and the real events, referred to as prediction distance in the fol-

lowing. Therefore, an additional statistical analysis is devoted to the com-

parison of the prediction distances achieved by each of the selected methods.

To provide more clarity, it is remarked the clear difference between signal

prediction and event prediction, and all the corresponding metrics. The former

is related to the capability of the algorithm to predict the future value of the

signal, or the corresponding class in case of classifiers, given some histori-

cal data. The event prediction analysis, instead, is specifically intended to

evaluate the ability to predict the occurrence of a specific condition.

3.1.4 Training process

A different training process is used for the static and dynamic approaches.

The main difference between them is that the static model is trained only

once, the dynamic model, instead, is updated at each iteration. The input

data for each of these models, however, is of the same type, i.e., they both

take the past N CGM readings as input and output the predicted BG concen-

tration (for regressors) or the corresponding class (for classifiers) at a preset

prediction horizon ph.

Let consider a generic vector X M = [x1, . . . , xM] containing M measure-

ments, and let ph be the prediction horizon, with M > N + ph. A series

of input samples iN
n ∈ RN, and the corresponding output label on, can be

extracted from this vector, according to the following criterion:

Regression iN
n = [xn−N+1, . . . , xn] on = xn+ph

Classification iN
n = [xn−N+1, . . . , xn] on = q(xn+ph)

∀n ∈ {N, . . . , M− ph} (3.10)

All the pairs (iN
n , on) generated according to Eq. (3.10) are included in a set

used for training or testing the analyzed models. In the following, the specific

training procedure for static and dynamic approaches is detailed.

74 Chapter 3. Prediction of Adverse Glycemic Events from CGM Signal

Static model

Data acquired from K different subjects is considered in this phase. Here,

a Leave One Patient Out validation procedure is used to evaluate the per-

formance metrics. In particular, at each round of the validation a subject is

considered as a test subject and referred to as the target user. All the data

belonging to the other K − 1 subjects is used to generate a single training

set according to Eq. (3.10). Then, this set is employed to find the parame-

ters β or θ in Eqs. (3.1) and (3.6). Once the model is trained, its parameters

remain fixed. A test set, created with the target user data, is used to eval-

uate the performance metrics, both for prediction capabilities (residuals for

regressors and accuracy for classifiers) and event detection (Precision, Recall,

F-measure). This procedure is repeated for each subject in the dataset.

Dynamic model

For the dynamic model approach, only the data belonging to the target user

is considered, both for training and testing procedures. Let us consider a

generic time instant t, and a vector containing the current (time t) and the

previous M − 1 measurements X M
t = [xt−M+1, . . . , xt] ∈ RM. A training set

is generated from this vector using Eq. (3.10), and it is used to find the model

parameters βt or θt associated with the current time instant. Then, the last

N samples XN
t are employed to make a prediction x̂t+ph, or ĉt+ph in case of

classifiers, where N < M represents the number of inputs for the selected

model. Finally, the prediction is compared to the real value xt+ph or ct+ph, to

evaluate the performance metrics.

This procedure is repeated for each time instant t for which both the fu-

ture value xt+ph and X M
t are available. At each iteration, the new measure-

ment is added to the vector X M
t , and the oldest one is dropped, in order to

always have a training vector of fixed length, containing the last M readings.

Note that: 1) the model is trained using only the past data, which is al-

ways available in a real implementation of the algorithm, and 2) each model

is used to predict a single value.

3.2. Results 75

3.2 Results

Data consist of CGM monitoring for 7 consecutive days of 89 Type-1 Diabetes

(T1D) patients, which are extracted from a larger datasets. CGM traces were

measured by the Dexcom G4 Platinum CGM sensor (Dexcom Inc., San Diego,

CA), which has a sampling period of 5 minutes. The CGM sensor has been

inserted at the beginning of day 1 of the study and calibrated accordingly to

manufacturer instructions (i.e., twice at the beginning of the monitoring, and

then every 12 hours). In this period, patients were admitted to the clinical

research center (CRC) at days 1, 4, and 7, each time for a time period of 12

hours. During CRC admission, subjects underwent a delayed-and-increased

insulin bolus at meal-time in order to simulate rapid glucose fluctuations,

aimed at testing CGM sensors in more challenging conditions. During the

rest of the monitoring, patients were asked to behave as usual (free-living

conditions). No additional signals, e.g., CHO content of the meals or injected

insulin, are available. Additional clinical information, e.g., the cohort, are

specified in [145].

Since during acquisition on real subjects, failures and irregular sampling

may happen, the CGM data was first interpolated using a third-order spline

for obtaining a regular sampling period, and then the value of any missing

data reading was imputed. In case of too many consecutive missing samples,

data is discarded and not considered in the corresponding period of time. All

the presented results are shown using boxplots, which provide a statistical

and compact view of the results. The boxes represent the Interquartile Range

(IQR), the line is the median value, and the whiskers have a coverage factor

of 90%. A time window of N = 5 samples has been considered for all the

models. A further increase in the window size N did not show significant

improvements.

In Fig. 3.3, the RMSE values for an increasing prediction horizon ph are

shown. As expected, the error considerably increases for long-term predic-

tions. SVR and Linear Regression algorithms have been used here, but other

methods exhibit a similar behavior. For the sake of comparison, the results

reported in [118, 127, 128] are also shown in the plot, bearing in mind that

the dataset used is different. Note that the algorithms implemented in [127]

and [128] make use of additional information on ingested carbohydrates,

which allows them to achieve better performance. If available, these addi-

tional sources of information are expected to lead to improved results. A

76 Chapter 3. Prediction of Adverse Glycemic Events from CGM Signal

FIG. 3.3: RMSE for increasing prediction horizon. As comparison, the results
reported in [118, 127, 128] have been included.

FIG. 3.4: RMSE for increasing training samples of the dynamic model.

3.2. Results 77

FIG. 3.5: SSGPE for each regression method.

prediction horizon of ph = 6 samples (corresponding to 30 minutes) is con-

sidered for the following analyses, as it provides a good trade-off between

error and prediction time.

The dimension M of the training data buffer (see Fig. 3.1) for the dynamic

approach is an important parameter to take into account. The RMSE has been

measured varying the number of historical samples in the training set. The

result is shown in Fig. 3.4, where the RMSE performance of SVR and Lin-

ear Regression dynamic models are shown as examples. A saturation effect

is observed for a buffer size larger than M = 400 samples, beyond which

no additional improvements are observed. This value, which approximately

corresponds to 30 hours of training data, is then chosen to train the final

models.

The signal prediction performance of all the methods considered in this

study is shown in Fig. 3.5 (regressors) and Fig. 3.6 (classifiers). SSGPE has

been chosen as representative metric for regression methods, and accuracy

for classifiers, as defined in Section 3.1.

Note that only a dynamic implementation has been considered for linear

fitting and ARIMA models. This is why the results for their static versions

do not appear in Fig. 3.5. Quadratic and Spline fitting provide poor results,

and for this reason have also been omitted from the plot.

Some of the algorithms require to set a number of hyper-parameters, which

78 Chapter 3. Prediction of Adverse Glycemic Events from CGM Signal

FIG. 3.6: Accuracy for each classification method.

can heavily affect the performance of the learning algorithms. Prior to the

proper training of the algorithms requiring such hyper-parameters, an op-

timization phase is always required. This pre-train explores different set of

hyper-parameters, looking at the performance of the algorithm on a valida-

tion set (separated from the training and testing data). Once the pre-training

phase is finished, the hyper-parameters value is kept fixed during the subse-

quent training and testing phases. Several ARIMA models of different orders

have been validated, considering all the possible combinations up to a max-

imum of the second order. The model that provided the best results has an

autoregressive term ar = 2, a differencing term i = 0 and a moving average

term ma = 0. All the presented results refer to these parameters. Radial Basis

Function (RBF) kernel is considered for kernel based methods, i.e., SVM and

SVR: a grid search procedure has been applied during pre-training to opti-

mize the penalty parameter of the error term and the RBF kernel coefficient.

A number of 3, 5 and 10 neighbors have been considered for the kNN algo-

rithm, the results that are shown use a value of 10. Finally, a maximum of

50 weak classifiers have been used for the AdaBoost method. Please refer to

Table 3.2 for further details on the setting of hyper-parameters.

Regression methods (Fig. 3.5) exhibit very similar performance both for

static and dynamic approaches, except for the Linear Fitting method, which

provides higher errors. As for the classification methods, all the dynamic

3.2. Results 79

Method Parameters settings

Bay. Reg. All the shape and the inverse scale parameters for the
Gamma distribution priors have been set to 10−6.

SVR A radial basis function kernel has been considered. The
penalty parameter of the error term has been set to 53 and
the kernel coefficient to 5−6.

ARIMA A second order auto-regressive model has been consid-
ered.

AdaBoost A maximum of 50 estimators and a learning rate of 1 have
been considered [146].

CT Gini impurity has been used to measure the quality of a
split [147].

LDA Singular value decomposition has been used as the solver
method.

NB The likelihood of the features is assumed to be Gaussian.
RF 10 estimators have been considered. Gini impurity has

been used to measure the quality of a split.
SVM A radial basis function kernel has been considered. The

penalty parameter of the error term has been set to 105 and
the kernel coefficient to 1−7.

kNN 10 neighbors have been considered.

TABLE 3.2: Hyper-parameters settings.

models perform better, in term of accuracy, than their static counterparts.

LDA is the model with the highest average accuracy across all classes. As a

general consideration, AdaBoost and NB perform worse than other classifi-

cation methods, on average.

Analyzing signal prediction performance is certainly a good comparison

strategy. Nevertheless, this approach could be misleading when event de-

tection capabilities need to be assessed. An event, as defined in Sec. 3.1.3,

only occurs when a predefined condition is met, such as the overcoming of

a threshold. However, the metrics that are commonly used to evaluate pre-

diction algorithms usually assume that all samples are equally important,

but this could lead to inappropriate results, especially when the dataset is

highly imbalanced, due, for example, by the prevalence of normal states. In

this case, a small prediction error will be driven by the ability of a method to

follow the normal range, considering the hypo- and hyper-glycemic events

as outliers. For this reason, and also to allow a direct comparison between

regression and classification algorithms, a more insightful analysis has been

devoted to event detection performance, as detailed in Section 3.1.3. A sim-

ple prediction method that considers the last measurement as the predicted

value is typically used as a lower bound on the performance evaluation.

80 Chapter 3. Prediction of Adverse Glycemic Events from CGM Signal

Severe Hypoglycemia Hypoglycemia Hyperglycemia Severe Hyperglycemia
Static Dynamic Static Dynamic Static Dynamic Static Dynamic

Lin. Fit.
Recall n/a 0.96± 0.11 n/a 0.93± 0.14 n/a 0.92± 0.08 n/a 0.92± 0.10

Precision n/a 0.24± 0.11 n/a 0.38± 0.16 n/a 0.51± 0.11 n/a 0.43± 0.13
F-measure n/a 0.37± 0.14 n/a 0.52± 0.17 n/a 0.65± 0.10 n/a 0.58± 0.13

Lin. Reg.
Recall 0.60± 0.33 0.62± 0.36 0.62± 0.22 0.51± 0.29 0.89± 0.08 0.78± 0.20 0.80± 0.17 0.61± 0.30

Precision 0.49± 0.28 0.55± 0.34 0.47± 0.20 0.41± 0.24 0.66± 0.11 0.63± 0.17 0.61± 0.17 0.50± 0.27
F-measure 0.51± 0.27 0.57± 0.34 0.53± 0.20 0.44± 0.25 0.75± 0.09 0.69± 0.17 0.68± 0.16 0.54± 0.27

Bay. Reg.
Recall 0.61± 0.32 0.59± 0.38 0.62± 0.22 0.50± 0.30 0.89± 0.09 0.77± 0.21 0.80± 0.17 0.60± 0.29

Precision 0.50± 0.28 0.54± 0.35 0.47± 0.20 0.41± 0.25 0.66± 0.11 0.62± 0.18 0.61± 0.17 0.49± 0.26
F-measure 0.52± 0.27 0.55± 0.35 0.53± 0.20 0.44± 0.26 0.75± 0.09 0.68± 0.18 0.68± 0.16 0.53± 0.27

SVR
Recall 0.49± 0.33 0.44± 0.39 0.75± 0.22 0.52± 0.29 0.87± 0.09 0.73± 0.19 0.83± 0.16 0.66± 0.27

Precision 0.43± 0.30 0.39± 0.34 0.51± 0.19 0.45± 0.26 0.64± 0.11 0.60± 0.17 0.62± 0.17 0.53± 0.24
F-measure 0.43± 0.27 0.39± 0.33 0.59± 0.19 0.46± 0.25 0.73± 0.09 0.65± 0.17 0.70± 0.15 0.58± 0.24

ARIMA
Recall n/a 0.53± 0.38 n/a 0.42± 0.29 n/a 0.68± 0.25 n/a 0.53± 0.27

Precision n/a 0.49± 0.36 n/a 0.37± 0.25 n/a 0.59± 0.22 n/a 0.46± 0.25
F-measure n/a 0.50± 0.36 n/a 0.39± 0.26 n/a 0.63± 0.23 n/a 0.49± 0.25

AdaBoost
Recall 0.28± 0.34 0.05± 0.12 0.54± 0.30 0.23± 0.23 0.82± 0.14 0.31± 0.19 0.29± 0.29 0.21± 0.18

Precision 0.11± 0.17 0.08± 0.17 0.28± 0.21 0.24± 0.25 0.53± 0.17 0.22± 0.14 0.32± 0.30 0.21± 0.21
F-measure 0.12± 0.15 0.06± 0.13 0.34± 0.21 0.22± 0.23 0.63± 0.14 0.25± 0.16 0.24± 0.20 0.20± 0.17

CT
Recall 0.95± 0.12 0.21± 0.31 0.89± 0.16 0.53± 0.30 0.94± 0.06 0.70± 0.18 0.92± 0.10 0.48± 0.32

Precision 0.13± 0.07 0.12± 0.17 0.23± 0.11 0.29± 0.17 0.32± 0.09 0.32± 0.11 0.28± 0.09 0.22± 0.15
F-measure 0.23± 0.11 0.14± 0.19 0.35± 0.14 0.36± 0.20 0.47± 0.10 0.44± 0.13 0.43± 0.10 0.30± 0.20

LDA
Recall 0.96± 0.12 0.10± 0.20 0.77± 0.21 0.25± 0.22 0.93± 0.06 0.71± 0.20 0.88± 0.10 0.41± 0.30

Precision 0.27± 0.13 0.18± 0.33 0.31± 0.16 0.29± 0.26 0.61± 0.13 0.51± 0.17 0.65± 0.15 0.30± 0.21
F-measure 0.41± 0.16 0.12± 0.22 0.42± 0.18 0.25± 0.21 0.73± 0.11 0.59± 0.17 0.74± 0.13 0.34± 0.24

NB
Recall 0.72± 0.26 0.20± 0.25 0.66± 0.20 0.44± 0.23 0.34± 0.14 0.23± 0.19 0.05± 0.09 0.15± 0.20

Precision 0.34± 0.21 0.12± 0.15 0.38± 0.18 0.32± 0.22 0.34± 0.13 0.21± 0.16 0.05± 0.09 0.13± 0.16
F-measure 0.44± 0.21 0.14± 0.17 0.45± 0.16 0.36± 0.21 0.33± 0.12 0.22± 0.17 0.05± 0.09 0.13± 0.17

QDA
Recall 0.88± 0.20 0.10± 0.19 0.79± 0.18 0.35± 0.26 0.93± 0.08 0.67± 0.19 0.81± 0.15 0.44± 0.27

Precision 0.30± 0.14 0.10± 0.19 0.33± 0.16 0.29± 0.22 0.52± 0.13 0.41± 0.16 0.39± 0.14 0.25± 0.16
F-measure 0.43± 0.17 0.10± 0.19 0.45± 0.17 0.31± 0.23 0.66± 0.12 0.50± 0.16 0.51± 0.14 0.31± 0.18

RF
Recall 0.93± 0.20 0.19± 0.27 0.86± 0.16 0.46± 0.28 0.92± 0.09 0.60± 0.20 0.91± 0.10 0.38± 0.28

Precision 0.18± 0.09 0.12± 0.17 0.30± 0.14 0.30± 0.19 0.43± 0.11 0.34± 0.14 0.44± 0.11 0.21± 0.15
F-measure 0.29± 0.13 0.14± 0.19 0.43± 0.17 0.36± 0.21 0.58± 0.11 0.43± 0.15 0.59± 0.11 0.26± 0.19

SVM
Recall 0.98± 0.08 0.31± 0.34 0.86± 0.19 0.62± 0.29 0.95± 0.06 0.81± 0.18 0.93± 0.08 0.58± 0.34

Precision 0.32± 0.13 0.13± 0.15 0.36± 0.17 0.32± 0.17 0.58± 0.13 0.47± 0.17 0.60± 0.14 0.34± 0.20
F-measure 0.47± 0.15 0.18± 0.19 0.49± 0.18 0.41± 0.21 0.71± 0.11 0.59± 0.17 0.72± 0.12 0.43± 0.25

kNN
Recall 0.96± 0.11 0.11± 0.20 0.86± 0.18 0.28± 0.24 0.92± 0.07 0.38± 0.21 0.85± 0.13 0.24± 0.21

Precision 0.26± 0.12 0.15± 0.29 0.37± 0.17 0.25± 0.22 0.56± 0.12 0.28± 0.17 0.55± 0.15 0.17± 0.16
F-measure 0.40± 0.15 0.12± 0.21 0.50± 0.17 0.25± 0.21 0.69± 0.10 0.32± 0.18 0.66± 0.13 0.20± 0.17

TABLE 3.3: Events detection metrics for all the analyzed methods, static and
dynamic implementations, and for each event type. The reported uncertainty
refers to the standard deviation.

Since this method is not able to predict any event, as defined in this study, it

has no prediction capabilities and it has not been considered in the results.

The event-based performance metrics are included in Fig. 3.7, where an ex-

haustive comparison among all the methods is shown. This figure shows

the Recall (blue boxes), the Precision (red boxes) and the F-measure (green

boxes), dividing the results into two groups: regressors and classifiers (sep-

arated through a vertical dashed line). The results in the same group refer

to the static implementation (dashed boxes) and to the dynamic model (solid

line boxes). As a general behavior, a high recall and a low precision can be

observed. This is typically due to a tendency to predict events that will not

really happen. This effect is particularly emphasized for most of the static

3.2. Results 81

FIG. 3.7: Events detection metric for all the analyzed algorithms (prediction
horizon ph = 6).

classifiers and for linear fitting. Considering the F-measure as the most rep-

resentative score, static models always perform better, or at least are compa-

rable with the corresponding dynamic implementations. It is worth noting

that the signal prediction performance results show a different behavior, es-

pecially for classifiers, where the dynamic implementations show even better

performance. This result empirically demonstrates that the signal prediction

performance metrics, evaluated considering the entire signals, could be very

imbalanced and they are not always a good indicator of event prediction ca-

pabilities, which require a more thorough investigation.

The classifier showing the best performance is SVM, followed by LDA

and kNN. Regression methods, even if with a lower recall, provide a signifi-

cantly higher precision, which leads to an improved F-measure. In particular,

the static implementation of SVR, Linear and Bayesian Regression provide

the best results across all methods.

It is remarked that these results refer to all the possible events, including

hypoglycemic and hyperglycemic conditions. It is also interesting to eval-

uate the performance when only a specific event is considered. For a more

detailed analysis, Table 3.3 reports all the event detection metrics, along with

their standard deviations, separating the results over the four considered

event types. Under this assumption, the classification problem needs to be

revised. The class space set C, introduced in Section 3.1.2, is now reduced to

a binary set CH = {Hyper, Norm}, and also the mapping function defined

in Eq. (3.5) is modified accordingly. All the classifiers are retrained solving

this reduced binary classification problem. The regressors, instead, remain

82 Chapter 3. Prediction of Adverse Glycemic Events from CGM Signal

FIG. 3.8: Events detection metric for all the analyzed algorithms only consider-
ing hyperglycemic events (prediction horizon ph = 6).

the same, but their performance is now evaluated on the specific event only,

to obtain a fair comparison.

In this study, the main focus is on hyperglycemic events. The frequent

occurrence of these events in the dataset makes them suitable for a more

in-depth analysis. Furthermore, in a preventive scenario, where a patient

takes pre-emptive actions based on the predicted glucose level, the hyper-

glycemic condition is of primary importance. In Fig. 3.8, the event detection

performance of the three best regressors and classifiers is shown, when only

the hyperglycemic events are considered. A significant overall improvement

can be observed. In particular, the classifiers exhibit improved performance

when specialized to detect a specific event (hyperglycemia in this case). Also

in this case the static models provide better results than their dynamic coun-

terparts.

The best methods remain the Linear and Bayesian Regression, which per-

form almost the same and have a median F-measure value of 0.76. The best

performing classifier is the SVM, which has a median F-measure value of

0.73, and the highest median recall value of about 0.95.

The last analysis concerns the prediction distance, i.e., the period between

the real event and the predicted one. Statistical results are shown in Fig. 3.9.

Since the prediction horizon in this implementation is ph = 6 samples, the

3.3. Discussion 83

FIG. 3.9: Temporal distance between real and predicted events (prediction hori-
zon ph = 6).

dashed red line in the figure corresponds to the actual time of the event. Even

if the prediction horizon is 30 minutes, events are not always detected that

early. Most of the times, even when an event is correctly predicted, it actually

happens sooner than expected.

Let consider the best performing regressor and classifier, i.e., the Linear

or Bayesian Regression method and the SVM. The former has a median pre-

diction time of only 2 samples, which means that half of the correctly pre-

dicted events actually happen at least 10 minutes later. Furthermore, the IQR

goes from 5 to 15 minutes, i.e., half of the times the event will happen after

a time period within this range. The SVM, instead, has much better perfor-

mance, with an IQR ranging from 10 to 25 minutes. Therefore, even if the

SVM F-measure is slightly lower, this classifier is able to predict the events

earlier than the regression methods. This makes a specialized classifier the

best choice for glucose event prediction algorithms, and a good performance

benchmark for future developments.

3.3 Discussion

A comparison between a number of selected regression and classification

algorithms for the prediction of hyper and hypoglycemic events based on

84 Chapter 3. Prediction of Adverse Glycemic Events from CGM Signal

CGM signals has been carried out in this study. The value of the glucose con-

centration in the blood depends on many external factors that affect glucose-

insulin dynamics, such as the amount of CHO of a meal or of a snack, the

insulin injected, physical activity, etc.. In addition, CGM devices are often

affected by a high level of noise and error, mainly due to the interaction with

the human body, that is dynamic by nature. The lack of additional infor-

mation from the user, which plays a fundamental role, makes the predic-

tion a difficult task. Two different approaches have been investigated: static

and a dynamic implementations. Both signal prediction and event detec-

tion metrics are considered in this study. The former, typically used in the

literature, quantifies the capability of the model to make good predictions;

the latter, instead, refers to the capacity of the model to correctly predict fu-

ture hyper/hypoglycemic events. Static methods exhibit better performance

for most of the analyses considered in this work, with particular focus on

F-measure values, as shown in Tab. 3.3. However, prediction metrics (RMSE

and SSGPE) are not always in agreement with the event detection capabili-

ties of the algorithms, which require a specific analysis. The best results, in

terms of event prediction capabilities, have been obtained with Linear and

Bayesian Regression methods. All the classifiers show some improvement

when trained for a specific and single event, such as hyperglycemia. In par-

ticular, Support Vector Machine (SVM) performs nearly the same as the best

regressor, under this working assumption. An additional analysis based on

the prediction time shows that classification methods also tend to predict the

events sooner with respect to regressors. Based on these considerations, a

specialized SVM yields the best overall performance.

85

Chapter 4

A Bayesian Framework for

Vehicular Monitoring Networks

Smart cities are witnessing a digital revolution involving a constellation of

sensing technologies, which are being employed to gather a range of en-

vironmental, parking and traffic data. Application examples for such data

abound: park monitoring networks are being installed in major cities such

as Los Angeles (CA) [148], San Francisco (CA) [149], and Barcelona [150],

among others. Parking sensor data can be utilized to identify free parking

lots and, moreover, to pinpoint atypical parking patterns [151, 152]. Solutions

to manage traffic flows are also being developed. For example, in [153, 154]

video processing techniques are used to estimate the traffic density based on

video frames from surveillance cameras deployed on traffic light poles, de-

vising smart control strategies for traffic lights. Other works address traffic

forecasting, see, e.g., [155]. A common trait of these systems is that data is

generated in large amounts and, in turn, its manual inspection is impractical.

Moreover, the patterns of interest are often hidden and difficult to observe

through a mere visual inspection, even by skilled personnel. Machine learn-

ing tools are deemed a natural means to efficiently and effectively process

these data.

In this work, a Bayesian framework for vehicular traffic monitoring net-

works is proposed. Its core idea is that information from road links that are

in close proximity is likely to be highly correlated with that in the current

(target) road link, at any time interval. Moreover, temporal correlation is

also relevant, i.e., past observations from nearby links also tend to be cor-

related with the current reading at any target road. Owing to these facts,

in this study the spatio-temporal evolution of vehicular streams has been

86 Chapter 4. A Bayesian Framework for Vehicular Monitoring Networks

modeled among multiple road links in large-scale scenarios through local-

ized and small-size Bayesian Networks (BNs). These, are implemented as Di-

rected Acyclic Graphs (DAG), representing conditional independence rela-

tions among random variables. Specifically, a dedicated BN is configured,

trained, and tested for each target road in the monitored (urban) geographi-

cal map. The joint probability distribution between the cause nodes (data

utilized for forecasting) and the effect node (data to be predicted at any “cur-

rent” time, belonging to the target road link) is described through a Gaussian

Mixture Model (GMM) whose parameters are estimated via Bayesian Varia-

tional Inference (BVI) operating on unlabeled data. Optimal forecasting fol-

lows from the criterion of Minimum Mean Square Error (MMSE). Moreover,

anomaly detection is also performed by devising a probabilistic score associ-

ated with the marginal conditional distribution of the effect node. The so

obtained GMMs are time-dependent, i.e., several GMMs can be estimated

for the same target road for different days of the weeks and/or hours of the

day. Also, the proposed framework is distributed, lightweight, and capable of

operating in realtime and, in turn, it appears to be a promising candidate to

deal with Internet of Things (IoT) applications in large-scale networks, where

new data is to be processed on-the-fly. The key features of the model are: i)

the approach is scalable as a BN is associated with and independently trained

for each road, ii) spatio-temporal information is considered (for increased ro-

bustness and accuracy of the statistical model so obtained) and iii) the lo-

calized nature of the framework allows flagging atypical behaviors at their

point of origin in the monitored geographical map. In addition, the approach

is here validated against a number of popular regression schemes from the

literature, to quantify its predictive power, testing it on data from a large

real-world deployment, featuring readings from 686 measurement points for

a full year. Finally, the framework’s capability of detecting anomalies is quan-

tified in the presence of injected noise, which is precisely controlled in terms

of power, location (road link) and position in time. The numerical results re-

veal that a localized and small size DAG, implemented for each road in the

monitored area suffices to obtain very good prediction and anomaly detec-

tion accuracies. This means that large monitoring networks can be tackled by

training independent and small-size DAGs, a process that can be efficiently

parallelized across disjoint processors, ensuring scalability as the size of the

network increases.

4.1. State of the Art Analysis 87

This chapter is organized as follows. In Section 4.1, the state of the art

on anomaly detection and prediction in vehicular data is reviewed. In Sec-

tion 4.2, the Bayesian framework is formulated, detailing the dataset (Sec-

tion 4.2.1), the BN/GMM models (Section 4.2.2), the use of real data for train-

ing/validation (Section 4.2.3). Numerical results are provided in Section 4.3,

assessing the prediction (Section 4.3.1) and anomaly detection (Section 4.3.2)

performance of the new scheme. Future research directions are discussed in

Section 4.4.

Part of the results presented in this chapter has been published in [156].

4.1 State of the Art Analysis

A substantial amount of research has been carried out to provide anomaly

detection techniques in a wide range of application domains such as cyber

intrusion detection, fraud detection, medical anomaly detection, industrial

damage detection, image processing, textual anomaly detection, sensor net-

works, etc., and has been reviewed in several surveys [157–160]. The reader

is directed to these sources for a detailed and comprehensive treatment of

the anomaly detection problem. Next, this study is solely focused on works

dealing with traffic analysis.

In [161], the authors introduce a road segment based anomaly detection

problem, observing the road segment whose traffic condition deviates the

most from the expected behavior. This work departs from other scientific

papers [162, 163], which are region/grid specific, and not road based. First,

a deviation-based method is put forward to quantify the anomaly by means

of a score in the range [0, 1]. Second, a diffusion-based algorithm exploiting

a heat diffusion model is proposed to infer the major anomaly causes on the

transportation network, given that an abnormal traffic trend in a road seg-

ment can trigger another abnormal traffic trend in a road segment located

nearby. This model does not include historical information streams from

adjacent road links, but represents the expected behavior of the road seg-

ment as a normal random variable. In [164], a more sophisticated scheme

is presented. There, a Temporal Outlier Discovery (TOD) framework is pro-

posed to quantify the anomaly based on drastic changes in the agglomerated

temporal information of the entire dataset. Specifically, at each time step, ev-

ery road segment checks its similarity with respect to every other segment,

88 Chapter 4. A Bayesian Framework for Vehicular Monitoring Networks

and historical similarity values are stored in a temporal neighborhood vec-

tor. Anomaly detection for each road is accomplished by jointly consider-

ing mobility data from all the streets in the data set. While this should be

quite robust in terms of detection capability, as it is expected to be reliable

even when all the neighborhood of the current road is experiencing a traf-

fic anomaly, it is hardly scalable and difficult to train and use at runtime as the

number of roads to monitor increases. It is therefore deemed impractical

for the large-scale network that is considered in this study. [165] adopts a

Bayesian framework. The authors focus on the short-term traffic flow fore-

casting task, which amounts to determine the traffic condition of a target road

in the near future, usually within a time range of 5− 30 minutes. Histori-

cal information streams from the adjacent road links and the target link are

taken into account by means of Bayesian networks, where the joint proba-

bility distribution between the cause nodes (directional information streams

from the adjacent road links) and the effect node (traffic condition of the tar-

get link in the next time interval, to be predicted) is represented through a

Gaussian Mixture Model (GMM), and forecasting is performed by comput-

ing the expectation of the Probability Density Function (PDF) associated with

the predicted traffic condition. Also, the authors improve the analysis carried

out in [166, 167] by including historical information streams from the adja-

cent road links and the target link. However, besides forecasting, the authors

do not provide any reasonable anomaly detection criterion to state whether

the distribution associated with the predicted traffic condition deviates from

the expected behavior. In a sense, the authors do not exploit Bayesian net-

works to their full extent. Furthermore, the scheme is tested on a limited

dataset (only 2, 400 sample points from real world traffic data), which make

their numerical evaluation quite preliminary.

Here, a Bayesian framework for vehicular traffic monitoring networks is

proposed. This approach bears similarities with [165], as both use a BN and

an associated GMM. Nevertheless, the effectiveness of localized Bayesian

networks is demonstrated in large and real datasets, extending their capabil-

ities to anomaly detection, validating the framework with a large real-world

deployment and comparing it against a number of regression approaches

from the literature, to test its ability to capture the spatio-temporal structure

underpinning real data.

4.2. Bayesian Framework 89

4.2 Bayesian Framework

As briefly discussed above, in vehicular traffic monitoring networks it makes

sense to exploit information from multiple road links at past time intervals

to forecast the traffic flow in any target road link at any (current) time in-

terval. In the following, a (any) target road is considered in the topology,

interchangeably referring to it as the current road. The objective of the BN is

to jointly track current and past speed values for the current road, along with

past speed values of upstream roads. To cut down the number of connections

among multiple road links in the associated DAG, the target road link and its

upstream road links are considered in the DAG construction, while neglect-

ing downstream links. This choice allows reducing the number of possible

connections in the DAG and, in turn, its complexity. This can be justified

from the way BNs represent conditional independence relations among ran-

dom variables: a node is independent of its ancestors given its parents, where the

ancestor/parent relationship is with respect to some fixed topological ordering of the

nodes [168].

4.2.1 Traffic Readings

Mobility data was acquired from 686 Bitcarrier sensor nodes scanning Blue-

tooth and Wi-Fi signals of mobile devices traveling on road links [169] for a

full year. This sensing system has been deployed by Worldsensing in a ma-

jor city (details are not provided to protect the company’s industrial plans).

Readings were taken with a time granularity of 5 minutes (the time slot du-

ration), and each reading from any of the sensors corresponds to the av-

erage traveling speed (in [km/h]) gathered during the corresponding time

slot (with timestamps in UTC format). For 686 Bitcarrier sensor nodes, this

amounts to a total of 54, 591, 660 data points in the considered time period

from January 2016 to December 2016. To account for missing/unavailable

data points, the entire dataset is pre-processed via linear interpolation, jitter

removal, and low-pass filtering. After this pre-processing phase, a time series

(one per sensor) with one point every 5 minutes is obtained. The Bayesian

learning routines operate on these time slotted signals.

90 Chapter 4. A Bayesian Framework for Vehicular Monitoring Networks

cause nodes

…

effect nodey

x1 x2 xU xc

FIG. 4.1: Bayesian network associated with any target node in the physical net-
work topology.

4.2.2 Probabilistic inference via GMM

As per the above discussion, it is assumed that the traffic flow in the current

road link at current time interval is independent of other road links, given the

traffic flow in the current link and in its upstream road links at past time in-

tervals. Taking advantage of conditional independence relations, the trends

of the current link can be statistically analyzed, computing the marginal con-

ditional distribution of the effect (i.e., current) node, as described below.

At any current time t, let z = (x, y) denote a multidimensional ran-

dom vector: x is a random vector containing the random variables (r.v.s)

associated with the cause nodes in the DAG and y denotes a (scalar) r.v.

representing the speed value of the current node (to be estimated). In the

BN, past measures are considered: if t is the current time slot, the mem-

ory spans those samples in {t− 1, . . . , t−W}, where W is the memory size.

Let U be the number of upstream roads in the physical network topology.

For each upstream road it is defined a cause node u in the DAG with r.v.s.

xu = (xu
t−1, xu

t−2, . . . , xu
t−W), where u = 1, . . . , U and xu

t−i represents the speed

reading for road u at time t − i, with i = 1, . . . , W. For the current road,

a further cause node is defined in the DAG, with associated vector xc =

(xc
t−1, xc

t−2, . . . , xc
t−W). Hence, x is obtained as the concatenation of xu (u =

1, . . . , U) and xc, i.e., x = (x1, x2, . . . , xU, xc). The r.v. y contains the speed

at the current time t for the current road c. A diagram of the just described

Bayesian network is shown in Fig. 4.1. For the numerical results in this study

a memory of W = 5 time slots is considered, i.e., 25 minutes of historical

data.

A GMM is adopted to approximate the joint probability distribution of

4.2. Bayesian Framework 91

z. Besides forecasting, anomaly detection is also performed by taking into ac-

count a probabilistic score associated with the marginal Cumulative Distri-

bution Function (CDF) of the effect node, as detailed shortly in Section 4.3.2.

The GMM is defined as:

P(z|Θ) =
M

∑
m=1

αmPm(z|θm) , (4.1)

where M is the number of Gaussians in the mixture, whose parameters are

Θ = {α1, . . . , αM, θ1, . . . , θM}. αm are scalars such that ∑
M
m=1 αm = 1. Each

Pm(·|θm) is a Probability Density Function (PDF) characterized by θm = (µm, Σm),

m = 1, . . . , M, i.e., Pm(z|θm) = G(z; µm, Σm). In this study, the parameters are

estimated via Bayesian Variational Inference (BVI) with unlabeled data [168].

BVI can be seen as an extension of the Expectation-Maximization (EM) algo-

rithm from a maximum a posteriori estimation of the single most probable

value of each parameter to a complete Bayesian estimation, which computes

(an approximation to) the entire posterior distribution of the parameters and

latent variables. The marginal conditional distribution of the effect node is

computed as:

P(y|x) =
P(x, y)

P(x)
=

P(x, y)

∑y P(x, y)
, (4.2)

where the sum is over the domain of r.v. y and P(x, y) = P(z|Θ). Exploiting

the properties of Gaussian PDFs [170], a concise optimal forecasting relation-

ship can be derived, which allows new data to be processed on-the-fly:

ŷ =
∫

yP(y|x)dy

=
∫

y

[
M

∑
m=1

βmG(y|x; µm,y|x, Σm,y|x)

]
dy =

=
M

∑
m=1

βm

[∫
yG(y|x; µm,y|x, Σm,y|x)dy

]
=

=
M

∑
m=1

βmµm,y|x .

(4.3)

92 Chapter 4. A Bayesian Framework for Vehicular Monitoring Networks

Specifically, for m = 1 . . . , M,

µm,y|x = µm,y − Σm,yxΣ
−1
m,xx(µm,x − x)

Σm,y|x = Σm,yy − Σm,yxΣ
−1
m,xxΣm,xy

µm = (µm,x, µm,y)

Σm =

(
Σm,xx Σm,xy

Σm,yx Σm,yy

)

βm =
αmG(x; µm,x, Σm,xx)

∑
M
n=1 αnG(x; µn,x, Σn,xx)

.

(4.4)

For the numerical results in this study, M is set to 20 and the GMM parame-

ters Θ are initialized via K-means clustering [168].

4.2.3 Data Matrices and Typical Weekly Profiles

Upon collecting and pre-processing the raw data from the sensor nodes, two

additional data objects are defined: 1) the data matrix and 2) the typical weekly

profile. These are defined for each target road as follows. 1) The data matrix

is the collection of readings gathered from the target road (effect node in the

DAG) for all times t and from the cause nodes in the previous W time slots

(i.e., variable z, see Section 4.2.2). 2) The typical weekly profile is a polished

time series, which is anomaly-free and will be used in Section 4.3.2 as a ground

truth signal to quantify the Bayesian framework’s ability to detect anomalies.

This profile is obtained as follows: for each time t in a certain day of the week

d (e.g., Monday), a window of data points is considered before and after it

(the window size is equal to 15 minutes, for a total of 30 minutes with the

current time t being in the center of it). All the data points belonging to this

time window for this same day of the week are collected for an entire year

(e.g., all Mondays in a year for a window of 30 minutes centered on t) and

the PDF associated with the readings in this time window is computed. For

each time t, it is finally evaluated the median of this PDF, which becomes the

new datapoint for the considered target road at time t and day d. The typical

weekly profile may be seen as a sort of expected behavior for the traffic on

each road across the entire year.

4.3. Numerical Results 93

4.3 Numerical Results

In this section, the performance of the Bayesian framework of Section 4.2 (re-

ferred to in the following as Bayesian net) is assessed from two points of

view: 1) its forecasting capability (Section 4.3.1) and 2) its anomaly detec-

tion accuracy (Section 4.3.2).

1) Forecasting: for the forecasting capability, Bayesian net is evaluated

in terms of the error (residual) between the original and the predicted data

points, i.e., Res(yt, ŷt) = yt − ŷt, where yt is the speed reading at time t

for any of the deployed sensors with t = 1, . . . , T, with T being the num-

ber of readings for that sensor in a full year. The following state of the art

algorithms are also considered in the performance assessment: Last Sam-

ple (“Last sample”), Bayesian Regression (“Bayes regr”), Lasso Regression

(“Lasso regr”), Linear Regression (“Linear regr”), Ridge Regression (‘Ridge

regr”), and Regression Tree (“Tree regr”). Numerical results are obtained

using 75% of the data matrix (training set) to estimate the GMM parameters

for each road in the physical network topology, whereas the remaining 25%

(validation set) is employed to test the obtained GMM. The forecasting capa-

bility of the above schemes is obtained aggregating the results of the data

points in the validation set for each sensor node, computing various statis-

tics for the residuals. The prediction performance is shown and discussed in

Section 4.3.1.

2) Anomaly detection: the typical weekly profile of Section 4.2.3 is uti-

lized as a ground-truth signal to evaluate the anomaly detection accuracy,

as follows. For each sensor node, artificial anomalies, consisting of random

noise sequences whose duration is D = 5 time slots (5 minutes each), are

injected in random non-overlapping positions of the sensor’s weekly pro-

file. This artificial signal is a D-sequence of additive, zero-mean white Gaus-

sian noise samples with standard deviation σn. For the anomaly detection,

a probabilistic score is obtained from the marginal distribution of the effect

node applied to the noisy weekly profile. Hence, the anomaly rating is com-

pared against a sensor-specific threshold ζ. This threshold is set according to

a network requirement quantifying the percentage of anomalies that a sen-

sor is expect to flag in a day in the considered vehicular network. To evaluate

the anomaly detection accuracy, the results of all sensor nodes have been ag-

gregated, each evaluated considering a noisy version of its weekly profile.

Numerical results are discussed in Section 4.3.2.

94 Chapter 4. A Bayesian Framework for Vehicular Monitoring Networks

FIG. 4.2: PDF of the residual Res(yt, ŷt).

4.3.1 Forecasting Capability

In Fig. 4.2 it is shown the PDF of the residual Res(yt, ŷt). The Bayesian net

has a greater forecasting capability that the other schemes. In fact, its PDF

is more sharply peaked around zero, meaning a smaller difference between

the actual and the predicted samples, |yt − ŷt|. As a consequence, the Root

Mean Squared Error (RMSE), defined as RMSE = (∑T
t=1(yt − ŷt)2/T)1/2, is

also smaller.

Fig. 4.3 shows the (empirically measured) complementary CDF of the

residual Res(yt, ŷt), i.e., P[Res(yt, ŷt) ≥ R]), where R is kept fixed for all

sensor nodes. Bayesian net reports a lower number of events for which

Res(yi, ŷi) ≥ R and, in turn, its curve in Fig. 4.3 decreases the fastest, reaching

a minimum of 10−6 for R = 11 km/h. These results indicate that a Bayesian

approach is an appropriate tool to perform forecasting, achieving competi-

tive performance with the best algorithms from the literature.

4.3.2 Anomaly Detection Accuracy

Next, the typical weekly profiles are used as ground-truth signals to evaluate

the anomaly detection accuracy. This makes it possible to work with labeled

time series and, in turn, to precisely quantify the classification performance

4.3. Numerical Results 95

FIG. 4.3: Complementary CDF of the residual Res(yt, ŷt).

of Bayesian net in terms of: i) Precision, ii) True Positive Rate (TPR) and

iii) F measure. In Fig. 4.4, a segment from a typical weekly profile is shown

for sensor (target) node with ID 1000003 and cause nodes 1000003, 1000090,

1000197 (the speed traces in this plot are synchronized in time).

According to the DAG construction method of Section 4.2.2, the target node

1000003 is also among the cause nodes in the DAG, and it contains the past

readings {xc
t−1, . . . , xc

t−W}. Instead, the effect node contains yt, i.e., the speed

measured at the target road at time t.

Let’s now consider Fig. 4.4 to illustrate how anomalies are injected and

detected. For each sensor node, random artificial anomalies of length D time

slots are injected in random non-overlapping positions, as explained above.

Hence, a probabilistic score is computed from the marginal CDF of the ef-

fect node (that is computed taking the noisy profile as the input sequence).

Whenever the anomaly rating exceeds the (sensor-specific) threshold ζ, the

corresponding time slot is flagged as containing an anomaly (see the circular

markers in the top subplot of Fig. 4.4). In the bottom subplot, it is shown the

score for the trace in the top subplot, which is defined as:

SCOREt =





log10(Ct)− log10(0.5) Ct < 0.5

− log10(1− Ct) + log10(0.5) Ct ≥ 0.5 ,
(4.5)

96 Chapter 4. A Bayesian Framework for Vehicular Monitoring Networks

FIG. 4.4: Anomaly detection example for sensor node with ID 1000003 and cause
nodes 1000003, 1000090, 1000197.

where Ct = CDF(yt|xt) is the Cumulative Distribution Function computed

for yt and conditioned on the past readings (xt in the DAG). Using Eq. (4.5),

the further the current speed yt is from the median of the PDF P(yt|xt), the

greater is the score. A high score means that the speed value yt is atyp-

ical with respect to what would be predicted by the (marginalized) PDF.

In this example, σn = 5 km/h is used, which is the maximum noise level

that was considered in the experiments. As for the threshold ζ, for Fig. 4.4

log10(no. of anomalies/no. of samples) = −3 (application requirement) has

been set, where “no. of samples” is the total number of data points in the val-

idation set for each sensor node; ζ is numerically found to meet this. For a

given threshold ζ, anomalies are detected (circular markers in the top sub-

plot of Fig. 4.4) by assessing whether |SCOREt| ≥ ζ. Note that in Fig. 4.4

single target road is considered and, as such, the given application require-

ment is used to compute a single threshold ζ for that road. However, for an

entire network, this same requirement is employed to derive one threshold

per DAG (i.e., one for each target road in the physical topology).

4.3. Numerical Results 97

FIG. 4.5: BN performance, when used as an anomaly classifier.

Referring to α as the total number of (artificial) anomalies that were in-

jected, the number of time slots that may be possibly affected is S = α(D +

W). This is because anomalies are non-overlapping, each anomaly lasts D

time slots and its effect could propagate for W further time slots due to the

memory in the DAG, i.e., D + W is the support of a single anomaly. Given

this, let’s define S (with |S| = S) as the set of time slots that could possibly

contain an anomalous reading, as per the previous reasoning. From this defi-

nition, it follows that the maximum number of True Positives (TP) is |S| = S.

The number of False Negatives (FN), False Positives (FP), and True Negatives

(TN) are also considered, and ∑ X represents the total number of time slots

that are flagged as being of type X, with X ∈ {TP, FP, TN, FN}. For instance, in

the example of Fig. 4.4, we have α = 2, D = 5, W = 5, S = 20, ∑ TP = 13,

∑ FN = 7, ∑ FP = 0, and ∑ TN = T′ − S, where T′ is the number of time

slots in the graphs. For the following results, α = 70 has been used, which

corresponds to an average of 10 artificial anomalies that are added per day.

Fig. 4.5 shows the classification performance of the proposed score-based

anomaly detector in terms of: i) Precision, ii) TPR and iii) F measure (F).

98 Chapter 4. A Bayesian Framework for Vehicular Monitoring Networks

FIG. 4.6: The ROC space.

These metrics are defined as follows:

Precision =
∑ TP

∑(TP+ FP)
(4.6)

TPR =
∑ TP

∑(TP+ FN)
(4.7)

F =
2 ∑ TP

(2 ∑ TP+ ∑(FP+ FN))
(4.8)

In Fig. 4.5, these metrics are plotted as a function of the application re-

quirement (i.e., log10(no. of anomalies/no. of samples)), which is reported

in the abscissa. As an example, a requirement equal to zero means that all

the time samples are flagged as containing an anomaly and, as such, the true

positive rate is TPR = 1. However, in this case, the Precision is heavily im-

pacted by the number of false positives (FP), which is at least T − S, where

S is the maximum number of time slots affected by real anomalies (true pos-

itives) and T corresponds to the number of time slots in the time series. As

expected, the anomaly detection accuracy increases with an increasing noise

level, approaching F = 0.8 for σn = 5 km/h (when the requirement on the

x-axis is −2). Also, a higher Precision entails a smaller TPR and vice-versa.

In Fig. 4.6, the Receiver Operating Characteristic (ROC) space is shown,

obtained plotting the TPR (i.e., Sensitivity) against the False Positive Rate,

4.4. Discussion 99

FPR = ∑ FP/ ∑(FP+ TN) (i.e., 1− Specificity) varying the application re-

quirement as a free parameter. This space shows the discrimination capabil-

ity of the score-based anomaly classifier by varying the requirement. Ideally,

we would like to get TPR → 1 and FPR → 0, which means that desirable

working points lie in the upper-left corner of the ROC space. As expected,

the anomaly detection accuracy increases with an increasing noise level (in-

creasing σn). Moreover, the performance of the proposed Bayesian frame-

work can be further improved through the following TP aggregation criterion

(“TP aggr.”). As discussed above, each anomaly has an associated support

of D +W time slots. Hence, whenever the score exceeds the threshold at any

given time instant, D + W data points per anomaly instance are counted as

true positives if at least one alarm is raised within the real (and known) sup-

port of the injected anomaly. With aggregation, the ROC curves effectively

move towards the upper-left corner of the space, leading to some major im-

provement. For the example in Fig. 4.4, this strategy leads to ∑ TP = 20,

∑ FN = 0, ∑ FP = 0, and the total number of true negatives is ∑ TN = T′ − S,

where T′ is the number of time slots in the plot. The rationale about this ap-

proach is that, if there is at least one alarm within the support of an anomaly

instance, in practice, this may be sufficient to declare the entire anomaly in-

stance as detected.

4.4 Discussion

With this work it has been demonstrated that localized Bayesian networks

are an efficient and lightweight means to tackle prediction and anomaly de-

tection problems in large vehicular networks. Nevertheless, a few research

avenues remain open. An automated procedure could be set up to adapt

the memory size W and the considered upstream nodes in the DAG in a

sensor-specific fashion. Suitable dimensionality reduction tools could be used

to reduce the complexity associated with the BN training task. A more re-

fined Bayesian model could be defined, associating a state to each sensor ac-

cording to the locally experienced traffic condition (e.g., normal, congested)

and specializing the GMMs to it.

101

Chapter 5

Deep Reinforcement Learning for

DASH Video Streaming

Video streaming has been the dominant source of Internet traffic for the last

few years; right now, videos make up 55% of all mobile traffic, and this figure

is predicted to rise to 75% in the next five years [171]. Since its inception in

2011, Dynamic Adaptive Streaming over HTTP (DASH) [172] has become the

dominant standard for video transmission, as it relies on the existing HTTP

server and Content Delivery Network (CDN) infrastructure and is not af-

fected by firewalls and NATs. The DASH standard leaves complete freedom

to the client in the choice of the adaptation policy: videos are divided into

short segments (usually a few seconds long), which are encoded at different

compression levels to generate an adaptation set of representations at different

bitrates. The server makes all the segments in the adaptation set available

to the client as HTTP resources, as well as a Media Presentation Description

(MPD) file containing all the information about the video segments and their

URLs. The client sequentially downloads each segment, switching between

representations according to its adaptation logic in an attempt to optimize the

Quality of Experience (QoE) for the current video and network conditions.

The research on DASH adaptation algorithms is still ongoing, and most

commercial systems employ very basic heuristic approaches, leading to an-

noying quality variations [173, 174] and to an inefficient use of network re-

sources. In order to maximize the user QoE, the adaptation logic needs to

take into account both the video content, which affects the perceived qual-

ity of the downloaded representations, and the playout buffer state. In fact,

a major factor in video QoE is rebuffering [175], i.e., the temporary freezes

in the video playout as the client waits until the next segment is down-

loaded [176].

102 Chapter 5. Deep Reinforcement Learning for DASH Video Streaming

In this challenging scenario, Reinforcement Learning (RL) has emerged

as an elegant and viable solution to the video adaptation problem. RL-based

algorithms learn from past experience by trial-and-error, and gradually con-

verge to the optimal policy [177]. The biggest design issue in these systems

is that the state space of the corresponding Markov Decision Process (MDP)

is very large. On the other hand, the number of states needs to be small to

ensure quick convergence and make online solutions react timely to changes

in the environment statistics.

In this work, deep neural networks are used to learn excellent video adap-

tation strategies, while compactly and effectively capturing the experience

acquired from the environment. The use of deep neural networks leads to

several advantages, such as: i) the ability to deal with very large state spaces

efficiently, effectively coping with the curse of dimensionality issue of RL

algorithms, ii) the possibility of compactly representing the acquired experi-

ence through a set of weights, iii) the attainment of much better QoE perfor-

mance, that is here quantified in terms of both the instantaneous visual qual-

ity of each segment and the quality variations across video segments, as well

as the frequency of freezing/rebuffering events. Here, D-DASH is hence pro-

posed, a framework for DASH video streaming that, combining deep neu-

ral networks with a carefully designed reinforcement learning mechanism,

yields better QoE than prominent state of the art rate-adaptation algorithms.

More specifically, the key points of this study are the following.

• Existing RL-based techniques for video adaptation have been reviewed,

emphasizing their limitations in terms of training effort (time and re-

quired memory space) and QoE.

• The DASH video streaming problem has been formulated within a Deep

Q-learning framework, detailing the design choices, that include: the

choice of a reward function that effectively takes into account video

quality variations and freezing/rebuffering events, the use of a learn-

ing architecture featuring two twin neural networks and a replay mem-

ory to get an improved stability and a faster convergence, and the use

of a pretraining phase (on synthetic traces) to speed up the convergence

of D-DASH when confronted with real traces.

• Deep forward and recurrent neural network architectures have been

evaluated, assessing their training cost (time and memory) and their

5.1. Related work 103

attained QoE.

• A thorough numerical validation of D-DASH is provided, considering

real and simulated traces and comparing it against prominent algo-

rithms from the state of the art.

The results shed some light on the importance of tracking a certain amount

of channel memory in the learning architecture, especially for complex net-

work scenarios, and the superiority of the proposed deep Q-learning de-

signs: in all the experiments, these have shown a higher average quality with

smaller fluctuations across video segments, and a much lower percentage of

rebuffering events.

The rest of the chapter is organized as follows: Section 5.1 presents the

state of the art in DASH adaptation logic, with a focus on RL-based algo-

rithms. Section 5.2 defines the system model, detailing the decision making

instants, the playout buffer behavior and the reward function. Section 5.3

uses these notions within a decision making framework, starting from a Markov

decision process approach to then delve into standard and deep Q-learning

based ones. Section 5.4 provides some preliminaries on the neural network

structures that will be considered in this framework and Section 5.5 presents

the D-DASH deep Q-learning system. Section 5.6 describes the simulation

settings/parameters, quantifies the performance of D-DASH over synthetic

and real channel traces, and compares it against selected algorithms from the

literature. Finally, Section 5.7 concludes the work.

Part of the results presented in this chapter has been published in [178].

5.1 Related work

In this section, it is provided an overview of the most relevant works on

DASH client-side adaptation strategies in the literature. As measuring QoE

itself is a subject of intensive research in the field, there is not a single set

of reference performance metrics [179]. In-depth reviews of the factors that

impact QoE and the way they are measured in different streaming systems

can be found in [180, 181]. Among such elements, in this work following

three factors are considered. The first, and most obvious, is the instantaneous

picture quality, which can be assessed through different techniques. Notable

ones are: objective metrics such as the bitrate, no-reference metrics, which

104 Chapter 5. Deep Reinforcement Learning for DASH Video Streaming

gauge the video distortion solely from the received frames (i.e., no external

quality reference is provided) [182], or full-reference metrics such as Struc-

tural Similarity Index (SSIM) [183], a perception-based metric which mea-

sures the distortion between the input and output of the video encoder at the

transmitter side. These approaches are adopted by various DASH adapta-

tion algorithms in the literature [184, 181, 185]. The second factor, which is

often the most pressing concern in adaptive video streaming, is represented

by rebuffering events: their length and frequency strongly affect user QoE,

as demonstrated by Hoßfeld et al. in [175]. The third factor is video quality

stability: users notice frequent transitions in the video quality and might be

annoyed by them [186]; in DASH video streaming, quality changes are not

due to packet loss, but to switches between different adaptations (i.e., sudden

changes in the quality of the video).

The literature on adaptation logics for DASH is vast, and the reader is

referred to [187] for a comprehensive overview of existing techniques. For

the purpose of this work, adaptation logics can be divided into two broad

categories: 1) heuristics and 2) dynamic programming based. One of the ear-

liest adaptation algorithms to go beyond simple buffer-based control loops

was the Fair, Efficient, and Stable adapTIVE algorithm (FESTIVE) [188]: this

scheme does not address QoE explicitly, but rather uses a stability cost func-

tion and a limit on the frequency of bitrate increases to privilege stability

over instantaneous video quality. FESTIVE has the added advantage of be-

ing fairer than commercial protocols in terms of QoE, as well as of reducing

the number of rebuffering events because of its conservative approach when

increasing the bitrate.

Probe and Adapt (PANDA) [189] is another landmark algorithm in the

DASH adaptation literature. It uses a proactive probing strategy to evaluate

the channel capacity and changes its rate estimate according to an additive-

increase approach to prevent fluctuations due to non-persistent cross-traffic

and on-off effects. In stationary conditions, its bitrate estimate equals the

TCP throughput. PANDA then uses a hysteresis threshold to avoid frequent

switches between adjacent representations. A similar but simpler heuristic,

called QoE-driven Rate Adaptation Heuristic for Adaptive video Streaming

(QoE-RAHAS), was presented by Petrangeli et al. in 2014 [190].

Both PANDA and FESTIVE tend to be extremely conservative in their

decisions, and they often end up underutilizing the available capacity unless

5.1. Related work 105

the network conditions are extremely stable. Heuristics are hard-pressed to

efficiently exploit the available capacity and still limit rebuffering events and

quality switches, unless they are designed with knowledge of the network

statistics, thus enabling the adoption of a dynamic programming approach

to optimally solve the adaptation problem.

Li et al. use finite-horizon dynamic programming [189], modeling the

adaptation problem as a fairness problem between future segments, with an

added penalty for quality switches. Adding the adaptation logic on top of

PANDA’s switching strategy, the authors manage to significantly improve

video quality without losing the algorithm’s buffer and quality stability prop-

erties. In order to reduce the computational load, the authors assume that

the available capacity remains constant throughout the optimization horizon.

However, this assumption could prove to be unrealistic in wireless channels,

which can suffer from outages and quick capacity variations due to mobility,

fading and cross-traffic.

Yin et al. developed a system [191] that uses Model Predictive Control

(MPC) to make decisions based on a look-ahead approach, with a QoE model

similar to that considered in this work. More specifically, they rely on a

throughput predictor to make optimal choices for a finite time horizon of

five future segments. This approach is equivalent to dynamic programming

and has the same critical dependency on the quality of the throughput pre-

dictor: if the predicted channel statistics are inaccurate, the adaptation logic

will make suboptimal decisions.

An interesting paper by Bokani et al. [192] uses a Markov Decision Pro-

cess (MDP) model to determine the optimal adaptation policy with dynamic

programming. The main issue of this solution is the computational load:

the model is too complex to be solved at runtime. The authors propose sev-

eral solutions to mitigate the complexity issue, but the performance of these

heuristics is either unsatisfactory or requires to store a large amount of offline

computational results in the device’s memory. A more recent work by Zhou

et al. [193] proposes a pseudo-greedy heuristic to tackle the same problem,

with the same kind of limitations. Other works use MDPs in more specific

situations, such as streaming for multihomed hosts [194] and cloud-assisted

adaptive streaming [195].

106 Chapter 5. Deep Reinforcement Learning for DASH Video Streaming

5.1.1 Reinforcement Learning and DASH

There are several works in the literature that use RL to overcome dynamic

programming’s two biggest drawbacks: computational load, and the need to

know the statistics of the network and video content in advance. RL-based

algorithms learn the network statistics from experience, and their compu-

tational complexity is low. The main limitation of RL is the amount of ex-

perience it needs to make good decisions: as the number of states of the

MDP grows, so does the necessary training time. Specifically, adaptive RL

algorithms need to have a very coarse state granularity to effectively react to

changes in the environment. Hence, there is a fundamental trade-off between

adaptability and descriptive power: to be adaptable, the algorithm will need

to visit and update each state frequently, i.e., to have a small number of states.

However, having fewer states means that the knowledge of the environment

is inevitably poorer (and, probably, so will be the algorithm’s choices).

Two works by Claeys et al. represent the two opposite extremes in this

trade-off: the algorithm in [196] has a complex reward function and a 6-

dimensional state definition, and its training requirements are daunting, while

the algorithm presented in [197] is lean and converges very quickly, but has

a very rough state definition and a suboptimal performance. Another lean

Q-learning algorithm that uses a similar MDP model was presented by Martín

et al. in 2015 [198].

In 2015, Van Der Hooft et al. presented an interesting hybrid between RL

and standard algorithms [199]: their system is based on Microsoft Smooth

Streaming (MSS), but adapts the parameters of the heuristic to reflect the

network conditions, improving its performance. The algorithm is still not

QoE-aware, and the simple buffer-based MSS heuristic is suboptimal, but

hybrid solutions such as this might be an interesting approach to overcome

some of RL’s main drawbacks.

In another recent work [200], the authors try to overcome the basic trade-off

between efficiency and adaptability by parallelizing the learning process:

since the problem has a well-known structure, experience in one situation

can be used to learn how to act in others. This ad-hoc generalization scheme

relies on the specific structure of the problem, but it is a step in the right

direction.

As it will become apparent in the next sections, the D-DASH framework

5.2. System model 107

makes it possible to better exploit the observed data, learning from experi-

ence faster than other algorithms in the literature and quickly adapting the

video encoding policy to the current working context.

5.2 System model

As mentioned above, a DASH client that downloads a video sequence seg-

ment by segment has been considered in this study. The decision-making

process follows a slotted time model, where t = 1, 2, . . . is the video segment

number. For any given segment t, the client is free to choose which repre-

sentation to download from a given adaptation set A. Each representation,

in turn, is uniquely associated with a certain video quality level of the seg-

ment, indicated by qt. The aim is to find the policy that maximizes the QoE

perceived by the user. In the following of this section the assumptions are

presented regarding the video streaming service and then it is introduced

the reward function that accounts for the QoE factors described in the previ-

ous section. Along the way, the main notation used in the chapter will also

be introduced.

5.2.1 Video streaming services

Each video segment is characterized by a certain quality-vs-rate trend, which

is described by means of the function Ft(qt) that gives the size of the segment

t with quality qt. Ft(·) is assumed to be known before downloading segment

t, as it can be made available to the client as part of the MDP or predicted

from previous scenes, since the correlation between subsequent segments is

usually high.

Denoting by Ct the average channel capacity experienced during the down-

loading of the segment t, the total downloading time τt can be easily obtained

as

τt =
Ft(qt)

Ct
. (5.1)

T is the (constant) playout duration of a video segment. Moreover, let’s

define the buffer (time) for segment t, denoted by Bt, as the lapse of time be-

tween the starting of the download of segment t and the instant the segment

is due to start its playout at the client. Rebuffering events (during which

108 Chapter 5. Deep Reinforcement Learning for DASH Video Streaming

the video playout freezes) occur whenever the playout buffer empties before

the next segment has been completely downloaded, i.e., when τt > Bt. Con-

versely, when τt < Bt ≤ T the download of the segment t is completed before

its planned playout time and the download of the next segment can start im-

mediately, thus adding an extra Bt − τt time budget to the buffer of segment

t + 1. Accordingly, the rebuffering time for a generic segment t is given by:

φt = max(0, τt − Bt) , (5.2)

while the buffer for the next segment is computed as

Bt+1 = T + max(0, Bt − τt) . (5.3)

The buffer is limited to 20 seconds, as most commercial video streaming sys-

tems limit video buffering to save memory and network capacity.

5.2.2 Reward function

As discussed in Section 5.1, the QoE of a video client depends on the visual

quality of the current segment, the quality variation between segments, and

the playout freezing events due to rebuffering. In the following, it is intro-

duced a reward function that captures these aspects and, in turn, can be used

to derive policies that maximize the QoE of video streaming customers.

In this work, the SSIM has been chosen as the instantaneous quality met-

ric of a video sequence, so that qt is the average SSIM of the video frames in

segment t. SSIM is one of the most common objective metrics in the litera-

ture and has been shown to correlate well with the perceived QoE [201]. As

it is a full-reference metric (i.e., its computation requires a full knowledge of

the uncompressed segment [202]), it cannot be calculated by the streaming

client, but its values when varying the video representation can be conve-

niently pre-computed, stored on the video server, and included as a field in

the MPD. This puts the computational burden for calculating the SSIM onto

the server side, even though, as reported in [203] the Ft(qt) characteristic of

a video sequence can be automatically estimated from the size of the encoded

frames by using a properly-trained deep neural network, thus making it pos-

sible to skip the computationally intensive frame-by-frame comparison with

the original video sequence at the server. Other approaches are possible, for

example computing the quality qt of video frames at the client through a

5.3. Machine learning optimization framework 109

no-reference metric [182]. Although not considered in this study, this is also

viable and would require the implementation of an additional block at the

client to estimate the quality of the received frames. The impact of inaccurate

quality estimates, via no-reference metrics, is left to future investigations.

Finally, the reward function for segment t is defined as follows:

r(qt−1, qt, φt, Bt+1) =

= qt − β‖qt − qt−1‖ − γφt − δ[max(0, Bthr − Bt+1)]
2 . (5.4)

The first term on the right-hand side accounts for the benefit of a higher qual-

ity qt of the video, while the following two negative terms are penalty factors

due to quality variations in consecutive frames and rebuffering events, respec-

tively. The right-most term is a further penalty that is applied whenever the

buffer level is below a (preset) threshold Bthr and it has been introduced to

further reduce the chance of highly-damaging rebuffering events. The coeffi-

cients β, γ, and δ are weighting factors that regulate the relative importance

of the three penalty terms. Note that, neglecting the right-most penalty term

(i.e., setting δ to zero), the reward function (5.4) is the same used in [200] and

[191], and similar to that proposed and validated by De Vriendt et al. in [186].

The weights β, γ and δ are here used to select different points in the

trade-off between a high instantaneous quality, a constant quality level, and

a smooth playback. The desired operational point might depend on several

factors, including user preferences and video content, and tuning these pa-

rameters is outside the scope of this work.

5.3 Machine learning optimization framework

This section presents the machine-learning based approaches considered in

this study to find video adaptation policies that try to maximize the per-

ceived QoE. First, the problem is formulated as an MDP, and then the Q-learning

and Deep-Q learning algorithms are introduced and detailed.

5.3.1 Markov Decision Process model

If video content is modeled as a sequence of scenes with exponentially dis-

tributed duration, like in [204], the adaptive video streaming service can be

modeled as an MDP (see, e.g., [205]), with action space A, state space S, and

110 Chapter 5. Deep Reinforcement Learning for DASH Video Streaming

reward function ρ : S × S × A → R. By a slight abuse of notation, but for

the sake of a compact notation, qt is also used to indicate the action of down-

loading a segment t with visual quality qt. The action qt ∈ A, taken when

the system is in a given state st ∈ S, determines the statistical distribution of

the next state st+1 and the reward ρ(st, st+1, qt) attained in step t. A policy

is a function Π : S → A that maps states into actions. The long-term utility

achieved by an admissible policy Π when starting from state s0 is defined as

R(s0; Π) = lim
h→+∞

E

[
h

∑
t=0

λtρ(st, st+1, Π(st))

∣∣∣∣s0, Π

]
(5.5)

where λ ∈ [0, 1) is a discount factor that ensures convergence, and P(st+1|st)

is the one-step conditional transition probability of the state process {st}. An

equivalent recursive formulation is given by:

R(s0; Π) = ∑
s1∈S

P(s1|s0)ρ(s0, s1, Π(s0)) + λR(s1; Π). (5.6)

The optimal policy Π∗(·) is finally found as:

Π∗(s) = arg max
Π

R(s; Π) , ∀s ∈ S . (5.7)

The action space, the state space, and the utility function need to be mapped

to the parameters of the proposed system in order to apply this approach to

this problem.

The action space clearly corresponds to the set A of possible representa-

tions of the video segments that can be chosen by the client. Accordingly,

the action at step t corresponds to the choice of the quality qt of the next

segment to be downloaded. Therefore, from a state st ∈ S, an agent imple-

menting a policy Π(·) will require the downloading of the segment t with

quality qt = Π(st). The state space should be as small as possible, to reduce

the complexity of the MDP, but at the same time each state should contain

enough information to permit a precise evaluation of the utility function for

each possible action qt ∈ A. Considering the reward function Eq. (5.4) as

a natural option for the utility function of the MDP, the state should hence

include the video quality qt−1 of the last (the (t − 1)-th) downloaded seg-

ment, the current buffer Bt state, the quality-rate characteristic Ft(qt) of the

next segment (the t-th), and the future channel capacity Ct from which, given

5.3. Machine learning optimization framework 111

the chosen action qt, it is possible to determine the download time τt of the

next segment, the rebuffering time ft and the next buffer state Bt+1 using

Eq. (5.1), Eq. (5.2), and Eq. (5.3), respectively. However, the future capacity

Ct of the channel can only be known in a statistical sense, from the past ob-

servations. Let’s then define the vector Ct = [Ct−n, Ct−n+1, . . . , Ct−1] of the

previous n channel capacity samples, where n is assumed to be larger than

the coherence time of the channel. In this case, the process Ct exhibits the

Markov property, since the knowledge of samples that are further away in

the past do not add any information to that contained in the current channel

vector Ct. Summing up, the state of the MPD at step t can be described by

the 4-tuple st = (qt−1, Ct, φt, Bt).

Given the state st and the action qt, the utility function of the MDP can be

finally defined as

ρ(st, st+1, qt) = r(qt, qt−1, φt, Bt+1). (5.8)

The problem Eq. (5.7) can then be solved through dynamic programming,

e.g., Value Iteration (VI) [205], but the computational complexity becomes

rapidly unmanageable as the size of the problem grows. A possible ap-

proach to deal with the curse of dimensionality is to adopt RL tools, such as

Q-learning [206], which gradually converges to the optimal solution through

trial-and-error, as explained next.

5.3.2 Q-learning

Q-learning is a RL algorithm introduced by Watkins in 1992 [206]. It works

by maintaining a table of estimates Q(s, q) of the expected long-term reward

(given by (5.6) in the problem formulation) for each state-action pair (s, q).

The Q-learning algorithm can use various exploration policies to decide

the next action based on the Q-values: the most common are the ε-greedy

policy and Softmax. Both strategies are non-deterministic; the ε-greedy pol-

icy chooses the action with the highest Q-value with probability 1− ε, and a

sub-optimal action at random with probability ε. Softmax chooses an action

according to the softmax distribution of Q-values:

p(qt|st) =
exp

(
−Q(st,qt)

ξ

)

∑q∈A exp
(
−Q(st,q)

ξ

) , (5.9)

112 Chapter 5. Deep Reinforcement Learning for DASH Video Streaming

where the parameter ξ sets the greediness of the algorithm. Greedier algo-

rithms make suboptimal choices less often, but run a higher risk of getting

stuck in local minima since they explore the state space less frequently.

In standard Q-learning, the Q-value Q(st, qt) is updated if the learning

agent takes action qt in state st. The future reward over the infinite time

horizon is approximated as maxq∈A Q(st+1, q), i.e., the best Q-value of the

future state st+1. If the Q-value matches the real expected long-term reward,

Q-learning coincides with the Bellman formulation, which exactly solves the

problem. In practice, since the Q-values are to be learned at runtime, they

only provide an approximation of the real long-term rewards, but it has been

proved that they converge to the optimal rewards for sensible exploration

policies. The Q-learning update function is given by:

R̂(st, qt) = ρ(st, st+1, qt) + maxq λQ(st+1, q) (5.10)

Q(st, qt) ← Q(st, qt) + α(R̂(st, qt)−Q(st, qt)) , (5.11)

where the learning rate α sets the aggressiveness of the update and is usually

decremented over time as the learning agent gets closer to convergence. The

choice of the maximum Q-value in the bootstrap approximation Eq. (5.10)

makes Q-learning an off-policy learning algorithm, since the greedy policy

used in the long-term reward estimation (update policy) usually differs from

the actual policy the learner uses (exploration policy). As the Q-values con-

verge, the exploration policy should become greedier until it reaches conver-

gence.

Limits of the Q-learning approach

The Q-learning approach is powerful, yet with some limitations: the algo-

rithm provably converges to the optimal policy if its parameters are chosen

correctly [206], but the convergence speed is an issue in complex problems.

In [207], Kearns and Singh proved that, for an MDP with N states and A ac-

tions, the number of samples necessary for the expected reward to converge

within ε of the optimal policy with probability 1− p is bounded by:

O

(
N A ε−2

(
log
(

N

p

)
+ log

(
log
(

ε−1
))))

. (5.12)

For fixed values of ε and p, the number of training steps is O(NA log(N)),

5.3. Machine learning optimization framework 113

but the constant factor can be significant. Due to the curse of dimensionality,

the number of states of the MDP tends to be very large for all but the most

trivial problems, making standard Q-learning need a huge amount of train-

ing samples to reach convergence and obtaining a good trade-off between

precision and adaptability.

Depending on the definition of the video adaptation MDP, standard Q-

learning algorithms can either be fast to converge and adaptable in an online

setting [197, 198] or efficient after convergence [196]: the number of states

necessary to accurately represent the environment makes Q-learning slow

and unwieldy.

The objective is to concoct RL algorithms that converge quickly and that

are capable of generalizing based on experience, i.e., that can cope with previ-

ously unseen channel/quality patterns, and that approximate well the optimal

policies that would be obtained by solving the MDP. To achieve this, refer-

ring to s′ as the state of the system upon taking action q and by r the actual

reward accrued from that action, we advocate using the 4-tuple (s, q, r, s′) to

update Q(s, q) and, along the same lines of [200], to concurrently improve the

Q-values associated with other states and actions. As explained below, this is

obtained through Deep Q-learning, as it provides a natural and effective way

to generalize the knowledge acquired during specific transitions and reuse it

for other states and actions.

5.3.3 Deep-learning integration

Considering the scenario that tackled in this study, Q-learning has two main

drawbacks:

• Continuous state space. The quantities defining the state space, namely,

the buffer state and the channel capacity take value in some real inter-

val. The definition of an MDP of manageable size involves a quantiza-

tion of buffer and channel capacity according to a predefined number of

levels (dictated by the quantization step). The smaller the quantization

step, the better the approximation of the actual (continuous) variable

and the more accurate the fit between the MDP and the process it rep-

resents. However, the number of states grows very quickly as the quan-

tization step gets smaller. The best compromise between representation

accuracy and number of states is often difficult to find;

114 Chapter 5. Deep Reinforcement Learning for DASH Video Streaming

• Curse of dimensionality. This is a direct consequence of the previous

point, since the number of samples required for Q-learning to converge

grows very quickly with the number of states, according to Eq. (5.12).

Here, the problem is not only related to the convergence time, but also

to the data availability: optimal policies may be hard to attain due to

the need for too many data samples, which may not be available in

practical settings.

With deep Q-learning these issues are addressed by approximating the

action-value function Q(s, q) through a neural network that, for any given

state and action pair (s, q), returns the corresponding (estimated) Q-value

Q(s, q). The network weights, once trained, will encode the mapping and

replace the tables used by Q-learning. This allows the model to be fed with

continuous variables, avoiding the quantization problem, and has the further

desirable property that neural networks, if properly trained, are able to gen-

eralize, providing correct answers (excellent Q-value approximations) even

for points (s, q) that were never processed in the training phase. In other

words, neural networks act as universal approximators. As quantified below,

in Sec. 5.6.4, this amounts to a reduction of the number of training samples

that are required to reach a certain performance level. With this approach,

the RL logic remains unchanged, and there is no restriction on the neural net-

work architecture to use. The network’s weights are updated to approximate

the optimal action-value function Q∗(s, q) using typical gradient descent op-

timization methods: the numerical results shown in this study have been

obtained by using the Adaptive Moment Estimation (Adam) method [208],

in conjunction with back-propagation. The use of neural networks within

the proposed architecture for video-streaming control is further discussed in

Sec. 5.6.4.

5.4 Neural network architectures: preliminaries

A typical neural network consists of many simple units, called neurons, con-

nected in several ways which depend on the implemented architecture. In-

put neurons get activated directly by the environment state variables, while

other neurons are activated through weighted connections from neurons re-

siding in previous layers. Given the architecture, i.e., the way neurons are

5.4. Neural network architectures: preliminaries 115

FIG. 5.1: Network architectures considered in this study: an MLP network with
one (1a) and two (1b) hidden layers; a RNN based on an LSTM cell (2). For this
plot, the channel memory was assumed n = 2, i.e., Ct = [Ct−2, Ct−1].

connected, and the activation functions, i.e., how the weighted input is re-

shaped by each neuron (and subsequently sent forward to the next layer),

the whole system is completely determined by the connection weights and

biases, which are both included in a single vector w in the following. Any

type of neural network can be used to approximate the action-value function.

In this study, two different network architectures have been explored, specif-

ically Multilayer Perceptron (MLP) and Long-Short Term Memory (LSTM)

networks.

An MLP is a fully connected feed-forward network with one or more hid-

den layers (see Fig. 5.1, subfigures (1a) and (1b)). The output of any neuron

in any layer ℓ ≥ 1 is obtained by first computing a weighted sum of all the

outputs from the previous layer, and then evaluating it through a non-linear

activation function (the hyperbolic tangent, in this case). The final output

vector, from the neurons in the last layer, is obtained through a cascade of

operations of this type, by passing the output vector from any layer ℓ ≥ 1

to all neurons in the next layer ℓ+ 1. This network has no memory, and this

means that given an input vector, the final output vector only depends on

the network’s weights. In this case, to keep track of some memory, such as

the temporal evolution of video samples up to a certain number of instants

(video segments) in the past, the input vector has to be extended to contain

this information. This entails a redefinition of the system state (to account for

current and past samples), which corresponds to a larger number of neurons

and to a higher complexity (in terms of training time and memory space).

On the other hand, Recurrent Neural Networks (RNNs) implement some

internal feedback mechanics that introduce memory, i.e., given an input vec-

tor, the network output depends on the network’s weights and on the pre-

vious inputs. In this study, an RNN network based on LSTM cells [209] is

implemented as sketched in Fig. 5.1(2). A schematic diagram of the LSTM

116 Chapter 5. Deep Reinforcement Learning for DASH Video Streaming

FIG. 5.2: Schematic diagram of an LSTM cell.

internal structure is shown in Fig. 5.2. The memory is implemented through

a Memory Cell that allows storing or forgetting information about past net-

work states. This is made possible by structures called gates that handle

access to the Memory Cell. Gates are composed of a cascade of a network

with sigmoidal activation function (σ) and a point-wise multiplication block.

There are three gates in an LSTM cell: 1. the input gate, that controls the new

information that need to be stored in the Memory Cell, 2. the forget gate, that

manages the information to keep in the memory and what to forget, and 3.

the output gate, associated with the output of the cell (ht). In addition, all the

data that pass through a gate is reshaped by an activation function (usually

an hyperbolic tangent). Optionally, peephole connections can be added to

allow all gates inspect the current cell state, even when the output gate is

closed [210]. Backpropagation Through Time (BTT) is usually used in con-

junction with optimization methods to train RNNs [211].

5.5 Deep Q-learning for DASH adaptation

Conventional machine learning techniques are often limited in their ability to

analyze data in their natural form. Usually, a good representation of the envi-

ronment requires complex analysis and considerable expertise. This phase is

commonly referred to as feature engineering and aims at finding a suitable rep-

resentation of the raw data through a reduced set of features (feature vector),

from which the learning system can extract useful environment information.

Representation learning consists of a set of mechanisms to automate this

process: the learning machine is fed with raw data and discovers the best rep-

resentation for detection or classification on its own. Deep-learning methods

5.5. Deep Q-learning for DASH adaptation 117

are representation learning techniques which use multiple successive layers

of artificial neurons; each layer is composed of simple (but non-linear) mod-

ules that transform the input representation into a slightly more abstract one,

which is then used as the input for the next layer. With a complex enough

deep structure, even very complex functions can be learned successfully. A

great deal of work has been carried out on deep-learning architectures in the

last decade [106, 212]. For further details, see, e.g., [213].

The presented D-DASH framework combines a Q-learning approach with

a deep-learning framework to obtain optimal policies for the DASH protocol

adaptation engine, as described in Sec. 5.3. Learning systems of this kind,

referred to as Deep Q-networks (DQNs), have been used in many complex sys-

tems in different research fields with state of the art performance, although

their development is quite recent.

The main difference between standard Q-learning, as described in Sec. 5.3.2,

and DQN, is in the way of estimating the Q-value of each state-action pair,

generalized by the function Q(s, q), i.e., an approximation of the optimal

action-value function Q∗(s, q). While standard Q-learning keeps a table of

values and updates each state-value pair separately, DQN uses a deep-learning

approach to approximate the Q-function. This can be achieved in two differ-

ent ways:

1. a single deep network, fed with the current system state, is used to

simultaneously estimate the Q-values for all possible actions;

2. one separate deep network is trained for each possible action, approxi-

mating a sub-space of the whole action-state set.

In this study the first approach has been utilized, as it has the advantage

of providing the entire set of Q-values (always needed to make the final de-

cision) with a single computation.

Considering the MDP defined in Sec. 5.3.1, a loss function L̃ at iteration

t is evaluated using the following 4-tuple et = (st, qt, rt, st+1), which here is

referred to as the agent’s experience at time t. The loss function can be derived

from the Bellman equation in Eq. (5.11) as follows [214]:

L̃t(st, qt, rt, st+1|wt) =

(
rt + λ max

q
Q̂(st+1, q|w̄t)−Q(st, qt|wt)

)2

, (5.13)

118 Chapter 5. Deep Reinforcement Learning for DASH Video Streaming

where rt is the reward accrued for segment t, for which the Eq. (5.4) is

used. Note that the framework is rather general and any QoE function S(qt)

can be plugged in without requiring any change to the model. Two deep

neural networks, with the same architecture, are considered. A first network,

with weight vector wt, is updated for each new segment (at every time step

t), and is used to build the Q-value map Q(st, qt|wt). A second neural net-

work, referred to as the target network, is accounted to increase the stability

of the learning system [214], and its weight vector w̄t is updated every K

steps (segments), by setting it equal to that of the first network and keep-

ing it fixed for the next K − 1 steps, i.e., w̄t = wt every K steps. The target

network is used to retrieve the mapping Q̂(st+1, q|w̄t) in Eq. (5.13). Another

improvement is given by the implementation of a technique called experience

replay [215]. The agent’s experience et = (st, qt, rt, st+1) is stored into a replay

memory R = {e1, . . . , et} after each iteration. In this way, a new loss function

Lt that also accounts for the past experience can be considered. Specifically,

a subset RM = {e1, . . . , eM} of M samples, with ej ∈ R, j = 1, 2, . . . , M, is

extracted uniformly at random from the replay memory R, and Lt is finally

evaluated as an empirical mean over the samples in set RM:

Lt(wt) =
1
M ∑

ej∈RM

L̃t(ej|wt) . (5.14)

This leads to three main advantages: greater data efficiency, uncorrelated

subsequent training samples and independence between current policy and

samples [214].

The whole process can be divided into two consecutive phases, which

take a different but fixed number of iterations: namely, the update phase, and

the test phase.

Update phase. The exploration parameter, namely ε in the case of an ε-

greedy policy or ξ for softmax (see Sec. 5.3.2), is gradually reduced. It is

recalled that a smaller value for this parameter means that the policy tends

to prefer the action that is considered to be optimal at the current training

stage. Furthermore, at each iteration the network’s weights are updated to

minimize the loss function in Eq. (5.14). The Adam method is used as the

gradient descent optimization algorithm: it implements an adaptive learn-

ing rate to provide a faster and more robust convergence [208].

Test phase. The exploration parameter is set to zero, thus obtaining a greedy

5.5. Deep Q-learning for DASH adaptation 119

FIG. 5.3: Schematic diagram of an update iteration.

policy implementing the actions that are deemed optimal given the current

system state and the mapping Q(st, qt|wt) from the first neural network. For

this phase, the weights wt are frozen and are no longer updated for the whole

duration of the test. The target network is not used in the test phase and all

the performance evaluations are based on the results obtained during this

second phase.

A schematic diagram of an update iteration is shown in Fig. 5.3. First,

the current environment state st is fed to the deep neural network, which

outputs an estimate of the Q-value for each possible action q ∈ A, i.e., the

various representations in the adaptation set A. Then, an action qt is cho-

sen according to either an ε-greedy or softmax policy. Upon taking action

qt, the system moves to the new state st+1 and a new reward rt is evaluated

according to Eq. (5.4). The newly acquired experience et = (st, qt, rt, st+1) is

stored into the replay memory R. Hence, a batch of M samples is extracted,

uniformly at random, from the replay memory and is used to update the net-

work’s weights through the Adam optimization method. The loss function

in Eq. (5.14) is minimized, using the mapping from the target network, i.e.,

Q̂(st+1, q|w̄t), whose weights w̄t are updated every K steps.

Two different types of deep network architectures have been tested in

this study (see Fig. 5.1): 1. a fully connected feed-forward network, and in

particular an MLP network with one (Figure 1a) and two (Figure 1b) hid-

den layers, respectively referred to as MLP1 and MLP2 in the following, and

2. a recurrent neural network based on a LSTM cell [209]. An LSTM with

deep hidden-to-output function has been implemented [216]. Accordingly,

the LSTM output is processed by another fully connected layer to provide

the final Q-values. It is remarked that the number of previous components

120 Chapter 5. Deep Reinforcement Learning for DASH Video Streaming

considered in the capacity vector Ct of the input state differs in the two cases:

feed-forward networks (MLP1 and MLP2) require to be fed with the whole

vector Ct, whereas recurrent networks only need the last channel capacity

sample Ct−1 as input, as the feedback loop inside the LSTM cell keeps track

of the channel memory. The dimension of vector Ct has to be fixed before-

hand for the feed-forward networks, and cannot be adapted after the defini-

tion of the network. In this study, 2 history samples are considered for MLP1

and MLP2, and 5 history samples for a “long history” (lh) version of MLP2,

referred to as MLPlh.

The LSTM has the advantage of automatically learning what to store in-

side the memory cell, and what to forget. Here, in addition to standard

LSTM, an LSTM cell with peephole connections is also considered, referred

to as LSTMph.

Due to the continuous changes of the target function and training data,

no serious overfitting issues are expected. However, a dropout regulariza-

tion technique has been applied to MLP2 (termed MLPdo) to verify this as-

sumption. Dropout is a well-known and simple method to prevent neural

networks from overfitting [217]. It amounts to randomly dropping neurons

and their connections, with a certain probability. A 20% dropout probability

is considered in the training of MLPdo.

5.6 Simulation and results

In this work, segments belonging to the same representation set are assumed

to have a constant size and variable quality; this is a common assumption

in the relevant literature. In real systems, the encoding parameters of the

video are often constant, with segments of varying size [218]; however, the

performance of the learning algorithms should not be significantly affected

by this factor, and the model presented in Sec. 5.2 is fully general.

To evaluate the performance of the proposed algorithms, extensive trace-

based simulations have been carried out, where the different components of

the system have been modeled in a realistic manner from real data traces.

More specifically, the video model was derived from real videos from the

EvalVid database.1 The video traces were characterized in terms of their

quality-rate function where, as previously explained, SSIM [183] is used as

1http://www2.tkn.tu-berlin.de/research/evalvid/cif.html

5.6. Simulation and results 121

FIG. 5.4: Reference quality-rate curves.

the instantaneous video quality metric. Then, the SSIM-rate characteristics

of a large number of videos in the dataset is derived, from which a limited

number of reference SSIM-rate curves have been extracted. Following [219],

such curves have been represented as 4th-degree polynomials function of the

bitrate, so that the quality (SSIM) of a given video sequence encoded at rate

f / fmax ∈ (0, 1] is given by

q ≃ d0 +
4

∑
k=1

dk(log(f / fmax))
k, (5.15)

where fmax is the full-quality video segment size, and f ≤ fmax is the actual

segment size. The vector d = [d0, . . . , d4] offers then a synthetic represen-

tation of the complexity of a video scene. The chosen reference curves are

shown in Fig. 5.4, and the values of each reference curve’s vector d are listed

in Table 5.1. These reference curves were combined into scenes with expo-

nentially distributed duration, a model validated by Rose in [204], with an

average of 10 seconds (i.e., 5 segments). In this way, a large number of re-

alistic video traces for the tests can be generated. In the numerical results, 8

different values for the segment size f have been considered: if q is the seg-

ment quality, f is defined as f = Ft(q), where Ft(·) is the inverse of Eq. (5.15),

see also Table 5.2 for the considered adaptation set. In the learning system,

each video segment is characterized by a vector dt, which is summarized by

122 Chapter 5. Deep Reinforcement Learning for DASH Video Streaming

PARAMETER VALUES

T 2 s
fmax 20 Mb
Ft(·)/T {0.25, 0.5, 1, 2, 3, 4, 6, 10}Mb/s
Ct (pretrain) {0.4, 0.75, 1.5, 2.5, 3.5, 4.5, 5.75, 7.25, 9, 12.5}Mb/s
Dt = 1 (Akiyo) dt = [0.99947,−0.01015,−0.02888,−0.02427, 0.00415]
Dt = 2 (News) dt = [0.99970,−0.01064,−0.02291,−0.02531, 0.00074]
Dt = 3 (Bridge - far) dt = [1.00033,−0.01051,−0.05385,−0.08211, 0.01361]
Dt = 4 (Harbor) dt = [0.99977,−0.00505, 0.00554,−0.01726, 0.00022]
Dt = 5 (Husky) dt = [0.99984, 0.00998, 0.07590,−0.01138, 0.00040]

TABLE 5.1: Simulation parameters

an index Dt, as shown in Table 5.2.

To model the transport capacity of the HTTP connection three datasets

have been considered: a) real traces of HTTP video streaming sessions over

LTE [220]; b) synthetic traces obtained through the network simulation plat-

form ns3; c) Markovian traces obtained by means of a simple Markov model.

The learning algorithms were first trained on the Markovian channel model

(pretrain phase), then shown a small number of realistic traces (either real or

synthetic) as an actual training (train phase). The neural networks’ weights

were then frozen and their exploration parameter was set to zero to carry out

a fair comparison against state of the art algorithms from the literature using

other traces from the same dataset (test phase). The pretrain phase lasted for

500 synthetic videos, while the train phase only lasted for 40 actual videos.

The final test phase was performed over 100 actual video episodes; each

video episode in all phases lasted 400 segments of T = 2 s each. The pur-

pose of the pretrain phase is to teach the learning agent the basic mechanics

of video streaming in a highly variable and realistic network scenario. The

rationale is that the solution so obtained should represent a sensible starting

point for the learning process when confronted with real traces, leading to a

much shorter training time.

The Markov model for the pretrain phase used the same settings as in [200];

the capacity evolution was controlled by a random walk model among a set

of levels, with a state change probability of 0.5. The possible capacity levels

Ct are listed in Table 5.1. It is remarked that the Markovian traces were only

used in the pre-training phase, while the performance evaluation was carried

out by considering realistic traces, either from real HTTP measurements or

generated by ns3.

5.6. Simulation and results 123

Each component of the reward function in (5.4) was scaled into the range

between 0 and 1 to avoid numerical convergence issues.

5.6.1 Algorithm settings

The algorithms from the literature selected as benchmarks were the parallel

Q-learning and the simple rate-based heuristic from [200], MPC [191], which

is a dynamic programming-like solution, and FESTIVE [188], which is among

the most conservative heuristic-based algorithms, thus generally guarantee-

ing good stability and a low number of rebuffering events. One of FESTIVE’s

aims is providing a stable quality for multiple clients, which is beyond the

scope of this work, so its performance should be evaluated accordingly. An-

other point that bears consideration is the computational complexity of MPC:

the authors themselves state that a real-time implementation would require

pre-computed tables, which leads to memory occupation. The PANDA [189]

and QoE-RAHAS [190] algorithms have been also implemented, but their

performance was significantly worse than all the other algorithms’ for any

configuration of their parameters in the simulation environment, so they are

not show them in any of the plots.

The standard Q-learning algorithm used a Softmax policy; the other learn-

ing algorithms were tested with both policies, and the best-performing one

was chosen in each case. The policy for each algorithm is listed in Table 5.2.

The hyperparameters of the learning algorithms were optimized by per-

forming an exhaustive search and selecting the combinations that performed

best in the pretrain phase; the values of the parameters for all algorithms are

listed in Table 5.2, except for the exploration parameter (either ε or ξ, depend-

ing on the exploration mode), which followed the profile shown in Fig. 5.5

over the three phases. The settings and model for FESTIVE and the standard

Q-learning algorithm are the same used in [188] and [200] respectively, except

where otherwise stated. In Fig. 5.5, each video episode has M = 400 seg-

ments, the standard Q-learning algorithm uses preset thresholds to quantize

the video quality and capacity measurements, which are listed in Table 5.2.

The MPC parameters have been adapted to reflect the definition of QoE

and provide a fair comparison, as its basic model is very similar to ours and

using the same QoE function provides a more meaningful comparison.

124 Chapter 5. Deep Reinforcement Learning for DASH Video Streaming

ALGORITHM PARAMETER VALUE

FESTIVE target buffer 15 s
buffer randomness 0.25 s

α 10
kS (switch memory) 10

kC (throughput memory) 5
MPC maximum buffer size 30 s

γ 2
µ 50
K 5

All learners β 2
maximum buffer size 20 s

γ 50
δ 0.001

Bthr (safe buffer) 10 s
Q-learning α 0.1

policy Softmax
qt (SSIM) {0.84, 0.87, 0.9, 0.92,

0.94, 0.96, 0.98, 0.99,
0.995}

Ct (Mb/s) {0.5, 1, 2, 3, 4, 5, 6, 8, 10}
MLP1 hidden neurons Nh 256

learning rate 10−3

batchsize M 1000
K 20

policy Softmax
λ 0.9

MLP2 hidden neurons Nh1, Nh2 128, 256
MLPdo learning rate 10−4

MLPlh batchsize M 1000
K 20

policy ε-greedy
λ 0.9

LSTM number of units Nc 128
LSTMph learning rate 10−3

batchsize M 100
K 200

policy Softmax
λ 0.5

TABLE 5.2: Adaptation algorithm parameters

5.6. Simulation and results 125

FIG. 5.5: Profile of the exploration rate during the training and testing phases.

5.6.2 Results: real traces

The simulations aimed to assess the performance of the D-DASH framework

with regard to the three major video quality metrics, i.e., instantaneous qual-

ity, its stability and the frequency of rebuffering events. D-DASH based algo-

rithms have been compared against existing approaches from the literature,

while also investigating their convergence speed.

Fig. 5.6 shows a smoothed version of the reward over the three phases of

the simulation for the MLP1 and MLP2, using standard Q-learning and the

rate-based heuristic as a comparison. The tests were performed by freezing

the learner state and setting a greedy policy (i.e., always taking the action

with the highest expected reward) after each video episode. The benefits of

the Deep-Q approach appear evident at a first glance; standard Q-learning

gets a lower reward at convergence, as well as taking more than 200 episodes

to overtake the rate-based heuristic and failing to adapt quickly enough to

the real traces in the train phase.

The two D-DASH algorithms achieve higher rewards after just a few videos:

MLP2 converges in the first 50 videos, while MLP1 already reaches its peak

performance after the first video episode. The same trend can be seen in

the train phase, where both schemes maintain a significant advantage on the

simple heuristic and standard Q-learning.

One of the main advantages of smart QoE-aware adaptation schemes is

126 Chapter 5. Deep Reinforcement Learning for DASH Video Streaming

FIG. 5.6: Reward for the standard Q-learning, D-DASH and rate-based algo-
rithm (using real traces as test set). The pretrain phase takes the first 500 video
episodes, the training phase is enclosed within the two vertical lines and the test
phase takes the remaining points, after the second line.

a better buffer management: while most classical algorithms try to keep the

buffer as stable as possible, the D-DASH algorithms can use the buffered seg-

ments when the available capacity drops and build up the buffer when it is

convenient to do so. Fig. 5.7 shows an example taken from the test phase:

while FESTIVE keeps an extremely stable buffer (except for a sudden drop

after about 200 segments, due to a sharp change in the capacity), the MLP2 al-

gorithm has a large dynamic range, building up the buffer when capacity is

high and using it up to cover temporary outages. The other D-DASH algo-

rithms make a similar use of the buffer, as well as standard Q-learning. MPC

also maintains a high and stable quality throughout the video, but it incurs

in several rebuffering events because of its optimistic throughput prediction,

as Fig. 5.7 shows.

The benefits of the smarter buffer use are clearly visible in the quality

graph of Fig. 5.8: MLP2 can avoid sharp drops in the video quality without

triggering rebuffering events.

In the next figures the performance of the different algorithms in the test

phase are compared in terms of image quality (SSIM), rebuffering, and qual-

ity stability.

Fig. 5.9 shows the achieved SSIM: all the learning solutions, including

5.6. Simulation and results 127

FIG. 5.7: Evolution of the buffer during a video episode in the test phase.

standard Q-learning, achieve a higher SSIM than FESTIVE and the rate-based

heuristic; aside from the higher median, the bottom 5% of the videos still

have an average SSIM of over 0.97, while FESTIVE and the rate-based heuris-

tic go below that threshold for a significant fraction of the videos. It should be

noted that FESTIVE has a lower average SSIM than the rate-based heuristic,

since it privileges stability over instantaneous quality. MPC performs about

as well as the learning-based algorithms, but with a slightly larger variance.

Fig. 5.10 shows the average difference between the SSIM of one segment

and the next. As expected, FESTIVE keeps the quality more stable than

the rate-based heuristic. Similar performance is obtained by standard Q-

learning, which also keeps a higher average SSIM. The two Deep-Q algo-

rithms outperform FESTIVE and Q-learning, but the best quality stability is

achieved by MPC, with an average SSIM variation always lower than 0.006,

while that of the other algorithms reaches 0.008 for at least one video.

Finally, Fig. 5.11 shows the frequency of rebuffering events for each al-

gorithm: since FESTIVE is extremely conservative, there were no rebuffer-

ing events over the whole test phase. However, even the most aggressive

learning algorithms (standard Q-learning and MLPdo) do not experience re-

buffering events often. The LSTM and LSTMph algorithms experience at least

one rebuffering in 25% of the videos, but they never have more than three,

128 Chapter 5. Deep Reinforcement Learning for DASH Video Streaming

FIG. 5.8: Evolution of the SSIM during a video episode in the test phase.

and one rebuffering over a whole 400 segment video episode can be consid-

ered acceptable. MPC pays for its higher stability by having an average of

5 rebuffering events per video, far higher than any of the other algorithms’.

MPC’s reliance on an imperfect throughput predictor shows its limits when

dealing with highly variable environments.

Another version of MLP2has been included, called MLPlh, which uses the

last 5 throughput samples as input instead of the last 2. Its aim is to show

the benefits of a longer memory in the presence of long-term correlation. It

is observed that, with real channel capacity traces, the performance of MLPlh

are basically the same of LSTM, probably because the correlation of the em-

pirical channel data considered in this study is low, so that the extra memory

in the LSTM is not necessary. Finally, the use of dropout techniques (MLPdo)

to avoid overfitting does not provide any improvement, as expected.

Its relative simplicity, low rebuffering rate and quick convergence arguably

make MLP1 the best adaptation algorithm in this scenario: aside from some

very rare rebuffering events, it is an improvement over the state of the art

in all the considered QoE metrics over real capacity traces. Nevertheless, as

shown in the following section, any network with a limited memory shows

its limitations when a more complicated scenario is analyzed, and the pres-

ence of long-term correlation in the channel capacity makes a more complex

approach necessary.

5.6. Simulation and results 129

FIG. 5.9: Boxplot of the average SSIM for the 100 video episodes in the test phase
(real traces).

5.6.3 Results: synthetic traces

After running the adaptation algorithms over real capacity traces, a set of

traces with the ns-3 simulator have been generated to gauge the effects of

TCP cross-traffic on the algorithms’ performance. The traces were generated

by measuring the throughput of a saturated TCP flow sharing a bottleneck

with a capacity of 10 Mb/s and a latency of 50 ms with 19 other TCP clients.

Each of the cross-traffic clients generated TCP traffic as an on/off source: the

off period was exponentially distributed with a mean of 2 seconds, while the

on time was set to 4 seconds. This traffic model was designed to introduce

long-term correlations in the available capacity [221], which are notoriously

hard to handle for adaptation algorithms. For clarity, in this part of the study,

only the MLP2 (both with the short and long memory) and LSTM algorithms

have been tested, since the performance of the other variants was similar.

Fig. 5.12 shows the average SSIM over the test phase using the synthetic

traces. In this situation, the advantage of the D-DASH algorithms is more

marked: the MLP2 and LSTM are able to maintain an average SSIM above

0.98 for all the considered videos; standard Q-learning and MPC also per-

form better than the Rate-Based heuristic and FESTIVE.

Fig. 5.13 shows the net advantage of a long memory when dealing with

long-term correlations: although the average SSIM of LSTM and MLPlh is

130 Chapter 5. Deep Reinforcement Learning for DASH Video Streaming

FIG. 5.10: Boxplot of the average SSIM variation for the 100 video episodes in
the test phase (real traces).

the same as that of MLP2 they can achieve it with half of the quality varia-

tion. Even if MLPlh performs slightly better than LSTM, it considers a fixed

amount of memory. The LSTM network has the additional capability to au-

tomatically adapt to different memory requirements, without increasing the

state space dimension. The D-DASH algorithms and standard Q-learning

all perform significantly better than FESTIVE and the Rate-Based heuristic

on this metric. As with the real traces, MPC is the best at keeping a stable

quality among the considered algorithms.

Fig. 5.14 shows the real advantage of the D-DASH framework in this

scenario: while standard Q-learning has almost the same average SSIM as

LSTM, MLPlh and MLP2, and actually has smaller quality fluctuations than

the latter, it can only achieve this at the cost of relatively frequent rebuffer-

ings: a quarter of the video episodes have at least one rebuffering event,

while this only happens for a few episodes with MLP2 and never for LSTM.

FESTIVE is also able to avoid rebuffering events, while the Rate-based heuris-

tic is not. MPC still suffers from a high number of rebuffering events, totaling

an average of 3 events per video episode.

Fig. 5.15 shows the higher stability of LSTM with respect to MLP2: for

the sake of a higher stability LSTM avoids some of the quality increases. For

this complex channel, LSTM is able to predict more accurately when a cer-

tain quality increase is likely to be sustainable, i.e., without having to shortly

5.6. Simulation and results 131

FIG. 5.11: Boxplot of the frequency of rebuffering events for the 100 video
episodes in the test phase (real traces).

FIG. 5.12: Boxplot of the average SSIM for the 100 video episodes in the test
phase (synthetic traces).

move back to the previous quality setting. Finally, a comparison of the con-

vergence speed between standard Q-learning and D-DASH, performed dur-

ing the pretrain phase, is provided in Fig. 5.16: D-DASH algorithms converge

much faster, making a better use of the video examples that are supplied dur-

ing the learning phase.

132 Chapter 5. Deep Reinforcement Learning for DASH Video Streaming

FIG. 5.13: Boxplot of the average SSIM variation for the 100 video episodes in
the test phase (synthetic traces).

FIG. 5.14: Boxplot of the frequency of rebuffering events for the 100 video
episodes in the test phase (synthetic traces).

5.6.4 Memory allocation

Since adaptation algorithms are client-side, their memory footprint is an im-

portant consideration. The number of variables required for D-DASH, and

5.6. Simulation and results 133

FIG. 5.15: Evolution of the SSIM during a video episode in the test phase, using
the synthetic traces.

also for the classic Q-learning (NQ), are as follows:

NQ = NsNa (5.16)

NMLP1 = (Vs + 1)Nh + (Nh + 1)Na (5.17)

NMLP2 = (Vs + 1)Nh1 + (Nh1 + 1)Nh2 + (Nh2 + 1)Na (5.18)

NLSTM = 4(Vs + Nc + 1)Nc + (Nc + 1)Na (5.19)

where Ns is the cardinality of the state set, Vs is the number of state vari-

ables and Na is the cardinality of the action set. Note that Vs and Na also

corresponds to the number of inputs and outputs of the neural networks,

respectively (see also Fig. 5.1). Nh, Nh1 and Nh2 are the number of hidden

layer’s neurons in the MLP networks, and Nc are the number of units in the

LSTM cell. According to Eq. (5.17), Eq. (5.18) and Eq. (5.19), considering the

values in Table 5.2 and 32 bit floating-point representation for storing real

variables, the memory space required for MLP1, MLP2 and LSTM is about

14.4 kB, 143.4 kB and 276.5 kB, respectively. It is remarked that these values

are fixed given a specific network implementation, in the sense that they do

not depend on the number of states. On the other hand, classic Q-learning

space requirement directly depends on the cardinality of the state set, which

is closely related to the quantization granularity of continuous state vari-

ables, as discussed in Section 5.3.3. The granularity that was used for the

134 Chapter 5. Deep Reinforcement Learning for DASH Video Streaming

FIG. 5.16: Comparison of the convergence speed between standard Q-learning
and D-DASH implementations (MLP1 and MLP2). The shaded area represents
the interquartile range.

results in this study leads to a total memory space of 32 kB for Q-learning.

The memory footprint needed by each of the presented methods appears

reasonable considering the hardware of modern client devices. Note that,

even if the number of variables for Q-learning is lower than those required

by the D-DASH algorithms, their generalization capabilities and the concur-

rent update of the network’s weights allow for a more efficient utilization of

the experience acquired in the learning phase. This behavior can be seen in

Fig. 5.16, where the convergence speed of D-DASH is considerably lower.

5.6.5 Summary of performance

A summary of the performance of video adaptation techniques is shown in

Fig. 5.17. For a convenient visual comparison, the three metrics have been

scaled and normalized with respect to the LSTM performance, according to

the following criteria (the normalization term has been omitted for simplic-

ity):

Quality = 0.98− SSIM (5.20)

Stability = 1 / Quality Variation (5.21)

Freezing Prevention = 0.015− Frequency of rebuffering (5.22)

5.6. Simulation and results 135

(A) real traces (B) synthetic traces

FIG. 5.17: Summary of performance of video adaptation algorithms: (a) real
traces, (b) synthetic traces (exhibit long-term correlation).

The proposed deep-Q learning based schemes significantly outperform ex-

isting Q-learning and standard techniques from the literature. As Fig. 5.17a

shows, with real traces MPC achieves a more stable, albeit slightly lower,

quality than either MLP2 or LSTM, but it fails to avoid rebuffering events

and results in a far worse QoE for the user. Other state of the art algorithms,

such as FESTIVE, which is not shown in the plot for readability, manage to

avoid rebuffering events but perform much worse in the other two metrics.

The D-DASH algorithms are the only ones reaching high scores on all the

three considered metrics, i.e., video quality, stability and rebuffering avoid-

ance. Furthermore, the D-DASH algorithms converge faster compared to

standard Q-learning schemes, which require hundreds of video episodes to

reach an acceptable performance. In fact, they approach optimal policies af-

ter just a few videos, or even just a couple in the case of the MLP1 scheme.

This also makes it possible to consider an online version that adapts to video

and network conditions, learning how to deal with each new situation as it

arises and memorizing it for future use. The longer memory of the LSTM al-

gorithm proved to be very valuable on channel traces with long-term correla-

tion: when the channel correlation stretches to over 10 seconds, LSTM shows

significantly better performance than other schemes in all the three metrics,

as Fig. 5.17b shows. Also in this case, MPC obtains a higher stability than

LSTM, but it pays for it by having several rebuffering events per episode.

136 Chapter 5. Deep Reinforcement Learning for DASH Video Streaming

5.7 Discussion

In this work, several Reinforcement Learning-based DASH adaptation al-

gorithms have been designed, exploiting Deep Q-networks to speed up the

convergence and adaptability of the system, and improve its efficiency. The

D-DASH framework uses different deep learning structures to approximate

the Q-values, taking the raw system state as input and requiring no arbitrary

design choices that might influence its performance. The deep learning al-

gorithms also have low memory and computational requirements after an

initial training phase (referred to as pretraining), and although the training

may be computationally heavy for a mobile terminal, it can be performed

offline (once for all) on a dedicated server and then passed on to the mobile

device with minimal signaling overhead.

This work represents a significant improvement on the state of the art

on Q-learning DASH adaptation designs, achieving good trade-offs between

policy optimality and convergence speed. D-DASH performed better than

several of the most popular adaptation approaches from the literature, main-

taining a high video quality without paying a significant cost either in terms

of rebuffering events or stability (i.e., avoiding sudden drops in the instan-

taneous quality). There are several ways in which this work could be ex-

tended and built upon: aside from changes and tweaks to include more com-

plex video content models into the algorithm input, the main challenge we

foresee for intelligent DASH adaptation is collaboration with network pro-

tocols to gain additional context information. Several works in the past few

years [222–224] have tried to use cooperation between DASH clients and net-

work elements to improve the fairness and efficiency of video streaming on

a network scale.

137

Conclusion

This dissertation presents a novel effort to develop artificial intelligence tech-

niques applied to real world scenarios, showing the potential benefits that

they can bring over knowledge-based approaches. Among the same line of

research, several application have been explored.

In Chapter 1, the experimental results show the superiority of a deep

learning approach against state of the art techniques for human identification

from inertial motion data acquired during a walking session. The proposed

method leads to misclassification rates (either false negatives or positives)

smaller than 0.15%.

Similar benefits can be also observed in Chapter 2, where several deep

learning architectures have been explored to solve the problem of atrial fib-

rillation (AF) detection from short-length and noisy ECG traces. The archi-

tecture based on depthwise separable convolutions provides the best over-

all performance, performing either on par or considerably better than all

the other DL-based solutions in terms of classification performance, mem-

ory/data efficiency and computational complexity (training time). The re-

sults indicate that the automatic feature extraction performed by deep learning

has much better classification performance, both in terms of precision and

recall, constituting a promising approach for the detection of AF and other

heart rhythm disorders. It is not yet clear whether the automatic feature ex-

traction implemented by deep networks is ready to replace the expert feature

approach, which remains of primary importance to facilitate the human in-

terpretation of the results. DL-based algorithms are nevertheless more effec-

tive in the presence of noisy signals from wireless sensors. The availability

of large datasets, and the possibility of automatic labeling when the wear-

able is worn together with a clinical sensor, will allow the validation of these

techniques for a future use inside and outside the clinic.

Moreover, the use of clinical sensors in everyday life is already spread-

ing for the continuous monitoring of some clinical conditions, and the in-

tegration of advanced artificial intelligence techniques for improving their

138 Chapter 5. Deep Reinforcement Learning for DASH Video Streaming

diagnosis capabilities is fundamental. An important example is given by the

glucose monitoring, analyzed in Chapter 3, where several machine learn-

ing algorithms have been compared for the prediction of future dangerous

hypo/hyperglycemic events. The numerical results show that a static train-

ing approach exhibits better performance, in particular when regression meth-

ods are considered. However, classifiers show some improvement when

trained for a specific event category, such as hyperglycemia, achieving per-

formance comparable to the regressors, with the advantage of predicting the

events sooner. Furthermore, a promising research avenue is the implemen-

tation of a combined approach, towards subject-adaptive and personalized

algorithms. Having data covering longer time periods, we may define and

train a static method, and then progressively tune it in a dynamic way, adapt-

ing it to a specific subject as new measurements become available.

This study also demonstrates the benefits of learning algorithms for ve-

hicular traffic anomaly detection (Chapter 4) and for the optimization of

video streaming user experience (Chapter 5). The proposed solution imple-

ments an intelligent adaptation engine for DASH video streaming clients,

based on deep reinforcement learning strategies. The numerical results are

obtained on real and simulated channel traces and show the superiority of

this method against other state of the art approaches in nearly all the consid-

ered quality metrics. Besides yielding a considerably higher QoE, the frame-

work exhibits faster convergence to the rate-selection strategy than the other

learning algorithms considered in the study.

In conclusion, the representation learning capabilities of artificial intelli-

gence techniques have been proved to be beneficial in several scenarios. A

high impact on the society is expected in the near future, from every day user

experiences such as transportation, security or entertainment, to more criti-

cal applications, like medicine. The widespread adoption of devices capable

of acquiring large amount of data, among with the progress on promising

data-driven learning techniques, allow for a deep integration of artificial in-

telligence with the potential to be transformational for the society.

139

Bibliography

[1] K. Amit, Artificial intelligence and soft computing: behavioral and cognitive modeling of the human brain. CRC-
Press, 2000.

[2] S. Sprager and M. B. Juric, “Inertial sensor-based gait recognition: A review,” Sensors, vol. 15, no. 9, p. 22089,
2015.

[3] D. Gafurov, “A survey of biometric gait recognition: Approaches, security and challenges,” in Annual Nor-

wegian computer science conference, Oslo, Norway, 2007.

[4] W. Zeng, C. Wang, and F. Yang, “Silhouette-based gait recognition via deterministic learning,” Pattern Recog-

nition, vol. 47, no. 11, pp. 3568–3584, 2014.

[5] J. Luo, J. Tang, T. Tjahjadi, and X. Xiao, “Robust arbitrary view gait recognition based on parametric 3D
human body reconstruction and virtual posture synthesis,” Pattern Recognition, vol. 60, pp. 361–377, 2016.

[6] X. Xing, K. Wang, T. Yan, and Z. Lv, “Complete canonical correlation analysis with application to multi-view
gait recognition,” Pattern Recognition, vol. 50, pp. 107–117, 2016.

[7] X. Chen and J. Xu, “Uncooperative gait recognition: Re-ranking based on sparse coding and multi-view
hypergraph learning,” Pattern Recognition, vol. 53, pp. 116–129, 2016.

[8] S. D. Choudhury and T. Tjahjadi, “Robust view-invariant multiscale gait recognition,” Pattern Recognition,
vol. 48, no. 3, pp. 798–811, 2015.

[9] M. Whittle, Gait Analysis: An Introduction. Edinburgh: Butterworth-Heinemann, 2007.

[10] H. Chan, H. Zheng, H. Wang, and R. Sterritt, “Evaluating and overcoming the challenges in utilizing smart
mobile phones and standalone accelerometer for gait analysis,” in IET Irish Signals and Systems Conference,
Jun 2012, pp. 1–5.

[11] A. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN Features Off-the-Shelf: An Astounding Baseline
for Recognition,” in IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, US,
Jun 2014.

[12] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2007.

[13] H. Thang, V. Viet, N. Thuc, and D. Choi, “Gait identification using accelerometer on mobile phone,” in
International Conference on Control, Automation and Information Sciences, Saigon, Vietnam, Nov 2012.

[14] C. Nickel, T. Wirtl, and C. Busch, “Authentication of smartphone users based on the way they walk using
k-nn algorithm,” in International Conference on Intelligent Information Hiding and Multimedia Signal Processing,
Piraeus-Athens, Greece, Jul 2012.

[15] Y. Watanabe, “Influence of holding smart phone for acceleration-based gait authentication,” in International

Conference on Emerging Security Technologies, Alcala de Henares, Spain, Sept 2014.

[16] S. Choi, I. Youn, R. LeMay, S. Burns, and J. Youn, “Biometric gait recognition based on wireless accelera-
tion sensor using k-nearest neighbor classification,” in International Conference on Computing, Networking and

Communications, Honolulu, Hawaii, US, Feb 2014.

[17] Y. Ren, Y. Chen, M. Chuah, and J. Yang, “Smartphone based user verification leveraging gait recognition
for mobile healthcare systems,” in IEEE Conference on Sensor, Mesh and Ad Hoc Communications and Networks,
New Orleans, LA, US, Jun 2013.

[18] S. Sprager and M. B. Juric, “An Efficient HOS-Based Gait Authentication of Accelerometer Data,” IEEE Trans-

actions on Information Forensics and Security, vol. 10, no. 7, pp. 1486–1498, 2015.

[19] H. Chan, H. Zheng, H. Wang, R. Sterritt, and D. Newell, “Smart mobile phone based gait assessment of
patients with low back pain,” in International Conference on Natural Computation, Shenyang, China, Jul 2013.

[20] G. Huang, C. Wu, and J. Lin, “Gait analysis by using tri-axial accelerometer of smart phones,” in International

Conference on Computerized Healthcare, Dec 2012, pp. 29–34.

[21] C. Nickel, M. Derawi, P. Bours, and C. Busch, “Scenario test of accelerometer-based biometric gait recogni-
tion,” in International Workshop on Security and Communication Networks, Gjøvik, Norway, May 2011.

140 BIBLIOGRAPHY

[22] C. Nickel, C. Busch, S. Rangarajan, and M. Mobius, “Using hidden markov models for accelerometer-based
biometric gait recognition,” in IEEE International Colloquium on Signal Processing and its Applications, Penang,
Malaysia, Mar 2011.

[23] T. Kobayashi, K. Hasida, and N. Otsu, “Rotation invariant feature extraction from 3-d acceleration signals,”
in IEEE International Conference on Acoustics, Speech and Signal Processing, May 2011, pp. 3684–3687.

[24] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Estimating the support of a
high-dimensional distribution,” Neural Computation, vol. 13, no. 7, pp. 1443–1471, 2001.

[25] M. Gadaleta and M. Rossi, “Idnet: Smartphone-based gait recognition with convolutional neural networks,”
Pattern Recognition, vol. 74, pp. 25–37, 2018.

[26] M. Murray, A. Drought, and R. Kory, “Walking patterns of normal men,” The Journal of Bone & Joint Surgery,
vol. 46, no. 2, pp. 335–360, 1964.

[27] M. Murray, “Gait as a total pattern of movement: Including a bibliography on gait,” American Journal of

Physical Medicine & Rehabilitation, vol. 46, no. 1, pp. 290–333, 1967.

[28] T. Nixon, M.S. ans Tieniu and C. Rama, Human identification based on gait. Springer, 2006.

[29] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Cell phone-based biometric identification,” in Fourth IEEE

International Conference on Biometrics: Theory Applications and Systems (BTAS), 2010.

[30] J. Mantyjarvi, M. Lindholm, E. Vildjiounaite, S. Makela, and H. Ailisto, “Identifying users of portable de-
vices from gait pattern with accelerometers,” in IEEE International Conference on Acoustics, Speech, and Signal

Processing, Oulu, Finland, Mar 2005.

[31] M. Derawi, C. Nickel, P. Bours, and C. Busch, “Unobtrusive user-authentication on mobile phones using
biometric gait recognition,” in Intelligent Information Hiding and Multimedia Signal Processing, Darmstadt, Ger-
many, Oct 2010.

[32] E. Keogh and C. Ratanamahatana, “Exact indexing of dynamic time warping,” Knowledge and Information

Systems, vol. 7, no. 3, pp. 358–386, 2005.

[33] F. Juefei-Xu, C. Bhagavatula, A. Jaech, U. Prasad, and M. Savvides, “Gait-id on the move: Pace independent
human identification using cell phone accelerometer dynamics,” in International Conference on Biometrics: The-

ory, Applications and Systems, Washington DC, US, Sept 2012.

[34] S. Jiang, B. Zhang, G. Zou, and D. Wei, “The possibility of normal gait analysis based on a smart phone for
healthcare,” in IEEE International Conference on Green Computing and Communications, Aug 2013, pp. 2235–
2240.

[35] Y. Zhong and Y. Deng, “Sensor orientation invariant mobile gait biometrics,” in IEEE International Joint Con-

ference on Biometrics (IJCB), Clearwater, FL, USA, 2014.

[36] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-scale Video Classification
with Convolutional Neural Networks,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Columbus, Ohio, US, Jun 2014.

[37] T. T. Ngo, Y. Makihara, H. Nagahara, Y. Mukaigawa, and Y. Yagi, “The largest inertial sensor-based gait
database and performance evaluation of gait-based personal authentication,” Pattern Recognition, vol. 47,
no. 1, pp. 228–237, 2014.

[38] P. Casale, O. Pujol, and P. Radeva, “Personalization and user verification in wearable systems using biometric
walking patterns,” Personal and Ubiquitous Computing, vol. 16, no. 5, pp. 563–580, 2012.

[39] J. Tilmanne, R. Sebbe, and T. Dutoit, “A database for stylistic human gait modeling and synthesis,” 2008.

[40] J. Frank, S. Mannor, and D. Precup, “Data sets: Mobile phone gait recognition data,” 2010. [Online].
Available: http://www.cs.mcgill.ca/~jfrank8/data/gait-dataset.html

[41] P. D. Welch, “The use of fast fourier transform for the estimation of power spectra: A method based on time
averaging over short, modified periodograms,” IEEE Transactions on Audio and Electroacoustics, vol. 15, no. 2,
pp. 70–73, 1967.

[42] T. Teixeira, D. Jung, G. Dublon, and A. Savvides, “Pem-id: Identifying people by gait-matching using
cameras and wearable accelerometers,” in ACM/IEEE International Conference on Distributed Smart Cameras

(ICDSC), Como, Italy, Aug 2009.

[43] K. Kunze, P. Lukowicz, K. Partridge, and B. Begole, “Which Way Am I Facing: Inferring Horizontal Device
Orientation from an Accelerometer Signal,” in IEEE International Symposium on Wearable Computers, Linz,
Austria, Sept 2009.

[44] Z.-A. Deng, G. Wang, Y. Hu, and D. Wu, “Heading Estimation for Indoor Pedestrian Navigation Using a
Smartphone in the Pocket,” MDPI Sensors, vol. 15, no. 9, pp. 21 518–21 536, 2015.

BIBLIOGRAPHY 141

[45] C. R. Rao, “The Use and Interpretation of Principal Component Analysis in Applied Research,” Sankhyā: The

Indian Journal of Statistics, vol. 26, no. 4, pp. 329–358, Dec 1964.

[46] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time series,” in The Handbook of

Brain Theory and Neural Networks. MIT Press, 1998, pp. 255–258.

[47] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural net-
works,” in Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.

[48] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations in convolutional architectures for ob-
ject recognition,” in 20th International Conference on Artificial Neural Networks (ICANN), Thessaloniki, Greece,
2010.

[49] R. Hanka and T. P. Harte, Computer Intensive Methods in Control and Signal Processing: The Curse of Dimension-

ality. Birkhäuser Boston, 1997, ch. Curse of Dimensionality: Classifying Large Multi-Dimensional Images
with Neural Networks, pp. 249–260.

[50] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., 1993.

[51] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,” Machine Learning, vol. 29, no. 2,
pp. 131–163, Feb 1997.

[52] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Transactions on Information Theory,
vol. 13, no. 1, pp. 21–27, Jan 1967.

[53] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3, pp. 273–297, 1995.

[54] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, J. C. Platt et al., “Support vector method for
novelty detection,” Neural Information Processing Systems (NIPS), vol. 12, pp. 582–588, 1999.

[55] D. R. Musicant, V. Kumar, and A. Ozgur, “Optimizing F-Measure with Support Vector Machines,” in 16-th

International FLAIRS Conference. St. Augustine, Florida, US: FLAIRS, May 2003.

[56] D. Tax and K. Müller, Artificial Neural Networks and Neural Information Processing. Berlin, Heidelberg:
Springer, 2003, ch. Feature Extraction for One-Class Classification, pp. 342–349. [Online]. Available:
http://dx.doi.org/10.1007/3-540-44989-2_41

[57] A. Wald, Sequential analysis. New York, NY, US: Dover, 1947.

[58] A. Tartakovsky, I. Nikiforov, and M. Basseville, Sequential Analysis Hypothesis Testing and Changepoint Detec-

tion. CRC Press, 2015.

[59] G. Quer, E. D. Muse, N. Nikzad, E. J. Topol, and S. R. Steinhubl, “Augmenting diagnostic vision with AI,”
Lancet, vol. 390, no. 10091, p. 221, 2017.

[60] V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner,
T. Madams, J. Cuadros, R. Kim, R. Raman, P. C. Nelson, J. L. Mega, and D. R. Webster, “Development and
validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs,”
JAMA, vol. 316, no. 22, pp. 2402–2410, 2016.

[61] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun, “Dermatologist-level
classification of skin cancer with deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–118, 2017.

[62] S. S. Chugh, R. Havmoeller, K. Narayanan, D. Singh, M. Rienstra, E. J. Benjamin, R. F. Gillum, Y.-H. Kim,
J. H. McAnulty, Z.-J. Zheng, M. H. Forouzanfar, M. Naghavi, G. A. Mensah, M. Ezzati, and C. J. L. Murray,
“Worldwide epidemiology of atrial fibrillation,” Circulation, vol. 129, no. 8, pp. 837–847, 2014.

[63] A. B. Freedman, “Worldwide epidemiology of atrial fibrillation,” Circulation, vol. 135, no. 19, pp. 1851–1867,
2017.

[64] G. D. Clifford, C. Liu, B. Moody, L.-w. H. Lehman, I. Silva, Q. Li, E. Johnson, and R. G. Mark, “AF classification
from a short single lead ECG recording: the PhysioNet/Computing in cardiology challenge 2017,” Computing

in Cardiology, vol. 44, pp. 65–69, 2017.

[65] T. Teijeiro, C. A. García, D. Castro, and P. Félix, “Arrhythmia classification from the abductive interpretation
of short single-lead ECG records,” in IEEE Computing in Cardiology (CinC), 2017, vol. 44, 2017, pp. 1–4.

[66] S. Hong, M. Wu, Y. Zhou, Q. Wang, J. Shang, H. Li, and J. Xie, “Encase: An ensemble classifier for ECG
classification using expert features and deep neural networks,” in IEEE Computing in Cardiology (CinC), 2017,
2017, pp. 1–4.

[67] S. Datta, C. Puri, A. Mukherjee, R. Banerjee, A. D. Choudhury, R. Singh, A. Ukil, S. Bandyopadhyay, A. Pal,
and S. Khandelwal, “Identifying normal, af and other abnormal ECG rhythms using a cascaded binary clas-
sifier,” in IEEE Computing in Cardiology (CinC), 2017, vol. 44, 2017, pp. 1–4.

[68] M. Zabihi, A. B. Rad, A. K. Katsaggelos, S. Kiranyaz, S. Narkilahti, and M. Gabbouj, “Detection of atrial fib-
rillation in ECG hand-held devices using a random forest classifier,” in IEEE Computing in Cardiology (CinC),

142 BIBLIOGRAPHY

2017, vol. 44, 2017, pp. 1–4.

[69] M. Zihlmann, D. Perekrestenko, and M. Tschannen, “Convolutional recurrent neural networks for electro-
cardiogram classification,” in IEEE Computing in Cardiology (CinC), 2017, vol. 44, 2017, pp. 1–4.

[70] Z. Xiong, M. K. Stiles, and J. Zhao, “Robust ECG signal classification for detection of atrial fibrillation using
a novel neural network,” in IEEE Computing in Cardiology (CinC), 2017, vol. 44, 2017, pp. 1–4.

[71] P. De Chazal, M. O’Dwyer, and R. B. Reilly, “Automatic classification of heartbeats using ECG morphology
and heartbeat interval features,” IEEE Trans. Biomed. Eng., vol. 51, no. 7, pp. 1196–1206, 2004.

[72] M. Korürek and B. Doğan, “ECG beat classification using particle swarm optimization and radial basis func-
tion neural network,” Expert Systems with Applications, vol. 37, no. 12, pp. 7563–7569, 2010.

[73] İ. Güler and E. D. Übeylı, “ECG beat classifier designed by combined neural network model,” Pattern Recog-

nition, vol. 38, no. 2, pp. 199–208, 2005.

[74] Y. Kutlu and D. Kuntalp, “Feature extraction for ECG heartbeats using higher order statistics of WPD coeffi-
cients,” Computer Methods and Programs in Biomedicine, vol. 105, no. 3, pp. 257–267, 2012.

[75] C.-H. Lin, Y.-C. Du, and T. Chen, “Adaptive wavelet network for multiple cardiac arrhythmias recognition,”
Expert Systems with Applications, vol. 34, no. 4, pp. 2601–2611, 2008.

[76] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv

preprint arXiv:1409.1556, 2014.

[77] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[78] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, Inception-Resnet and the impact of resid-
ual connections on learning.” in Proceedings of AAAI Conference on Artificial Intelligence, vol. 4, 2017, p. 12.

[79] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam,
“Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint

arXiv:1704.04861, 2017.

[80] M. S. Chavan, R. Agarwala, and M. Uplane, “Suppression of baseline wander and power line interference
in ECG using digital IIR filter,” International Journal of Circuits, Systems and Signal Processing, vol. 2, no. 2, pp.
356–365, 2008.

[81] C. Meyer and H. Keiser, “Electrocardiogram baseline noise estimation and removal using cubic splines and
state-space computation techniques,” Computers and Biomedical Research, vol. 10, no. 5, pp. 459–470, 1977.

[82] P. De Chazal, C. Heneghan, E. Sheridan, R. Reilly, P. Nolan, and M. O’Malley, “Automated processing of the
single-lead electrocardiogram for the detection of obstructive sleep apnoea,” IEEE Trans. Biomed. Eng., vol. 50,
no. 6, pp. 686–696, 2003.

[83] A. Khawaja, Automatic ECG analysis using principal component analysis and wavelet transformation. Univ.-Verlag
Karlsruhe, 2007.

[84] G. Lenis, N. Pilia, A. Loewe, W. H. Schulze, and O. Dössel, “Comparison of baseline wander removal tech-
niques considering the preservation of st changes in the ischemic ECG: A simulation study,” Computational

and Mathematical Methods in Medicine, 2017.

[85] M. Elgendi, “Fast QRS detection with an optimized knowledge-based method: Evaluation on 11 standard
ECG databases,” PloS one, vol. 8, no. 9, p. e73557, 2013.

[86] M. Gadaleta and A. Giorgio, “A method for ventricular late potentials detection using time-frequency repre-
sentation and wavelet denoising,” ISRN Cardiology, vol. 2012, 2012.

[87] J. P. Martínez, R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna, “A wavelet-based ECG delineator: evalua-
tion on standard databases,” IEEE Trans. Biomed. Eng., vol. 51, no. 4, pp. 570–581, 2004.

[88] F. Censi, I. Corazza, E. Reggiani, G. Calcagnini, E. Mattei, M. Triventi, and G. Boriani, “P-wave variability
and atrial fibrillation,” Scientific Reports, vol. 6, p. 26799, 2016.

[89] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann machines,” in Proceedings of

the International Conference on Machine Learning (ICML), 2010, pp. 807–814.

[90] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving neural net-
works by preventing co-adaptation of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[91] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich et al.,
“Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, 2015, pp. 1–9.

[92] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint arXiv:1312.4400, 2013.

BIBLIOGRAPHY 143

[93] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient descent is difficult,”
IEEE Trans. Neural Networks, vol. 5, no. 2, pp. 157–166, 1994.

[94] P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, C. Bourn, and A. Y. Ng, “Cardiologist-level arrhythmia detection
with convolutional neural networks,” arXiv preprint arXiv:1707.01836, 2017.

[95] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity: The all convolutional
net,” arXiv preprint arXiv:1412.6806, 2014.

[96] Y. Nesterov, “A method for unconstrained convex minimization problem with the rate of convergence
O(1/k2),” in Doklady AN USSR, vol. 269, 1983, pp. 543–547.

[97] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal
covariate shift,” in Proceedings of International Conference on Machine Learning, 2015, pp. 448–456.

[98] N. V. Thakor and Y.-S. Zhu, “Applications of adaptive filtering to ECG analysis: noise cancellation and ar-
rhythmia detection,” IEEE Trans. Biomed. Eng., vol. 38, no. 8, pp. 785–794, 1991.

[99] S. G. Guillén, M. T. Arredondo, G. Martin, and J. M. F. Corral, “Ventricular fibrillation detection by autocor-
relation function peak analysis,” Journal of Electrocardiology, vol. 22, pp. 253–262, 1990.

[100] N. V. Thakor, A. Natarajan, and G. F. Tomaselli, “Multiway sequential hypothesis testing for tachyarrhythmia
discrimination,” IEEE Trans. Biomed. Eng., vol. 41, no. 5, pp. 480–487, 1994.

[101] B. S. Raghavendra, D. Bera, A. S. Bopardikar, and R. Narayanan, “Cardiac arrhythmia detection using dy-
namic time warping of ECG beats in e-healthcare systems,” in IEEE International Symposium on a World of

Wireless, Mobile and Multimedia Networks, 2011, pp. 1–6.

[102] P. Laguna, R. Jané, and P. Caminal, “Automatic detection of wave boundaries in multilead ECG signals:
Validation with the CSE database,” Computers and Biomedical Research, vol. 27, no. 1, pp. 45–60, 1994.

[103] B. Celler and P. de Chazal, “Selection of parameters from power spectral density, wavelet transforms and
other methods for the automated interpretation of the ECG,” in Proceedings of IEEE Digital Signal Processing

Conference (DSP), vol. 1. IEEE, 1997, pp. 71–74.

[104] C. Ye, M. T. Coimbra, and B. V. Kumar, “Arrhythmia detection and classification using morphological and
dynamic features of ECG signals,” in Proceedings of IEEE Engineering in Medicine and Biology Society Conference

(EMBC). IEEE, 2010, pp. 1918–1921.

[105] G. H. Tison, J. M. Sanchez, B. Ballinger, A. Singh, J. E. Olgin, M. J. Pletcher, E. Vittinghoff, E. S. Lee, S. M. Fan,
R. A. Gladstone, C. Mikell, N. Sohoni, J. Hsieh, and G. M. Marcus, “Passive detection of atrial fibrillation
using a commercially available smartwatch,” JAMA Cardiology, vol. 3, no. 5, pp. 409–416, 2018.

[106] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, p. 436, 2015.

[107] R. Taylor, “Type 2 diabetes: etiology and reversibility,” Diabetes care, vol. 36, no. 4, pp. 1047–1055, Apr 2013.

[108] C. Hayes and A. Kriska, “Role of physical activity in diabetes management and prevention,” Journal of the

American Dietetic Association, vol. 108, no. 4, pp. S19–S23, Apr 2008.

[109] S. H. Ley, O. Hamdy, V. Mohan, and F. B. Hu, “Prevention and management of type 2 diabetes: dietary
components and nutritional strategies,” The Lancet, vol. 383, no. 9933, pp. 1999–2007, Jun 2014.

[110] D. Rodbard, “Continuous glucose monitoring: a review of recent studies demonstrating improved glycemic
outcomes,” Diabetes Technology & Therapeutics, vol. 19, no. 3, pp. 25–37, Jun 2017.

[111] A. Facchinetti, “Continuous glucose monitoring sensors: past, present and future algorithmic challenges,”
Sensors, vol. 16, no. 12, p. 2093, Dec 2016.

[112] C. Zecchin, A. Facchinetti, G. Sparacino, and C. Cobelli, “Reduction of number and duration of hypoglycemic
events by glucose prediction methods: a proof-of-concept in silico study,” Diabetes technology & therapeutics,
vol. 15, no. 1, pp. 66–77, Jan 2013.

[113] B. Buckingham, H. P. Chase, E. Dassau, E. Cobry, P. Clinton, V. Gage, K. Caswell, J. Wilkinson, F. Cameron,
H. Lee, B. W. Bequette, and F. J. Doyle, “Prevention of nocturnal hypoglycemia using predictive alarm algo-
rithms and insulin pump suspension,” Diabetes Care, vol. 33, no. 5, pp. 1013–1017, May 2010.

[114] A. Zhong, P. Choudhary, C. McMahon, P. Agrawal, J. B. Welsh, T. L. Cordero, and F. R. Kaufman, “Effective-
ness of automated insulin management features of the MiniMed R© 640G sensor-augmented insulin pump,”
Diabetes technology & therapeutics, vol. 18, no. 10, pp. 657–663, Oct 2016.

[115] G. Sparacino, F. Zanderigo, S. Corazza, A. Maran, A. Facchinetti, and C. Cobelli, “Glucose concentration can
be predicted ahead in time from continuous glucose monitoring sensor time-series,” IEEE Transactions on

Biomedical Engineering, vol. 54, no. 5, pp. 931–937, May 2007.

[116] A. Gani, A. V. Gribok, S. Rajaraman, W. K. Ward, and J. Reifman, “Predicting subcutaneous glucose concen-
tration in humans: data-driven glucose modeling,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 2,

144 BIBLIOGRAPHY

pp. 246–254, Feb 2009.

[117] M. Eren-Oruklu, A. Cinar, L. Quinn, and D. Smith, “Estimation of future glucose concentrations with subject-
specific recursive linear models,” Diabetes Technology and Therapeutics, vol. 11, no. 4, pp. 243–253, Apr 2009.

[118] C. Perez-Gandia, A. Facchinetti, G. Sparacino, C. Cobelli, E. J. Gomez, M. Rigla, A. de Leiva, and M. E.
Hernando, “Artificial neural network algorithm for online glucose prediction from continuous glucose mon-
itoring,” Diabetes Technology and Therapeutics, vol. 12, no. 1, pp. 81–88, Jan 2010.

[119] V. Naumova, S. V. Pereverzyev, and S. Sivananthan, “A meta-learning approach to the regularized learning-
case study: blood glucose prediction,” Neural Networks, vol. 33, pp. 181–193, Sep 2012.

[120] D. A. Finan, F. J. Doyle, C. C. Palerm, W. C. Bevier, H. C. Zisser, L. Jovanovic, and D. E. Seborg, “Experimental
evaluation of a recursive model identification technique for type 1 diabetes,” Journal of Diabetes Science and

Technology, vol. 3, no. 5, pp. 1192–1202, Sep 2009.

[121] M. Eren-Oruklu, A. Cinar, D. K. Rollins, and L. Quinn, “Adaptive system identification for estimating future
glucose concentrations and hypoglycemia alarms,” Automatica, vol. 48, no. 8, pp. 1892–1897, Aug 2012.

[122] K. Turksoy, E. S. Bayrak, L. Quinn, E. Littlejohn, D. Rollins, and A. Cinar, “Hypoglycemia early alarm systems
based on multivariable models,” Industrial & engineering chemistry research, vol. 52, no. 35, pp. 12 329–12 336,
Sep 2013.

[123] E. I. Georga, V. C. Protopappas, D. Polyzos, and D. I. Fotiadis, “A predictive model of subcutaneous glucose
concentration in type 1 diabetes based on random forests,” in 34th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, Aug 2012.

[124] E. I. Georga, V. C. Protopappas, D. Ardigo, M. Marina, I. Zavaroni, D. Polyzos, and D. I. Fotiadis, “Multi-
variate prediction of subcutaneous glucose concentration in type 1 diabetes patients based on support vector
regression,” IEEE Journal of Biomedical and Health Informatics, vol. 17, no. 1, pp. 71–81, Jan 2013.

[125] E. I. Georga, V. C. Protopappas, D. Polyzos, and D. I. Fotiadis, “Evaluation of short-term predictors of glucose
concentration in type 1 diabetes combining feature ranking with regression models,” Medical and Biological

Engineering and Computing, vol. 53, no. 12, pp. 1305–1318, Dec 2015.

[126] M. Cescon, R. Johansson, and E. Renard, “Subspace-based linear multi-step predictors in type 1 diabetes
mellitus,” Biomedical Signal Processing and Control, vol. 22, pp. 99–110, Sep 2015.

[127] C. Zecchin, A. Facchinetti, G. Sparacino, G. De Nicolao, and C. Cobelli, “Neural network incorporating
meal information improves accuracy of short-time prediction of glucose concentration,” IEEE Transactions on

Biomedical Engineering, vol. 59, no. 6, pp. 1550–1560, Jun 2012.

[128] C. Zecchin, A. Facchinetti, G. Sparacino, and C. Cobelli, “Jump neural network for online short-time pre-
diction of blood glucose from continuous monitoring sensors and meal information,” Computer Methods and

Programs in Biomedicine, vol. 113, no. 1, pp. 144–152, Jan 2014.

[129] C. Zecchin, A. Facchinetti, G. Sparacino, and C. Cobelli, “How much is short-term glucose prediction in type
1 diabetes improved by adding insulin delivery and meal content information to CGM data? A proof-of-
concept study,” Journal of diabetes science and technology, vol. 10, no. 5, pp. 1149–1160, Sep 2016.

[130] K. Zarkogianni, K. Mitsis, E. Litsa, M.-T. Arredondo, G. Fico, A. Fioravanti, and K. S. Nikita, “Comparative
assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for
glucose and physical activity monitoring,” Medical & biological engineering & computing, vol. 53, no. 12, pp.
1333–1343, Dec 2015.

[131] E. Daskalaki, A. Prountzou, P. Diem, and S. G. Mougiakakou, “Real-time adaptive models for the person-
alized prediction of glycemic profile in type 1 diabetes patients,” Diabetes technology & therapeutics, vol. 14,
no. 2, pp. 168–174, Feb 2012.

[132] P. Tkachenko, G. Kriukova, M. Aleksandrova, O. Chertov, E. Renard, and S. V. Pereverzyev, “Prediction of
nocturnal hypoglycemia by an aggregation of previously known prediction approaches: proof of concept for
clinical application,” Computer methods and programs in biomedicine, vol. 134, pp. 179–186, Oct 2016.

[133] I. Contreras, S. Oviedo, M. Vettoretti, R. Visentin, and J. Vehí, “Personalized blood glucose prediction: A
hybrid approach using grammatical evolution and physiological models,” PloS one, vol. 12, no. 11, pp. 1–16,
Nov 2017.

[134] R. M. Bergenstal, S. Garg, S. A. Weinzimer, B. A. Buckingham, B. W. Bode, W. V. Tamborlane, and F. R.
Kaufman, “Safety of a hybrid closed-loop insulin delivery system in patients with type 1 diabetes,” Jama,
vol. 316, no. 13, pp. 1407–1408, 2016.

[135] T. Koutny, “Modelling of glucose dynamics for diabetes,” in International Conference on Bioinformatics and

Biomedical Engineering, Seoul, South Korea, Nov 2017.

BIBLIOGRAPHY 145

[136] M. Gadaleta, A. Facchinetti, E. Grisan, and M. Rossi, “Prediction of adverse glycemic events from continuous
glucose monitoring signal,” IEEE Journal of Biomedical and Health Informatics, 2018.

[137] G. E. Box and G. C. Tiao, Bayesian inference in statistical analysis. John Wiley & Sons, 2011, vol. 40.

[138] D. Basak, S. Pal, and D. C. Patranabis, “Support vector regression,” Neural Information Processing-Letters and

Reviews, vol. 11, no. 10, pp. 203–224, Oct 2007.

[139] M. Vettoretti, A. Facchinetti, G. Sparacino, and C. Cobelli, “Type 1 diabetes patient decision simulator for
in silico testing safety and effectiveness of insulin treatments,” IEEE Transactions on Biomedical Engineering,
vol. PP, no. 99, pp. 1–1, Aug 2017.

[140] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, Jan 2001.

[141] H. Drucker, “Improving regressors using boosting techniques,” in 14th International Conference on Machine

Learning (ICML), San Francisco, CA, USA, Jul 1997.

[142] A. Facchinetti, S. Del Favero, G. Sparacino, J. R. Castle, W. K. Ward, and C. Cobelli, “Modeling the glucose
sensor error,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 3, pp. 620–629, Mar 2014.

[143] A. Facchinetti, S. Del Favero, G. Sparacino, and C. Cobelli, “Model of glucose sensor error components:
identification and assessment for new dexcom g4 generation devices,” Medical & biological engineering &

computing, vol. 53, no. 12, pp. 1259–1269, Dec 2015.

[144] C. J. V. Rijsbergen, Information Retrieval, 2nd ed. Butterworth-Heinemann, 1979.

[145] M. Christiansen, T. Bailey, E. Watkins, D. Liljenquist, D. Price, K. Nakamura, R. Boock, and T. Peyser, “A
new-generation continuous glucose monitoring system: improved accuracy and reliability compared with a
previous-generation system,” Diabetes Technology and Therapeutics, vol. 15, no. 10, pp. 881–888, Oct 2013.

[146] T. Hastie, S. Rosset, J. Zhu, and H. Zou, “Multi-class adaboost,” Statistics and its Interface, vol. 2, no. 3, pp.
349–360, Feb 2009.

[147] L. Breiman, J. Friedman, R. Olshen, and C. J. Stone, “Classification and regression trees,” Wadsworth, 1984.

[148] C. Dance, “Lean Smart Parking,” The Parking Professional, vol. 30, no. 6, pp. 26–29, 2014.

[149] G. Pierce and D. Shoup, “Getting the Prices Right,” Journal of the American Planning Association, vol. 79, no. 1,
pp. 67–81, 2013.

[150] Worldsensing, “Smartprk – Making Smart Cities Happen,” http://www.fastprk.com/.

[151] N. Piovesan, L. Turi, E. Toigo, B. Martinez, and M. Rossi, “Data Analytics for Smart Parking Applications,”
Sensors, vol. 16, no. 10, 2016.

[152] E. I. Vlahogiannia, K. Kepaptsogloua, V. Tsetsosa, and M. G. Karlaftisa, “A Real-Time Parking Prediction
System for Smart Cities,” Journal of Intelligent Transportation Systems: Technology, Planning, and Operations,
vol. 20, no. 2, pp. 192–204, 2016.

[153] A. Kanungo, A. Sharma, and C. Singla, “Smart traffic lights switching and traffic density calculation using
video processing,” in IEEE Recent Advances in Engineering and Computational Sciences (RAECS), 2014.

[154] B. Ghazal, K. ElKhatib, K. Chahine, and M. Kherfan, “Smart traffic light control system,” in International

Conference on Electrical, Electronics, Computer Engineering and their Applications (EECEA), 2016.

[155] J. Rzeszótko and S. H. Nguyen, “Machine Learning for Traffic Prediction,” Fundamenta Informaticae - Concur-

rency Specification and Programming, vol. 119, no. 3-4, pp. 407–420, 2012.

[156] M. Scalabrin, M. Gadaleta, R. Bonetto, and M. Rossi, “A bayesian forecasting and anomaly detection frame-
work for vehicular monitoring networks,” in Machine Learning for Signal Processing (MLSP), 2017 IEEE 27th

International Workshop on. IEEE, 2017, pp. 1–6.

[157] R. J. Beckman and R. D. Cook, “Outlier. s,” Technometrics, vol. 25, no. 2, pp. 119–149, 1983.

[158] Z. A. Bakar, R. Mohemad, A. Ahmad, and M. M. Deris, “A Comparative Study for Outlier Detection Tech-
niques in Data Mining,” in Cybernetics and Intelligent Systems, 2006 IEEE Conference on, 2006.

[159] V. J. Hodge and J. Austin, “A Survey of Outlier Detection Methodologies,” Artificial intelligence review, vol. 22,
no. 2, pp. 85–126, 2004.

[160] M. Agyemang, K. Barker, and R. Alhajj, “A Comprehensive Survey of Numeric and Symbolic Outlier Mining
Techniques,” Intelligent Data Analysis, vol. 10, no. 6, pp. 521–538, 2006.

[161] J. Lan, C. Long, R. C.-W. Wong, Y. Chen, Y. Fu, D. Guo, S. Liu, Y. Ge, Y. Zhou, and J. Li, “A New Framework
for Traffic Anomaly Detection,” in Proceedings of the 2014 SIAM International Conference on Data Mining, 2014.

[162] W. Liu, Y. Zheng, S. Chawla, J. Yuan, and X. Xing, “Discovering Spatio-temporal Causal Interactions in
Traffic Data Streams,” in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, 2011.

146 BIBLIOGRAPHY

[163] L. X. Pang, S. Chawla, W. Liu, and Y. Zheng, “On Mining Anomalous Patterns in Road Traffic Streams,” in
International Conference on Advanced Data Mining and Applications, 2011.

[164] X. Li, Z. Li, J. Han, and J. G. Lee, “Temporal Outlier Detection in Vehicle Traffic Data,” in 2009 IEEE 25th

International Conference on Data Engineering, 2009.

[165] S. Sun, C. Zhang, and G. Yu, “A Bayesian Network Approach to Traffic Flow Forecasting,” IEEE Transactions

on Intelligent Transportation Systems, vol. 7, no. 1, pp. 124–132, 2006.

[166] H. Yin, S. Wong, J. Xu, and C. Wong, “Urban Traffic Flow Prediction Using a Fuzzy-Neural Approach,”
Transportation Research Part C: Emerging Technologies, vol. 10, no. 2, pp. 85–98, 2002.

[167] G. Yu, J. Hu, C. Zhang, L. Zhuang, and J. Song, “Short-Term Traffic Flow Forecasting Based on Markov Chain
Model,” in IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683), 2003.

[168] C. M. Bishop, Pattern recognition and machine learning. Springer, New York, 2006.

[169] Bitcarrier technology, http://www.worldsensing.com/product/ bitcarrier/.

[170] C. R. Rao, Linear statistical inference and its applications. John Wiley & Sons, 2009.

[171] “Cisco Visual Networking Index: Global mobile data traffic forecast update, 2015–2020 white paper,” Tech.
Rep., 2015.

[172] “ISO/IEC 23009-1:2014: Dynamic adaptive streaming over HTTP (DASH) – Part 1: Media presentation de-
scription and segment formats,” International Organization for Standardization, Standard, May 2014.

[173] R. K. Mok, E. W. Chan, and R. K. Chang, “Measuring the quality of experience of HTTP video streaming,”
in IFIP/IEEE 12th International Symposium on Integrated Network Management (IM 2011), Dublin, Ireland, May
2011, pp. 485–492.

[174] T. Hoßfeld, M. Seufert, C. Sieber, and T. Zinner, “Assessing effect sizes of influence factors towards a QoE
model for HTTP adaptive streaming,” in IEEE 6th International Workshop on Quality of Multimedia Experience

(QoMEX), Singapore, Singapore, Sep 2014, pp. 111–116.

[175] T. Hoßfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and C. Lorentzen, “Initial delay vs. interruptions: be-
tween the devil and the deep blue sea,” in IEEE 4th International Workshop on Quality of Multimedia Experience

(QoMEX), Melbourne, Australia, Jul 2012, pp. 1–6.

[176] Z. Li, A. C. Begen, J. Gahm, Y. Shan, B. Osler, and D. Oran, “Streaming video over HTTP with consistent
quality,” in ACM 5th Multimedia Systems Conference (MMSys), Singapore, Singapore, Mar 2014, pp. 248–258.

[177] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press Cambridge, 1998.

[178] M. Gadaleta, F. Chiariotti, M. Rossi, and A. Zanella, “D-dash: A deep q-learning framework for dash video
streaming,” IEEE Transactions on Cognitive Communications and Networking, vol. 3, no. 4, pp. 703–718, 2017.

[179] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang, “Developing a predictive model of
quality of experience for internet video,” ACM SIGCOMM Computer Communication Review (CCR), vol. 43,
no. 4, pp. 339–350, 2013.

[180] P. Juluri, V. Tamarapalli, and D. Medhi, “Measurement of quality of experience of video-on-demand services:
A survey,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 401–418, 2016.

[181] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia, “A survey on quality of experience of
HTTP Adaptive Streaming,” IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 469–492, 2015.

[182] M. Shahid, A. Rossholm, B. Lövström, and H.-J. Zepernick, “No-reference image and video quality assess-
ment: a classification and review of recent approaches,” EURASIP Journal on Image and Video Processing, vol.
2014, no. 1, pp. 1–32, 2014.

[183] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to
structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[184] C. Kreuzberger, B. Rainer, H. Hellwagner, L. Toni, and P. Frossard, “A comparative study of DASH repre-
sentation sets using real user characteristics,” in ACM 26th International Workshop on Network and Operating

Systems Support for Digital Audio and Video, 2016, p. 4.

[185] S. Cicalo, N. Changuel, R. Miller, B. Sayadi, and V. Tralli, “Quality-fair HTTP adaptive streaming over LTE
network,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, pp. 714–
718.

[186] J. De Vriendt, D. De Vleeschauwer, and D. Robinson, “Model for estimating QoE of video delivered using
HTTP adaptive streaming,” in IFIP/IEEE International Symposium on Integrated Network Management (IM 2013),
Ghent, Belgium, May 2013, pp. 1288–1293.

[187] J. Kua, G. Armitage, and P. Branch, “A survey of rate adaptation techniques for Dynamic Adaptive Streaming
over HTTP,” IEEE Communications Surveys & Tutorials, 2017.

BIBLIOGRAPHY 147

[188] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and stability in HTTP-based adaptive video
streaming with FESTIVE,” in ACM 8th International Conference on Emerging Networking Experiments and Tech-

nologies (CoNEXT), Nice, France, Dec 2012, pp. 97–108.

[189] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran, “Probe and adapt: Rate adaptation for HTTP
video streaming at scale,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 4, pp. 719–733, 2014.

[190] S. Petrangeli, J. Famaey, M. Claeys, and F. De Turck, “A QoE-driven rate adaptation heuristic for enhanced
adaptive video streaming,” Ghent University-iMinds, Department of Information Technology, Tech. Rep.,
2014.

[191] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic approach for dynamic adaptive video stream-
ing over http,” ACM SIGCOMM Computer Communication Review, vol. 45, no. 4, pp. 325–338, 2015.

[192] A. Bokani, M. Hassan, and S. Kanhere, “HTTP-based adaptive streaming for mobile clients using Markov
Decision Process,” in IEEE 20th International Packet Video Workshop, San Jose, CA, USA, Dec 2013, pp. 1–8.

[193] C. Zhou, C.-W. Lin, and Z. Guo, “mDASH: A Markov Decision-based rate adaptation approach for dynamic
HTTP streaming,” IEEE Transactions on Multimedia, vol. 18, no. 4, pp. 738–751, 2016.

[194] J. Lee and S. Bahk, “On the MDP-based cost minimization for video-on-demand services in a heterogeneous
wireless network with multihomed terminals,” IEEE Transactions on Mobile Computing, vol. 12, no. 9, pp.
1737–1749, 2013.

[195] S. Colonnese, F. Cuomo, T. Melodia, and R. Guida, “Cloud-assisted buffer management for HTTP-based
mobile video streaming,” in ACM 10th Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, &

Ubiquitous Networks, Barcelona, Spain, Nov 2013, pp. 1–8.

[196] M. Claeys, S. Latré, J. Famaey, T. Wu, W. Van Leekwijck, and F. De Turck, “Design of a Q-learning-based client
quality selection algorithm for HTTP adaptive video streaming,” in Adaptive and Learning Agents Workshop

(ALA-2013), Saint Paul, Minnesota, USA, May 2013, pp. 30–37.

[197] M. Claeys, S. Latré, J. Famaey, T. Wu, W. Van Leekwijck, and F. De Turck, “Design and optimisation of a (FA)
Q-learning-based HTTP adaptive streaming client,” Connection Science, vol. 26, no. 1, pp. 25–43, 2014.

[198] V. Martín, J. Cabrera, and N. García, “Q-learning based control algorithm for HTTP adaptive streaming,”
in IEEE International Conference on Visual Communications and Image Processing (VCIP), Singapore, Singapore,
Dec 2015, pp. 1–4.

[199] J. van der Hooft, S. Petrangeli, M. Claeys, J. Famaey, and F. De Turck, “A learning-based algorithm for im-
proved bandwidth-awareness of adaptive streaming clients,” in IFIP/IEEE International Symposium on Inte-

grated Network Management (IM 2015), May 2015, pp. 131–138.

[200] F. Chiariotti, S. D’Aronco, L. Toni, and P. Frossard, “Online learning adaptation strategy for dash clients,” in
ACM 7th International Conference on Multimedia Systems (MMSys), Klagenfurt am Wörthersee, Austria, May
2016, pp. 8:1–8:12.

[201] S. Chikkerur, V. Sundaram, M. Reisslein, and L. J. Karam, “Objective video quality assessment methods:
A classification, review, and performance comparison,” IEEE transactions on broadcasting, vol. 57, no. 2, pp.
165–182, 2011.

[202] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical evaluation of recent full reference image quality
assessment algorithms,” IEEE Transactions on image processing, vol. 15, no. 11, pp. 3440–3451, 2006.

[203] M. Zorzi, A. Zanella, A. Testolin, M. D. F. D. Grazia, and M. Zorzi, “Cognition-based networks: A new
perspective on network optimization using learning and distributed intelligence,” IEEE Access, vol. 3, pp.
1512–1530, 2015.

[204] O. Rose, “Statistical properties of MPEG video traffic and their impact on traffic modeling in ATM systems,”
in IEEE 20th Conference on Local Computer Networks, Minneapolis, Minnesota, Oct 1995, pp. 397–406.

[205] R. Bellman, “A Markovian decision process,” Indiana University Mathematics Journal, vol. 6, no. 4, pp. 679–684,
1957.

[206] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3, pp. 279–292, 1992.

[207] M. Kearns and S. Singh, “Finite-sample convergence rates for Q-learning and indirect algorithms,” Advances

in Neural Information Processing Systems, vol. 11, pp. 996–1002, 1999.

[208] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol. abs/1412.6980, 2014.

[209] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[210] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise timing with LSTM recurrent net-
works,” Journal of Machine Learning Research, vol. 3, pp. 115–143, Aug 2002.

148 BIBLIOGRAPHY

[211] P. J. Werbos, “Backpropagation through time: what it does and how to do it,” Proceedings of the IEEE, vol. 78,
no. 10, pp. 1550–1560, 1990.

[212] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61, pp. 85–117, 2015.

[213] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[214] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518,
no. 7540, pp. 529–533, 2015.

[215] L.-J. Lin, “Reinforcement learning for robots using neural networks,” DTIC Document, Tech. Rep., 1993.

[216] X. Li and X. Wu, “Constructing long short-term memory based deep recurrent neural networks for large
vocabulary speech recognition,” in IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), South Brisbane, Queensland, Australia, Apr 2015, pp. 4520–4524.

[217] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to
prevent neural networks from overfitting.” Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958,
2014.

[218] P. Juluri, V. Tamarapalli, and D. Medhi, “Qoe management in dash systems using the segment aware rate
adaptation algorithm,” in IEEE/IFIP Network Operations and Management Symposium (NOMS), 2016, pp. 129–
136.

[219] A. Testolin, M. Zanforlin, M. D. F. D. Grazia, D. Munaretto, A. Zanella, M. Zorzi, and M. Zorzi, “A machine
learning approach to QoE-based video admission control and resource allocation in wireless systems,” in
13th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET), Los Angeles, CA, USA, June 2014,
pp. 31–38.

[220] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface, T. Bostoen, and F. De Turck, “HTTP/2-
Based Adaptive Streaming of HEVC Video Over 4G/LTE Networks,” IEEE Communications Letters, vol. 20,
no. 11, pp. 2177–2180, 2016.

[221] H. X. Nguyen, P. Thiran, and C. Barakat, “On the correlation of TCP traffic in backbone networks,” in IEEE

International Symposium on Circuits and Systems (ISCAS), vol. 5, Vancouver, Canada, May 2004, pp. V–481.

[222] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race, “Towards network-wide QoE fairness
using OpenFlow-assisted adaptive video streaming,” in ACM/SIGCOMM Workshop on Future human-centric

multimedia networking (FhMN), Hong Kong, China, Aug 2013, pp. 15–20.

[223] A. Mansy, M. Fayed, and M. Ammar, “Network-layer fairness for adaptive video streams,” in IEEE/IFIP

Networking Conference, Toulouse, France, May 2015, pp. 1–9.

[224] J. W. Kleinrouweler, S. Cabrero, R. van der Mei, and P. Cesar, “Modeling stability and bitrate of network-
assisted HTTP adaptive streaming players,” in IEEE 27th International Teletraffic Congress (ITC 27), Ghent,
Belgium, Sep 2015, pp. 177–184.

	Abstract
	Sommario in lingua italiana
	Acknowledgements
	List of Abbreviations
	Introduction
	Human Gait Identification with Inertial Sensors
	Related Work
	Signal Processing Framework
	Data Acquisition and Filtering
	Extraction of Walking Cycles
	Orientation Independent Transformation
	Normalization

	Convolutional Neural Network
	CNN Architecture
	CNN Optimization and Results

	One-Class Support Vector Machine Training
	Revised Classification Architecture
	One-Class SVM Design

	Sequential Analysis
	Experimental Results

	Discussion

	ECG Signal Analysis for Early Diagnosis of Heart Diseases
	Methods
	Single-lead ECG dataset
	Pre-processing
	Baseline wander removal
	Element-wise normalization
	Signal cropping

	Feature extraction: feature engineering approach
	RR interval-based features
	Signal averaged ECG features
	Classifier

	Feature Extraction: Deep-learning architectures
	Alexnet
	Visual Geometry Group (VGG)
	Inception
	ResNet
	MobileNet

	Classification
	Training procedure

	Performance metrics and statistical analysis
	Results
	Discussion
	AF detection: Feature engineering approach
	AF detection: Representation learning approach

	Prediction of Adverse Glycemic Events from CGM Signal
	Methods
	Regression algorithms
	Classification algorithms
	Events detection
	Training process
	Static model
	Dynamic model

	Results
	Discussion

	A Bayesian Framework for Vehicular Monitoring Networks
	State of the Art Analysis
	Bayesian Framework
	Traffic Readings
	Probabilistic inference via GMM
	Data Matrices and Typical Weekly Profiles

	Numerical Results
	Forecasting Capability
	Anomaly Detection Accuracy

	Discussion

	Deep Reinforcement Learning for DASH Video Streaming
	Related work
	Reinforcement Learning and DASH

	System model
	Video streaming services
	Reward function

	Machine learning optimization framework
	Markov Decision Process model
	Q-learning
	Limits of the Q-learning approach

	Deep-learning integration

	Neural network architectures: preliminaries
	Deep Q-learning for DASH adaptation
	Simulation and results
	Algorithm settings
	Results: real traces
	Results: synthetic traces
	Memory allocation
	Summary of performance

	Discussion

	Conclusion

