
5896  |  	﻿�  Glob Change Biol. 2023;29:5896–5907.wileyonlinelibrary.com/journal/gcb

Received: 21 March 2023  | Accepted: 15 July 2023

DOI: 10.1111/gcb.16895  

R E S E A R C H  A R T I C L E

Growth form and leaf habit drive contrasting effects of Arctic 
amplification in long-lived woody species

Davide Frigo1  |   Ólafur Eggertsson2  |   Angela Luisa Prendin1,3  |    
Raffaella Dibona1  |   Lucrezia Unterholzner1,4  |   Marco Carrer1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

1Department of Land Environment 
Agriculture and Forestry, University of 
Padova, Legnaro, Italy
2Icelandic Forest Research, Reykjavik, 
Iceland
3Section for Ecoinformatics and 
Biodiversity, Department of Biology, 
Aarhus University, Aarhus, Denmark
4Chair of Forest Growth and Woody 
Biomass Production, TU Dresden, 
Tharandt, Germany

Correspondence
Davide Frigo, Department of Land 
Environment Agriculture and Forestry, 
University of Padova, Legnaro, Italy.
Email: davide.frigo@phd.unipd.it

Funding information
HORIZON EUROPE Marie Sklodowska-
Curie Actions, Grant/Award Number: 
895233; INTERACT Transnational Access 
H2020, Grant/Award Number: 871120

Abstract
Current global change is inducing heterogeneous warming trends worldwide, with 
faster rates at higher latitudes in the Northern Hemisphere. Consequently, tun-
dra vegetation is experiencing an increase in growth rate and uneven but expand-
ing distribution. Yet, the drivers of this heterogeneity in woody species responses 
are still unclear. Here, applying a retrospective approach and focusing on long-
term responses, we aim to get insight into growth trends and climate sensitivity 
of long-lived woody species belonging to different functional types with contrast-
ing growth forms and leaf habits (shrub vs. tree and deciduous vs. evergreen). A 
total of 530 samples from 7 species (common juniper, dwarf birch, woolly willow, 
Norway spruce, lodgepole pine, rowan, and downy birch) were collected in 10 sites 
across Iceland. We modelled growth trends and contrasted yearly ring-width meas-
urements, filtering in high- and low-frequency components, with precipitation, 
land- and sea-surface temperature records (1967–2018). Shrubs and trees showed 
divergent growth trends, with shrubs closely tracking the recent warming, whereas 
trees, especially broadleaved, showed strong fluctuations but no long-term growth 
trends. Secondary growth, particularly the high-frequency component, was posi-
tively correlated with summer temperatures for most of the species. On the con-
trary, growth responses to sea surface temperature, especially in the low frequency, 
were highly diverging between growth forms, with a strong positive association for 
shrubs and a negative for trees. Within comparable vegetation assemblage, long-
lived woody species could show contrasting responses to similar climatic conditions. 
Given the predominant role of oceanic masses in shaping climate patterns in the 
Arctic and Low Arctic, further investigations are needed to deepen the knowledge 
on the complex interplay between coastal tundra ecosystems and land-sea surface 
temperature dynamics.

K E Y W O R D S
Arctic amplification, climate-growth association, ring width, tree and shrub, tundra vegetation

www.wileyonlinelibrary.com/journal/gcb
mailto:
https://orcid.org/0000-0002-9095-1082
https://orcid.org/0000-0002-7807-3539
https://orcid.org/0000-0002-5809-7314
https://orcid.org/0000-0003-3352-2350
https://orcid.org/0000-0002-6082-9852
https://orcid.org/0000-0003-1581-6259
http://creativecommons.org/licenses/by/4.0/
mailto:davide.frigo@phd.unipd.it
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.16895&domain=pdf&date_stamp=2023-08-01


    |  5897FRIGO et al.

1  |  INTRODUC TION

Global change is nowadays evident in all the components of 
the climate system, with remarkable warming across the atmo-
sphere, ocean, and land that led each of the last four decades to 
be successively warmer than any of the preceding ones since 1850 
(IPCC, 2021). The Arctic is warming at a faster rate than lower lati-
tudes; this phenomenon, known as Arctic amplification (AA; Previdi 
et al., 2021) is still not fully clarified. Yet, it likely involves a spec-
trum of drivers including enhanced oceanic heating, ice-albedo, and 
several other positive feedback mechanisms (e.g., ocean heat trans-
port; Chapin et al., 2005; Hinzman et al., 2013; Previdi et al., 2021; 
Rantanen et al., 2022).

Concurring to this warming pattern, several studies based on re-
peat photography, vegetation surveys, and retrospective approaches 
(Elmendorf et al., 2012; Pellizzari et al., 2017; Tape et al., 2006), as 
well as meta-analysis (Myers-Smith, Elmendorf, et al., 2015; Myers-
Smith, Hallinger, et al., 2015; Vowles & Björk, 2019), demonstrated 
a widespread spatial expansion and increased growth rate of tundra 
vegetation. This “Arctic greening” (Chae et al., 2015) reflects the ob-
served trends across the region that have been partly attributed to an 
increase in shrub cover (Myers-Smith et al., 2011; Stow et al., 2007; 
Sturm, Holmgren, et al.,  2001; Sturm, Racine, & Tape,  2001; Tape 
et al., 2006) and expansion (Vowles & Björk, 2019). Though the main 
drivers of shrub responses are still under investigation, different 
leaf habits—deciduous and evergreen—seem to induce slightly dif-
ferent trajectories within the greening process: deciduous species 
may increase carbon (C) cycling through changes in albedo, while 
evergreen ones may facilitate C storage decelerating litter decom-
position (Vowles & Björk, 2019).

Shrubs lie at the outposts of woody plant living conditions, usu-
ally growing beyond the treeline ecotone at high latitudes and al-
titudes, where trees are less abundant or absent (Körner,  2012a). 
Therefore, alongside the well-documented shrub expansions (Berner 
et al., 2020; Elmendorf et al., 2012), trees are expected to undergo 
similar dynamics tracking AA (Tei et al.,  2017; Zhang et al.,  2013) 
with northward and upward treeline shifts, similar to what has al-
ready been observed in several boreal forests (Devi et al.,  2008; 
Grace et al.,  2002; MacDonald et al.,  2008; Soja et al.,  2007; 
Vaganov et al.,  1999). However, shrubs and trees usually respond 
rather differently to environmental factors, with trees showing 
higher sensitivity to recent climate warming (García-Cervigón 
Morales et al., 2012; Pellizzari et al., 2017). In fact, shrub species may 
be more influenced by microclimatic and -topographic conditions, 
soil temperature (Gazol & Camarero,  2012; Pellizzari et al.,  2017), 
and, regionally, winter precipitations (Carrer et al., 2023; Pellizzari 
et al., 2014) rather than air temperature. During winter, shrub mer-
istems are often covered by snow which contributes to limiting the 
risk of drought-induced embolism and mechanical damage compared 
to trees (Bokhorst et al., 2009; Carrer et al., 2019; Rixen et al., 2010). 
On the contrary, due to their erect habit and taller stature, trees 
are usually better coupled to air temperature, with meristems 
highly sensitive to free atmospheric conditions (Grace, 1989; Grace 

et al., 2002; Körner, 2012b). Still, contrasting trends have been ob-
served and predicted in trees according to their leaf habit within the 
same bioclimatic zone, with deciduous taxa showing an increase in 
productivity while the evergreen ones showed a significant decline 
(Miles & Esau, 2016).

Ongoing and forecasted abrupt changes in the Arctic climate 
system will therefore interfere not only with long-lived woody 
species expansion but also with the climate responses of coex-
isting shrubs and trees -both evergreen and deciduous- causing 
complex outcomes far from being understood (Chapin et al., 2005; 
Chapin & Shaver, 1989; MacDonald et al., 2008; Zhang et al., 2013). 
Moreover, the northward range expansion of the shrubs/trees as-
semblages could have profound implications for the Arctic biomes 
(Chae et al.,  2015; Chapin et al.,  2005; Tape et al.,  2006). In fact, 
modification in long-living woody species composition would deeply 
alter tundra biome surface energy balance, carbon balance, hydrol-
ogy, and active layer patterns and features (Chapin et al.,  2005; 
Previdi et al.,  2021; Sturm, Holmgren, et al.,  2001; Sturm, Racine, 
& Tape, 2001). Given the direct and indirect changes that the Arctic 
biome will most likely face in the near future, it is of key importance 
to further understand the effect of AA on shrub and tree growth 
dynamics at northern latitudes, together with the role played by dif-
ferent leaf habit on growth responses in such temperature-limited 
environments (Dobbert et al., 2021; Takahashi & Okuhara, 2012).

Iceland, being located at the polar front astride the Arctic and 
Atlantic waters and air masses, represents one of the key areas 
exceptionally susceptible to current Arctic warming (Jónsdóttir 
et al., 2005). With a mean temperature of the warmest month (July) 
of around 10°C (Einarsson,  2007; Figure  S1), and its vegetation 
cover, mostly formed by grasslands, tundra, and sparse deciduous 
woodlands, Iceland belongs to the Sub-Arctic region, with a subpolar 
climate (Cfc, Köppen; Beck et al., 2018). However, the northernmost 
part and the highlands could be included in the Arctic region (mean 
temperature of the warmest month <10°C), with a tundra climate 
(ET, Köppen; Beck et al., 2018; Einarsson, 2007). As a result, despite 
native woodlands and shrublands covering roughly 1.4% of the is-
land (Snorrason et al.,  2016; Snorrason & Kjartansson,  2017), the 
Icelandic landscape is characterized by a mixture of growth forms, 
the most evident one being where the native subarctic birch for-
est meets the low Arctic tundra (Jónsdóttir et al., 2005). Alongside 
shrubs, exotic tree species such as Siberian larch, Sitka spruce, 
lodgepole pine, and Norway spruce have been introduced during the 
last 70 years and are now established and expanding (Snorrason & 
Kjartansson, 2017), creating patches of what could be considered as 
boreal conifer stands (Bonan et al., 1992; Bonan & Shugart, 1989). 
Across Iceland, it is possible to observe the coexistence of four fun-
damental functional types, namely evergreen shrubs (EVGS), decid-
uous shrubs (DECS), evergreen trees (EVGT), and deciduous trees 
(DECT). For this reason, the area is a crucial spot to investigate AA 
effects on Arctic long-lived woody species, especially any possible 
interactions within this shrub/tree and leaf habit dichotomy.

In this study, using a retrospective approach based on ring-
width (RW) analysis, we aimed to quantify the long-term growth 
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responses to rising temperatures of both deciduous and ever-
green shrubs and trees across the boreal forests and Arctic tun-
dra biomes in Iceland. Specifically, we aim to answer the following 
questions:

1.	 how does secondary growth of long-lived woody species re-
spond to AA in the Sub- and Low-Arctic?

2.	 are different functional types (shrub vs. tree; evergreen vs. de-
ciduous) and species influenced by similar climatic factors?

3.	 which functional type benefits the most from current Arctic 
warming?

We hypothesize that trees, having an erect habit, will be more 
sensitive to increased temperature compared to shrubs, which 
should be better coupled to microclimatic and -topographic set-
tings rather than free atmospheric conditions (Carrer et al., 2019; 
Pellizzari et al.,  2017). Given the conspicuous amount of precipi-
tation characterizing Iceland, and hence the virtual absence of any 
drought stress, we expect to detect a pervasive positive growth 
trend for each growth form related to the current AA, which pro-
vides an overall relaxation of the previous temperature-limiting 
conditions. Additionally, as already observed within the warming 
tundra, we expect better growing performance of native deciduous 
species rather than evergreen ones due to their relatively higher 
leaf turnover and earlier growth onset (Elmendorf et al.,  2012; 
Prager et al., 2020).

2  |  MATERIAL S AND METHODS

2.1  |  Targeted species

Within the long-lived woody species growing in Iceland, we selected 
taxa with both prostrate and erect habit (i.e., shrub and tree species) 
but also selected for both deciduous and evergreen overwinter strat-
egies. The sampled tundra shrubs are dwarf birch (Betula nana L.), 
woolly willow (Salix lanata L.), and common juniper (Juniperus com-
munis L.). The two broadleaved shrub species have nearly circumpo-
lar geographic distribution, spreading across the Arctic tundra and 
cool temperate regions (De Groot et al., 1997; Forbes et al., 2010) 
that in Iceland occur at higher elevations (200–400 m a.s.l.) and in-
land. Contrary to dwarf birch, which can grow in drier sites, woolly 
willow spreads mostly on stream sides, a typical trait of many Salix 
species (De Groot et al., 1997; Forbes et al., 2010). Common juni-
per, instead, is the most widespread conifer over the Northern 
Hemisphere and can be found throughout North America, Europe, 
and Asia (Farjon,  2005; San-Miguel-Ayanz et al.,  2016). In Iceland 
it grows on rocky and south-exposed slopes, from the sea level to 
200–400 m in elevation. Its slow growth, known longevity (Carrer 
et al., 2023) compared to many tree species, and its extremely broad 
distribution range make it an excellent target for dendroecological 
analyses. Other dwarf evergreen shrub taxa growing on the island 
(e.g., Calluna vulgaris or Empetrum nigrum; Wąsowicz, 2020) do not 

share all these key features and would likely prevent building robust 
chronologies length-wise comparable with trees RW series.

Regarding trees, we selected Norway spruce (Picea abies (L.) H. 
Karst.) and lodgepole pine (Pinus contorta Douglas) as evergreen 
and non-native tree species introduced respectively from north-
ern Europe and the Pacific coast of North America. They have been 
both extensively planted, after long seed provenance trials, during 
the first half of the last century and now most of the newly estab-
lished stands in Iceland are composed by these conifers together 
with Sitka spruce (Picea sitchensis (Bong.) Carr.) and Siberian larch 
(Larix sibirica Ledeb.; Blondal, 1987; Snorrason & Kjartansson, 2017). 
Downy birch (Betula pubescens Ehrh.) and rowan (Sorbus aucuparia 
L.), which constitute the vast majority of native forest species in 
Iceland, were selected as deciduous broadleaf trees. Birch wood-
lands account for 43% of current total forest area on the island, 
while rowan occurs as isolated individuals or small patches within 
birch woodlands (Blondal, 1987; Snorrason et al., 2016; Snorrason & 
Kjartansson, 2017). Their growth habit, especially for birch, is usu-
ally twisted and stunted, reaching an average height of 5 m as a result 
of the harsh environmental conditions.

