A theoretical model of a beam of unidirectional composites - based on the homogenisation theory and a refined kinematical hypothesis - is used for the analysis of the influence of the helicoidal geometry of a superconducting strand triplet on its strain state. The triplet is the first cabling stage of the superconducting cables used to wind the coils of ITER fusion reactor. The multiscale modelling strategy is presented, for which a finite element code has been developed. A triplet of Nb3Sn based strands subjected to an axial stretch is analysed, and the resulting complete 3D strain state in the Nb3Sn filament is recovered. An “extra” strain is found due to the helicoidal geometry of the triplet. Discussion of the results concludes the paper.

Multiscale analysis of the influence of the triplet helicoidal geometry on the strain state of a Nb3Sn based strand for ITER coils

BOSO, DANIELA;SCHREFLER, BERNHARD
2005

Abstract

A theoretical model of a beam of unidirectional composites - based on the homogenisation theory and a refined kinematical hypothesis - is used for the analysis of the influence of the helicoidal geometry of a superconducting strand triplet on its strain state. The triplet is the first cabling stage of the superconducting cables used to wind the coils of ITER fusion reactor. The multiscale modelling strategy is presented, for which a finite element code has been developed. A triplet of Nb3Sn based strands subjected to an axial stretch is analysed, and the resulting complete 3D strain state in the Nb3Sn filament is recovered. An “extra” strain is found due to the helicoidal geometry of the triplet. Discussion of the results concludes the paper.
2005
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1474884
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 26
social impact