A method for transonic compressor multi-objective design optimization was developed and applied to the NASA rotor 37, a test case representative of complex three-dimensional viscous flow structures in transonic bladings. The optimization problem considered was to maximize the isentropic efficiency of the rotor and to maximize its pressure ratio at the design point, using a constraint on the mass flow rate. The three-dimensional Navier-Stokes code CFX-TASCflow® was used for the aerodynamic analysis of blade designs. The capability of the code was validated by comparing the computed results to experimental data available in the open literature from probe traverses up-and downstream of the rotor. A multi-objective evolutionary algorithm was used for handling the optimization problem that makes use of Pareto optimality concepts and implements a novel genetic diversity evaluation method to establish a criterion for fitness assignment. The optimal rotor configurations, which correspond to the maximum pressure ratio and maximum efficiency, were obtained and compared to the original design.

Three-Dimensional Multi-Objective Design Optimization of a Transonic Compressor Rotor

BENINI, ERNESTO
2004

Abstract

A method for transonic compressor multi-objective design optimization was developed and applied to the NASA rotor 37, a test case representative of complex three-dimensional viscous flow structures in transonic bladings. The optimization problem considered was to maximize the isentropic efficiency of the rotor and to maximize its pressure ratio at the design point, using a constraint on the mass flow rate. The three-dimensional Navier-Stokes code CFX-TASCflow® was used for the aerodynamic analysis of blade designs. The capability of the code was validated by comparing the computed results to experimental data available in the open literature from probe traverses up-and downstream of the rotor. A multi-objective evolutionary algorithm was used for handling the optimization problem that makes use of Pareto optimality concepts and implements a novel genetic diversity evaluation method to establish a criterion for fitness assignment. The optimal rotor configurations, which correspond to the maximum pressure ratio and maximum efficiency, were obtained and compared to the original design.
2004
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1332558
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact