Biochemical and genetic experiments were carried out to deduce the structural and functional domains of SopB protein involved in the equipartition of F plasmid. The protein is dimeric. Proteolytic and chemical footprinting studies support earlier genetic analyses that the binding of SopB to specific sites within the F plasmid sopC locus involves mainly the C-terminal region. In vivo, the expression of a high level of SopB protein is known to repress sopC-linked genes. This silencing activity is shown to be unaffected by the deletion of 35 N-terminal residues, but abolished when 71 or more were removed from the N terminus. An excess of SopB protein does not extend its in vitro binding outside sopC, implicating participation of a host factor(s) in SopB-mediated gene silencing. A data base search identified a number of SopB homologues, including both chromosomally encoded bacterial proteins and phage- and plasmid-encoded proteins known to be involved in partition. Sequence homology is limited to the N-terminal half, suggesting that the N-terminal regions of these proteins are conserved to interact with a conserved cellular structure(s), whereas the C-terminal regions have diverged to bind different nucleotide sequences.

Molecular Dissection of a Protein SopB Essential for E.coli F Plasmid Partition.

BENEDETTI, PIETRO;
1996

Abstract

Biochemical and genetic experiments were carried out to deduce the structural and functional domains of SopB protein involved in the equipartition of F plasmid. The protein is dimeric. Proteolytic and chemical footprinting studies support earlier genetic analyses that the binding of SopB to specific sites within the F plasmid sopC locus involves mainly the C-terminal region. In vivo, the expression of a high level of SopB protein is known to repress sopC-linked genes. This silencing activity is shown to be unaffected by the deletion of 35 N-terminal residues, but abolished when 71 or more were removed from the N terminus. An excess of SopB protein does not extend its in vitro binding outside sopC, implicating participation of a host factor(s) in SopB-mediated gene silencing. A data base search identified a number of SopB homologues, including both chromosomally encoded bacterial proteins and phage- and plasmid-encoded proteins known to be involved in partition. Sequence homology is limited to the N-terminal half, suggesting that the N-terminal regions of these proteins are conserved to interact with a conserved cellular structure(s), whereas the C-terminal regions have diverged to bind different nucleotide sequences.
1996
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/141674
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact