The Romagna coastal area in the Northern Adriatic Sea has experienced in recent times continuous changes because of its precarious environment and low ground elevation above mean sea level (msl). Major processes that may influence the stability of the coast profile include land subsidence of both natural and anthropogenic origin and the msl rise caused by global climate change. According to the most accredited modeling predictions msl is expected to rise by almost 0.5 m over the next century because of the greenhouse effect. Natural land subsidence is the result of deep downward tectonic movement and consolidation of geologically recent deposits. It may be estimated in the range of 2-2.5 mm/yr in the Ravenna area and twice as much in the Po River delta. Anthropogenic land subsidence is primarily related to groundwater pumping from the upper fresh water aquifer system and gas production from Plio-Pleistocene reservoirs. Geodetic surveys from 1953 to 1990 provide documentary evidence of cumulative land settlement exceeding 0.8 m and 1.2 m at Marina di Ravenna and Cesenatico, respectively. In this study we estimate both natural and anthropogenic land subsidence for the years 2015, 2050, and 2100 with the aid of ad hoc finite element simulation models. The use of these predictions together with the expected msl rise shows that many present lowlands may be permanently submerged at the end of the next century. The extent of the flooded area of the Romagna coastal region can be as much as 690 and 910 km(2), using optimistic and pessimistic land subsidence scenarios, respectively. A local detailed analysis indicates that the areas around the cities of Ravenna and Cesenatico may be seriously affected by sea water ingression while the city of Rimini is well protected because of its relatively high elevation above msl.

Coastline regression of the Romagna Region, Italy, due to natural and anthropogenic land subsidence and sea level rise

GAMBOLATI, GIUSEPPE;TEATINI, PIETRO;
1999

Abstract

The Romagna coastal area in the Northern Adriatic Sea has experienced in recent times continuous changes because of its precarious environment and low ground elevation above mean sea level (msl). Major processes that may influence the stability of the coast profile include land subsidence of both natural and anthropogenic origin and the msl rise caused by global climate change. According to the most accredited modeling predictions msl is expected to rise by almost 0.5 m over the next century because of the greenhouse effect. Natural land subsidence is the result of deep downward tectonic movement and consolidation of geologically recent deposits. It may be estimated in the range of 2-2.5 mm/yr in the Ravenna area and twice as much in the Po River delta. Anthropogenic land subsidence is primarily related to groundwater pumping from the upper fresh water aquifer system and gas production from Plio-Pleistocene reservoirs. Geodetic surveys from 1953 to 1990 provide documentary evidence of cumulative land settlement exceeding 0.8 m and 1.2 m at Marina di Ravenna and Cesenatico, respectively. In this study we estimate both natural and anthropogenic land subsidence for the years 2015, 2050, and 2100 with the aid of ad hoc finite element simulation models. The use of these predictions together with the expected msl rise shows that many present lowlands may be permanently submerged at the end of the next century. The extent of the flooded area of the Romagna coastal region can be as much as 690 and 910 km(2), using optimistic and pessimistic land subsidence scenarios, respectively. A local detailed analysis indicates that the areas around the cities of Ravenna and Cesenatico may be seriously affected by sea water ingression while the city of Rimini is well protected because of its relatively high elevation above msl.
1999
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/103849
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact