
P
o
S
(
I
C
R
C
2
0
2
1
)
8
6
6

ICRC 2021
THE ASTROPARTICLE PHYSICS CONFERENCE

Berlin |  Germany

ONLINE ICRC 2021
THE ASTROPARTICLE PHYSICS CONFERENCE

Berlin |  Germany

37th International 
Cosmic Ray Conference

12–23 July 2021

Multiwavelength variability and correlation studies of
Mrk 421 during historically low X-ray and $-ray activity in
2015–2016

B. Banerjee,0,∗ T. Terzić,1 D. Paneque2 and P. Majumdar3 on behalf of the MAGIC,
FACT, and Fermi-LAT Collaboration†

0Gran Sasso Science Institute
Viale Francesco Crispi, 7, L’Aquila (AQ), I-67100
1University of Rĳeka,
Department of Physics, 51000 Rĳeka, Croatia
2Max-Planck-Institut für Physik,
D-80805 München, Germany
3Saha Institute of Nuclear Physics, HBNI,
1/AF Bidhannagar, Salt Lake, Sector-1, Kolkata 700064, India

E-mail: biswajit.banerjee@gssi.it

In this work, we report multi-band flux variability and correlations of the nearby (z=0.031) blazar
Markarian 421 (Mrk 421) using multi-wavelength (MWL) data from November 2014 to June
2016. In this period, Mrk 421 exhibited historically low activity in X-rays and very-high-energy
gamma rays (VHE; E>0.1 TeV) and an additional spectral component was observed by Swift-BAT.
The highest flux variability occurs in X-rays and VHE which, despite the low activity, show a
significant positive correlation with no time lag. The hardness ratios in the X-rays and VHE
W-rays show the "harder-when-brighter" trend observed in many blazars. Interestingly, the trend
flattens at the highest fluxes, which suggests different processes dominating the brightest states.
Enlarging our data set with data from the years 2007 to 2014, we measured a positive correlation
between the optical and GeV emission centered at zero time lag, and a positive correlation between
the optical/GeV and the radio emission over a range of about 60 days centered at a time lag of
43+9/-6 days. This observation is consistent with the radio-bright zone being located about 0.2
parsec downstream from the optical/GeV emission regions. In most of the energy bands, the flux
distribution follows the Lognormal, rather than the Normal function, indicating that the variability
may be dominated by a multiplicative process.
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Figure 1: The VHE W-ray (MAGIC & FACT) and X-ray light curves (Swift-XRT) during 2015–2016
campaign. Reprinted from [3] (Monthly Notices of the Royal Astronomical Society, Volume 504, Issue 1,
pp.1427-1451), Fig. 2.

1. Introduction

Blazars are subclass of active galactic nuclei (AGNs) with relativistic jets pointing towards
the observer. Markarian 421 (Mrk 421) is a bright blazar located at redshift (z) of 0.031. The
spectral energy distribution (SED) of blazars shows a double hump structure, where the low and
high energy bump appears in the keV and GeV band, respectively. The origin of the first hump is
commonly associated with the synchroton emission of the electrons inside the jet of the blazar. The
high-energy bump is widely believed to be due to the inverse Compton emission of the synchrotron
photons by the same population of electrons which produced them (synchrotron self Compton
process; SSC [8, 17]) or by Compton emission of the external thermal photons outside the jet
(external Compton process; EC). Mrk 421 is a very well studied blazar showing variability across
the entire electomagnetic band from radio to VHE W-rays. The source has been studied extensively
during outbursts in the past. However, less effort has been expended to explain the behaviour of the
source during the low flux states. During the coordinated multiwavelegth (MWL) observations in
2015-2016, the source was found in a very low flux state during a two month period in 2016. This
data set during 2015-2016 contains simultaneous (up to 2 hrs for a single night) X-ray and VHE
W-ray observations. This enables us to study accurately the multiband variability and correlation
during very low blazar activity. In order to establish some of the interesting results for correlation
and the study of the flux distribution, we used data from previous MWL campaigns related to
previous years back to 2007 [4–7]. Figure 1 shows the X-ray (0.3-2 keV and 2-10 keV) and VHE
W-ray (MAGIC and FACT) light curves (LC) of Mrk 421 during 2015-2016. The details of this
study are published in [3]. Please refer to [3] if you want to cite this work.

2. Appearance of a new component at hard X-ray energies

The synchrotron hump ofMrk 421 consisting of optical, UV, and X-rays (Swift-XRT and -BAT)
has been fitted with a log-parabola function. During MJD 57422–57429, Mrk 421 showed a very
low X-ray flux and soft X-ray spectra while the flux in the 15−50 keV band from Swift-BAT showed
non-agreement with the log-parabola model (see Fig. 2). This is the first time that BAT measures a
flux significantly above the extrapolated XRT spectral data. An excess in the hard X-rays has been
previously reported by [12] for Mrk 421, using NuSTAR data in 2013. The BAT excess in this case
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Figure 2: Log-parabola fit to the synchrotron spectrum of Mrk 421 during MJD 57422-57429. Reprinted
from [3] (Monthly Notices of the Royal Astronomical Society, Volume 504, Issue 1, pp.1427-1451), Fig. 9.

Figure 3: Radio flare detected by Metsähovi (37 GHz). Reprinted from [3] (Monthly Notices of the Royal
Astronomical Society, Volume 504, Issue 1, pp.1427-1451), Fig. 3.

of Mrk 421 during 2015-2016 can be related to the presence of an occasionally appearing narrow
spectral component which is very similar to the one reported for Mrk 501 at the TeV energies [13]
or the onset of the IC component [10]. The details of this study are published in [3]. Please refer
to [3] if you want to cite this work.

3. Radio flare

We report, for the first time, a radio flare observed by the Metsähovi telescope (at 37 GHz) on
2015 September 11, where a flux increased by a factor of two with a temporal timescale shorter
than 3 weeks. However, the flux densities observed with Medicina (at 5GHz and 24GHz) on
September 11, show an enhancement at 5GHz only and no changes at the 24GHz band. The VLBA
observation performed on September 22 shows an increase in the polarization fraction which comes
back to the normal values on December 5. This increase in flux and a decrease in polarization in the
radio band at 37 GHz can be explained by a momentary disruption of the ordering of the magnetic
field followed by an acceleration of the particles via a kink instability. The details of this study are
published in [3]. Please refer to [3] if you want to cite this work.

4. Variability and correlation studies

Mrk 421 showed a very low activity in the X-ray and VHE W-rays during 2015–2016. The
hardness ratio (ratio of the flux in hard band flux to the soft band flux) in the keV and TeV band given
by HRkeV and HRTeV, respectively, also showed periods of extreme softness particularly around the
period of MJD 57422 to MJD 57474. This is for the first time, a flattening of the in the HR vs. flux
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Figure 4: Flattening of HR in theVHE W-ray band
(HRTeV= Flux>0.1 TeV

Flux0.2−1 TeV
). Reprinted from [3] (Monthly

Notices of the Royal Astronomical Society, Vol-
ume 504, Issue 1, pp.1427-1451), Fig. 7.

Figure 5: Correlation between the radio (OVRO;
15 GHz) and the HE W−rays, which peaks at
around 45 days. Reprinted from [3] (Monthly No-
tices of the Royal Astronomical Society, Volume
504, Issue 1, pp.1427-1451), Fig. 12.

Figure 6: Flux distribution of Mrk 421 in the VHE W-rays using: (a) j2 minimization, (b) Log-likelihood,
and (c) Flux profile methods. Reprinted from [3] (Monthly Notices of the Royal Astronomical Society,
Volume 504, Issue 1, pp.1427-1451), Fig. 13, E2, and G2.

trend has been seen (see Figure 4) in the VHE W-rays similar to the studies in the X-rays [7]. The
highest variability quantified in terms of the fractional variability is observed in the highest X-ray
and VHE W-ray energies at a similar level.

Correlated behaviour between the LCs is quantified using Pearson and Discrete Correlation
function (DCF, [11]) and evaluated the significance with Monte Carlo simulations, see [3] for
details. The strongly correlated zero-lag behaviour between theVHEandX-ray emissions, persistent
during the 2015–2016 observing campaigns, indicates that the X-ray and VHE W-ray emissions are
dominated by leptonic scenarios (presumably SSC), where the same population of high-energy
electrons radiate simultaneously at X-ray and VHE. A significant (> 3f) correlated behaviour,
between the >2GeV emission measured with Fermi-LAT and the VHE fluxes measured with FACT
(ECℎ ∼0.7 TeV) has been observed quantified in time steps of ±3 days only for time lag g=0,
indicating that the emission in these two energy bands is simultaneous within the resolution of
the study. We found a positive correlation between the >0.3GeV emission (from Fermi-LAT) and
optical (R-band) emission for a range of about 60 days centered at g=0, which confirms the results
of [9]. This indicates that these two bands, belonging to the rising segments of the two SED bumps
(and located somewhat close to the peak of the bumps) may indeed be produced (at least partially)
by the same particle population and in the same region (or regions). A positive correlation has
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been found between the >0.3GeV emission (from Fermi-LAT) and the radio emission at 15GHz
and 37GHz (from OVRO and Metsähovi) for a range of about 60 days centered at g ∼ 45 days.
This indicates that the radio emission occurs about 45 days after the GeV emission. The same
correlation with the same time lag occurs also for the optical and the radio emissions. Figure 5
shows the correlation between HE W-ray and OVRO LCs. The details of this study are published in
[3]. Please refer to [3] if you want to cite this work.

5. Determination of the flux distribution using the flux profile method

Using the data from 2007 to 20161, we quantify the flux variations with a method largely
inspired by the kernel density estimation (KDE), dubbed "flux profile construction" that allows us
to estimate the flux distributions even for flux measurements with relatively large errors.

We treat each flux measurement from a LC as a Gaussian with the flux values as the mean
and the flux uncertainty as the standard deviation. The amplitude is inversely proportional to the
standard deviation, so that the area under each individual Gaussian is unity. A “flux profile” for a
LC is constructed by adding individual flux measurements. We determine the preferred shape of
a flux profile, by fitting the Gaussian and LogNormal functions as mentioned in [3]. Using this
methodology, we determined the most probable flux values and the dispersion in the flux values for
all the bands probed. Figure 6 shows the flux distribution in the VHE W-rays using three different
methods (see [3] for details): a) j2 minimization, b) loglikelihood, and c) flux-profile.

A LogNormal distribution of flux may imply that the emission is being powered by a multi-
plicative process rather than an additive one which may be resulted from the fluctuations in the
accretion disk [15, 16]. Signature of lognormality in blazars may lead to the conclusion that the
variability in flux may be originated in the accretion disks and not from the jet. The details of this
study are published in [3]. Please refer to [3] if you want to cite this work.

6. Summary

We observed a historically low flux state in the X-rays on MJD 57364 (integrated flux in the
2−10 keV band with a flux of (2.41±0.15) ×10−11 erg cm−2 s−1). During the 2015-2016 campaign,
MAGICobserved the lowest flux state in the 0.2−1TeVwith flux of (3.56±0.91)×10−11 ph cm−2 s−1,
on MJD57422. During the 7 day interval, MJD 57422–57429, we detected emission at high flux at
hard X-ray (15 − 50 keV) with Swift-BAT which is higher than the extrapolated one from the XRT
spectra (0.3-10 keV). This is the first time that this excess Swift-BAT (15-50 keV) emission has been
observed from Mrk 421. Its origin may be interpreted as the presence of an occasionally appearing
narrow spectral component (as seen in Mrk 501; [13]), or may be produced by the onset of the
SSC component [12]. A detailed explanation will be presented in a follow-up paper. Metsähovi
(37 GHz) observed a radio flare on 2015 September 11 with a flux doubling timescale below 21
days. This is the first time that such a rapid change in flux was seen in the radio band. Although,
no change in the flux was observed in the 24GHz band by Medicina, enhanced activity at 5GHz
(also with Medicina) was observed. We noted an increase in the polarization fraction with VLBA

1The two large VHE W-ray flaring episodes of Mrk 421 in 2010 February [1] and 2013 April [2] have been excluded
to avoid large biases in the distributions.
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on September 22. This increase in flux and polarization may be caused by a momentary disruption
of the ordering of the magnetic field followed by a particle acceleration via a kink instability. Our
study revealed a flattening of the hardness ratio with the increase in flux, which is more pronounced
in the soft band of VHE. We observed the correlation between the X-ray and VHE W-rays with
more than 5f even in the low flux states during 2015-2016. Our study suggests a correlation
between the optical/HE gamma rays and radio emission with a time delay of around 45 days. This
observation is consistent with the radio-bright zone being located about 0.2 parsec downstream from
the optical/GeV emission regions [14]. We report a correlation between the VHE W-rays (observed
with FACT with ECℎ ∼ 0.7 TeV) vs. HE gamma rays in the energy band 2-300 GeV. However, no
significant correlation between the VHE and HE gamma rays in the 0.2-2 GeV has been found. This
may be an indication of the presence of two gamma-ray emitting regions. The shape of the MWL
flux distributions can shed light on the origin of the blazar variability. In this work, we devised two
methods to estimate the flux distribution in a way that is less biased by the flux binning and that
takes the flux uncertainties into account. Most of the MWL flux distributions are consistent with
a lognormal distribution, which suggests that the variability is caused by a multiplicative process.
The details of this study are published in [3]. Please refer to [3] if you want to cite this work.
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