The light-harvesting complex II (LHCII) is the main component of the antenna system of plants and green algae and plays a major role in the capture of sun light for photosynthesis. The LHCII complexes have also been proposed to play a key role in the optimization of photosynthetic efficiency through the process of state 1– state 2 transitions and are involved in down-regulation of photosynthesis under excess light by energy dissipation through non-photochemical quenching (NPQ). We present here the first solid-state magic-angle spinning (MAS) NMR data of the major light-harvesting complex (LHCII) of Chlamydomonas reinhardtii, a eukaryotic green alga. We are able to identify nuclear spin clusters of the protein and of its associated chlorophyll pigments in 13C–13C dipolar homonuclear correlation spectra on a uniformly 13C-labeled sample. In particular, we were able to resolve several chlorophyll 131 carbon resonances that are sensitive to hydrogen bonding to the 131-keto carbonyl group. The data show that 13C NMR signals of the pigments and protein sites are well resolved, thus paving the way to study possible structural reorganization processes involved in lightharvesting regulation through MAS solid-state NMR.

First solid-state NMR analysis of uniformly 13C-enriched major light-harvesting complexes from Chlamydomonas reinhardtti and identification of protein and cofactor spin clusters

MOROSINOTTO, TOMAS;
2011

Abstract

The light-harvesting complex II (LHCII) is the main component of the antenna system of plants and green algae and plays a major role in the capture of sun light for photosynthesis. The LHCII complexes have also been proposed to play a key role in the optimization of photosynthetic efficiency through the process of state 1– state 2 transitions and are involved in down-regulation of photosynthesis under excess light by energy dissipation through non-photochemical quenching (NPQ). We present here the first solid-state magic-angle spinning (MAS) NMR data of the major light-harvesting complex (LHCII) of Chlamydomonas reinhardtii, a eukaryotic green alga. We are able to identify nuclear spin clusters of the protein and of its associated chlorophyll pigments in 13C–13C dipolar homonuclear correlation spectra on a uniformly 13C-labeled sample. In particular, we were able to resolve several chlorophyll 131 carbon resonances that are sensitive to hydrogen bonding to the 131-keto carbonyl group. The data show that 13C NMR signals of the pigments and protein sites are well resolved, thus paving the way to study possible structural reorganization processes involved in lightharvesting regulation through MAS solid-state NMR.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/152233
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact