We have studied the emission features of the fluorescent polarity-sensitive probes known as Prodan and Laurdan in a liquid-crystalline DPPC bilayer. To this purpose, we have combined high-level quantum mechanical electronic structure calculations with a molecular field theory for the positional-orientational-conformational distribution of the probes, in their ground and excited states, inside of the lipid bilayer, taking into account at both levels the nonuniformity and anisotropy of the environment. Thus, we can interpret the features of the fluorescence spectra of Prodan and Laurdan in relation to the position and orientation of their chromophore in the bilayer. We have found that the environment polarity is not sufficient to explain the large red shifts experimentally observed and that specific effects due to hydrogen bonding must be considered. We show that the orientation of the probe is important in determining the accessibility to water of the H-bond-acceptor group; in the case of Laurdan interesting conformational effects are highlighted.

Polarity-Sensitive Fluorescent Probes in Lipid Bilayers: Bridging Spectroscopic Behavior and Microenvironment Properties

PARISIO, GIULIA;FERRARINI, ALBERTA;
2011

Abstract

We have studied the emission features of the fluorescent polarity-sensitive probes known as Prodan and Laurdan in a liquid-crystalline DPPC bilayer. To this purpose, we have combined high-level quantum mechanical electronic structure calculations with a molecular field theory for the positional-orientational-conformational distribution of the probes, in their ground and excited states, inside of the lipid bilayer, taking into account at both levels the nonuniformity and anisotropy of the environment. Thus, we can interpret the features of the fluorescence spectra of Prodan and Laurdan in relation to the position and orientation of their chromophore in the bilayer. We have found that the environment polarity is not sufficient to explain the large red shifts experimentally observed and that specific effects due to hydrogen bonding must be considered. We show that the orientation of the probe is important in determining the accessibility to water of the H-bond-acceptor group; in the case of Laurdan interesting conformational effects are highlighted.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/126113
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 48
social impact