Natively porous hybrid organic–inorganic sol–gel systems have been engineered to be used as functional positive photoresists, aimed to the realization of microsensors in a single-step process. Interesting results have been obtained combing three main sol–gel system features: the direct patternability through X-ray lithography, being processable without the addition of a photocatalyst; the functionalizability, properly designing the organic component of the hybrid network or incorporating active species; the open micro or mesoporosity, tailored by the synthesis process and precursor choice. The photoprocessable porous films have been synthesized starting from a Bridged Polysilsesquioxane (BPS) precursor, 1,4-bis(triethoxysilyl)benzene. The correlation between chemical properties of the sol– gel material and its patternability is described in detail. X-ray exposure leads to a progressive alkyl and aromatic compound elimination and promotes inorganic condensation in the system, allowing the selective dissolution of irradiated cross-linked films in suitable etchants. Patterns of final resolution lower than 100 nm have been realized on BPS-based films synthesized in acid conditions, a procedure that allows to take advantage of a straightforward embedding protocol for active species in the sol–gel matrix. The BPS-based system has been doped with a covalently linked quinolinium dye, obtaining thin sensing films patternable by X-ray lithography. A feasibility test for the fabrication of optical microdevices, where fluorescence properties are obtained directly on the patterned coatings, has been provided.

Hybrid porous resist with sensing functionality

BRIGO, LAURA;MANCIN, FABRIZIO;ROMANATO, FILIPPO;GUGLIELMI, MASSIMO;BRUSATIN, GIOVANNA
2011

Abstract

Natively porous hybrid organic–inorganic sol–gel systems have been engineered to be used as functional positive photoresists, aimed to the realization of microsensors in a single-step process. Interesting results have been obtained combing three main sol–gel system features: the direct patternability through X-ray lithography, being processable without the addition of a photocatalyst; the functionalizability, properly designing the organic component of the hybrid network or incorporating active species; the open micro or mesoporosity, tailored by the synthesis process and precursor choice. The photoprocessable porous films have been synthesized starting from a Bridged Polysilsesquioxane (BPS) precursor, 1,4-bis(triethoxysilyl)benzene. The correlation between chemical properties of the sol– gel material and its patternability is described in detail. X-ray exposure leads to a progressive alkyl and aromatic compound elimination and promotes inorganic condensation in the system, allowing the selective dissolution of irradiated cross-linked films in suitable etchants. Patterns of final resolution lower than 100 nm have been realized on BPS-based films synthesized in acid conditions, a procedure that allows to take advantage of a straightforward embedding protocol for active species in the sol–gel matrix. The BPS-based system has been doped with a covalently linked quinolinium dye, obtaining thin sensing films patternable by X-ray lithography. A feasibility test for the fabrication of optical microdevices, where fluorescence properties are obtained directly on the patterned coatings, has been provided.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/132983
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact