Calsequestrin (CS) is the Ca(2+) binding protein of the junctional sarcoplasmic reticulum (jSR) lumen. Recently, a chimeric CS-HA1, obtained by adding the nine-amino-acid viral epitope hemagglutinin (HA1) to the COOH terminus of CS, was shown to be correctly segregated to the sarcoplasmic reticulum [A. Nori, K. A. Nadalini, A. Martini, R. Rizzuto, A. Villa, and P. Volpe. Am. J. Physiol. 272 (Cell Physiol. 41): C1420-C1428, 1997]. A putative targeting mechanism of CS to jSR implies electrostatic interactions between negative charges on CS and positive charges on intraluminal domains of jSR integral proteins, such as triadin and junctin. To test this hypothesis, 2 deletion mutants of chimeric CS were engineered: CS-HA1DeltaGlu-Asp, in which the 14 acidic residues [-Glu-(Asp)(5)-Glu-(Asp)(7)-] of the COOH-terminal tail were removed, and CS-HA1Delta49(COOH), in which the last, mostly acidic, 49 residues of the COOH terminus were removed. Both mutant cDNAs were transiently transfected in HeLa cells, myoblasts of rat skeletal muscle primary cultures, or regenerating soleus muscle fibers of adult rats. The expression and intracellular localization of CS-HA1 mutants were studied by epifluorescence microscopy with use of antibodies against CS or HA1. CS-HA1 mutants were shown to be expressed, sorted, and correctly segregated to jSR. Thus short or long deletions of the COOH-terminal acidic tail do not influence the targeting mechanism of CS

Targeting of calsequestrin to the sarcoplasmic reticulum of skeletal muscle following deletion of its carboxy-terminal acidic tail

NORI, ALESSANDRA;VOLPE P.
1999

Abstract

Calsequestrin (CS) is the Ca(2+) binding protein of the junctional sarcoplasmic reticulum (jSR) lumen. Recently, a chimeric CS-HA1, obtained by adding the nine-amino-acid viral epitope hemagglutinin (HA1) to the COOH terminus of CS, was shown to be correctly segregated to the sarcoplasmic reticulum [A. Nori, K. A. Nadalini, A. Martini, R. Rizzuto, A. Villa, and P. Volpe. Am. J. Physiol. 272 (Cell Physiol. 41): C1420-C1428, 1997]. A putative targeting mechanism of CS to jSR implies electrostatic interactions between negative charges on CS and positive charges on intraluminal domains of jSR integral proteins, such as triadin and junctin. To test this hypothesis, 2 deletion mutants of chimeric CS were engineered: CS-HA1DeltaGlu-Asp, in which the 14 acidic residues [-Glu-(Asp)(5)-Glu-(Asp)(7)-] of the COOH-terminal tail were removed, and CS-HA1Delta49(COOH), in which the last, mostly acidic, 49 residues of the COOH terminus were removed. Both mutant cDNAs were transiently transfected in HeLa cells, myoblasts of rat skeletal muscle primary cultures, or regenerating soleus muscle fibers of adult rats. The expression and intracellular localization of CS-HA1 mutants were studied by epifluorescence microscopy with use of antibodies against CS or HA1. CS-HA1 mutants were shown to be expressed, sorted, and correctly segregated to jSR. Thus short or long deletions of the COOH-terminal acidic tail do not influence the targeting mechanism of CS
1999
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/155272
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact