The cytotoxic activity of mitoxantrone and related anthracenediones has been ascribed to the ability of these cornpounds to interfere with DNA topoisomerase II function, resulting in DNA cleavage stimulation. The molecular details of enzyme inhibition by these intercalating agents remain to be defined. In an attempt to identify the structural determinants for optimal activity, the molecular and cellular effects of a series of heteroanalogues bearing different side-chains were examined in relation to the physico-chemical and DNA binding properties of these compounds. The results indicated that substitution of a pyridine ring for the dihydroxyphenylene ring in the planar chromophore caused a marked reduction of cytotoxic activity and of the ability to stimulate topoisomerase Il-mediated DNA damage in intact cells and with simian virus 40 DNA in vitro. Although all tested derivatives were shown to intercalate into DNA, their DNA binding affinities were appreciably lower than that of mitoxantrone. The behavior of 2-aza derivatives more closely resembled that of ametantrone, suggesting that the potency of agents of this class is influenced more by the presence of hydroxyl groups than by the phenylene ring. The observation that a dramatic reduction (or loss) of the ability of aza derivatives to stimulate DNA cleavage is associated with a marked reduction of cytotoxic potency supports a primary role of topoisomerase Il-mediated effects in the mechanism of action of the effective agents of this class. Because appreciable cytotoxic activity and significant in vivo antitumor efficacy are retained by compounds inactive (or poorly active) in inhibition of topoisomerase II, these results are consistent with multiple effects of anthracenediones at the cellular level.

Topoisomerase II DNA cleavage stimulation, DNA binding activity, cytotoxicity and physico-chemical properties of 2-aza and 2-aza-oxide-anthracenedione derivatives

PALUMBO, MANLIO;SISSI, CLAUDIA;
1995

Abstract

The cytotoxic activity of mitoxantrone and related anthracenediones has been ascribed to the ability of these cornpounds to interfere with DNA topoisomerase II function, resulting in DNA cleavage stimulation. The molecular details of enzyme inhibition by these intercalating agents remain to be defined. In an attempt to identify the structural determinants for optimal activity, the molecular and cellular effects of a series of heteroanalogues bearing different side-chains were examined in relation to the physico-chemical and DNA binding properties of these compounds. The results indicated that substitution of a pyridine ring for the dihydroxyphenylene ring in the planar chromophore caused a marked reduction of cytotoxic activity and of the ability to stimulate topoisomerase Il-mediated DNA damage in intact cells and with simian virus 40 DNA in vitro. Although all tested derivatives were shown to intercalate into DNA, their DNA binding affinities were appreciably lower than that of mitoxantrone. The behavior of 2-aza derivatives more closely resembled that of ametantrone, suggesting that the potency of agents of this class is influenced more by the presence of hydroxyl groups than by the phenylene ring. The observation that a dramatic reduction (or loss) of the ability of aza derivatives to stimulate DNA cleavage is associated with a marked reduction of cytotoxic potency supports a primary role of topoisomerase Il-mediated effects in the mechanism of action of the effective agents of this class. Because appreciable cytotoxic activity and significant in vivo antitumor efficacy are retained by compounds inactive (or poorly active) in inhibition of topoisomerase II, these results are consistent with multiple effects of anthracenediones at the cellular level.
1995
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/147441
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 53
social impact