2.2  |  Study sites and sample processing

We selected 10 sites located across Iceland, two for evergreen shrubs 
(hereafter EVGS, common juniper), three for DECS (DCDS, two for 
dwarf birch and one for woolly willow), three for evergreen trees 
(EVGT, two for Norway spruce, one for lodgepole pine), and two for 
DECT (DCDT, downy birch and rowan; Table 1). Site locations were 
chosen according to the presence of the species and to span most 
of the Iceland forest area, which is concentrated in a belt around the 
coastline (Figure 1). The sites' elevations vary from 40 to 540 m a.s.l. 
(Table  1). Within the sites, mean annual temperature ranges from 
1.02 to 4.15°C (Figure  S1) while mean annual precipitation spans 
from 734 to 1468 mm year−1. Wettest sites are in the southern and 
eastern parts of the island, while the driest sites lie in peninsulas and 
promontories in northern Iceland (Figure 1). Natural woodlands and 
forest plantations occur in lowlands and on the foothills. Shrubs were 
mostly found at higher elevations and in more inland sites, where 
vegetation turns to a mixture of dwarf shrubs, mosses and graminoid 
tundra. Bedrock and soil types are quite similar throughout the island 
with predominantly volcanic rocks, where basaltic tephra giving rise 
to andic soils (Arnalds, 2015). Samples were randomly selected, and 
two increment cores were collected from each dominant or codomi-
nant tree 50 cm above the ground. For shrubs, stem discs were col-
lected as close as possible to the ground, choosing the largest branch 
of each individual. At the lab, increment cores and disks were sanded 
with progressively finer sandpaper to get a clear visualization of the 
annual rings. RWs of each sample were measured to the nearest 
0.01 mm using TSAP package and Lintab system (RinnTech, 2010). 
In tundra environments, prostrate shrubs often present irregular 
growth forming typical lobate stems, due to microclimatic condi-
tions, disturbances, or, as in junipers, irregular strip-bark growth. 
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For this reason, within each shrub, we measured two to four radii 
per disk to account for the high RW variability. Subsequently, we 
compared each radius per individual and, when matching, averaged 
them to obtain the individual mean growth curve. This drawback 
never occurred with trees, where for each sample we averaged the 
RW series obtained from the two increment cores. Each individual 
growth curve was then crossdated following the standard dendro-
chronological procedures (Stokes & Smiley, 1968). First, we visually 
compared and matched each individual series within each site, with 
the software CDendro (CDendro 9.0.1; Cybis Elektronik & Data AB). 
Subsequently, dating and measurement errors were checked using 
the COFECHA program (Holmes, 1983). At this stage, we discarded 
roughly 40% of the samples, mostly shrub species due to crossdat-
ing issues (Table  2). The frequent anomalies in shrub growth pre-
vented us from adopting the basal area increment (BAI) as a metric 
of growth performance, which, although appropriate in trees, could 
introduce some biases in the analysis when applied to the irregular 
stem shape typical of dwarf arctic shrubs. Therefore, we decided 
to perform all the analyses investigating the different growth forms 
and leaf habits using the RW measurements. To compare RW vari-
ability with climate variables, we first standardized each individual 
series to remove trends in mean RW that typically occur with on-
togenesis or other disturbance pulses, using the ARSTAN program 

(Cook & Holmes, 1986). We applied a single-step detrending using 
a cubic spline function (frequency response of 50% at a wavelength 
of 100 years) to maintain mid-frequency (decadal to multi-decadal) 
growth variability (Figure S2). Finally, a mean chronology using the 
biweight robust mean (Cook et al.,  1990) was computed for each 
site together with the respective descriptive statistics, such as mean 
RW, standard deviation, and mean inter-series correlation (Rbar), 
which expresses the average correlation between all series through-
out the entire chronology (Fritts, 1976; Speer, 2010).

2.3  |  Climate data

Although automatic weather stations are now often in use in Iceland, 
many of them, for both temperature and precipitation, have short and 
fragmentary records, preventing sound and reliable climate-growth 
correlation analysis. We, therefore, opted for the 0.5° CRU gridded 
dataset of monthly mean land temperatures and precipitation sums 
(1901–2020; Harris et al., 2020). Since the Icelandic vegetation oc-
curs mainly on a belt around the coastline, we also considered the 
sea surface temperature as a potential driver of plant growth. To this 
end, we used the 0.1 HadISST gridded sea surface temperature (SST) 
dataset (1870–2020; Rayner et al., 2003).

F I G U R E  1  (a) Locations of shrub and 
trees sampling sites in Iceland (black dots). 
(b) Location of study sites in the climatic 
space. Colour gradients describe the 
interaction of two climate variables (June 
to August mean temperature and total 
precipitation for the 1967–2018 period), 
from red (warm, dry) to blue (cold, wet). 
Perpendicular dashed lines indicate the 
median values of the observations.

TA B L E  1  Description of the study sites. Mean annual temperature and precipitation sum for the period 1967–2018 are based on 0.5° 
CRU gridded dataset.

Site Species
Functional 
type Lat (N) Long (W)

Elevation 
(m a.s.l.)

Temperature 
(mean, °C)

Precipitation 
(sum, mm)

JUC1 Juniperus communis EVGS 65°49′ 17°59′ 370 1.02 745

JUC2 Juniperus communis EVGS 63°52′ 22°29′ 40 4.15 816

SALA Salix lanata DCDS 65°45′ 18°01′ 540 1.06 734

BEN1 Betula nana DCDS 65°47′ 20°00′ 480 1.02 745

BEN2 Betula nana DCDS 65°38′ 23°19′ 300 1.63 479

PICO Pinus contorta EVGT 64°10′ 16°00′ 100 2.84 1468

PIA1 Picea abies EVGT 65°42′ 17°53′ 170 1.02 745

PIA2 Picea abies EVGT 65°07′ 14°41′ 120 1.40 1282

SOAU Sorbus aucuparia DCDT 65°60′ 16°31′ 150 1.57 901

BEPU Betula pubescens DCDT 64°04′ 19°52′ 180 3.04 1250

Abbreviations: BEN; Betula nana; BEPU, Betula pubescens; DCDS, deciduous shrub; DCDT, deciduous trees; EVGS, evergreen shrub; EVGT, evergreen 
tree; JUC, Juniperus communis; PIA, Picea abies; PICO, Pinus contorta; SALA, Salix lanata; SOAU, Sorbus aucuparia.
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All the statistical analyses were computed over the 1967–2018 
period, which is the longest common period for all the series.

2.4  |  Statistical analysis

Principal component analysis (PCA) based on the correlation matri-
ces computed with the raw chronologies was used as a clustering 
technique to identify common modes of growth variability among 
the different growth forms and leaf habits. We also performed an 
ANOVA test (Girden, 1992) followed by a Tukey multiple comparison 
test (Haynes, 2013), to assess the differences among RW values of 
each functional group.

Then the spatiotemporal growth patterns for each growth form 
(broadleaved shrubs and trees, conifer shrubs and trees) were as-
sessed by applying the generalized additive mixed models (GAMMs; 
Wood, 2006). GAMM is a flexible semiparametric method used to 
model the nonlinear patterns existing between a response vari-
able as a function of some explanatory variables (Wood,  2006) 
that allows the treatment of autocorrelation and repeated mea-
sures (Wood, 2006). The variables included in the model were the 
following:

In the model, the RWs of a theoretical shrub or tree i were mod-
elled as a function of calendar year, age, and the interaction of dif-
ferent functional types, such as growth form (shrub, tree) and winter 
habit (evergreen, deciduous). We also included a further interaction 
term between calendar year and each different functional type to 
account for different growth trends between each growth form and 
winter habit. The tree/shrub identity (ZiBi) was considered as a ran-
dom factor to account for multiple RW measurements performed 
on different individuals, growth- and site-wise. Thin plate regression 
splines (s) were used to represent all the smooth terms, with a degree 
of smoothing determined by internal cross-validation (Wood, 2006). 

We ranked all the potential models that could be generated using 
different explanatory variables and different levels of smooth-
ing according to the Akaike information criterion (AIC) and finally 
chose the model with the lowest AIC (Table S1). GAMMs were fitted 
using the mgcv package (Wood, 2006). All analyses were run with R 
(v4.1.3, R Core Team, 2022).

Finally, climate-growth relationships, referring to a time window 
from June of the previous year to September of the current year, 
were defined through the bootstrap Pearson correlation coeffi-
cients (Guiot, 1991) computed between indexed (RWI) site chronol-
ogies and monthly and seasonal climate variables. To assess the 
contribution of temperature and precipitation in different time do-
mains, climate-growth correlations were also computed on both the 
low- and high-pass filtered chronologies. High- and low-frequency 
components were obtained by filtering the indexed chronologies 
through the Fast Fourier Transform (FFT; Brigham, 1988) above and 
below the cut-off frequency of 10 years.

3  |  RESULTS

A total of 530 samples, 400 shrubs, and 130 trees, were collected 
and measured. After crossdating, we discarded half of the shrub 
samples and just a few trees, the latter mostly related to cores' faults. 
Therefore, in the final shrub chronologies, we included 189 common 
junipers (two sites), 64 woolly willows, and 137 dwarf birches (two 
sites). In the final tree chronologies, we included 15 lodgepole pine, 
46 Norway spruce (two sites), 25 rowan and 44 downy birch indi-
viduals (Table 2).

Mean RW resulted lower for shrubs than trees, ranging from 
0.09 (woolly willow) to 0.14 (common juniper, dwarf birch) mm. 
EVGT had the widest RW with 3.54 mm for lodgepole pine and 2.32 
and 1.73 mm for the two Norway spruce sites, respectively (Table 2). 
The oldest sampled individual was a 162-year-old common juniper 
(at JUC2 site). EVGS and EVGT resulted in the oldest and youngest 
functional type, respectively. Mean inter-series correlation (Rbar) 
computed for standardized chronologies shows lower values for 

RWi = s
[

yeari×
(

growth formi×winter habiti
)]

+

(

growth formi×winter habiti
)

+s
(

agei
)

+ZiBi+�

Site
Functional 
type

Individuals 
sampled/
analysed

Age (years) 
mean/max

Mean RW ± SD 
(mm)

Mean 
Rbar

JUC1 EVGS 113/45 77/155 0.14 ± 0.05 0.18

JUC2 EVGS 76/54 100/162 0.10 ± 0.05 0.15

SALA DECS 64/34 51/84 0.09 ± 0.05 0.20

BEN1 DCDS 67/37 45/95 0.14 ± 0.05 0.26

BEN2 DCDS 80/40 47/87 0.12 ± 0.05 0.27

PICO EVGT 15/15 45/53 3.54 ± 0.88 0.47

PIA1 EVGT 22/22 45/56 1.73 ± 0.4 0.52

PIA2 EVGT 24/24 46/56 2.32 ± 0.73 0.48

SOAU DCDT 25/22 58/81 1.01 ± 0.34 0.57

BEPU DCDT 44/31 60/111 0.70 ± 0.26 0.41

TA B L E  2  Metadata for the different 
functional type with some descriptive 
statistics: Mean ring width and standard 
deviation (RW ± SD) computed on the 
whole chronology length and the mean 
inter-series correlation (Rbar) computed 
over the common 1967–2018 period.
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shrubs, spanning from 0.14–0.15 (common juniper) to 0.27 (dwarf 
birch), while it is higher than 0.4 for trees. PCA computed over raw 
chronologies further highlights a clear separation between shrubs 
and trees (Figure 2) except for downy birch (BEPU) which does not 
clearly belong to any specific type. ANOVA and Tukey multiple com-
parisons highlighted significant (p < .001) differences in the RW of 
each functional group, apart from EVGS and DECS, which showed 
no statistical difference (Table S2).

3.1  |  Growth trends and patterns

When discriminating between growth forms, the results of GAMM 
models highlighted quite different growth patterns (Figure  3a). 
Shrubs showed a monotonic increasing growth trend, with just a re-
cent slight decline, whereas trees demonstrated strong fluctuations 
but no substantial increase nor decrease over time. In parallel, when 

considering different leaf habits, no relevant difference emerged 
between evergreen and deciduous species (Figure  3b). When in-
tersecting growth form with leaf habit (Figure 3c,d), growth trends 
increase similarly over time for both EVGS and DECS. Nevertheless, 
while EVGS showed a steady increase in RW, the growth of DECS 
boosted only after 1990 (Figure 3c). In trees, deciduous taxa showed 
the most uniform growth rate with just a weak variability (Figure 3d), 
while evergreen ones featured strong fluctuations with an initial 
steep increase until 1980, then a growth decline until the mid-1990s 
and a more recent boost until present.

3.2  |  Climate-growth responses

All functional types seem particularly sensitive to growing season 
temperatures (Figure  4). Specifically, July temperatures had the 
strongest (positive) effect on RW in all the sites except JUC1. A posi-
tive influence of spring temperatures (March to May) on growth is 
also evident, especially in deciduous species (Figure  4). Previous 
year temperatures, from June to October, seem to promote only 
shrub growth while weakly influencing EVGT (positively) and DECT 
(negatively). However, a significant relationship emerged for rowan. 
Specifically, a positive association of late growing season and early 
autumn temperatures (August to October) on growth is evident in 
all shrub species except woolly willow (SALA), reaching the signifi-
cance threshold only for BEN2. Such responses are largely mirrored 
in the high-frequency domain (Figure 4). On the contrary, the low-
frequency component provided a different representation, with 
shrubs better coupled to the long-term increase in temperature 
even during the previous year of growth, while trees showed al-
most no significant relationships, aside for SOAU (Figure 4). Rowan, 
in fact, resulted negatively associated with previous and current 
growing seasons. Precipitation showed a much lower impact on 
growth compared to temperature (Figure 4), with no clear pattern 
among growth form or leaf habit in all time domains. Nonetheless, 
precipitation from May to July seemed to influence growth slightly 
negatively in all species. RW growth associations with SSTs revealed 

F I G U R E  2  Scatter plots of weighting coefficients for PC1 and 
PC2 calculated with the raw chronologies. Axis labels report the 
percentage of variance expressed by each component.

F I G U R E  3  Growth trends for different 
growth forms (a) and leaf habit (b–d) 
based on the generalized additive mixed 
models (GAMM). Trends are expressed as 
z-score values (a, b) and as mean RW (mm) 
(c, d) ±SE.
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remarkable differences with respect to the previous climate factors 
(Figure  3). Correlation profiles, especially those computed on the 
low-frequency RW chronologies component, clearly discriminated 
between growth habits, with a positive significant association for 
both deciduous and evergreen shrubs, and a negative one for all the 
tree species apart from BEPU. The distinct dual pattern highlighted 
with low frequency disappeared when considering the high fre-
quency. Here the representation closely resembled that computed 
with air temperature and the unfiltered chronologies, albeit with 
lower correlation values during the warm season.

4  |  DISCUSSION

Arctic and Sub-Arctic regions are warming at an unparalleled rate 
compared to any other region of the globe. As a consequence, 
we observed a widespread increase in productivity and growth 
of woody plants, especially toward the limits of their distribution 
(Masek, 2002; Myers-Smith et al., 2011; Normand et al., 2013; Zhu 
et al., 2016). However, previous investigations mostly paid attention 
to the dynamics of the overall vegetation assemblage rather than 
to the role of different growth forms (shrub vs. erect tree) and leaf 
habits (evergreen vs. deciduous; Chapin et al., 2005; Macias-Fauria 
et al., 2012; Myers-Smith et al., 2011). In this study, we show that the 

secondary growth of each functional type features diverging pat-
terns only when sorting shrubs and trees. In fact, both evergreen 
and deciduous shrub species show an overall increasing trend in 
RW, which is not mirrored by trees in the last decades (Figure 3c,d). 
Shrubs, despite having an average secondary growth rate an order 
of magnitude lower, seem to take more advantage of the improved 
growing condition compared to trees (Figure  3c,d). At the same 
time trees, without showing the typical and consistent age/size-
related decline in RW, did not perform that negatively over the last 
half-century.

Our results aligned well with previous investigations in Arctic 
tundra ecosystems that found widespread shrub expansion and 
increased growth rate (Chapin et al., 2005; Elmendorf et al., 2012; 
Myers-Smith et al.,  2011; Myers-Smith, Elmendorf, et al.,  2015; 
Myers-Smith, Hallinger, et al., 2015). Recent warming at higher lati-
tudes seems to promote growth and productivity with shrub species 
showing higher sensitivity to climate and the ability to anticipate 
and accelerate their growth dynamics and expansion respect trees 
(Forbes et al.,  2010; Francon et al.,  2023; Pellizzari et al.,  2017). 
Trees, being much more coupled to air temperature and related 
atmospheric patterns, might still be affected by cool summer con-
ditions and short growing seasons (Carrer et al.,  2019; Pellizzari 
et al., 2017). This could explain why, contrary to our assumptions, 
recent trends in growth rate in trees showed less steep increase 

F I G U R E  4  Climate-growth associations between monthly climate parameters (precipitation, mean land temperature and sea surface 
temperature) and ring-width indexed chronologies split in their related low- and high-frequency components. Climate variables (1967–
2018) were considered from June of the previous year to September of the growth year. Lowercase letters refer to previous years' months. 
Correlation values are coded according to the colour scale on the right. Significant values at p < .05 are highlighted by black dots. Evergreen 
species are identified by underlined and italic fonts.
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compared to shrubs despite the recent warming. Yet, evergreen and 
deciduous species showed high similarity in the growth trend, with 
an overall increase in RW over time independent of growth form 
(Figure 3). Thus, growth form (but not leaf habits) appears to be cru-
cial in influencing long-lived woody species at high latitudes. That is, 
having an erect rather than a shrubby-prostrate life form is still the 
main structural feature driving growth in these environmental con-
ditions (Normand et al., 2013; Sturm, Holmgren, et al., 2001; Sturm, 
Racine, & Tape, 2001; Tape et al., 2006).

The dichotomic growth patterns highlighted by GAMM models 
are also supported within the climate-growth correlation profiles, 
though it is possible to appreciate some weak site-specific similar-
ities crossing growth forms, as in JUC1 and PIA1 when considering 
monthly precipitation (Babst et al., 2013; Fritts, 1976). Generally, all 
the functional types are positively associated with growing season 
temperature conditions. This confirms the persistent limiting role 
of this factor in heat-limited environments (Callaghan et al., 1989; 
Forbes et al.,  2010; Havstrom et al.,  1993; Pellizzari et al.,  2017; 
Power et al.,  2022 and references therein) and aligns with previ-
ous investigations on climate sensitivity of Icelandic woody species 
(Hannak & Eggertsson, 2020; Levanič & Eggertsson, 2008). Juniper 
is an exception with less strong temperature associations. In fact, 
this species was found to be particularly sensitive to other drivers, 
such as the amount and duration of snow cover, microclimatic condi-
tions, biotic interactions, or disturbance regime (Carrer et al., 2019, 
2023; Pellizzari et al., 2014). These results were echoed in the high-
frequency domain, highlighting the role of summer year-to-year 
temperature variability in driving yearly RW for all long-lived woody 
species. On the contrary, the low-frequency component showed a 
clear divergent response to temperature, with shrubs positively and 
trees negatively associated with temperature. An analogous, highly 
significant, divergent response occurred when analysing the SST-
growth relationship. While shrubs seem to positively track the long-
term increase in SST, trees showed almost the opposite tendency.

Such pervasive response to SST from Arctic shrub species have 
never been reported except for a study by Beil et al. (2015), though 
performed over a much shorter period, on Calluna vulgaris in the 
Faroe Islands; crossdating issues, a focus on the year-to-year vari-
ability, and the lack of long enough chronologies, likely prevented the 
detection of a similar outcome (Myers-Smith, Elmendorf, et al., 2015, 
Myers-Smith, Hallinger, et al.,  2015). Nonetheless, in Iceland, we 
highlighted a substantial difference between growth form adapta-
tion strategies in coping with the increasing temperature pattern. 
Such a tendency might account for the recorded increase in shrub 
growth in the Arctic and Low Arctic under the recent AA phenom-
enon (Gamm et al.,  2018; Myers-Smith et al.,  2011; Myers-Smith, 
Elmendorf, et al., 2015; Myers-Smith, Hallinger, et al., 2015). We can 
consider a spectrum of hypotheses to justify this pattern: (i) trees, 
due to their typical erect growth form, are usually tightly coupled 
to prevailing free atmospheric conditions, while shrubs, due to their 
lower stature, are partially decoupled and benefit from higher heat 
accumulation in the leaf canopy (Körner,  2012b). For this reason, 
trees should be more sensitive to high-frequency (daily, yearly) 

climate variability than shrubs and, considering that SST can highly 
affect coastline areas, this could explain the higher shrub association 
with low-frequency SST; (ii) management practices on tree stands 
could induce disturbance pulses that can conceal any potential long-
term fluctuation and response to climate (Fritts,  1976). The sharp 
increase in competition at the pole stage at the end of the last cen-
tury, combined with its sudden release after the first thinning oper-
ations, especially in coniferous stands, is likely one of the key factors 
for the uneven growth trends recorded in trees (Figure 3c) and (iii) 
endemic tree species (e.g. birch) are usually particularly sensitive to 
biotic and abiotic disturbances such as grazing, insect outbreaks, and 
wind gusts that have caused severe reductions in vegetation pro-
ductivity over time (Babst et al., 2010; Levanič & Eggertsson, 2008; 
Marteinsdóttir et al., 2017).

RW in each functional type was only slightly affected by pre-
cipitation, even in juniper, which has been previously shown to be 
highly sensitive to snow cover duration in cold environments (Carrer 
et al., 2019, 2023). This result suggests that, given the strong oceanic 
imprint of Iceland climate (Einarsson, 2007), soil moisture should not 
be considered as a limiting factor in the area (Ackerman et al., 2017; 
Babst et al., 2010; Gamm et al., 2018). Moisture sensitivity of shrub 
species in the Arctic seems highly dependent on microclimatic and 
-topographic factors and this could be the reason why very often 
contrasting results are found (Myers-Smith, Elmendorf, et al., 2015, 
Myers-Smith, Hallinger, et al., 2015; Weijers, 2022). Therefore, fur-
ther research is needed to disentangle the role and interactions of 
different drivers.

Contrary to our hypotheses and as previously highlighted by 
GAMMs, correlation profiles within each growth form did not high-
light any substantial difference between different leaf habits, show-
ing that this trait has little relevance in conditioning growth responses 
to climate at high latitudes (Normand et al., 2013; Sturm, Holmgren, 
et al., 2001; Sturm, Racine, & Tape, 2001; Tape et al., 2006). Many 
investigations identify deciduous species as the favoured group 
under warming tundra due to the more rapid resource acquisition 
from faster leaf turnover (Elmendorf et al., 2012; Prager et al., 2020). 
However, evergreen shrubs could also be highly responsive to warm-
ing as they are not restricted by spring leaf-forming processes and 
can invest in radial stem growth earlier than deciduous taxa (García 
Criado et al.,  2022; Hudson et al.,  2011; Vowles & Björk,  2019; 
Vuorinen et al., 2017). Moreover, the very high individualistic and 
idiosyncratic responses to environmental variability (e.g., microsite 
conditions, water, and nutrient availability, herbivory, pathogen out-
breaks) stems from a rather weak relationship between leaf habit 
and climate sensitivity, as we found across Iceland but also in other 
studies with different species and regions (Bjorkman et al.,  2020; 
Myers-Smith, Elmendorf, et al.,  2015; Myers-Smith, Hallinger, 
et al., 2015; Wipf et al., 2009). In fact, our results suggest a growth 
form and a species-specific, rather than a leaf habitus-specific, cli-
mate sensitivity (Myers-Smith, Elmendorf, et al., 2015; Myers-Smith, 
Hallinger, et al., 2015; Wipf et al., 2009).

Under the ongoing Arctic and low-Arctic warming trends and fu-
ture projections (IPCC, 2021), tundra shrub will also likely become 
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less temperature-limited and more moisture limited, especially if the 
warming is coupled with insufficient water availability (Weijers, 2022; 
Weijers et al., 2017). Recent investigations performed through direct 
growth measurements with dendrometers, highlighting a bimodal 
response to climate (Dobbert, Albrecht, et al., 2022; Dobbert, Pape, 
& Löffler,  2022), or adopting satellite-derived vegetation indices 
(Myers-Smith et al., 2020; Phoenix & Bjerke, 2016), seem to confirm 
this scenario. However, our results suggest that Icelandic long-lived 
woody species are currently experiencing a pervasive boost in sec-
ondary growth, with tundra shrub rapidly growing and most likely ex-
panding its distribution. In fact, the typical age-related trend in RW 
for most shrub species living in heat-limited environments should 
be almost flat (Carrer et al., 2023; Lehejček et al., 2023) rather than 
monotonically increasing (Figure 3). The majority of evergreen trees, 
especially lodgepole pine, will likely track shrub behaviour (Figure 3; 
Jónsdóttir et al.,  2005; Myers-Smith et al.,  2011; Myers-Smith, 
Elmendorf, et al., 2015; Normand et al., 2013; Zhang et al., 2013). 
In fact, recent warming is already enhancing exotic tree species 
regeneration and accelerating encroachment dynamics in the area 
(Eggertsson et al.,  2022). Nevertheless, further research is essen-
tial to understand the complex interplay and dynamics between 
trees and shrubs in such a rapidly warming scenario and to extend 
our inferences to other taxa over the broad tundra biome. We also 
highlighted a strong influence of SST on shrub growth, showing the 
crucial importance of this climatic variable in coastal tundra shrub 
ecosystems. Ocean masses make up roughly 85% of total Arctic sur-
face, with a predominant role in influencing atmosphere and land 
climate conditions within the region. Given the recent abrupt Arctic 
warming trend, our results suggest to further explore the role of SST 
in shaping long-lived woody species growth responses. This is of key 
importance to deepen the understanding of vegetation dynamics 
within Arctic and Low Arctic coastal regions, shedding light on the 
future of these extremely sensitive ecosystems.
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