Application of mechanics of multi-phase porous media for modeling cement based materials at high temperature is presented. The considerations are based on the mathematical model of mechanistic type, developed by the authors within recent years. The model has been previously experimentally validated and successfully applied for analyzing performance of various concrete structures at high temperature. Physical phenomena in a concrete element heated during a fire are described and analyzed, confirming multi-phase nature of concrete in these conditions. Main stages of the mathematical model development by means of hygro-thermo-mechanics of porous media are briefly presented. The mass, energy and linear momentum conservation equations at micro-scale are given and averaged in space to obtain the macroscopic form of the equations. Some main key-points in modeling cement-based materials at high temperature are discussed. Final form of the model equations and method of their numerical solution are presented. The model is validated by comparison with some published results of experimental studies. Two examples of the model application for numerical simulation of concrete structures exposed to fire conditions, including also a cooling phase, are analyzed.

An overview of modeling cement based materials at elevated temperatures with mechanics of multi-phase porous media

PESAVENTO, FRANCESCO
2012

Abstract

Application of mechanics of multi-phase porous media for modeling cement based materials at high temperature is presented. The considerations are based on the mathematical model of mechanistic type, developed by the authors within recent years. The model has been previously experimentally validated and successfully applied for analyzing performance of various concrete structures at high temperature. Physical phenomena in a concrete element heated during a fire are described and analyzed, confirming multi-phase nature of concrete in these conditions. Main stages of the mathematical model development by means of hygro-thermo-mechanics of porous media are briefly presented. The mass, energy and linear momentum conservation equations at micro-scale are given and averaged in space to obtain the macroscopic form of the equations. Some main key-points in modeling cement-based materials at high temperature are discussed. Final form of the model equations and method of their numerical solution are presented. The model is validated by comparison with some published results of experimental studies. Two examples of the model application for numerical simulation of concrete structures exposed to fire conditions, including also a cooling phase, are analyzed.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/146718
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact